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“Viewed from the distance of the moon, the astonishing thing about the earth, catching the 

breath, is that it is alive. The photographs show the dry, pounded surface of the moon in the 

foreground, dead as an old bone. Aloft, floating free beneath the moist, gleaming membrane 

of bright blue sky, is the rising earth, the only exuberant thing in this part of the cosmos. If 

you could look long enough, you would see the swirling of the great drifts of white cloud, 

covering and uncovering the half-hidden masses of land. If you had been looking for a very 

long, geologic time, you could have seen the continents themselves in motion, drifting apart 

on their crustal plates, held afloat by the fire beneath. It has the organized, self-contained 

look of a live creature, full of information, marvelously skilled in handling the sun.” 

Lewis Thomas (1974), The lives of a cell 
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Abstract 

Nowadays, there are a lot of methods and technic available to analyse   and forecast 

time series. One of the most used is the methodology based on autoregressive integrated 

moving Average (ARIMA) model by Box and Jenkins. This method uses historical data of 

univariate time series to analyse its own trend and forecast future cycle. Rainfall time series 

are often affected by different climate phenomenon which are summarized in form of indices. 

Therefore, one can incorporate one or more time-series in a model to predict the value of 

another series, by using regression with ARIMA errors (RARIMAE).  

The detrimental impacts of climate variability on water, agriculture, and food resources in 

East Africa underscore the importance of reliable seasonal climate prediction. To overcome 

this difficulty RARIMAE method were evolved. Applications RARIMAE in the literature 

shows that amalgamating different methods can be an efficient and effective way to improve 

the forecasts of time series under consideration.  With these motivations, attempt have been 

made to develop a multiple linear regression model (MLR) and a RARIMAE models for 

forecasting seasonal rainfall in east Africa under the following objectives: 

1. To develop MLR model for seasonal rainfall prediction in East Africa. 

2. To develop a RARIMAE model for seasonal rainfall prediction in East Africa. 

3. Comparison of model's efficiency under consideration 

In order to achieve the above objectives, the monthly precipitation data covering the period 

from 1949 to 2000 was obtained from Climate Research Unit (CRU). Next to that, the first 

differenced climate indices such as Southern Oscillation Index (SOI), Multivariate ENSO 

Index (MEI), Nino3.4, Dipole Mode Index (DMI), Indian Summer Monsoon Index (ISMI), 

Indian Monsoon Rainfall (IMR), The South Atlantic Ocean Dipole (SAOD), North Atlantic 

Oscillation (NAO), the Southern Annular Mode (SAM), Quasi-biennial Oscillation (QBO), 

Indian ocean Sea Surface Temperature (SST), Indian ocean Sea Level Pressure (SLP) and their 

respective lead times are considered as potential predictors. Because of a large number of 

potential predictors that influence the dependent variable (precipitation), the variable selection 

for the model has been carefully made with some theoretical background. Firstly, the variables 

which are significantly correlated with precipitation time series at 5% level of significance are 

retained. Secondly, a threshold of 5 which indicates the highest acceptable degree of 

multicollinearity in this research was applied on the Variance Inflation Factor (VIF) stepwise     
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selection. Finally, the forward stepwise regression has been used to determine variables which 

should enter in model construction.  

In the first part of this study, the analyses of the rainfall fluctuation in whole Central- 

East Africa region which span over a longitude of 15E to 55E and a latitude of 15S to 15N 

was done by the help of maps. For models’ comparison, the R-squared (R2) values for the MLR 

model are subtracted from the R2 values of RARIMAE model. The results show positive values 

which indicates that R2 is improved by RARIMAE model. On the other side, the root mean 

square errors (RMSE) values of the RARIMAE model are subtracted from the RMSE values 

of the MLR model and the results show negative value which indicates that RMSE is reduced 

by RARIMAE model for training and testing datasets. 

For the second part of this study, the area which is considered covers a longitude of 

31.5E to 41E and a latitude of 3.5S to 0.5S. This region covers Central-East of the 

Democratic Republic of Congo (DRC), north of Burundi, south of Uganda, Rwanda, north of 

Tanzania and south of Kenya. Considering a model constructed based on the average rainfall 

time series in this region, the long rainfall season counts the nine months lead of the first 

principal component of Indian sea level pressure (SLP_PC19) and the nine months lead of 

Dipole Mode Index (DMI_LR9) as selected predictors for both statistical and predictive model. 

On the other side, the short rainfall season counts the three months lead of the first principal 

component of Indian sea surface temperature (SST_PC13) and the three months lead of 

Southern Oscillation Index (SOI_SR3) as predictors for predictive model. For short rainfall 

season statistical model SAOD current time series (SAOD_SR0) was added on the two 

predictors in predictive model. By applying a MLR model it is shown that the forecast can 

explain 27.4% of the total variation and has a RMSE of 74.2mm/season for long rainfall season 

while for the RARIMAE the forecast explains 53.6% of the total variation and has a RMSE of 

59.4mm/season. By applying a MLR model it is shown that the forecast can explain 22.8% of 

the total variation and has a RMSE of 106.1 mm/season for short rainfall season predictive 

model while for the RARIMAE the forecast explains 55.1% of the total variation and has a 

RMSE of 81.1 mm/season. 

From such comparison, a significant rise in R2, a decrease of RMSE values were observed in 

RARIMAE models for both short rainfall and long rainfall season averaged time series. In 

terms of reliability, RARIMAE outperformed its MLR counterparts with better efficiency and 

accuracy. Therefore, whenever the data suffer from autocorrelation, we can go 
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for MLR with ARIMA error, the ARIMA error part is more to correct the autocorrelation 

thereby improving the variance and productiveness of the model.



                                                                                                                                             ZUSAMMENFASSUNG                                                                                                                                                                                                               

viii 
 

Zusammenfassung  

Heutzutage stehen viele Methoden und Techniken zur Verfügung, um Zeitreihen zu 

analysieren und zu prognostizieren. Eine der am häufigsten verwendeten ist die Methode, die 

auf dem autoregressiven integrierten gleitenden Durchschnitt (ARIMA)-Modell von Box und 

Jenkins basiert. Diese Methode verwendet historische Daten von univariaten Zeitreihen, um 

ihren eigenen Trend zu analysieren und zukünftige vorherzusagen. Niederschlagszeitreihen 

werden oft von verschiedenen Klimaphänomenen beeinflusst, die in Form von Indizes 

zusammengefasst werden. Daher kann man eine oder mehrere Zeitreihen in ein Modell 

integrieren, um den Wert einer anderen Reihe vorherzusagen, indem man die Regression mit 

ARIMA-Fehlern (RARIMAE) verwendet. 

Die nachteiligen Auswirkungen der Klimavariabilität auf Wasser, Landwirtschaft und 

Nahrungsressourcen in Ostafrika unterstreichen die Bedeutung einer zuverlässigen saisonalen 

Klimavorhersage. Um diese Schwierigkeit zu überwinden, wurden die RARIMAE-Methoden 

entwickelt. Anwendungen RARIMAE in der Literatur zeigt, dass die Zusammenführung 

verschiedener Methoden ein effizienter und effektiver Weg sein kann, um die Vorhersagen der 

betrachteten Zeitreihen zu verbessern. Aus dieser Motivation heraus wurde versucht, ein 

multiples lineares Regressionsmodell (MLR)  und ein RARIMAE-Modell zur Vorhersage von 

saisonalen Niederschlägen in Ostafrika unter folgenden Zielsetzungen zu entwickeln: 

1. Entwicklung eines MLR-Modells für die saisonale Niederschlagsvorhersage in 

Ostafrika. 

2. Entwicklung eines RARIMAE-Modells für die saisonale Niederschlagsvorhersage in 

Ostafrika. 

3. Vergleich der betrachteten Modelleffizienz. 

Um die oben genannten Ziele zu erreichen, wurden die monatlichen Niederschlagsdaten 

für den Zeitraum von 1949 bis 2000 von der Climate Research Unit (CRU) bezogen. Daneben 

die ersten differenzierten Klimaindizes wie Southern Oscillation Index (SOI), Multivariate 

ENSO Index (MEI), Nino3.4, Dipole Mode Index (DMI), Indian Summer Monsoon Index 

(ISMI), Indian Monsoon Rainfall (IMR) , Der Südatlantik-Dipol (SAOD), Nordatlantische 

Oszillation (NAO), Südlicher Ringmodus (SAM), Quasi-zweijährige Oszillation (QBO), 

Meeresoberflächentemperatur im Indischen Ozean (SST), Meeresspiegeldruck im Indischen 

Ozean (SLP) und ihre jeweiligen Vorlaufzeiten gelten als potenzielle Prädiktoren. Aufgrund 
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einer großen Anzahl potenzieller Prädiktoren, die die abhängige Variable (Niederschlag) 

beeinflussen, wurde die Variablenauswahl für das Modell mit einigem theoretischem 

Hintergrund sorgfältig getroffen. Zunächst werden die Variablen beibehalten, die signifikant 

mit den Niederschlagszeitreihen auf einem Signifikanzniveau von 5 % korrelieren. Zweitens 

wurde ein Schwellenwert von 5, der den höchsten akzeptablen Grad an Multikollinearität in 

dieser Untersuchung anzeigt, auf die schrittweise Auswahl des Varianz-Inflationsfaktors (VIF) 

angewendet. Schließlich wurde die schrittweise Vorwärtsregression verwendet, um Variablen 

zu bestimmen, die in die Modellkonstruktion eingehen sollten. 

Im ersten Teil dieser Studie wurden die Analysen der Niederschlagsfluktuation in der 

gesamten Region Zentral-Ostafrika, die sich über einen Längengrad von 15O bis 55O und 

einen Breitengrad von 15S bis 15N erstreckt, von der von Karten. Für den Modellvergleich 

werden die R-Quadrat-(R2)-Werte für den MLR-Modell von den R2-Werten des RARIMAE-

Modells abgezogen. Die Ergebnisse zeigen positive Werte, was darauf hinweist, dass R2 durch 

das RARIMAE-Modell verbessert wird. Auf der anderen Seite werden die Root-Mean-Square-

Error (RMSE)-Werte des RARIMAE-Modells von den RMSE-Werten des MLR-Modell 

subtrahiert und die Ergebnisse zeigen einen negativen Wert, was darauf hinweist, dass der 

RMSE durch das RARIMAE-Modell für Trainings- und Testdatensätze reduziert wird. 

Für den zweiten Teil dieser Studie umfasst das betrachtete Gebiet einen Längengrad 

von 31,5O bis 41O und einen Breitengrad von 3,5S bis 0,5S. Diese Region umfasst den 

Zentral-Osten der Demokratischen Republik Kongo (DRC), nördlich von Burundi, südlich von 

Uganda, Ruanda, nördlich von Tansania und südlich von Kenia. Betrachtet man ein Modell, 

das auf der durchschnittlichen Niederschlagszeitreihe in dieser Region basiert, zählt die lange 

Regensaison den neunmonatigen Vorsprung der ersten Hauptkomponente des indischen 

Meeresspiegeldrucks (SLP_PC19) und den neunmonatigen Vorsprung des Dipolmodus-Index 

(DMI_LR9) als ausgewählte Prädiktoren für statistische und prädiktive Modelle. Auf der 

anderen Seite zählt die kurze Regenzeit den dreimonatigen Vorsprung der ersten 

Hauptkomponente der indischen Meeresoberflächentemperatur (SST_PC13) und den 

dreimonatigen Vorsprung des Southern Oscillation Index (SOI_SR3) als Prädiktoren für das 

Vorhersagemodell. Für das statistische Modell der kurzen Regenzeit wurde die aktuelle 

SAOD-Zeitreihe (SAOD_SR0) zu den beiden Prädiktoren im Vorhersagemodell hinzugefügt. 

Durch die Anwendung eines MLR-Modell wird gezeigt, dass die Vorhersage 27,4 % der 

Gesamtvariation erklären kann und einen RMSE von 74,2 mm/Saison für eine lange Regenzeit 

hat, während für RARIMAE die Vorhersage 53,6% der Gesamtvariation erklärt und einen 
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RMSE von 59,4 . hat mm/Jahreszeit. Durch die Anwendung eines MLR-Modell wird gezeigt, 

dass die Vorhersage 22,8% der Gesamtvariation erklären kann und einen RMSE von 106,1 

mm/Saison für das Vorhersagemodell für kurze Regenzeiten hat, während die Vorhersage für 

das RARIMAE 55,1% der Gesamtvariation erklärt und einen RMSE hat von 81,1 mm/Saison. 

Aus einem solchen Vergleich wurde ein signifikanter Anstieg von R2 und eine Abnahme 

der RMSE-Werte in RARIMAE-Modellen für gemittelte Zeitreihen sowohl für kurze 

Regenfälle als auch für lange Regenzeiten beobachtet. In Bezug auf die Zuverlässigkeit 

übertraf RARIMAE seine MLR-Pendants mit besserer Effizienz und Genauigkeit. Wenn die 

Daten unter Autokorrelation leiden, können wir uns daher für MLR mit ARIMA-Fehler 

entscheiden. Das ARIMA-Fehler Modell dient mehr dazu, die Autokorrelation zu korrigieren, 

wodurch die Varianz und Produktivität des Modells verbessert werden.
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Résumé 

De nos jours, il existe de nombreuses méthodes et techniques disponibles pour analyser 

et prévoir des séries chronologiques, dont le model de moyenne mobile intégrée autorégressive 

(ARIMA)de Box et Jenkins, qui s’avère le plus utilisé. Le model ARIMA utilise des données 

historiques de séries chronologiques univariées pour analyser sa propre tendance et prévoir le 

cycle futur. Les séries temporelles de précipitations sont souvent affectées par différents 

phénomènes climatiques appelées communément indices climatiques. Par conséquent, une ou 

plusieurs séries chronologiques peuvent être incorporer dans un modèle pour prédire la valeur 

d'une autre série, en utilisant la régression avec les erreurs ARIMA (RARIMAE). 

Les impacts néfastes de la variabilité climatique sur l'eau, l'agriculture et les ressources 

alimentaires en Afrique de l'Est soulignent l'importance d'une prévision climatique saisonnière 

fiable. Pour surmonter cette difficulté, la méthode RARIMAE a été développée. Applications 

RARIMAE dans la littérature montre que la fusion de différentes méthodes peut être un moyen 

efficace et efficient d'améliorer les prévisions des séries temporelles considérées. Avec ces 

motivations, des tentatives ont été faites pour développer un modèle de régression linéaire 

multiple (MLR) et un modèle RARIMAE pour la prévision des précipitations saisonnières en 

Afrique de l'Est sous les objectifs suivants : 

1. Développer un modèle MLR pour la prévision des précipitations saisonnières 

en Afrique de l'Est. 

2. Développer un modèle RARIMAE pour la prévision des précipitations 

saisonnières en Afrique de l'Est. 

3. Comparer l'efficacité du modèle considéré 

Afin d'atteindre les objectifs ci-dessus, les données mensuelles sur les précipitations 

couvrant la période de 1949 à 2000 ont été obtenues auprès de l'Unité de Recherche sur le 

Climat (CRU). À côté de cela, les premiers indices climatiques différenciés tels que l'indice 

d'oscillation australe (SOI), l'indice ENSO multivarié (MEI), Nino3.4, l'indice de mode 

dipolaire (DMI), l'indice de mousson d'été indien (ISMI), les précipitations de mousson 

indienne (IMR) , Le dipôle de l'océan Atlantique Sud (SAOD), l'oscillation nord-atlantique 

(NAO), le mode annulaire austral (SAM), l'oscillation quasi-biennale (QBO), la température 

de surface de la mer de l'océan Indien (SST), la pression au niveau de la mer de l'océan Indien 

(SLP) et leurs délais respectifs sont considérés comme des prédicteurs potentiels. En raison 

d'un grand nombre de prédicteurs potentiels qui influencent la variable dépendante 
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(précipitations), la sélection des variables pour le modèle a été soigneusement effectuée avec 

un certain contexte théorique. Premièrement, les variables qui sont significativement corrélées 

avec les séries chronologiques des précipitations à un niveau de signification de 5% sont 

retenues. Deuxièmement, un seuil de 5 qui indique le degré de multicolinéarité acceptable le 

plus élevé dans cette recherche a été appliqué à la sélection par étapes du facteur d'inflation de 

la variance (VIF). Enfin, la régression pas à pas vers l'avant a été utilisée pour déterminer les 

variables qui devraient entrer dans la construction du modèle. 

Dans la première partie de cette étude, les analyses de la fluctuation des précipitations 

dans toute la région de l'Afrique centrale et orientale qui s'étendent sur une longitude de 15E 

à 55E et une latitude de 15S à 15N ont été effectuées à l'aide de cartes. Pour la comparaison 

des modèles, les valeurs R au carré (R2) pour le model MLR sont soustraites des valeurs R2 du 

modèle RARIMAE. Les résultats montrent des valeurs positives qui indiquent que R2 est 

amélioré par le modèle RARIMAE. D'un autre côté, les valeurs d'erreur quadratique moyenne 

(RMSE) du modèle RARIMAE sont soustraites des valeurs RMSE du model MLR et les 

résultats montrent une valeur négative qui indique que le RMSE est réduit par le modèle 

RARIMAE pour l'entraînement et le test des ensembles de données. 

Pour la deuxième partie de cette étude, la zone considérée couvre une longitude de 

31,5E à 41E et une latitude de 3,5S à 0,5S. Cette région couvre le Centre-Est de la 

République Démocratique du Congo (RDC), le nord du Burundi, le sud de l'Ouganda, le 

Rwanda, le nord de la Tanzanie et le sud du Kenya. Considérant un modèle construit sur la 

base de la série chronologique des précipitations moyennes dans cette région, la longue saison 

des pluies compte les neuf mois d'avance de la première composante principale de la pression 

au niveau de la mer indienne (SLP_PC19) et les neuf mois d'avance de l'indice de mode 

dipolaire (DMI_LR9) comme prédicteurs sélectionnés pour le modèle statistique et prédictif. 

D'un autre côté, la courte saison des pluies compte les trois mois d'avance de la première 

composante principale de la température de surface de la mer indienne (SST_PC13) et les trois 

mois d'avance de l'indice d'oscillation australe (SOI_SR3) comme prédicteurs du modèle 

prédictif. Pour le modèle statistique de courte saison des pluies, la série temporelle actuelle de 

la SAOD (SAOD_SR0) a été ajoutée sur les deux prédicteurs du modèle prédictif. En 

appliquant un modèle MLR, il est montré que la prévision peut expliquer 27,4% de la variation 

totale et a un RMSE de 74,2 mm/saison pour la longue saison des pluies tandis que pour le 

RARIMAE la prévision explique 53,6% de la variation totale et a un RMSE de 59,4 mm/saison. 

En appliquant un modèle MLR, il est montré que la prévision peut expliquer 22,8% de la 
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variation totale et a un RMSE de 106,1 mm/saison pour le modèle prédictif de courte saison 

des pluies tandis que pour le RARIMAE la prévision explique 55,1% de la variation totale et a 

un RMSE de 81,1 mm/saison. 

À partir de cette comparaison, une augmentation significative de R2 et une diminution 

des valeurs RMSE ont été observées dans les modèles RARIMAE pour les séries temporelles 

moyennes à la fois pour des courtes et des longues saisons de pluie. En termes de fiabilité, 

RARIMAE a surpassé ses homologues MLR avec une meilleure efficacité et précision. Par 

conséquent, chaque fois que les données souffrent d'autocorrélation, nous pouvons opter pour 

le MLR avec erreur ARIMA, la partie erreur ARIMA est davantage destinée à corriger 

l'autocorrélation, améliorant ainsi la variance et la productivité du modèle. 
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1 INTRODUCTION 

Agriculture takes a large share of National Economies throughout East Africa. According to 

Food and Agriculture Organization (FAO) and World Bank development Indicators, 

agriculture accounts for 43% of the total Gross Domestic Product (GDP) in the region. In 

Tanzania and Burundi agriculture share of GDP exceeds 50% and in Uganda and Rwanda it is 

about 50%. Only in Kenya, it contributes less than 30% because Kenya’s structural 

transformation towards a less agricultural-based economy is more advanced than in other 

countries in the sub-region. 

East Africa region agriculture is highly depending on rainfall, with irrigation agriculture 

accounting less than 1% of the regions total cultivated land. Thus, the amount and temporal 

distribution during the growing season are critical to crop yields and can induce food shortages 

and famine (Di Falco et al.,2012) 

East Africa is highly vulnerable to climate variability, as seen by the recent devasting 

drought happened between 2010 and 2011(Haile et al.,2019). This drought was the worst in 

decades and struck a severe food crisis across many countries, including Somalia, Sudan, 

Kenya and Uganda. Similar widespread droughts occurred between 1984 and 1985(Broad and 

Agrawala,2000), 2005 and 2008(Hastenrath et al.2007,2010), all of which had harmful impacts 

on water, agriculture, energy, and environment (Funk et al.,2005; Verdin et al.,2005). At the 

other end of climate variability, floods that took place in 1994, 1997, and 2006 claimed 

thousands of lives and hundreds of thousands of properties (Birkett et al.,1999; Hastenrath et 

al.,2010). Unfortunately, the risks from future droughts and floods are expected to rise in view 

of the growing population, expended development of coastal areas and flood plains, unbated 

urbanization and land use changes, and climate change (Doocy et al.,2013). Together, historical 

experience and future projections call attention to the need for improved East African 

preparedness to droughts and floods, a critical component of which is access to reliable climate 

forecasts. 

The topic of seasonal rainfall variability and forecasting for East Africa is discussed 

in many studies. Large regions of East Africa exhibit two rainy seasons distinguished in ‘short 

rains’ (occurring in boreal autumn in October and November) and ‘long rains’ (occurring in 

boreal spring from March to May). 
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East Africa rains are known to be dominated by varied large-scale forcing, such as the 

migration of the Inter-Tropical Convergence Zone (ITCZ), effects of abrupt orography (e.g. 

Ethiopia Highlands, Mountain Kilimanjaro, and the Great Rift Val- ley), and ocean-induced 

wind systems (from the Atlantic and Indian Oceans). Several excellent studies of the short rains 

(also known as Vuli in Tanzania ,Deyr in Somalia and Umuhindo in Rwanda) addressed 

seasonal forecasting (e.g. Mutai et al.(1998) ; Philippon et al. (2002); Ntale et al. (2003); 

Hastenrath et al. ( 2004); Mwale and Gan (2005)), the occurrence of specific extreme events 

(e.g. Behera et al. (1999); Birkett et al. (1999); Latif et al. (1999); Webster et al. (1999)), and 

the dynamic relationship with the Indian Ocean (e.g. Hastenrath (2007); Ummenhofer et al.( 

2009)).  

Likewise, several excellent studies of the long rains (also known as Masika in Tanzania, 

Belg in Ethiopia, Itumba in Rwanda, and Gu in Somalia) addressed their general mechanisms 

and interannual variability (e.g. Nicholson (2019); Camberlin and Philippon (2002); Camberlin 

and Okoola (2003); Pohl and Camberlin (2006)) and long-term trends (e.g. Williams and Funk 

(2011) ; Lyon and DeWitt (2012)). A study by Omondi et al. (2013) examined the decadal 

variability of the short, long, and summer rains and their statistical linkages with sea surface 

temperatures (SSTs) over the Indian, Atlantic, and Pacific Oceans. Their results indicate that 

while El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) are the 

prominent modes, all three oceans contribute in explaining a significant portion of East 

African rainfall variance. 

1.1 Research Problem  

Most commonly used classical linear time series models are ARIMA and linear regression 

models.  The major drawback of these models is presumed linear form of the model, i.e. a linear 

correlation pattern is assumed among the time series hence, no nonlinear patterns can be 

modelled by these models. Sometimes the time series often contain both linear and nonlinear 

components, rarely they are pure linear or nonlinear and under such condition neither ARIMA 

nor linear regression models are adequate in modelling such series.  

To overcome this difficulty Regression with ARIMA errors method were evolved. 

Applications of Regression with ARIMA errors methods in the literature shows that 

amalgamating different methods can be an efficient and effective way to improve the forecasts 

of time series under consideration.  With these motivations, attempt have been made to develop 
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a time series linear regression model and a Regression with ARIMA errors models for 

forecasting seasonal rainfall in east Africa region. The details methodology is explained in 

subsequent chapters.  

1.2 Research objectives  

With above discussed problems and research gaps the following objectives were framed to 

forecast seasonal rainfall in East Africa:  

1. To develop MLRM for seasonal rainfall prediction in East Africa. 

2. To develop a RARIMAE model for seasonal rainfall prediction in East Africa. 

3. Comparison of model's efficiency under consideration. 

1.3 Research Methodology 
 

 The Global Climate Research Unit (CRU) are used to investigate the seasonal rainfall situation 

in the whole part of the region. The mean seasonal data from 1949 up 2000 are used in model’s 

development   as predictands whereas 10 teleconnections data including their 5 different times 

steps i.e (current time series, three months’ lead, six months lead, nine months lead and 12 

months lead) and 2 teleconnections with a single time series also have been used. Two kinds 

of models are developed i.e a statistical model and a predictive model with 72 predictors and 

58 predictors respectively. 

1.3.1 Statistical models   

A statistical model is a stochastic model which contains unknown parameters, and these 

parameters need to be estimated based on assumptions about the model and the data under 

considerations. The error term in the model carries appropriate assumptions viz., independence 

and homoscedasticity and the distribution being normal.  

1.3.1.1  Linear Model 

A linear model is one in which all the parameters appear linearly. Some examples of linear 

models are multiple linear regression model and polynomial models with one predictor variable 
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1.3.1.1.1 Multiple Linear Regression model 

𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯ , +𝛽𝑝𝑋𝑝 + 𝜀 ………………… (1.1) 

Where, 𝑌 is the dependent (response) variables   are independent (predictor or stimulus) 

variables, 𝛽0, 𝛽1, ⋯ , 𝛽𝑝 are the regression coefficients and 𝜀 is the error term.  

1.3.1.1.2  Polynomial models with one predictor variable 

𝑌=𝑎+𝑏𝑋+𝜀 (First-order model) ……………………… (1.2) 

𝑌 = 𝑎 + 𝑏𝑋 + 𝑐𝑋2 + 𝜀 (Second order model) … (1.3) 

These models are commonly used in many fields’ viz., agriculture, climatology, 

medicine, education, industry, etc. The Ordinary Least Square (OLS) is generally employed 

for parameter estimation.  

1.3.1.2 Nonlinear Models 

In real world, most of the existing phenomenon are not linear in nature rather they are very 

complex and in unidentified state. Nonlinear models play a prominent role in comprehending 

the complex nonlinear inter-relationships among many variables under consideration. 

Nonlinear models are one in which at least one of the parameters appears in nonlinear form. 

More precisely, in nonlinear model, at least one derivative with respect to a parameter should 

include that parameter. Examples of a nonlinear model are:  

𝑌(𝑡) = exp (𝑎𝑡 + 𝑏𝑡2) + 𝜀 ……………… (1.4) 

𝑌(𝑡) = 𝑎𝑡 + exp(−𝑏𝑡) + 𝜀………………. (1.5) 

Sometimes the nonlinear models can be transferred into linear model form by using some 

transformations, such models are called ‘intrinsically linear models’ (Draper and Smith, 1998). 
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1.3.1.3 Time series models 

In most of the phenomenon including climatology, large amounts of data pertaining to 

precipitation, Sea Surface Temperature (SST), Sea Level Pressure (SLP), etc. are being 

recorded sequentially over a period. Important properties of such data are the successive 

observations under considerations are dependent. Much efforts have been made by researchers 

over many years to develop the efficient forecasting models to improve the prediction accuracy 

of the models involving time series data.  

1.3.1.3.1 Linear time series models 

In the context of time series, the function of the dependent variable, where generally the time 

is linear, the model is called as a linear time series model. In other words, if a function relating 

to the observed time series phenomenon 𝑌𝑡 and the underlying shocks is linear, it is termed as 

linear time series model. Some important linear time series models are discussed below: 

1.3.1.3.1.1 Autoregressive (AR) model 

An observed time series 𝑌𝑡 can be elucidate by linear function of its previous observation  𝑌𝑡−1 

and some unexplainable random error 𝜀𝑡.   Let us consider equally spaced time series 𝑌𝑡, 𝑌𝑡−1,

𝑌𝑡−2 …, over an equal period of time say t, 𝑡−1, 𝑡−2, …, then 𝑌𝑡 can be defined as: 

𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡   …………. (1.6) 

If we represent the series in Backshift operator format, then it becomes 

∅(𝐵) = 1 − ∅1(𝐵) − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝   ………… (1.7) 

Where, B is the backshift 𝐵𝑌𝑡 = 𝑌𝑡−1 then the AR model can be written as ∅(𝐵)𝑌𝑡 = 𝜀𝑡.  
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1.3.1.3.1.2 Moving Average (MA) model 

Another important model of great practical utility in the framework of time series is finite 

moving average model.  The MA (q) model is defined as: 

𝑌𝑡 = 𝜀𝑡−𝜃1𝜀𝑡−1−𝜃2𝜀𝑡−2 − ⋯ −𝜃𝑞𝜀𝑡−𝑞………………… (1.8) 

In terms of backshift operator, the MA model of order q is given as follows: 

𝜃(𝐵) = 1 − 𝜃1(𝐵) − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞…… (1.9) 

Where B is the backshift operator, and the moving average model can be expresses as: 

𝑌𝑡 = 𝜃(𝐵)𝜀𝑡……………………………. (1.10) 

1.3.1.3.1.3 Autoregressive Moving Average (ARMA) model 

To obtain the higher efficiency and greater flexibility in modelling we combine both 

autoregressive and moving average processes together. These models are called as "mixed 

models" and are represented as ARMA (p,q) models: 

𝑌𝑡 = ∅1𝑌𝑡−1 + ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝 + 𝜀𝑡−𝜃1𝜀𝑡−1−𝜃2𝜀𝑡−2 − ⋯ −𝜃𝑞𝜀𝑡−𝑞 …… (1.11)         

Generally, in Backshift operator it is expressed as follows: 

∅(𝐵)𝑌𝑡 = 𝜃(𝐵)𝜀𝑡 ………………………………… (1.12) 

1.3.1.3.1.4 Autoregressive Integrated Moving Average (ARIMA) model 

Often most of the time series are non-stationary in nature, to obtain the stationary time series, 

we need to introduce the differencing term d. to make the non-stationary series to stationary 

series we add the differencing term then the general form of ARMA model becomes ARIMA 

and are represented as ARIMA (p,d,q). The process Yt is said to follow integrated ARMA model 

if ∆𝑌𝑡 = (1 − 𝐵)𝑑𝜀𝑡.  
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The ARIMA model is expressed as follows: 

∅(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃(𝐵)𝜀𝑡 …………………. (1.13) 

Where, 𝜀𝑡~𝑊𝑁 (0, 𝜎2)  and WN is the white noise. The Box-Jenkins ARIMA model building 

consists of three steps viz., identification, estimation, and diagnostic checking. 

There are many linear time series models available in literature, some prominent models 

among them are family of exponential smoothing models, Vector Autoregressive (VAR) 

model, Bayesian Vector Autoregressive (BVAR) models, Periodic Autoregressive (PAR) 

models, Structural Time Series Models (STSM), Cyclical Trend Model (CTM), Basic 

Structural Model with Dummy Seasonality (BSMDS) and etc. However, in this study we 

confined only to ARIMA family models because of their popularity for linear time series and 

due to its well-known Box-Jenkins model building procedure. 

1.3.1.3.2 Nonlinear time series models 

Main drawback of both ARIMA and other linear time series models is that the underlying 

relationship among variables is nonlinear and highly complex and cannot be explained through 

a linear modelling approach. Modelling and forecasting of data sets has to be carried out by 

some nonlinear models. From last three decades or so, a new area of “nonlinear time series 

modelling” has rapidly been developing. 

 Many studies and findings in literature shows that parametric nonlinear time series 

models like bilinear time series, doubly stochastic model, Generalized Autoregressive 

Conditional Heteroscedastic (GARCH) model, mixture autoregressive model and Threshold 

Autoregressive (TAR) model yields better performance, if underlying data generating process 

is follow some distribution and normal form. Regression with ARIMA errors (or ARIMAX) is 

a nonlinear model which combines two powerful statistical models namely, Linear Regression, 

and ARIMA into a single super-powerful regression model for forecasting time series data. 

1.3.1.3.2.1 ARIMAX model 

This is when you have at least two time series and you believe that one series is causing 

another.  The X is indicating an exogenous variable or multiple exogenous variables. ARMAX 
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model is a special case of ARIMAX model of order (p, 0, q). An ARIMAX model (i.e an 

ARIMA model with an exogenous variable) without constant takes the form 

𝑦𝑖 = 𝛽𝑥𝑖 + ∑ ∅𝑗𝑦𝑖−𝑗 + 𝜀𝑖 + ∑ 𝜃𝑗𝜀𝑖−𝑗
𝑞
𝑗=1

𝑝
𝑗=1 ……………………… (1.14) 

This is simply an ARMAX model with extra independent variable (covariant) on the right side 

of the equation. Using the lag operator, this is equivalent to 

∅(𝐿)𝑦𝑖 =  𝛽𝑥𝑖 + 𝜃(𝐿)𝜀𝑖 ………………………………… (1.15) 

                          Or 

𝑦𝑖 =
𝛽

∅(𝑙)
𝑥𝑖 +

𝜃(𝐿)

∅(𝐿)
𝜀𝑖…………………………………….... (1.16) 

One way to deal with such a model is to reinterpret it as a linear regression plus ARIMA errors. 

1.3.1.3.2.2 Regression with ARIMA errors model 

Regression with ARIMA errors model is mathematically equivalent to ARIMAX model above. 

ARIMAX is emphasizing that this model handles exogenous variable but did not say how. 

Regression with ARIMA errors can be a more difficult word to pick up for beginners because 

it is not an intuitive name, but it very clearly describes what happens in the actual formula that 

you have beta coefficients just like an OLS regression and then an error term that is an ARIMA 

process. 

𝑦𝑖 = 𝛽𝑥𝑖 + 𝑢𝑖……………………………………….. (1.17) 

                 Where 

𝑢𝑖 = ∑ ∅𝑗𝑢𝑖−𝑗 + 𝜀𝑖 + ∑ 𝜃𝑗𝜀𝑖−𝑗
𝑞
𝑗=1

𝑝
𝑗=1 ………… (1.18) 

This model is equivalent to 

𝑦𝑖 = 𝛽𝑥𝑖 +
𝜃(𝐿)

∅(𝐿)
𝜀𝑖……………………………………… (1.19) 
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1.3.2 Computer programs 

The whole work of analysing the data was done using computer programs; the essential 

programs which have been used are R software for data analysis and GMT (The Generic 

Mapping Tools) for maps production. 

1.3.3 Significance of Research 

Linear models are not always adequate for the time series that have both linear and non-linear 

structures. In this context, the regression with ARIMA errors which combines both linear and 

nonlinear component can be effective and efficient way to improve the forecasting performance 

of the time series under consideration. Findings of this research is also an important result for 

the regression with ARIMA errors models studies in the future. The results of the research will 

go a long way to help the policy makers and farmers who are involved in agricultural sector, 

natural disaster preparedness and water resources planning in East Africa.  

1.3.4 Organisation of the Thesis 

This research consists of four chapters. Chapter one addresses the general introduction of the 

research. It also includes the statement of the problem, general and specific objectives and 

scope of the study, significance of the study and the organization of the study. 

The second chapter reviews the key issues in the existing literature. In brief, this chapter 

includes the literature reviews of what other researchers have done concerning the topic of the 

research. 

The Chapter three is the methodology part, and it describes the type of data to be used 

from where (source of data) to be used, sample size, and how it ought to be analysed. Finally, 

the results are presented and discussed in chapter four. In this chapter a linear regression and a 

regression with ARIMA errors for statistical model and predictive model are evaluated for 

seasonal rainfall in East Africa. The last part of this chapter presents the summary of the main 

findings, the conclusion as well as the recommendation. 
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2 REVIEW OF LITERATURE 

A review of the available literature relevant to the proposed study has been furnished in this 

chapter with a perspective to overview the various methodologies and procedures employed by 

the researchers. The region of East Africa is characterized by bimodal rainy seasons. The longer 

rain falls from March to May (MAM) and shorter rains fall from October to December (OND). 

Some previous studies related to these two seasons are presented in the section bellow. 

2.1  The short rainfall season in East Africa 

The short rains, although the first season in most of eastern equatorial Africa, provide the 

largest contribution to interannual rainfall variability. They also have one of the strongest 

associations ever demonstrated to global circulation: the correlation between East African 

rainfall and the surface westerlies over the equatorial Indian Ocean is −0.85 (Hastenrath et 

al.,1993). This suggests a significant degree of predictability, assuming a fair degree of 

persistence of circulation parameters. Statistical forecast models for this season were developed 

by Philippon et al. (2002), Mutai et al. (1998), Ntale et al. (2003), Mwale and Gan (2005) and 

Hastenrath et al. (2004). Batte and Deque (2011) also examined the predictability of this 

season. They evaluated both deterministic (single model) predictions and probabilistic 

(multimodel) skill scores. 

The main months of the short rains are October and November. It should be noted that 

few of the studies were confined to these months. While it is well known that rainfall variability 

is highly coherent within the ON period, it is not clear whether or not the variability is coherent 

within the longer seasons (September–December or October–December) used by several 

studies. Camberlin and Philippon (2002) found that the coherence is limited to ON, but 

Hastenrath et al. (2004) found that for the coastal region the correlation between the ON season 

and the September–December season is 0.97. However, Hastenrath et al. (1993) show much 

greater skill in predicting October and November rainfall in this region than December rainfall. 

2.2 The long rainfall season in East Africa 

The boreal spring is the main rainy season in most of Kenya, Uganda, Somalia, Rwanda and 

northern Tanzania. This season is termed the masika in Kenya–Uganda, gu in Somalia and 
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itumba in Rwanda. The northern protrusion of these rains into Ethiopia is locally termed as the 

belg (or small rains) season. 

The most extensive study of the predictability of the boreal spring rains is that of 

Camberlin and Philippon (2002). They distinguished two geographical regions separately 

considering Ethiopia and Kenya–Uganda, but predictability was tested only for the latter 

region. Four February indices, involving several time scales and both atmospheric and oceanic 

parameters, served as predictors in linear multiple regression and linear discriminant analysis 

models. The predictors were SST in Niño-1.2, zonal wind over the Congo basin at 1000 mb, 

geopotential height of the 500-mb surface over the Near East, and the east–west moist static 

energy gradient between the East African highlands and the Sahel. The models were applied 

for the period 1951–97 and were evaluated using cross validation. For the multiple regression 

model, the correlation between the predicted and observed MAM rainfall for the Kenya–

Uganda section was 0.66 in the cross-validation mode. The discriminant analysis model 

correctly classified the seasonal anomalies 70% of the time. 

Considering two rainfall seasons, the review of the available literature is categorized 

under the following sections: Studies related to Regression Techniques and weather-based time 

series forecasting, Studies related to Autoregressive Integrated Moving Average (ARIMA) 

model and studies related to the combination of these statistical models 

2.3  Regression Techniques and weather-based time series forecasting 

Fisher (1925) was the first to tackle the pre-harvest forecasting problem using fifth degree 

polynomial regression model for modeling rainfall distribution and obtained the rainfall 

constants. A multiple regression equation was developed using crop yield as dependent variable 

and rainfall distribution constants as independent variables. It was found that wheat crop yield 

was significantly affected by rainfall. Davis and Harrell (1942) fitted third degree polynomials 

to study effect of rainfall and average maximum temperature on corn yield at various locations 

from the Great Plains to the Atlantic coast. It was found that a systematic change occurs in the 

pattern of precipitation climate indices relationships from one end of the region to the other. 

A model was proposed to estimate rainfall in Esparto using data mining process. Author used 

monthly rainfall of Senirkent, Uluborlu and E˘girdir station. The relative error of this model 

was 0.7 (Terzi ,2012). 
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A forecasting model was proposed for prediction of gold price using linear regression. 

Author used factors such as inflation, money supply and concluded that MLR perform better 

than Naïve method of prediction (Ismail, et.al, 2009). MPR technique, an effective way to 

describe complex nonlinear I/P-O/P relationship for prediction of rainfall and then compared 

the MPR and MLR technique based on the accuracy (Zaw and Naing (2008)). This described 

the development of a statistical forecasting method for SMR over Thailand using multiple 

linear regression and local polynomial-based nonparametric approaches. SST, SLP, wind 

speed, ENSO, and IOD were chosen as predictors. The experiments indicated that the 

correlation between observed and forecast rainfall was 0.6 (Nkrintra., et al 2005).  

Philippon et al. (2002) used a multiple linear regression model to predict the October–

December rainfall in a large sector of East Africa that included inland Kenya, northern 

Tanzania, plus most of Rwanda, Burundi, and Uganda. Based on September predictors 

identified from correlations for the 1968–97 period, their model explained 64% of the 

interannual variance. The predictors included a monsoon index involving the northeast and 

southwest wind components at 200 and 850 mb, respectively; meridional wind at 200 mb over 

the south-eastern tip of Africa; and an index of circulation over the western Indian Ocean. 

Mutai et al. (1998) found that the JAS global SST pattern is strongly correlated with 

October–December seasonal rainfall aggregated for a large sector of East Africa extending 

from 5°N, in Kenya, southward to Malawi at 15°S. They developed a multiple linear regression 

forecast model based on three rotated EOFs for SSTs in the north western Pacific, the eastern 

equatorial Pacific (the ENSO signal), and the South Atlantic. The model showed significant 

forecast skill, with a correlation between predicted and observed of 0.69 for the period 1945 to 

1988 for rainfall averaged over the entire region. The strongest predictor was an SST EOF with 

maximum variance in the northwest Pacific. 

Ntale et al. (2003)   used canonical correlation analysis to predict standardized seasonal 

rainfall totals for September–November at 3-month lead time. Predictors included SLP and 

SST anomaly fields in the Indian and Atlantic Oceans. The strongest association was with SSTs 

off the Somali and Benguela coasts. Mwale and Gan (2005) continued the work, comparing 

several methods of predicting standardized seasonal precipitation at 21 stations within a 

homogeneous region that comprises most of East Africa. Skill was higher with a nonlinear 

model known as artificial neural network than with the more standard linear canonical 

correlation model. In the latter case, the percent variance explained at individual stations for 
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the 11 seasons 1987 and 1997 ranged from 49% to 81%, with root-mean-square error (RMSE) 

of 0.4–0.75 standardized units. With linear correlation the model explained 6% to 32%, with 

RMSE of 0.4–1.2. 

Hastenrath et al. (2004) conducted several prediction experiments using a linear 

forecast model and a variable number of predictors, including two experiments with the 

Southern Oscillation index as the only predictor. The best predictors were zonal temperature 

and pressure gradients across the equatorial Indian Ocean. A cross validation for 1958–96 

based on six predictors, produced a correlation between predicted and observed rainfall of 0.45. 

However, when the model was tested using separate training and validation periods, correlation 

in the validation period was much lower. It also appeared that the correlation with individual 

predictors changed markedly over time. 

Diro et al. (2008) and Ntale et al. (2003) also used empirical methods to predict rainfall 

in the boreal spring over East Africa. Both studies focused on Ethiopia. The latter study applied 

canonical correlation analysis to predict standardized MAM rainfall totals at a 3-month lead 

time, using SLP and SST anomaly fields of the Indian Ocean adjacent to East Africa and in the 

Gulf of Guinea in the Atlantic. Camberlin and Philippon (2002) similarly found strong local 

influence (the Red and Arabian Seas) on MAM rainfall in Ethiopia. 

2.4 Autoregressive Integrated Moving Average (ARIMA) Model 

At present, several time-series analyses are used as a statistical method for modelling and 

developing rainfall forecast models. Among them, the ARIMA technique has become very 

popular due to its effective forecasting abilities over other conventional methods. Additionally, 

the ARIMA technique has shown effective results in terms of predicting the variability with 

better accuracy (Momani and Nail,2009). 

The idea of stochastic time series model was generated from the deterministic models 

in 19th century.  Yule in the year 1927 initiated the idea of stochastic time series with the 

assumption that the time series under consideration are the realization of a random process.  

This notion of concept leads to a landmark in time series analysis.  Researchers such as Yule 

(1927), Gilbert (1931), Slutzky (1937) and Yaglom (1955) initiated the concept of 

autoregressive (AR) and moving average models for the first time. Since then many theories 

and concepts have been developed by many researchers in the area of Autoregressive Moving 

Average Modeling. The credit for popularization of ARMA models goes to Box and Jenkins 
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(1970) with their fundamental book in Time Series Analysis i.e. Time Series Analysis: 

Forecasting and Control. There are many studies available in the literature regarding theoretical 

development and practical utility of ARIMA models, outcome of some related studies is briefed 

in this section.  

Box and Jenkins (1970) integrated the existing knowledge and came up with the book 

entitled “Time series analysis: Forecasting and Control”. This book has had an enormous 

impact on time series analysis and forecasting. They also developed a coherent, versatile three 

stage iterative procedure for development of ARIMA model viz., identification, estimation and 

validation, popularly known as Box – Jenkins approach. They developed the three-stage model 

building methodology based on transfer function models which is still now the robust 

procedure for linear time series under consideration. 

Newbold and Granger (1974) compared many models and came up with the conclusion 

that every model has its own advantages and disadvantages. For the time series with less than 

30 observations, stepwise regression was found better compared to other models.  For the 

observations between 30 to 50, combination of Holt-Winters and step wise regression was 

found suitable. For the time series of more than 50 observations the Box-Jenkins approach 

performed better compared to other methods. Over the years, several studies have considered 

ARIMA for developing rainfall forecasting models.  

Tularam (2010) has used the ARIMA model for rainfall forecasting in Queensland, 

Australia, where the relationship between rainfall and temperature was investigated. Kumar et 

al. (1995) investigated climate variability and predictability of Indian summer rainfall using 

the ARIMA technique.  

Otok and Suhartono (2009) developed a rainfall forecast model for Indonesia using the 

ARIMA method. Weeks and Boughton (1987) have used the ARIMA model for rainfall–runoff 

prediction, while Han et al. (2010) applied the ARIMA model for drought forecasting. Zhang 

(2003) also developed a hybrid ARIMA and neural network model for forecasting. 

Panga (2021) has tried to develop a Seasonal Autoregressive Integrated Moving Average 

(SARIMA) Model to analyze long term monthly rainfall data of Dar es Salaam region in 

Tanzania for the period of 53 years (1961 to 2014). Rainfall observations were discovered to 

have seasonality and also non-stationarity and hence differencing and seasonal differencing 
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was used to attain stationarity. Rainfall data were found to have two seasons namely October 

to December (OND) and March to May (MAM). The analysis exhibited that the seasonal 

ARIMA model which is satisfactory in describing the monthly rainfall data in Dar es Salaam 

Tanzania is SARIMA (2, 1, 1)(1, 1, 1)12. The model was then used for predictions of monthly 

rainfall values from January 2015 to December 2024. The forecasting results showed that 

monthly rainfall values have a decreasing trend, hence that may be a threat to agriculturists and 

water managers in the region. 

2.5 Novel combination of ARIMA model and multiple linear model  

However, studies which have considered ARIMA techniques never included climate indices as 

predictors to develop rainfall forecasting model in East Africa. Some researchers have 

successfully employed several different techniques such as adaptive neuro–fuzzy inference 

system (ANFIS), ANN, M5P Model Tree, multivariate adaptive regression splines (MARS), 

least squares support vector machine (LSSVM), classification and regression trees (CART) 

model for rainfall/streamflow forecasting in different parts of the world (Choubin, et al., 2014; 

Choubin, et al., 2016; Choubin, et. al., 2017; Choubin, et al., 2018; Kisi, et al., 2019)..  

However, the effective independent variable(s) are unlikely to be the same for all 

regions, i.e., some climatic variable(s), which are effective for one part of the world are not 

necessarily to be effective for other parts. Additionally, a single technique may not produce the 

best results for the entire world. As such, it is necessary to investigate different techniques for 

a region, while focusing on the stakeholders’ needs. To satisfy such a requirement, a simple 

ARIMAX model was developed to predict autumn rainfall in WA and its prediction 

performance was compared with previously developed multiple linear regression (MLR) 

models for the same region. ARIMAX model has been selected due to its superiority in terms 

of prediction performance over ARIMA and other models (Chadsuthi et al.,2012; Fan et 

al.,2009; Ling et al.,2019; Peter and Silvia, 2012).  

A study conducted by Jalalkamali., et al. (2015) reported that forecasting using 

ARIMAX is possible with 9 months lagged period whereas the performance has been as 

outstanding if compared to multilayer perceptron artificial neural network (MLP–ANN), 

support vector machine (SVM) models, and adaptive neuro–fuzzy inference systems (ANFIS) 

models. Considering such facts, the ARIMAX model could produce much necessary flexibility 

required to meet the stakeholders’ needs. 
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An ARIMAX model adds in the covariate on the right-hand side as follows: 

𝑌𝑡 = 𝛽𝑋𝑡 + ∅1𝑌𝑡−1 + ⋯ + ∅𝑝𝑌𝑡−𝑝 − 𝜃1𝑍𝑡−1 − ⋯ − 𝜃𝑞𝑍𝑡−𝑞 + 𝑍𝑡………. (2.1) 

Where 𝑋𝑡 is a covariate at time t and 𝛽 is its coefficient. While this looks straight-forward, one 

disadvantage is that the covariate coefficient is hard to interpret. The value of 𝛽 is not the effect 

on 𝑌𝑡  when the 𝑋𝑡 is increased by one (as it is in regression). The presence of the lagged values 

of the response variable on the right-hand side of the equation mean that 𝛽 can only be 

interpreted conditional on the value of previous values of the response variable, which is hardly 

intuitive. 

If we write the model using backshift operators, the ARIMAX model is given by 

∅(𝐵)𝑌𝑡 = 𝛽𝑋𝑡 + 𝜃𝑍𝑡……………………. (2.2) 

                                 Or 

             𝑌𝑡 = 𝛽∅(𝐵)𝑋𝑡 + 𝜃(𝐵)∅(𝐵)𝑍𝑡…………………….. (2.3) 

Where ∅(𝐵) = 1 − ∅1𝐵 − ⋯ − ∅𝑝𝐵𝑝 and 𝜃(𝐵) = 1 − 𝜃1𝐵 − ⋯ 𝜃𝑞𝐵𝑞 

Notice how the AR coefficients get mixed up with both the covariates and the errors term. 

Van den Bossche et al. (2004) developed models to explain and forecast the frequency 

and severity of accidents in Belgium. The objective of his study was to enhance the 

understanding of the developments in road safety by studying the impact of various explanatory 

variables on traffic safety. It is investigated whether the number of accidents and victims is 

influenced by weather conditions, economic conditions and policy regulations. The model is 

used to predict the frequency and severity of accidents for a 12-months out-of-sample data set. 

Using a regression model with ARIMA errors, the impact of variables on aggregate traffic 

safety is quantified and at the same time the influence of unknown factors is captured by the 

error term. The results show a significant effect of weather conditions and laws and regulations 

on traffic safety, but there seems to be negligible statistical impact of economic conditions. The 

model can easily be used to forecast traffic safety, as can be seen from the reasonably good fit 

obtained on a 95% confidence level.
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3 MATERIALS AND METHODS 

The present chapter consists of materials used and the methodology adopted for forecasting. 

The chapter is divided into the following sections: 

3.1 Description of the Study Area 

3.2 Sources and description of data 

3.3 Statistical methodologies employed 

3.4 Comparison of forecasting ability of different statistical techniques 

3.1 Description of the Study Area 

3.1.1 Area of study 

The study was carried over the Central-East Africa. This area is divided into two parts. The 

first part span over a longitude of 15E to 55E and a latitude of 15S to 15N. The selected area 

comprises 20 countries: Angola, Burundi, Cameroon (East), Congo-Brazzaville (East), 

Djibouti, Eritrea (South), Ethiopia, Kenya, Madagascar (North), Malawi (North), Mozambique 

(North), Rwanda, D.R.C, Central African Republic (CAR), Somalia, Sudan (South), Chad, 

Uganda, Tanzania, Zambia (North). Rainfall in these countries has similarities in magnitude 

and duration because their climate is controlled in regard to the tropical climate types which 

relates to the position of the Inter Tropical Convergent Zone (ITCZ). This area of study counts 

3569 geographical grid points in which the seasonal rainfall patterns are similar. The amount 

of rainfall with respect to the seasons is different considering the geographical position of each 

point.  

The second part of this study covers a longitude of 31.5E to 41E and a latitude of 3.5S 

to 0.5S. This is the regions of East Africa which exhibits two rainy seasons distinguished in 

“short rains” (occurring in boreal autumn in October, November and December) and “long 

rains” (occurring in boreal spring from March to May). To perform residual analysis for the 

linear regression model and for Regression with ARIMA errors model, a single time series was 

constructed by averaging monthly precipitation in selected grid box.  
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3.1.2 The systems that impact the distribution of rainfall over East Africa  

The two seasons, namely MAM and OND coincide with the double passage of the ITCZ, which 

lags behind the overhead sun by 3-4 weeks over the region. They also coincide with the 

transition between the northeast and southeast monsoon circulations. The OND season is a 

transition period from the southeast monsoon to the northeast monsoon and vice versa for the 

MAM season. The transition period is associated with convergence along which the ITCZ 

propagates. The ITCZ can be associated with a quasi-continuous belt of unsettled, often rainy 

weather (Folland et al. 1991). The convergence of these flows creates strong upward motion 

that causes rainfall if sufficient moisture is available.  

Even though the OND and MAM periods are considered transition periods, Nicholson 

(2019) described the air streams which govern the region’s climate as the Congo air with 

westerly and southwesterly flow, northeast monsoon and the southeast monsoon. Both 

monsoons are thermally stable and associated with subsiding air. The Congo air is humid, 

convergent, and thermally unstable and generally associated with high amounts of rainfall. 

These air streams are separated by two surface convergent zones, the ITCZ and the Congo Air 

Boundary; the former separates the two monsoons, the latter, the easterlies and westerlies. 

Normally, the passage of ITCZ leads the onset of the two rainy seasons by 3-4 weeks, but this 

may be modulated from season to season by the interactions between the ITCZ and 

perturbations in the global climate circulation, as well as with changes in the local circulation 

systems initiated by land surface heterogeneity induced by variable vegetation characteristics, 

large inland lakes and topography.  

The inter-annual variability of the East African climate is linked to perturbations in the 

global SSTs, especially over the equatorial Pacific and Indian Ocean basins, and to some extent, 

the Atlantic Ocean (Mutai and Ward, 2000; Indeje et al., 2000; Saji et al., 1999) among others. 

ENSO anomaly patterns play a dominant influence on the interannual variability of the region. 

The zonal temperature gradient over the equatorial Indian Ocean, often referred to as IOD 

Mode (Saji et al., 1999) and the coupled IOD-ENSO influence have also been linked to some 

of the wettest periods in the region, such as 1961, 1997 and 2006 (Black et al., 2003, Bowden 

and Semazzi, 2007; Owiti et al., 2008). This part of the region has a classical annual cycle of 

regions in the vicinity of equator, with two peaks in MAM and OND coinciding with the 

passage of the ITCZ. 
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The two major seasons described above, are largely controlled by the location and intensity of 

anticyclones such as St.Helena, Mascarenes, Azores and Siberian (Ilunga et al.2004; Anyah 

and Semazzi 2007;Kizza et al.2009). Rainfall in the region generally occurs during the rain’s 

seasons (MAM and SOND) as the ITCZ shifts to the equator from North to South, and Vice-

versa (Mutai and Ward 2000). 

The ITCZ is the most system controlling the rainfall season over the east Africa region. The 

subtropical anticyclones are regions of high pressure, which form the sources of the winds. 

They act as pumps of moisture into the areas of convergence. Their location and intensity 

influence the seasonal rainfall performance in the East African countries. The subtropical 

anticyclones with important effect on the climate of the country include Azores (situated 

Northern Atlantic Ocean), St. Helana (situated Southern Atlantic Ocean), Mascarene (Situated 

in the Southern Indian Ocean) and the Arabian high-pressure ridge (situated in the Arabian 

Sea). 

The Mascarene high pressure is a major pump of moisture into the region. It is at its 

strongest during the Southern Winter (June-August) when it is associated with the East African 

high-pressure ridge, which render the wind flow over Eastern Africa mainly diffluent at low 

levels. The Arabia ridge is fully developed during southern summer in the period of December-

February, it is mainly associated with the diffluent flow over the region creating mainly short 

dry period in the region and little rainfall in some areas due to its topographic features. The 

maritime location is favourable rainfall occurrence. The St.Helena high pressure is an 

important pump of humidity into the area from the Congo air basin. The Congo basin is an 

important of moisture for the region, which bring significant rainfall during March and May 

when the subtropical Anticyclones in the southern hemisphere are fully developed. The Azores 

high pressure is useful in the enhancement of the convergence in the region. 

The tropical cyclone affecting the region form in the Arabian and southwestern India. 

They form in the Arabian sea region during the period March to May and in the southern India 

during the period December-February. The tropical cyclone days over Indian ocean contains 

prominent decadal cycles, higher frequencies linked to Quasi Biennal Oscillation (QBO) and 

had positive relationships with SSTs over the entire southwest India Ocean from September to 

March (Jury et al.1999) suggested that the possibility of association between the occurrence of 

tropical cyclones and Madden Julian Oscillation (MJO). The MJO has a strong impact in the 

development of the tropical cyclone activities. The effects of Tropical cyclones on weather and 
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climate of the region depend on time of the year, location of the cyclones and the associated 

large-scale flow (Anyamba 1984,1993). The cyclones that move to the Mozambique channel 

can have adverse effects on the weather and climate of the region in March-May season which 

induce low level diffluent flow in the region (Anyamba,1993). However, the cyclones in the 

Mozambique channel during the months of December and January tend to enhance rainfall and 

are often associated with floods affecting the region during the period. They are characterized 

with the increase in pressure gradient between North Africa and Atlantic Ocean and Southwest 

India Ocean resulting to moist westerlies convergence over the region. It can therefore, be 

concluded that the effect of the tropical cyclones on region rainfall depends on the season, track 

and location of the cyclones. 

ENSO has important effect on precipitation over the region (Indeje et al.,2000). El Nino 

is linked with improved rainfall over the region especially in September to December (SOND) 

season. La Nina is linked with scarce rainfall over some parts of the region. It also influences 

or impacts the onset, cessation and the peacks of seasonal rainfall (Indeje, 2000). 

The IOD is the modes that have been observed to have important impact on rainfall 

over the region and other areas neighbouring the Indian Ocean (Owiti ,2005). 

SSTs of the global oceans are the most frequently used predictors of seasonal rainfall. Various 

effort has been made to determine useful relationships between SST and seasonal rainfall over 

the region and other parts of the tropics that could use to predict rainfall during the season 

(Nyakwanda,2003). 

Enhanced/depressed seasonal rainfall over a region has been linked with the warming 

and cooling aver the western Indian Ocean (Owiti, 2005) also the cooling over the Eastern 

Indian Ocean observed that wet/dry seasons over the region were closely associated with 

distinct anomalously warm/cool SSTs over parts of the western Indian/Eastern Atlantic 

Oceans. The SST based models have been observed to give climate outlooks for the region 

with useful skills. The skills of the forecasts are, however, influenced by the statistics of the 

weather within the season, which are dependent internal chaotic variations (Zebiak, 2003). 
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3.2 Sources and description of data 

The monthly precipitation data covering the period from 1949 to 2000 was obtained from 

Climate Research Unit (CRU). Next to that, the first differenced climate indices such as 

Southern Oscillation Index (SOI), Multivariate ENSO Index (MEI), Nino3.4, Dipole Mode 

Index (DMI), Indian Summer Monsoon Index (ISMI), Indian Monsoon Rainfall (IMR), The 

South Atlantic Ocean Dipole (SAOD), North Atlantic Oscillation (NAO), the Southern 

Annular Mode(SAM), Quasi-biennial Oscillation (QBO), Indian ocean Sea Surface 

Temperature (SST), Indian ocean Sea Level Pressure (SLP) and their respective lead times (i.e 

three months lead, six months lead, nine months lead and 12 months lead) are considered as 

potential predictors. 

3.2.1 Observational climate data 

Observational climate data are needed to describe climate patterns, asses the performance of 

climate models and calibrate impact models in present day. The data are obtained from either 

land-based network of meteorological stations (e.g HAdGHCND, GPCC, and CRU datasets) 

or meteorological observation satellites (e.g TRMM 3B 42 and TAMSTAT datasets). Some 

datasets are also derived from the combination of gauge measurements and the satellite 

products (e.g operational RFE 2.0, climatological RFE, and GPCP).  For regional applications, 

the stations records are spatially interpolated to generate gridded datasets(𝑋(𝑡, 𝑠) where X stand 

for variable of interest (e.g precipitation, temperature, etc.) whereas t and s stand for the 

temporal and spatial resolutions respectively. 

 The different datasets come from various international data centers. Each of these 

datasets covers different time periods at different spatial and temporal resolutions. The fidelity 

of all these datasets in representing the real African climate is questionable (Paeth at al.,2005). 

Indeed, uncertainty is inherent in all the observation products, especially in data sparse areas   

(Sylla et al.(2012); Gbobaniyi et al.(2014)). As pointed out by Pinker et al. (2006), the satellite 

estimates generally overestimate precipitation over semi-arid regions of the African continent. 

This is certainly due to the fact that algorithms translating measured radiation to effective 

rainfall amount are still subject to some uncertainties (Paeth et al.,2005). 

 Nikulin et al. (2012) have compared Tropical Rainfall Measuring Mission (TRMM) 

data to Global Precipitation Climatology Project (GPCP) satellites-gauge combination data 
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(Adler et al.2003) and found that TRMM exhibits significant dry bias up to 50% over some 

regions in tropical Africa. Many other scholars have also shown that combined satellite-gauge 

information often outperform the current satellite only products (e,g Nicholson et al.(2003a,b); 

Dinku  et al.(2007); Paeth et al.(2011b);Parker et al.(2011)). But these combined products also 

do not lead to much added-value when compared to some gauge-datasets like Global 

Precipitation Climatology Centre (GPCC), especially in the Western Africa (Nicholson et 

al.(2003a); Nicholson et al.(2003b); Ali et al. (2005)).  

 In general, some authors have suggested that the discrepancy between all the datasets 

might be due to the facts that: (1) they use different gauge analysis products (Huffman et 

al.(2009); Nikulin et al.(2012)), (2) the number of observations used in the products varies over 

time and regions (Sylla et al.,2012), and (3) different retrieval, merging and interpolation 

techniques are applied (sylla et al.(2012); Panitz et al.(2013)). As pointed out by Zhang et al. 

(2012) and Panitz et al. (2013) in station errors are particularly relevant in areas where almost 

no gauge data are available (e,g central Africa) because of their large spatial influence. 

However, good agreement between GPCC, GPCP, and CRU datasets have generally been 

reported except in areas like Angola and the Democratic Republic of the Congo where the 

number of gauge stations is very limited (Zhang et al. (2012); Panitz et al. (2013); Harris et 

al.(2014a)). Gbobaniyi et al. (2014) have also confirmed that GPCP and CRU agree well in 

representing the inter-annual variability in the Sahel with a high correlation coefficient of 

around 0.96 but reported relatively low correlation (0.63) over the Gulf of Guinea. 

Nevertheless, they have all concluded that one or the other dataset as reference does not change 

the conclusion. 

 In this study, the CRU time-series was selected for impact application due its high 

spatial resolution, long temporal coverage, and large spatial coverage. This dataset has also 

advantage of being freely available and consistent over time for one of the climate variables of 

interest in this study (i.e total precipitation). Herein, the CRU dataset serves as reference for 

representing the pattern, mean and trend of the present-day climate. The CRU dataset has 

already been extensively analysed by Brohan et al. (2006). It has also been intensively used for 

different research purposes; for example, climate models assessment (Paeth et al. (2005); 

Trenbert et al. (2007); Paeth (2011); Jacob et al. (2012); Nikulin et al. (2012); Kim et al. (2013)) 

and human disease transmission (Gaardbo Kuhn et al. (2002); Ermert et al. (2012)) and is thus 

regarded as suitable for this study. 
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In this study, CRU TS 4.01 for 1901-2016 was used because it was the most recent at the start 

of the analysis. CRU TS 4.01 (herein referred to as CRU) is publicly on the Climatic Research 

Unit portal (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/) on a regular high spatial 

resolution (0.5grid) and represents century-long time series. Indeed, it is a monthly time series 

of various climate variables including precipitation, potential evapotranspiration and air 

temperature developed by the Climatic Research Unit of University of East Anglia in Norwich, 

UK (Mitchell and Jones 2005; Harris et al 2014a). The main process change in version 4 is the 

move to Angular Distance Weighting (ADW) for gridding the monthly anomalies. Compared 

to the previous approach, which used IDL routines TRIANGULATE and TRIGRID to effect 

triangulated linear interpolation, ADW allows us total control over how station observations 

are selected for gridding, and complete traceability for every datum in the output files. For 

secondary variables, this means that observed and synthesised data values are used in the same 

way in the gridding process. 

 The monthly database is built from in situ meteorological stations from around the 

world and spans the period from 1901 to 2016 at a spatial resolution of 0.5X5 

latitude/longitude over all land masses. The CRU dataset is constructed using Climate Anomaly 

Method (CAM) developed by (Peterson et al 1998). Only the stations with at least 75% of non-

missing values in each month through the reference period (1949-2000) were included in the 

gridding operation. Those stations values were used to compute monthly climatology per 

station provided that they have fallen within the range of 3 times (4 times for precipitation) 

standard deviation departure from the normal. For the stations that passed the screening, the 

time series were converted to monthly anomalies relative to their average on the reference 

period. Depending on the station locations, the anomaly values were further on interpolated to 

a half degree grid cell resolution through triangulated linear interpolation. First, for each 

variable a correlation decay distance (CDD) (New et al 2000) was defined to determine the 

stations to be considered to infill each land grid cell. The monthly anomalies were then passed 

to the gridding routines only if a least one station falls in a land grid cell within the CDD. In 

case no station falls in a given land grid cell, the empty cell is given 0 as anomaly value. These 

yields 0.5regular gridded anomalies for all global land areas. The gridded anomalies were 

finally converted to absolute values (construction of the time series) by combining them the 

monthly gridded reference climatology (New et al 1999) used in the earlier versions of the 

CRU TS dataset (cf. Harris et al 2014 for detailed description of the dataset). 

https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.01/
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3.2.2 Predictors (Global scare circulation variables) 

The Atlantic and Indian oceans are major sources of moisture for the East African region. The 

oceans do not influence the regional climate independently but in some integrated manner 

through the interactions associated with the oceanic and atmospheric circulations (Wolter 

1987). ENSO and Walker circulation (Chervin and Druyan,1984), and the Great Ocean 

Conveyor (GOC) (Gross (1972); Saenko et al. (2002)) are some examples of the atmospheric 

and oceanic processes that may be associated with the combined influence of the global oceans 

on global climate.  

 The low-level circulation patterns associated with the above-normal rainfall over the 

region is dominated by easterly inflow from the Indian Ocean and westerly inflow from the 

Congo tropical rain forest into the positive rainfall region (Anyah and Semazzi (2006); Schreck 

and Semazzi (2004)). Goddard and Graham (1999) observed significant influence of the Indian 

Ocean on seasonal rainfall over the region. Okoola (1996) observed that the cooling over the 

eastern Atlantic Ocean together with the warming over the Indian Ocean are associated with 

enhanced rainfall over the region. 

3.2.2.1 Extended Reconstructed Sea Surface Temperature (ERSST) v4 

In this study the monthly National Oceanic and Atmospheric Administration Extended 

Reconstructed Sea Surface Temperature (NOAA ERSST) v4 dataset (Huang et al.,2014; Liu 

et al.2014) has been used. Itis a global monthly sea surface temperature dataset derived from 

the International Comprehensive Ocean–Atmosphere Dataset (ICOADS). It is produced on a 

2 × 2 grid with spatial completeness enhanced using statistical methods. This monthly 

analysis begins in January 1854 continuing to the present and includes anomalies computed 

with respect to a 1971–2000 monthly climatology. The newest version of ERSST, version 4, is 

based on optimally tuned parameters using the latest datasets and improved analysis methods. 

  SST anomalies in the western Indian Ocean exert a strong influence on the equatorial 

East African short rains than central and eastern Indian Ocean SST anomalies both in terms of 

the coverage of significantly changed precipitation and the magnitude of precipitation 

response. 
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3.2.2.2 Indian Ocean Dipole (IOD) 

Intensity of the IOD is represented by anomalous SST gradient between the western equatorial 

Indian Ocean (50E-70E and 10S-10N) and the south eastern equatorial Indian Ocean (90E-

110E and 10S-0N). This gradient is named as Dipole Mode Index (DMI). When the DMI is 

positive then, the phenomenon is refereed as the positive IOD and when it is negative, it is 

refereed as negative IOD. 

 Positive western Indian Ocean SST anomalies significantly increases the short rains over 

95% of the equatorial East African domain (30 − 40E, 5S − 5N), while only 30% of the 

region responds to central and eastern Indian Ocean SST anomalies. This was approved by 

Ummenhofer et al. (2009) in his study on the relationship of October-November rainfall over 

(31 − 45E, 1S − 10N) and IOD using ensemble simulations with an atmospheric general 

circulation model (GCM). They asses the contributions of individual (and combined) poles of 

the IOD to above-average precipitation over East African region. They show that increased 

East African short rains during positive IOD are driven mainly by warming over the western 

Indian Ocean (38 − 70E, 12S − 12N), leading to a reduction in sea level pressure over the 

western half of the Indian Ocean. Converging wind anomalies over East Africa lead to the 

moisture convergence and increased convective activity. IOD data used in this study is 

downloaded from the following link: https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ 

3.2.2.3 NINO3.4 

There are several indices used to monitor the tropical Pacific, all of which are based on SST 

anomalies averaged across a given region. Usually the anomalies are computed relative to a 

base period of 30 years.  The Niño 3.4 index and the Oceanic Niño Index (ONI) are the most 

commonly used indices to define El Niño and La Niña events.  

The Niño 3.4 (5N-5S, 170W-120W) anomalies may be thought of as representing the 

average equatorial SSTs across the Pacific from about the dateline to the South American 

coast.  The Niño 3.4 index typically uses a 5-month running mean, and El Niño or La Niña 

events are defined when the Niño 3.4 SSTs exceed  ±0.4C for a period of six months or more. 

The Niño 3.4 index are downloaded from the following link:    

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.anom.data 

 

https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.anom.data
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3.2.2.4  Southern Oscillation Index (SOI) 

The SOI is defined as the normalized pressure difference between Tahiti and Darwin. There 

are several slight variations in the SOI values calculated at various centres. Here we calculate 

the SOI based on the method given by Ropelewski and Jones (1987). It uses a second 

normalization step and was the Climate Analysis Centre's standard method in 1987. The reader 

is also referred to Allan et al. (1991) and Können et al. (1998) for details of the early pressure 

sources and methods used to compile the series from 1866 onwards.                                                    

The SOI index used in this study are downloaded from the following link: 

https://crudata.uea.ac.uk/cru/data/soi/soi_3dp.dat 

3.2.2.5 Multivariate El Niño Index (MEI) 

El Niño/Southern Oscillation (ENSO) is the most important coupled ocean-atmosphere 

phenomenon to cause global climate variability on interannual time scales. The monitoring of 

ENSO by the Multivariate ENSO Index (MEI) is based on the six main observed variables over 

the tropical Pacific. These six variables are: sea-level pressure (P), zonal (U) and meridional 

(V) components of the surface wind, sea surface temperature (S), surface air temperature (A), 

and total cloudiness fraction of the sky (C). These observations have been collected and 

published in ICOADS for many years.  

The MEI is computed separately for each of twelve sliding bi-monthly seasons 

(Dec/Jan, Jan/,..., Nov/Dec). After spatially filtering the individual fields into clusters 

(Wolter,1987), the MEI is calculated as the first unrotated Principal Component (PC) of all six 

observed fields combined. This is accomplished by normalizing the total variance of each field 

first, and then performing the extraction of the first PC on the co-variance matrix of the 

combined fields (Wolter and Timlin, 1993). In order to keep the MEI comparable, all seasonal 

values are standardized with respect to each season and to the 1950-93 reference period.          

The MEI index are downloaded from the following link: 

https://www.psl.noaa.gov/enso/mei.ext/table.ext.html 

3.2.2.6 The South Atlantic Ocean Dipole (SAOD) 

The South Atlantic Ocean Dipole (SAOD) is the mechanism of warming of the surface waters 

off the coasts of West/Central Equatorial Africa associated with concurrent cooling of similar 

magnitude off the Argentina-Uruguay-Brazil coasts. These SST patterns are coupled to the 

atmospheric circulation field and regional climates. 

https://crudata.uea.ac.uk/cru/data/soi/soi_3dp.dat
https://www.psl.noaa.gov/enso/mei.ext/table.ext.html
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A simple measure of the dipole, the SAOD Index (SAODI) is defined by differencing 

the domain-averaged normalized SST anomaly (SSTA) of the two centers of intense warming 

and cooling associated with the SAOD, viz: 

SAODI=[SSTA]NEP-[SSTA]SWP 

where the square brackets indicate domain averages, the subscripts show the two regions over 

which the SSTA averages are computed. These domains are described by their locations in the 

South Atlantic Ocean as the northeast pole (NEP:  10E–20W, 0 - 15ºS) and the southwest 

pole (SWP: 10º–40ºW, 25ºS - 40ºS). As shown below, this index is closely reproduced by the 

time series of the SAOD-mode determined by the singular value decomposition of the South 

Atlantic Ocean SST and mean sea level pressure. The data are downloaded from the following 

link: http://ljp.gcess.cn/dct/page/65592/ 

3.2.2.7 Quasi-biennial Oscillation (QBO) 

The quasi-biennial oscillation (QBO) is a quasiperiodic oscillation of the equatorial zonal wind 

between easterlies and westerlies in the tropical stratosphere with a mean period of 28 to 29 

months. The alternating wind regimes develop at the top of the lower stratosphere and 

propagate downwards at about 1 km (0.6 mi) per month until they are dissipated at the tropical 

tropopause. Downward motion of the easterlies is usually more irregular than that of the 

westerlies. The amplitude of the easterly phase is about twice as strong as that of the westerly 

phase. At the top of the vertical QBO domain, easterlies dominate, while at the bottom, 

westerlies are more likely to be found. At the 30mb level, with regards to monthly mean zonal 

winds, the strongest recorded easterly was 29.55 m/s in November 2005, while the strongest 

recorded westerly was only 15.62 m/s in June 1995. The QBO data used in this study are 

downloaded from the following link:  https://psl.noaa.gov/data/correlation/qbo.data 

3.2.2.8 North Atlantic Oscillation (NAO) 

The North Atlantic Oscillation (NAO) is a weather phenomenon in the North Atlantic Ocean 

of fluctuations in the difference of atmospheric pressure at sea level (SLP) between the Iceland 

Low and the Azores High. Through fluctuations in the strength of the Icelandic low and the 

Azores high, it controls the strength and direction of westerly winds and location of storm 

tracks across the North Atlantic (Hurrell., et al.2003). 

http://ljp.gcess.cn/dct/page/65592/
https://psl.noaa.gov/data/correlation/qbo.data
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The NAO was discovered through several studies in the late 19th and early 20th 

centuries (Stephenson, et al.2003). Unlike the ENSO phenomenon in the Pacific Ocean, the 

NAO is largely an atmospheric mode. It is one of the most important manifestations of climate 

fluctuations in the North Atlantic and surrounding humid climates (Hurrell,1995). The North 

Atlantic Oscillation is closely related to the Arctic oscillation (AO) (or Northern Annular Mode 

(NAM)) but should not be confused with the Atlantic Multidecadal Oscillation (AMO).           

The NAO data are downloaded from the following link: 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nao.long.data 

3.2.2.9 The Southern Annular Mode (SAM) 

The Southern Annular Mode (SAM), also known as the Antarctic Oscillation (AAO), describes 

the north–south movement of the westerly wind belt that circles Antarctica, dominating the 

middle to higher latitudes of the southern hemisphere. 

The changing position of the westerly wind belt influences the strength and position of cold 

fronts and mid-latitude storm systems and is an important driver of rainfall variability in 

southern Australia. In a positive SAM event, the belt of strong westerly winds contracts 

towards Antarctica. This results in weaker than normal westerly winds and higher pressures 

over southern Australia, restricting the penetration of cold fronts inland. 

Conversely, a negative SAM event reflects an expansion of the belt of strong westerly 

winds towards the equator. This shift in the westerly winds results in more (or stronger) storms 

and low-pressure systems over southern Australia. During autumn and winter, a positive SAM 

value can mean cold fronts and storms are farther south, and hence southern Australia generally 

misses out on rainfall. However, in spring and summer, a strong positive SAM can mean that 

southern Australia is influenced by the northern half of high-pressure systems, and hence there 

are more easterly winds bringing moist air from the Tasman Sea. This increased moisture can 

turn to rain as the winds hit the coast and the Great Dividing Range. In recent years, a high 

positive SAM has dominated during autumn–winter and has been a significant contributor to 

the 'big dry' observed in southern Australia from 1997 to 2010. The SAM data are downloaded 

from the following link: 

https://psl.noaa.gov/data/20thC_Rean/timeseries/monthly/SAM/sam.20crv2c.long.data 

 

 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nao.long.data
https://psl.noaa.gov/data/20thC_Rean/timeseries/monthly/SAM/sam.20crv2c.long.data
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3.2.2.10  Monthly mean Sea Level Pressure from the NCEP Reanalysis 

The NCEP/NCAR Reanalysis project is using a state-of-the-art analysis/forecast system to 

 perform data assimilation using past data from 1948 to the present. A subset of this data has 

 been processed to create monthly means of a subset of the original data. There are also files 

 containing data from variables derived from the reanalysis and some other statistics. The seal 

level pressure data are downloaded from the following link:  ftp://ftp.cdc.noaa.gov/Datasets/

ncep.reanalysis.derived/surface/slp.mon.mean.nc 

3.2.2.11  Indian monsoon Index (IM)and Indian summer monsoon rainfall (ISMR) 

From a circulation perspective, the monsoon is dominated by the lowest baroclinic mode, 

which is stimulated by the latent heat released in the middle troposphere. The vertical shears 

defined by the difference of 850- and 200-hPa zonal winds, U850−U200, provided a first-order 

approximation to the strength of the gravest baroclinic mode. The large zonal (westerly) 

vertical shears in pressure coordinates, denoted by WS (westerly shear), extend along 10°N 

from Africa to the western North Pacific with a maximum of 36 m s−1 (10°N, 60°E). The WYI 

defined by the WSs averaged in the area (0°–20°N, and 200-hPa winds display maximum 

intensity (termed action centers). The data are downloaded from the following link: 

http://apdrc.soest.hawaii.edu/projects/monsoon/ismidx/ismidx-jjas.txt/ 

3.3  Statistical tools employed 

Time series forecasting models are very useful techniques for forecasting weather time series 

phenomenon. Generally, whether time series data contains both linear and nonlinear structures 

hence, no single model is capable to capture both linear and nonlinear pattern present in the 

data. Consequently, various types of linear and nonlinear parametric time series models are 

used for forecasting, like time series linear regression models, ARIMA models (Box and 

Jenkins 1970), regression with ARIMA errors models and finally the methods for comparing 

different models. The time series forecasting models employed in the present study are 

described as below: 

3.3.1 Regression Analysis 

In regression analysis procedure the impact of weather parameters on seasonal rainfall 

prediction in East Africa was assessed by relating the weather parameters on seasonal 

rainfall.  

ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/slp.mon.mean.nc
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/slp.mon.mean.nc
http://apdrc.soest.hawaii.edu/projects/monsoon/ismidx/ismidx-jjas.txt/
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3.3.1.1 Multiple Linear Regression Analysis 

The Multiple Linear Regression (MLR) models are applied when two or more independent 

variables are influencing the dependent variable. The dependent variable is also called the 

response variable and independent variables are named as Predictors. Three assumption check 

is necessary before conducting linear regression analysis: linearity, equal of variance, and 

normality. In a linearity check, the linear relationship between the dependent and independent 

variables is verified. In equal of variance, the spread of the residuals is checked and in normality 

check, data distribution is sought whether it is normally distributed or not. If selected variables 

satisfy all these assumption checks, linear regression analysis can proceed further. The equation 

for the MLR model is given below: 

𝑌 = 𝑏0+𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ , 𝑏𝑛𝑋𝑛 + 𝑒𝑡 …………………….. (3.1) 

Where, 𝑏0  is the intercept, 𝑏1,𝑏2, … , 𝑏𝑛 are the regression coefficients representing the 

contribution of explanatory variables 𝑋1,   𝑋2  … , 𝑋𝑛   on the dependent variable Y and error 𝑒𝑡  

at time t is i.i.d. with zero mean and finite variance (Drapper and Smith 1966). 

3.3.1.2 Least square estimation 

In practice, of course, we have a collection of observations, but we do not know the values 

of the coefficients 𝑏1, 𝑏2, … , 𝑏𝑛. These need to be estimated from the data. 

The least squares principle provides a way of choosing the coefficients effectively by 

minimising the sum of the squared errors. That is, we choose the values of 𝑏1, 𝑏2, … , 𝑏𝑛 that 

minimise 

 

∑ 𝑒𝑡
2𝑇

𝑡=1 = ∑ (𝑌𝑡 − 𝑏0 − 𝑏1𝑋1,𝑡 − 𝑏2𝑋2,𝑡 − ⋯ , −𝑏𝑛𝑋𝑛,𝑡)2𝑇
𝑡=1 …………………… (2.2) 

This is called least squares estimation because it gives the least value for the sum of squared 

errors. Finding the best estimates of the coefficients is often called “fitting” the model to the 

data, or sometimes “learning” or “training” the model. 

3.3.1.3 Variable’s selection Technics 

When there are many possible predictors, we need some strategy for selecting the best 

predictors to use in a regression model. 
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A common approach that is not recommended is to plot the forecast variable against a 

particular predictor and if there is no noticeable relationship, drop that predictor from the 

model. This is invalid because it is not always possible to see the relationship from a 

scatterplot, especially when the effects of other predictors have not been accounted for.  

Another common approach which is also invalid is to do a multiple linear regression on all 

the predictors and disregard all variables whose p-values are greater than 0.05. To start with, 

statistical significance does not always indicate predictive value. Even if forecasting is not 

the goal, this is not a good strategy because the p-values can be misleading when two or 

more predictors are correlated with each other. The methods for selection are described 

below: 

3.3.1.4 Correlation Analysis 

The relationship between two variables between x and y is represented by the correlation 

coefficient 𝑟𝑥𝑦 of Pearson (Pearson Product-moment coefficient of linear correlation). 

Correlation analysis is one of the important step during variables sections for checking the 

influences of available predictors on the predictors. The calculation of  𝑟𝑥𝑦 is based on the ratio 

of the covariance of the two variables and the standards deviation (Willks,2006): 

rxy =
cov(x,y)

sx∗sy
=

1

n−1
∑ (xi−x̅ )(yi−y̅n

i=1 )

√
1

n−1
∑ (xi−x̅ )2n

i=1 ∗√
1

n−1
∑ (yi−y̅)2n

i=1

 ……………. (3.3) 

where −1 ≤ 𝑟𝑥𝑦 ≤ 1 

If 𝑟𝑥𝑦 is positive (negative) the result is a concordant (inverse) with an increasing (decreasing) 

for y if x increases and vice versa. If 𝑟𝑥𝑦 is |1| the linear relationship is a perfect one, at a value 

of 0 there is no relationship. 

After calculating correlation coefficients 𝑟𝑥𝑦 between two variables, testing for 

significance is necessary. For this one can look up critical values which enclose the null 

hypothesis 𝐻0 .If the absolute value of |𝑡̂|, with respect to the degree of freedom Φ and the 

significance level α is greater than the absolute critical value of the critical |𝑡𝑐𝑟𝑖𝑡| then 𝐻0 is 

discarded and the correlation is significant (Sachs and Hedderich, 2006): 

𝐻0: 𝜌 =  0 and  𝐻1: 𝜌 ≠  0…………… (3.4) 
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𝑡̂ = 𝑟 ∗ √
𝛷

1−𝑟2 , where 𝛷 = 𝑛 − 2………… (3.5) 

After a study of relationship between rainfall and time series teleconnections in each grid box, 

next step in this research was to check multicollinearity in each model. For computational 

reasons, the explanatory variables 𝑋1,𝑡 , … , 𝑋𝑘,𝑡 may not be (perfect) correlated. From a practical 

point of view, the estimated coefficients will be unstable und unreliable if explanatory variables 

are highly correlated. In the presence of multicollinearity, the effect of a single explanatory 

variable can’t be isolated, as the regression coefficients are quite uninformative and their 

confidential intervals very wide. If the purpose of the model is only to predict the dependent 

variable, multicollinearity is not real a problem. However, if one is interested in the individual 

estimated coefficients, results should be interpreted with caution, since only imprecise 

information can be obtained from the regression coefficients. In the study at hand, the impact 

of explanatory variables on seasonal rainfall time series is important. Therefore, the models 

should be checked for multicollinearity. 

3.3.1.5 Collinearity and stepwise VIF selection 

A simple approach to identify collinearity among explanatory variables is the use of variance 

inflation factors (VIF). VIF calculations are straightforward and easily comprehensible, the 

higher the value, the higher the collinearity. Furthermore, to eliminate highly overlapping 

predictors, which introduce multi-collinearity issues, the predictors selection procedure relies 

on the variance inflation factors (VIF): 

𝑉𝐼𝐹𝑗 = 1/(1 − 𝑅𝑗
2)................................................ (3.6) 

Where 𝑅𝑗
2 (coefficient of determination) from a regression between the 𝑗𝑡ℎ candidate predictor 

and each selected predictor.  

A VIF is calculated for each explanatory variable and those with high values are 

removed. Neter et al. (1960) indicate that VIF should not be larger than 10 to minimise multi-

collinearity among predictors. The definition of ‘high’ is somewhat arbitrary but values in the 

range of 5-10 are commonly used. Chen and Georgakakos (2014) found that a VIF of 4 is more 

effective and does not undermine forecast accuracy and in this study the VIF threshold used is 

5. In the last step for predictors selection, the backward stepwise linear regression is applied. 
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The method used is a forward selection method, in which all independent variables entered in 

the model at each step are reassessed based on their partial F-statistics. 

3.3.1.6 Stepwise Regression Analysis 

An important issue in regression modelling is the selection of explanatory variables which are 

really influencing the dependent variable. There are many methods for selection, stepwise 

regression analysis is frequently used variable selection algorithm in regression analysis. This 

is a modification of forward selection method, in which all independent variables entered in 

the model at each step are reassessed based on their partial F-statistics. An explanatory variable 

incorporated at earlier step may now be unnecessary because of the relationships between it 

and the latest variable entered in the model (Montgomery et al. 2003). The predictor variables 

finally selected by the stepwise algorithm were included in the final model. 

If there are a large number of predictors, it is not possible to fit all possible models. 

For example, 40 predictors lead to 240> 1 trillion possible models! Consequently, a strategy 

is required to limit the number of models to be explored. 

An approach that works quite well is backwards stepwise regression: 

• Start with the model containing all potential predictors. 

• Remove one predictor at a time. Keep the model if it improves the measure of 

predictive accuracy. 

• Iterate until no further improvement. 

If the number of potential predictors is too large, then the backwards stepwise regression 

will not work and forward stepwise regression can be used instead. This procedure starts 

with a model that includes only the intercept. Predictors are added one at a time, and the one 

that most improves the measure of predictive accuracy is retained in the model. The 

procedure is repeated until no further improvement can be achieved. 

Alternatively, for either the backward or forward direction, a starting model can be 

one that includes a subset of potential predictors. In this case, an extra step needs to be 

included. For the backwards procedure we should also consider adding a predictor with each 

step, and for the forward procedure we should also consider dropping a predictor with each 

step. These are referred to as hybrid procedures. It is important to realise that any stepwise 

approach is not guaranteed to lead to the best possible model, but it almost always leads to 

a good model. For further details see James, Witten, Hastie and Tibshirani (2014). 
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3.3.1.7 Principal component Analysis 

As it was introduced in section 3.2, the SST and SLP data used spans from 1949 to 2000 and 

was composed of monthly data. So, the time step 𝑡 = 1,2,3, … … 𝑛 with n=624. Prior to the 

PCA annual cycles were calculated and subtracted from the SST/SLP data for each month per 

grid point. Let X (t, s) represent the new data with annual cycles removed. In practice, PCA is 

performed on either a correlation matrix or a covariance matrix. In this study the covariance 

matrix was used because it allows identifying the strongest variations in the dataset contrary to 

the correlation matrix in which the spatial variations in the dataset are removed (Wilks 2011). 

Hence, per grid point s the data were transformed as follows: 

𝑋′(𝑡, 𝑠) = 𝑤(𝑠) ∗ (𝑋(𝑡, 𝑠) − 𝑋̅ (𝑠))…………………………… (3.7) 

Here 𝑋̅ (𝑠) represents the arithmetic mean per grid point. 

Basically the goal of PCA is to find the set of new variables or principal components ui(t) that 

summarise the information in the data X’(t,s), together with their associated variability modes 

or eigenvectors ei(s). Knowing those principal components time series and eigenvectors at any 

time the data can be reconstructed as follows (Storch and Zwiers 2004): 

𝑋′(𝑡, 𝑠) = ∑ 𝑢𝑖(𝑡). 𝑒𝑖
𝑇(𝑠)𝑚

𝑖=1 …………………… (3.8) 

In principle, before obtaining the principal components a main mathematical issue has to be 

solved. Indeed, the mathematical issue that arises here is to find the eigenvectors 𝑒𝑖(𝑠) and the 

associated eigen values 𝜆𝑖 . This yield a system of equations that can be expressed as (Storch 

and Zwiers 2004): 

         𝐴      ∗    𝐸           =   𝜆 ∗   𝐸  ………………………… (3.9) 

 (𝑚 ∗ 𝑚)  (𝑚 ∗ 1)                   (𝑚 ∗ 1)    

Since the data set contains m grid points, this equation should be resolved m times. In fact, 

starting with the covariance matrix of the data (𝐴 = 𝑋′𝑇𝑋′) has to be solved and the eigenvector 

𝑒1(𝑠) and its eigenvalue 𝜆1 obtained. This first eigenvector will have the largest variance. 

Subsequently the matrix A should be recomputed each time after subtracting the information 

explained by the 𝑖𝑡ℎ eigenvector and the next eigenvector ([𝑖 + 1]𝑡ℎ) with the largest possible 

variance can be calculated together with its eigenvalue. Moreover, all the eigenvectors should 

be uncorrelated and thus can be denoted as empirical orthogonal functions (EOFs). The share 
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of information holds by each eigenvector or the variance of explained by each eigenvector 

𝑒𝑖(𝑠) can be expressed as: 

𝑅𝑖
2 =

𝜆𝑖

∑ 𝜆𝑖
𝑚
𝑖=1

………………………………………..  (3.10) 

In general, the variance explained by each eigenvector decreases as the index of eigenvector 

increases. 

The four tables (Appendix A, B, C and D) show the amount of information (eigen 

values in %) held by each of the five leading empirical orthogonal functions. The variance 

explained by each EOF decreases with the decreasing order of the EOFs. The season SST and 

SLP principal components variables considered in this study are constructed based on five data 

steps i.e actual data, three moths lead, six months lead, nine months lead and 12 months lead. 

For the long rainfall season counts 47.91%, 52.65%, 51.87%, 44.88% and 45.05% of the total 

SST variances respectively whereas the short rainfall season counts 50.30%, 46.16%, 47.91%, 

52.65% and 51.87% of the total SST variances respectively.  For the long rainfall season counts 

50.43%, 59.82%, 52.09%, 55.82% and 50.78% of the total SLP variances respectively whereas 

the short rainfall season counts 52.15%, 56.23%, 50.43%, 59.82% and 52.09% of the total SLP 

variances respectively (cfr Appendices A, B, C, D). In this study only the spatial and the 

temporal characteristics of the first two PCA modes that accounted for most of the variance are 

discussed. 

Once the eigenvectors were all obtained, they were further normalized (‖𝑒𝑖‖ = 1) and 

sorted. For each eigenvector 𝑒𝑖 the normalisation implies that: 

∑ 𝑒𝑖
2𝑚

𝑠=1 (𝑠) = 1…………………….. (3.11) 

Therefore, the observed principal components were computed. Each principal component 𝑢𝑖(𝑡) 

was the result of the projection of the data 𝑋′(𝑡, 𝑠) onto the 𝑖𝑡ℎ eigenvector. Mathematically, 

this projection can be expressed as (Storch and Zwiers 2004): 

𝑢𝑖(𝑡) = ∑ 𝑒𝑖(𝑠) ∗ 𝑋′(𝑡, 𝑠)𝑚
𝑠=1 ………… (3.12) 

Each PC 𝑢𝑖(𝑡) holds the same amount of information as the EOF 𝑒𝑖(𝑠) it is generated from. In 

the following the principal components obtained from the SST and SLP data are denoted as 

SST PCs and SLP PCS.  
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3.3.2 Seasonal rainfall model development  

Two kinds of models are developed i.e a statistical model which is developed based on all 

selected predictors (in this case are 72 predictors) and a predictive model developed based on 

only leading predictors (in this case are 58 predictors). 

3.3.2.1 Time series linear regression model 

The tslm function has been used to run the multiple linear regression model (MLR). The 

function tslm is largely a wrapper for lm()  except that it allows variables “trend” and “season”  

which are created on the fly  from the time series characteristics of the data. The variable 

“trend” is a simple time trend and “season” is a factor indicating the season (e.g., the month or 

the quarter depending on the frequency of the data). 

3.3.2.2 ARIMA modeling 

In the previous section, the multiple linear regression was described, together with possible 

problems that should be taken care of in order to benefit from desirable properties of the 

estimators. When regression is applied to time series data, the errors terms are often 

autocorrelated. If they are, ARIMA models can be used to model the information they 

contained. The resulting model is then a combination of a multiple regression and an ARIMA 

model in the error terms. This should enable us to obtain more reliable estimates for the effect 

of the explanatory variables on the dependent variable. 

The ARIMA modelling approach expresses a variable as a weighted average of its own past 

values. The model is in the most cases a combination of an autoregressive (AR) part and 

moving average (MA) part. Suppose a variable 𝑁𝑡 is modelled as an autoregressive process, 

AR(P).  Then, 𝑁𝑡 can be expressed as a regression in terms of its own passed values:𝑁𝑡 = 𝐶 +

 ∅1𝑁𝑡−1 +  ∅2𝑁𝑡−2 + ⋯ + ∅𝑝𝑁𝑡−𝑝 + 𝑎𝑡, where C is a constant term, ∅𝑖(𝑖 = 1,2, … , 𝑝) are the 

weights of the autoregressive terms and 𝑎𝑡is a new random term, which is assumed to be 

normally distributed  “white noise” , containing no further information. Using the backshift 

operator 𝐵𝑖 on  𝑁𝑡, defined as 𝐵𝑖𝑁𝑡 = 𝑁𝑡−𝑖(𝑖 = 1,2,3 … ), this process can be written as 𝑁𝑡 =

𝐶 + ∅1𝐵𝑁𝑡 + ∅2𝐵2𝑁𝑡 + ⋯ + ∅𝑝𝐵𝑝𝑁𝑡 + 𝑎𝑡, or (1 − ∅1𝐵 − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝)𝑁𝑡 = 𝐶 +

𝑎𝑡.The series 𝑁𝑡 can also be expressed in terms of the random errors of its past values which is 

then a moving average MA (q) model : 𝑁𝑡 = 𝐶 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 + 𝜃2𝑎𝑡−2 + ⋯ + 𝜃𝑞𝑎𝑡−𝑞, where 
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𝜃𝑗(𝑗 = 1,2, … , 𝑝) are the weights for the moving average terms. Using the Backshift operator, 

this equal 𝑁𝑡 = 𝐶 − 𝜃1𝐵𝑎𝑡 − 𝜃2𝐵2𝑎𝑡 − ⋯ − 𝜃𝑞𝐵𝑞𝑎𝑡 + 𝑎𝑡, or 

 𝑁𝑡 = 𝐶 + (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑝𝐵𝑞)𝑎𝑡. In more general settings, it is possible to include 

autoregressive and moving average terms in one equation, leading to ARMA(p,q) model: 

(1 − ∅1𝐵 − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝)𝑁𝑡 = 𝐶 + (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑝𝐵𝑞)𝑎𝑡, where 𝑎𝑡 is 

again assumed to be “white noise”. 

 However, An ARIMA model can’t be applied in all circumstances. It is required that the series 

be stationary. For practical purposes, it sufficient to have weak stationary, which means that 

the data is in equilibrium around the mean and the variance remains constant over time. If a 

series is non-stationary because the variance is not constant, it often helps to log-transform the 

data. To have a series that is stationary in the mean, differencing is used. For example, in order 

to obtain a stationary, the data may be differenced once for the period by the period(monthly) 

fluctuations ∇𝑋𝑡 = 𝑋𝑡 − 𝑋𝑡−1. When an ARMA model is built on differenced data, it is called 

an ARIMA model, where “I” indicates the differencing. 

3.3.2.3 Unit root and Stationarity Tests 

Most time series data could be nonstationary due to the presence of random walk, drift, or 

trend. One best way to test these is to evaluate a regression that nests a mean, a lagged term 

which checks for difference stationarity, and a term for deterministic trend which also looks for 

trend stationary in one particular model: 

𝑌𝑡 = 𝛼 + 𝑦𝑡−1 +  𝛽𝑡 + 𝜀𝑡………………………… (3.13) 

 

By taking the first difference of (3.13), we get ∇𝑌𝑡 = 𝛼 + (𝜌 − 1)𝑦𝑡−1 + 𝛽𝑡 + 𝜀𝑡. 

This model forms the basis of the Dickey-Fuller unit root test. The application of the Dickey-

Fuller test mainly depends on the regression context in which the lagged dependent variable is 

tested. The three identified model contexts are those of (1) a pure random walk, (2) random 

walk plus drift, and (3) the combination of deterministic trend, random walk, and drift. In line 

with this, three different regression equations are considered: 

𝑌𝑡 = 𝜌1𝑦𝑡−1 + 𝜀𝑡 , 𝜀𝑡~𝑖. 𝑖. 𝑑(0, 𝜎2) …………………….. (3.14) 

𝑌𝑡 = 𝛼0𝑦𝑡−1 + 𝜌1𝑦𝑡−1 + 𝜀𝑡 , 𝜀𝑡~𝑖. 𝑖. 𝑑(0, 𝜎2)………….. (3.15) 

𝑌𝑡 = 𝛼0𝑦𝑡−1 + 𝜌1𝑦𝑡−1 + 𝑏𝑡 + 𝜀𝑡 , 𝜀𝑡~𝑖. 𝑖. 𝑑(0, 𝜎2)…….. (3.16) 
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Equation (3.14) specifies a regression model without a constant term. This regression model is 

used to test for pure random walk process without drift. Here, the null hypothesis of 

nonstationary random walk is tested against a stationary series. If 𝜌1 = 1, then the null 

hypothesis cannot be rejected and the data generating process is inferred to have a unit root. 

The second Dickey-Fuller case in (3.15) involves a context of random walk plus drift around a 

nonzero mean. The null hypothesis is that the series under consideration is integrated at the 

first order, that is, 𝐼(1). In the other words, the null hypothesis of whether 𝜌1 = 1 is tested 

against a stationary series around a constant mean of 
𝛼0

(1−𝜌)
 . 

The third Dickey-Fuller case is one with a context of random walk plus drift in addition 

to a deterministic linear trend shown in (3.16). As in the earlier cases, the null hypothesis is 

that 𝜌1 = 1 (𝜌1 − 1 = 0) and the alternative hypothesis is that the series is stationary. 

Nonetheless, not all Dickey-Fuller regression models have white noise residuals. This means, 

in a situation where the error term (𝜀𝑡) in (3.14), (3.15) and (3.16) are autocorrelated, the 

Dickey-Fuller distribution might not be applicable. However, if there is autocorrelation in the 

series, it has to be removed from the residuals (𝜀𝑡) of the regression before Dickey-Fuller tests 

are executed. Under the conditions of residual serial correlation, where the Dickey-Fuller 

regression models are not valid for the unit root test, a new test called the Augmented Dickey-

Fuller (ADF) test in (3.5) may be applied. This new regression model addresses the issue of 

serial correlation. 

𝑌𝑡 = 𝛼0 + 𝜌1𝑦𝑡−1 + ∑ 𝛽𝑖∇𝑦𝑡−𝑖 + 𝜀𝑡
𝜌=1
1=2 ……………. (3.17) 

In a situation where the process is ARIMA(p, q), Said and Dickey were reported by 

Yaffee and McGee (2000) to have discovered that the MA(q) parameter invertibility can be 

represented by an AR(p) process of the kind in (3.17) when p gets large enough. The 

Augmented Dickey-Fuller equation is identical to the three Dickey-Fuller equations discussed 

earlier, except that the ADF equation contains higher order lags of the differenced dependent 

variable which take care of serial correlation before testing for nonstationarity. If the series has 

a higher order serial correlation which result to an AR unit root, higher order differencing will 

be required in order to transform the residuals into white noise disturbances. Moreover, utmost 

care should be taken since over-differenced series might also result to an MA unit root.  
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In the case where the series under study exhibit patterns of random walk plus drift 

around a stochastic trend, the Dickey-Fuller test can be reconstructed with the additional of a 

time trend variable as shown in (3.18) 

 

𝑌𝑡 = 𝛼0 + 𝜌1𝑦𝑡−1 + ∑ 𝛽𝑖∇𝑦𝑡−𝑖 + 𝑏𝑡 + 𝜀𝑡
𝜌=1
1=2 ……………. (3.18) 

 

Where 𝜌1𝑦𝑡−1 + ∑ 𝛽𝑖∇𝑦𝑡−𝑖
𝜌=1
1=2  is the Augmented part, 𝑦𝑡−1 is the lagged term of 𝑌𝑡 , ∇𝑦𝑡−𝑖 

shows the lagged change, 𝑡 represent the deterministic trend, 𝛼 is the drift component, 𝜀𝑡 

represents a well-behaved error term (unobserved series) and 𝑏, 𝜌1, 𝛽 are coefficients to be 

estimated. 

Generally, an ADF test with hypothesis:𝐻0: 𝜌1 = 0 and 𝐻𝐴: 𝜌1 < 0 can be tested in the 

regression model (3.6). 

3.3.2.4 Regression with ARIMA errors model 

The ARIMA modelling approach can now be applied to the multiple regression equation to 

model the information that remains in the error terms. Assume a regression model with an 

explanatory variable, denoted as 𝑌𝑡 = 𝛽0 + 𝛽1𝑋1,𝑡 + 𝑁𝑡. Suppose further that the error terms 

are autocorrelated, and that they can be appropriately described by an ARMA (1,1) process. 

This model can be written as   𝑌𝑡 = 𝛽0 + 𝛽1𝑋1,𝑡 + 𝑁𝑡, where (1 − ∅1𝐵)𝑁𝑡 = (1 − 𝜃1𝐵)𝑎𝑡,  

and 𝑎𝑡 is assumed to be wite noise. Substituting the correction of error term into the regression 

equation gives: 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋1,𝑡 +
(1−𝜃1𝐵)

(1−∅1𝐵)
𝑎𝑡……………………………… (3.19) 

Because of the specific form in the error terms, the classical least squares methods are not 

appropriate to estimate the parameters of this equation. 

An important consideration when estimating a regression with ARMA errors is that 

all of the variables in the model must first be stationary. Thus, we first have to check 

that 𝑌𝑡 and all of the predictors  (𝑋1,𝑡 , … , 𝑋𝑘,𝑡) appear to be stationary. If we estimate the 

model when any of these are non-stationary, the estimated coefficients will not be consistent 

estimates (and therefore may not be meaningful). One exception to this is the case where 

non-stationary variables are co-integrated. If there exists a linear combination of the non-
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stationary 𝑌𝑡 and the predictors that is stationary, then the estimated coefficients will be 

consistent (Harris and Sollis,2003). 

  We therefore first difference the non-stationary variables in the model. It is often 

desirable to maintain the form of the relationship between 𝑌𝑡 and the predictors, and 

consequently it is common to difference all of the variables if any of them need differencing. 

The resulting model is then called a “model in differences,” as distinct from a “model in 

levels,” which is what is obtained when the original data are used without differencing.  

If all of the variables in the model are stationary, then we only need to consider ARMA 

errors for the residuals. It is easy to see that a regression model with ARIMA errors is 

equivalent to a regression model in differences with ARMA errors. For example, if the above 

regression model with ARIMA (1,1,1) errors is differenced we obtain the model 

𝑌𝑡
′ =  𝛽1𝑋1,𝑡

′ + ⋯ + 𝛽𝑘𝑋𝑘,𝑡
′ + η𝑡

′ ………………………….. (3.20) 

(1 − ∅1𝐵)η𝑡
′ = (1 − 𝜃1𝐵)𝜀𝑡…………………………… (3.21) 

Where 𝑌𝑡
′ = 𝑌𝑡−1, 𝑋𝑡

′ = 𝑋𝑡,𝑖 − 𝑋𝑡−1,𝑖 and η𝑡
′ = η𝑡 − η𝑡−1, which is a regression model in 

differences with ARMA errors.If differencing is applied to the errors in multiple regression, 

Pankratz (2012) shows that all corresponding series (both dependent and the explanatory 

variables) should be differenced. This can be seen in our small regression example. 

Differencing the error terms once results in the following expression, with the ARMA (1,1) 

model now in the differenced error terms: 

∇𝑁𝑡 =
(1−𝜃1𝐵)

(1−∅1𝐵)
𝑎𝑡  <=>  𝑁𝑡 =  

(1−𝜃1𝐵)

∇(1−∅1𝐵)
𝑎𝑡…………… (3.23) 

Substituting back the expression into the regression equation gives: 

𝑌𝑡 = 𝛽0 + 𝛽1𝑋1,𝑡 +
(1−𝜃1𝐵)

(1−∅1𝐵)
𝑎𝑡  <=>  ∇𝑌𝑡 = 𝛽0

′ + 𝛽1∇𝑋1,𝑡 +
(1−𝜃1𝐵)

(1−∅1𝐵)
𝑎𝑡…….. (3.24) 

The intercept is now possibly different, but the (theoretical) regression coefficient 𝛽1 is not 

affected by the differencing operation. Its estimated value may differ slightly, since the 

estimation is done on different (although related) time series.  
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Regression with ARIMA errors consist of three steps (Han et al. (2010); Box and Jenkins 

(1979); Cryer and Chan (2008)): 

1. Identification:  

In this stage, first, the raw data series is plotted to identify whether the data is stationary or 

not. If the raw data series is found to be non–stationary, differencing is required. After the 

first order differencing, correlograms of the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) is investigated. From these plots, the order of AR and MA 

gets identified. 

2.  Parameter Estimation and Selection:  

The number of AR depends on the lag of PACF cuts and the number of MA depends on the 

lag of the ACF plot. However, decision making on the order of AR and MA by looking at 

the cuts/spikes is not straightforward. Most of the time it required experimentation with 

several alternative orders of different models to choose the appropriate order. The following 

guidelines are usually followed during the selection of the AR and MA order:  

• If the ACF plot shows exponential decay and PACF spikes at lag–1, no correlation 

for other lags, in that case, one autoregressive parameter (𝑝 = 1) can be selected.  

• If the ACF plot shows a sine–wave shape pattern or a set of exponential decay and 

PACF spikes at lag–1 and lag–2, no correlation for other lags, in that case, two 

autoregressive parameters (𝑝 = 2) can be selected. 

• If the PACF plot shows exponential decay and ACF spikes at lag–1, no correlation 

for other lags, in that case, one moving average parameter (𝑞 = 1) can be selected. 

•  If the PACF plot shows a sine–wave shape pattern or a set of exponential decay 

and ACF spikes at lag–1 and lag–2, no correlation for other lags, in that case, two 

moving average parameters (𝑞 = 2) can be selected.  

• One auto–regressive and one moving average parameter can be selected if both 

shows exponential decay starting at lag–1. 

• Sometimes, using both AR and MA orders in a model can cancel each other’s 

impact. Therefore, it is often wise to use mixed AR and MA models with a smaller 

number of orders.  
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3. Diagnostics Check: 

 The diagnostic check is required to verify the adequacy of the developed model. The residual 

of the developed model should be white noise (no autocorrelation). To check whether the 

residual is white noise or not, at first, an inspection of the residual ACF and PACF plot is 

required. If 95% of the spikes stay between the black lines, it indicates that the autocorrelation 

is white noise. If two or more spikes or more than 5% of spikes are located outside of the 

boundary line, then the series is not white noise. Another way of checking the model accuracy 

is to perform the Ljung–Box test. Such a test is conducted to verify the null hypothesis of being 

white noise of residual if the p–value is greater than 0.05 (Ljung and Box (1978)). A p–value 

greater than 0.05 implies that lag autocorrelation among the residuals is zero and the developed 

model is adequate to fit the data set. 

3.3.3 Time series cross validation 

When you build your model, you need to evaluate its performance. Cross-validation is a 

statistical method that can help you with that. For example, in K-fold-Cross-Validation, you 

need to split your dataset into several folds, then you train your model on all folds except one 

and test model on remaining fold. You need to repeat this step until you tested your model on 

each of the folds and your final metrics will be average of scores obtained in every fold. This 

allows you to prevent overfitting and evaluate model performance in a more robust way than 

simple train-test. 

 

 Figure 3.1:The concept at the base of Cross Validation 

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFold
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The most accepted technique in the ML world consists in randomly picking samples out of the 

available data and split it in train and test set. Well to be completely precise the steps are 

generally the following: 

1. Split randomly data in train and test set. 

2. Focus on train set and split it again randomly in chunks (called folds). 

3. Let’s say you got 10 folds; train on 9 of them and test on the 10th. 

4. Repeat step three 10 times to get 10 accuracy measures on 10 different and separate 

folds. 

5. Compute the average of the 10 accuracies which is the final reliable number telling 

us how the model is performing. 

In the case of time series, the cross-validation is not trivial. We cannot choose random samples 

and assign them to either the test set or the train set because it makes no sense to use the values 

from the future to forecast values in the past. In simple word we want to avoid future-looking 

when we train our model. There is a temporal dependency between observations, and we must 

preserve that relation during testing.In this procedure, there is a series of test sets, each 

consisting of a single observation. The corresponding training set consists only of observations 

that occurred prior to the observation that forms the test set. The following diagram illustrates 

the series of training and test sets, where the blue observations form the training sets, and the 

red observations form the test sets. 

 

    Figure 3.2:Time series Cross Validation (Bergmeir., et al. (2018)) 
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3.4 Comparison of forecasting ability of different statistical techniques 

Among all the statistical parameters that are used to evaluate time series model’s performance, 

RMSE calculates prediction errors, the measure of how much a dependent series varies from 

its model–predicted level. MAE is the average of the absolute errors/residuals between 

observed and predicted value, R-squared explains to what extent the variance of one variable 

explains the variance of the second variable. For both RMSE and MAE, a value of 0 indicates 

a perfect predictability performance. Thus, the lower the value of RMSE, MAE and the 

improved value of R-squared, the better is the model’s performance (Saigal and Mehrotra 

(2012); Singh et al. (2005)). The equation for RMSE, MAE, and R-squared is presented below: 

3.4.1 Root Mean squared error (RMSE) 

The square root of mean squared error which is also known as standard error of estimate in 

regression analysis or the estimated white noise standard deviation in ARIMA analysis. It is 

expressed as: 

𝑅𝑀𝑆𝐸 =  √∑ (𝑌𝑖−𝑌𝑖̂)2𝑁
𝑖=1

𝑁
………………….. (3.25) 

Where, 𝑌𝑖 is the Actual value, 𝑌̂𝑖 is the predicted value and N is the number of observations. 

3.4.2 Mean Absolute error (MAE) 

Mean absolute error is another criterion to measure the performance of forecasting model and 

is written as: 

𝑀𝐴𝐸 =
∑ (𝑌̂𝑖−𝑌𝑖)𝑁

𝑖=1

𝑁
…………………… (3.26) 

Where, 𝑌𝑖 is the Actual value, 𝑌̂𝑖 is the predicted value and N is the number of observations. 

3.4.3  R-squared (R2) 

𝑅2 = 1 −
∑ (𝑌𝑖−𝑌̂𝑖)2𝑁

𝑖=1

∑ (𝑌𝑖−𝑌̅)2𝑁
𝑖=1

................................. (3.27) 

Where, 𝑌𝑖 is the Actual value, 𝑌̂𝑖 is the predicted value, 𝑌̅ is the mean value and N is the 

number of observations. 
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4 RESULTS AND DISCUSSION 

Keeping in view of the objectives of the present research study, the data chronicled on 

pretipitation and selected weather teleconections of East Africa was analysed by using 

proposed methodologies delineated in the previous chapter. Therefore, according to the 

objectives of the study, the results obtained in the study are discussed in this chapter. The 

chapter is divided into the following sections: 

4.1. Temporal and spatial rainfall fluctuation time series and models comparison in East 

Africa 

4.2. Linear Regression models and Regression with ARIMA errors models in East Africa 

In this study both linear and nonlinear time models i.e multiple linear regression analysis and 

Regression with ARIMA errors models are used to analyse the past behaviour of rainfall time 

series data, in order to make inferences about its future behaviour for seasonal rainfall of East 

Africa. 

4.1 Temporal and spatial rainfall time series analysis 

The first part of this study analyses the rainfall fluctuation in whole Central- East Africa region 

which span over a longitude of 15E to 55E and a latitude of 15S to 15N as it is descried in 

chapter 3. The CRU monthly precipitation data collected from 1949 up to 2000 are used to 

investigate the objectives of this research in the whole part of the region in order to increase 

the sample size which is very important for rainfall trend analysis. 

4.1.1 Long term means time series precipitations in Central-East Africa  

The long-term rainfall characteristics are presented spatially with the help of maps. The area 

which is considered cover a longitude of 15E to 55E and a latitude of 15S to 15N. The 

selected area comprises almost 20 countries: Angola, Burundi, Cameroon (East), Congo-

Brazzaville (East), Djibouti, Eritrea (South), Ethiopia, Kenya, Madagascar (North), Malawi 

(North), Mozambique (North), Rwanda, D.R.C, Central African Republic (CAR), Somalia, 

Sudan (South), Chad, Uganda, Tanzania, Zambia (North). Rainfall in these countries has 

similarities because their climate is controlled in regard to the tropical climate types which 

relates to the position of ITCZ. 
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The seasonal rainfall patterns in this region are determined by the presence or absence of 

rainfall, the amount of rainfall with respect to seasons are different considering the 

geographical position of each grid point.  

 

Figure 4.1: Spatial and temporal distribution of seasonal mean precipitation 

 

The figure 4.1 shows an average of less than 1,000 millimetres of rainfall per year across most 

of parts of central African region. Rainfall tends to decrease with distance from the equator and 

is negligible in the Sahara (north of between latitude 10°N -15°N), in eastern Somalia for both 

long rainfall and short rainfall seasons. For Short rain fall season, the amount of rainfall tends 

to decrease in central part of Tanzania and continue to decrease in northern Mozambique, North 

Malawi, and North-Est of Zambia. Rainfall is most abundant on the North of Madagascar, 

portions of the highlands in eastern Africa and large areas of the Congo Basin and central 

Africa. 

4.1.2 Seasonal variability of rainfall in the region 

For present study, the rainfall variability is measured by the standard deviation. As it is done 

for mean precipitation in the region, the spatial and temporal season standard deviation in 

specified countries is presented spatially with the help of maps. 
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Figure 4.2: Spatial and temporal distribution of standard deviation for long and short rainfall 

Seasons 

It is shown in figure 4.2 that some points of the region exhibit more variation within each 

season in terms of precipitation. Based on the two maps in Figure 4.2, less precipitation 

variation in the northern part of the region and eastern part of Somalia which are characterized 

by less precipitation during long and short rainfall season, is observed. Similar pattern is also 

observed in southern part of this region during the short rainfall season. The rest of the region 

in the maps shows variations that closely differ in space.  

4.1.3 Prediction performance of seasonal rainfall models in central east 

Africa 

The MLRM and RARIMAE model in ich each grid box was developed. The R squared and 

RMSE values for each model was computed.  

4.1.3.1 Prediction performance of seasonal rainfall models explained by R-

squared 

In this study, R2 is a statistical measure that represents the proportion of the variance for a 

precipitation that is explained by the selected variable or variables in a model. Whereas 

correlation explains the strength of the relationship between an independent and dependent 

variable, R2 explains to what extent the variance of one variable explains the variance of the 

second variable. So, if the R2 of a model is 0.50, then approximately half of the observed 

variation can be explained by the model's inputs. 
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Figure 4.3:Spatial and temporal distribution of R2 values for MLR and RARIMAE 

The Figure 4.3 shows the R2 distribution which describe the variation of precipitation 

in the region explained by pre-described teleconnections in chapter 3. The maps presented in 

figure 5 are categorised in two parts. The first one counts 8 maps in first two columns. The R-

squared in these maps are computed based on the original data for both statistical model and 

predictive model in long rainfall season as well as in short rainfall season. The second one 

comprises also 8 maps in two last columns. The R2 in these maps are computed based on the 

differentiated data for both statistical model and predictive model in long rainfall season as 

well as short rainfall season. In the second column for this category an improvement in R2 

values is observed in most of grid boxes of the region compared to the R2 values in the first 

column.  And this is due to the presence autocorrelation in observations for time series after 

the first difference. 
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4.1.3.2 Prediction performance of seasonal rainfall models explained by RMSE 

The RMSE is the standard deviation of the residuals (prediction errors). Residuals are a 

measure of how far from the regression line data points are. Therefore, RMSE is a measure of 

how spread out these residuals are. In other words, it tells us how concentrated the data is 

around the line of the best fit. 

 

Figure 4.4:Spatial and temporal distribution of RMSE values for MLR and RARIMAE 

The Figure 4.4 presents the RMSE maps which describe how far from the fitted line data points 

are for precipitation in the region impacted by pre-described teleconnection in chapter 3. The 

maps presented in Figure 4.4 are categorised in two parts. The first one comprises 8 maps in 

first two columns. The RMSE in these maps are computed based on the original data for both 

statistical model and predictive model in long rainfall season as well as short rainfall season. 

The second one comprises 8 maps in two last columns. The RMSE in these maps are computed 

based on the differentiated data for both statistical model and predictive model in long rainfall 

season as well as short rainfall season. An improvement in RMSE is observed for differenced 
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data in most of grid boxes of the region and this is due to the presence of autocorrelation in 

observations for time series after the first difference. 

4.1.3.3 Seasonal rainfall models validation in each grid box 

Once we are done with training our model, we cannot assume that it is going to work well on 

data that it has not seen before. In other words, we can’t be sure that the model will have the 

desired accuracy and variance in prediction environment. We need some kind of assurance of 

the accuracy of the predictions that our model is putting out. For this, we need to validate our 

model. This process of deciding whether the numerical results quantifying hypothesized 

relationships between variables, are acceptable as descriptions of the data, is known as 

validation. 

 
Figure 4.5: Spatial and temporal distribution of RMSE for training and Testing for MLR 

model 
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         Figure 4.6: Spatial and temporal distribution of RMSE for training and Testing for 

RARIMAE model  

The Figure 4.5 and Figure 4.6 present maps in which the RMSE for training and testing data 

are presented for both MLR and RARIMAE model respectively. The developed RARIMAE 

has shown low values of RMSE compared to the developed MLR model. Low values of this 

parameter in all grid box indicate a good prediction performance of the developed RARIMAE 

model. Once the model was developed for the calibration period, validation tests were 

developed with the same model inputs sets using RARIMAE analysis. In the validation period, 

the developed model showed an increase in RMSE compared to the calibration period for all 

grid boxes for both RARIMAE and MLR model. 
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4.1.3.4  Improvement in R-squared and Reduction in RMSE by RARIMAE 

 

 
                                        Figure 4.7: The difference between MLR-R2 values and RARIMAE-

R2 values 

Figure 4.7 shows the difference between explained variances (R2) of monthly precipitation 

during 1949-2000 of MLR model and RARIMAE model. The values in Figure 4.7 are obtained 

by subtracting R2 explained by RARIMAE model from R2 explained by MLR model.  Positive 

value in Figure 4.7 indicates that R2 is improved by RARIMAE. For original data (left column), 

most of the grid box present the difference between explained variances for the two model 

which is equal or almost equal to zero. This is an indication that the observations in time series 

data in these grid boxes are non-autocorrelated. Therefore, many grids’ boxes present an 

increase of R2 less than 30%. For differenced data, where the autocorrelation within observation 

of residuals is present, an increase in R2 for most of grid box is more than 30% and go up 70. 
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The Figure 4.8 shows the differences in RMSE of monthly precipitation during 1949-2000 of 

MLR and RARIMAE model. The values in Figure 4.8 are obtained by subtracting RMSE 

explained by MLR model from RMSE explained RARIMAE model. Negative value in Figure 

4.8 indicates that RMSE is reduced by RARIMAE for training and testing data sets. For original 

data (2 columns in the left), most of the grid boxes present the difference between RMSE for 

the two model which is equal or almost equal to zero. This is an indication that the observations 

in time series data in these grid boxes are non-autocorrelated. Therefore, many grids’ boxes 

present a reduction of RMSE less than 30 mm/season. For differentiated data (2 columns in the 

right), where the autocorrelation within observation of residuals is present, an increase in 

RMSE for most of grid box is more than 30 mm/season and go up to 90 mm/season. 

 

  Figure 4.8:The difference between MLR-RMSE values and RARIMAE-RMSE values 
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4.2 Seasonal rainfall Models in East Africa 

To perform residuals analysis for MLR and RARIMAE models, a single time series was 

constructed by averaging monthly precipitation in the selected grid box for each season (Figure 

4.9). The area which is considered cover a longitude of 31.5E to 41E and a latitude of 3.5S to 

0.5S. This region covers central east of DRC, north of Burundi, south of Uganda, Rwanda, 

north of Tanzania and south of Kenya. 

 

 

 

 

 

                                

 

Statistic Long rainfall season Short rainfall season 

Observation 52 52 

Mean 384.5 254.6 

Median 397.8 237.1 

Standard Deviation   64.3 79.82 

Minimum 249.8 139.5 

Maximum 545.0 503.3 

Skewness 0.10 1.13 

Kurtosis -0.37 0.83 

Coefficient of 

Variation (%) 

16.7 31.35 

Table 4.1:Summary for rainfall original time series data 

The descriptive statistics of the seasonal rainfall time series are presented in Table 4.1. The 

highest mean and median values in the period of 52 years were observed in long rainfall season. 

The Mean, min, max, standard devition (Std) and median have the units corresponding to the 

units of metheorological varialbe (mm); skewness and kurtosis are non-demensional. 

  Figure 4.9: East African region of   averaging monthly rainfall time series 
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 The parameters of skewness and kurtosis of the analysed time series give information about 

differences in their statistical distributions. For the long rainfall season, precipitation time 

series is characterised by positive skewness (0.10) and small and negative kurtosis (-0.37), 

which inform us that this distribution is nearly symmetrical. A different distribution shape can 

be observed for precipitation time series during the short rainfall season, with positive 

skewness (1.13) and low kurtosis values (0.83). This means that this distribution is also nearly 

symmetrical. The summary or descriptive statistics of seasonal rainfall in Est Africa in Table 

4.1 indicates that the short rainfall season data are more heterogenous (with 31.5% of 

coefficient of variation) than that for  the long rainfall season (with 16.7% of coefficient of 

variation). 

4.2.1 Regression models for forecasting long rainfall season in East Africa 

The variables considered for regression analysis are described in chapter 3. After the 

development of 4 leading variables with three months’ time steps for each original 

teleconnection, the total number of independent variables increases up to 72. The multiple 

linear regression analysis was carried out by considering all teleconnections as predictors while 

the long rainfall season time series data from CRU is considered as predictand. The first step 

was to select teleconnections which are significantly correlated with rainfall time series at 5% 

level of significance.  

To overcome the multi-collinearity problem, one of the measures was to drop the 

unimportant variables i.e.  the variables which are explaining less variations in dependent 

variables have need to be drop from the model and the dropping of variable was done through 

the collinearity and stepwise VIF selection method. Finally, stepwise regression analysis was 

carried out to fit the model.  

 
       Figure 4.10: Long rainfall season time series data 
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4.2.1.1 Estimation and significance check of model parameters 

  Statistical model   

Variable Coefficient Std. Error t test Probability 

Constant 362.90 11.58 31.33   <2e-16 

SLP_PC19 21.49 8.19 2.63    0.0115 

DMI_LR9 -62.81 2.80E-06 -2.61    0.0121 
 

 Predictive model   
Variable Coefficient Std. Error t test Probability 

Constant 362.90 11.58 31.33   <2e-16 

SLP_PC19 21.49 8.19 2.63    0.0115 

DMI_LR9 -62.81 2.80E-06 -2.61    0.0121 

        Table 4.2:Estimates of regression model for long rainfall original time series data 

Table 4.2 shows that the unexplained or non-significant variables are dropped from the model 

so that one can get maximum error degrees of freedom.  In this stepwise regression analysis, 

we obtained a totally of two significant independent variables for both statistical and predictive 

model. These variables are the Indian Ocean first principal component Sea Level Pressure nine 

months lead (SLP_PC19) and the Dipole Mode Index nine months lead (DMI_LR9). After 

getting regression parameters the next step is residuals of MLR model analysis (Figure 4.11). 

 

 
Figure 4.11:Diagnostic of residual plots for MLR 
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The residuals time series and the Autocorrelation function (ACF) and partial autocorrelation 

function (PACF) plots are presented in Figure 4.11. Based on the three plots one can say that 

the test confirms the non-presence of autocorrelation pattern in series, all spikes do not show 

an autocorrelation pattern in residuals. This is a good sign when the diagnostic of every model 

is done. In time series Analysis auto correlation is useful because its presence tells you important 

things about the variable and potential problems with your model. But When using Ordinary Least 

Square (OLS) to estimate a model (like MLR model) auto correlation in the residual terms 

violates one of the Gauss–Markov conditions (that the errors are independent). This condition 

is necessary for making OLS estimates minimum variance (“best”) among the class of linear 

unbiased estimators. So, it is very useful in modelling to have solid evidence to suggest that 

the error is random and hence not predictable. Otherwise, there would be some better model 

we can build. Based on that the next step is to check if there exist any autocorrelation within 

time series data and with residuals computed after getting the model. 

 

 
        Figure 4.12:ACF and PACF plots for long rainfall season time series data 

 Based on ACF and PACF plots obtained in Figure 4.12, one can say that the test confirms the 

non-presence of autocorrelation pattern in series especially at lag 1. Only one spike at lag 2 

shows an autocorrelation pattern but that can prevent that the time series is considered as white 

noise. Once the test of autocorrelation pattern in series is already done, then next step is to test 

for stationarity by Augmented Dickey-Fuller Test (ADF). 

4.2.1.2  Stationary test of long rainfall season time series 

By considering that we are comparing the forecasting performance of a linear model and a 

non-linear model, an important consideration when estimating a regression with ARMA 

https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem
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errors is that all the variables in the model must first be stationary. Thus, we fi rst have to 

check that 𝑌𝑡 and all of the predictors  (𝑋1,𝑡 , … , 𝑋𝑘,𝑡) appear to be stationary. If we estimate 

the model when any of these are non-stationary, the estimated coefficients will not be 

consistent estimates (and therefore may not be meaningful).  

 We therefore first difference the non-stationary variables in the model. It is often desirable 

to maintain the form of the relationship between 𝑌𝑡 and the predictors, and consequently it 

is common to difference all the variables if any of them need differencing. The resulting 

model is then called a “model in differences,” as distinct from a “model in levels,” which is 

what is obtained when the original data are used without differencing. 

If all the variables in the model are stationary, then we only need to consider ARMA errors 

for the residuals. It is easy to see that a regression model with ARIMA errors is equivalent 

to a regression model in differences with ARMA errors. For example, if a regression model 

with ARIMA (1,1,1) errors is differenced we obtain the model 

𝑌𝑡
′ =  𝛽1𝑋1,𝑡

′ + ⋯ + 𝛽𝑘𝑋𝑘,𝑡
′ + η𝑡

′  

(1 − ∅1𝐵)η𝑡
′ = (1 − 𝜃1𝐵)𝜀𝑡 

Where 𝑌𝑡
′ = 𝑌𝑡−1, 𝑋𝑡

′ = 𝑋𝑡,𝑖 − 𝑋𝑡−1,𝑖 and η𝑡
′ = η𝑡 − η𝑡−1, which is a regression model in 

differences with ARMA errors. 

 ADF Test 

Test Statistics Lag order p-value Comment 

Predictand -3.4183 6 0.06262 Non-significant  

SLP_PC19 -2.1236 6 0.5247 Non-significant 

DMI_LR9 -3.5773 6 0.04347 Significant 

          Table 4.3:Unit Root and Stationarity tests for the time series involved in long rainfall 

model 

The Table 4.3 depicts the ADF Test. The null hypothesis stipulate that the series is unit root 

non-stationary, and the alternative hypothesis stipulate that the series is unit root stationary. 

The probability value of the predictand (rainfall time series) (0.06262) and SLP_PC19 time 

series (0.5247) are greater than the level of significance at 5% indicating strong evidence 

against the null hypothesis. Once at least one of the time series under consideration is found to 

be non-stationary then one goes for differencing of all series to make it stationary.  
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          Figure 4.13: Autocorrelation check for white noise of first differenced long season 

rainfall time series 

In this step, the residual is tested for evaluation purposes and goodness of the fit statistics is 

provided. Figure 4.13 shows the ACF and PACF for the residuals of MLR models and 

significant correlation are appear at a lag 1 and lag2. This show significant correlation values, 

confirms that the residuals for this model are not random. Once the test confirms the presence 

of autocorrelation pattern in series, then next step is to test for stationarity.   

 ADF Test 

Test Statistics Lag order p-value Comment 

Predictand -4.1254 6 0.01106 Significant 

SLP_PC19 -3.9185 6 0.01992 Significant 

DMI_LR9 -3.6285 6 0.03929 Significant 

  Table 4.4: Unit Root and Stationarity tests for the time series involved in long rainfall model 

(after first difference)              

The Table 4.4 shows that all-time series involved in constructing a multiple linear regression 

model for both statistical and predictive model are stationarity since the calculated probability 

value is less than the level of significance (5%). 
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4.2.1.3 Estimation and significance check of model parameters 

  Statistical and Predictive model    

Variable Coefficient Std. Error t test Probability 

SLP-PC19 30.137 9.031 3.337    0.00162  

DMI_LR9 -118.210 33.983 -3.479     0.00107  

        Table 4.5:Estimates of MLR model after first difference 

Table 4.5 shows that the estimated coefficients are significantly different from zero. 

After getting regression parameters the next step is residuals analysis of multiple linear 

regression model. The model validation is concerned with checking the residual of the model 

to determine if the model contains any systematic pattern which can be removed to improve on 

the selected model. 

4.2.1.4 Diagnostic checking process for the estimated model 

 Original data First differenced data 

Summary statistics Summary statistics 

Test Type X-squared Df p-value X-squared Df p-value 

Box-Pierce and Ljung-Box 0.11576 1 0.7337 4.1132 1 0.04255 

Table 4.6:Box-Pierce and Ljung-Box Test for long rainfall season model 
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The Figure 4.14 shows a diagnostic of a MLR model which involves checking of model 

residuals. For the Figure 4.14 on the top, an inspection of the residuals time series plot shows 

some outliers. In Figure 4.14 in the bottom, the ACF and PACF of residuals shows apparent 

departure from the model assumptions at lag1 and lag2. For the MLR model constructed based 

on original data in Table 4.6, the Q statistics is never significant at the lags shown. The Ljung-

Box test for this model gives a chi-squared value of 0.11576, leading to a p- value of 0.7337. 

The bell-shape feature is clearly noticed in Appendix E.1; indicating that the residuals are 

normally distributed for differentiated data. This is approved by Jarque Bera test results in 

Appendix E.2. In addition, all series in this model should be differentiated in order to meet the 

stationarity assumption. For differentiated data, the Ljung-Box test for this model gives a chi-

squared value of 4.1132, leading to a p- value of 0.04255, a further indication that the model 

has not captured the dependence in the time series. 

 

Figure 4.14:Diagnostic of residual plots for MLR (predictive model) 
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Figure 4.15:Comparison graph of observed short rainfall season vs Predicted short rainfall 

season (Statistical and Predictive model) 

To evaluate the multiple linear regression model for long rainfall season performance in East 

Africa the prediction performance was performed. Figure 4.15 shows a comparison between 

the real values and the ones resulted from the developed MLR model for the period between 

1949 and 2000. For MLR model on differentiated data, we obtain the graphical plot for the 

actual pitch series versus the predicted pitch series and from the visual inspection of the plot it 

is quite evident that the chosen model is good enough as the predicted. The correlation 

coefficient (r) for models developed based on time series original data and first differentiated 

data are 0.45 and 0.53 respectively. Same case for both models the RMSE were found to be 

56.66 and 74.2 respectively. 

4.2.2 Regression models forecasting short rainfall season in East Africa 

The system which impacts the short rainfall season in East Africa and the variables involved 

in the construction of short rainfall season model are described in chapter three.  As the same 

case as for long rainfall season model, the development of leading variables with three months’ 

time steps was done and the total number of independent variables becomes 72. The multiple 

linear regression analysis was carried out by considering all teleconnections as predictors and 

long rainfall season time series data from CRU as predictand. The first step was to select 

teleconnections which are significantly correlated with rainfall time series at 5% level of 

significance. To overcome the multi-collinearity problem, one of the measures was to drop the 

unimportant variables i.e.  the variables which explaining less variations in dependent variables 

need to be drop from the model, the dropping of variable was done through the collinearity and 
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stepwise VIF selection. Finally, the stepwise regression analysis was carried out to fit the 

model.  

 

 

 

 

 

 

 

Figure 4.16:Time series for short rainfall time series 

4.2.2.1 Estimation and significance check of model parameters  

  Statistical model   

Variable Coefficient Std. Error t test Probability 

Constant 251.134      9.465 24.532 < 2e-16 

SOI_SR3 -33.682      10.319 -3.264 0.00203 

SAOD_SR0 47.331      17.480 2.708 0.00936 

SST_PC13 -17.067        9.668 -1.765 0.08386 
 

 Predictive model   
Variable Coefficient Std. Error t test Probability 

Constant    251.00        10.31 24.355 <2e-16 

SOI_SR3    -25.46        10.53 -2.418 0.0194  
SST_PC13      -16.43         10.71 -1.535 0.1313 

         Table 4.7:Estimates of regression model for short rainfall original time series data 

The table 4.7 shows that the unexplained or non-significant variables are dropped from the 

model so that one can get maximum error degrees of freedom.  After stepwise regression 

analysis, we obtained in total three independent variables for statistical model which are the 

Southern Oscillation Index three months lead (SOI_SR3), the South Atlantic Ocean Dipole 

current time series (SAOD_SR0) and the first principal component of Indian Sea Surface 

Temperature three months lead (SST_PC13). For predictive model two independent variables 

(SOI_SR3, SST_PC13) are selected. Among three variables entered in construction of multiple 

linear regression model for short rainfall season two of them are significant (SOI_SR3, 

SAOD_SR0) and the remaining one is not significant (SST_PC13) at 5% level of significant). 
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After getting regression parameters the next step is residuals analysis for multiple linear 

regression model analysis. 

 

 

 

 

 

 

 

Based on ACF and PACF plots obtained in Figure 4.17, one can say that the test confirms the 

presence of autocorrelation pattern in residuals series. This shows significant correlation values 

and confirms that the residuals for this model are not random, which means that the model is 

not a good fit for the series and essential components have been omitted from the models. Even 

if it is like that, the most important aspect when we are in time series analysis is the check of 

stationarity for the time series data. 

Figure 4.17:Diagnostic of residual plots for MLR (Statistical model) 
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Based on ACF and PACF plots obtained in Figure 4.18, one can say that the test confirms the 

non-presence of autocorrelation pattern in series especially at lag 1. Only two spikes at lags 3 

and 8 show an autocorrelation pattern but that can prevent that the time series is considered as 

white nose. Once the test of autocorrelation pattern in series is already done, then next step is 

to test for stationarity by ADF test. 

 

 

 

 

 

 

 

 

 

Figure 4.18:Diagnostic of residual plots for MLR (predictive model) 
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Based on ACF and PACF plots obtained in Figure 4.19, one can say that the test confirms the 

non-presence of autocorrelation pattern in series especially at lag 1. Two spikes at lag 3 and 

lag 9 show an autocorrelation pattern and this is enough to suspect that the time series is 

considered is not white nose. Once the test of autocorrelation pattern in series is already done, 

then next step is to test for stationarity by ADF test. 

4.2.2.2 Stationary test of short rainfall season time series data  

In this step all-time series variables which are involved in model’s construction for both 

statistical model and predictive model are checked for stationarity using ADF test. The 

results from the test are presented in table 4.8. 

 ADF Test 

Test statistics Lag order p-value Comment 

Predictand -2.7374 4 0.2778 Non-significant 

SOI_SR3 -2.4753 4 0.3832 Non-significant 

SAOD_SR0 -2.8712 4 0.2240 Non-significant 

SST_PC13 -2.3983 4 0.4142 Non-significant 

 Table 4.8: Unit Root and Stationarity tests for the time series involved in short rainfall model 

 From Table 4.8, it is shown that the time series are non-stationary. The probability value of 

short rainfall time series (0.2778), SOI_SR3 time series (0.3832), SADO_SR0 time series 

(0.2240) and SST_PC13(04142) are greater than the level of significance at 5% indicating 

strong evidence against the null hypothesis. Once at least one of the time series under 

consideration is found to be non-stationary then one goes for differencing of all series to make 

it stationary. 

 Figure 4.19:ACF and PACF plots for short rainfall season time series 
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Based on ACF and PACF plots obtained in Figure 4.20, one can say that the second difference 

time series confirms the presence of autocorrelation pattern in series and the next step is to 

check stationarity using ADF test. 

 ADF Test 

Test statistics Lag order p-value Comment 

Predictand -5.0588 4 0.0100 Significant 

SOI_SR3 -3.828 4 0.0238 Significant 

SAOD_SR0 -4.2275 4 0.0100 Significant 

SST_PC13 -5.3555 4 0.0100 Significant 

  Table 4.9: Unit Root and Stationarity tests for the time series involved in short rainfall 

model (after first difference)                

The Table 4.9 shows that all the time series involved in constructing a multiple linear regression 

model for both statistical and predictive model are stationarity at the first difference since the 

calculated probability values are less than the level of significance (5%). 

 

Figure 4.20:Autocorrelation check for white noise of first differenced 

short   rainfall season time series 
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4.2.2.3 Estimation and significance check of model parameters 

  Statistical model   

Variable Coefficient Std. Error t-test Probability 

SOI_SR3 -44.741 11.769 -3.802    0.000406  

SAOD_SR0 24.761 20.758  1.193     0.238796 

SST_PC13 -6.0080 11.838 -0.508     0.614081 
 

 Predictive model   
Variable Coefficient Std. Error t-test Probability 

SOI_SR3 -34.47        10.73 -3.211    0.00234   
SST_PC13 -6.500        12.61 -0.516    0.60845   

Table 4.10:Estimates of MLR model after first difference 

Table 4.10 shows that after stepwise regression analysis, we obtained in total three significant 

independent variables for the statistical model and two significant variables for the predictive 

model. Among three variables entered in construction of multiple linear regression statistical 

model for short rainfall season one of them is significant (SOI_SR3) and the remaining two are 

not significant (SST_PC13 and SAOD_SR0) at 5% level of significant. For predictive model 

only SOI_SR3 is significant. The model validation is concerned with checking the residual of 

the model to determine if the model contains any systematic pattern which can be removed to 

improve on the selected model. 

4.2.2.4 Diagnostic checking process for the estimated model 

 Original data First differenced data 

Summary statistics Summary statistics 

 Test Type X-squared df p-value X-squared df p-value 

Statistical 

model 

Box-Pierce and 

Ljung-Box 

 

4.096 

 

 

1 

 

0.04298 

 

19.058 

 

1 

 

1.268e-05 

Predictive 

model 

Box-Pierce and 

Ljung-Box 

 

1.1961 

 

 

1 

 

0.2741 

 

 

17.485 

 

1 

 

2.896e-05 

Table 4.11:Box-Pierce and Ljung-Box Test for short rainfall season model 
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 The ACF of the residuals shows apparent departure from the model assumptions in lag1, lag2 

and lag3 in Figure 4.21. For the multiple linear regression model constructed based on original 

data, the Q statistics is significant at the lags shown. The bell-shape feature is clearly noticed 

in Appendix F.1; indicating that the residuals are normally distributed for differentiated data. 

This is approved by Jarque Bera test results in Appendix F.2. In Table 4.11, the Ljung-Box test 

for the statistical model gives a chi-squared value of 4.096, leading to a p- value of 0.04298. 

This shows that the fitted short rainfall season statistical model provides not good fit for the 

entire time series. For differentiated data, the Ljung-Box test for this model gives a chi-squared 

value of 19.058, leading to a p- value of 1.268e-05, a further indication that the model has not 

captured the dependence in the time series. 

Figure 4.21:Diagnostic of a multiple linear regression model for short   

rainfall season 
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To evaluate the multiple linear regression model for short rainfall season performance in East 

Africa the prediction performance was performed. Figure 4.22 shows a comparison between 

the real values and the ones resulted from the developed MLR model for the period between 

1949 and 2000. For MLR model on differentiated data, we obtain the graphical plot for the 

actual pitch series versus the predicted pitch series and from the visual inspection of the plot it 

is quite evident that the chosen model is good enough as the predicted. The correlation 

coefficient (r) for models developed based on time series original data and first differentiated 

data are 0.56 and 0.55 respectively. Same case for both models the RMSE were found to be 

65.28 and 104.04 respectively. 

 

 

 

 

 

Figure 4.22:Comparison graph of observed short rainfall season vs 

Predicted short rainfall season (Statistical model) 
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The ACF of the residuals shows apparent departure from the model assumptions in lag1 and 

lag2 in Figure 4.23. For the multiple linear regression model constructed based on original data, 

the Q statistics is never significant at the lags shown. The bell-shape feature is clearly noticed 

in Appendix G.1; indicating that the residuals are normally distributed for differentiated data. 

This is approved by Jarque Bera test results in Appendix G.2. In Table 4.11, The Ljung-Box 

test for this model gives a chi-squared value of 1.1961, leading to a p- value of 0.2741. This 

shows that the fitted long rainfall season model provides good fit for the entire time series. But 

this is not the case because all series in this model should be differentiated in order to meet the 

stationarity assumption. For differentiated data, the Ljung-Box test for this model gives a chi-

squared value of 17.485, leading to a p- value of 2.896e-05, a further indication that the model 

has not captured the dependence in the time series. 

 

 

Figure 4.23:Diagnostic of a MLRM for short rainfall season 
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                            Figure 4.24:Comparison graph of observed short rainfall season vs Predicted 

short rainfall season (Predictive model)  

To evaluate MLR model for short rainfall season performance in East Africa the prediction 

performance was performed. Figure 4.24 shows a comparison between the real values and the 

ones resulted from the developed MLR model for the period between 1949 and 2000.The 

correlation coefficient (r) for models developed based on time series original data and first 

differentiated data are 0.43 and 0.48 respectively. Same case for both models the RMSE were 

found to be 71.4 and 106.18 respectively. 

4.2.3 RARIMAE model for forecasting long rainfall season in East Africa 

The principal step in Box-Jenkins ARIMA model building is identification of the model.  

Different orders of Autoregressive (AR) and Moving Average (MA) parameters p and q are 

considered and combination of the order which yields maximum log-likelihood and lowest 

values of Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) are 

considered as final model orders. The main task of automatic ARIMA forecasting (Hyndman 

and Khandakar (2008)) is selecting appropriate model order, that is the value 𝑝, 𝑞, 𝑑 . If   𝑑 is 

known, we can select the order of 𝑝, 𝑞 via information criterion such as AIC: 

𝐴𝐼𝐶 = −2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑘) 

Where 𝑘 = 1 if 𝑐 ≠ 0 and 0 otherwise, and 𝐿 is the maximum likelihood of the model fitted 

on the differenced data.  
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4.2.3.1 Long rainfall season model identification process 

The model identification process is where the form and order of tentative models are basically 

selected. The form and order of these models are picked from the sample autocorrelation 

function and partial autocorrelation function of the observed series. However, such observed 

series must be stationary before tentative models are selected. 

Models Log likelihood AIC BIC 

ARIMA(2,0,2) with non-zero mean -279.84 575.6812 591.2911 

ARIMA(0,0,0) with non-zero mean -283.71 575.4227 583.2277 

ARIMA(1,0,0) with non-zero mean -283.64 577.277 587.0333 

ARIMA(0,0,1) with non-zero mean -283.54 577.0773 586.8335 

ARIMA(0,0,0) with zero mean  -362.91 731.8153 737.6691 

ARIMA(1,0,1) with non-zero mean -282.90 577.7955 589.5030 

Table 4.12:Estimated candidate ARIMA models for long rainfall time series 

The Table 4.12 gives the maximum likelihood estimates, their AIC and BIC for ARIMA (0,0,0) 

model based on automatic ARIMA forecasting process. The estimated model is a “Regression 

with ARIMA (0,0,0) errors” which indicates no autoregressive or moving average pattern 

in the residuals. We can also see this by looking at an ACF plot of the residuals (Figure 

4.11). Once the model order was determined then, next step is to go for parameter estimation 

of the model by maximum likelihood estimation method which is the second step in Box-

Jenkins ARIMA model building procedure. The results of parameter estimation of ARIMA 

(0,0,0) are given in Table 4.13. 

4.2.3.2 Estimation and significance check of model parameters 

Coefficients Estimate Standard error p-value 

Intercept 362.9043 11.2444 2.2e-16 

SLP_PC19 21.4984 7.9496 0.006844314 

DMI_LR9 -62.8151 23.4012 0.007268809 

                          Table 4.13:Estimates of RARIMAE model (Original data) 

Table 4.13 shows that there is no difference between MLRM estimated parameters (Table 4.2) 

and the ones estimated by RARIMAE (Table 4.13). Therefore, we obtain two highly significant 

independent variables for both statistical and predictive model which have participated in 

model construction. After getting RARIMAE model parameters the next step is the model 

residuals analysis (Figure 4.25). 
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4.2.3.3 Diagnostic checking process for the estimated model 

 

 

                        

 

 

 

 

Based on ACF and PACF plots obtained in Figure 4.25, one can say that the test confirms the 

non-presence of autocorrelation pattern in series. This is a good sign when the diagnostic of 

every model is done but the most important aspect when we are in time series analysis is the 

check of autocorrelation in the time series data. After running a regression with ARIMA errors 

by use of differentiated data the candidate ARIMA models are found in Table 4.14. 

Models Log likelihood AIC BIC 

ARIMA(0,0,0) with non-zero mean -292.03 592.0639 599.7912 

ARIMA(1,0,0) with non-zero mean -289.53 589.0601 598.7193 

ARIMA(0,0,0) with zero mean  -292.03 590.0689 595.8644 

ARIMA(2,0,0) with non-zero mean  -282.89 577.7704 589.3614 

ARIMA(3,0,0) with non-zero mean -281.25 576.5067 590.0295 

ARIMA(4,0,0) with non-zero mean -281.19 578.3864 593.8410 

ARIMA(3,0,0) with zero mean -281.26 574.5191 586.1100 

ARIMA(2,0,0) with zero mean -282.89 575.7744 587.4335 

ARIMA(4,0,0) with zero mean -281.20 576.4038 589.9266 

Table 4.14: Estimated candidate ARIMA models for long rainfall time series (first 

differenced data) 

Figure 4.25:Diagnostic of residual plots for RARIMAE 
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The table 14 gives the maximum likelihood estimates, their AIC and BIC for ARIMA (3,0,0) 

model based on automatic ARIMA forecasting. The estimated model is a “Regression with 

ARIMA (3,0,0) errors” which indicates the presence of autoregressive pattern in the 

residuals. We can also see this by looking at an ACF plot of the residuals (Figure 4.13). 

ARIMA (3,0,0) means that the predicted value for the next rainfall season depending on the 

3 seasonal data of rainfall before, 0 seasonal data of rainfall earlier error. 

4.2.3.4 Estimation and significance check of Tentative model parameters 

Coefficients Estimate Standard error p-value 

𝜃1 -0.6700 0.1512 9.407521e-06 

𝜃2 -0.6922 0.1527 5.842725e-06 

𝜃3 -0.2801 0.1504 6.258247e-02 

SLP_PC19 25.2124 8.0376 1.708049e-03 

DMI_LR9 -97.9991 33.6040 3.542144e-03 

              Table 4.15:Estimates of RARIMAE model (first differentiated data) 

From Table 4.15, all coefficients of estimated parameters are significantly different from zero. 

There is a stationarity in 𝜃1, 𝜃2 and 𝜃3   as the absolute values of their estimates are far from 1. 

After getting model parameters the next step is residuals analysis for RARIMAE model 

analysis. 

4.2.3.5 Diagnostic checking process for the estimated model 

 Original data First differenced data 

Summary statistics Summary statistics 

Test Type X-squared Df p-value X-squared Df p-value 

Box-Pierce and Ljung-Box 10.338 14 0.7371 8.4027 14 0.8673 

Table 4.16:Box-Pierce and Ljung-Box Test for RARIMAE long rainfall season model 
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From theory, it is expected that 
N

4
=

52

4
= 13 autocorrelation functions of residuals out of which 

less than 5% spikes should be noticed for the residuals to be accepted as a white noise. 

However, from Figure 4.26, almost all the spikes of the ACF and PACF plots all lie within the 

confidence bounds suggesting that the residuals are white noise. For differentiated data, the 

normal Q-Q plot seems good because most of the dataset lie on the straight line (Appendix H). 

The bell-shape feature is clearly noticed in Appendix H.1, indicating that the residuals are 

normally distributed, and this is approved by Jarque Bera test results in Appendix H.2. A 

further analysis was conducted to ascertain the certainty of the residuals being white noise. 

From table 4.16 a Box-Ljung test was reported a 𝜒2 = 10.338(df = 14) with a large p −

value = 0.7371 ,suggesting that the residuals from a model computed based on original data 

are white noise. For differenced data, a Box-Ljung test was reported a 𝜒2 = 8.4028(df = 14) 

with a large p − value = 0.8673 ,suggesting that the residuals from the model are also white 

noise. 

Figure 4.26:Diagnostic of residual plots for RARIMAE 

(first difference data) 
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To evaluate the multiple linear regression model for long rainfall season performance in East 

Africa the prediction performance was performed. Figure 4.27 shows a comparison between 

the real values and the ones resulted from the developed ARIMA model for the period between 

1949 and 2000.  ARIMA (3,0,0) model on differentiated data, we obtain the graphical plot for 

the actual pitch series versus the predicted pitch series and from the visual inspection of the 

plot it is quite evident that the chosen model is good enough as the predicted. The correlation 

coefficient (r) for models developed based on time series original data and first differentiated 

data are 0.45 and 0.73 respectively. Same case for both models the RMSE were found to be 

56.66 and 59.47 respectively. 

4.2.4 RARIMAE model for forecasting short rainfall season in East Africa 

The same steps for model construction are followed as it is done for long rainfall season. The 

only difference between these two seasons is that the number of variables selected for model 

prediction in statistical model and predictive model are different while for long rainfall season 

same variables are selected for both statistical and predictive model. 

4.2.4.1 Short rainfall season RARIMAE statistical model 

Before performing a RARIMAE statistical model 72 variables were candidates in model 

construction. After variables selections based on criteria described in chapter 3 of this study, a 

RARIMAE model is developed using a combination of exogenous variables used to develop a 

multiple linear regression model in the same season (Table 4.7). Like other ARIMA models, 

RARIMAE models follows step in Box-Jenkins ARIMA model building, which is consist by 

model identification, parameters estimation and diagnostic and checking. 

Figure 4.27:Observed long rainfall season vs Predicted long rainfall season 
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4.2.4.1.1  Model identification for short rainfall season RARIMAE statistical model  

The form and order of these models are picked from the sample autocorrelation function and 

partial autocorrelation function of the observed series. However, such observed series must be 

stationary before tentative models are selected. 

Models Log likelihood AIC BIC 

ARIMA(0,0,0) with non-zero mean -291.08 592.1601 601.9163 

ARIMA(1,0,0) with non-zero mean -288.48 588.9513 602.6588 

ARIMA(0,0,1) with non-zero mean -288.75 589.499 603.2064 

ARIMA(0,0,0) with zero mean -362.62 733.2368 741.0418 

ARIMA(2,0,0) with non-zero mean -288.27 590.5327 604.1914 

ARIMA(1,0,1) with non-zero mean -287.31 588.6174 602.2762 

ARIMA(2,0,1) with non-zero mean -287.25 590.5054 606.1153 

ARIMA(1,0,2) with non-zero mean -287.23 590.4506 606.0605 

ARIMA(0,0,2) with non-zero mean -288.74 591.4889 605.1476 

ARIMA(1,0,1) with zero mean -294.91 601.8265 613.5340 

Table 4.17:Estimated candidate ARIMA models for short rainfall time series (Original data) 

The Table 4.17 gives the maximum likelihood estimates, their AIC and BIC for ARIMA (1,0,1) 

model based on automatic ARIMA forecasting. The estimated model is a “Regression with 

ARIMA (1,0,1) errors” which indicates the presence of autoregressive and moving average 

pattern in the residuals. We can also see this by looking at an ACF plot of the residuals 

(Figure 4.17). Once the model order was determined then, next step is to go for parameter 

estimation of the model by maximum likelihood estimation method which is the second step 

in Box-Jenkins ARIMA model building procedure. The results of parameter estimation of 

ARIMA (1,0 ,1) are given in Table 4.18. 

4.2.4.1.2 Estimation and significance check of Tentative model parameters 

Coefficients Estimate Standard error P-value 

𝜃1 -0.8742 0.1192 2.193801e-13 

∅1 0.6806 0.1816 1.789004e-04 

Intercept 251.2248 7.5807 0.000000e+00 

SOI_SR3 -29.0495 9.0147 1.270919e-03 

SAOD_SR0 47.8195 15.1314 1.576163e-03 

SST_PC13 -22.1195 8.3709 8.231476e-03 

Table 4.18:Estimates of RARIMAE model (Original data) 
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From table 4.18, all coefficients of estimated parameters are highly significantly different from 

zero. There is no stationarity in 𝜃1  as the absolute value of its estimate is not far from 1. After 

getting regression parameters the next step is residuals analysis for RARIMAE model analysis. 

4.2.4.1.3 Diagnostic checking process for the estimated model 

 

 

 

 

 

 

 

 

 

Models Log likelihood AIC BIC 

ARIMA(0,0,0) with non-zero mean -307.75 625.4914 635.2476 

ARIMA(1,0,0) with non-zero mean -292.95 597.904 609.6115 

ARIMA(0,0,0) with zero mean -307.76 623.5134 631.3183 

ARIMA(2,0,0) with non-zero mean -292.56 599.1157 612.7744 

ARIMA(1,0,0) with zero mean -292.97 595.9311 605.6873 

ARIMA(2,0,0) with zero mean -292.57 597.1394 608.8469 

Table 4.19:Estimated candidate ARIMA models for short rainfall time series          

(differenced data) 

The Table 4.19 gives the maximum likelihood estimates, their AIC and BIC for ARIMA (1,0,0) 

model based on automatic ARIMA forecasting. The estimated model is a “Regression with 

ARIMA (1,0,0) errors” which indicates the presence of autoregressive pattern in the 

residuals. We can also see this by looking at an ACF plot of the residuals (Figure 4.21). 

Figure 4.28:Diagnostic of residual plots for RARIMAE 
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ARIMA (1,0,0) means that the predicted value for the next year depending on the data 1 

rainfall season before, 0 seasonal rainfall earlier error. 

4.2.4.1.4 Estimation and significance check of Tentative model parameters 

Coefficients Estimate Standard error P-value 

𝜃1 -0.6935 0.1022 1.137357e-11 

SOI_SR3 -28.9779 9.7741 3.029093e-03 

SAOD_SR0 30.4844 16.1511 5.910024e-02 

SST_PC13 -22.6784 9.0045 1.178359e-02 

Table 4.20:Estimates of RARIMAE model (First differentiated data) 

From Table 4.20, all coefficients of estimated parameters are significantly different from zero. 

There is a in 𝜃1  stationarity as the absolute values of its estimate is far from 1. After getting 

regression parameters the next step is residuals analysis for RARIMAE model analysis. 

4.2.4.1.5 Diagnostic checking process for the estimated model 

 

 

                            

 

 

 

 

 

 

Figure 4.29:Diagnostic of residual plots for RARIMAE (first difference data) 
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4.2.4.2 Short rainfall season RARIMAE predictive model 

Before performing a RARIMAE statistical model 58 variables were candidates in model 

construction. After variables selections based on criteria described in chapter 3 of this study, a 

RARIMAE model is developed using a combination of exogenous variables used to develop a 

multiple linear regression model in the same season (Table 4.7). Like other ARIMA models, 

RARIMAE models follows step in Box-Jenkins ARIMA model building, which is consist by 

model identification, parameters estimation and diagnostic and checking. 

4.2.4.2.1  Model identification for short rainfall season RARIMAE predictive model 

The form and order of these models are picked from the sample autocorrelation function and 

partial autocorrelation function of the observed series. However, such observed series must be 

stationary before tentative models are selected. 

Model Log likelihood AIC BIC 

ARIMA(2,0,2) with non-zero mean -292.29 600.5713 616.1813 

ARIMA(0,0,0) with non-zero mean -295.74 599.4701 607.2751 

ARIMA(1,0,0) with non-zero mean -295.03 600.0500 609.8063 

ARIMA(0,0,1) with non-zero mean -295.2 600.3942 610.1504 

ARIMA(0,0,0) with zero mean -362.63 731.2688 737.1225 

ARIMA(1,0,1) with non-zero mean -292.91 597.8108 609.5182 

ARIMA(2,0,1) with non-zero mean -292.52 599.0310 612.6897 

ARIMA(1,0,2) with non-zero mean -292.32 598.6377 612.2964 

ARIMA(0,0,2) with non-zero mean -294.82 601.6364 613.3438 

ARIMA(2,0,0) with non-zero mean -294.09 600.1852 611.8927 

ARIMA(1,0,1) with zero mean -299.48 608.9657 618.7219 

Table 4.21:Estimated candidate ARIMA models for short rainfall time series (Original data) 

The Table 4.21 gives the maximum likelihood estimates, their AIC and BIC for ARIMA (1,0,1) 

model based on automatic ARIMA forecasting. The estimated model is a “Regression with 

ARIMA (1,0,1) errors” which indicates no autoregressive or moving average pattern in the 

residuals. We can also see this by looking at an ACF plot of the residuals (Figure 4.18). 

Once the model order was determined then, next step is to go for parameter estimation of the 

model by maximum likelihood estimation method which is the second step in Box-Jenkins 

ARIMA model building procedure. The results of parameter estimation of ARIMA (1,0 ,1) are 

given in Table 4.22. 
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4.2.4.2.2 Estimation and significance check of Tentative model parameters 

Coefficients Estimate Standard error p-value 

𝜃1 -0.8856 0.1082 2.220446e-16 

∅1 0.7204 0.1530 2.484536e-06 

Intercept 251.5127 8.6454 0.000000e+00 

SOI_SR3 -19.8939 9.6982 4.023665e-02 

SST_PC13 -20.1352 9.5143 3.431848e-02 

Table 4.22:Estimates of RARIMAE model (Original data) 

From table 4.22, all coefficients of estimated parameters are significantly different from zero. 

There is a in 𝜃1 no stationarity as the absolute values of its estimate is not far from 1. After 

getting regression parameters the next step is residuals analysis for RARIMAE model analysis. 

 

 

 

 

 

 

 

Model Log likelihood AIC BIC 

ARIMA(0,0,0) with non-zero mean -310.26 628.5204 636.2477 

ARIMA(1,0,0) with non-zero mean -296.85 603.698 613.3571 

ARIMA(0,0,0) with zero mean -310.29 626.5729 632.3684 

ARIMA(2,0,0) with non-zero mean -296.8 605.6019 617.1928 

ARIMA(1,0,0) with zero mean -296.88 601.7615 609.4888 

ARIMA(2,0,0) with zero mean -296.83 603.6661 613.3253 

Table 4.23:Estimated candidate ARIMA models for short rainfall season (differenced data) 

Figure 4.30:Diagnostic of residual plots for RARIMAE 
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The Table 4.23 gives the maximum likelihood estimates, their AIC and BIC for ARIMA (1,0,0) 

model based on automatic ARIMA forecasting. The estimated model is a “Regression with 

ARIMA (1,0,0) errors” which indicates the presence of autoregressive pattern in the 

residuals. We can also see this by looking at an ACF plot of the residuals (Figure 4.23). 

ARIMA (1,0,0) means that the predicted value for the next year depending on the data 1 

rainfall season before, 0 seasonal rainfall earlier error. 

4.2.4.2.3 Estimation and significance check of model parameters 

Coefficients Estimate Standard error P-value 

𝜃1 -0.6790 0.1068 2.054799e-10 

SOI_SR3 -15.9068 9.6743 1.001298e-01 

SST_PC13 -24.3021 9.8737 1.384348e-02 

Table 4. 24:Estimates of RARIMAE model (First differentiated data) 

From table 4.24, all coefficients of estimated parameters are significantly different from zero. 

There is a in 𝜃1  stationarity as the absolute values of its estimate is far from 1. After getting 

regression parameters the next step is residuals analysis for RARIMAE model analysis. 

4.2.4.2.4 Diagnostic checking process for the estimated statistical and predictive 

model 

 

 

       

 

 

 

 

 Figure 4.31:Diagnostics of ARIMA (1,0,0) fit on the first differenced data 
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 Original data First differenced data 

Summary statistics Summary statistics 

 Test Type X-squared Df p-value X-squared Df p-value 

Statistical 

model 

Box-Pierce and 

Ljung-Box 

 

26.29 

 

16 

 

0.0501 

 

17.077 

 

16 

 

0.3806 

Predictive 

model 

Box-Pierce and 

Ljung-Box 

 

22.993 

 

16 

 

0.1139 

 

18.196 

 

16 

 

0.3126 

Table 4.25:Box-Pierce and Ljung-Box Test for short rainfall season model 

Diagnosing an ARIMA model is a crucial part of the model-building process and involves 

analysing the model residuals. A residual is the difference, or error, between the observed value 

and the model-predicted value. In this step, the residual is tested for evaluation purposes and 

goodness of the fit statistics is provided. Figure 4.29 and Figure 4.31 shows the ACF and PACF 

for the residuals of ARIMA (1,0, 0) models for both statistical and predictive model for short 

rainfall season. For figure 30 insignificant correlations appears at all lags, while for Figure 4.30 

only one significant correlation appears at lag 2.  

However, From Figure 4.28 and Figure 4.30, almost all the spikes of the ACF and 

PACF plots all lie within the confidence bounds suggesting that the residuals are white noise. 

For differentiated data, the normal Q-Q plot seems ok because most of the dataset lie on the 

straight line (Appendix I and J). The bell-shape feature is clearly noticed in Appendix I.1 and 

Appendix J.1; indicating that the residuals are normally distributed. This is approved by Jarque 

Bera test results in Appendix I.2 and Appendix J.2. A further analysis was conducted to 

ascertain the certainty of the residuals being white noise.  Table 25 shows that the Box-Ljung 

testn reported a 𝜒2 =17.077(df = 16) with a large p − value =0.3806 for statistical model, 

suggesting that the residuals from a model computed based on original data are white noise. 

For predictive model, a Box-Ljung test was reported a 𝜒2 = 18.196(df = 16) with a large p −

value = 0.3126 ,suggesting that the residuals from the model also are white noise. 
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To evaluate the Regression with ARIMA errors model for short rainfall season (Statistical 

model) performance in East Africa to capture prediction performance was performed. Figure 

4.32 shows a comparison between the real values and the ones resulted from the developed 

ARIMA model for the period between 1949 and 2000.  ARIMA (1,0,0) model on differentiated 

data, we obtain the graphical plot for the actual pitch series versus the predicted pitch series 

and from the visual inspection of the plot it is quite evident that the chosen model is good 

enough as the predicted. The correlation coefficient (r) for models developed based on time 

series original data and first differentiated data are 0.64 and 0.78 respectively. Same case for 

both models the RMSE were found to be 60.56 and 75.11 respectively. 

 

        

 

 

 

 

 

 

To evaluate the Regression with ARIMA errors model for short rainfall season (Predictive 

model) performance in East Africa to capture prediction performance was performed. Figure 

4.33 shows a comparison between the real values and the ones resulted from the developed 

Figure 4.32:Observed vs Predicted short rainfall season (statistical model) 

Figure 4.33:Observed vs Predicted short rainfall season (Predictive model) 
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ARIMA model for the period between 1949 and 2000.  ARIMA (1,0,0) model on differentiated 

data, we obtain the graphical plot for the actual pitch series versus the predicted pitch series 

and from the visual inspection of the plot it is quite evident that the chosen model is good 

enough as the predicted. The correlation coefficient (r) for models developed based on time 

series original data and first differentiated data are 0.52 and 0.74 respectively. Same case for 

both models the RMSE were found to be 67.47 and 81.14 respectively. 

4.2.5 Comparison of overall prediction accuracy of the models under study 

This study presents the inclusion of exogenous variables in the ARIMA model (termed as 

Regression with ARIMA errors) and showed a good performance for RARIMAE errors for 

seasonal rainfall prediction in East Africa. The inclusion of an exogenous variable is only 

possible if these predictors show a significant correlation with the dependent variable. For the 

first part of this study, a study on spatial and temporal analysis on seasonal rainfall situation 

was done with the help of maps in which 3569 grid box were analysed. The correlation analyses 

were conducted between 72 teleconnections (for statistical model) and 58 teleconnections (for 

predictive model) and seasonal rainfall time series in each grid points. 

To understand the effectiveness of the Regression with ARIMA errors models, its 

statistical parameters were compared with developed MLR model for the same regions. 

Temporal and spatial presentation with the help of maps showed low value for RMSE and 

improved values of R-squared all computed using regression RARIMAE errors (Figure 

4.7,4.8).  From such comparison, a significant rise in R-squared, a decrease of RMSE and a 

decrease in MAE values were observed in RARIMAE models for both short rainfall and long 

rainfall season averaged time series. In terms of reliability, RARIMAE outperformed its MLR 

counterparts with better efficiency and accuracy (Figure 4.15,4.22 ,4.24,4.27,4.32 and 4.33). 

For this section the overall prediction accuracy of all the models under study has been 

discussed. The prediction accuracy is measured in terms of R-squared, RMSE and MAE as 

discussed in chapter three. 
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   Original data First differentiated data 

Season Model Criteria MLR RARIMAE MLR RARIMAE 

Long 

rainfall 

season 

Statistical 

and 

predictive 

model 

R-squared 0.208 0.208 0.274 0.536 

RMSE 56.659 56.659 74.234 59.466 

MAE 45.569 45.569 
59.895 47.524 

 

Short 

rainfall 

season 

Statistical 

model 

R-squared 0.318 0.413 0.301 0.614 

RMSE 65.285 60.566 101.04 75.118 

MAE 46.988 45.807 79.137 60.718 

Predictive 

model 

R-squared 0.184 0.272 0.228 0.551 

RMSE 71.398 67.465 106.17 81.141 

MAE 51.128 51.187 81.470 66.169 

Table 4.26: Comparison of forecasting performance of all models for long and short rainfall 

season time series 

The developed model can predict long rainfall season for 9 months in advance for the region 

with SLP and DMI as predictors. For the averaged long rainfall time series, the above-

mentioned model has been fitted and modelling and forecasting performance has been assessed 

in terms of their prediction ability measured by model errors under both original and 

differentiated data set.  For the original data sets, RARIMAE model performed as the MLR 

model (Table 26) as R-squared, RMSE and MAE of RARIMAE model for both models are 

equal, and this is due to the residuals from multiple linear regression model which are white 

noise. For the differentiated data, the RARIMAE model performed better as compared to 

regression analysis in both data set (Table 4.26) as R-squared is higher while RMSE and MAE 

of RARIMAE model is lower as compared to regression model.  

The developed predictive model can also predict short rainfall season for 3 months in 

advance for the region with SOI and the first principal component of SST(SST_PC1) as 

predictors, while the statistical model adds on these two variables SAOD (with current time 

series) as the third predictor. For the averaged short rainfall time series, the above-mentioned 

model has been fitted, modelling and forecasting performance has been assessed in terms of 

their prediction ability measured by model errors under both original and differentiated data 

set. For both the original data and differentiated data, the RARIMAE model performed better 

as compared to regression analysis in statistical and predictive model (Table 4.26) as R-squared 

is higher while RMSE and MAE of RARIMAE model is lower as compared to regression 

model. This is due to the existence of autocorrelation in residuals from MLR M performed 

based on original data as well as on differentiated data. 
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Such capability of the model to predict long rainfall season up to 9 months in advance 

and short rainfall season up to 3 months in advance has also justified by several studies. All 

these studies considered lagged climate indices to forecast East African seasonal rainfall as the 

current study did. Chena and Georgakakos (2015) conducted a study on Seasonal prediction of 

East African rainfall. This study compares several forecasting methods using SST anomalies 

to predict East African rains with various lead time. It has shown positive evidence to use 

climate indices to predict long rainfall season in several months in advance (up to 11 months) 

and short rainfall season in few months in advance (up to 3 months). They conclude that unlike 

the results of the short rains, the optimal lead times for the long rains are consistently longer 

than for the short rains. 

However, the developed MLR models have some limitation as they were not able to 

predict all extreme cases. Investigating the existing nonlinear relationship between rainfall and 

climate drivers can improve the better understanding of the trend, and associated variabilities 

that the developed models failed to address. Possible analysis approaches can be considered 

for developing a model which captures nonlinear and linear component. Since rainfall is a 

complex mechanism, any linear or non-linear model by itself, might not be able to predict or 

capture all the extreme cases. The regression with ARIMA errors model residuals can be used 

to explain the non-linear relationship, where the combined output of both MLR and non-linear 

models can be used for improving forecasting. 

By application of OLS (Ordinary least squares) method on long rainfall season and short 

rainfall season for both statistical model and predictive model, it is shown that there exists 

autocorrelation of residual at the first difference. This support the statement saying that one of 

the major problems encountered while using time series data is Autocorrelation. Consequences 

of autocorrelation are: (a) the estimates of the parameters do not have the statistical bias. In 

other words, even when the residuals are serially correlated the parameter estimates of OLS are 

statistically unbiased, in the sense that their expected value is equal to the true parameter. (b) 

With autocorrelation values of disturbance term, the OLS variances of the parameter estimates 

are likely to be larger than those of other econometric methods. (c) The variance of the random 

term may be seriously underestimated if the u are uncorrelated. And (d) if the values of u’s are 

uncorrelated, the predictions based on the OLS estimate will be inefficient. Therefore, 

whenever the data suffer from autocorrelation, we can go for MLR with ARIMA error, the 
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ARIMA error part is more to correct the autocorrelation thereby improving the variance and 

productiveness of the model.
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CONLUSION 

This study investigated the influence of climate drivers on East African rainfall variability and 

developed the forecast models to predict seasonal long and short rainfall using the RARIMAE 

and MLR models. In this attempt, climate drivers were used as transfer functions, while all 

other previous attempts considered conventional time series models only. From a statistical 

perspective, it was evident that the predictability performance of the RARIMAE model is much 

higher than the MLR models. For short rainfall season the models are capable of predicting 

rainfall 3 months in advance while for the long rainfall season they can predict the rainfall only 

9 months in advance.  

The developed RARIMAE models have shown a strong correlation (r) as well as 

minimum errors. It was also observed that all these RARIMAE models were successful in 

predicting seasonal rainfall in East Africa and their ability to predict long rainfall season in 

advance of 9 months and short rainfall in 3 months has strengthened their acceptability. From 

the stakeholder’s perspective, such flexibility offered in the developed model has greater 

importance, as a timely prediction can help in strategic decision making and reducing 

associated risks and damage potentials. Overall, the SLP_PC19 – DMI_LR9 model for the long 

rainfall season and SST_PC13–SOI_SR3 model for the short rainfall season predictive model 

showed exceptional performance with good prediction accuracy and can be recommended for 

future rainfall prediction in East Africa. 

  However, some aspects should be given attention. Regression with ARIMA errors 

could be quite complex. It is important to look for the most parsimonious model. As regarded 

the data, it is clear that the number of potential variables tested in our models is large but the 

number of selected variables in our models is limited. Nevertheless, the combination of 

regression model and an ARIMA error structure gives an acceptable fit, even without the non-

selected elements. The effect of these omitted factors, but explicitly tested, are reflected in the 

error terms. Also, adding more explanatory variables brings more multicollinearity into the 

model.
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APPENDICES 
 

Appendix A 

PC-No Actual 3 months lead 6 months 

lead 

9 months 

lead 

12 months lead 

1 22.49 29.12 31.19 19.44 20.00 

2 8.41 7.44 6.31 8.14 7.68 

3 6.98 6.80 5.81 7.10 7.03 

4 5.56 5.01 4.35 5.61 5.63 

5 4.77 4.28 4.21 4.59 4.71 

Total 47.91 52.65 51.87 44.88 45.05 

The first five principal component analysis modes of long rainfall season sea surface temperature 

 

 

Appendix B 

PC-No Actual 3 months lead 6 months 

lead 

9 months 

lead 

12 months lead 

1 31.72 20.54 22.49 29.12 31.19 

2 6.71 8.34 8.41 7.44 6.31 

3 5.82 7.09 6.98 6.80 5.81 

4 4.38 5.67 5.56 5.01 4.35 

5 3.75 4.52 4.77 4.28 4.21 

Total 52.30 46.16 47.91 52.65 51.87 

The first five principal component analysis modes of short rainfall season sea surface temperature 
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 Appendix C 

PC-No Actual 3 months lead 6 months 

lead 

9 months 

lead 

12 months lead 

1 16.28 21.73 19.20 21.85 16.13 

2 12.38 15.18 12.22 12.27 12.26 

3 9.22 10.58 7.75 9.82 9.99 

4 6.74 6.51 7.04 6.67 6.63 

5 5.81 5.82 5.88 5.21 5.77 

Total 50.43 59.82 52.09 55.82 50.78 

 The first five principal component analysis modes of long rainfall season sea level pressure 

 

Appendix D 

PC-No Actual 3 months lead 6 months 

lead 

9 months 

lead 

12 months lead 

1 19.81 21.91 16.28 21.73 19.20 

2 12.14 12.37 12.38 15.18 12.22 

3 7.51 10.03 9.22 10.58 7.75 

4 6.87 6.78 6.74 6.51 7.04 

5 5.82 5.14 5.81 5.82 5.88 

Total 52.15 56.23 50.43 59.82 52.09 

 The first five principal component analysis modes of short rainfall season sea level pressure 
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Appendix E 

 
                           Appendix E.1: Residual’s normality test for MLR long rainfall season 

 

 

 

 Original data First differenced data 

Summary statistics Summary statistics 

Test Type X-squared Df p-value X-squared Df p-value 

Jarque Bera Test 0.008663 2 0.9957 0.23039 2 0.8912 

         Appendix E.2: Residuals Jarque Bera Test for long rainfall MLR model 

 

 

 

 

 



                                                                                                                                                          APPENDICES 

 

107 

 

Appendix F 

 
                          Appendix F.1: Residual’s normality test for MLR short rainfall season 

(Statistical model) 

 

 

 Original data First differenced data 

Summary statistics Summary statistics 

Test Type X-squared Df p-value X-squared Df p-value 

Jarque Bera Test 10.808 2 0.0044 0.22006 2 0.8958 

          Appendix F.2: Residuals Jarque Bera Test for short rainfall MLR statistical model 
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Appendix G 

 

                          Appendix G.1: Residual’s normality test for MLR short rainfall season 

(Predictive model) 

    

 

 

 Original data First differenced data 

Summary statistics Summary statistics 

Test Type X-squared Df p-value X-squared Df p-value 

Jarque Bera Test 15.176 2 0.0005 0.63429 2 0.7282 

                Appendix G.2: Residuals Jarque Bera Test for short rainfall MLR predictive model 
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Appendix H 

 
                             Appendix H.1: Residual’s normality test for RARIMAE long rainfall 

season 

 

 

 

 Original data First differenced data 

Summary statistics Summary statistics 

Test Type X-squared Df p-value X-squared Df p-value 

Jarque Bera Test 0.008663 2 0.9957 0.080654 2 0.9605 

              Appendix H.2: Residuals Jarque Bera Test for long rainfall RARIMAE model 
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Appendix I 

 

                                        Appendix I.1: Residual’s normality test for RARIMAE Short rainfall 

season (statistical model) 

 

 

 

 Original data First differenced data 

Summary statistics Summary statistics 

Test Type X-squared Df p-value X-squared Df p-value 

Jarque Bera Test 3.6497 2 0.1612 0.072548 2 0.9644 

          Appendix I.2: Residuals Jarque Bera Test for short rainfall RARIMAE statistical model 
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Appendix J 

 

                                  Appendix J.1: Residual’s normality test for RARIMAE Short rainfall 

season (predictive model) 

 

 

 

 Original data First differenced data 

Summary statistics Summary statistics 

Test Type X-squared Df p-value X-squared Df p-value 

Jarque Bera Test 6.9583 2 0.0308 0.82344 2 0.6625 

          Appendix J.2: Residuals Jarque Bera Test for short rainfall RARIMAE predictive 

model 

 

 


