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Abstract

Over the last two decades, accompanied by their prediction and ensuing realization, topological non-
trivial materials like topological insulators, Dirac semimetals, and Weyl semimetals have been in the
focus of mesoscopic condensed matter research. While hosting a plethora of intriguing physical phenom-
ena all on their own, even more fascinating features emerge when superconducting order is included.
Their intrinsically pronounced spin-orbit coupling leads to peculiar, time-reversal symmetry protected
surface states, unconventional superconductivity, and even to the emergence of exotic bound states
in appropriate setups. This Thesis explores various junctions built from � or incorporating � topo-
logical materials in contact with superconducting order, placing particular emphasis on the transport
properties and the proximity e�ect.

We begin with the analysis of Josephson junctions where planar samples of mercury telluride are
sandwiched between conventional superconducting contacts. The surprising observation of pronounced
excess currents in experiments, which can be well described by the Blonder-Tinkham-Klapwijk theory,
has long been an ambiguous issue in this �eld, since the necessary presumptions are seemingly not
met. We propose a resolution to this predicament by demonstrating that the interface properties in
hybrid nanostructures of distinctly di�erent materials yet corroborate these assumptions and explain
the outcome. An experimental realization is feasible by gating the contacts. We then proceed with
NSN junctions based on time-reversal symmetry broken Weyl semimetals and including superconduct-
ing order. Due to the anisotropy of the electron band structure, both the transport properties as well
as the proximity e�ect depend substantially on the orientation of the interfaces between the materials.
Moreover, an imbalance can be induced in the electron population between Weyl nodes of opposite
chirality, resulting in a non-vanishing spin polarization of the Cooper pairs leaking into the normal
contacts. We show that such a system features a tunable dipole character with possible applications in
spintronics. Finally, we consider partially superconducting surface states of three-dimensional topolog-
ical insulators. Tuning such a system into the so-called bipolar setup, this results in the formation of
equal-spin Cooper pairs inside the superconductor, while simultaneously acting as a �lter for non-local
singlet pairing. The creation and manipulation of these spin-polarized Cooper pairs can be achieved
by mere electronic switching processes and in the absence of any magnetic order, rendering such a
nanostructure an interesting system for superconducting spintronics. The inherent spin-orbit coupling
of the surface state is crucial for this observation, as is the bipolar setup which strongly promotes
non-local Andreev processes.





Zusammenfassung

Seit nun gut zwei Jahrzehnten stehen Materialien wie Topologische Isolatoren, Dirac Halbmetalle und
Weyl Halbmetalle im Fokus der Forschung der mesoskopischen Festkörperphysik. Diese topologisch
nicht-trivialen Materialien weisen sich durch eine Vielzahl faszinierender Eigenschaften aus, insbeson-
dere, wenn sie in Kombination mit supraleitender Ordnung untersucht werden. Die intrinsisch sehr
stark ausgeprägte Spin-Bahn Kopplung führt zu charakteristischen Ober�ächenzuständen, die durch
die Zeitumkehrsymmetrie geschützt sind, zu unkonventioneller Supraleitung und sogar zur Ausbildung
exotischer, gebundener Zustände in entsprechenden Strukturen. Diese Dissertation untersucht die
Transporteigenschaften als auch den Proximity-E�ekt in verschiedenen Kontakten aus topologischen
Materialien und Supraleitern.

Zu Beginn befassen wir uns mit Josephson-Kontakten, in denen planare Proben aus Quecksilbertel-
lurid in Kontakt mit konventionellen Supraleitern gebracht werden. In solchen Nanostrukturen wurden
ausgeprägte Exzessströme gemessen, die zudem in guter Übereinstimmung mit der Blonder-Tinkham-
Klapwijk Theorie stehen. Diese Beobachtungen sind jedoch kontraintuitiv, da die Voraussetzungen
für den Formalismus scheinbar nicht gegeben sind. Wir zeigen anhand der Grenz�ächeneigenschaften
zwischen sich deutlich unterscheidenden Materialien, dass diese Annahmen dennoch korrekt sind und
die Messergebnisse erklären. Dies lässt sich mit Hilfe von Seitenkontakten in einem Experiment nach-
weisen. Des Weiteren untersuchen wir Weyl Halbmetalle mit gebrochener Zeitumkehrsymmetrie und
im Kontakt mit einem zentralen Supraleiter. Die Transporteigenschaften, wie auch der Proximity-
E�ekt, hängen wegen der Anisotropie der Bandstruktur stark von der Ausrichtung der Grenz�ächen
zwischen den Materialien ab. Zudem lässt sich ein Ungleichgewicht in der Elektronenpopulation
zwischen Weylknoten unterschiedlicher Chiralität einstellen, was zu einer endlichen Spinpolarisation
der Cooper-Paare führt, die in die normalleitenden Kontakte eindringen. Das System weist dann
einen steuerbaren Dipolcharakter auf, welcher interessant für Anwendungen in der Spintronik ist.
Schlussendlich analysieren wir den Ober�ächenzustand eines dreidimensionalen topologischen Isola-
tors, der lokal supraleitende Ordnung aufweist. Wird ein solches System in den sogenannten bipolaren
Setup eingestellt, kann es zur Erzeugung und Manipulation von Triplet-Cooper-Paaren mit endlicher
Spinpolarisation im Supraleiter verwendet werden. Gleichzeitig stellt es einen Filter für nicht-lokale
Spin-Singlet-Paarung dar. Realisiert wird dies mit Hilfe elektrischer Spannung, und bedarf insbeson-
dere keiner magnetische Ordnung zur Ausrichtung des Spin. Stattdessen verlassen wir uns auf die starke
Spin-Bahn-Kopplung des Ober�ächenzustands sowie den bipolaren Setup, welcher den nicht�lokalen
Transport deutlich verstärkt.





Acronyms

1D/2D/3D one-/two-/three-dimensional

Al Aluminum

BCS Bardeen-Cooper-Schrie�er

BdG Bogoliubov-de Gennes

BHZ Bernevig-Hughes-Zhang

BTK Blonder-Tinkham-Klapwijk

CCP Chiral chemical potential

DSM Dirac semimetal

FSM Fermi surface mismatch

CdTe Cadmium telluride

HgTe Mercury telluride

N/N' represents a normal-state domain

S represents a superconducting-state domain

SM Semiconductor

TRS Time-reversal symmetry

QW Quantum well

WSM Weyl semimetal
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Scattering theory is a powerful and comprehensive formalism to understand and predict the trans-
port properties of particles and waves in heterogeneous systems, not only in acoustics and electrody-
namics [1�3], but also, and in particular, in condensed matter physics. It provides a convenient frame-
work to calculate experimental observables like the density of states, the di�erential conductance, and
the current in hybrid nanostructures. Therefore, it extends similar, classical theories, like the famous
Drude-model [4, 5] or the Drude-Sommerfeld-model [6], to the mesoscopic domain. From the mathe-
matical perspective, it corresponds to solving a system of (usually) �rst- or second-order di�erential
equations under certain initial or boundary conditions, imposed at the edges or the asymptotic limits
of the system, as well as at the interfaces between di�erent media. While, in electrodynamics, this
system of di�erential equations is given by the Maxwell equations, it is the Schrödinger equation in the
�eld of quantum mechanics [7]. The latter utilizes the Hamiltonian, an operator which incorporates
the physical information of the underlying structure, and is usually approached algebraically as an
eigenvalue problem. This allows expressing, for instance, electrons by means of wave functions, which
are subsequently used to construct scattering states that describe the entire system appropriately. The
matching of these states at the interfaces according to certain conditions (determined later in this work)
then provides the necessary information to derive the above-mentioned observables. In this context,
the scattering matrix has been introduced as a convenient quantity that relates the incoming to the
outgoing states in a heterostructure or a material featuring local impurities. It is directly related to
the Green function of the system, which is, formally, the inverse operator of the Hamiltonian. This is
extremely useful, since it does not only allow to derive transport properties in continuous systems but
also in discrete environments like crystalline lattices (the tight-binding model) or �nite-size samples
(described by the method of �nite di�erences) [8]. Moreover, the Green function contains not only in-
formation about the transport in a nanostructure, but equally on the coupling and the pairing between
di�erent states, given that the system features several degrees of freedom (spin/sublattice/Nambu/...).
As we will show in this Thesis, this inverse operator provides crucial information for our analysis and
can be derived by either the scattering matrix or directly by the full set of scattering states associated
with a given Hamiltonian.

In particular, we are going to consider heterojunctions built from a rather new type of materials,
denoted by topological insulators (TIs), and its derivatives. A prime example is the Quantum Spin Hall
E�ect (QSHE). In the classical Hall e�ect [9], a voltage di�erence is applied to a metal or semiconductor,
resulting in the conduction of electrons along the emerging electric �eld. A perpendicular magnetic
�eld forces these moving charge carriers to one of the edges of the sample, resulting in a measurable
transverse voltage (the Hall voltage). In a two-dimensional (2D) electron gas and at low temperatures,
a similar experiment can be performed. Exposing such a setup to a strong magnetic �eld, this leads to
a transverse voltage as well. The corresponding resistance is, however, quantized due to the emergence
of Landau levels in the band structure [10], a phenomenon denoted by the (integer or fractional)
Quantum Hall E�ect. The observation of both e�ects depends, nonetheless, on strong magnetic �elds.
This raised the question if such physics, i.e., the emergence of charge-carrying edge states, can emerge
in a system without the need to apply a magnetic �ux. As a consequence, �rst suggestions for three-
dimensional (3D) TIs have been proposed in 1985 [11] and 1987 [12], and concretized for 2D TIs in
2005 [13] and 2006 [14] as QSHE. The experimental veri�cation in a mercury telluride (HgTe) quantum
well (QW) has been achieved at the University of Würzburg in 2007 [15]. In the subsequent years,
more elements have been identi�ed as topological insulators, resulting in the establishment of a whole
catalog of topological insulators [16].

TIs are bulk insulators with metallic surface states, which are protected by time-reversal symmetry
(TRS) due to the non-trivial topology of their band structure (indicated by a topological invariant).
And in contrast to the Hall e�ect and the Quantum Hall e�ect, which require strong magnetic �elds,
this phase of matter relies on pronounced spin-orbit coupling in the material. As a consequence, the
one-dimensional (1D) edge states feature spin-momentum locking, severely suppressing the scatter-
ing at impurities and thus minimizing the electrical resistance in transport measurements. Moreover,
their band structure is linear at the band crossing points and can be described by the massless Dirac
Hamiltonian. All these features render them interesting materials to be studied, such that each chap-
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ter considers a junction where the underlying material, or at least the scattering domain, features
topological nature.

The concept of topological order is, nonetheless, not limited to insulators or 2D systems. In fact, it
has been shown that, in certain space groups, Dirac physics can emerge in metallic 3D bulk materials
as well - featuring linear band crossings and topological order - which are known today as Dirac
semimetals [17] (DSMs). More intriguingly, breaking time-reversal and/or inversion symmetry in a
DSM, this splits single Dirac nodes (which are doubly degenerate bands that feature no handedness)
into an even number of Weyl nodes with pairwise opposite chiralities [18, 19]. These Weyl semimetals
(WSMs) feature band crossings, denoted by Weyl points, which can be described as monopole charges
in k-space and lead to the emergence of the so-called Fermi surface arcs. These special representations
of topological surface states were crucial in the experimental realization and detection of WSMs in
2015 [20], which are, since then, equally in the focus of solid-state research as TIs. While WSMs can
be realized in di�erent types in condensed matter systems (i.e., type-I WSMs with a point-like Fermi
surface and type-II WSMs with a 'tilted' dispersion where the Weyl node separates electron and hole
pockets [21]) and show a plethora of intriguing physics, we are particularly interested in type-I WSMs
and the anisotropy of their band structure.

Even though topological materials are fascinating phenomena on their own, our aim is to bring
them into contact with another interesting material, namely superconductors. Superconductivity was
discovered by Heike Kamerlingh Onnes in 1911 [22] in metals at very low temperatures and shows,
per de�nition, vanishing electrical resistance and the Meiÿner-Ochsenfeld-e�ect [23], i.e., the complete
expelling of magnetic �eld lines from its interior. After its discovery, for several decades, superconduc-
tors were primarily studied from a phenomenological point of view, and a widely accepted, microscopic
theory was only published by Bardeen, Cooper, and Schrie�er (BCS) in their seminal work in 1957 [24].
They showed theoretically that, at su�ciently low temperatures, electrons in a crystalline lattice over-
come the Coulomb barrier due to phononic interactions, e�ectively resulting in an attractive potential
between them. This leads to the formation of Cooper pairs � bosonic particles build from each two
electrons � and results in a condensate described by a wave function that extends over the entire metal.
Impurities in the lattice have a negligible e�ect on this condensate, such that the electrical resistance
vanishes completely in the superconducting state. In the electron band structure of the metal, this
is re�ected by the emergence of a global gap around the Fermi energy, in which the density of states
drops to zero.

This superconducting gap is a crucial ingredient throughout this Thesis since it enables peculiar
scattering processes in normal metal-superconductor heterojunctions. An electron that approaches
such an interface from the normal side and with an energy that lies inside the gap cannot enter the
superconducting domain, since no corresponding states are available. Naively, one would think that
the superconductor thus acts as a barrier and that the electron can only be re�ected back into the
metal. However, it has been demonstrated that, with a certain probability, the incident electron can
also be re�ected as a hole at the interface. This fascinating process has been discovered by Andreev in
1964 [25]. A single electron (i.e., the incident particle) cannot enter the superconductor on its own due
to the absence of states. Nonetheless, it can form a Cooper pair with a second electron from the Fermi
sea in the same domain, such that both are added to the condensate. This leaves behind a hole in the
normal metal, propagating away from the interface, a process denoted by (local) Andreev re�ection.
A similar process can occur in normal metal-superconductor-normal metal (NSN) systems, with the
distinction that the incident electron and the second electron from the Fermi sea could also stem from
di�erent sides of the superconductor, which is commonly denoted by crossed Andreev re�ection. As we
illustrate in the following chapters, both scattering processes have intriguing e�ects on the transport
properties as well as on the pairing and the proximity e�ect in hybrid junctions.

While the theories and phenomena mentioned above are related to conventional, low-temperature
superconductors like aluminum or niobium, more exotic types of superconductivity at higher tempera-
tures have been discovered over the years [26]. Since these require distinct materials and more complex
theories to be described, this work will focus on the former type of superconducting order.
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This Thesis is structured as follows. In Chap. 2, we consider 2D heterojunctions of materials
featuring distinctly di�erent band structures and discuss the implications on the transport properties
in the system. In particular, we show that a signi�cant mismatch between the Fermi surfaces renders
the interfaces as a directional �lter for electrons and therefore keeps the equilibrium reservoirs well
separated from the scattering region. This is an important requirement for the applicability of scatter-
ing theory to describe transport properties and derive observables like the di�erential conductance or
the current. The chapter is rather technical and begins with the analysis of N'NN' or SNS (N and N'
describe di�erent normal-state domains, S describes a region featuring superconducting order) junc-
tions described by quadratic Hamiltonians, followed by a setup where the central domain is described
by a proper Hamiltonian for HgTe QWs. The extension to 3D is discussed. Furthermore, we introduce
generalized wave matching conditions and de�nitions of the probability current in the methods section.

Chapter 3 concerns 3D homogeneous, TRS broken WSMs with two Weyl nodes in the Brillouin
zone. A localized domain of such a sample shall become superconducting by means of the proximity
e�ect, e�ectively separating the adjacent normal domains and enabling to gate them independently.
Furthermore, the anisotropy of the WSM band structure allows us to choose an orientation of the axis
separating the Weyl nodes with respect to the interfaces between the leads and the central domain.
Both features do not only a�ect the transport properties in the junction, but also the superconducting
order leaking from the superconductor into the WSMs, i.e., the proximity e�ect in the leads. We
study the di�erential conductance as well as the pairing amplitudes for di�erent orientations and
gating voltages, with an emphasis on the equal-spin triplet amplitudes. The methodological section
introduces the Scattering State Approach, based on which we determine the Green function, as well
as the concept of outgoing boundary conditions and the Wronskian method.

Finally, in Chap. 4, we consider 2D surface states of 3D TIs, equally featuring superconducting
order in a restricted domain. Using gating technology, this NSN system is transferred into the bipolar
setup, where the electrochemical potentials in the normal leads have the same magnitude, but di�erent
signs. This results in intriguing e�ects on the transport properties, particularly the local and non-local
di�erential conductance, as well as on the proximity e�ect in the normal leads. The breaking of spin-
rotational invariance suggests the formation of equal-spin Cooper pairs, and we introduce a quantity
that measures this net spin pumped into the superconductor when a bias is applied to the system. We
evaluate this quantity and illustrate why the bipolar setup is a favorable con�guration for applications
in superconducting spintronics.

Each chapter starts with a motivational section which puts the work into context with current
research and introduces the physical concepts thoroughly, which is followed by a methods part in Chap.
2 and Chap. 3. We then provide the mathematical and theoretical basis (in terms of Hamiltonians
and the associated eigensystems) upon which we perform calculations and draw results. The latter are
subsequently presented and discussed in detail, followed by a section that concludes the chapter.

Parts of this thesis have been published in journals associated to the American Physical Society.
The publications are mentioned in the corresponding motivational sections and reprinted �gures are
explicitly highlighted in the captions.
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This chapter is based on the work Directional electron-�ltering at superconductor-semiconductor inter-
faces by Daniel Breunig, Song-Bo Zhang, Björn Trauzettel and Teun M. Klapwijk (Phys. Rev. B 103,
165414 (2021)).

2.1 Motivation

In 1982, Blonder, Tinkham, and Klapwijk (BTK) proposed their seminal transport theory for normal
metal-superconductor (NS) microconstrictions [27], providing a powerful formalism to study electrical
transport in a wide range of 1D systems. Crucial requirements for its applicability are ballistic trans-
port and equilibrated reservoirs in contact with the scattering region. This is achieved by choosing
an appropriate and experimentally realizable geometry, where a transmissive interface is placed in an
ori�ce in an elsewise opaque screen, separating the electron systems of the two materials. This separa-
tion allows to apply a bias over the junction by setting the reservoirs to di�erent chemical potentials,
where the electron occupation can be described by equilibrium Fermi distribution functions f0(E) and
f0(E − eV ), respectively [28]. Initially designed for experimental setups that correspond to this ori-
�ce model, prime examples for such spatially bound geometries are break junctions [29] and quantum
point contacts [30]. This formalism is employed frequently and has been extended to more complex
scenarios [31�33].

y

x

SM N or S

Vappl

Vg

N or S

Fig. 2.1: Sketch of a 2D interface-junction considered in this work. A semiconductor (SM, blue) is brought
into contact with a normal metal or an s-wave superconductor (N or S, gray). We assume two interfaces in
x-direction, while the y-direction remains translational invariant. Reprinted �gure with permission from [34].
Copyright (2021) by the American Physical Society.

The recent prediction and experimental con�rmation of topological insulators [35, 36] motivated
numerous experiments on Josephson junctions of 2D materials with rather dissimilar electronic prop-
erties. While, for a theoretical approach, the BTK formalism is well suited to describe Josephson
junctions of homogeneous materials that comply with the ori�ce model [37, 38], this is not a priori
true for planar systems that do not form any kind of constriction, as, for instance, illustrated in Fig.
2.1. Instead, one could assume interfaces with very low transparency. This would shift the system
into the tunneling regime, e�ectively separating the reservoirs from each other, such that they remain
equilibrated. However, recent measurements in Josephson junctions suggest intermediate to high in-
terface transparencies [39�43], while still being in accordance with BTK theory. This invalidates the
former argument. Local equilibria are crucial for Josephson junctions, which are intrinsically two-
terminal devices where a bias is applied over the same contacts that serve as source and drain for the
current [30,44,45], hence the question arises which mechanism guarantees their existence.

In this chapter, we demonstrate that, while the precondition of equilibrium reservoirs is usually
implicitly presumed, a more detailed analysis of the interface characteristics � with respect to the
di�erent electronic properties in the metals and the semiconductor � is required to justify this assump-
tion [46�49]. This is particularly interesting since the electronic properties of a semiconductor can be
tuned by a gate-voltage, which changes the Fermi level and directly a�ects the interface properties.
Insights on these features provide an understanding of the voltage-carrying state in ballistic Joseph-
son junctions, as well as of the Andreev bound states in the zero-bias limit due to the e�ect on the
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boundary conditions [50].
We focus speci�cally on measurements of the so-called excess current, i.e., the o�set between

normal-state and superconducting-state current at biases much larger than the order parameter. It
can be attributed to strong contributions from energies in proximity to the superconducting gap,
which are mediated by Andreev re�ection processes at the interface between a normal material and
a superconductor [27]. Typical experimental setups are Josephson junctions based on mercury tel-
luride (HgTe) heterostructures in contact with superconductors like aluminum (Al), niobium (Nb),
and molybdenum-rhenium (MoRe) [36, 39, 51] with large cross-sectional areas of a few microns by 10
to 80 nanometers. The S domains are induced via superconducting top electrodes on the surface of a
HgTe-layer by the proximity e�ect, or realized as side contacts in mesa-structures [52] as it has been
done for graphene [42] and indium antimonide (InSb) [53]. In all of these setups, pronounced excess
currents related to apparently substantial interface transparencies have been observed, even though
the dimensions of the samples are not to any extent in agreement with the ori�ce model. Our aim
is to resolve this seemingly contradictory observation by means of a mechanism denoted by Fermi
surface mismatch (FSM). We study its e�ects on the electronic interface properties as well as on the
transport in the system, with emphasis on the di�erential conductance and the current. While our
analysis focuses on the properties of one single interface, we argue that the results can be applied to a
Josephson junction as well.

The remainder of this chapter is structured as follows. In Sec. 2.2, we discuss FSM and its
implications as a k-space ori�ce, separating the reservoirs in the presence of an elsewise transparent
interface in planar junctions. Methods used to obtain our results as well as the derivation of physical
observables are presented in Sec. 2.3, whereas in Sec. 2.4, we introduce the NS system on which we
perform our analysis, including the theoretical background. The results are presented in detail in Sec.
2.5, where we �rst study an NN' junction in which both metals are in the normal state, followed by an
NS system. In Sec. 2.6, we add more complexity to the system by describing the central region with
the BHZ-Hamiltonian, and conclude with the extension of the BTK-Kastalsky-Beenakker formula to
a system featuring FSM in Sec. 2.7.

This work has partially been published as a regular article in the journal Physical Review B [34].
Similarities in the text are unavoidable. The copyright (2021) belongs to the American Physical Society.
All licenses to use the content in this Thesis have been obtained. Reprinted or adapted �gures are
distinctly marked.

2.2 Fermi surface mismatch

When superconductivity is induced by the proximity-e�ect in an elsewise homogeneous material, the
underlying Hamiltonian is the same for the whole system, except for a localized pairing potential. This
is no longer the case if a semiconductor, like HgTe, is interfaced with superconducting side contacts from
a di�erent material, e.g. Al. Then, the electronic properties are rather distinct, since both materials
feature, for instance, dissimilar e�ective masses, degrees of freedom, or potentials. The underlying
Hamiltonians are fundamentally di�erent. If we want to study such a hybrid nanostructure by means
of scattering theory, this has an essential e�ect on the electronic properties, denoted by Fermi surface
mismatch. We want to introduce this concept at hand of a simple example.

Let us consider a system in which two metals, described by the model of the quasi-free electron
gas, are brought into contact with each other, see Fig. 2.2. Then, their Hamiltonian is of the form

H =
~2k2

2m∗
− µ, k = |k| =

√
k2
x + k2

y, (2.1)

where ~k = (~kx, ~ky) is the momentum operator (kx and ky are the wavenumbers in x- and y-direction,
respectively) with ~ the reduced Planck constant, m∗ is the e�ective mass and µ the chemical potential.
When the e�ective masses in N and N' deviate from each other, this means that their dispersions feature
di�erent curvatures, cf. Fig. 2.2, which leads to a mismatch of the Fermi surfaces. As we will see, this
inevitably limits the transmissivity of the system.
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Fig. 2.2: Bottom: Junction of two normal metals N and N'. The solid arrow represents an incident electron
in N approaching the interface, while the dashed arrows indicate possible scattering processes - re�ection and
transmission. Note that the y-direction is assumed to be translational invariant. Top: Schematic illustration
of the dispersion in each material. Here, we assume di�erent e�ective masses in N and N', leading to di�erent
curvatures.

The Fermi surface in a 2D material is the intersection of its dispersion with a plane of constant
energy in k-space, i.e., a circle of radius k (k′) in N (N'). If these radii di�er from each other, k 6= k′,
this has an interesting consequence, as we illustrate in Fig. 2.3. Considering an excitation in N that
approaches the interface (solid arrow in Fig. 2.2, corresponding to a right moving particle with kx > 0),
there are, in general, two scattering processes that can occur. The electron can be re�ected back into N,
or it can be transmitted across the interface into N' (dashed arrows). This is, however, only possible if
a corresponding state is available in N or N'. When we assume the system to be translational invariant
in y-direction, then ky (which parameterizes the transverse modes [8]) is conserved in a scattering
event. Consequently, there are states in N that cannot undergo transmission due to the absence of
corresponding states in N' (indicated by the red sectors in Fig. 2.3). In contrast, re�ection can happen
for any ky, since there is always a state on the other side of the Fermi surface (kx → −kx) in N.
Therefore, only the modes in N indicated by the blue sector in Fig. 2.3 can be transmitted across the
junction and thus contribute to the transport in the system. This is explicitly illustrated in Fig. 2.4 for
an electron with scattering states in both N and N' (blue) as well as for an electron with a scattering
state in N only (gray). We label the critical angle between the states that can undergo transmission
and those that cannot as θc.

Fig. 2.3: (a) 3D and (b) top view of the Fermi surfaces at a constant energy E. Since they have di�erent radii
|k| and |k′| in N and N', respectively, there are states in N that have no counterpart in N', such that transmission
cannot happen (indicated by the red sectors). Note that ky is conserved in a scattering process since we assume
the system to be translational invariant in y-direction. Reprinted �gure with permission from [34]. Copyright
(2021) by the American Physical Society.
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As we can see, the interface of such a junction performs as a directional �lter for incident electrons
due to this mismatch between the Fermi surfaces. Only those with a small enough angle have a chance
to be transmitted across the junction (determined by the intrinsic transmissivity of the interface) and
contribute to the di�erential conductance and the current in the system, while all other modes are
re�ected with unit probability. The latter do not change the occupation in N and thus do not a�ect its
Fermi distribution function. Therefore, if FSM is large enough, i.e., by creating an 'ori�ce in k-space',
this perturbation becomes negligible and N can be interpreted as an equilibrated reservoir.

Evidently, this argumentation does not hold for an electron excited in the right metal. For any
mode ky in N', we �nd a corresponding mode in N, which essentially enables transmission across the
interface for all angles of incidence. N' can thus not be assumed to be equilibrated. Instead, we
argue that two of such interfaces need to be combined in series to form a junction as illustrated in
Fig. 2.1. Then, the normal metals would perform as the reservoirs where we can de�ne equilibrated
incoming and outgoing populations (the fundamental assumption of BTK) and which we can set to
di�erent chemical potentials, while the semiconductor represents the scattering region where such an
assumption (i.e., an equilibrium Fermi distribution) is not required.

ky

kx

|k'|
|k|

Fig. 2.4: Illustration of FSM. If the angle of incidence of an electron in N is smaller than θc, both re�ection
and transmission can occur, since the states are available for these processes (blue state). This is no longer true
for an electron with an angle of incidence larger than θc, since there is no state available in N' (gray state).

In a hybrid junction of HgTe and, for instance, Al, FSM is very pronounced (cf. Sec. 2.6), which
partially explains the observations in the experiments mentioned above. What remains is the question
of how FSM a�ects the interface transmissivity and what currents are to be expected. This chapter is
supposed to give an explicit answer to this question.

In order to quantify FSM, we introduce the ratio r between the radius of the smaller Fermi surface
and that of the larger one. For instance, in the context of Fig. 2.3, this ratio would be de�ned as
r = |k′| / |k|. It can attain values 0 < r ≤ 1, where r = 1 corresponds to a homogeneous system with
equal Fermi surfaces and the limit r → 0 to a point-like Fermi surface in one of the materials (not
explicitly considered in this work). The reciprocal de�nition is possible as well, where the ratio attains
values 1 ≤ r <∞. Our choice, however, explores the same extend of FSM in a conveniently compact
range of the ratio r.

Finally, we de�ne the electron modes that can be transmitted across the interface as the propagating
modes, whereas those that are re�ected with unit probability are denoted re�ected modes, see the inset
of Fig. 2.5. This plot furthermore illustrates the number of propagating modes in relation to all
incident modes1, which decreases nearly linearly with increasing FSM, except for choices of r that are
close to the homogeneous setup. As a last note, we emphasize that a large FSM corresponds to a small
ratio r, and vice versa.

1Note that only half the circle in, e.g., Fig. 2.3 corresponds to incident modes, the other half describes an electron
that moves away from the interface.
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propagating modes 

reflected modes

reflected modes

pr
op

ag
at

in
g 

m
od

es

Fig. 2.5: Number of available electron modes for transmission (propagating modes) as a function of FSM. The
inset illustrates the de�nitions of propagating and re�ected modes. Reprinted �gure with permission from [34].
Copyright (2021) by the American Physical Society.

2.3 Methods and derivations

2.3.1 Generalized wave matching conditions

In order to calculate transport properties in junctions with spatially varying parameters (without
loss of generality, we choose the spatial variable along which the parameters vary to be x), we need
to �nd the appropriate wave matching conditions at the interfaces. This is straightforward if we
assume a homogeneous material where the spatial dependence appears only in the potential term
of the Hamiltonian, and can be achieved by real space integration of the Schrödinger equation. A
position-dependent e�ective mass m(x), however, is more complicated, since it appears as a reciprocal
coe�cient of the second order of the momentum operator, p̂x = −i~∂x(= ~k̂x), but does not commute
with the latter (in contrast to a constant e�ective mass),

[
p̂2
x,m

−1(x)
]
6= 0. As a consequence, we

cannot simply write the Hamiltonian in the form H ∝ m−1(x) p̂2
x, since this term is not hermitian,(

m−1(x) p̂2
x

)†
= p̂2

xm
−1(x) 6= m−1(x) p̂2

x. (2.2)

Thus, we need an expression that is both hermitian and well de�ned. The same issue arises if we
want to consider position-dependent electron velocities, which are coe�cients of the �rst order of the
momentum operator. In order to provide wave matching conditions that are valid in a wide range of
systems with spatially dependent parameters, let us introduce a rather general model Hamiltonian.
For the time being, we assume that (i) the system is 1D (ii) the position-dependence appears solely in
the form of step-functions or delta-functions, and (iii) only one interface is present. This simpli�es the
derivation of the wave matching conditions, but does not a�ect the results, as we will discuss later.
Then, such a general, well de�ned and hermitian Hamiltonian [54,55] is given by

H(x) = p̂xA(x, x0)p̂x +
1

2
[B(x, x0)p̂x + p̂xB(x, x0)] + C(x, x0) +D(x, x0) (2.3)

with x0 the position of the interface. The quantities A, B, C and D are hermitian (n× n)-matrices,
with n the degrees of freedom of the system (e.g., spin, orbital, ...). In a condensed matter system,
A is related to the reciprocal e�ective mass of the particles, B to their velocities and C and D are
potentials. Explicitly, the position-dependence of these parameters shall read as

Λ(x) = Λl Θ(x0 − x) + Λr Θ(x− x0), Λ ∈ {A,B, C} (2.4a)

D(x) = D δ(x− x0), (2.4b)

where Θ(·) and δ(·) are the Heaviside and Dirac Delta function, respectively, while l and r denote the
domain left (x < x0) and right (x > x0) of the interface. Here, Λl/r and D are no longer position-
dependent. Note that the reasoning behind splitting up the potential in Eq. (2.3) into C(x) and D(x)
is solely to distinguish step-like potentials from delta barriers.
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We are now able to derive the generalized wave matching conditions for a Hamiltonian as introduced
in Eq. (2.3). Since its eigenstates φ(x) are associated with one-particle probability distributions in
real space, it is physically reasonable to assume that they are continuous for all x, and in particular
at the interface, i.e.,

lim
ε→0+

φ(x0 + ε) = lim
ε→0+

φ(x0 − ε). (2.5)

This provides a �rst condition. However, since Eq. (2.3) gives rise to a second-order system of
di�erential equation(s), Eq. (2.5) alone is not su�cient. Therefore, we integrate the Schrödinger
equation

Hφ(x) = Eφ(x), (2.6)

with E the energy eigenvalues, over a small domain around the interface at x = x0 (we drop the
argument x0 in the following for compactness),

x0+ε∫
x0−ε

[
−∂x

(
A(x)φ′(x)

)
− i

2

[
B(x)φ′(x) + ∂x (B(x)φ(x))

]
+ (C(x) +D(x)− E)φ(x)

]
dx = 0. (2.7)

We may evaluate each term of this integral separately. With Λ′(x) = (Λr − Λl) δ(x−x0) and Eq. (2.5),
we obtain

x0+ε∫
x0−ε

∂x
(
A(x)φ′(x)

)
dx =

[
A(x)φ′(x)

]x0+ε

x0−ε = Arφ′(x0 + ε)−Alφ′(x0 − ε), (2.8)

x0+ε∫
x0−ε

B(x)φ′(x)dx = [B(x)φ(x)]x0+ε
x0−ε −

x0+ε∫
x0−ε

B′(x)φ(x)dx (2.9a)

= Brφ(x0 + ε)− Blφ(x0 − ε)− (Br − Bl)φ(x0)
ε→0+

−→ 0, (2.9b)

x0+ε∫
x0−ε

∂x (B(x)φ(x)) dx = [B(x)φ(x)]x0+ε
x0−ε = Brφ(x0 + ε)− Blφ(x0 − ε)

ε→0+

−→ (Br − Bl)φ(x0), (2.10)

x0+ε∫
x0−ε

C(x)φ(x)dx = Cl

x0∫
x0−ε

φ(x)dx+ Cr

x0+ε∫
x0

φ(x)dx
ε→0+

−→ 0, (2.11)

x0+ε∫
x0−ε

D(x)φ(x)dx = D
x0+ε∫
x0−ε

δ(x− x0)φ(x)dx = Dφ(x0), (2.12)

x0+ε∫
x0−ε

Eφ(x)dx
ε→0+

−→ 0. (2.13)

We thus arrive at the second wave matching condition, which reads

lim
ε→0+

[
Arφ′(x0 + ε)−Alφ′(x0 − ε)

]
=

[
D − i

2
(Br − Bl)

]
φ(x0). (2.14)
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To summarize, the wave function itself is continuous, while its derivative features a jump if Bl/r or
D is �nite. This equation reduces to the well known condition for Delta potentials if A(x) ≡ A and
B(x) = B (i.e., Al = Ar and Bl = Br),

lim
ε→0+

[
φ′(x0 + ε)− φ′(x0 − ε)

]
= A−1D φ(x0). (2.15)

and to the continuity condition of the derivative if, additionally, D = 0,

lim
ε→0+

[
φ′(x0 + ε)− φ′(x0 − ε)

]
= 0. (2.16)

Notably, Eq. (2.14) depends neither on Cl/r nor the energy eigenvalues E.
Note that, as soon as any of the terms (Br − Bl) or D is non-zero, Eq. (2.14) is, mathematically

speaking, only valid if at least one of the terms related to the e�ective mass, Al/r, is �nite. Else, the
condition reduces to φ(x0) = 0, which cannot be ful�lled for an arbitrary x0. Physically speaking, this
would mean that a junction of Dirac materials could not feature a Dirac potential or di�erent Fermi
velocities across an interface. We can resolve this by arguing that Dirac Hamiltonians in condensed
matter theory are obtained by approximating a quadratic Hamiltonian in an energy domain in which
the parameters Al/r are rather small (i.e., the e�ective masses are very large), but do, strictly speaking,
not vanish. Furthermore, a Dirac barrier can always be modeled by a potential of �nite length d and
performing the limit d→ 0, while keeping the barrier strength �nite [56].

To arrive at Eq. (2.14), we made several assumptions that restrict the generality of our wave
matching conditions. In fact, we are able to loosen these assumptions, whose primary purpose was the
simpli�cation of the derivation above. Let us resolve them one by one.

(i) The Hamiltonian needs not to be 1D for us to arrive at Eq. (2.14). It su�ces if we can reduce
a, e.g., 3D Hamiltonian H(x, y, z) to a quasi-1D operator. This is possible if the parameters vary
in one spatial direction only, while the other two dimensions remain translational invariant. Then,
we may perform Fourier transformations and obtain H(x, y, z) → H(x, ky, kz), where ky/z are the
wavenumbers in y- and z-direction, representing good quantum numbers. All terms proportional to
ky/z can be absorbed into the term C(x) in Eq. (2.3), and the result in Eq. (2.14) is not a�ected.
(ii) In principle, it is not necessary to restrict ourselves to step-like potentials. We can always separate
a system with varying parameters into domains where they are nearly constant. This, however, may
be cumbersome in an analytical calculation. (iii) Due to the linearity of the integral, Eq. (2.14) can be
applied to any number of interfaces, as long as the Hamiltonian can be reduced to a quasi-1D operator.
This means the interfaces need to appear along the same spatial direction (e.g., x).

2.3.2 Generalized probability current

While the wave matching conditions in Eqs. (2.5) and (2.14) provide relations to determine the scatter-
ing coe�cients in a hybrid nanostructure, the actual transport properties depend on the corresponding
probability current density. From the equation of continuity,

∂ρ

∂t
+ ∂xj = 0, ρ = |φ(x, t)|2 , (2.17)

as well as the time-dependent Schrödinger equation,

i
∂

∂t
φ(x, t) = Hφ(x, t) ⇒ ∂

∂t
φ(x, t) = −iHφ(x, t), (2.18)

we are able to derive an equally general expression (related to Hamiltonians H of the form introduced
in Eq. (2.3)) for the probability current density. We �nd (for the sake of clarity, we drop all variable-
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dependencies)

∂ρ

∂t
= ∂tφ

†φ+ φ†∂tφ = (−iHφ)† φ+ φ† (−iHφ) (2.19a)

= i
[
φ†Aφ′′ + φ†A′φ′ − (φ†)′′Aφ+ (φ†)′A′φ

]
−
(
φ†Bφ′ + (φ†)′Bφ+ φ†B′φ

)
(2.19b)

= −∂x
[
i
(

(φ†)′Aφ− φ†Aφ′
)

+ φ†Bφ
]

= −∂x
[
2 Im

(
φ†Aφ′

)
+ φ†Bφ

]
, (2.19c)

such that the probability current density of a given eigenstate φ(x) reads

j [φ(x)] = 2 Im
(
φ†(x)A(x)φ′(x)

)
+ φ†(x)B(x)φ(x). (2.20)

Note that this quantity depends only on the e�ective mass and the velocity of the electrons, but not
on the potential terms in our model Hamiltonian.

2.3.3 Derivation of the current

With the probability amplitudes at hand, we are now able to derive an explicit relation for the bias-
dependent current in the system. We start from the single-mode expression,

I(ky) = 2e

∞∫
−∞

Nky(E)vky(E)
[
fky ,→(E)− fky ,←(E)

]
dE (2.21)

with Nky(E), vky(E) and fky ,�(E) the density of states, group velocity and distribution functions
(the arrows indicating incoming and outgoing states) for each 1D mode, indexed by ky, at energy E,
respectively. The relation Nky(E) = 1/

[
2π~vky(E)

]
allows us to further simplify this expression, and

we obtain

I(ky) =
2e

h

∞∫
−∞

[
fky ,→(E)− fky ,←(E)

]
dE. (2.22)

Under the assumption of local equilibria on the left and right hand side of the interface, we may
write [27]

fky ,→(E) = f0(E − eV ), (2.23a)

fky ,←(E) = A(E, ky)
[
1− fky ,→(−E)

]
+B(E, ky)fky ,→(E) + [C(E, ky) +D(E, ky)] f0(E), (2.23b)

where V is the bias applied to the system and A,B,C and D are probability current densities related
to re�ection (A,B) and transmission (C,D) scattering processes. We explain them in detail later in
this chapter. With Eq. (2.23) as well as the relations A(−E, ky) = A(E, ky) and f0(−E) = 1− f0(E),
Eq. (2.22) evaluates to

I(V, ky) =
2e

h

∞∫
−∞

[f0(E − eV )− f0(E)] [1 +A(E, ky)−B(E, ky)] dE. (2.24)

As stated above, this is a single-mode expression under the assumption of translational invariance in
y-direction. Therefore, the general current is given by the sum over all modes ky,

I(V ) =
2e

h

∑
ky

∞∫
−∞

[f0(E − eV )− f0(E)] [1 +A(E, ky)−B(E, ky)] dE. (2.25)
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2.4 Setup and Hamiltonian

2.4.1 General de�nitions and calculations

While the system in Fig. 2.1 consists of two N(or S)-SM interfaces in series, we study the electronic
properties and the scattering processes of only one of them. The full system can then be described by
the formalism introduced by Octavio et al., which allows to combine two single-interface setups to a
joined system [57]. Without loss of generality, we choose the interface to be located at x0 = 0. For
simplicity and pedagogical reasons, we continue to employ the model of the quasi-free electron gas
from Sec. 2.2 and assume s-wave pairing in the superconductor. A more sophisticated analysis on
HgTe is given in Sec. 2.6. The Bogoliubov-de Gennes (BdG) framework [58] is a suitable formalism to
deal with such a system, and we introduce the kernel Hamiltonian in the Nambu basis (ĉ, ĉ†)T as

HBdG(x) =
(
k̂x

~2

2m(x)
k̂x +

~2k2
y

2m(x)
− µ(x) +Hδ(x)

)
τz + ∆(x)τx, (2.26)

where ĉ† is the creation operator of an electron and τ0,x,y,z are unit and Pauli matrices in Nambu space.
Furthermore, m(x) is the e�ective mass and µ(x), ∆(x) and H are the electrochemical potential, the
superconducting order parameter and a repulsive scattering potential at the interface, respectively.
Note that HBdG is of the form as introduced in Eq. (2.3) with

A(x) =
1

2m(x)
τz, B(x) = 0, C(x) =

(
~2k2

y

2m(x)
− µ(x)

)
τz + ∆(x)τx, D = Hτz, (2.27)

and a quasi-1D operator since we assume the y-direction to be translational invariant. ky is thus a
good quantum number parameterizing the transverse modes.

In the domain left (L) and right (R) of the interface, we assume constant e�ective masses ml and
mr, which shall be, in general, distinct from each other. Similarly, we assume the order parameter
to be �nite and constant in S only, while the electrochemical potential attains a global value. The
potentials thus read, explicitly,

m(x) = mlΘ(−x) +mrΘ(x), ∆(x) = ∆0Θ(x), µ(x) = µ. (2.28)

The step-wise variation of these parameters is justi�ed if the Fermi wave lengths are large in both L
and R. Solving the BdG equations

HBdG(x)ψ(x) = Eψ(x), (2.29)

this yields the eigenenergies deep inside the bulk materials,

E±
∣∣
x�x0

= ±
(
~2k2

2ml
− µ

)
, E±

∣∣
x�x0

= ±

√(
~2k2

2mr
− µ

)2

+ ∆2
0 (2.30)

with k =
√
k2
x + k2

y. We obtain two bands each since we consider both electron and hole excitations,

and the excitation energy is measured from the Fermi level inside S (here, E = 0). The associated
(unnormalized) energy eigenstates read

|E+〉 = (1, 0)T , |E−〉 = (0, 1)T (2.31)

in L and

|E±〉 =

((
k2 − κ2

r

)
~2 ±

√
(k2 − κ2

r)
2 ~4 + 4m2

r∆
2
0

2mr∆0

)
(2.32)
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Fig. 2.6: Energy dispersion of the bulk materials far (a) left and (b) right of the interface as a function of kx.
Electron bands are given in dark blue, hole bands in orange. We consider the zero-mode (solid lines), where
the electron band and the hole band are degenerate at the Fermi energy, and a mode which exceeds the Fermi
wavenumbers κl/r (dashed), where a partial gap opens up between the bands.

in R. The dispersions are plotted in Fig. 2.6, where the Fermi wavenumbers are given by κl/r =√
2ml/rµ/~ in L/R. For a �nite (and positive) electrochemical potential, the bands intersect with

each other at k = κl/r, i.e., the electron and hole states are degenerate at the Fermi energy, see Fig.
2.6(a) (here, ky = 0). If ∆0 > 0, the superconducting gap opens around this energy, such that no
electron or hole states exist in the domain |E| ≤ ∆0, see Fig. 2.6(b) (here, ky = 0). As a consequence,
the bands change their particle nature around kx = κr, which is indicated by the color code. For
instance, E+

∣∣
x�x0

is electron-like (dark blue) for |kx| > κr and hole-like (orange) for |kx| < κr. We
can determine this particle nature by calculating the charge of the eigenstates in Eqs. (2.31) and (2.32)
by means of the charge operator Ĉ = τz,

QC =
〈E±| Ĉ |E±〉
〈E±|E±〉

. (2.33)

Note that, by increasing the mode parameter ky, we shift the electron (hole) dispersion to positive
(negative) energies. This opens a partial gap between the bands if ky is larger than the respective
Fermi wavenumber κl/r, see the dashed lines in Fig. 2.6. As a consequence, elastic interband scattering
processes can no longer occur and no S gap opens up for this choice of parameters. This is an important
point which we discuss in detail later in this chapter. The same physics occurs if we choose µ to be
negative, for all values of ky (i.e., the dispersions are all similar to the dashed lines in Fig. 2.6,
independent of ky). Since this case is not relevant for us, we presume µ > 0 in what follows.

In order to deal with the interface, the bulk eigenstates in Eqs. (2.31) and (2.32) are not su�cient
since translational invariance is broken in x-direction. Therefore, k̂x must be expressed in operator
form, k̂x = −i∂x, and we obtain the eigenstates in a mixed energy-position representation as

ψ±e (x) =

(
1
0

)
e±ikex, ψ±h (x) =

(
0
1

)
e∓ikhx, ψ±eq(x) =

(
u
v

)
e±ikeqx, ψ±hq(x) =

(
v
u

)
e∓ikhqx. (2.34)

Here, the superscripts ± indicate the sign of the group velocity in x-direction and the subscripts
distinguish electrons (e) from holes (h) in L as well as electron-like (eq) from hole-like (hq) particles
in R. The BCS coe�cients are given by

u2 = 1− v2 =
1

2

(
1 +

Ω

E

)
, with Ω =

√
E2 + ∆2

0, (2.35)
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and the wavenumbers read

ke = κl

√
1 +

E

µ
−
(
ky
κl

)2

, kh = ξhκl

√
1− E

µ
−
(
ky
κl

)2

, (2.36a)

keq = κr

√
1 +

Ω

µ
−
(
ky
κr

)2

, khq = ξhqκr

√
1 +

Ω

µ
−
(
ky
κr

)2

. (2.36b)

Finally, the factors

ξh = sgn

[
µ

(
1−

(
ky
κl

)2
)
− E

]
, ξhq = sgn


√√√√µ2

(
1−

(
ky
κr

)2
)2

+ ∆2
0 − E

 (2.37)

guarantee the appropriate asymptotic behavior of the wave functions when ψ±h (x) or ψ±hq(x) describe
evanescent waves. The explicit group velocities associated to each of the states in Eq. (2.34) can be
obtained by the relation

vg =

(
~∂k
∂E

)−1

(2.38)

and read

ve/h =
~ke/h
ml

, veq/hq =
~keq/hq
mr

(
|u|2 − |v|2

)
. (2.39)

Note that the BCS coe�cient are complex conjugates of each other if |E| < ∆0, such that veq/hq vanish
at subgap energies. This captures the underlying physics appropriately, since there are no propagating
states in this regime.

We are now able to de�ne the scattering state for the NS-junction. Assuming an electron excited
in N and moving towards the interface, it reads

φ(x) =

{
ψ+
e (x) + aψ−h (x) + b ψ−e (x), x < 0

c ψ+
eq(x) + dψ+

hq(x), x > 0
. (2.40)

This process is schematically illustrated in Fig. 2.7. When the incident electron (blue point) ap-
proaches the interface, it can either be re�ected as an electron (normal re�ection, b) on the other side
of the Fermi surface or as a hole (Andreev re�ection [25], a) on the same side of the Fermi surface.
Likewise, it can be transmitted across the interface into S as an electron-like particle (transmission
without branch crossing, c) or as a hole-like particle (transmission with branch crossing, d). Here,
a, b, c and d are scattering coe�cients, which are related to the probability amplitudes for each of their
associated processes.

Note that, in total, there are four scattering states corresponding to outgoing boundary conditions
(we elucidate this concept in detail in the next two chapters). While φ(x) describes an electron excited
in N, we can equally assume that an electron-like particle is excited in S. In a setup with a single
interface, the results are the same as those we obtain from φ(x), which is why we do not consider it
separately. Furthermore, the scattering state for a hole excited in N (a hole-like particle excited in S)
is related to that of an electron excited in N (an electron-like particle excited in S) by the intrinsic
BdG particle-hole symmetry, given by

UBdGHBdGU†BdG = −HBdG, (2.41)

where UBdG = −iτyK and K is the operator of complex conjugation. The full set of scattering states is
not required to determine the current and the di�erential conductance of the junction, which is why we
focus our studies on φ(x) as de�ned above. It is, however, necessary for the subsequent two chapters,
which is why we put an emphasis on the full set of states.
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Fig. 2.7: Schematic illustration of the scattering state φ(x) from (top) a spectral and (bottom) a real-space
point of view (for a �xed mode ky). An electron is excited in N and approaches the interface (blue point).
There, it can be re�ected as either an electron or a hole, or it can be transmitted into S as either an electron-like
or a hole-like particle.

2.4.2 The Andreev approximation

So far, the quantities introduced in Sec. 2.4.1 are derived without any approximation on the parame-
ters in HBdG. Usually, however, the electrochemical potential µ, which is related to the carrier density,
is rather large in metals and semiconductors, compared to the excitation energy and the order pa-
rameter. This so-called Andreev approximation, i.e., µ � E,∆0, signi�cantly simpli�es the following
calculations, while the qualitative �ndings are merely a�ected. Explicitly, we have

E

µ
=

Ω

µ
≈ 0, (2.42)

such that the wavenumbers in Eq. (2.36) simplify to

ke = kh ≈ κl cos θl ≡ kl, keq = khq ≈ κr cos θr ≡ kr (2.43)

with

θl = arcsin

(
ky
κl

)
, θr = arcsin

(
ky
κr

)
. (2.44)

These angles are well de�ned since we assume |ky| ≤ κl in L and |ky| ≤ κr in R. With Eq. (2.43), the
group velocities simplify similarly,

ve = vh =
~kl
ml
≡ vl, veq = vhq =

~kr
mr

(
|u|2 − |v|2

)
≡ vr

(
|u|2 − |v|2

)
. (2.45)

and the eigenstates read as

ψ±e (x) =

(
1
0

)
e±iklx, ψ±h (x) =

(
0
1

)
e∓iklx, ψ±eq(x) =

(
u
v

)
e±ikrx, ψ±hq(x) =

(
v
u

)
e∓ikrx. (2.46)

Note that the approximation in Eq. (2.42) seems rather crude, especially since Ω features a complex
phase if |E| < ∆0. Nevertheless, this does not a�ect the transport properties, since the latter is
encoded in the BCS coe�cients, u and v, as well.
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2.5 Results

In order to study the electronic properties of the interface, we consider the transmission coe�cient for
electrical current, as denoted by BTK [27]. Under the presumption of local equilibria left and right of
the junction, which we assume is justi�ed by a su�ciently large FSM, it is given by

T (E, ky) = 1 +A(E, ky)−B(E, ky), (2.47a)

T (E, θl) = 1 +A(E, θl)−B(E, θl), (2.47b)

where the second de�nition via θl is appropriate for the scattering state φ(x) as introduced in Eq.
(2.40) under the Andreev approximation2. This is a single-mode expression, while, in an experiment,
distinct angles of incidence (i.e., transverse modes) are di�cult to realize. Therefore, we introduce the
full transmission coe�cient, which is the sum over all modes of the expression in Eq. (2.47), as

T (E) ≡
∑
ky

T (E, ky)→
W

2π

κl∫
−κl

T (E, ky)dky, (2.48a)

T (E) ≡
∑
θl

T (E, θl)→
Wκl
2π

π/2∫
−π/2

T (E, θl) cos θldθl, (2.48b)

where we replace the sum by a k-space integral in the continuous limit and W is the width of the
junction.

In Eq. (2.47), A and B are the probability currents for Andreev and normal re�ection, respectively.
They can be derived from the scattering state φ(x) and the relation in Eq. (2.20) and read (we omit
dependencies for the sake of clarity)

A =
Re(vh)

ve
|a|2 , B = |b|2 , C =

Re(veq)

ve
|c|2 , D =

Re(vhq)

ve
|d|2 , (2.49)

where C and D are, additionally, the probabilities for transmission without and with branch crossing,
respectively. Note that, since the probability current needs to be conserved, these amplitudes are
related to each other by the equation

A+B + C +D = 1. (2.50)

The scattering coe�cients a, b, c, d are determined by matching the waves at the interface, x0 = 0,
according to the relations in Eqs. (2.5) and (2.14). Considering HBdG in Eq. (2.26), this yields the
conditions

lim
ε→0

(φ(0 + ε)− φ(0− ε)) = 0, (2.51a)

lim
ε→0

(
φ′(0 + ε)

mr
− φ′(0− ε)

ml

)
=

2H

~2
φ(0). (2.51b)

With this, we are now able to study the electronic properties of the interface.

2.5.1 Normal-state transmission

We start our analysis by setting the order parameter globally to zero, ∆(x) = 0, such that we are left
with an NN' junction. As we will show, signi�cant results and conclusions on the transport properties
that we can draw for an NS junction can already be found in a similar form in such a reduced model.

2Note that, since ky is assumed to be conserved in a scattering process due to the translational invariance in y-direction,
θr is directly related to θl
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The simpli�ed expressions provide a convenient starting point to understand the underlying physics of
the problem, which can then be transferred and extended to the more complex superconducting case.

As a �rst consequence of this choice, the probability currents for Andreev re�ection and transmission
with branch crossing vanish, A = D = 0, i.e., all electron-hole conversion processes are suppressed due
to the absence of coupling by the superconductor. Then, the transport coe�cient evaluates (without
any approximations for now) to

T (E, ky) = 1−B(E, ky) = C(E, ky) =
4mlmr~4Re(ke)Re(keq)

4H2m2
lm

2
r + ~4 (mrke +mlkeq)

2 . (2.52)

In the NN' setup, keq describes the wavenumber of an electron, similar to ke, so both can either be
purely real or purely imaginary, cf. Eq. (2.36). This allows us to simplify the above expression to

T (E, ky) =
4~2veveq

4H2 + ~2 (ve + veq)
2 Θ(κl − |ky|)Θ(κr − |ky|). (2.53)

The Heaviside functions corroborate the underlying physics of the scattering process - if |ky| > κl, the
incident wave is described by an evanescent state which cannot propagate in the �rst place, while for
|ky| > κr, an incident electron in N has no corresponding state in N' and is always re�ected (note
that this is directly related to FSM). In both cases, T vanishes and we have no transport across the
junction.

The Andreev approximation allows us to further simplify the transport coe�cient. Assuming
ml > mr, cf. Fig. 2.3 and rescaling H → Z

√
(κlκr)/(mlmr)~2, we obtain an expression which is

independent of the energy,

T (E, ky) ≈ T (ky) = T (θl) =
4r cos θl cos θr Θ(θc − |θl|)
4rZ2 + (r cos θl + cos θr)

2 , cos θr = r−1
√
r2 − sin2 θl. (2.54)

Here, θc = arcsin (κr/κl) is the critical angle as introduced in Fig. 2.3. For larger angles of incidence,
|θl| > θc, transmission from N to N' is no longer possible due to the absence of states.

We proceed our analysis by �rst considering the dependence of T on the two relevant parameters,
barrier strength Z and FSM r, separately. This aids in the understanding of the behavior if both an
repulsive interface potential as well as a mismatch are present.

Dependence on the interface barrier Z

Assuming homogeneous materials (κl = κr ⇔ r = 1) and a �nite Z-parameter, the transport coe�cient
simpli�es to

T (θl) =
1

Z2

cos2 θl
+ 1

, (2.55)

which reduces further to the well-known [27] 1D expression

T0 ≡ T (θl = 0) =
1

Z2 + 1
, (2.56)

at perpendicular incidence. This zero-mode value corresponds to the maximum of T (θl), while re�ection
becomes more favorable for increasing angles of incidence |θl| > 0. We plot this behavior in Fig. 2.8(a).
For a vanishing barrier strength Z = 0, transmission occurs with unit probability at all angles, since the
interface is practically non-existing and we are left with a homogeneous material. Increasing Z reduces
the zero-mode value T0, see Fig. 2.8, which in turn diminishes the overall probability for transmission
across the junction. At θl = ±π/2, T (θl) vanishes since the incident electron moves parallel to the
interface.
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Fig. 2.8: Transmission coe�cient T as a function of (a) the angle of incidence θl and (b) the barrier strength Z.
Electrons are always transmitted from N to N' if the interface is clean, Z = 0. For a �nite repulsive potential, T
decreases from its zero-mode value, T0, with increasing θl. Reprinted �gure with permission from [34]. Copyright
(2021) by the American Physical Society.

We can understand the increasing chance for re�ection at �nite angles if we rewrite Eq. (2.55) in
terms of the group velocities, which yields

T (θl) =
v2
l

H2/~2 + v2
l

. (2.57)

For larger angles of incidence, vl � the group velocity normal to the interface � becomes smaller, cf.
Eqs. (2.43) and (2.45), as does the transmission coe�cient. As a consequence, electrons with a smaller
group velocity in x-direction (|θl| > 0) are more likely to be re�ected at the interface than those with
a larger group velocity (θl ≈ 0). Or, to put it di�erently, the former experience an apparently larger
barrier strength than the latter, and we could write

T (θl) =
1

Z̄2(θl) + 1
, with Z̄(θl) =

Z

cos θl
, (2.58)

where the mode is absorbed into the barrier strength. This allows us to write T (θl) in a form similar
to T0.

While an NN' junction made from a homogeneous material and a repulsive interface potential yields
no surprising insights, the results for a system featuring FSM are more interesting, as we will show
now.

Dependence on Fermi surface mismatch

Assuming a clean interface, but di�erent e�ective masses ml and mr in L and R, respectively, the
transmission coe�cient for electrical current becomes

T (θl) =
4r cos θl cos θr

(r cos θl + cos θr)
2 Θ (θc − |θl|) . (2.59)

Blonder et al. [46] have studied FSM in 1D systems and concluded that this mismatch can be inter-
preted as an e�ective interface potential Zeff . This becomes apparent when we consider Eq. (2.59) at
perpendicular incidence, which yields

T (θl = 0) =
4r

(1 + r)2 . (2.60)
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This expression is constant, and we are inclined to write this, once again, in the form of Eq. (2.56).
By de�ning

Zeff =
1− r
2
√
r
, (2.61)

we obtain

T (θl = 0) =
1

Z2
eff + 1

, (2.62)

and one is lead to the seemingly convenient interpretation of FSM as an e�ective, repulsive potential
which enables re�ection at the interface of a 1D system. The physics in a planar setup is, however,
more complicated.
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Fig. 2.9: (a) Transmission coe�cient T as a function of the angle of incidence θl for di�erent degrees of r. In
contrast to a homogeneous system with an interface barrier, T increases from its zero-mode value and becomes
unity at θl = ±θm. Due to the mismatch, electrons with |θl| > θc are always re�ected. (b) FSM-dependence of
the zero-mode value (blue) and the e�ective barrier strength (red). Reprinted �gure with permission from [34].
Copyright (2021) by the American Physical Society.

We plot the transmission coe�cient T (θl) as a function of the angle of incidence and for two di�erent
degrees of FSM in Fig. 2.9(a). As indicated by the step functions, the curves features a sharp cut-o�
at the critical angle θc = arcsin(r), such that the probability for transmission is �nite only for smaller
angles of incidence. Incident modes with θc < |θl| < π/2 do not have a corresponding mode in R and
are re�ected with unit probability. Furthermore, the zero-mode transmission decreases with increasing
FSM, see Fig. 2.9(b), in accordance with Eqs. (2.61) and (2.62). Intriguingly, however, T (θl) does not
decrease when θl deviates from zero. Instead, it increases and even reaches a maximum at

|θl| = θm ≡ arcsin

(
r√

1 + r2

)
< θc. (2.63)

The last inequality indicates that this maximum is reached for any choice of r. For |θl| > θm, T (θl)
quickly decreases and vanishes at θl = ±θc.

As we can see, the angular dependence behaves rather di�erently in a system featuring FSM and a
clean interface than in a homogeneous material with a local repulsive potential. Evidently, FSM cannot
be interpreted as an e�ective interface barrier in a planar setup. This has an interesting consequence for
the full transmission coe�cient, cf. Eq. (2.48), which is directly related to the di�erential conductance
and thus the current in the system � while a large FSM reduces the angular range over which transport
across the junction can occur, i.e., |θl| < θc � π/2, it still enables a strong contribution from the
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propagating modes, since it does not further decrease the probability for transmission. This can lead
to an observable excess current, as we will show later in this chapter.

The reason for the observation of these maxima and the increasing transmission probability is
related to the group velocity of the states in L and R, see Fig. 2.10. Mismatching dispersions left and

Fig. 2.10: Angular dependence of vl and vr in an NN' junction with r = 0.6. In a system featuring FSM,
the group velocities are, in general, di�erent from each other, but coincide at θl = θm, where the transmission
probability becomes unity. Note that vr is �nite only for |θl| < θc. The velocities vl(|θl| > θc) of incident
electrons that are re�ected with unit probability are indicated by a reduced opacity.

right of the interface lead to generally di�erent group velocities of the electrons. For perpendicular
incidence, vl/r as well as their di�erence |vl − vr| are maximal, which is why the transmission is lowest
at θl = 0 (in the range |θl| < θm). Increasing the angle reduces the velocities, vr (which is �nite and
real only for |θl| < θc due to FSM), however, at a larger rate than vl. As a consequence, there exists an
angle at which the two of them coincide, which is given by θm in Eq. (2.63), i.e., vl|θl=±θm = vr|θl=±θm .
This is the optimal condition for perfect transmission in the absence of a barrier, and we have

T (θl = ±θm) = 1. (2.64)

The equivalence of the group velocities is a necessary condition for T to be maximized, which becomes
apparent when we rewrite Eq. (2.59) in terms of the group velocities,

T (θl) =
4ṽ

(1 + ṽ)2
with ṽ =

vr
vl
. (2.65)

The di�erential ∂ṽ T (θl) vanishes for ṽ = 1, i.e., when the group velocities are equal.
As a �nal remark on Fig. 2.9, we note that θm approaches the value of θc for r � 1, i.e., a large FSM.

As a consequence, T (θl) features sharp peaks at these maxima |θl| = θm ≈ θc for quasi-perpendicular
incidence.

Competition between the parameters r and Z

In an experimental setup, perfectly clean interfaces are hard to obtain (e.g., due to oxide layers or
similar impurities), i.e., Z = 0 is not a realistic assumption. Hence, we now study the full expression
for T ,

T (θl) =
4r cos θl cos θr

4rZ2 + (r cos θl + cos θr)
2 Θ(θc − |θl|), cos θr = r−1

√
r2 − sin2 θl, (2.66)
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where both FSM and a �nite interface barrier are taken into account. For perpendicular incidence,
this expression reduces to

T (θl = 0) =
4r

4rZ2 + (r + 1)2 (2.67)

and can be rewritten in the form of Eq. (2.56), as we have done it for T in Eq. (2.60), by introducing
an e�ective barrier,

Zeff =

√
4rZ2 − (1− r)2

2
√
r

⇒ T (θl = 0) =
1

Z2
eff + 1

, (2.68)

such that FSM apparently increases the barrier strength Z. This is, of course, only true for the zero-
mode, as explained in the previous section. However, this raises the question which parameter, Z or
r, governs the angle-resolved behavior of the transmission coe�cient. We plot T (θl) in Fig. 2.11 for
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Fig. 2.11: Transmission coe�cient T as a function of the angle of incidence θl in a system featuring FSM
and di�erent barrier strengths Z. The critical barrier strength Zcrit de�nes the behavior of T (θl). We choose
r = 0.6. Reprinted �gure with permission from [34]. Copyright (2021) by the American Physical Society.

di�erent values of the delta potential strength Z. For a rather small barrier (blue curve), we observe
a similar behavior as in Fig. 2.9(a), where the transmission coe�cient increases from its zero-mode
value and reaches a maximum in the range |θl| < θc. Here, FSM apparently dictates the transport.
In contrast, T (θl) decreases monotonously with increasing |θl| if we choose Z to be rather large (black
curve), and the behavior, similar to that in Fig. 2.8(a), is governed by the barrier. In order to provide
a quantitative distinction between the two regimes, we determine the position of the maximum when
both FSM and an interface barrier are present. The di�erential of T (θl) with respect to the angle of
incidence vanishes at

θl = ± arcsin

(
r
√

(1− r2)2 − 4r(1 + r2)Z2√
(1− r2)2(1 + r2)− 8r3Z2

)
≡ θm, (2.69)

as well as at θl = 0. Note that this expression reduces to θm as de�ned in Eq. (2.63) for a clean
interface. From Eq. (2.69), we can extract a critical barrier strength given by

Zcrit =
1− r2

2
√
r(1 + r2)

. (2.70)
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For Z < Zcrit, the position of the extrema θm is real-valued, while it shifts into the complex plane
for Z > Zcrit. As a consequence, FSM governs the transport in the former case, while it is the delta
potential in the latter situation. If the barrier strength is equal to the critical value (red curve in Fig.
2.11), T (θl) is �at and constant over most of the range |θl| < θc and decreases only in close proximity
to the critical angle θc.

Considering the fact that the area under the curves corresponds to the full transmission coe�cient,
cf. Eq. (2.48), (and thus to the di�erential conductance and the current), this provides intriguing
insight for an experimental setup � while a (strong) mismatch facilitates local equilibria by performing
as a directional �lter, it is essential that the contact between the metal and the semiconductor (i.e.,
the interface) remains rather clean and free of impurities. Otherwise, the transport across the junction
is strongly suppressed.

While Zcrit indicates which quantity, r or Z, governs the angle-resolved dependence of the transmis-
sion coe�cient, each regime is yet a�ected by the subordinate parameter. A strong barrier (Z > Zcrit)
leads to a monotonously decreasing transmission, while the domain over which the latter is �nite is
restricted to the range |θl| < θc by FSM. This is di�erent from a homogeneous material with a local
repulsive potential where T is �nite for all |θl| < π/2. Likewise, the FSM-governed transport fea-
tures maxima for �nite angles of incidence, yet those do no longer amount to unity, but to reduced
transmission probabilities.

With this, we conclude our analysis of the normal state transmission and direct our attention to a
system where the metal is in the superconducting state.

2.5.2 NS transmission

Let us presume the order parameter ∆0 is �nite in R. Then, Eq. (2.47) evaluates to

T (E, θl) =


8r2 cos2 θl cos2 θr Θ(θc−|θl|)

(4rZ2+r2 cos2 θl+cos2 θr)2−E2

∆2
0
((4rZ2+cos2 θr)2+2r2 cos2 θl(4rZ2−cos2 θr)+r4 cos4 θl)

, E < ∆0

4r cos θl cos θr Θ(θc−|θl|)
(4rZ2+r2 cos θl+cos2 θr)(u2−v2)+2r cos θl cos θr

, E > ∆0

.

(2.71)

under the Andreev approximation µ � E,∆0. This expression is energy-dependent, in particular for
subgap energies 0 ≤ E < ∆0 (for E � ∆0, the energy-dependent term u2 − v2 evaluates to unity, i.e.,
T approaches a constant asymptotic value). Since the angular dependence is qualitatively the same for
any energy, and in order to compare the NS to the NN' transmission coe�cient for electrical current,
cf. Eq. (2.66), we study Eq. (2.71) at the Fermi energy, E = 0, and obtain

T (E = 0, θl) =
8r2 cos2 θl cos2 θr

(4rZ2 + r2 cos2 θl + cos2 θr)
2 Θ(θc − |θl|), cos θr = r−1

√
r2 − sin2 θl. (2.72)

Since a superconductor couples electrons and holes, this enables Andreev re�ection in the system and
opens a second transport channel. As a consequence, T can be twice its normal-state counterpart,
incorporated in the doubled numerical factor in the numerator of Eq. (2.72). For normal incidence,
this expression reduces to

T (E = 0, θl = 0) =
8r2

(4rZ2 + r2 + 1)2 , (2.73)

which, likewise, amounts up to twice the transmission in Eq. (2.67). A further distinction from the
normal-state results is that Z enters the denominators in Eqs. (2.72) and (2.73) in fourth order, and
not in second order as in Eqs. (2.66) and (2.67). This indicates that T is more sensitive to a dirty
interface when one of the metals features superconducting order. We illustrate this in Fig. 2.12(a),
where we plot the NN' (dashed) as well as the NS (solid) transmission coe�cient as a function of Z
and normalized to the clean-interface limit, T (θl)|Z=0 and T (E = 0, θl)|Z=0, respectively. We clearly
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Fig. 2.12: Normalized transmission coe�cient at E = θl = 0 as a function of the (a) barrier strength Z and
(b) FSM r. Note that, while the NS transmission is noticeably more sensitive to the barrier strength than in
an NN' junction, the r-dependence is not as drastic in comparison. Inset: non-normalized transmission. We
choose (a) r = 0.6 and (b) Z = 0.

observe a stronger suppression of the probability amplitude in the NS junction, quickly exceeded by
the NN' transmission for strong Z (see inset of Fig. 2.12(a)) and despite the additional hole channel.

The superconducting order in R similarly a�ects the r-dependence, such that the transmission
decreases faster with increasing FSM than its normal-state counterpart, see Fig. 2.12(b). Here, we
normalize to the homogeneous limit, T (θl)|r=1 and T (E = 0, θl)|r=1, respectively. Nevertheless, the
e�ect is not as drastic as for the barrier-dependence, and the NN'-transmission exceeds that of the NS
setup only for a rather large r (see inset of Fig. 2.12(b)). We can explain this by means of Eqs. (2.66)
and (2.72) � T (θl) is of the order ∝ r−1, while it is ∝ r−2 in T (E = 0, θl).

At the beginning of this chapter, we argued that the qualitative �ndings of the angle-resolved
transmission coe�cient are very much alike in an NN' and an NS junction, which is why we started our
analysis on the normal state transport. In Fig. 2.13, we validate this statement. In a homogeneous NS
junction, T (E = 0, θl) is maximal for the zero-mode and decreases with increasing angle of incidence,
except for the clean interface where Andreev re�ection happens with unit probability3 (A = 1 ⇒
T = 2). Correspondingly, the transmission coe�cient features maxima at �nite angles, after increasing
from its zero-mode value, as well as a sharp cut-o� at θl = ±θc in a system featuring FSM and a clean
interface. Except for the quantitative deviation due to the additional hole channel and the increased
sensitivity to the Z and r parameters, this behavior is comparable to the one we observed in the
NN'-junction.

At �rst sight, however, the cut-o� at ±θc appears rather counter-intuitive. From Figs. 2.6(a) and
2.7(top), we can convince ourselves that the Fermi surfaces for the incident electron and a re�ected hole
in L are equivalent at the Fermi energy and comparable for all subgap-energies (in particular under
the Andreev approximation). This means that, for any incident electron mode in L, there exists a
corresponding hole mode, also in L, and Andreev re�ection can, theoretically, occur for any |θl| < π/2.
Instead, this process is suppressed for angles larger than the critical angle. We can understand this
phenomenon from our discussion in the context of Fig. 2.6(b). A superconducting gap opens up
around E = 0, coupling electrons and holes at the Fermi wave vector κr (if the bands intersect with
each other at the Fermi level for ∆0 = 0). Increasing ky, however, shifts the bands to opposite energies,
and the overlap vanishes for |ky| > κr. For these modes, Andreev re�ection is not possible since the
superconductor does no longer provide the necessary coupling for interband scattering. Consequently,
T (E = 0, θl) vanishes for |ky| > κr, which is equivalent to the condition |θl| > θc. This explains why
the transmission coe�cient vanishes for angles of incidence larger than the critical angle, even though

3This is a consequence of the Andreev approximation, which suppresses normal re�ection in the absence of a barrier.
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Fig. 2.13: Transmission coe�cient T as a function of θl for (a) a homogeneous system with a �nite interface
barrier and (b) a setup featuring FSM and a clean interface. Qualitatively, the results are not di�erent from
the normal-state transmission coe�cient. Reprinted �gure with permission from [34]. Copyright (2021) by the
American Physical Society.

hole states are available in L for Andreev re�ection at modes beyond θc.
Finally, we �nd exactly the same competition between the parameters r and Z for a �nite ∆0 as

we observed it in the NN' junction, see Fig. 2.14. The angle θm at which the maximum occurs, cf. Eq.
(2.69), is not a�ected by the order parameter, neither is the critical barrier strength, cf. Eq. (2.70).
The regimes are thus governed by the parameters as we explained it in the previous section.
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Fig. 2.14: Transmission coe�cient T as a function of the angle of incidence θl in a system featuring FSM
and di�erent barrier strengths Z. The critical barrier strength Zcrit de�nes the behavior of T (θl). We choose
r = 0.6. Reprinted �gure with permission from [34]. Copyright (2021) by the American Physical Society.

While the qualitative �ndings are similar to the NN' setup, the quantitative results are noticeably
a�ected by the fact that R features superconducting order. For a small barrier strength, the transmis-
sion coe�cient is enhanced due to the additional hole channel and can attain twice the normal-state
value, see the blue curves in Figs. 2.11 and 2.14. At the same time, this increases the conductance
and the current in the system. However, T is more sensitive to Z and decreases signi�cantly with
increasing barrier strength. Apparently, it is stronger a�ected by impurities at the interface than in a
system without superconducting order, see the black curves in Figs. 2.11 and 2.14.
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From these �ndings, we conclude that FSM provides a mechanism that supports the assumption
of local equilibria by directional �ltering while, at the same time, allowing for strong contributions
to the transmission coe�cient for electrical current from the propagating modes. Superconductivity
enhances T if a rather clean interface with a low opacity is provided. Else, transmission across the
junction can be severely suppressed due to the repulsive potential. The angle-resolved features are
comparable for any excitation energy, and we have the necessary understanding at our disposal to
analyze the di�erential conductance as well as the currents in the junction.

2.5.3 Di�erential conductance and current

From our de�nition of the transmission coe�cient for electrical current, cf. Eq. (2.47), the expression
in Eq. (2.25) reduces to

I(V ) =
2e

h

∑
ky

∞∫
−∞

[f0(E − eV )− f0(E)]T (E, ky)dE, (2.74)

and we can express the sum in the continuum limit and in accordance with Eq. (2.48) by an integral,

I(V ) =
2e

h

W

2π

κl∫
−κl

dky

∞∫
−∞

[f0(E − eV )− f0(E)]T (E, ky)dE, (2.75a)

I(V ) =
2e

h

W κl
2π

π/2∫
−π/2

dθl cos θl

∞∫
−∞

[f0(E − eV )− f0(E)]T (E, θl)dE. (2.75b)

The �rst term is the general expression for quasi-1D junctions connected to equilibrium reservoirs,
while the second one holds under the Andreev approximation. From our discussion in the context of
the transmission coe�cient, we can convince ourselves that the limits of the θl-integral can be replaced
by ±θc due to the sharp cut-o� in the transport characteristics. The di�erential conductance can be
derived from Eq. (2.75) by calculating the partial derivative of I(V ) with respect to the bias V ,

G(V ) =
∂I

∂V
(V )

T→0−→ 2e2

h
T (E = eV ), (2.76)

where the last expression is obtained in the thermodynamic limit of a vanishing temperature, T→ 0.
With this, we are now able to calculate experimental observables of the junction.

A large electrochemical potential, µ � E, in a system without superconducting order results in a
transmission coe�cient independent of the energy, cf. Eq. (2.53), and hence in a constant conductance
and a linear current. We can thus de�ne a normal-state resistance for a �xed choice of the parameters
r and Z,

RN ≡ G−1
NN ′ , GNN ′ ≡ G(V = 0)|∆0=0, (2.77)

which serves as a normalization factor for the NS observables. Finally, the excess current is de�ned as
the o�set between the NS and the NN' current,

Iexc(V ) = I(V )
∣∣
∆0>0︸ ︷︷ ︸

≡INS

− I(V )
∣∣
∆0=0︸ ︷︷ ︸

≡INN′

, Iexc ≡ lim
V→∞

Iexc(V ). (2.78)

Note that, here, we explicitly distinguish between the bias-dependent excess current Iexc(V ) and the
standard de�nition of the excess current Iexc at large biases. To study the observables, we evaluate
Eqs. (2.75) and (2.76) numerically in the following.
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Fig. 2.15: (a) Conductance and (b) current as a function of the bias V in a homogeneous junction (r = 1)
with no barrier (Z = 0). IVexc is the bias-dependent excess current.

In a homogeneous junction with a clean interface, we obtain the conductance and current as shown
in Fig. 2.15. At subgap energies, INS is solely carried by Andreev re�ection and twice the normal-
state current. For eV > ∆0, the probability for Andreev re�ection decreases quickly, such that GNS ≡
∂I/∂V

∣∣
∆0>0

approaches its normal-state value, GNN ′ . While INS and INN ′ feature the same slope at
large biases, i.e.,

GNN ′
∣∣
eV�∆0

= GNS
∣∣
eV�∆0

, (2.79)

the contributions from biases eV ≈ ∆0 lead to an o�set between the currents, the so-called excess
current. From the bias-dependent Iexc(V ), we can clearly observe that the main contribution to its
asymptotic value Iexc, which is �nite and rather large in this example, stems from this voltage domain.
However, the underlying choice of parameters does not justify the assumption of local equilibria right
and left of the interface in a planar junction, and thus the application of Eq. (2.75). In a system
with both FSM and a repulsive, localized potential, we obtain the results as shown in Fig. 2.16. The
barrier enables normal re�ection, in particular in the subgap-regime, and thus reduces the di�erential
conductance. The resonance at eV = ∆0, where GNS exceeds GNN ′ signi�cantly, is a well known
feature of NS junctions with a dirty interface [27].

For an intermediate FSM and a comparably small barrier strength (in comparison to Zcrit), the NS
conductance remains enhanced compared to its normal-state counterpart, and we observe an excess
current similar to that of the homogeneous setup without barrier. A strong barrier (at the same FSM),
however, signi�cantly suppresses the subgap contribution, and Iexc nearly vanishes. Note that Iexc(V )
even becomes negative for biases eV ≈ ∆0. We obtain a similar result for a strong FSM and a rather
clean interface, while the excess current remains �nite, yet small. It is, however, completely suppressed
if the barrier is too strong. Then, no current �ows for biases smaller than the superconducting order
parameter, while the supragap current approaches its normal-state counterpart only slowly, and no
o�set can be observed.

From these observations, we can come to the conclusion that, while the excess current is apparently
a�ected by a Fermi surface mismatch (in particular for a rather large FSM), the e�ect is not as drastic
as it is for a strong interface barrier. This is in agreement with our analysis of the angle-resolved
transmission coe�cient and the competition between r and Z � if FSM governs the transport at a
given energy, this leads to strong contributions to the full transmission coe�cient, cf. Eq. (2.48),
while it is rather small for a barrier-governed setup.

Fig. 2.17, where we plot Iexc (in the large bias limit) as a function of FSM as well as the barrier
strength, illustrates this behavior in detail. While the homogeneous junction with the clean interface
provides the strongest excess current, it decreases quickly for an increasing barrier strength, even for
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(a) Di�erential conductance. (b) Current

Fig. 2.16: (a) Conductance and (b) current as a function of the bias V for various choices of the parameters r
and Z. IVexc is the bias-dependent excess current. Reprinted �gure with permission from [34]. Copyright (2021)
by the American Physical Society.
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Fig. 2.17: Dependence of the excess current (in the large bias limit) as a function of (a) FSM and (b) the
barrier strength. While Iexc is rather sensitive to Z and decreases quickly with increasing barrier strength, the
excess current remains (approximately) constant over a wide range of r and decays only slowly for large FSM.

large FSM (i.e., a small r). In contrast, Iexc remains approximately constant when we introduce FSM
to the system, in particular when a �nite barrier is present. A decrease can be observed only at
larger mismatches. This is an intriguing observation since the number of propagating modes is reduced
continuously with increasing FSM, whereas the excess current is not a�ected immediately. We can
understand this from the quantity Zcrit - considering a �xed and �nite barrier strength Z, this reduces
the excess current in the homogeneous setup (r = 1) from its maximum value. By increasing FSM (i.e.,
decreasing r), we equally increase Zcrit and the ratio Z/Zcrit is reduced, meaning that we transition
from the Z-governed regime into the FSM-governed regime. As a consequence, the full transmission
coe�cient (at a �xed energy) grows, which counteracts the smaller number of propagating modes such
that Iexc remains approximately constant over a wide range of FSM. However, when r is so small that
Z < Zcrit holds, then T (E) does no longer increase su�ciently (if at all) to neutralize the strongly
reduced number of propagating modes. At this point, Iexc starts to decrease noticeably. This can be
observed best from the blue curve in Fig. 2.17(a), i.e., the homogeneous setup, where Zcrit = 0 and
the excess current decreases monotonously for all r (albeit rather slowly for small FSM).

With this, we �nish our analysis of the transmission coe�cient as well as the di�erential conductance
and the current (in particular, the excess current) of NS junctions based on the rather simple quasi-free
electron Hamiltonian. We �nd that a mismatch in the electron band structure between the materials
supports the assumption of local equilibria left and right of the interface by acting as a directional
�lter while allowing the observation of �nite excess currents. Nonetheless, a rather clean interface is
necessary.

2.6 Excess current in an Al-HgTe-Al junction

The Hamiltonian in Eq. (2.26) provides a convenient starting point for the analysis of the interface
properties in systems featuring FSM. The model of the quasi-free electron gas is, however, rather
simplistic, and recent experiments in solid-state physics, particularly in Würzburg, study transport
features in junctions consisting of HgTe (to be precise, HgTe/CdTe, where CdTe is cadmium telluride)
samples. Therefore, we consider a planar Josephson junction build from a HgTe QW sandwiched
between two Al contacts in this section.
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2.6.1 Model and preliminary calculations

Aluminum is a metal well known for being a conventional superconductor at temperatures below
1.2 K [59] and can be described appropriately by Eq. (2.1). Instead, HgTe, in which the QSHE and thus
topological edge states were �rst discovered [15], is more complex and can be modeled by the Bernevig-
Hughes-Zhang (BHZ) Hamiltonian [60, 61]. Since we consider a junction with superconducting order,
we write it as a BdG-Hamiltonian in the Nambu spinor basis

Ψ =
(
s↑, p↑, s↓, p↓, s

†
↑, p
†
↑, s
†
↓, p
†
↓

)T
, (2.80)

where s†σ(p†σ) is the creation operator of an electron in the s(p)-orbital with spin σ =↑, ↓ and obtain

HBHZ = A (kxszσx − kyτzσy)−
(
Bk2 −M

)
τzσz +

(
C −Dk2

)
τz, (2.81)

where k2 = k2
x + k2

y and τl, sl and σl with l ∈ {0, x, y, z} are unit and Pauli matrices in Nambu, spin
and orbital space, respectively. Due to the additional degrees of freedom, the Hamiltonian in Eq. (2.1)
needs to be extended in order to describe a hybrid junction and thus reads

HAl =

(
~2k2

2m
− µ

)
τz −∆0τysy. (2.82)

We now calculate the eigenstates from the Schrödinger equation. De�ning e1...8 as the canonical
unit vectors in the vector space R8, we have

ψ±eq,s,↑(x) = (u e1 + v e7) e±ikeqx, ψ±eq,p,↑(x) = (u e2 + v e8) e±ikeqx, (2.83a)

ψ±eq,s,↓(x) = (u e3 − v e5) e±ikeqx, ψ±eq,p,↓(x) = (u e4 − v e6) e±ikeqx, (2.83b)

ψ±hq,s,↑(x) = (v e1 + u e7) e∓ikhqx, ψ±hq,p,↑(x) = (v e2 + u e8) e∓ikhqx, (2.83c)

ψ±hq,s,↓(x) = (v e3 − u e5) e∓ikhqx, ψ±hq,p,↓(x) = (v e4 − u e6) e∓ikhqx, (2.83d)

in Al, where the superscripts ± and subscripts eq, hq are de�ned as those in the context of Eq. (2.34),
while s, p label the orbital and ↑, ↓ the spin of the particle. The BCS coe�cients u, v are introduced
in Eq. (2.35). In the QW, the propagating eigenstates are given by

ψ±e,↑(x) =
([

(E − C) +M − (B −D)
(
k2
e + k2

y

)]
e1 ±A (ke ∓ iky) e2

)
e±ikex, (2.84a)

ψ±e,↓(x) =
([

(E − C) +M − (B −D)
(
k2
e + k2

y

)]
e3 ∓A (ke ± iky) e4

)
e±ikex, (2.84b)

ψ±h,↑(x) =
([
− (E + C) +M − (B −D)

(
k2
h + k2

y

)]
e7 ∓A (kh ± iky) e8

)
e∓ikhx, (2.84c)

ψ±h,↓(x) =
([
− (E + C) +M − (B −D)

(
k2
h + k2

y

)]
e5 ±A (kh ∓ iky) e6

)
e∓ikhx, (2.84d)

where e(h) is an electron (hole) state, while HBHZ features a set of evanescent waves as well,

ψ±ẽ,↑(x) =
([

(E − C) +M + (B −D)
(
q2
e − k2

y

)]
e1 ± iA (qe ∓ ky) e2

)
e∓qex, (2.85a)

ψ±ẽ,↓(x) =
([

(E − C) +M + (B −D)
(
q2
e − k2

y

)]
e3 ∓ iA (qe ± ky) e4

)
e∓qex, (2.85b)

ψ±
h̃,↑(x) =

([
(E + C)−M − (B −D)

(
q2
h − k2

y

)]
e7 ∓ iA (qh ∓ ky) e8

)
e∓qhx, (2.85c)

ψ±
h̃,↓(x) =

([
(E + C)−M − (B −D)

(
q2
h − k2

y

)]
e5 ± iA (qh ± ky) e6

)
e∓qhx. (2.85d)

Here, the subscripts distinguish decaying electron (ẽ) from hole (h̃) states, and the superscripts indicate
in which direction, with respect to the x-axis, the state decays. Note that we need to consider both
the propagating and evanescent waves in the QW to obtain the correct results.
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The wavenumbers keq/hq in AL are already de�ned in Eq. (2.35), whereas those in the HgTe sample
are given by

ke =
√

(BM +D (E − C)−A2/2 + k0
e) / (B2 −D2)− k2

y, (2.86a)

kh = ξh

√(
BM −D (E + C)−A2/2 + k0

h

)
/ (B2 −D2)− k2

y, (2.86b)

qe =
√

(A2/2−BM −D (E − C) + k0
e) / (B2 −D2) + k2

y, (2.86c)

qh =
√

(A2/2−BM +D (E + C) + k0
e) / (B2 −D2) + k2

y, (2.86d)

with

k0
e =

√
(BM +D (E − C)−A2/2)2 − (B2 −D2)

(
M2 − (E − C)2

)
, (2.87a)

k0
h =

√
(BM −D (E − C)−A2/2)2 − (B2 −D2)

(
M2 − (E + C)2

)
, (2.87b)

ξh = − sgn

(
E + C −Dk2

y +

√
A2k2

y +
(
M −Bk2

y

)2)
. (2.87c)

These de�nitions guarantee the correct behavior of the wave functions in a scattering state.
As in the previous section, we consider only one of the interfaces of the Al-HgTe-Al Josephson

junction and study its electronic properties, while reminding ourselves that we can combine two of
those by means of the formalism introduced by Octavio [57]. We choose it to be located at x0 = 0,
such that the scattering states read

φs(x) =


ψ+
e,s(x) +

∑
τ

∑
s′=↑,↓

re→τ,s→s′ ψ
−
τ,s′(x), x < 0∑

τ

∑
σ=s,p

∑
s′=↑,↓

te→τ,σ,s→s′ψ
+
τ,σ,s′(x), x > 0

, (2.88)

where τ ∈ {e, h, ẽ, h̃} in HgTe and τ ∈ {eq, hq} in Al. Here, we need to consider the scattering states for
both an incident electron with spin ↑ and an incident electron with spin ↓. While the two projections
are neither coupled in HBHZ nor in HAl, a �nite term A in the QW Hamiltonian leads to an asymmetry
in the ky-dependence of the transmission coe�cient. Therefore, we take both φ↑(x) and φ↓(x) into
account, which naturally doubles the maximum value T can attain.

To obtain the scattering coe�cients re→τ,s→s′ and te→τ,σ,s→s′ , we write the full system Hamiltonian
in the form of Eq. (2.3) by identifying (we consider a clean interface)

A(x) =
~2

2m∗
τzΘ(x)− (B +D) τzσzΘ(−x), (2.89a)

B(x) = AszσxΘ(−x), (2.89b)

C(x) = − (µ τz + ∆0 τysy) Θ(x) +
[(
M −Bk2

y

)
τzσz +

(
C −Dk2

y

)
τz −Akyτzσy

]
Θ(−x), (2.89c)

D(x) = 0, (2.89d)

and we obtain the wave matching conditions according to Eqs. (2.5) and (2.14) as

lim
ε→0

(φs(0 + ε)− φs(0− ε)) = 0, (2.90a)

lim
ε→0

(
~2

2m∗
τzφ
′
s(0 + ε) + (B +D) τzσzφ

′
s(0− ε)

)
=
i

2
Aszσxφs(0). (2.90b)

Finally, we obtain the transmission coe�cient for electrical current from Eq. (2.47a) and the de�nition
of the probability current density in Eq. (2.20) as

T (E, ky) = 2−
∑
s=↑,↓

∑
s′=↑,↓

∣∣re→e,s→s′∣∣2 +
jh
je

∑
s=↑,↓

∑
s′=↑,↓

∣∣re→h,s→s′∣∣2 (2.91)
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with

je =
2ke
~

[
A2 (E − C +M)− (B +D)

(
E − C +M − (B −D)

(
k2
e + k2

y

))2]
, (2.92a)

jh = −2Re(kh)

~

[
A2 (E + C −M)− (B +D)

(
E + C −M + (B −D)

(
k2
e + k2

y

))2]
. (2.92b)

Note that, in Eq. (2.91), the term 2 is due to the fact that we consider both scattering states for spin
↑ and spin ↓ electrons, while the evanescent states are not represented since they carry no current.

2.6.2 Mode-dependence of the transmission coe�cient

Due to the complexity of the problem, a compact analytical expression of Eq. (2.91) cannot be obtained,
such that we evaluate it numerically and compare the results to our �ndings in the previous section.
In fact, the de�nitions of the eigenstates in Eq. (2.85) and the wavenumbers in Eq. (2.86) are only
valid for a de�nite set of parameters. The eigensystem of HBHZ is rather complicated and a proper
de�nition of theses quantities is a tedious task for arbitrary parameters A,B,D and M . Therefore,
we choose the QW to be in the inverted, i.e., topological, regime with a thickness of 7 nm, which is
described by [15,61] A = 364.5 meV nm, B = −686 meV nm2, D = −512 meV nm2 andM = −10 meV.
For Al, we assume an e�ective mass [62] m∗ = 1.16me, with me the mass of a free electron, and obtain
(rounded up) ~2/(2m∗) = 40 meV nm2 for the prefactor in HAl.
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Fig. 2.18: Normal-state transmission coe�cient T as a function of the mode ky at di�erent �lling factors. We
choose E = 0.

So far, we have not de�ned the electrochemical potentials, µ and C, in Al and HgTe, respectively.
For the superconducting metal, we assume it to be much larger than E and ∆0 and set it to µ = 105∆0.
The �lling factor C can be tuned by a gate voltage and is usually chosen to be equal to the Fermi
energy of the superconductor (C = 0). With this, one can probe the surface states emerging in HgTe
in its topological state [63]. However, since we assume the y-direction to be translational invariant, i.e,
extending in�nitely, our system features no boundaries and the surface states cannot emerge. With
HgTe being a semimetal/semiconductor, we thus choose C to be �nite and smaller than µ for the
analysis of the di�erential conductance and the current in the system.

First, we consider the mode-resolved dependence of the transmission coe�cient, parameterized by
ky

4. For our choice of parameters, Al features the large Fermi surface with radius κr =
√

2m∗µ/~,
while it is κl =

√
(BM +D (E − C)−A2/2 + k0

e) / (B2 −D2) for HgTe. FSM is given by the ratio

4While θl is a convenient parameterization indicating the angle of incidence, we resort to ky in this section since FSM
is generally rather large between Al and HgTe. This improves the illustrations. Note that ky is normalized to κr in the
�gures, i.e., the range indicates all possible incident electron modes.
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of the Fermi wavenumbers, r = κl/κr, which is now not only dependent on the ratio of the e�ective
masses but on all of the parameters in HgTe. Eventually, this leads to a slight modi�cation of the
behavior if we compare it to the previous section. We plot T (E = 0, ky) at the Fermi energy of the
superconductor and a vanishing order parameter, ∆0 = 0, (i.e., Al is in its normal state) as a function
of the mode in Fig. 2.18.

-1 -10-1 -10-2

Fig. 2.19: Angular dependency of the group velocities of electrons in Al and HgTe for di�erent values of the
�lling factor. In contrast to a variation of the e�ective mass, changing the electrochemical potential results in
a reduction of the group velocity in the quantum well. We choose E = 0.

The behavior for �lling factors comparable to µ in magnitude (blue and red curves) is similar
to what we have observed before � T increases from its zero-mode value, T (E = 0, ky = 0), and
reaches a maximum (which is equal to the number of channels) before it features a sharp cut-o� at
ky = ±rκr (related to θc in the previous section). However, if −C � µ (black curve), the maxima
at �nite modes vanish, even though no interface barrier is present. Nevertheless, this is compensated
by the fact that the zero-mode value, T (E = 0, ky = 0), increases with larger FSM, which equally
di�ers from our observations in the simple model. This is due to the fact that, here, we vary FSM
by means of the electrochemical potential (in HgTe) and not the e�ective mass, such that the group
velocity of the electrons is a�ected di�erently. We illustrate this behavior in Fig. 2.19. If C = −µ, the
di�erence between the group velocities for perpendicular incidence is huge (orange line), and T deviates
signi�cantly from its maximum value. Nonetheless, they coincide for some ky5, such that T increases
from its zero-mode value until it reaches its maximum there. For larger modes, it quickly decreases
and vanishes after the cut-o�, ky/κr > r. When we reduce |C| from the value of the electrochemical
potential (green line), this decreases the zero-mode group velocity in HgTe as well as the di�erence
between the velocities in the two materials. Consequently, T (E, ky = 0) increases compared to the
former choice of C, while the general behavior is the same. If we reduce C even further, the group
velocity of the electrons in HgTe becomes smaller than that in Al (red line), and there exists no
longer a mode ky where they coincide. Then, T decreases from its zero-mode value, and the peaks
vanish. Nonetheless, this zero-mode value can be rather pronounced, cf. Fig. 2.18. As a consequence,
the propagating modes in an Al-HgTe-Al junction contribute signi�cantly to the full transmission
coe�cient, even if FSM between the metals and the semiconductor is large.

We observe a similar behavior when Al features superconducting order, ∆0 > 0, see Fig. 2.20.
Consistent with our observations in Sec. 2.5, the zero-mode transmission coe�cient is more sensitive

5The expression for this maximum mode is too complicated to be given explicitly here.
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Fig. 2.20: Superconducting-state transmission coe�cient T as a function of the mode ky at di�erent �lling
factors. We choose E = 0.

to r than its normal-state counterpart. Nonetheless, the probability amplitudes are enhanced for large
FSM if the semiconductor is a HgTe sample instead of a quasi-free electron gas. While, in the latter
case, the excess current becomes rather small for a signi�cant mismatch, cf. Fig. 2.16 with r = 0.1,
we now anticipate stronger contributions to this observable.

2.6.3 Di�erential conductance and current

From Eq. (2.91) and the de�nition in Eq. (2.48) we calculate the full transmission coe�cient for
the HgTe-Al interface junction and thus the di�erential conductance and the current by means of Eq.
(2.25). We normalize the latter quantities to the normal-resistance RN as de�ned in the context of Eq.
(2.77), which is now bias-dependent,

RN ≡
4e2

h
T (E = eV )

∣∣
∆0=0

. (2.93)

The factor 4 stems from the spin and orbital degrees of freedom in HBHZ. We plot the results in Fig.
2.21, where we choose a �lling factor C = −2 · 10−3µ. This results in a FSM of r ≈ 0.02 .
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(a) Di�erential conductance
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(b) Current

Fig. 2.21: (a) Conductance and (b) current as a function of the bias V in a HgTe-Al junction. IVexc is the
bias-dependent excess current. We choose C = −2 · 10−3µ.

The di�erential conductance features the characteristic resonance at eV = ∆0 and approaches its
normal-state value at eV � ∆0. The associated current is comparable to the normal-state current in
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the subgap-regime, while we observe a noticeable o�set for biases larger than the order parameter. This
results in a �nite excess current, which is larger than those we computed in Sec. 2.5 for signi�cant FSM
and negligible barrier strengths, cf. Fig. 2.16. As a consequence, we can expect measurable excess
currents in S-N-S junctions where the normal domain is a HgTe/CdTe QW and the superconductors
are normal metals like Al, even though FSM is very pronounced.

By applying a gate voltage to the semiconductor, this allows us to tune the �lling factor C of the
sample. Doing so equally a�ects FSM, cf. Figs. 2.18 and 2.20, and we expect the excess current to
increase by increasing the magnitude of C as well. This is con�rmed and illustrated in Fig. 2.22, where
we plot Iexc in the large bias-limit as a function of the �lling factor. As anticipated, the excess current
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Fig. 2.22: Excess current Iexc as a function of the �lling factor.

(represented by the blue ordinate) increases as we increase |C|, or, as we can determine from the top
scale, as we decrease FSM (i.e., increase r). The latter scale is not linear since r is directly related to
C, as illustrated by the red dashed curve (represented by the red ordinate). This dependence of Iexc on
r suggests a convenient setup for an experiment where FSM between the HgTe sample and a normal
metal like Al can be probed by measuring the excess current while varying the gate voltage applied
to the semiconductor. To comply with the assumption of equilibrium reservoirs left and right of the
junction, this requires two interfaces, i.e., an Al-HgTe/CdTe-Al hybrid nanostructure. With this, we
conclude our analysis of the mercury telluride system.

2.7 The BTK-Kastalsky-Beenakker formula

As the last point, we brie�y study a practical formula that relates the di�erential conductance of
NS-junctions to its normal-state expression in the so-called linear regime (E = 0) and extend it to
planar systems featuring FSM. This relation, which, e.g., allows to calculate the gate-dependence of
GNS(eV = 0) from GNS(eV � ∆0) ≈ GNN ′ rather conveniently [64], is based on BTK and was �rst
written down by Kastalsky [65] and derived explicitly by Beenakker [66] shortly after.

2.7.1 Derivation of the formula

The system we consider is illustrated in Fig. 2.23. A normal metal with a disordered domain (illustrated
in gray) is in contact with an s-wave superconductor. The interface between N and S is assumed to be
perfectly clean, as are the domains N1, N2, and S. Thus, scattering due to impurities, constrictions,
FSM, or similar only happens in the disordered region. As a consequence, Andreev re�ection occurs
with unit probability at the N2-S interface if µ� E,∆0. The relation can be conveniently derived by
means of the scattering matrix formalism [8], which relates outgoing propagating states (labeled 'b')
to the incoming propagating states (labeled 'a'). Let us assume the excitation energy to be smaller
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N1 N2 S

Fig. 2.23: Illustration of a planar metal-superconductor junction as considered in this analysis. The normal
domains N1 and N2 as well as the superconductor are assumed to be perfectly clean, while the gray area may
contain impurities, constrictions or similar kind of disorder. Moreover, we assume a perfect interface between
N2 and S.

than the superconducting gap ∆. Then, there are no outgoing states in S and we may consider the
disordered domain, N2 and S, as a 'black box', since all states relevant for the S-matrix lie in N1, see
Fig. 2.24. It is then de�ned by

N1

Fig. 2.24: 'Black box' simpli�cation of Fig. 2.23.

(
be

bh

)
=

(
see she
seh shh

)(
ae

ah

)
(2.94)

with see/hh and seh/he the normal and Andreev re�ection amplitudes, respectively. Note that, for the
correct de�nition of the S-matrix, ae/h and be/h need to carry the same current, which can be achieved
by an appropriate normalization. Since E < ∆0, the conductance of the system can be determined
according to the formula

GNS =
4e2

~
|seh|2 , (2.95)

which we would like to relate to the normal-state conductance, as in [65, 66]. To this end, we employ
a useful feature of this formalism. To construct the S-matrix of a full system, we can combine the
S-matrices of its individual sub-systems, which are, in the setup in Fig. 2.23, N1-N2 as well as N2-S,
see Fig. 2.25. For these sub-systems, we can provide the individual S-matrices. For N1-N2, it is

N1 N2

(a) N1-N2 junction

N2 S

(b) N2-S junction

Fig. 2.25: Individual sub-systems of the setup in Fig. 2.23.
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
be1
be2
bh1
bh2

 =


re11 te21 0 0
te12 re22 0 0
0 0 rh11 th21

0 0 th12 rh22.



ae1
ae2
ah1
ah2

 , (2.96)

where the electron and hole blocks are decoupled due to the absence of superconducting order, while
we obtain (

beS
bhS

)
=

(
ree rhe
reh rhh

)(
aeS
ahS

)
. (2.97)

in the N2-S sub-system. With these, we are able to obtain the elements see/eh/he/hh of the full S-matrix
in Eq. (2.94). To do so, we relate the incoming and outgoing states in N2 in sub-system (a) to those

in sub-system (b) and identify ae/hS = b
e/h
2 , be/hS = a

e/h
2 , ae/h = a

e/h
1 and be/h = b

e/h
1 . This allows

to eliminate ae/h2 , and be/h2 , and we are left with a system of equations which we can rewrite in the
exact form of Eq. (2.94). This yields see/eh/he/hh, expressed by the matrix elements in Eqs. (2.96) and
(2.97). Since this is a simple algebraic procedure, we do not give the explicit result here.

In the next step, we make the following assumptions: (i) we consider E = 0, (ii) the electrochemical
potential is much larger than the excitation energy and the order parameter, µ� E,∆0, and (iii) the
disorder does not feature magnetic order. This simpli�es the matrices in Eqs. (2.96) and (2.97)
signi�cantly [66]. The electron block in Eq. (2.96) is symmetric, the hole block is simply the complex
conjugate of the electron block and we have ree = rhh = 0 and reh = rhe = −i in Eq. (2.97). Note
that this is true for all modes. With this, we obtain

seh = − i |te12|
2

1 + |re11|
2 , (2.98)

and thus

GNS =
4e2

~
T 2

(2− T )2
, (2.99)

where T = |te12|
2 = 1 − |re11|

2 is the transmission coe�cient of the N1-N2 junction. The latter corre-
sponds to the system in Fig. 2.23 when the order parameter is zero, i.e., the normal-state transmission.
We have thus expressed the NS conductance in terms of the transmission coe�cient of the same system
when S is not in the superconducting state.

2.7.2 Transfer to our setup featuring FSM

The question arises if we obtain the same or a similar relation as in Eq. (2.99) if the problem features
FSM. Considering the left interface of the setup in Fig. 2.1, this yields a system as sketched in Fig.
2.26, where FSM is schematically illustrated by the di�erent widths of the domains. We face several

N1 S

Fig. 2.26: Sketch of the left interface in Fig. 2.1. The horizontal axis corresponds to position, while the vertical
axis shall illustrate the extend of the Fermi surface in each domain.

issues if we want to apply the methodology in the previous section. First of all, in our work, we assumed
the normal metal to be clean, i.e., the disorder, as well as FSM, occur exactly at the interface between
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N and S. Then, however, the normal state transmission (in the sub-system N1) is simply unity and we
cannot relate the latter to GNS . Secondly, the number of sub-systems is unity in this example, and
the argumentation above is not applicable. In order to obtain a relation comparable to that in Eq.
(2.99), this requires a minor argumentative detour.

Let us consider a system as illustrated in Fig. 2.27. Here, we have a setup comparable to Fig. 2.23,
where the interface between N2 and S is perfectly clean and we can assume Andreev re�ection to be
the only process to occur (under the Andreev approximation at E = 0). Here, the disordered region

N1 SN2

Fig. 2.27: Sketch of the auxiliary system. The horizontal axis corresponds to position, while the vertical axis
shall illustrate the extend of the Fermi surface in each domain.

(gray) takes both FSM and the interface barrier into account and we can apply the methodology of the
previous section, which yields Eq. (2.99). This is not surprising since we made no assumption on the
nature of the disorder in Fig. 2.23 (except for the absence of magnetic order). The remaining problem
is that Fig. 2.27 does not yet correspond to the system in Fig. 2.26. To resolve this, we may perform
the limit L→ x+

0 , which yields the desired setup and Eq. (2.99) remains valid.
Our results in Sec. 2.5 con�rm this relation. Considering the normal-state transmission coe�cient,

cf. Eq. (2.66),

TN ≡ T (θl) =
4r cos θl cos θr

4rZ2 + (r cos θl + cos θr)
2 Θ(θc − |θl|), (2.100)

as well as the one for ∆0 > 0 and E = 0, cf. Eq. (2.72)

TS ≡ T (E = 0, θl) =
8r2 cos2 θl cos2 θr

(4rZ2 + r2 cos2 θl + cos2 θr)
2 Θ(θc − |θl|), (2.101)

we can convince ourselves that the relation

TS(E = 0, θl) =
2 TN (θl)

2

(2− TN (θl))
2 (2.102)

holds accordingly. Note that the factor 2 here is absorbed into the factor 4 in Eq. (2.95), where we
express the di�erential conductance in terms of the transmission coe�cient. This relation apparently
holds for all modes (when E = 0 and µ� E,∆0).

Unfortunately, the expression for the zero-bias resistance R0 as introduced by Kastalsky [65] for 1D
systems becomes rather complicated in planar junctions featuring FSM. De�ning R0, the normal-state
resistance RN and the limiting normal resistance of a highly transmissive contact R0

N (as denoted by
Kastalsky) as

R0 = G−1
NS , RN = G−1

NN ′ , R0
N = G−1

NN ′

∣∣
Z=0

, (2.103)

respectively, we obtain from Eqs. (2.100) to (2.102)

R0 =

(
RN (r cos θl + cos θr)

2 − 2rR0
N cos θl cos θr

)2

2rR0
N cos θl cos θr (r cos θl + cos θr)

2 Θ (θc − |θl|) . (2.104)
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If we only consider the perpendicular mode θl (or if θc is rather small due to a large FSM), this
expression simpli�es to

lim
θl→0

R0 =

(
RN (1 + r)2 − 2rR0

N

)2

2r (1 + r)2R0
N

, (2.105)

which further reduces to

lim
r→1

lim
θl→0

R0 =

(
2RN −R0

N

)2
2R0

N

(2.106)

for a homogeneous setup. Consistently, Eq. (2.106) corresponds to the relation as introduced by
Kastalsky.

2.8 Conclusion

The experimental measurements of pronounced excess currents in planar metal-semiconductor-metal
Josephson junctions with apparently intermediate to high interface transparencies and their agreement
with theoretical predictions and calculations based on the BTK formalism have long been a rather
counter-intuitive observation. On the one hand, the interfaces between the samples are not of the
constriction or ori�ce type, whereas on the other hand, the apparently high transparency rules out the
possibility of the system being in the tunneling regime. Both conditions would justify the assumption
of the metals acting like local equilibrium reservoirs, which is a crucial ingredient for BTK (or, more
generally, the Landauer formalism) to be applicable. A possible way out of this, for instance, is the
assumption of generally opaque interfaces with a small number of penetrable 'pinholes', where incident
electrons have a high chance to be transmitted (or Andreev re�ected), which would partially explain
the observation of such excess currents. However, such a phenomenon has not been observed yet and
is probably di�cult to probe.

In this chapter, we argue that a substantial FSM between the metals and the semiconductor
provides the necessary preconditions such that the assumption of local equilibria left and right of the
scattering region (here, the metals N or S) is justi�ed. By means of one of the interfaces in Fig. 2.1,
we illustrate how the discrepancy between the Fermi surfaces (in the dispersion) of the metals and
the semiconductor performs as a directional �lter for electrons approaching the interfaces from the
asymptotic regions (i.e., the metals). Only those particles featuring a mode (i.e., the angle of incidence
in a planar junction where the y-direction is translational invariant) that exists in both the metal
and the semiconductor can be transmitted across the junction, while all the other modes are re�ected
at the interface and do not contribute to the transport in the system. For large FSM, only a small
fraction of electrons with an angle of incidence close to zero can be attributed to these propagating
modes, and we argue that then, the metals are in equilibrium since the perturbation in their Fermi
distribution functions is su�ciently small. This allows to apply a bias over the junction by setting the
metals to di�erent chemical potentials. The e�ect is apparently even stronger if we assume the planar
semiconductor to be in contact with 3D metals.

At hand of the rather simple quasi-free electron Hamiltonian we model such a single NS-interface
where FSM is induced by di�erent e�ective masses and study its electronic properties, where we also
include a possible interface barrier. We �nd that the transmission coe�cient for electrical current T
features a sharp cut-o� between the propagating and the re�ected states, as expected due to FSM.
And while a large mismatch reduces the transmission for perpendicular incidence, T increases as we
increase the angle of incidence and reaches a maximum (which can be approximately equal to the
number of channels in the system if the barrier is weak enough) before it vanishes at the cut-o�.
As a consequence, even though the number of propagating modes is small for large FSM, they can
contribute substantially to the transport in the system. It is, however, important to fabricate a
rather clean interface, since a strong barrier suppresses the transmission severely. From the calculated
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di�erential conductance and the excess current, we show that this is su�cient to obtain results that
are comparable to experimental measurements, which substantiates our claim that FSM is a suitable
mechanism to explain the applicability of BTK in planar junctions.

Next, we consider the more complicated BHZ-Hamiltonian to describe the semiconductor, which
is more realistic than an actual experimental setup. Here, FSM is induced not only by di�erent
e�ective masses but also by the Fermi velocity and the �lling factor in HgTe. We observe similar
mode-characteristics as before, with the distinction that increasing FSM by means of a gate voltage
(which a�ects the �lling factor in HgTe) does not immediately decrease the zero-mode transmission.
As a consequence, the contributions at a given energy can be stronger, and we �nd pronounced ex-
cess currents even at large FSM of r ≈ 0.18 to r ≈ 0.02, which further support the experimental
observations.

While we study single interfaces, the full system in Fig. 2.1 consists of two of them. It is, nonethe-
less, possible to combine two single-interface systems to a full normal metal-semiconductor-normal
metal junction by means of the formalism introduced by Octavio et al. [57]. Finally, we show that
the BTK-Kastalsky-Beenakker formula holds equally in systems featuring FSM, however, the explicit
expression for the zero-bias resistance becomes rather inconvenient.
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This chapter is based on the work In�uence of a chiral chemical potential on Weyl hybrid junctions
by Daniel Breunig, Song-Bo Zhang, Martin Stehno and Björn Trauzettel (Phys. Rev. B 99, 174501
(2019)).

3.1 Motivation

Weyl semimetals are 3D topological phases that can be obtained from Dirac semimetals by breaking
time-reversal or inversion symmetry in the system, and are currently a focus of the research in con-
densed matter physics [19, 67�70]. In the simplest case of broken TRS, WSMs feature two crossing
points, denoted by Weyl nodes, in the Brillouin zone, see, for instance, Fig. 3.1(a). For energies close

(a) Large-energy range (b) Low-energy range

Fig. 3.1: Dispersion of a WSM with broken time-reversal symmetry in the (a) large-energy and the (b) low-
energy range. For energies close to the band crossing points, the two Weyl nodes appear as disconnected, linear
cones in k-space. Here, we choose kz = 0.

to the band crossing points, these Weyl nodes (featuring opposite chirality) appear as independent
cones, separated in k-space and described by linear low-energy Weyl Hamiltonians, see Fig. 3.1(b).
They are topologically protected and associated to the chiral anomaly, and therefore host numerous
intriguing characteristics like Fermi arcs [71], anomalous magnetoconductance [72�77] and non-local
transport [78]. Various realistic materials have been proposed theoretically [79�90] and/or con�rmed in
experiments as WSMs [91�96]. These topological materials are particularly interesting when combined
with conventional s-wave superconductors (S), since the strong spin-orbit coupling in WSMs [19, 71]
can lead to spin-triplet pairing in S and thus induce topological superconductivity [97]. The latter
has been identi�ed to host exotic physical phenomena like odd-frequency superconductivity [98�100]
including the creation, transfer, and possible manipulation of equal-spin Cooper pairs (which are a key
concept for superconducting spintronics [101]), as well as Majorana bound states [97]. We elaborate on
the creation of equal-spin Cooper pairs in the surface states of a TI and in the absence of any magnetic
order in Ref. [102] and discuss it explicitly in Chap. 4 of this Thesis.

While the transport signatures, as well as the pairing properties in superconducting WSM het-
erostructures, have been studied in recent work [103�112], nearly no attention has been paid to the
induced superconductivity in normal-state WSM regions. Moreover, it is usually assumed that the Weyl
nodes feature the same chemical potential, which is, however, not a necessary presumption. In fact, it
is possible to create an imbalance in the electron population between Weyl nodes of opposite chirality
by application of parallel electric and magnetic �elds [72, 113, 114], by strain deformations [115, 116]
or in superlattice systems where both time-reversal and inversion symmetries are broken [117]. This
imbalance is denoted by chiral chemical potential (CCP) and a key concept in this chapter.
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An equally intriguing feature of WSMs, which is related to the anisotropy of the band structure,
becomes apparent when we consider once more Fig. 3.1(a). Here, the Weyl nodes are separated in
kx-direction, which is, in principle, a convenient choice of the coordinate system. This is adequate in
a homogeneous setup, while in heterostructures, the axis separating the Weyl nodes in real space does
not necessarily coincide with the interface normal, but may include an angle. The question arises on
how this alignment of the Weyl nodes in k-space (given by the crystalline lattice in real space) a�ects
the transport and the pairing in hybrid systems based on WSMs.

In this chapter, we study the local and non-local di�erential conductance as well as the proximity
e�ect in TRS broken Weyl semimetal-superconductor-semimetal (NSN) junctions subject to CCP and
di�erent alignments of the Weyl nodes with respect to the interface. We apply BTK theory [27] to
calculate the transport signatures and the Scattering State Approach to derive the anomalous Green
function [118, 119], from which we obtain the pairing amplitudes. In particular, we focus on the
emergence of equal-spin pairing in the normal-state WSMs even far away from the interfaces, which
leads, for appropriate angles and CCP, to a net spin polarization. The latter is opposite in the two
asymptotic domains, giving the junction a dipole character which may present an intriguing feature
for application in superconducting spintronics.

The remainder of this chapter is structured as follows. In Sec. 3.2, we present the formalism and
additional methods to determine the retarded Green function, from which we extract the anomalous
part and thus the pairing amplitudes. Sec. 3.3 gives an overview of the NSN system, the underlying
Hamiltonians as well as the derivation of the eigenstates and scattering states. The results are shown
and discussed in detail in Sec. 3.4, where we �rst approach the transport properties in the junction
by means of the local and non-local conductance, followed by the pairing amplitudes. Our main focus
lies on the e�ect of CCP and the angle between the axis separating the Weyl nodes and the interface
normal. Sec. 3.5 concludes this chapter.

This work has partially been published as a regular article in the journal Physical Review B [120].
Similarities in the text are unavoidable. The copyright (2021) belongs to the American Physical Society.
All licenses to use the content in this Thesis have been obtained. Reprinted or adapted �gures are
distinctly marked.

3.2 Concepts and methods

The concepts and methods introduced in this section have been elaborated in detail in Ref. [121]. Here,
we provide a general overview due to the importance for the evaluation of the superconducting pairing
amplitudes but do not give detailed derivations.

3.2.1 The anomalous Green function

In order to study the proximity e�ect in the normal-state WSMs by means of the superconducting
pairing amplitudes, we need to derive an explicit expression of the anomalous Green function. This
quantity is a sub-matrix of the retarded Green function, the latter representing the inverse operator
of the Hamiltonian of a system. Considering a spinful 3D material and s-wave superconductivity, let

us assume the Hamiltonian is written in the basis
(
c↑(k), c↓(k), c†↑(−k), c†↓(−k)

)T
, where c†σ(k) is the

creation operator of an electron with spin σ and momentum ~k. Then, the retarded Green function is
of the general form

G(r, r′, E) =

(
Gee(r, r′, E) Geh(r, r′, E)
Ghe(r, r′, E) Ghh(r, r′, E)

)
, (3.1)

which is naturally a function of two coordinates r and r′ in real space1. Here, Gee and Ghh are the
electron-electron and the hole-hole block, respectively, from which one obtains the spectral function and

1In heterostructures with spatially varying parameters, at least one element of the momentum operator is not a good
quantum number and we cannot simply consider the Hamiltonian in k-space.
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the density of states. In contrast, Geh and Ghe are the anomalous parts of the retarded Green function,
implicitly incorporating information about the pairing amplitudes. They are manifestly related by the
intrinsic BdG particle-hole symmetry and it su�ces to consider only one of them. From the basis
introduced above, we see that these blocks have a spin structure of the form (here illustrated by means
of Geh)

Geh(r, r′, E) =

(
G↑↑eh(r, r′, E) G↑↓eh(r, r′, E)

G↓↑eh(r, r′, E) G↓↓eh(r, r′, E)

)
. (3.2)

It is a common convention to introduce the rotated anomalous Green function, which is given by

F(r, r′, E) = −iG(r, r′, E)sy =

(
G↑↓eh(r, r′, E) −G↑↑eh(r, r′, E)

G↓↓eh(r, r′, E) −G↓↑eh(r, r′, E)

)
, (3.3)

where s0,x,y,z are unit and Pauli matrices in spin space. This rotation allows for a convenient decom-
position of F according to

F(r, r′, E) = f0(r, r′, E)s0 + f↑↑(r, r
′, E)

sx + isy
2

+ f↓↓(r, r
′, E)

sx − isy
2

+ fz(r, r
′, E)sz, (3.4)

where we associate f0 to the spin-singlet pairing amplitude and f↑↑, f↓↓ and fz to the equal spin-triplet
and the opposite spin-triplet pairing amplitudes, respectively. With this de�nition, we are able to
study the proximity e�ect in a Weyl NSN junction.

3.2.2 The Scattering State Approach for the Green function

While the (rotated) anomalous Green function is straightforwardly deduced from the retarded Green
function, we still require a formalism to obtain this operator. In hybrid nanostructures described by a
1D or quasi-1D Hamiltonian, this is feasible by means of an appropriate outer product of all possible
scattering states in the system, a method denoted by The Scattering State Approach [118,119,121].

Let us consider the system in Fig. 3.2, where two leads (gray) are connected to a scattering
region (black), the latter featuring superconducting order. Then, there are four di�erent scattering
states (built from the full set of eigenstates of the underlying Hamiltonian) originated from di�erent
excitations (illustrated as points in the �gures) and describing the system in its entirety from a mathe-
matical point of view. For example, in Fig. 3.2(a), an electron is excited in the left asymptotic domain
(x < −x0) and approaches the interface. There, it can be re�ected as an electron or a hole into the
original domain, or it can be transmitted as an electron or a hole into the right asymptotic domain
(x > x0).

Outgoing boundary conditions

An important feature of this scattering state is the fact that it complies with outgoing boundary
conditions [8] in the right asymptotic domain, x → ∞. To see this, let us assume a homogeneous
material where the left and right-movers are described by wave packages e−ikx and eikx, respectively,
and let k be given, for simplicity and pedagogical reasons, by k =

√
E, with E the energy eigenvalue.

By shifting this energy in�nitesimally into the positive complex plane, E → E + iω with ω ∈ R, this
adds an imaginary term to the wavenumber as well, k → k + iη with η ∈ R. We are now able to
determine the behavior of the wave packages at x → ±∞. The wave function of the left-movers and
right-movers are proportional to e−ikxeηx and eikxe−ηx, respectively, and we have

lim
x→−∞

e−ikxeηx = 0, lim
x→∞

e−ikxeηx =∞, for left movers (3.5a)

lim
x→−∞

eikxe−ηx =∞, lim
x→∞

eikxe−ηx = 0, for right movers. (3.5b)
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(a) φ1(x) or φ̃1(x). Ful�lls outgoing boundary conditions at x→∞.

(b) φ2(x) or φ̃2(x). Ful�lls outgoing boundary conditions at x→∞.

(c) φ3(x) or φ̃3(x). Ful�lls outgoing boundary conditions at x→ −∞.

(d) φ4(x) or φ̃4(x). Ful�lls outgoing boundary conditions at x→ −∞.

Fig. 3.2: Possible scattering states in a system featuring superconducting order, but no other degrees of
freedom. The gray domains represent the leads, while the black domain is the scattering region. The four states
are the result of (a) an electron or (b) a hole excited in x < −x0, as well as (c) an electron or (d) a hole
excited in x > x0, each moving towards their respective interface.

As a consequence, the left-movers converge in the asymptotic domain x → −∞, but diverge in the
asymptotic domain x→∞, such that they ful�ll outgoing boundary conditions in the former, but not
in the latter region. Apparently, it is vice versa for the right-movers.

To transfer this concept to hybrid structures and scattering states (instead of single eigenstates),
let us once more consider Fig. 3.2(a). φ1(x) satis�es outgoing boundary conditions at x → ∞,
since all states in the right domain (x > x0) converge in the limit x → ∞ after shifting the energy
into the positive complex plane. However, it does not comply with outgoing boundary conditions at
x → −∞, since the right-moving electron in the domain x < −x0 diverges for x → −∞. Note that
we implicitly imposed outgoing boundary conditions on this scattering state when we constructed it
since we assumed that a right-moving electron excited in the domain x < −x0 cannot be the origin of
a left-moving particle in the domain x > x0. Imprinting this physical causality into the system, the
scattering states automatically ful�ll outgoing boundary conditions in one of the asymptotic domains.

To summarize, the scattering states φ1(x) and φ2(x) ful�ll outgoing boundary conditions at x→∞,
while for φ3(x) and φ4(x), it is x → −∞. This is an important concept for the Scattering State
Approach, since the retarded Green function needs to satisfy these boundary conditions as well, and
its construction depends crucially on the order in which we combine the scattering states.
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Note that in the discussion above, the wavenumbers were given in a rather simple form. Nonetheless,
the arguments hold equally for more complex expressions, and the crucial ingredient is the in�nitesimal
shift of the energy into the positive complex plane. It is likewise possible to add a negative imaginary
contribution and construct the scattering states accordingly. However, these would then satisfy incom-
ing boundary conditions from which one can construct the advanced Green function. This quantity is
not relevant for this Thesis and will therefore not be further discussed.

Constructing the Green function

To construct the retarded Green function, let us consider an arbitrary 1D or quasi-1D Hamiltonian H
of a hybrid nanostructure, obeying the Schrödinger equation

(E −H)︸ ︷︷ ︸
≡Lx

ψ(x) = 0. (3.6)

This (system of) di�erential equation is represented by the hermitian operator Lx, which is of the form

Lx =

m∑
k=0

Ak
dk

dxk
(3.7)

withAk matrices or scalars, depending on the dimensionality of the system (i.e., the degrees of freedom).
In a condensed mater system, we usually have m ≤ 2, i.e., a quadratic or linear dispersion. We can
solve Eq. (3.6) to obtain the eigenstates ψ(x), which we use to de�ne the full set of scattering states
φ(x). With these, we are able to construct the retarded Green function according to the Scattering
State Approach,

G(x, x′) =


∑
i,j
αi,j

(
φli(x)⊗ φ̃rj(x)

)
, x < x′∑

i,j
βi,j

(
φri (x)⊗ φ̃lj(x)

)
, x > x′

, (3.8)

where αi,j and βi,j are Green function coe�cients yet to be determined and ⊗ is the standard outer
product. For two column vectors u = (u1, u2, . . .)

T and v = (v1, v2, . . .)
T , it is de�ned as(

uvT
)
ij
≡ (u⊗ v)ij = uivj . (3.9)

Furthermore, φl/ri/j(x) are scattering states of the Hamiltonian H, where the superscripts distinguish
states that comply with outgoing boundary conditions in the asymptotic domain x→ −∞ (labeled l)
from those that comply with outgoing boundary conditions in the asymptotic domain x→∞ (labeled
r). For a Hamiltonian with multiple degrees of freedom (e.g., a BdG-Hamiltonian with electron and
hole channels), there can be more than one scattering state complying with the boundary conditions
in each corresponding domain. All of them need to be included in Eq. (3.8), hence the indices i and j
run over all of these states.

All this holds equally for the scattering states φ̃l/ri/j(x), with the distinction that they are not

solutions of the Hamiltonian H, but of the transposed operator HT . This is a consequence of our
choice of the outer product in Eq. (3.9) and results from the derivation of the Scattering State
Approach [121].

To give a �rst example, we explicitly write the retarded Green function of the system introduced
in Fig. 3.2 in terms of its scattering states, which yields

G(x, x′) =


α1φ3(x)φ̃T1 (x′) + α2φ3(x)φ̃T2 (x′) + α3φ4(x)φ̃T1 (x′) + α4φ4(x)φ̃T2 (x′), x < x′

β1φ1(x)φ̃T3 (x′) + β2φ1(x)φ̃T4 (x′) + β3φ2(x)φ̃T3 (x′) + β4φ2(x)φ̃T4 (x′), x > x′
. (3.10)
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Note that the transposed Hamiltonian results in the same qualitative scattering states as H, while the
explicit expression for the eigenstates may di�er.

What remains is the calculation of the Green function coe�cients αi,j and βi,j (which we numbered
consecutively in Eq. (3.10) for simplicity). This can be achieved by matching G(x, x′) and its derivative
at x = x′. Assuming the Hamiltonian gives rise to the di�erential operator in Eq. (3.7), then the
(m− 1)-st derivative of the Green function is discontinuous,

dm−1

dxm−1
G(x, x′)

∣∣
x=x′+0+ −

dm−1

dxm−1
G(x, x′)

∣∣
x=x′−0+ = −A−1

m , (3.11)

while each derivative with an order less than (m− 1) is continuous,

dk

dxk
G(x, x′)

∣∣
x=x′+0+ −

dk

dxk
G(x, x′)

∣∣
x=x′−0+ = 0, 0 ≤ k < m− 1. (3.12)

With the Scattering State Approach in Eq. (3.8) and the conditions in Eqs. (3.11) and (3.12), we
are now able to determine the retarded Green function of a 1D or quasi-1D Hamiltonian describing a
heterostructure junction.

3.2.3 The Wronskian method

While the fundamental scattering states of the HamiltoniansH andHT are the same, the two operators
usually do not commute, i.e., can not be described by the same set of eigenstates. This results in
di�erent sets of scattering coe�cients when matching the waves at the interface(s), which is unfortunate
if we want an analytical expression of Eq. (3.8) in terms of one single set of scattering coe�cients.
Therefore, we want to express the transposed coe�cients by the original ones.

A convenient method to achieve this for systems of �rst-order di�erential equations is based on
Liouville's formula. The Schrödinger equation for such a system can be written in the form

ψ′(x) = Aψ(x), (3.13)

where ψ(x) are eigenstates of the underlying Hamiltonian and A is a matrix. If the trace of A vanishes,
then Liouville's formula states that the Wronskian determinant of that system of �rst-order di�erential
equations is a constant, W (x) = W . This is, in general, an interesting relation. Since the argument of
the Wronskian determinant is a full set of solutions to a di�erential equation, we could, for instance,
plug all the scattering states φ1,2,3,4(x) in Fig. 3.2 into this quantity and evaluate it in di�erent
domains, i.e.,

W [φ1(x), φ2(x), φ3(x), φ4(x)]
∣∣
x<−x0

= W [φ1(x), φ2(x), φ3(x), φ4(x)]
∣∣
x>x0

. (3.14)

This allows us to relate the scattering coe�cients in di�erent leads to each other, given that the system
is described by a �rst-order di�erential equation.

When we want to apply this to our problem above, we face the issue that the scattering states
φ1,2,3,4(x) and φ̃1,2,3,4(x) are, in general, not solutions to the same Hamiltonian. However, if we are
able to relate the transposed Hamiltonian to the original one by a unitary transformation,

UHTU † = H, (3.15)

then the set Uφ̃1,2,3,4(x) is in fact a set of eigenfunctions of H, and we are able to employ the Wronskian
method to relate the transposed scattering coe�cients to the original ones. We could, for example,
evaluate the Wronskian determinant for the set {φ1(x), φ2(x), Uφ̃1(x), Uφ̃2(x)} in the left and right
domain of the junction and demand them to be equal, i.e.,

W [φ1(x), φ2(x), Uφ̃1(x), Uφ̃2(x)]
∣∣
x<−x0

= W [φ1(x), φ2(x), Uφ̃1(x), Uφ̃2(x)]
∣∣
x>x0

. (3.16)
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In the problem illustrated in Fig. 3.2, there is a total of 70 di�erent sets with non-equal elements
which can be evaluated according to this method, and we obtain an equal number of equations to solve
for the transposed scattering coe�cients. Note that this only works if the Schrödinger equation can
be written in the form of Eq. (3.13) and if the trace of A vanishes. Else, other methods need to be
employed to relate the coe�cients.

With this, we conclude this section where we introduce the methods applied in the following brie�y.
A thorough and detailed introduction is given in [121].

3.3 Setup and Hamiltonian

The system we want to consider is a 3D NSN-junction, where the underlying material is a TRS
broken WSM and the S domain is locally induced by means of a superconducting top gate and the
proximity e�ect, see Fig. 3.3(a). We assume the left and right normal leads to be connected to

(a)

(b)

Fig. 3.3: (a) 3D WSM-S-WSM junction considered in this chapter. The interfaces extend along the x − y-
planes, such that translational invariance is broken in ẑ-direction. The two WSM leads are connected to voltage
sources VL and VR, respectively, while the superconductor remains grounded. (b) The axis separating the Weyl
nodes ê3 and the interface normal ẑ can include an angle α in such a system. The Weyl fermions of positive
and negative chirality are represented by the blue- and red-colored cones, respectively. Reprinted �gure with
permission from [120]. Copyright (2021) by the American Physical Society.

voltage sources VL and VR, respectively, while the superconductor is grounded. The interfaces shall
be located at zL ≡ −Ls/2 and zR ≡ Ls/2 with Ls the length of the S domain. Furthermore, the
axis separating the Weyl nodes q̂3 in the crystalline coordinate system (described by the canonical
unit vectors (ê1, ê2, ê3) and (q̂1, q̂2, q̂3) in real and momentum space, respectively) shall include an
angle α with the interface normal in the junction coordinate system (described by the canonical unit

vectors (x̂, ŷ, ẑ) and
(
k̂x, k̂y, k̂z

)
in real and momentum space, respectively), see Fig. 3.3(b). Since

the interfaces extend along the x − y plane, the direction of this interface normal is ẑ. Finally, CCP
shall be induced by setting the Weyl nodes of opposite chirality (indicated by the di�erent colors of
the cones) to di�erent electrochemical potentials.
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3.3.1 Low-energy Hamiltonian in the crystalline coordinate system

In order to describe the time-reversal symmetry broken WSM, we introduce a minimal model by means
of the Hamiltonian

H(q) =
[
Mz(q

2
0 − q2

3)−Mq2
]
s3 + q1s1 + q2s2 − µ s0, (3.17)

which is written in the basis (c↑,q, c↓,q)T with cσ,q the annihilation operator of an electron with spin
σ and momentum ~q. Here, M and Mz are mass terms, µ is the electrochemical potential and
q = (q1, q2, q3)T (with q =

√
q2

1 + q2
2) as well as s1,2,3 are wavevector and Pauli matrices acting on spin

space in the crystalline coordinate system, respectively. s0 is the (2×2)-unit matrix. As discussed above
and indicated in Eq. (3.17), the Weyl nodes are separated in q̂3 direction and located at ±Q0 = ±q0q̂3,
see Fig. 3.4, where we plot the dispersion of H(q). This Hamiltonian features inversion symmetry, but
no time-reversal symmetry, as indicated by

IH(q)I† = H(−q), [T ,H(q)] 6= 0 (3.18)

with I = sz, T = isyK and K the operator of complex conjugation.

(a) 3D plot

(b) Contour plot

Fig. 3.4: (a) 3D and (b) contour plot of the energy spectrum of H(q) in the vicinity of the Weyl nodes at
±Q0 = ±q0q̂3 and as a function of q1 and q3. The color indicates the absolute value of the energy (white:
E = 0; black |E| � 0), with an equal scale in (a) and (b). We choose µ = 0, M = Mz = 1 and q2 = 0.

BCS-like superconductivity can be realized in the system by application of the BdG formalism

and arti�cially doubling the spectrum. Introducing the Nambu spinor
(
c↑,q, c↓,q, c

†
↓,−q,−c

†
↑,−q

)T
, the

BdG-Hamiltonian reads

HBdG(q) = τz(q1s1 + q2s2 − µ s0) +
[
Mz(q

2
0 − q2

3)−Mq2
]
τ0s3 + ∆τxs0, (3.19)

with τ0 and τx,y,z the unit matrix and Pauli matrices in Nambu space, respectively, and ∆(z) the S
order parameter. Eq. (3.19) describes the full energy range of the system, whereas we are interested
in the low-energy domain in the proximity of the Weyl nodes. We therefore linearize the spectrum in
their vicinity and obtain for q ≈ Q0 the Hamiltonian (note that we rescale the q̂3-axis according to
q3 → q3/(2Mzk0))

H+
BdG(q) = τz(q1s1 + q2s2 − µ s0) + (q0 − q3)τ0s3 + ∆τxs0 (3.20)
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in the basis

Ψ+(q) =
(
c+,↑,q, c+,↓,q, c

†
−,↓,−q,−c

†
−,↑,−q

)T
. (3.21)

The new indices ± of the creation and annihilation operators indicate at which node the electron is
created or destroyed. Since conventional BCS s-wave pairing couples electrons and holes of opposite

Fig. 3.5: Illustration of BCS s-wave pairing in the low energy regime of HBdG(q). Since the order parameter
couples excitations at momenta of opposite signs, q and −q, these states stem from Weyl nodes of opposite
chirality (blue and red). The circles are the Fermi surfaces of the low-energy Hamiltonian at a �xed energy.

momentum ~q, these states cannot stem from the same Weyl node, see Fig. 3.5. Similarly, in the basis

Ψ−(q) =
(
c−,↑,q, c−,↓,q, c

†
+,↓,−q,−c

†
+,↑,−q

)T
, (3.22)

we obtain

H−BdG(q) = τz(q1s1 + q2s2 − µ s0) + (q0 + q3)τ0s3 + ∆τxs0 (3.23)

for q ≈ −Q0, such that the low-energy Hamiltonian for the full system is given by

H(q) =
∑
q≈Q0

Ψ†+(q)H+
BdG(q)Ψ+(q) +

∑
q≈−Q0

Ψ†−(q)H−BdG(q)Ψ−(q). (3.24)

Note that the two kernel Hamiltonians are related by inversion symmetry,

IH+
BdG(q)I† = H−BdG(−q) (3.25)

with I = τ0sz.

3.3.2 Transfer to the junction coordinate system

As illustrated in Fig. 3.3(b), we want to include an angle α between the axis separating the Weyl
nodes and the interface normal. This can be achieved by rotating the crystalline coordinate system
relatively to the junction coordinate system, for instance, by means of a rotation around the ŷ-axis,

R̂ =

cosα 0 − sinα
0 1 0

sinα 0 cosα

 . (3.26)

With this, we are able to express the wavenumbers as well as the Pauli matrices acting on spin space
in the junction coordinates,

(q1, q2, q3)T = R̂ (kx, ky, kz)
T , (s1, s2, s3)T = R̂ (σx, σy, σz)

T , (3.27)
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such that the Hamiltonians H+(q) = H+(R̂k) and H−(q) = H−(R̂k) (we drop the subscript BdG
from now on for compactness) evaluate to

H+ =


−kx sin (2α)− kz cos (2α)− µ kx cos (2α)− iky − kz sin (2α) ∆ 0
kx cos (2α) + iky − kz sin (2α) kx sin (2α) + kz cos (2α)− µ 0 ∆

∆ 0 µ− kz −kx + iky
0 ∆ −kx − iky µ+ kz


+K0 (3.28)

and

H− =


−µ+ kz kx − iky ∆ 0
kx + iky −µ− kz 0 ∆

∆ 0 kx sin (2α) + kz cos (2α) + µ −kx cos (2α) + iky + kz sin (2α)
0 ∆ −kx cos (2α)− iky + kz sin (2α) −kx sin (2α)− kz cos (2α) + µ


−K0 (3.29)

respectively, with

K0 =


q0 cosα q0 sinα 0 0
q0 sinα −q0 cosα 0 0

0 0 q0 cosα q0 sinα
0 0 q0 sinα −q0 cosα

 . (3.30)

We move the position of the nodes, which is given by ±K0 = (q0 sinα, 0, q0 cosα)T in the junction
coordinate system, into the Nambu basis vectors by means of the gauge transformation in position-basis

H± → e±iK0.rH±e∓iK0.r, (3.31)

e�ectively removing the terms K0 from Eqs. (3.28) and (3.29). Moreover, we perform the unitary
transformation

H± → Û±αH±(Û±α )−1 (3.32)

with

Û±α =
1

2

[
(τ0 ± τz)σxeiασy + (τ0 ∓ τz)σ0

]
, (3.33)

which yields the simpli�ed expressions

H±(k) =


kz − µ kx ± iky −∆ sinα ∆ cosα
kx ∓ iky −kz − µ ∆ cosα ∆ sinα
−∆ sinα ∆ cosα µ− kz −kx ± iky
∆ cosα ∆ sinα −kx ∓ iky µ+ kz

 . (3.34)

This provides a convenient representation of the Hamiltonians H±(k), where the α-dependence is
moved into the order parameter ∆ and ±K0 does not appear. Finally, we introduce CCP into the
system by adding an inversion-symmetry breaking term

H±χ = ∓χτ0σ0 (3.35)

to the BdG-Hamiltonians in Eq. (3.34), which allows to modify the �lling of each Weyl node. For
simplicity, we assume a constant χ everywhere in the junction. To illustrate the e�ect of CCP, let us
consider the eigenenergies for the normal-state (∆ = 0) junction. The electron (e) and hole (h) bands
are given by

E+
e = ± ||k|| − µ− χ, E+

h = ± ||k||+ µ− χ, (3.36)



3.3. Setup and Hamiltonian 54

(a) E+
e/h, χ = 0 (b) E+

e/h, χ > 0 (c) E+
e/h, χ < 0

(d) E−e/h, χ = 0 (e) E−e/h, χ > 0 (f) E−e/h, χ < 0

Fig. 3.6: Electron (blue) and hole (red) dispersion of the Hamiltonian (a,b,c)H+ and (d,e,f)H− as a function
of kz for (a,c) no CCP, (b,e) a �nite positive and a (c,f) a �nite negative CCP. Valence bands are indicated
by dashed lines, conduction bands by solid lines. We choose k|| = 0, α = 0, ∆ = 0 and µ > 0.

for H+(k) and

E−e = ± ||k|| − µ+ χ, E−h = ± ||k||+ µ+ χ, (3.37)

for H−(k), where ± ||k|| distinguishes conductance from valence bands. As we can see, χ corresponds
to a shift of the energy, which is equal for the electron and hole bands of the same node, but exactly
opposite for the bands of di�erent nodes. This is shown in Fig. 3.6, where we plot the energy as a
function of kz and where we de�ne the transverse wavenumber as

k|| =
√
k2
x + k2

y. (3.38)

For a vanishing CCP, the electron bands coincide at the (+) and the (−) node, as do the hole bands.
For a �nite and positive CCP, χ > 0, both the electron and hole dispersion at the (+) node are shifted
to lower energies, while it is to larger ones at the (−) node. The e�ect is exactly vise versa for a
�nite and negative CCP, χ < 0. Note that this observation is di�erent from tuning the electrochemical
potential µ, which shifts the electron and hole bands oppositely to each other at the same node, but
the same bands equally on di�erent nodes.
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Eigenstates and scattering states

To model the junction, we need to express the Hamiltonians in Eq. (3.34) in position-space, H±(r),
where the wave vectors are replaced by derivatives,

(kx, ky, kz)
T →

(
k̂x, k̂y, k̂z

)T
= −i (∂x, ∂y, ∂z)

T . (3.39)

The explicit position-dependence is incorporated in the electrochemical potential µ(z) and the order
parameter ∆(z), which are, in accordance with Fig. 3.3, given by

µ(z) = µNΘ(|z| − Ls/2) + µSΘ(Ls/2− |z|), (3.40a)

∆(z) = ∆0Θ(Ls/2− |z|). (3.40b)

Here, µN , µS , and ∆0 are constant. This step-like model is well justi�ed when the chemical potential
µS in the S domain is much larger than that in the normal leads µN [122,123] and the order parameter
∆0. Therefore, we assume |µS | � |µN | ,∆0 in the remainder of this chapter.

Since translational invariance is broken only in z-direction, we may perform a partial Fourier
transformations in x- and y-direction (we omit a prefactor),

φ(r) =

∫∫
dxdy φ(z, kx, ky)e

ikxxeikyy ⇒ H±(r)→ H±(z, kx, ky), (3.41)

where kx and ky are actual parameters and, more importantly, good quantum numbers indexing the
transverse modes. As a consequence, we have reduced the 3D Hamiltonian to a quasi-1D operator and
thus simpli�ed the problem.

The eigenstates of H± in Eq. (3.41) are straightforwardly derived from the Schrödinger equation
and read (note that we omit the phase factors eikxxeikyy for brevity here)

ψ±−→e (z) =
(
J±e , k||e

∓iθk , 0, 0
)T

eik
±
e z, (3.42a)

ψ±←−e (z) =
(
k||e
±iθk , J±e , 0, 0

)T
e−ik

±
e z, (3.42b)

ψ±−→
h

(z) =
(

0, 0, k||e
∓iθk ,−J±h

)T
eik
±
h z, (3.42c)

ψ±←−
h

(z) =
(

0, 0, J±h ,−k||e
±iθk

)T
e−ik

±
h z, (3.42d)

where the alphanumerical indices distinguish electrons (e) from holes (h), the arrows indicate right
(→) and left (←) movers, i.e., the sign of the associated group velocity with respect to the z-axis, and
the superscripts label the nodes. The wavenumbers are given by

k±e = ζ±e

√
(E + µN ± χ)2 − k2

||, k±h = ζ±h

√
(E − µN ± χ)2 − k2

||, (3.43)

where

ζ±e = sgn
(
E + µN ± χ+ k||

)
, ζ±h = sgn

(
E − µN ± χ+ k||

)
(3.44)

di�erentiate if the particle stems from the valence or the conduction band for a given energy E.
Moreover, we de�ne

J±e = k±e + E + µN ± χ, J±h = k±h + E − µN ± χ, (3.45)

and θk = arg (ky/kx). k|| is introduced in Eq. (3.38).
The eigenstates in the superconductor are, without further approximations, rather complicated

and extensive. For a heavily doped S domain, |µS | � |µN | ,∆0, however, it is valid to assume that all
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excitations show quasi-perpendicular (k|| ≈ 0) transmission into the superconductor. In this regime,
we can approximate the eigenstates rather conveniently as

ψ±1 (z) =
(
J±S , 0,−∆0 sinα, 0

)T
eik
±
S zeiµSz, (3.46a)

ψ±2 (z) =
(
−∆0 sinα, 0, J±S , 0

)T
e−ik

±
S zeiµSz, (3.46b)

ψ±3 (z) =
(
0,∆0 sinα, 0, J±S

)T
eik
±
S ze−iµSz, (3.46c)

ψ±4 (z) =
(
0, J±S , 0,∆0 sinα

)T
e−ik

±
S ze−iµSz, (3.46d)

where

k±S =
√

(E ± χ)2 −∆2
0 sin2 α, J±S = k±S + E ± χ. (3.47)

Intriguingly, from these expressions, we �nd that the order parameter is modi�ed by the angle α, such
that we can de�ne an e�ective potential

∆̃0 = ∆0 |sinα| , (3.48)

which even vanishes for α = 0 and α = ±π, i.e., when the axis separating the nodes and the inter-
face normal are parallel or anti-parallel. From this, we can expect interesting features in the angle-
dependence of the transport properties and the proximity-e�ect.

We are now able to construct the full set of scattering states associated to the Hamiltonians in Eq.
(3.41), which are eight in total and read

φ±1/2(z) =


ψ±−→
e/h

(z) + a±1/2ψ
±
←−
h/e

(z) + b±1/2ψ
±
←−
e/h

(z), z < zL
4∑
i=1

s±i,1/2ψ
±
i (z), zL < z < zR

c±1/2ψ
±
−→
e/h

(z) + d±1/2ψ
±
−→
h/e

(z), z > zR

, (3.49a)

φ±3/4(z) =


c±3/4ψ

±
←−
e/h

(z) + d±3/4ψ
±
←−
h/e

(z), z < zL
4∑
i=1

s±i,3/4ψ
±
i (z), zL < z < zR

ψ±←−
e/h

(z) + a±3/4ψ
±
−→
h/e

(z) + b±3/4ψ
±
−→
e/h

(z), z > zR

. (3.49b)

The coe�cients a±l , b
±
l , c
±
l and d±l , l ∈ {1, 2, 3, 4}, are associated to Andreev re�ection, normal re-

�ection, electron co-tunneling and crossed Andreev re�ection, respectively, while s±i,l are scattering

coe�cients in the S domain. As illustrated in Fig. 3.2, φ±1/2(z) describes the scattering state based on

an electron/hole excited in the asymptotic domain z < zL, while φ
±
3/4(z) describes the scattering state

based on an electron/hole excited in the asymptotic domain z > zR.

Transposed eigenstates and scattering states

With the de�nitions so far, we are able to amply characterize the transport properties in the system.
Nonetheless, if we want to study the proximity e�ect, i.e., the superconducting pairing amplitudes, it
is necessary to determine the scattering states of the transposed system Hamiltonians, as elaborated
in Sec. 3.2. When we perform the transposition [H±(r, kx, ky)]

T , we need to be aware of the fact that
k̂z is an operator, i.e., in addition to transposing the matrix, we have

k̂Tz = −k̂z. (3.50)
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Moreover, the phase factors feature a di�erent sign to that of the normal Hamiltonian and are given
by e−ikxxe−ikyy. With this, we obtain the eigenstates

ψ̃±−→e (z) =
(
k||e
∓iθk , J±e , 0, 0

)T
eik
±
e z, (3.51a)

ψ̃±←−e (z) =
(
J±e , k||e

±iθk , 0, 0
)T

e−ik
±
e z, (3.51b)

ψ̃±−→
h

(z) =
(

0, 0, J±h ,−k||e
∓iθk

)T
eik
±
h z, (3.51c)

ψ̃±←−
h

(z) =
(

0, 0, k||e
±iθk ,−J±h

)T
e−ik

±
h z, (3.51d)

in the WSM leads and

ψ̃±1 (z) =
(
0, J±S , 0,∆0 sinα

)T
eik
±
S zeiµSz, (3.52a)

ψ̃±2 (z) =
(
0,∆0 sinα, 0, J±S

)T
e−ik

±
S zeiµSz, (3.52b)

ψ̃±3 (z) =
(
−∆0 sinα, 0, J±S , 0

)T
eik
±
S ze−iµSz, (3.52c)

ψ̃±4 (z) =
(
J±S , 0,−∆0 sinα, 0

)T
e−ik

±
S ze−iµSz, (3.52d)

in the S domain. Finally, the transposed scattering states are given by

φ̃±1/2(z) =


ψ̃±−→
e/h

(z) + ã±1/2ψ̃
±
←−
h/e

(z) + b̃±1/2ψ̃
±
←−
e/h

(z), z < zL
4∑
i=1

s̃±i,1/2ψ̃
±
i (z), zL < z < zR

c̃±1/2ψ̃
±
−→
e/h

(z) + d̃±1/2ψ̃
±
−→
h/e

(z), z > zR

, (3.53a)

φ̃±3/4(z) =


c̃±3/4ψ̃

±
←−
e/h

(z) + d̃±3/4ψ̃
±
←−
h/e

(z), z < zL
4∑
i=1

s̃±i,3/4ψ̃
±
i (z), zL < z < zR

ψ̃±←−
e/h

(z) + ã±3/4ψ̃
±
−→
h/e

(z) + b̃±3/4ψ̃
±
−→
e/h

(z), z > zR

. (3.53b)

The scattering coe�cients can be determined by means of the conditions derived in the previous
chapter, cf. Eqs. (2.5) and (2.14). As it turns out, the second equation is naturally satis�ed and we
are left with the continuity of the waves at the interfaces, i.e.,

lim
ε→0

(
φ±l (zL − ε)− φ±l (zL + ε)

)
= 0, and lim

ε→0

(
φ±l (zR − ε)− φ±l (zR + ε)

)
= 0, (3.54a)

lim
ε→0

(
φ̃±l (zL − ε)− φ̃±l (zL + ε)

)
= 0, and lim

ε→0

(
φ̃±l (zR − ε)− φ̃±l (zR + ε)

)
= 0. (3.54b)

We are now prepared to study the transport properties and the proximity e�ect in the WSM/S/WSM
junction.

3.4 Results

In the following, we study quantities that depend, in general, on the transverse wave vector k||.
Experimentally, single modes are hard to realize, which is why we consider the sum over all possible
modes

∑
k||

instead. In the continuum limit, we express this sum by an integral

∑
k||

→ LxLy
(2π)2

2π∫
0

κ∫
0

dk||dθk k||, (3.55)
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where we parameterize the transverse wave vector in polar coordinates by k||e
iθk with k|| =

√
k2
x + k2

y

and θk = arg (ky/kx). Here, Lx and Ly are the extend of the junction in x- and y-direction, respectively.
These quantities are not relevant for us, since we are going to consider normalized observables only.
Moreover, κ is the radius of the Fermi surface at a given energy in k-space and depends on the incident
particle. For an electron or a hole at node ±, it is given by

κ ≡ κ±e (E) = |E + µ± χ| , (3.56a)

κ ≡ κ±h (E) = |E − µ± χ| , (3.56b)

respectively.
In this section, we �rst consider the transport features in the junction, followed by an analysis of

the pairing amplitudes.

3.4.1 Transport characteristics

For the transport properties, we are particularly interested in the di�erential conductance. In an NSN-
junction, one can measure both the localGLL ≡ ∂IL/∂VL

∣∣
VR=0

and the non-localGLR ≡ ∂IR/∂VL
∣∣
VR=0

conductance, where IL(R) is the current measured in the domain z < zL (z > zR) and VL means that
a bias is applied to the left lead, while the right lead remains grounded, VR = 0. Due to the spatial
symmetry of the problem, these quantities are equivalent to GRR and GRL, respectively, and we
only consider the case where a bias is applied to the left lead. Assuming the junction is connected to
equilibrium reservoirs at z → ±∞, the local and non-local di�erential conductance at zero temperature
are given by [27,31,32]

G±LL,l(eV ) ≡
∑
k||

G±LL,l(eV,k||) =
2e2

h

∑
k||

[
1 +A±l (eV,k||)−B±l (eV,k||)

]
, (3.57a)

G±LR,l(eV ) ≡
∑
k||

G±LR,l(eV,k||) =
2e2

h

∑
k||

[
C±l (eV,k||)−D±l (eV,k||)

]
. (3.57b)

Here, the index l ∈ {1, 2, 3, 4} associates the conductance to the corresponding scattering state in
Eq. (3.49), while Al, Bl, Cl and Dl are probability amplitudes for Andreev re�ection (AR), normal
re�ection (NR), electron or hole co-tunneling (CO) as well as crossed Andreev re�ection (CAR), re-
spectively. Notice that AR increases the local di�erential conductance, while CAR reduces its non-local
counterpart. These amplitudes are related to the scattering coe�cients by

A±l (eV,k||) = j±l
∣∣a±l ∣∣2 , B±l (eV,k||) =

∣∣b±l ∣∣2 , (3.58a)

C±l (eV,k||) =
∣∣c±l ∣∣2 , D±l (eV,k||) = j±l

∣∣d±l ∣∣2 , (3.58b)

where jl is the ratio of the probability currents of the incoming and outgoing particle and reads

jl =


J±h
J±e

Re(k±h )

k±e
, l = 1, 3

J±e
J±h

Re(k±e )

k±h
, l = 2, 4

. (3.59)

Since the scattering coe�cients are rather extensive in an NSN-junction, we do not provide them
explicitly here and evaluate the sum in Eq. (3.57) numerically. We now consider the α and χ-
dependence separately by explicitly calculating G±LL,1(eV ) and G±LR,1(eV ). All other conductances are
related to these quantities by spatial inversion or particle-hole symmetry (in the sense of BdG), and we
need not consider them separately. The index is thus dropped in the following for the sake of clarity.



3.4. Results 59

Angular dependence of the di�erential conductance

For now, we set χ = 0, i.e., the system features no CCP. The angle between the axis separating the
Weyl nodes and the interface normal α enters the problem in terms of an e�ective superconducting
gap, cf. Eq. (3.48). Apparently, ∆̃0 is maximal for α = ±π/2 and vanishes for α ∈ {0,±π}. We see
this in Fig. 3.7, where we plot the normalized conductance (G0

LL/LR is the corresponding normal-state
conductance) as a function of the bias voltage for a length Ls = ξ = vF /∆0 of the S domain. Note that
vF is the Fermi velocity of the particles, which is unity since we rescaled the q̂3-axis, cf. Eq. (3.20).
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Fig. 3.7: (a) Local and (b) non-local conductance as a function of eV for di�erent angles α. At α = π/2, ∆̃0

is maximal, which strongly promotes AR and CAR. As a consequence, G±LL is largest and G±LR is smallest at

these angles. The normal-state conductance is indicated by the horizontal gray, dashed line. The value of ∆̃0 for
the listed angles is indicated by the vertical, dashed lines in the corresponding color. We choose µS = 106 ∆0,
µN = 103 ∆0, χ = 0 and L = ξ. Reprinted �gure with permission from [120]. Copyright (2021) by the American
Physical Society.

The local conductance decreases from its zero-bias value and reaches a minimum at subgap energies,
after which it increases again and reaches a maximum for energies close to the e�ective gap, eV = ∆̃0.
Nonetheless, G±LL exceeds its normal-state value for eV ≈ ∆̃0 due to the strong contributions from
AR. The oscillatory behavior can be observed at supragap energies as well, whereas the amplitude is
signi�cantly decreased when the normal-state conductance is approached at large biases eV � ∆̃0.
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Fig. 3.8: (a) Local and (b) non-local conductance as a function of α for di�erent biases eV . Both observables
are π-periodic functions. We choose µS = 106 ∆0, µN = 103 ∆0, χ = 0 and L = ξ.

In contrast, the non-local conductance is rather �at and noticeably below the normal-state con-
ductance for subgap energies, and quickly approaches the former for biases above ∆̃0. The reason
for this is that CAR decreases G±LR, see Eq. (3.57), which is suppressed only for biases eV � ∆̃0.
Furthermore, the oscillations are hardly observable in contrast to G±LL.
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The e�ect of the angle α becomes apparent in both �gures. While G±LL is largest and G±LR smallest
for α = π/2 (i.e., when ∆̃0 = ∆0) due to the strong e�ect of the electron-hole conversion processes, the
local conductance is generally reduced and the non-local conductance is generally increased when we
decrease (α→ 0) or increase (α→ π) the angle from α = π/2. At α = 0 or α = ±π, the e�ective gap
vanishes completely, such that G±LL and G±LR do not deviate from the normal-state conductance. We
can comprehend this explicitly from Fig. 3.8, where we plot the di�erential conductance as a function
of the angle α. We �nd that at α = 0 and α = ±π, both G±LL and G±LR coincide with their normal-state
values since A±1 = D±1 = 0, while G±LL is maximal and G±LR minimal at α = ±π/2, where AR and
CAR are strongest. The periodicity of both functions,

G±LL/LR(eV, α) = G±LL/LR(eV, α± π) (3.60)

corresponds to the periodicity of the e�ective superconducting gap, ∆̃0(α) = ∆̃0(α± π). The e�ect of
the angle α on the order parameter is thus directly transferable to the di�erential conductance in the
system.

Finally, we show the observables as functions of both the angle α and the bias voltage eV in the
contour plots in Fig. 3.9. This �gure con�rms once more that the angular dependence of the di�erential
conductance is independent of the energy and follows that of the e�ective gap ∆̃0 (green, dashed lines).
The oscillatory behavior, which stems from interference e�ects in the junction, is noticeable rather in
G±LL/G

0
LL than in G±LR/G

0
LL and depends on the length of the S domain Ls. At large biases eV � ∆̃0,

both quantities approach their normal-state value due to the decay of the AR and CAR probabilities.
These �ndings are consistent with the observations on a Weyl NS junction [103] and extend the

problem to a Weyl NSN setup as illustrated in Fig. 3.3(a). Note that the conductance from the
states at the (+) node is equal to that at the (−) node since no CCP is present. The full di�erential
conductance of the system is thus simply twice the conductances shown in this section.

(a) G±LL/G
0
LL (b) G±LR/G

0
LR

Fig. 3.9: Contour plot of the normalized (a) local and (b) non-local di�erential conductance as a function
of eV and α. The green, dashed line represents the angular dependency of the e�ective superconducting gap
∆̃0. We choose µS = 106 ∆0, µN = 103 ∆0, χ = 0 and L = ξ. Reprinted �gure with permission from [120].
Copyright (2021) by the American Physical Society.
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CCP dependence of the di�erential conductance

The dependence of the transport properties on a �nite CCP is rather di�erently. As we have shown in
the context of Fig. 3.6, χ > 0 shifts the dispersion at the (+) and (−) node towards opposite energies,
which enters the conductance in terms of an energy shift eV → eV ±χ. We illustrate this in Fig. 3.10,

(a) Local conductance (b) Non-local conductance

Fig. 3.10: (a) Local and (b) non-local conductance as a function of eV for a �nite and positive CCP χ = 0.7 ∆0.
The conductances derived from H+ and H−, G+

LL/LR (blue curve) and G−LL/LR (orange curve) are shifted

oppositely along the eV -axis and relatively to the conductance for a system with no CCP (black, dashed curve).
We choose µS = 106 ∆0, µN = 103 ∆0, α = π/2 and L = ξ. Reprinted �gure with permission from [120].
Copyright (2021) by the American Physical Society.

where we additionally consider hole excitations at negative biases and set α = π/2, i.e., ∆̃0 = ∆0. Due
to the intrinsic BdG particle-hole symmetry, we have

G±LL/LR(eV ) = G±LL/LR(−eV ) (3.61)

when no CCP is present. This symmetry is broken when χ is �nite, see the blue and orange curves.
Then, G+

LL/LR is shifted to negative and G−LL/LR to positive energies. Additionally, the symmetry in
Eq. (3.61) is no longer given if we consider one node only, since the symmetry axis is shifted. Instead,
we now have

G+
LL/LR(eV − χ) = G+

LL/LR(−eV − χ), G−LL/LR(eV + χ) = G−LL/LR(−eV + χ), (3.62)

or, more generally,

G+
LL/LR(eV ) = G−LL/LR(−eV ), (3.63)

as can be seen in Fig. 3.10. This is clear since CCP does not a�ect the conductance qualitatively,
except for the opposite shift in the bias at di�erent nodes.

It is, however, surprising that the BdG particle-hole symmetry appears to be broken, as indicated
by Eq. (3.62), which should not be possible in the BdG framework. We can resolve this by reminding
ourselves that H± are merely blocks of the total Hamiltonian HBdG in Eq. (3.20), and not independent
BdG Hamiltonians. The contribution from both Weyl nodes to the total conductances is plotted in Fig.
3.11 for a vanishing (black dashed curve) and a �nite, positive (red, solid curve) CCP. We therefore
introduce the full local and non-local di�erential conductance as

GΣ
LL(eV ) ≡ G+

LL(eV ) +G−LL(eV ), (3.64a)

GΣ
LR(eV ) ≡ G+

LR(eV ) +G−LR(eV ), (3.64b)
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Fig. 3.11: Full (a) local and (b) non-local conductance as a function of eV for a �nite and positive CCP
χ = 0.7 ∆0. Considering the contributions from both Weyl nodes, this restores the axial symmetry around
eV = 0. We choose µS = 106 ∆0, µN = 103 ∆0, α = π/2 and L = ξ. Reprinted �gure with permission
from [120]. Copyright (2021) by the American Physical Society.

The full di�erential conductance GΣ
LL/LR does not deviate from G±LL/LR for χ = 02, while for χ > 0,

the intrinsic BdG particle-hole symmetry is restored,

GΣ
LL/LR(eV ) = GΣ

LL/LR(−eV ), (3.65)

which can directly be seen from Eqs. (3.62) and (3.63). Furthermore, we �nd that a �nite CCP
increases the oscillations in GΣ

LL , while it �attens the valley in GΣ
LR even more (both compared to

χ = 0). At large biases |eV | � χ, the full conductance approaches its value without CCP.
Finally, we consider the dependence of the full zero-bias conductance on the CCP in Fig. 3.12.

Apparently, the curves are identical to the bias-dependent plots without CCP in Fig. 3.11. In fact,
the expressions in Eqs. (3.61) to (3.64) allow us to identify the relation

GΣ
LL/LR(eV = 0, χ) = GΣ

LL/LR(eV, χ = 0), (3.66)

i.e., the CCP-dependence of the conductance at zero bias is equal to the bias-dependence of the con-
ductance at a vanishing CCP. As a consequence, CCP leads to the same local and non-local di�erential
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Fig. 3.12: Full (a) local and (b) non-local conductance as a function of χ at eV = 0. The curves are equivalent
to those in Fig. 3.11 for χ = 0. We choose µS = 106 ∆0, µN = 103 ∆0, α = π/2 and L = ξ. Reprinted �gure
with permission from [120]. Copyright (2021) by the American Physical Society.

2Note that here, even though we add both contributions together, the quantitative results are equal. This is due to
the normalization, since the normal-state conductances are added up as well.
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conductances when no bias is applied, as we �nd it in a system with no CCP and a �nite eV . The
application of a uniform, parallel electromagnetic �eld or a strain deformation can therefore be used
to control the transport in the junction since CCP plays a similar role as the bias. Note that a �nite,
negative χ shifts G± oppositely in the examples and �gures above, but has no e�ect on GΣ.

With this, we conclude our analysis of the transport characteristics in the Weyl NSN junction and
next address the proximity e�ect.

3.4.2 Pairing amplitudes

Anomalous Green function

In order to obtain the pairing amplitudes based on which we study the proximity e�ect, we �rst need
to derive the anomalous Green function according to the Scattering State Approach introduced in Sec.
3.2.2. The scattering states in Eqs. (3.49) and (3.53) are labeled in accordance with those in Fig. 3.2,
such that the ansatz in Eq. (3.10) is directly applicable. The Green function for the NSN-junction
thus reads (note that we drop the superscript ± on the right-hand side of this expression for the sake
of clarity. All coe�cients and scattering states are understood to include this index.)

G±(z, z′) =


α1φ3(z)φ̃T1 (z′) + α2φ3(z)φ̃T2 (z′) + α3φ4(z)φ̃T1 (z′) + α4φ4(z)φ̃T2 (z′), z < z′

β1φ1(z)φ̃T3 (z′) + β2φ1(z)φ̃T4 (z′) + β3φ2(z)φ̃T3 (z′) + β4φ2(z)φ̃T4 (z′), z > z′
, (3.67)

and we obtain the coe�cients α±l and β±l according to Eq. (3.11), which evaluates to

G±(z, z′)
∣∣
z=z′+0+ − G±(z, z′)

∣∣
z=z′−0+ = −iτ3σ3, (3.68)

for the Hamiltonians in Eq. (3.34). Since the latter are linear in kz, the discontinuity appears in the
Green functions themselves.

In order to simplify the expression obtained from Eq. (3.67), it is convenient to replace the trans-
posed scattering coe�cients by means of their normal counterparts. As introduced in Sec. 3.2.3,
the Wronskian method is a practical formalism to achieve this. We can convince ourselves that the
transposed and the normal Hamiltonians are related by the transformation

σx
[
H±(α)

]T
σx = H±(−α), (3.69)

such that the transformed scattering states σxφ̃
±
l (z)|α→−α are eigenstates of the original Hamiltonians

H± as well. Therefore, we can construct the Wronskian determinant for all possible combinations of
(each four) of the transposed and normal scattering states and demand its identity when evaluated in
the domains z < zL and z > zR. This yields 70 equations from which we can determine the transposed
scattering coe�cients, and we obtain

ã±l (α) = −a±l (−α), b̃±l (α) = b±l (−α), c̃±l (α) = c±l (−α), d̃±l (α) = −d±l (−α), ∀l. (3.70)

At this point, we relate the transposed scattering coe�cients at an angle α to the corresponding normal
scattering coe�cients at an angle −α. We can resolve this by the fact that the coe�cients related to
AR and CAR are directly proportional to the e�ective order parameter,

a±l ∝ ∆0 sinα, d±l ∝ ∆0 sinα, (3.71)

while ∆̃0 enters the coe�cients solely in second order elsewise. The coe�cients related to NR and CO
do not feature such a direct proportionality, but only second order entries of the e�ective gap. As a
consequence, we have

a±l (−α) = −a±l (α), b±l (−α) = b±l (α), c±l (−α) = c±l (α), d±l (−α) = −d±l (α), ∀l, (3.72)
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and Eq. (3.70) reduces to

ã±l = a±l , b̃±l = b±l , c̃±l = c±l , d̃±l = d±l , ∀l, (3.73)

i.e., the transposed and normal scattering coe�cients are equal. With this, we obtain the Green
function coe�cients as

α±1 = − i

2J±e k
±
e

c±4
c±3 c
±
4 − d

±
3 d
±
4

= β±1 , (3.74a)

α±2 =
i

2J±h k
±
h

d±4
c±3 c
±
4 − d

±
3 d
±
4

= β±2 , (3.74b)

α±3 =
i

2J±e k
±
e

d±3
c±3 c
±
4 − d

±
3 d
±
4

= β±3 , (3.74c)

α±4 = − i

2J±h k
±
h

c±3
c±3 c
±
4 − d

±
3 d
±
4

= β±4 . (3.74d)

Note that, if we plug Eq. (3.74) into (3.68), not all equations automatically evaluate to be true (the
system is overdetermined). Instead, we obtain an additional set of relations which are required such
that Eq. (3.68) is satis�ed, namely

a±2 =
J±h k

±
h

J±e k
±
e
a±1 , a±4 =

J±h k
±
h

J±e k
±
e
a±3 . (3.75)

Those are usually denoted by detailed balance relations [119] and are related to the intrinsic BdG
particle-hole symmetry.

Since the full expression of the Green function is rather extensive, and since we are primarily
interested in the anomalous part, we do not give G±(z, z′) explicitly here, but restrict ourselves to the
expressions of the pairing amplitudes. First, however, we need to reverse the unitary transformation
applied to H±, cf. Eq. (3.32), such that we work in the correct basis (else, the assignment of the spin
would be ill de�ned),

G±(z, z′)→ (Û±α )−1G±(z, z′)Û±α . (3.76)

We are now able to extract the pairing amplitudes according to the decomposition

F(z, z′) = f0(z, z′)σ0 + f↑↑(z, z
′)
σx + iσy

2
+ f↓↓(z, z

′)
σx − iσy

2
+ fz(z, z

′)σz, (3.77)

which is based on Eq. (3.4). In this chapter, we are interested in the local amplitudes, where z = z′,
such that all quantities depend on one spatial variable only in the following. Moreover, the energy is �
in agreement with the usual convention � expressed in terms of the frequency ω, and θk is given as an
argument to explicitly distinguish single-mode amplitudes from the full ones (introduced later in this
chapter). With this, the pairing amplitudes for the NSN-junction and the Hamiltonian H+ are given
by

f+
0 (θk, z) =

ia+
1

4J+
e k

+
e

[(
J+
e J

+
h + k2

||e
2iθk
)

sinα−
(
J+
e − J+

h

)
k||e

iθk cosα
]
e−i(k

+
e +k+

h )z, (3.78a)

f+
↑↑(k||, z) = −

iJ+
h a

+
1

4J+
e k

+
e

(
k||e

iθk sinα− J+
e cosα

)
e−i(k

+
e +k+

h )z, (3.78b)

f+
↓↓(k||, z) = −

ik||e
iθka+

1

4J+
e k

+
e

(
J+
e sinα+ k||e

iθk cosα
)
e−i(k

+
e +k+

h )z, (3.78c)

f+
z (k||, z) = − ia+

1

4J+
e k

+
e

[(
J+
e J

+
h − k

2
||e

2iθk
)

sinα+
(
J+
e + J+

h

)
k||e

iθk cosα
]
e−i(k

+
e +k+

h )z, (3.78d)
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if z ≤ zL (i.e., the left lead), and

f+
0 (k||, z) =

ia+
3

4J+
e k

+
e

[(
J+
e J

+
h + k2

||e
−2iθk

)
sinα+

(
J+
e − J+

h

)
k||e
−iθk cosα

]
ei(k

+
e +k+

h )z, (3.79a)

f+
↑↑(k||, z) = −

ik||e
−iθka+

3

4J+
e k

+
e

(
J+
e sinα− k||e−iθk cosα

)
ei(k

+
e +k+

h )z, (3.79b)

f+
↓↓(k||, z) = −

iJ+
h a

+
3

4J+
e k

+
e

(
k||e
−iθk sinα+ J+

e cosα
)
ei(k

+
e +k+

h )z, (3.79c)

f+
z (k||, z) =

ia+
3

4J+
e k

+
e

[(
J+
e J

+
h − k

2
||e
−2iθk

)
sinα−

(
J+
e + J+

h

)
k||e
−iθk cosα

]
ei(k

+
e +k+

h )z, (3.79d)

if z ≥ zR (i.e., the right lead). For the Hamiltonian describing the other node H−, they are

f−0 (k||, z) =
ia−1

4J−e k
−
e

[(
J−e J

−
h + k2

||e
−2iθk

)
sinα−

(
J−e J

−
h

)
k||e
−iθk cosα

]
e−i(k

−
e +k−h )z, (3.80a)

f−↑↑(k||, z) =
ik||e

−iθka−1
4J−e k

−
e

(
J−h sinα− k||e−iθk cosα

)
e−i(k

−
e +k−h )z, (3.80b)

f−↓↓(k||, z) =
ia−1
4k−e

(
k||e
−iθk sinα+ J−h cosα

)
e−i(k

−
e +k−h )z, (3.80c)

f−z (k||, z) = − ia−1
4J−e k

−
e

[(
J−e J

−
h k

2
||e
−2iθk

)
sinα−

(
J−e + J−h

)
k||e
−iθk cosα

]
e−i(k

−
e +k−h )z, (3.80d)

if z ≤ zL (i.e., the left lead), and

f−0 (k||, z) =
ia−3

4J−e k
−
e

[(
J−e J

−
h + k2

||e
2iθk
)

sinα+
(
J−e J

−
h

)
k||e

iθk cosα
]
ei(k

−
e +k−h )z, (3.81a)

f−↑↑(k||, z) =
ia−3
4k−e

(
k||e

iθk sinα− J−h cosα
)
ei(k

−
e +k−h )z, (3.81b)

f−↓↓(k||, z) =
ik||e

iθka−3
4J−e k

−
e

(
J−h sinα+ k||e

iθk cosα
)
ei(k

−
e +k−h )z, (3.81c)

f−z (k||, z) =
ia−3

4J−e k
−
e

[(
J−e J

−
h k

2
||e

2iθk
)

sinα+
(
J−e + J−h

)
k||e

iθk cosα
]
ei(k

−
e +k−h )z, (3.81d)

if z ≥ zR (i.e., the right lead). Note that all amplitudes are proportional to the scattering coe�cient
related to AR, which illustrates that the proximity e�ect is mediated by Andreev re�ections in the
junction. Interestingly, it is possible to relate the amplitudes of the same Hamiltonian, but in di�erent
domains to each other. Considering the relation between the Andreev re�ection coe�cients,

a±3 (θk, α) = −a±1 (−θk,−α), a±4 (θk, α) = −a±2 (−θk,−α) (3.82)

we �nd for |z| ≥ Ls/2

f±0 (θk, α, z) = f±0 (−θk,−α,−z), (3.83a)

f±↑↑(θk, α, z) = f±↓↓(−θk,−α,−z), (3.83b)

f±z (θk, α, z) = −f±z (−θk,−α,−z). (3.83c)

This means that every amplitude at any position z = − |z0| ≤ zL in the left lead corresponds to its
spin-�ipped counterpart in the right lead at z = |z0| ≥ zL, with opposite angles α and θk. Eqs. (3.82)
and (3.83) are the consequence of a symmetry of the Hamiltonians H± given by

σxH
±(θk, α, kz)σx = −H±(−θk,−α,−kz). (3.84)
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This is related to the spin-momentum coupling in the WSM and shows that the Hamiltonians are
invariant (up to a sign) under a spin-�ip and simultaneous inversion of the momentum (kx, ky, kz)

T

and angle α. We do not expect that the scattering state φ1, cf. Fig. 3.2(a), yields di�erent observables
than φ3, cf. Fig. 3.2(c), due to the spatial parity of the junction (rotating the junction by π in real
space transfers one scattering state into the other, with inverted angle α as well as momentum, and
thus spin).

To follow the proceeding in the previous section, we consider the contribution from all modes
indexed by k||, instead of single modes, and focus furthermore on the modulus of the quantities. We
thus introduce the full pairing amplitudes as

f±s (z) ≡

∣∣∣∣∣∣
∑
k||

f±s (k||, z)

∣∣∣∣∣∣ , s ∈ {0, ↑↑, ↓↓, z}. (3.85)

In the continuum limit, we replace the sum by an integral, cf. Eq. (3.55). As a normalization factor,
we introduce the quantity f0

0 , which is the singlet amplitude at the interfaces (z = zL or z = zR) at
zero energy and an angle of π/2,

f0 ≡ f±0 (z = zL/R)
∣∣α=π/2

ω=0
. (3.86)

We evaluate the pairing amplitudes numerically and discuss the results in the following.

Angular dependence of the pairing amplitudes

Assuming no CCP in the junction, χ = 0, we �rst consider the frequency dependence of the pairing
amplitudes at a �xed angle α between the axis separating the Weyl nodes and the interface normal.
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Fig. 3.13: Frequency-dependence of the pairing amplitudes for (a,b) H+ and (c,d) H− at the (a,c) left
(z = zL) and the (b,d) right (z = zR) interface. The gray, dashed line indicates the e�ective order parameter
∆̃0. We choose µS = 106 ∆0, µN = 103 ∆0, χ = 0, α = π/3 and L = ξ.



3.4. Results 67

The results are shown in Fig. 3.13, where we choose α = π/3. Note that, for clarity, some of the
following �gures include an inset which illustrates where in the junction and for which Hamiltonian we
evaluate the amplitudes, indicated by an arrow (blue arrow: H+, red arrow: H−, black arrow: position
only).

At subgap energies, all amplitudes show a rather �at dependence on ω and vary weakly, while they
quickly decay for ω > ∆̃0. This is reasonable since the probability for Andreev re�ection, to which
these amplitudes are related, decreases for energies larger than the e�ective order parameter as well.
Note that the singlet and the opposite-spin triplet amplitude, f+

0 (z) and f+
z (z), are quantitatively and

qualitatively comparable. Moreover, their behavior does not change considering di�erent positions or
nodes. The symmetries of the equal-spin pairing amplitudes, f+

↑↑(z) and f
+
↓↓(z), indicated in Eq. (3.83)

can be observed as well,

f±↑↑(zL) = f±↓↓(zR), f±↓↓(zL) = f±↑↑(zR). (3.87)

Note that, for H+ and the left interface, z = zL, the spin-up amplitude f±↑↑(zL) is comparable in

its magnitude to f+
0 (z) and f+

z (z), while f±↓↓(zL) nearly vanishes. At the right interface, z = zL,
it is exactly vise versa. The same holds for H−, only that the spin directions are exchanged at the
interfaces. Intriguingly, we �nd that the equal-spin amplitudes of H+ at each interface corresponds to
their spin-�ipped counterparts of H−,

f±↑↑(zL) = f∓↓↓(zL), f±↓↓(zR) = f∓↑↑(zR). (3.88)

Upon further consideration, this observation is, however, reasonable. Since the two equal-spin am-
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Fig. 3.14: Angular dependence of the pairing amplitudes for (a,b) H+ and (c,d) H− at the (a,c) left (z = zL)
and the (b,d) right (z = zR) interface. We choose µS = 106 ∆0, µN = 103 ∆0, χ = 0, ω = 0 and L = ξ.

plitudes of the same Hamiltonian di�er signi�cantly in their magnitudes, this would lead to a spin
polarization of the Cooper pairs (which is related to the pairing amplitudes) in the WSM leads. We
do not expect this in the absence of, e.g., an electromagnetic �eld, such that the equal amplitudes of
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opposite spin from the other Hamiltonian compensate this polarization. As we will see, this can be
lifted if a CCP is present.

Next, we consider the angular dependence of the amplitudes for a �xed frequency ω in Fig. 3.14.
Here, we observe the same dependencies of the amplitudes at di�erent interfaces and nodes as indicated
in Eqs. (3.87) and (3.88), which is to be expected. Furthermore, we see the same e�ects of the e�ective
gap ∆̃0 in the pairing amplitudes as we did for the di�erential conductance. At α = 0 and α = ±π,
the e�ective order parameter vanishes, as does the proximity e�ect in the WSM leads. The singlet and
opposite-spin triplet equally feature maxima at α = ±π/2, where ∆̃0 is maximal. The equal-spin triplet
amplitudes, however, vanish at these angles. To understand this behavior, we need to consider the
single-mode amplitudes f+

↑↑(k||, z) and f
+
↓↓(k||, z) and their dependence on θk. We illustrate this in Fig.

3.15, where we plot the real and imaginary parts of f+
↑↑(k||, z) as a function of the angle of incidence

and for a �xed k||. When α /∈ {0,±π/2,±π}, then we obtain the polar plot in Fig. 3.15(b). The real

(a) α = π/2 (b) α = π/4

Fig. 3.15: Dependence of the real and imaginary parts of f+↑↑(k||, z) on the angle of incidence θk for a �nite

k|| at (a) α = π/2 and (b) α = π/4. At α = ±π/2, the Hamiltonians H± obey a C2-symmetry, such that the
sum of the real and imaginary parts over all modes θk vanishes.

and imaginary parts are asymmetric around the axes, such that the integration over all modes yields
a �nite value. Instead, at α = ±π/2, the real and imaginary parts are perfectly symmetric around
the real and imaginary axes, respectively, such that the contributions cancel themselves and result in
a vanishing full amplitude, see Fig. 3.15(a). The reason behind this observation is that, while the
Hamiltonians, in general, do not feature a C2 symmetry with respect to the ẑ-axis, this is not true
when the axis separating the Weyl nodes includes an angle α = ±π/2 with the interface normal, where
we have

C2H±(kx, ky, kz)C
−1
2 = H±(−kx,−ky, kz), C2 = iσz. (3.89)

Thus, the full equal-spin amplitudes vanish at exactly these angles. Note that the π-periodicity and
the symmetry

f±s (α) = f±s (π ± α) (3.90)

that we observe in the di�erential conductance is present in the pairing amplitudes as well.
So far, we have considered the pairing amplitudes directly at the interfaces z = zL and z = zR.

To obtain an intuition of the spatial dependence, we plot the prominent equal-spin triplet amplitudes
in each lead (f+

↑↑ = f−↓↓ for z ≤ zL and f−↑↑ = f+
↓↓ for z ≥ zR) as a function of z in Fig. 3.16. For

�nite energies, the amplitudes decays as |z| is increased, such that the proximity e�ect, mediated by
Andreev re�ection, is present only over a short distance away from the interfaces, but does not extend
to the bulk WSM leads. This is physically reasonable, since we do not expect S order in the asymptotic
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Fig. 3.16: Spatial dependence of the prominent equal-spin amplitudes in the (a) left and (b) right WSM lead
for di�erent choices of the frequency ω. We choose µS = 106 ∆0, µN = 103 ∆0, χ = 0, α = π/4 and L = ξ.
Reprinted �gure with permission from [120]. Copyright (2021) by the American Physical Society.

domains z � zL and z � zR of a material without a superconducting potential. At ω = 0, however,
the amplitudes do not decay and extend deep into the bulk, which is due to electron-hole degeneracy
at this energy, cf. Fig. 3.6(a,d). These features are characteristic for all pairing amplitudes and are
encoded in the exponential term

f±s (z ≤ zL) ∝ e−i(k
±
e +k±h )z, f±s (z ≥ zR) ∝ ei(k

±
e +k±h )z, (3.91)

in Eqs. (3.78) to (3.81), which describes the exponential suppression of f±s (z) in the asymptotic
domains. However, from Eqs. (3.43) and (3.44), we see that k±e = −k±h at ω = 0 when no CCP
is present, and thus the exponential term evaluates to unity at this frequency. Nonetheless, this is a
consequence of the assumption that we work in the thermodynamic limit of zero temperature, T = 0 K,
such that the amplitudes decay even at ω = 0 [124].

To conclude this section, we show the pairing amplitudes associated with the Hamiltonian H+ at
the left interface z = zL and as a function of both the frequency ω and the angle between the axis
separating the Weyl nodes and the interface normal α in the density plot in Fig. 3.17. We clearly see
the decay of f+

s (z) for energies larger than the e�ective gap ∆̃0, which is due to the reduced probability
for AR. Furthermore, the amplitudes show the same π-periodicity and symmetry with respect to α
as the transport properties, see Eq. (3.90). f+

0 and f+
z follow the |sinα| dependence of the e�ective

superconducting gap ∆̃0, while f
+
↑↑ and f

+
↓↓ feature additional roots at α = ±π/2 due to the restoration

of a C2-symmetry, cf. Eq. (3.89). The amplitudes at the other interface and/or associated to the
Hamiltonian H− are indicated by Fig. 3.17 as well, considering the relations in Eqs. (3.83), (3.87) and
(3.88).

CCP dependence of the pairing amplitudes

Fig. 3.16 indicates that the farther away from the interfaces the amplitudes are considered, the stronger
they decay with the frequency ω. This is illustrated by the black dashed lines in Fig. 3.18, which show
the expected peak-like behavior around ω = 0 at z = −5 ξ. As we have mentioned before, f+

↑↑ and

f−↓↓ (f
+
↓↓ and f

−
↑↑) are equal in the left (right) domain, and no spin-polarization occurs. This scenario

changes if we introduce CCP to the system. As it is the case for the di�erential conductance associated
to H+ and H−, the pairing amplitudes remain quantitatively and qualitatively the same, except that
they are shifted oppositely in the frequency, ω → ω ± χ, see the colored curves in Fig. 3.18. For a
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Fig. 3.17: Density plot of the amplitudes f+s (zL) at the left interface as a function of ω and α. We choose
µS = 106 ∆0, µN = 103 ∆0, χ = 0 and L = ξ. Reprinted �gure with permission from [120]. Copyright (2021)
by the American Physical Society.

positive χ, the peaks of f+
↑↑ and f+

↓↓ are now located at ω = −χ, while it is ω = χ for f−↑↑ and f−↓↓.

This has an interesting consequence. Since f+
↓↓(z < zL) and f−↑↑(z > zR) as well as f−↑↑(z < zL) and

f+
↓↓(z > zR) remain negligible, a �nite CCP means that the equal-spin amplitudes associated with one
Weyl node are no longer compensated by their counterparts associated to the opposite node. This
indicates a possible Cooper pair spin-polarization in the WSM leads. To substantiate this claim, we
introduce a quantitative spin-polarization by assigning a positive sign to the ↑↑ amplitudes and a
negative sign to the ↓↓ amplitudes. Explicitly,

SL = τz

(
f+
↑↑(z)

f−↓↓(z)

)
= f+
↑↑(z)− f

−
↓↓(z), for z ≤ zL, (3.92a)

SR = τz

(
f−↑↑(z)

f+
↓↓(z)

)
= f−↑↑(z)− f

+
↓↓(z), for z ≥ zR, (3.92b)

in the left and right WSM lead, respectively. We plot these quantities in Fig. 3.19. As we can see,
the polarization is extremal at ω = ±χ, but with opposite sign, i.e., the Cooper pairs in z ≤ zL are
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(a) z = −5ξ (b) z = 5ξ

Fig. 3.18: Frequency dependence of the prominent equal-spin amplitudes in (a) the left and (b) the right
WSM for no (black, dashed curve) and a �nite, positive CCP (colored curves). The amplitudes associated
with H+ are shifted to negative frequencies, those with H− to positive frequencies. We choose µS = 106 ∆0,
µN = 103 ∆0, α = π/4, L = ξ and χ = 0.7 ∆0 for the �nite CCP. Reprinted �gure with permission from [120].
Copyright (2021) by the American Physical Society.

predominantly ↑↑ -polarized at ω = −χ and ↓↓ -polarized at ω = χ. This polarization decreases
quickly as we move away from these energies. In particular, it vanishes at ω = 0 for any choice of χ
and naturally for |ω| � χ. Intriguingly, the polarization at any energy is exactly opposite in the left
and the right WSM lead, such that the system features a dipole character if CCP is induced. From
Fig. 3.16, we can conclude that the peak becomes narrower the farther away from the interfaces we
evaluate the pairing amplitudes. As discussed above, this only holds true at zero temperature.

(a) z = −5ξ (b) z = 5ξ

Fig. 3.19: Spin polarization (a) SL in the left and (b) SR in the right WSM lead as a function of ω. Due to
the �nite CCP, the system features a distinct polarization at ω ≈ ±χ, which is opposite left and right of the
superconductor. We choose µS = 106 ∆0, µN = 103 ∆0, α = π/4, L = ξ and χ = 0.7 ∆0. Reprinted �gure with
permission from [120]. Copyright (2021) by the American Physical Society.

In Fig. 3.20, we study the dependence of the spin-polarization as a function of CCP for two choices
of the frequency ω. The �gures are qualitatively identical to those in Fig. 3.19 � for illustrative
purposes, we choose the �xed frequencies di�erently than the CCP in the previous �gure, to explicitly
show that the peaks always occur under the condition |ω| = |χ|. For a positive frequency, we observe
a ↑↑ - polarization at χ = −ω and a ↓↓ - polarization at χ = ω in the domain z ≤ zL, while it is
exactly vice versa for a negative frequency. At zero-excitation, ω = 0, the polarization vanishes for all
choices of CCP, as it is the case for the frequency dependence when no CCP is present. The situation
is exactly opposite in the domain z ≥ zR.
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(a) z = −5ξ (b) z = 5ξ

Fig. 3.20: Spin polarization (a) SL in the left and (b) SR in the right WSM lead as a function of χ. Due to
the �nite CCP, the system features a distinct polarization at ω ≈ ±χ, which is opposite left and right of the
superconductor. We choose µS = 106 ∆0, µN = 103 ∆0, α = π/4 and L = ξ. Reprinted �gure with permission
from [120]. Copyright (2021) by the American Physical Society.

The features above, as well as those observed in the di�erential conductance, suggest the inter-
changeability of the energy/frequency and CCP, which is apparent considering Eq. (3.35) � CCP
directly a�ects the eigenenergies of the Hamiltonians H±. Consequently, we can control the spin-
polarization and thus the dipole character in the junction by variation of either the frequency or CCP.
Nonetheless, the �xed quantity needs to be �nite. Otherwise, the pairing amplitudes f+

↑↑(z) and f
+
↓↓(z)

in the domain z ≤ zL as well as f+
↓↓(z) and f+

↑↑(z) in the domain z ≥ zR would be pairwise equal,
e�ectively canceling SL and SR.

Fig. 3.21: Angular dependence of the spin polarization
∣∣SL/R

∣∣ at χ = −ω = 0.7 ∆0 and |z| = 5ξ. We choose
µS = 106 ∆0, µN = 103 ∆0, α = π/4 and L = ξ. Reprinted �gure with permission from [120]. Copyright (2021)
by the American Physical Society.

The angular dependence of the spin-polarization is illustrated in Fig. 3.21, where we show only
the modulus of SL/R, since this is equal on both sides of the superconductor in the NSN-junction.
The polarization vanishes naturally at α ∈ {0,±π}, where the e�ective order parameter is zero, and
at α = ±π/2 due to the restoration of the C2-symmetry, cf. Eq. (3.89). The maxima occur in the
proximity of α ≈ ±π/4 and α ≈ ±3π/4. These observations are in accordance with the features found
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in the context of Figs. 3.14 and 3.17, and show that the spin-polarization is a�ected by the orientation
of the interface normal with respect to the axis separating the Weyl nodes.

As a last remark, we mention that a uniform CCP across the junction as introduced in Eq. (3.35)
is not required to obtain qualitatively similar results as discussed in this section, nor might it be exper-
imentally favorable. If CCP is induced by electromagnetic �elds, this breaks down superconductivity
if the �eld strength is too large, so one is inclined to apply the �elds only to the WSM leads, i.e.,

χ(z) = χΘ(|z| − Ls/2). (3.93)

In fact, this a�ects the pairing amplitudes, and thus the spin-polarization, only slightly. As we can
see in Fig. 3.22, the characteristics are basically the same, except for a certain skewness of the peaks.
Their location, however, is not a�ected and still at |ω| = |χ|, as is the fact that no polarization emerges
if either the frequency or the CCP is zero.

With this, we conclude our analysis ot the TRS broken WSM NSN-junction.

(a) z = −5ξ (b) z = 5ξ

Fig. 3.22: Spin polarization (a) SL in the left and (b) SR in the right WSM lead as a function of ω in
a junction with spatially varying CCP. The blue domains in the inset feature a �nite CCP, while in the red
domain, it shall be zero. We choose µS = 106 ∆0, µN = 103 ∆0, α = π/4, L = ξ and χ = 0.7 ∆0 for the �nite
CCP. Reprinted �gure with permission from [120]. Copyright (2021) by the American Physical Society.

3.5 Conclusion

In this chapter, we study an NSN-junction where the underlying material is a TRS broken Weyl
semimetal and conventional superconductivity is induced by means of the proximity e�ect due to
a top electrode on the central domain. We choose a model where the WSM features two nodes of
opposite chirality in the Brillouin zone, and consider explicitly the linear low-energy Hamiltonians in
the proximity of these band crossing points. In general, the line along which these nodes are separated
in k-space can include an angle α with the interface normal in a heterostructure. Moreover, a chiral
chemical potential may be induced by the application of parallel electromagnetic �elds or a strain
deformation, which oppositely shifts the dispersion of the two nodes. Based on this setup, we study
local and non-local di�erential conductance in the system, as well as the proximity e�ect into the WSM
leads by means of the anomalous Green function, from which we extract the pairing amplitudes.

The orientation of the Weyl nodes with respect to the interface normal a�ects the supercon-
ducting order in the S domain, leading to an e�ective gap that depends on the angle according to
∆̃0 = ∆0 |sinα|. As a consequence, the order parameter is diminished from its initial value ∆0 if the
angle deviates from α = ±π/2 and even vanishes for α ∈ {0,±π}, e�ectively canceling the coupling of
electrons and holes in S. As a consequence, the probabilities for Andreev re�ection as well as crossed
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Andreev re�ection are zero at these angles. This characteristics is directly observable in the di�er-
ential conductance as well as the pairing amplitudes. Local and non-local conductance are maximal
and minimal, respectively, at α = ±π/2, which is an indicator for predominant electron-hole conver-
sion processes in the scattering problem, while both quantities attain their normal-state values as we
approach the angles α ∈ {0,±π}. Since the pairing amplitudes, and the anomalous Green function
in general, are mediated by Andreev re�ection, they feature the same characteristics as the transport
properties, and we observe a similar angle dependence. Nonetheless, the equal-spin amplitudes f±↑↑/↓↓
additionally vanish at α = ±π/2 for any choice of the position in the WSM leads, instead of reaching
their maxima there. This is due to a restoration of the C2-symmetry of the low-energy Hamiltonians,
which is broken for arbitrary α 6= ±π/2. Notably, the equal-spin amplitudes associated to the same
node di�er signi�cantly in their magnitudes. While one is comparable to the singlet and opposite-spin
amplitudes, the other is approximately zero. The predominant amplitude depends on its associated
Weyl node, as well as on the domain (left or right of the superconductor).

Particularly interesting features can be observed if a CCP is introduced into the system. For χ = 0,
the quantities derived for the two Hamiltonians H± are equal to each other, up to a spin-�ip in the
pairing amplitudes. And while the equal-spin triplets associated with the same node di�er strongly,
each is equal to its spin-�ipped counterpart at the other node. Therefore, we do not expect a spin-
polarization in the absence of CCP. A �nite χ, however, moves the band structures at the two nodes
in opposite directions, and thus shifts the energy/frequency dependence of all quantities oppositely,
eV → eV ± χ and ω → ω ± χ. Not only does this alter the local and non-local conductances,
but also creates an e�ective Cooper pair spin-polarization in the WSM leads. Since the latter is
opposite left and right of the central superconducting domain, the junction displays a dipole character.
Furthermore, we show that the spin-polarization is tunable by varying the frequency ω or CCP, such
that is theoretically possible to switch the orientation of the dipole. These characteristics might prove
valuable for applications in spintronics, if experimentally realizable. Finally, we illustrate that the
equal-spin amplitudes, and thus the spin-polarization, are extremal for angles in the proximity of
α ≈ ±π/4 and α ≈ ±3π/4. Consequently, the axis separating the Weyl nodes should neither be
aligned with the interface normal nor stand perpendicular to it, since in both cases, the equal-spin
pairing amplitudes vanish.
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This chapter is based on the work Creation of Spin-Triplet Cooper Pairs in the Absence of Magnetic
Ordering by Daniel Breunig, Pablo Burset and Björn Trauzettel (Phys. Rev. Lett. 120, 037701
(2018)).

4.1 Motivation

The famous Datta-Das transistor, also denoted by spin �eld-e�ect transistor, is a famous device in
spintronics that employs the electron spin to store information, instead of its charge [125]. It is based
on materials with strong spin-orbit coupling and a desirable setup since electronic switching can be
implemented faster than magnetic switching. The concept is contemporary to this day, and still
under further development [126]. For superconducting spintronics, however � and to the best of our
knowledge � no similar device has been proposed that does not include magnetic components, like, e.g.,
spin valves [127�135]. The on-demand creation of equal-spin Cooper pairs in the absence of magnetic
order would thus be a fascinating concept for an application in this �eld. Intriguingly, the surface
states of 3D TIs provide such a material featuring strong spin-orbit coupling and linear dispersions in
the proximity of the band crossing points (denoted by Dirac points). In this work, we propose a bipolar
setup performing as a device that enables the creation of out-of -equilibrium, equal-spin Cooper pairs in
a superconductor (S) sandwiched between two normal TI leads. In particular, we assume the underlying
material to be the surface state of a 3D TI, where an S top electrode induces a superconducting gap
in a locally con�ned region by means of the proximity e�ect, see Fig. 4.1. The leads left (L) and
right (R) of the S domain shall be connected to voltage sources VL and VR, respectively, which can
be tuned independently, while the superconductor remains grounded. Moreover, we assume that each

Fig. 4.1: TI-S-TI junction considered in this work. A top electrode induces superconductivity into the system,
which enables scattering processes converting incident electrons to re�ected or transmitted holes. A crossed
Andreev re�ection process, which creates an equal-spin Cooper pair in S is illustrated. In the proximity of the
Dirac points, the leads feature relativistic (linear) dispersions, where the solid blue and the dashed orange cones
represent electrons and holes, respectively. Reprinted �gure with permission from [102]. Copyright (2021) by
the American Physical Society.

domain features distinct carrier densities (electrochemical potentials), which is realizable by means of
gating technology [136]. As we will show, the primary mechanism which is responsible for the creation
of equal-spin Cooper pairs is crossed Andreev re�ection, a scattering process in which an electron
approaching the S domain in one lead is transmitted as a hole into the other lead, as illustrated in Fig.
4.1.
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The bipolar setup has been studied in detail for graphene by Cayssol [123] and requires the elec-
trochemical potentials in L and R to feature the same magnitude, but opposite signs, i.e., one TI
region is of the n-type, and the other of the p-type. Here, the spin degree of freedom played no role
due to the negligible spin-orbit coupling in graphene (the isospin degree of freedom stems from the
two sublattices), while in our setup, featuring 3D TIs, the latter e�ect is rather strong. In combi-
nation with superconducting order, this yields intriguing physics [137], like odd-frequency pairing in
the superconductor [56, 138�141] or the appearance of Majorana bound states [142�144], due to the
breaking of spin-rotational invariance by strong spin-orbit coupling. This is possible due to the emer-
gence of unconventional superconductivity [145], even if the proximity-induced order is only of the
s-wave type. And while spin-triplet states can be equally induced by proximity to a magnetic insu-
lator [146�153], interfacing surface states of TIs with superconductors currently seems more feasible
from the experimental side. The system we propose should therefore be realizable.

As has been proposed for graphene [123] and common semiconductors [154], the bipolar setup allows
to completely suppress local Andreev re�ection as well as co-tunneling from one lead into the other for
an appropriate choice of the bias. In the following chapter, we show that this equally applies to our TI
setup and, moreover, suppresses non-local spin-singlet pairing in the system. As a consequence, the TI-
S-TI junction acts as a spin-triplet �lter and pumps equal-spin Cooper pairs into the superconductor.

This chapter is structured as follows. In Sec. 4.2, we introduce the junction, the corresponding
Hamiltonian, and the choice of parameters that results in the bipolar setup. Furthermore, we determine
the eigenstates in each domain and de�ne the full set of scattering states. The results are presented in
Sec. 4.3. Here, we �rst consider the transport properties by means of the local and non-local di�erential
conductance, followed by an analysis of the proximity e�ect in the TI leads via the anomalous Green
function. Finally, we determine the spin polarization of the Cooper pairs and estimate its e�ect when
applying a bias to the junction. A methodical section is not included, since the underlying concepts
have been elucidated in the previous chapters (wave matching conditions in Sec. 2.3 and the anomalous
Green function as well as the concept of outgoing boundary conditions in Sec. 3.2).

This work has partially been published as a letter in the journal Physical Review Letters [102].
Similarities in the text are unavoidable. The copyright (2021) belongs to the American Physical
Society. All licenses to use the content in this Thesis have been obtained. Reprinted or adapted �gures
are distinctly marked.

4.2 Setup and Hamiltonian

4.2.1 De�nitions and preliminary calculations

The TI-S-TI system we want to consider is illustrated in Fig. 4.1 and corresponds to a 2D NSN-
junction, which shall be described by the Dirac Hamiltonian. In the basis (c↑,k, c↓,k)T , where c†σ,k is

the creation operator of an electron with spin σ and wave vector k = (kx, ky)
T , the Bloch Hamiltonian

reads

H0(k) = vf (kxsx + kysy)− µ, (4.1)

where s0 and sx,y,z are unit and Pauli matrices in spin space, vf is the Fermi velocity and µ the
electrochemical potential. Equation (4.1) is the projection of the TI bulk Hamiltonian [60] onto one
surface. Introducing s-wave superconductivity into the system, we can write the full BdG Hamiltonian

in the basis
(
c↑,k, c↓,k, c

†
↑,−k, c

†
↓,−k

)T
as

HBdG(k) =

(
H0(k) i∆sy
−i∆sy −H∗0 (−k)

)
= vf (kxsx + kyτzsy)− µ τzs0 −∆τysy, (4.2)

where τ0 and τx,y,z are unit and Pauli matrices in Nambu space and ∆ is the superconducting order
parameter. Note that, contrary to Ref. [123], the spin matrices act on the actual spin of the particles,
and not on the sublattice isospin degree of freedom. In the following, we set vf = 1 for simplicity.
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To model the NSN-junction in accordance with Fig. 4.1, we choose the electrochemical and super-
conducting potentials to be position-dependent,

µ(x) = µlΘ(xL − x) + µsΘ(Ls − |x|) + µrΘ(x− xR), (4.3a)

∆(x) = ∆0Θ(Ls − |x|), (4.3b)

where we de�ne xL = −Ls/2 and xR = Ls/2. As a consequence, the S gap is �nite only in the domain
−Ls/2 ≤ x ≤ Ls/2, while it is zero in the leads. This step-wise de�nition of the potentials is valid if
the wave vector in the S domain is much larger than that in L and R [66,123]. The BdG Hamiltonian
is now position-dependent, HBdG(r) with r = (x, y)T , such that the wave numbers are replaced by
operators

(kx, ky)
T →

(
k̂x, k̂y

)T
= −i (∂x, ∂y)

T , (4.4)

where ∂x(y) is the partial derivative in the x(y)-variable. We therefore need to solve the Schrödinger
equation

HBdG(r)φ(r) = Eφ(r) (4.5)

with E the energy eigenvalues. The potentials in Eq. (4.3), however, break translational invariance
only along the x-axis, such that we may perform a partial Fourier transformation and obtain

φ(r) =

∫
dky φ(x, ky)e

ikyy ⇒ HBdG(r)→ HBdG(x, ky). (4.6)

Here, ky is a real parameter and a good quantum number indexing the transverse modes. The eigen-
values of this Hamiltonian are given by

El/re = ± ||k|| − µl/r, E
l/r
h = ± ||k||+ µl/r (4.7)

in the bulk TIs and

Eseq = ±
√

(||k|| − µs)2 + ∆2
0, E

l/r
hq = ±

√
(||k||+ µs)

2 + ∆2
0 (4.8)

in S, where the superscripts label the domain and the subscripts distinguish electrons (e) from holes
(h) and electron-like (eq) from hole-like (hq) quasiparticles. The sign ± di�erentiates valence and
conduction bands.

Eigenstates and scattering states

In order to derive the transport properties and the pairing amplitudes via the anomalous Green func-
tion, we need to de�ne the eigenstates in each region, and subsequently the corresponding scattering
states. In the normal leads, they are given, in a mixed energy-position representation, by

ψ+
e,l/r(x) =

(
1,
k
l/r
e + iky
E + µl/r

, 0, 0

)T
eik

l/r
e x =

(
1, eiθ

l/r
e , 0, 0

)T
eiκ

l/r
e cos θ

l/r
e x, (4.9a)

ψ−e,l/r(x) =

(
k
l/r
e + iky
E + µl/r

,−1, 0, 0

)T
e−ik

l/r
e x =

(
eiθ

l/r
e ,−1, 0, 0

)T
e−iκ

l/r
e cos θ

l/r
e x, (4.9b)

ψ+
h,l/r(x) =

(
0, 0,

k
l/r
h + iky
E − µl/r

, 1

)T
eik

l/r
h x =

(
0, 0, eiθ

l/r
h , 1

)T
eiκ

l/r
h cos θ

l/r
h x, (4.9c)

ψ−h,l/r(x) =

(
0, 0, 1,−

k
l/r
h + iky
E − µl/r

)T
e−ik

l/r
h x =

(
0, 0, 1,−eiθ

l/r
h

)T
e−iκ

l/r
h cos θ

l/r
h x, (4.9d)
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while in the superconductor, they read

ψ+
eq(x) =

(
u,
keq + iky
Ω + µs

u,−keq + iky
Ω + µs

v, v

)T
eikeqx =

(
u, eiθequ,−eiθeqv, v

)T
eiκeq cos θeqx, (4.10a)

ψ−eq(x) =

(
keq + iky
Ω + µs

u,−u, v, keq + iky
Ω + µs

v

)T
e−ikeqx =

(
eiθequ,−u, v, eiθeqv

)T
e−iκeq cos θeqx, (4.10b)

ψ+
hq(x) =

(
v,
khq ± iky
Ω + µs

v,−
khq ± iky
Ω + µs

u, u

)T
eikhqx =

(
v, eiθhqv,−eiθhqu, u

)T
eiκhq cos θhqx, (4.10c)

ψ−hq(x) =

(
khq + iky
Ω + µs

v,−v, u,
khq + iky
Ω + µs

u

)T
e−ikhqx =

(
eiθhqv,−v, u, eiθhqu

)T
e−iκhq cos θhqx. (4.10d)

The superscripts indicate the group velocity with respect to the x-axis and thus distinguish right (+)
from left (−) movers, while the subscripts are explained in the context of the eigenvalues above. Note
that we omit the phase factor eikyy for convenience. Here, the wave vectors are given by

kl/re = sgn
(
E + µl/r + |ky|

)√(
E + µl/r

)2 − k2
y, (4.11a)

k
l/r
h = sgn

(
E − µl/r + |ky|

)√(
E − µl/r

)2 − k2
y, (4.11b)

keq/hq =

√(
Ω± µl/r

)2 − k2
y, (4.11c)

with the BCS coe�cients

u2 =
1

2

(
1 +

Ω

E

)
= 1− v2 (4.12)

and

Ω =

{
sgn (E)

√
E2 −∆2

0, |E| > ∆0

i
√

∆2
0 − E2, |E| < ∆0

. (4.13)

For the angular representation (the right most expressions in Eqs. (4.9) and (4.10)), we have

κl/re =
∣∣E + µl/r

∣∣ , κ
l/r
h =

∣∣E − µl/r∣∣ , κeq/hq = |Ω± µs| , (4.14)

as well as

θ
l/r
e/h = arcsin

 ky

κ
l/r
e/h

 , θeq/hq = arcsin

(
ky

κeq/hq

)
. (4.15)

Note that this representation is only valid if the corresponding wavenumbers are real valued. It does
not describe the evanescent states appropriately.

We are now able to de�ne the full set of scattering states in the system. Since the underlying system,
a quasi-1D NSN heterojunction, is the same as in Chap. 3, we choose the de�nitions in accordance
with Fig. 3.2, such that we have

φ1/2(x) =


ψ+
e/h(x) + a1/2ψ

−
h/e(x) + b1/2ψ

−
e/h(x), x < xL

s1/2,1 ψ
+
eq(x) + s1/2,2 ψ

−
eq(x) + s1/2,3 ψ

+
hq(x) + s1/2,4 ψ

−
hq(x), xL < x < xR

c1/2ψ
+
e/h(x) + d1/2ψ

+
h/e(x), x > xR

, (4.16a)

φ3/4(x) =


c3/4ψ

−
e/h(x) + d3/4ψ

−
h/e(x), x < xL

s3/4,1 ψ
+
eq(x) + s3/4,2 ψ

−
eq(x) + s3/4,3 ψ

+
hq(x) + s3/4,4 ψ

−
hq(x), xL < x < xR

ψ−e/h(x) + a3/4ψ
+
h/e(x) + b3/4ψ

+
e/h(x), x > xR

. (4.16b)
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φ1(2) describes the scattering event corresponding to an electron excited in L(R) and moving towards
the superconductor, while it is a hole excited in L(R) when we consider φ3(4). This takes all solutions of
the Schrödinger equation that comply with outgoing boundary conditions into account, cf. Sec. 3.2.2.
The scattering coe�cient are related to local Andreev re�ection (LAR, al), normal re�ection (NR, bl),
electron or hole co-tunneling (CO, cl) and crossed Andreev re�ection (CAR, dl), where l ∈ {1, 2, 3, 4}.
They can be calculated by means of the wave matching conditions introduced in Sec. 2.3. Since
HBdG(k) in Eq. (4.2) represents a Dirac Hamiltonian, kx appears in �rst order only, i.e., the e�ective
mass terms vanish and Eq. (2.14) naturally evaluates to be true. This leaves us with the continuity
condition of the waves at the interfaces,

lim
ε→0+

[φl(xL − ε)− φl(xL + ε)] = 0, lim
ε→0+

[φl(xR − ε)− φl(xR + ε)] = 0. (4.17)

The probability amplitudes of the scattering processes above are given by the square moduli of the
corresponding coe�cients, multiplied by the normalized probability current associated with the states
in Eq. (4.9), which can be calculated according to Eq. (2.20). They read

R
l/r
eh (E, ky) = Θ

(
κ
l/r
h − |ky|

) cos θ
l/r
h

cos θ
l/r
e

∣∣a1/3

∣∣2 , Rl/ree (E, ky) =
∣∣b1/3∣∣2 , (4.18a)

T l/ree (E, ky) = Θ
(
κr/le − |ky|

) cos θ
r/l
e

cos θ
l/r
e

∣∣c1/3

∣∣2 , T
l/r
eh (E, ky) = Θ

(
κ
r/l
h − |ky|

) cos θ
r/l
h

cos θ
l/r
e

∣∣d1/3

∣∣2 , (4.18b)
for an electron excited in L/R and

R
l/r
he (E, ky) = Θ

(
κl/re − |ky|

) cos θ
l/r
e

cos θ
l/r
h

∣∣a2/4

∣∣2 , R
l/r
hh (E, ky) =

∣∣b2/4∣∣2 , (4.19a)

T
l/r
hh (E, ky) = Θ

(
κ
r/l
h − |ky|

) cos θ
r/l
h

cos θ
l/r
h

∣∣c2/4

∣∣2 , T
l/r
he (E, ky) = Θ

(
κr/le − |ky|

) cos θ
r/l
e

cos θ
l/r
h

∣∣d2/4

∣∣2 , (4.19b)
for a hole excited in L/R. The �rst and second indices in the subscripts of the probability amplitudes
represent the incident and re�ected/transmitted particles, respectively, while the superscripts indicate
from which domain the incident particle originates. The Heaviside step functions Θ(·) make sure that
the probability amplitudes are zero if the corresponding scattered particle is described by an evanescent
wave (i.e, its probability current vanishes). Note that, in writing Eqs. (4.18) and (4.19), we assume
that ky is chosen in such a way that the incident particle is always a propagating mode with a �nite
probability current.

Transposed eigenstates and scattering states

The Scattering State Approach requires both the normal as well as the transposed scattering states of
the system to determine the retarded Green function. We therefore transpose the Hamiltonian in Eq.
(4.6) (note that k̂Tx = −k̂x) and obtain the corresponding eigenstates as

ψ̃+
e,l/r(x) =

(
1,−k

l/r
e + iky
E + µl/r

, 0, 0

)T
eik

l/r
e x =

(
1,−eiθ

l/r
e , 0, 0

)T
eiκ

l/r
e cos θ

l/r
e x, (4.20a)

ψ̃−e,l/r(x) =

(
k
l/r
e + iky
E + µl/r

, 1, 0, 0

)T
e−ik

l/r
e x =

(
eiθ

l/r
e , 1, 0, 0

)T
e−iκ

l/r
e cos θ

l/r
e x, (4.20b)

ψ̃+
h,l/r(x) =

(
0, 0,

k
l/r
h + iky
E − µl/r

,−1

)T
eik

l/r
h x =

(
0, 0, eiθ

l/r
h ,−1

)T
eiκ

l/r
h cos θ

l/r
h x, (4.20c)

ψ̃−h,l/r(x) =

(
0, 0, 1,

k
l/r
h + iky
E − µl/r

)T
e−ik

l/r
h x =

(
0, 0, 1, eiθ

l/r
h

)T
e−iκ

l/r
h cos θ

l/r
h x, (4.20d)
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in L and R, while in S, they read

ψ̃+
eq(x) =

(
u,−keq + iky

Ω + µs
u,
keq + iky
Ω + µs

v, v

)T
eikeqx =

(
u,−eiθequ, eiθeqv, v

)T
eiκeq cos θeqx, (4.21a)

ψ̃−eq(x) =

(
keq + iky
Ω + µs

u, u,−v, keq + iky
Ω + µs

v

)T
e−ikeqx =

(
eiθequ, u,−v, eiθeqv

)T
e−iκeq cos θeqx, (4.21b)

ψ̃+
hq(x) =

(
v,−

khq ± iky
Ω + µs

v,
khq ± iky
Ω + µs

u, u

)T
eikhqx =

(
v,−eiθhqv, eiθhqu, u

)T
eiκhq cos θhqx, (4.21c)

ψ̃−hq(x) =

(
khq + iky
Ω + µs

v, v,−u,
khq + iky
Ω + µs

u

)T
e−ikhqx =

(
eiθhqv, v,−u, eiθhqu

)T
e−iκhq cos θhqx. (4.21d)

The de�nitions of the subscripts and superscripts as well as those of the wavenumbers, the angles
and the BCS coe�cients are equal to the ones de�ned in the context of the normal eigenstates above.
Again, we omit the phase factor e−ikyy, which has the opposite sign of its normal pendant. With these
de�nitions, we obtain the transposed scattering states as

φ̃1/2(x) =


ψ̃+
e/h(x) + ã1/2ψ̃

−
h/e(x) + b̃1/2ψ̃

−
e/h(x), x < xL

s̃1/2,1 ψ̃
+
eq(x) + s̃1/2,2 ψ̃

−
eq(x) + s̃1/2,3 ψ̃

+
hq(x) + s̃1/2,4 ψ̃

−
hq(x), xL < x < xR

c̃1/2ψ̃
+
e/h(x) + d̃1/2ψ̃

+
h/e(x), x > xR

, (4.22a)

φ̃3/4(x) =


c̃3/4ψ̃

−
e/h(x) + d̃3/4ψ̃

−
h/e(x), x < xL

s̃3/4,1 ψ̃
+
eq(x) + s̃3/4,2 ψ̃

−
eq(x) + s̃3/4,3 ψ̃

+
hq(x) + s̃3/4,4 ψ̃

−
hq(x), xL < x < xR

ψ̃−e/h(x) + ã3/4ψ̃
+
h/e(x) + b̃3/4ψ̃

+
e/h(x), x > xR

. (4.22b)

It is straightforward to derive similar wave matching conditions and probability amplitudes as in
Eqs. (4.17) - (4.19). This is, however, not necessary, since we are able to express the transposed
scattering coe�cients in terms of the normal ones by means of a unitary transformation which relates
the transposed Hamiltonian to the original one, see Sec. 4.3.2.

4.2.2 The bipolar setup

By means of state-of-the-art gating technology [136], the carrier density in L and R shall be tuned in
such a way that the system features a bipolar setup, see Fig. 4.2. In our model, this means that the
electrochemical potentials in L and R feature the same moduli, but opposite signs, µL = −µR ≡ µ.
Without loss of generality, we choose µ > 0 and, additionally, to lie inside the S gap, µ < ∆0. As a
consequence, the band structures in L and R are identical, with the exception that the particle nature
is inverted, i.e., the electron band in L corresponds to the hole band in R, and vice versa. A closer
inspection of Fig. 4.2(a) reveals furthermore that the Dirac points of the hole dispersion in L and the
electron dispersion in R lie at exactly the same energy, E = µ. This has an interesting e�ect on the
possible scattering processes which we can observe at this particular excitation energy. An electron
excited in L at E = µ and approaching the interface 1O can be re�ected back as an electron (NR) into
the same lead 2O or transmitted as a hole (CAR) into the other lead R 3O, since, for both scattering
events, a corresponding state is available (note that, since the system is translational invariant in
y-direction, ky is conserved in a scattering event). Re�ection as a hole into the same lead (LAR)
and transmission as an electron into R (CO), however, are severely suppressed at this energy in a 2D
TI-S-TI junction. This is due to the fact that at the Dirac points, a partial gap emerges as soon as ky
is �nite, i.e., when the incident electron approaches the interface under a �nite angle of incidence θle,
see Fig. 4.2(b). From the Heaviside step functions in Eq. (4.18) and the de�nition of κlh and κ

r
e in Eq.

(4.14), we see that

Rleh(E = µ, ky) = T lee(E = µ, ky) = 0 ∀ |ky| > 0, (4.23)
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Fig. 4.2: Illustration of the bipolar setup. By choosing µL = −µR ≡ µ, the electron band (blue) in L
corresponds to the hole band (orange) in R and vice versa. At E = µ, LAR and CO vanish in the 2D junction,
since we hit the Dirac points where the partial gap, induced by a �nite transverse mode ky, emerges. The
gray area represents the S domain, while the blue and green arrows indicate the spin of the electrons forming
the Cooper pairs, cf. Sec. 4.3.3. We choose (a) ky = 0 and (b) |ky| > 0. Reprinted �gure with permission
from [102]. Copyright (2021) by the American Physical Society.

such that LAR and CO vanish for all modes except for perpendicular incidence, ky = 0. In the
following, we integrate over all available modes at a given energy when we consider the di�erential
conductance or the pairing amplitudes, such that one single mode, ky = 0, has no e�ect on the result.
Consequently, we expect LAR and CO to vanish in a 2D junction in the bipolar setup at E = µ.
Moreover, the only process creating Cooper pairs in the superconductor is CAR, which results in a net
spin polarization in S at the sweet spot, E = µ. We elucidate this and further interesting results in the
following section.

4.3 Results

We follow our proceeding in the previous chapters and consider the sum over all modes ky when
studying the di�erential conductance and the proximity e�ect in the junction, since single modes are
a di�cult task in an experimental setup. The system is in�nite in y-direction, such that we express
this sum by an integral in the large Ly limit,

∑
ky

→ Ly
2π

κ∫
−κ

dky, (4.24)

where Ly is the width of the junction. κ is the natural cut-o� of the modes ky and depends on the
scattering process, as indicated by the step functions in Eq. (4.18). They are explicitly de�ned in Eq.
(4.14).
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In this section, we �rst consider the transport properties of the junction, followed by an analysis
of the proximity e�ect at hand of the pairing amplitudes. Finally, we study the spin polarization of
the Cooper pairs created in LAR and CAR processes and show that the bipolar setup is an intriguing
regime for the formation of equal-spin Cooper pairs.

4.3.1 Transport characteristics

We put the system into the bipolar regime, µL = −µR = µ, and assume that the junction is connected
to equilibrium reservoirs at x → ±∞. Then, we can employ the extended BTK formalism [27, 32, 33,
155, 156] to calculate the local and non-local conductance. To this end, we apply a voltage to the left
lead, VL > 0, while we keep the right lead grounded, VR = 0. Therefore, we assume that an electron
is excited in L, which is described by the scattering state φ1(x) in Eq. (4.16). With the de�nitions in
Eq. (4.18), we obtain (we omit the superscript l in the following for the sake of clarity)

GLL(eVL, ky) ≡
∂IL
∂VL

(eVL, ky)
∣∣∣
VR=0

=
2e2

h
[1−Ree(eVL, ky) +Reh(eVL, ky)] , (4.25a)

GLR(eVL, ky) ≡
∂IR
∂VL

(eVL, ky)
∣∣∣
VR=0

=
2e2

h
[Tee(eVL, ky)− Teh(eVL, ky)] , (4.25b)

where GLL corresponds to the local conductance (voltage applied to lead L, current measured in lead
L) and GLR to the non-local conductance (voltage applied to lead L, current measured in lead R).
Considering the Andreev processes, we can see that LAR increases GLL, while CAR reduces GLR.
Furthermore, the local and non-local conductances coincide when the system is in the normal state
(∆0 = 0), i.e., Reh = Teh = 0, as we can see from probability current conservation,

Ree(eVL, ky) +Reh(eVL, ky) + Tee(eVL, ky) + Teh(eVL, ky) = 1, (4.26)

such that we obtain

GLL(eVL, ky)|∆0=0 =
2e2

h
[1−Ree(eVL, ky)]︸ ︷︷ ︸
≡G0(eVL,ky)

=
2e2

h
Tee(eVL, ky) = GLR(eVL, ky)|∆0=0. (4.27)

G0(eVL, ky) corresponds to the normal-state conductance of the system. As discussed before, we refrain
from studying single modes and consider the full local and non-local conductances,

GLL(eVL) ≡
∑
ky

GLL(eVL, ky), GLR(eVL) ≡
∑
ky

GLR(eVL, ky), (4.28)

and express the sum by means of the integral introduced in Eq. (4.24). Then, we obtain the probability
amplitudes in Fig. 4.3(a), where we choose Ls to be approximately equal to the coherence length in
S, Ls = 1.1ξ with ξ = vf/∆0. This plot con�rms the discussion in Sec. 4.2.2. Both LAR and CO
decrease quickly from their zero-bias value and vanish completely at eVL = µ, where the energy lies at
the Dirac points of the hole band in L and the electron band in R. For larger biases, LAR attains a
�nite value again but vanishes at eVL � ∆0. CO, instead, increases steadily and attains a comparable
probability to NR in the large bias limit, where both quantities attain their normal-state equivalents.
This becomes apparent in Fig. 4.3, where we plot the local, non-local, and normal-state di�erential
conductance. Note that, usually, it is a common convention to normalize GLL and GLR with respect to
G0. Here, however, the normal-state conductance vanishes at eVL = µ, cf. Eq. (4.27), and normalizing
to this quantity would create an arti�cial singularity. Therefore, we normalize to the total number of
modes at a given energy,

N =

κe∫
−κe

dky = 2κe, (4.29)
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Fig. 4.3: (a) Probability amplitudes and (b) di�erential conductance of the junction as a function of the bias
VL and averaged over all modes ky. At eVL = µ, LAR and CO vanish in the bipolar setup. As a consequence,
GLL and GLR are equal at this energy. The black, dashed curve represents the sum of all amplitudes and
con�rms probability current conservation. We choose µs = 10 ∆0, µ = 0.5 ∆0 and Ls = 1.1ξ. Reprinted �gure
with permission from [102]. Copyright (2021) by the American Physical Society.

which corresponds to the mode-averaged values of the quantities mentioned above.
Intriguingly, the moduli of the local and non-local conductance coincide at eVL = µ in the bipolar

setup, as can be seen from

GLL(eVL = µ) =
2e2

h
[1−Ree(eVL, ky)] = −2e2

h
Teh(eVL, ky) = −GLR(eVL = µ), (4.30)

which is a direct consequence of the absence of LAR and CO and the equation of continuity, Eq. (4.26).
This is rather interesting, since, usually, the magnitude of the non-local conductance is smaller than
its local counterpart. Furthermore, CAR is rather pronounced in the subgap-regime and for biases in
the proximity of the Dirac points. As we will see later in the chapter, this is an important ingredient
for the creation of equal-spin Cooper pairs in S.
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(b) Di�erential conductance

Fig. 4.4: (a) Probability amplitudes and (b) di�erential conductance of the junction as a function of the
bias VL and averaged over all modes ky. At eVL = µ, LAR and CO vanish in the bipolar setup. We choose
µs = 10 ∆0, µ = 0.5 ∆0 and Ls = 2.3ξ. Reprinted �gure with permission from [102]. Copyright (2021) by the
American Physical Society.

Nonetheless, this e�ect is dependent on the length of the superconductor. As we can see in Fig.



4.3. Results 85

4.4(a), where we choose a di�erent length, Ls = 2.3ξ, LAR and CO vanish at eVL = µ and behave
similarly to Fig. 4.3(a), except for more pronounced oscillations due to quasiparticle interactions in
S. CAR, however, is no longer the predominant process in the subgap regime, which is compensated
by a stronger probability for NR. As a consequence, if we compare 4.3(b) and 4.4(b), the local and
non-local di�erential conductance are diminished for biases in the proximity of the Dirac points, cf.
Eq. (4.30).
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(a) eVL = µ
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(b) eVL = ∆0/5

Fig. 4.5: Length dependence of the probability amplitudes (a) at the Dirac point eVL = µ and (b) away
from the Dirac point. When the length of the S domain is increased from zero, CAR increases at �rst, reaches
a maximum and vanishes if Ls exceeds ξ notably. This is superposed by a strong oscillation, such that CAR
vanishes at certain lengths. We choose µs = 10 ∆0 and µ = 0.5 ∆0. Reprinted �gure with permission from [102].
Copyright (2021) by the American Physical Society.

To obtain an insight into the length dependence of CAR, we plot the probability amplitudes as
a function of Ls in Fig. 4.5. Considering a bias eVL = µ, CAR and NR are the only processes that
occur, see 4.5(a). We �nd that Teh follows a curve similar to a Gaussian function, in the sense that the
probability grows as Ls is increased from zero, reaches a maximum after which it decreases again and
vanishes when the S domain becomes exceedingly large for transmission to occur. This is superposed
by a strong, periodical oscillation1 such that at certain lengths, NR becomes unity and CAR vanishes.
At Ls ≈ 1.1ξ, however, it reaches a maximum and exceeds NR signi�cantly, which explains the strong
contribution of CAR in Fig. 4.3. When we move away from the Dirac points, we observe a similar
behavior, with the distinction that LAR and CO are �nite as well, see 4.5(b). These amplitudes feature
the same oscillation but do not follow a Gaussian curve. As is the case for CAR, CO vanishes as the
S domain becomes too extensive. NR and LAR approach a constant value in this limit, corresponding
to Ree and Reh in a pure NS junction.

With this, we conclude our analysis of the transport properties and advance to the analysis of the
proximity e�ect in the junction.

4.3.2 Pairing amplitudes

Derivation of the retarded Green function

Before we are able to study the pairing amplitudes, we need to derive the retarded Green function of
the system. Due to the translational invariance in y-direction, which allowed us to Fourier transform
the eigenfunctions and reduce the Hamiltonian to a quasi-1D operator, cf. Eq. (4.6), we can simplify
the spatial dependence of this quantity in advance and obtain

G(r, r′) = G(x, x′, y, y′) = G(x, x′, ky)e
iky(y−y′). (4.31)

1At eVL = µ, the minima occur approximately at Ls/ξ = (n+1/2)π∆0/µs with n ∈ N, as discussed in [123]. However,
the summation over the modes leads to a slight shift.
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In the following, we evaluate all quantities at the same position, y = y′, such that this phase factor
evaluates to unity.

We follow the Scattering State Approach introduced in Sec. 3.2.2 and make the ansatz

G(x, x′, ky) =


α1φ3(x)φ̃T1 (x′) + α2φ3(x)φ̃T2 (x′) + α3φ4(x)φ̃T1 (x′) + α4φ4(x)φ̃T2 (x′), x < x′

β1φ1(x)φ̃T3 (x′) + β2φ1(x)φ̃T4 (x′) + β3φ2(x)φ̃T3 (x′) + β4φ2(x)φ̃T4 (x′), x > x′
(4.32)

for the retarded Green function, where the scattering states in Eqs. (4.16) and (4.22) are in accordance
with the de�nitions in Fig. 3.2. SinceHBdG is linear in k̂x, the discontinuity arises in the Green function
itself, such that Eq. (3.11) evaluates to

G(x, x′, ky)
∣∣
x=x′+0+,ky

− G(x, x′, ky)
∣∣
x=x′−0+ = −iτ0sx. (4.33)

Before we evaluate this equation, it is rather useful to express the transposed scattering coe�cients by
means of the normal ones. Fortunately, the transposed and the normal Hamiltonian are related by a
straightforward unitary transformation, given by

UT [HBdG(x, ky)]
T U†T = HBdG(x, ky), UT = τzsz. (4.34)

With this, we can employ the Wronskian method, cf. Sec. 3.2.3, and obtain a system of equations
from which we can derive the desired relations. This yields

ãl = −al, b̃l = bl, c̃l = cl, d̃l = −dl, l ∈ {1, 2, 3, 4}, (4.35)

i.e., the scattering coe�cients associated to processes conserving the particle type are identical, while
the remaining coe�cients change their sign.

At this point, we want to mention another symmetry of the Hamiltonian, which inverses the sign
of ky, i.e., the angle of incidence/re�ection/transmission. We can show that the Hamiltonian at −ky
is related to that at ky by the unitary transformation

UkyHBdG(x,−ky)U†ky = HBdG(x, ky), Uky = τzsx. (4.36)

We are again able to employ the Wronskian method and obtain a system of equations which allows us
to relate the scattering coe�cients at −ky to those at ky. This yields

a1/3(−ky) = e
i
(
θ
l/r
h −θ

l/r
e

)
a1/3(ky), a2/4(−ky) = e

i
(
θ
l/r
e −θ

l/r
h

)
a2/4(ky), (4.37a)

b1/3(−ky) = −b1/3(ky), b2/4(−ky) = −b2/4(ky), (4.37b)

c1/3(−ky) = e
i
(
θ
r/l
e −θ

l/r
e

)
c1/3(ky), c2/4(−ky) = e

i
(
θ
r/l
h −θ

l/r
h

)
c2/4(ky), (4.37c)

d1/3(−ky) = −ei
(
θ
r/l
h −θ

l/r
e

)
d1/3(ky), d2/4(−ky) = −ei

(
θ
r/l
e −θ

l/r
h

)
d2/4(ky), (4.37d)

We �nd that each scattering coe�cient is modi�ed by a phase which is determined by the di�erence
between the angle of incidence (of the incoming particle) and the angle of re�ection/transmission (of
the scattered particle). As we will show, those are useful relations to understand the behavior of certain
elements of the anomalous Green function when summing over all modes.

Reducing G(x, x′, ky) by means of Eq. (4.35), we are able to determine the Green function coe�-
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cients from Eq. (4.33) and obtain

α1 = − i e−iθ
l
e

2 cos (θle)

c4

c3c4 − d3d4
= − i e−iθ

r
e

2 cos (θre)

c2

c1c2 − d1d2
= β1, (4.38a)

α2 =
i e−iθ

l
h

2 cos
(
θlh
) d4

c3c4 − d3d4
= − i e−iθ

r
e

2 cos (θre)

d1

c1c2 − d1d2
= −β2, (4.38b)

α3 =
i e−iθ

l
e

2 cos (θle)

d3

c3c4 − d3d4
= − i e−iθ

r
h

2 cos
(
θrh
) d2

c1c2 − d1d2
= −β3, (4.38c)

α4 = − i e−iθ
l
h

2 cos
(
θlh
) c3

c3c4 − d3d4
= − i e−iθ

r
h

2 cos
(
θrh
) c1

c1c2 − d1d2
= β4, (4.38d)

where the left and right expressions are derived by evaluating Eq. (4.33) in the domains x < xL
and x > xR, respectively. Since the Green function coe�cients are independent of the position,
evaluating them in one of the domains would, in general, su�ce. For convenient analytic expression of
the corresponding pairing amplitudes in L and R, however, it is necessary to calculate them in both
domains.

Note that, with the coe�cients in Eq. (4.38), not all equations in Eq. (4.33) evaluate to be true (the
system is overdetermined). We obtain the detailed balance relations between the scattering coe�cients
associated to LAR when we demand the latter system of equations to be satis�ed, which are given by

a2 = −ei(θlh−θle)
cos θlh
cos θle

a1, a4 = −ei(θrh−θre)
cos θrh
cos θre

a3. (4.39)

With the above, we obtain an analytical expression of the retarded Green function. We do not present
it explicitly here, but focus on its anomalous part and express it in terms of the pairing amplitudes.
As elucidated in Sec. 3.2.1, we rotate the anomalous Green function,

F(x, x′, ky) = −isyGeh(x, x′, ky), (4.40)

and decompose it with respect to the Pauli matrices in spin space,

F(x, x′, ky) = f0(x, x′, ky)s0 + f↑↑(x, x
′, ky)

sx + isy
2

+ f↓↓(x, x
′, ky)

sx − isy
2

+ fz(x, x
′, ky)sz. (4.41)

This equation provides the desired quantities to study the proximity e�ect. Before we proceed, let
us introduce new variables in position space to better illustrate where the pairing amplitudes are
evaluated. We de�ne xl ≡ x ≤ xL as well as xr ≡ x ≥ xR, which label an arbitrary position in L and
R, respectively, for clarity and ease of notation. Contrary to xL and xR, these are not �xed values.

Local pairing amplitudes

First, we consider the local amplitudes, where both coordinates lie in the same lead2. In L, we have

f0(xl, x
′
l, ω, ky) = cos

(
θle + θlh

2

)
i e−i/2(θ

l
e−θlh)

2 cos θle
e−i(k

l
exl+k

l
hx
′
l)a1, (4.42a)

f↑↑(xl, x
′
l, ω, ky) =

i e−i(θ
l
e−θlh)

2 cos θle
e−i(k

l
exl+k

l
hx
′
l)a1, (4.42b)

f↓↓(xl, x
′
l, ω, ky) =

i

2 cos θle
e−i(k

l
exl+k

l
hx
′
l)a1, (4.42c)

fz(xl, x
′
l, ω, ky) = sin

(
θle + θlh

2

)
e−i/2(θ

l
e−θlh)

2 cos θle
e−i(k

l
exl+k

l
hx
′
l)a1. (4.42d)

2In contrast to the previous chapter, 'local' does not mean that x and x′ are identical, but are located in the same
domain. We explicitly mention the case x = x′ in what follows.
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For the same reason that we have introduced the relations in Eq. (4.37), let us consider an alternative
decomposition of the anomalous Green function,

F(x, x′, ky) = f0(x, x′, ky)s0 + fx(x, x′, ky)sx + fy(x, x
′, ky)sy + fz(x, x

′, ky)sz, (4.43)

which provides two additional amplitudes fx and fy. Since the Pauli matrices are a complete basis of
the vector space of complex (2 × 2)-matrices, these quantities contain no new information. Instead,
they are related to f↑↑ and f↓↓ by

f↑↑/↓↓ = fx ∓ ify, (4.44)

and additionally aid in understanding certain properties of the pairing amplitudes. For x, x′ ≤ xL,
they read

fx(xl, x
′
l, ω, ky) = cos

(
θle − θlh

2

)
i e−i/2(θ

l
e−θlh)

2 cos θle
e−i(k

l
exl+k

l
hx
′
l)a1, (4.45a)

fy(xl, x
′
l, ω, ky) = sin

(
θle − θlh

2

)
i e−i/2(θ

l
e−θlh)

2 cos θle
e−i(k

l
exl+k

l
hx
′
l)a1. (4.45b)

We obtain similar expressions R, namely

f0(xr, x
′
r, ω, ky) = − cos

(
θre + θrh

2

)
i e−i/2(θ

r
e−θrh)

2 cos θre
ei(k

r
exr+krhx

′
r)a3, (4.46a)

fx(xr, x
′
r, ω, ky) = cos

(
θre − θrh

2

)
i e−i/2(θ

r
e−θrh)

2 cos θre
ei(k

r
exr+krhx

′
r)a3 (4.46b)

fy(xr, x
′
r, ω, ky) = − sin

(
θre − θrh

2

)
i e−i/2(θ

r
e−θrh)

2 cos θre
ei(k

r
exr+krhx

′
r)a3 (4.46c)

fz(xr, x
′
r, ω, ky) = sin

(
θre + θrh

2

)
e−i/2(θ

r
e−θrh)

2 cos θle
ei(k

r
exr+krhx

′
r)a3, (4.46d)

f↑↑(xr, x
′
r, ω, ky) =

i

2 cos θre
ei(k

r
exr+krhx

′
r)a3, (4.46e)

f↓↓(xr, x
′
r, ω, ky) =

i e−i(θ
r
e−θrh)

2 cos θre
ei(k

r
exr+krhx

′
r)a3. (4.46f)

Notice that both sets are directly proportional to the scattering coe�cients related to LAR in each
lead, a1 and a3. This illustrates that the proximity e�ect, i.e., the superconducting order leaking
into the normal-state TIs, is mediated by (local) Andreev re�ection, creating a Cooper pair in the
process. Furthermore, we �nd that fs(xl, x′l, ky) vanishes if xl → −∞ or/and x′l → −∞ when we shift
the frequency into the positive complex plane. The retarded Green function thus satis�es outgoing
boundary conditions in this domain, which is consistent with our discussion in Sec. 3.2.2. This is true
for the amplitudes fs(xr, x′r, ky) as well, i.e., they vanish as xr →∞ or/and x′r →∞.
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Non-local pairing amplitudes

Next, we study the non-local amplitudes across the superconductor. When x < xL and x′ > xR, we
have

f0(xl, xr, ω, ky) = sin

(
θle − θrh

2

)
e−i/2(θ

l
e−θrh)

2 cos θle
e−i(k

l
exl−krhxr)d1, (4.47a)

fx(xl, xr, ω, ky) = − sin

(
θle + θrh

2

)
e−i/2(θ

l
e−θrh)

2 cos θle
e−i(k

l
exl−krhxr)d1, (4.47b)

fy(xl, xr, ω, ky) = cos

(
θle + θrh

2

)
e−i/2(θ

l
e−θrh)

2 cos θle
e−i(k

l
exl−krhxr)d1, (4.47c)

fz(xl, xr, ω, ky) = cos

(
θle + θrh

2

)
e−i/2(θ

l
e−θrh)

2 cos θle
e−i(k

l
exl−krhxr)d1, (4.47d)

f↑↑(xl, xr, ω, ky) = − i e−iθ
l
e

2 cos θle
e−i(k

l
exl−krhx

′
r)d1, (4.47e)

f↓↓(xl, xr, ω, ky) =
i eiθ

r
h

2 cos θle
e−i(k

l
exl−krhx

′
r)d1, (4.47f)

whereas they read

f0(xr, xl, ω, ky) = sin

(
θre − θlh

2

)
e−i/2(θ

r
e−θlh)

2 cos θre
ei(k

r
exr−klhxl)d3, (4.48a)

fx(xr, xl, ω, ky) = sin

(
θre + θlh

2

)
e−i/2(θ

r
e−θlh)

2 cos θre
ei(k

r
exr−klhxl)d3, (4.48b)

fy(xr, xl, ω, ky) = cos

(
θre + θlh

2

)
e−i/2(θ

r
e−θlh)

2 cos θre
ei(k

r
exr−klhxl)d3, (4.48c)

fz(xr, xl, ω, ky) = cos

(
θre − θlh

2

)
e−i/2(θ

r
e−θlh)

2 cos θre
ei(k

r
exr−klhxl)d3, (4.48d)

f↑↑(xr, xl, ω, ky) = − i eiθ
l
h

2 cos θre
ei(k

r
exr−klhxl)d3, (4.48e)

f↓↓(xr, xl, ω, ky) =
i e−iθ

r
e

2 cos θre
ei(k

r
exr−klhxl)d3, (4.48f)

if x > xR and x′ < xL. This kind of pairing, also creating Cooper pairs in S, is dependent on the
scattering coe�cients associated to CAR, and we see that the proximity-e�ect is solely carried by
Andreev re�ections � either in the same lead, or from one lead to the other. The non-local amplitudes
satisfy outgoing boundary conditions, as well, as can be seen when we shift the energy into the positive
complex plane and perform the limits xl → −∞ and xr →∞.

Numerical evaluation

Similar to the transport characteristics, we do not consider the dependence of the amplitudes on single
modes, but calculate the sum over all ky. We therefore de�ne the full amplitudes

fs(x, x
′, ω) ≡

∣∣∣∣∣∣
∑
ky

fs(x, x
′, ω, ky)

∣∣∣∣∣∣ , s ∈ {0, x, y, z, ↑↑, ↓↓} (4.49)
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and replace the sum by an integral, cf. Eq. (4.24). Doing so, this reveals that fy and fz vanish when
we add up the contributions from all modes, i.e.,∑

ky

fy(x, x
′, ω, ky) =

∑
ky

fz(x, x
′, ω, ky) = 0, (4.50)

independent of the choice of the parameters and, in particular, x and x′. This is due to a point-
symmetry of these quantities with respect to ky and can be seen explicitly by the application of Eq.
(4.37). We obtain

fy(x, x
′, ω,−ky) = fy(x, x

′, ω, ky), fz(x, x
′, ω,−ky) = fz(x, x

′, ω, ky). (4.51)

Therefore, the amplitudes cancel themselves pairwise at modes ky and −ky, such that, in total, they
vanish. This has an interesting e�ect on the full equal-spin pairing amplitudes, which can be seen from
Eq. (4.44). Since fy vanishes, while fx remains �nite, this means that these two quantities are equal,

f↑↑(x, x
′, ω) = f↓↓(x, x

′, ω), (4.52)

independent of the choice of the parameters.
Let us now consider explicit results. As in the previous section, we focus on the bipolar domain

µl = −µr ≡ µ. As a reference, we de�ne

f0 ≡ f0(−Ls/2,−Ls/2, 0), (4.53)

i.e., the singlet-amplitude directly at the left interface and at the Fermi energy of the superconductor,
E = 0 (in the BdG framework). This serves as a normalization factor for all quantities presented
below. Moreover, all plots provide an inset illustrating where the amplitudes are evaluated, where the
origin and the head of the arrows indicate x and x′, respectively.

We show the pairing amplitudes in Fig. 4.6, where we use the same values for the electrochemical
potentials as in the previous section and set L = 1.1ξ. Moreover, we evaluate them directly at the
interfaces.

The plots con�rm the properties derived above. Due to its symmetry with respect to ky, fz vanishes
for all frequencies and independently of the choice of x and x′. For the same reason, the equal-spin
triplet amplitudes are identical, locally and non-locally. We furthermore observe how the amplitudes
are a�ected by the bipolar setup � except for fs(xL, xR, ω), all quantities vanish at ω = µ. This can
be explained individually, while all stems from the fact that the energy now lies at the Dirac points:

� fs(xl, xl, ω = µ) vanishes since LAR is not possible, completely suppressing the proximity e�ect
at this frequency.

� fs(xr, xr, ω = µ) vanishes since no states are available in R for an electron to be excited, which
equally suppresses LAR and thus the proximity e�ect.

� fs(xr, xl, ω = µ) vanishes since no states are available for CAR processes, suppressing this non-
local proximity-e�ect.

Solely fs(xl, xr, ω = µ) remains �nite at ω = µ, which is apparent since both an electron state in L
as well as a hole state in R exist. Apparently, the bipolar setup a�ects the pairing amplitudes in the
same way as the transport properties.

Intriguingly, we �nd that the non-local singlet pairing amplitudes vanish completely for all choices
of ω. This is not due to a symmetry with respect to ky, i.e., it is not the contributions from each
mode which cancel themselves out, but another interesting feature of the bipolar setup. Since the hole
dispersion in R corresponds to the electron dispersion in L (and vice versa), the angle under which the
electron approaches the interface is the same as the angle of the transmitted hole moving away from the
interface, θl/re = θ

r/l
h , cf. Eqs. (4.14) and (4.15). As a consequence, the single-mode singlet amplitudes
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Fig. 4.6: Full pairing amplitudes as a function of ω in the bipolar setup at (a) the left interface and (b) the
right interface as well as non-locally from (c) the left to the right and (d) the right to the left interface. fz
vanishes due to its point-symmetry in ky, while the non-local singlet amplitudes vanish globally in the bipolar
setup. All quantities are normalized to f0. We choose µs = 10 ∆0, µ = 0.5∆0 and Ls = 1.1ξ. Reprinted �gure
with permission from [102]. Copyright (2021) by the American Physical Society.

in Eqs. (4.47) and (4.48) evaluate to zero in the bipolar setup and for any choice of the parameters.
This means that non-local singlet pairing is completely suppressed, which strongly promotes equal-spin
triplet pairing across the junction. In combination with the strong contributions of CAR, this is the
second building block in the formation of equal-spin Cooper pairs in S, as we will show shortly.

Before we proceed, let us discuss the position-dependence of the pairing amplitudes, which we plot
in Fig. 4.7. Here, we evaluate the local amplitudes at the same position, xl/r = x′l/r. In contrast,
for the non-local amplitudes, we �x one location to xL or xR (dependent on the interface which is
approached by the incident particle) and vary the other. Apparently, all amplitudes decay as we
move away from the interfaces into the bulk TIs, which is consistent with the Green function obeying
outgoing boundary conditions. As a consequence, the proximity-e�ect occurs in the proximity of the
interfaces and vanishes in the asymptotic domains x→ ±∞. The value at the interface, cf. Fig. 4.6,
as well as the rate at which the amplitudes decrease, depend on the frequency ω, such that for energies
ω ≈ 0, the local amplitudes reach far into the bulk. This is not the case for the non-local amplitudes.
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Fig. 4.7: Position-dependence of the equal-spin pairing amplitudes for di�erent choices of the frequency for
(a) xl = x′l, (b) xr = x′r, (c) xR = Ls/2 and (d) xL = −Ls/2. All quantities are normalized to f0. We choose
µs = 10 ∆0, µ = 0.5∆0 and Ls = 1.1ξ.

We can understand this from the position-dependent factors,

fs(xl, xl, ω, ky) ∝ e−i(k
l
e+klh)xl , (4.54a)

fs(xr, xr, ω, ky) ∝ ei(k
r
e+krh)xr , (4.54b)

fs(xl, xR, ω, ky) ∝ e−i(k
l
exl−krhxR), (4.54c)

fs(xL, xr, ω, ky) ∝ ei(k
r
exr−klhxL). (4.54d)

At ω = 0, the wavenumbers of electrons and holes in the same lead are identical but di�er in their
signs, kl/re = −kl/rh , such that they cancel each other and evaluate the exponential terms to unity.
As a consequence, the amplitudes are not position-dependent at this energy and extend deep into the
bulk. This is, of course, only true at zero temperature [124]. This cannot be achieved for the non-local
pairing amplitudes, which are position-dependent at any energy.

Let us now proceed to the �nal part of this section, where we analyze the spin of the Cooper pairs
created in a scattering event.
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4.3.3 Spin injection

So far, we have observed two rather peculiar e�ects in TI-S-TI junctions in the bipolar setup, µl =
−µr ≡ µ, with 0 < µ < ∆0. (1) Due to the vanishing of LAR and CO for energies at the Dirac points,
CAR governs the transport in the subgap-regime for an appropriate length of the S domain, cf. Figs.
4.3 to 4.5, while (2) opposite-spin triplet and non-local spin-singlet pairing are completely suppressed
in such a system. This suggests a polarization of the Cooper pair net spin created in a LAR or CAR
scattering process. The aim of this section is to elaborate and quantify this polarization.

Net spin pumped into the superconductor

The total spin of a Cooper pair created in either a LAR or CAR scattering event is determined by the
spin of its building blocks. These are the incident electron as well as the additional electron removed
from the Fermi sea, the latter leaving behind a hole state in the TI lead, see Fig. 4.8. We can calculate

(a) LAR (b) CAR

Fig. 4.8: Illustration of the processes resulting in the emergence of Cooper pairs in the superconductor (gray),
(a) local Andreev re�ection with probability Reh and (b) crossed Andreev re�ection with probability Teh. The
incident as well as an additional electron from the Fermi sea (blue) in one of the TI leads are added to the
condensate, leaving behind a hole. The arrows indicate the x-component of the spin according to Eq. (4.57).

the spin of a given eigenstate by means of the BdG operator

ŜBdG =
~
2

(
σ 0
0 −σ∗

)
, (4.55)

with the vector of Pauli matrices in spin space

σ = (sx, sy, sz)
T . (4.56)

ŜBdG measures the spin of the incident electron and the re�ected/transmitted hole correctly, and we
obtain a spin texture as illustrated in Fig. 4.9(a). However, since we assume that the Fermi sea has
zero angular momentum before the scattering process, the latter is not identical to the spin of the
electron that is removed from the Fermi sea. Instead, we argue that the hole which emerges in a LAR
or CAR process has the exact opposite spin of the second electron which is used to create the Cooper
pair. As a consequence, we introduce an additional spin operator,

ŜCP =
~
2

(
σ 0
0 σ∗

)
, (4.57)

which assigns the opposite spin to a hole state, and denote it by Cooper pair spin operator. The spin
texture of this operator is illustrated in Fig. 4.9(b) for LAR and in 4.9(c) for CAR. With this, we
are able to determine the correct net spin in a scattering event. De�ning 〈Ŝ〉 and 〈Ŝ〉LAR as the spin
expectation values for the incident and the removed electron in L, respectively, we obtain

〈Ŝ〉l ≡ 〈Ŝ〉+ 〈Ŝ〉LAR (4.58)
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electron excitations
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(a) ŜBdG
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2nd electron that
forms CP

(b) ŜCP (local)

1st electron that
forms CP

2nd electron that
forms CP

(c) ŜCP (non-local)

Fig. 4.9: Spin texture of the electron (blue) and hole (orange) states at a given excitation energy E >
µ in the bipolar setup. Since the electron removed from the Fermi sea features the opposite spin of the
re�ected/transmitted hole, the spin texture in (a) is not accurate if we want to describe the full spin of the
Cooper pair. Instead, we need to calculate its spin (green) from ŜCP, such that we obtain the accurate (b) local
and (c) non-local spin texture. Reprinted �gure with permission from [102]. Copyright (2021) by the American
Physical Society.

as the total spin of a Cooper pair created in a (local) LAR process. Introducing furthermore 〈Ŝ〉CAR

as the spin expectation value of the removed electron in R, this yields the total spin of a Cooper pair
created in a (non-local) CAR process,

〈Ŝ〉nl ≡ 〈Ŝ〉+ 〈Ŝ〉CAR . (4.59)

Explicitly, we have

〈Ŝ〉 ≡ 〈ψ+
e,l(x)| ŜCP |ψ+

e,l(x)〉 =
~

2 (E + µl)

(
kle, ky, 0

)T
=

~
2

(
cos θle, ξ

l
e sin θle, 0

)T
, (4.60a)

〈Ŝ〉LAR ≡ 〈ψ
−
h,l(x)| ŜCP |ψ−h,l(x)〉 =

~
2 (E − µl)

(
−klh, ky, 0

)T
=

~
2

(
− cos θlh, ξ

l
h sin θlh, 0

)T
, (4.60b)

〈Ŝ〉CAR ≡ 〈ψ
+
h,r(x)| ŜCP |ψ+

h,r(x)〉 =
~

2 (E − µr)
(krh, ky, 0)T =

~
2

(
cos θrh, ξ

r
h sin θlh, 0

)T
, (4.60c)

with

ξle = sgn (E + µl) , ξ
l/r
h = sgn

(
E − µl/r

)
. (4.61)

We �nd that all expectation values feature no component in z-direction, which is clear since the system
is purely 2D and HBdG does not couple to this spin projection. Furthermore, in the bipolar setup,
〈Ŝ〉 and 〈Ŝ〉CAR are identical and we have perfect equal-spin pairing, while 〈Ŝ〉 and 〈Ŝ〉LAR show
antiparallel alignment in the x-component. The latter is, in fact, the relevant spin projection, since the
y-component is point-symmetric in ky and thus vanishes when we sum over all modes. We therefore
focus on the �rst element in the following. Finally, we note that the norm of each expectation value
evaluates to ~/2, as to be expected for fermions.

The above provides an appropriate quanti�cation of the Cooper pair net spin in a LAR or CAR
process. However, since these scattering events occur only with a certain probability, it is not su�cient
to describe the spin pumped into the superconductor for a given applied bias. Therefore, we assign
a weight to the local and non-local Cooper pair spin, given by the probabilities of LAR and CAR,
respectively, averaged over all modes ky. This de�nes the nonequilibrium net spin pumped into the S
domain,

S ≡ RLAR 〈Ŝ〉l + TCAR 〈Ŝ〉nl , (4.62)
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where, for the situation illustrated in Fig. 4.8, we have (we drop the superscripts for the sake of clarity)

RLAR = Reh, TCAR = Teh. (4.63)

With the de�nitions above, we �nd that S is manifestly bounded. While its y-component vanishes for
all choices of the parameters, the total spin of the Cooper pairs can attain values −1 ≤ 〈Ŝ〉l/nl ≤ 1,
and we therefore have

0 ≤ |Sx| ≤ RLAR + TCAR ≤ 1. (4.64)

The last inequality is a consequence of probability current conservation.

(a) ŜBdG (b) ŜCP (local) (c) ŜCP (non-local)

(d) ŜBdG (e) ŜCP (local) (f) ŜCP (non-local)

Fig. 4.10: Nonequilibrium net spin pumped into the S domain as a function of eVL and µr. We consider (a,d)
the full quantity as well as its (b,e) local and (c,f) non-local contributions. We choose µs = 10 ∆0, µl = ∆0/2
and (a-c) Ls = 1.1ξ (d-f) Ls = 2.3ξ. Reprinted �gure with permission from [102]. Copyright (2021) by the
American Physical Society.

Let us now study this quantity. From Eq. (4.62) and our discussion above, we can expect strong
contributions from the non-local pairing terms. The reasoning is, on the one hand, that the spin of the
incident and the removed electron are equal in the bipolar setup and comparable in its alignment if
we deviate from it. Furthermore, CAR has strong contributions in the subgap-regime for appropriate
choices of the length Ls. In contrast, for the local parts, both spin projections are nearly antiparallel,
and LAR is severely suppressed since the Dirac point of the hole band in L falls into the energy range
0 ≤ E ≤ ∆0. This is exactly what we �nd in Fig. 4.10(a-c), where we present a contour plot of
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Sx as a function of both the applied bias eVL and the electrochemical potential in the right TI, µr.
The local contributions are, in fact, rather small and deviate up to a magnitude from their non-local
counterparts. At eVL = µl, they vanish for all choices of µr, since we hit the Dirac point in the hole
band structure.

Intriguingly, we �nd a peak at eVL = −µr = µl, i.e., when we hit the sweet spot eVL = µ in the
bipolar setup, µl = −µr = µ. This is a consequence of the strong contributions of CAR in this system
and follows the curve of this transport characteristic, cf. Fig. 4.3, which equally features a maximum at
the sweet spot. This becomes even more apparent in Fig. 4.11(a), where we show the bias dependence
of the net spin pumped into the S domain for distinct choices of µr. In fact, the bipolar setup provides
the strongest yield if we tune the bias into the proximity of the Dirac points in the hole dispersion in
L. Moreover, we �nd that, at the sweet spot, CAR is, in fact, the only process that pumps Cooper
pairs into the superconductor, resulting in the perfect creation of equal-spin Cooper pairs. And even
though LAR contributes to Sx if the bias deviates from eVL = µ, this contribution is rather small.

As we have shown, CAR is sensitive to the length of the S domain, cf. Fig. 4.5, and can be
diminished or even suppressed for certain choices. We illustrate this in Fig. 4.10(d-f), where we choose
the same length as in Fig. 4.4. Here, CAR is no longer the predominant process, and the maximum
is shifted away from the sweet spot. We observe the same features in the net spin Sx. Even though

L

(a) Ls = 1.1ξ

L

(b) Ls = 2.3ξ

Fig. 4.11: (Top) Full nonequilibrium net spin pumped into the S domain as well as its (middle) local and
(bottom) non-local contributions as a function of eVL for various choices of µr. The bipolar setup is represented
by the green dotted line. We choose µs = 10 ∆0, and µl = ∆0/2.

the signi�cant contributions stem from non-local pairing, the maximum is approximately half of that
in Fig. 4.10(a-c) and shifted to slightly larger biases. As before, the curve follows the probability for
CAR, cf. Fig. 4.4, which can be clearly seen in Fig. 4.11(b). Apparently, for this choice of the length,
the bipolar setup is not the optimal choice. However, it yet provides a strong contribution to the net
spin pumped into the S domain for biases in the proximity of the sweet spot.
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Estimated e�ect

We assume that Cooper pairs are only created in the central superconductor when a bias is applied to
the junction, which is why we denote it by the nonequilibrium net spin pumped into the S domain. We
now want to estimate the e�ect of this pumping when the bias voltage is varied over a certain energy
range, δeVl > δE > 0. Therefore, we sum the contributions of S over all wavenumbers kx and ky that
fall into this domain, i.e.,

Sest ≡
∑
kx,ky

S(kx, ky)→
A

(2π)2

∫∫
dkxdkyS(kx, ky) =

A

(2π)2

∫∫
dEdky

(
∂E

∂kx

)−1

S(E, ky), (4.65)

where A = LxLy is the area of the junction. We plot this quantity as a function of the electrochemical
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Fig. 4.12: Estimated spin pumped into the S domain as a function of µr for a bias increased from eVL = 0
to (a) 0.6 ∆0 and (c) ∆0. We choose µs = 10 ∆0 and µl = ∆0/2. Reprinted �gure with permission from [102].
Copyright (2021) by the American Physical Society.

potential and di�erent choices of the length Ls in Fig. 4.12, where we increase the voltage from zero
to a value slightly above µl and to a voltage corresponding to the S order parameter ∆0. In the former
case, we can see that the bipolar setup is a favorable choice since we observe clear peaks at µr = −µl,
particularly at Ls = 1.1ξ. This is due to the fact that, for most of the choices of the length (except
for those at which CAR vanishes), CAR increases quickly in the proximity of the Dirac point of the
hole band in L, cf. Figs. 4.3 and 4.4. In the latter case, the bipolar setup is yet favorable, while some
peaks appear at lower µr. This stems from the shift of the CAR peak if the length is not optimal.
Note that, independent of Ls, the e�ect nearly vanishes at µr = µl, i.e., when the TIs are identical
in the electrochemical potential. Then, the Dirac points of both hole band structures in L and R lie
at the same energy, such that LAR and CAR are severely suppressed and only a negligible number of
Cooper pairs is pumped into the superconductor.

4.4 Conclusion

In this chapter, we study the transport properties and the proximity e�ect in an NSN-junction where
the underlying material is the 2D surface state of a 3D topological insulator with strong spin-orbit
coupling. The central S domain is induced by means of a superconducting top electrode, separating the
left and right TI regions in such a way that the carrier density can each be modi�ed by the application of
a gate voltage. In particular, we choose the system to be in the bipolar setup, where the electrochemical
potentials in both leads have the same magnitude, but opposite signs. As a consequence, and for our
choice of the parameters, the Dirac points of the hole band in the left lead and the electron band in the
right lead lie at exactly the same energy, which we tune to fall inside the S gap of the central domain.
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This has an interesting e�ect on the transport properties. LAR and CO are completely suppressed
when we choose a bias that corresponds to the energy of the Dirac points, since in a 2D setup, a �nite
mode index opens a partial gap in the dispersion at E = µ. If this energy lies inside the gap of the
superconductor, both transport processes are rather unpronounced in the subgap-regime. Instead, NR
and CAR govern the transport. For an appropriate length of the S domain, which does not exceed the
superconducting coherence length ξ signi�cantly, CAR even occurs with prominent probability, which
is a rather unusual observation. As a consequence, the non-local di�erential conductance becomes
comparable to its local counterpart for biases in the proximity of the Dirac points and even coincides
with it at eVL = µ.

Another intriguing consequence of the bipolar setup is the suppression of any kind of non-local
spin-singlet pairing across the junction. This is true for any mode ky and due to the fact that this
amplitude is proportional to the di�erence of the angles of the incident electron and the transmitted
hole, f0 ∝ sin

(
θle − θrh

)
, which are identical in the bipolar setup. In contrast, the non-local equal-spin

amplitudes are rather pronounced, which is related to the strong CAR contributions in such a system.
Notably, fz is suppressed locally and non-locally for all choices of the parameter when we consider the
sum over all modes indexed by ky.

Both e�ects mentioned above indicate signi�cant equal-spin triplet pairing in the superconductor,
and we introduce a quantity that determines the nonequilibrium net spin pumped into the S domain to
study the Cooper pair spin polarization. To this end, we add the spin expectation value of the incident
electron and that of the electron removed from the Fermi sea in a LAR and CAR process, respec-
tively, weigh them by their respective, averaged probability, and consider the sum of both quantities.
Considering the contributions from all modes indexed by ky, this cancels the y-component of the net
spin, such that only the x-component remains �nite. We show that, in fact, a strong Cooper pair spin
polarization can be observed in such a TI-S-TI junction. In particular, the bipolar setup is a favorable
choice, since the peak of the nonequilibrium net spin appears at or in close proximity to the sweet spot
eVL = µ, depending on the length of the superconductor. Moreover, this setup is experimentally easy
to detect, since the local and non-local di�erential conductance coincide when the bias corresponds to
the energy at the Dirac points.

To summarize, we propose the nanostructure presented in this chapter as a device for applications
in spintronics, where equal-spin Cooper pairs can be created and manipulated by means of electrical
switching and in the absence of magnetic ordering. This is possible due to the strong spin-orbit
coupling in TIs and the associated breaking of spin-rotational invariance. As has been shown, Cooper
pairs pumped into a superconductor can lead to long-range spin accumulation [157, 158], and we
suggest measuring this e�ect by means of a Hall probe or a local superconducting quantum interference
device. This requires a second superconductor connected to the central domain of the TI-S-TI junction
[159�161].



5
Summary and outlook
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In this Thesis, we employ scattering theory and associated concepts to study the transport prop-
erties and pairing amplitudes in mesoscopic heterojunctions where the underlying samples feature
topological order. Materials like TIs and WSMs � in all their realizations � have been predicted and
realized in the early 2000s and 2010s, respectively, and host a plethora of intriguing and fascinating
physical phenomena. Among those are relativistic, linear surface states, pronounced spin-momentum
locking in transport, Fermi surface arcs, the chiral anomaly, and anomalous magnetoconductance.
Moreover, if we consider hybrid junctions featuring (local) superconducting order, this leads to the
observation of Andreev bound states carrying superconducting currents in Josephson junctions or even
the hypothetical emergence of Majorana bound states. Seldom has a concept captured both exper-
imental and theoretical condensed matter physics like it is the case for topological materials. With
this work, we want to provide a small contribution to this tremendous �eld by analyzing observable
transport features as well as the peculiar proximity e�ect in distinct hybrid junctions of topological
materials and superconductors.

In Chap. 2 we start quite generally with N'NN' or SNS junctions of non-topological materials
that di�er distinctly in their band structures. To this end, we extend the well-known wave matching
conditions for 1D and quasi-1D hybrid junctions in scattering theory to more complex settings. Here,
we assume that the materials, that are brought into contact, may exhibit unequal e�ective masses,
Fermi velocities, and potentials of any kind and are thus rather distinct. Furthermore, we give a more
general formula for the corresponding probability current density. This disparity in the band structures
results in FSM, a situation where, for instance, an electron state described by a certain set of quantum
numbers in one domain has no corresponding state in another domain and the transfer from one to
the other is thus limited. In our context, this is the mode index ky. Hence, an electron incident from a
material with a large Fermi surface cannot penetrate a material with a smaller Fermi surface if its angle
of incidence exceeds a certain critical angle. FSM thus acts as a directional �lter in k-space and at
the interfaces, e�ectively promoting normal re�ection. We argue that a signi�cant mismatch between
the materials justi�es the assumption of equilibrium reservoirs left and right of the scattering region if
two of such interfaces are set in series in a hybrid junction. This allows the application of a bias across
the junction and is a crucial requirement for the applicability of BTK theory in order to calculate
the transport properties by means of the scattering formalism. We show that even though only a
small portion of incident particles feature corresponding modes to be transmitted across the junction
� and thus contribute to the di�erential conductance and the current in the system � these states
can do so with prominent probabilities. In fact, we pinpoint distinct angles at which the transmission
coe�cient for electrical current can attain values up to its maximum. A crucial ingredient for this
observation are clean interfaces, such that the barrier parameter, describing impurities or oxide layers
between the materials, does not exceed a certain critical barrier strength. If this is ful�lled, strong
currents can be expected in experiments. More interestingly, we observe similar characteristics if the
leads feature superconducting order. The additional hole channel increases the transport coe�cient
and thus the di�erential conductance up to twice their normal-state counterpart, which may lead to
pronounced excess currents in the system. Unfortunately, superconductivity also leads to a greater
sensitivity of the transport properties to the barrier strength, such that a clean interface becomes even
more important. In the next step, we replace the central scattering domain � which was a metal or
semiconductor described by a generic quadratic Hamiltonian � with a HgTe QW, given by the more
complex BHZ model. Despite the noticeable di�erence in the band structures, we observe the same
features in the transport properties as in the simple model before. In fact, the di�erential conductance
is even increased for the HgTe sample, since FSM is not only induced by di�erent e�ective masses, but
also by varying �lling factors. As a consequence, we observe pronounced excess currents in S-HgTe-S
junctions, where S denotes a superconductor. The results are qualitatively similar to those observed
in Ref. [41] and theoretically described in Ref. [40]. Moreover, we �nd a justi�cation on why BTK
theory is applicable in such 2D (or even 3D) junctions, even though no spatial constrictions are given,
this being FSM. The mismatch in the band structures thus directly a�ects the interface properties
in heterojunctions of distinctly di�erent materials. A simple experimental setup in which this can be
tested is a N'NN' or SNS junction where a gate voltage is applied to the leads. Since a shift of the
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dispersion in energy directly a�ects FSM, the e�ect should be observable in transport measurements.
While the �rst chapter is rather technical and touches them only slightly, Chap. 3 puts an emphasis

on topological materials. In particular, we study a system where the underlying sample is a TRS
broken WSM with two Weyl nodes in the Brillouin zone. The latter are separated along a certain axis
in momentum space, which is an indicator of the anisotropy of the dispersion. In a hybrid system, this
has an interesting e�ect - the axis can include an angle with the normal of an interface between two
materials. Moreover, CCP can be induced by the application of parallel electric and magnetic �elds
or by strain deformation, meaning that the �lling factor di�ers at the two Weyl nodes. We analyze
the e�ect of both parameters on the transport characteristics as well as on the pairing amplitudes in
the normal-state WSM domains. The e�ect of the angle between the axis separating the Weyl nodes
and the interface normal is well captured in the e�ective order parameter ∆̃0 = ∆0 |sinα|. For a
perpendicular orientation, α = ±π/2, ∆̃0 is identical to ∆0, resulting in the strongest contributions by
Andreev processes to the di�erential conductances, which are maximal in this case. This is equally true
for the opposite-spin pairing amplitudes, which are directly related to LAR and CAR. The equal-spin
amplitudes, however, vanish when we sum over all modes due to the restoration of a C2-symmetry
of the BdG-Hamiltonian at these angles. For α ∈ {0,±π}, the e�ective gap is zero and all particle-
conversion processes are completely suppressed, as is the proximity e�ect (independent of the mode).
Only NR and CO are observable under these circumstances. The equal-spin pairing amplitudes are
maximal for angles in the proximity of α ≈ ±π/4 and α ≈ ±3π/4. For intermediate angles, the
curves are comparable and depend primarily on the strength of ∆̃0. More intriguing features can be
observed when CCP is induced into the system. While for the transport, the e�ect solely corresponds
to a shift in the bias, the consequence of CCP is richer for the pairing amplitudes. In its absence,
the e�ect is such that each Weyl node favors a di�erent spin polarization in the leads (e.g., f↑↑ in the
left and f↓↓ in the right lead). However, it is exactly the opposite for the other Weyl node, such that
no total spin polarization remains. This situation changes if CCP is �nite and the nodes of opposite
chirality feature di�erent �lling factors. Since the pairing amplitudes are shifted in opposite directions
(on the frequency axis), this results in a net spin polarization of the Cooper pairs leaking into the
normal leads. Since the predominant equal-spin amplitude in each WSM is di�erent, the junction
assumes a dipole character. We thus propose this system as an interesting device for applications in
superconducting spintronics. Finally, we remark that, since both quantities enter the Hamiltonian
similarly, the di�erential conductance and the proximity e�ect can be tuned by both the applied
bias/frequency as well as CCP.

The focus in the last chapter, Chap. 4, lies equally on NSN-junctions, with the distinction that
here, the underlying material is the 2D surface state of a 3D TI where superconductivity is induced
by the proximity e�ect. This separation due to S allows for independent gating of the normal-state
TI leads, and we consider the particular case of a bipolar setup. We assume that the magnitude of
the electrochemical potentials is equal left and right of the superconductor, while the sign is opposite.
As a consequence, the electron (hole) band in one domain corresponds to the hole (electron) band in
the other domain (except for the particle nature), as do the associated Dirac points. Choosing the
electrochemical potential to lie inside the superconducting gap and tuning the bias to the Dirac nodes,
this results in a situation where an incident electron cannot undergo LAR nor CO, but solely NR and
CAR due to the partial gap that emerges at the Dirac points in 2D junctions. Intriguingly, this leads
to overall small contributions of LAR and CO in the subgap-regime, resulting in a non-local di�erential
conductance which is comparable to its local counterpart for biases eV ≈ µ. This observation is rather
unusual since the latter is commonly more pronounced than the former. The length of the S domain,
however, is a crucial factor since CAR can be completely suppressed for a certain choice of Ls. For the
proximity e�ect, the bipolar setup is an equally fascinating choice. Any kind of spin-singlet pairing
across the junction is completely suppressed, independent of the energy or the mode. And since the
mode-averaged opposite-spin triplet vanishes, the non-local equal spin amplitudes are enhanced for
this choice of parameters. This, in combination with the strong CAR contributions in the subgap-
transport, suggests a signi�cant spin polarization of the Cooper pair created in a scattering event
in such a bipolar NSN-junction. We introduce a quantity to estimate the e�ect, the nonequilibrium
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net spin polarization of Cooper pairs pumped into the S domain, and evaluate it averaged over all
incident modes ky. While the y- and z-components vanish, the x-projection of the Cooper pair net
spin remains �nite and can attain noticeable values for the appropriate choice of parameters. Even
though the length of the superconducting domain is a crucial factor and needs to be chosen in such a
way that CAR does not vanish, the bipolar setup is, in general, a favorable choice to obtain a signi�cant
amount of equal-spin Cooper pairs created in the superconductor. Intriguingly, this is feasible due to
the strong spin-orbit coupling and the associated breaking of spin-rotational invariance in TIs and does
not require the application of magnetic �elds. The e�ect should be measurable by means of a Hall
probe or a superconducting quantum interference device in the proximity of the central S domain.

Herewith, we conclude this Thesis. As an outlook, we remark that the junctions we consider
are assumed to extend in�nitely along the axes perpendicular to the interface normal. This suggests
studying FSM, transport properties, and proximity e�ect in �nite-size materials with open boundary
conditions in these, up to now, translational invariant directions. The question remains on how strongly
the dipole character of the WSM junction or the formation of equal-spin Cooper pairs in the 2D
surface state are a�ected under these circumstances. Tight-binding or �nite-di�erence calculations are
particularly interesting considering FSM, since these allow us to introduce a mismatch into the system,
as well as to (numerically) analyze distinct features of the interfaces themselves. This does not only
include di�erent shapes or alignments of the latter, but also rather exotic properties like the before-
mentioned pinholes in 2D interfaces. Those are assumed to be generally opaque, except for certain
spots where transmission from one domain into the other is possible. We expect exciting results from
such studies and do not rule out even more intriguing setups or extensions for future research in this
�eld.
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