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1 INTRODUCTION 
 
1.1  

 (AD) is the most common dementia in the elderly 

population (>65 years), associated with progressive neurodegeneration of the 

central nervous system (CNS) (Blennow et al., 2006). Clinically, AD typically 

begins with a subtle decline in memory and progresses to global deterioration 

in cognitive and adaptive functioning (Watson and Craft, 2004). On the 

pathophysiological level there are two types of AD; very rare autosomal 

dominant early-onset familiar type and very common late-onset sporadic type 

with still unknown etiology (Blennow et al., 2006). Early-onset familiar AD is 

caused by missense mutations in the amyloid precursor protein (APP) gene on 

chromosome 21, in the presenilin (PS) 1 gene on chromosome 14 and in the 

PS 2 gene on the chromosome 1 (Rocchi et al., 2003). Two main 

neuropathological hallmarks are found in the brain of patients with sporadic 

Alzheimer disease (sAD) and familiar AD: neurofibrillary tangles (NFT) and 

amyloid plaques. Neurofibrillary tangles consist of intracellular protein deposits 

made of hyperphosphorylated tau protein (Blennow et al., 2006). Tau protein 

is a microtubule-associated protein which is involved in stabilization and 

promotion of microtubules but when hyperphosphorylated it gains a toxic 

function which is lethal for the neurons (Iqbal et al., 2005). Extracellular 

amyloid plaques predominantly consist of aggregates of neurotoxic amyloid 

beta 1- -42) generated in vivo by specific, proteolytic cleavage of APP 

(Blennow et al., 2006; Rocchi et al., 2003) 
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Classical and also leading amyloid cascade hypothesis assumes that  

pathological assemblies of amyloid beta (A ) are the primary cause of both AD 

forms and all other neuropathological changes (cell loss, inflammatory 

response, oxidative stress, neurotransmitter deficits and at  the end loss of 

cognitive function) are downstream consequenc

accumulation (Rocchi et al., 2003). This hypothesis could explain the etiology 

of familiar AD, but the etiology of sAD still remains a mystery. Sporadic 

Alzheimer's disease has age (increased prevalence of sAD from below 1% at 

the age of 60 to 24-33% at the age of 85 and more), diabetes mellitus type 2 

and apolipoprotein E4 (ApoE4) as risk factors, which may suggest that 

neurodegenerative lesions are compensatory phenomena, and thus 

manifestations of cellular adaptation to some chronic pathological changes in 

the brain (Ferri et al., 2005; Blennow et al., 2006). There is a growing body of 

evidence that changes in insulin and insulin receptor (IR) signaling cascade in 

the brain of people with sAD have an influence on the metabolism of APP and 

A  accumulation and in maintaining of balance between phosphorylated and 

nonphosphorylated tau protein (Gasparini et al., 2002; Hoyer, 2004; Frölich et 

al., 1998). 

 

1.2 Insulin system in the brain 

1.2.1 Insulin 

Although insulin and IR are found throughout the CNS their physiological 

function is still generally unclear. The great majority of insulin in the brain is 

produced at the periphery in to the 
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brain across the blood brain barrier by region specific saturable transport 

mechanism (Banks et al., 2004). Except at the periphery, a small proportion of 

insulin is synthesized in the brain. Insulin mRNA (one gene in humans and two 

genes in rats) is distributed in a highly specific pattern with the highest 

concentration in the pyramidal cell of the hippocampus and high concentration 

in the medial prefrontal cortex, entorhinal cortex and perirhinal cortex, the 

thalamus, the granular layer of the olfactory bulb and also in the hypothalamus 

(Devaskar et al., 1994).  

1.2.2 Insulin receptor 

To induce biological effects in the brain insulin binds to the specific brain 

insulin receptors (IR). In general the IR belongs to the receptor tyrosine kinase 

-subunits and two -subunits (Johanstone et 

al., 2003). There are two slightly different types of IR: a peripheral type on glial 

cells which is down regulated with insulin and a neuron-specific brain type with 

high concentration on neurons which is not down regulated with insulin. Also, 

the molecular mass of  -subunits of the brain IR are a bit lower then 

that in the periphery. Besides these small differences no other changes were 

found (Adamo et al., 1989). Distribution of neuronal IR mRNA, throughout the 

brain shows a highly specific pattern, with the highest density found in the 

olfactory bulb, hypothalamus, cerebral cortex and hippocampus functionally 

involved in cognitive function, learning and memory (Marks et al., 1991).  

1.2.3 Insulin receptor signaling pathway 

IR signaling cascade in the brain is similar to the one at the periphery. There 

are two main parallel IR intracellular pathways, the phosphatidylinositol-3 
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kinase (IP-3K) pathway and the mitogen activated protein kinase (MAPK) 

pathway (Johanstone et al., 2003). When insulin binds to the -

subunit of IR it induces autophosphorylation of the intracellular -subunit 

resulting in increased catalytic activity of the tyrosine kinase (Johanstone et 

al., 2003). Now activated IR becomes a docking site for the insulin receptor 

substrate (IRS), which then becomes phosphorylated on tyrosine residues. 

Insulin receptor substrate is now ready to bind various signaling molecules 

with SH2 domains; one of these molecules is phosphatidylinositol-3 kinase 

(PI-3K). After being activated, PI-3K induces phosphorylation and subsequent 

activation of protein kinase B (PKB/Akt), consequently activated PKB/Akt 

triggers glucose transporter 4 (GLUT4) and also phosphorylates the next 

downstream enzyme glycogen synthase kinase (GSK-3) which then becomes 

inactive (Johanstone et al., 2003). When activated GSK-3 becomes a very 

important enzyme which, within brain, is involved in whole range of processes 

(Kaytor and Orr, 2002). There are two closely related isoforms of GSK-3, 

GSK-3 the metabolism of amyloid- the GSK-

3 involved in phosphorylation of tau protein (Kaytor and Orr, 2002.; 

Pei et al., 2003; Phiel et al., 2003). Therefore, metabolism of amyloid 

nce of 

the balance between phosphorylated/dephosphorilated tau protein, are under 

control of the insulin/IR signaling cascade (Fig. 1). 
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Fig. 1 Brain Insulin/Insulin receptor signaling cascade. IR- insulin receptor, 

IRS- insulin receptor substrate, MAPK- mitogen activated protein kinase, IP-

3K- phosphatidylinositol-3 kinase, Akt/PKB- protein kinase B, GSK-3- 

glycogen synthase kinase, - amyloid beta peptid 

 

1.2.4 Function of  insulin in the brain 

Regional specific distribution of insulin and IR in the brain gives insulin the 

opportunity to influence selective brain functions. Insulin/IR found within 

hypothalamus is involved in the regulation of the homeostasis of  food intake 
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and reproduction (Park, 2001). In addition, insulin/IR localized in the 

hippocampus and cerebral cortex affects cognitive functions of learning and 

memory (Park, 2001; Zhao et al., 2004). There are several proposed 

mechanisms by which insulin can influence cognitive function and one of those 

is related to the regulation of brain glucose metabolism (Hoyer, 2004). Like in 

the periphery, in the CNS insulin is involved in the regulation of 

glucose/energy metabolism probably through the insulin-sensitive glucose 

transporter GLUT4, which is found in the hypothalamus, cerebral cortex and 

hippocampus, and shows overlapping with distribution of insulin/IR in brain 

structures that are involved in memory processes (Apelt et al., 1999). Glucose 

is the main source of the energy-rich compound acetyl-CoA and ATP (Garland 

and Randle, 1964.), but when influx of glucose in the brain is low, fatty acid or 

ketone bodies are used leading to reduction of production of acetyl-CoA and 

ATP (Garland and Randle 1964.). Acetyl-CoA is among others things used for 

the synthesis of the neurotransmitter acetylcholine which is found to be 

decreased in brains of people with sAD (Gibson et al., 1975). It appears that 

insulin/IR, glucose and acetylcholine have a relative direct association, but 

insulin/IR effect on memory may also interact with other neurotransmitters, for 

example via potentiation of NMDA receptor channels leading to increased in 

Ca2+ influx and long term potentiation (Skeberdies et al., 2001). Through the 

PI-3K pathway, it may be involved in long-term depression by internalization of 

glutamatergic AMPA receptors, or via recruiting of functional GABA receptors 

to the postsynaptic membrane (Man et al., 2000). Also, activation of the MAPK 

pathway during the process of learning may lead to the regulation of gene 
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expression involved in long-term memory storage. On the other hand short-

term memory may be regulated by IR through its interaction with G-protein-

coupled receptors (Zhao et al., 2004).  

1.2.5 Insulin/IR regulation in the brain  

The most important thing in the living organism is maintaining of homeostasis. 

Insulin/IR system homeostasis is maintained at the level of insulin production, 

storage, secretion, internalization and degradation as well as at the level of IR 

production and activation (Hoyer et al., 1993; Hoyer, 2004). The majority of 

experiments regarding insulin regulation are connected to its release, 

particularly in the hypothalamus (Gerozzissis et al., 2001; Orosco et al., 2001). 

Findings that insulin secretion in rat brain during depolarization condition 

depends on the calcium influx indicate that insulin in the brain is stored in the 

vesicles and its secretion is connected with neural activity (Wei et al., 1990). 

Also leptin and glucocorticoides were found to have influence on the insulin 

secretion directly or via other molecules (glucose, serotonin) (Niswender et al., 

2004). Regarding insulin degradation, insulin degrading enzyme (IDE), a 

metalloendoprotease found with in cytosol, peroxisome, endosomes and on 

the cell surface was found to be the main enzyme for insulin degradation 

(Duckworth et al., 1988; Qiu et al., 2006). The gene of which is localized on  

chromosome 10q and its expression is tissue dependent with high 

concentration noted in brain (Farris et al., 2003; Cook et al., 2003). IDE 

degrades different substrates which can be divided in two bigger groups. The 

first group consists of substrates  

insulin, transforming growth factor , atrial natriuretic peptide and insulin-
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growth factor II. In contrast, the second group of substrates shows a lower 

affinity at Km >2 , and in growth factor I, 

e -endorphin (Farris et al., 2003). In normal 

conditions, brain IDE is the main degrading enzyme  

(Perez et al., 2000). In vitro inhibition of IP-3K abolished IDE upregulation by 

insulin causing , indicating that excess of insulin can upregulate 

IDE to prevent  (Zhao et al., 2004; Qiu et al., 

2006). This indicates that low insulin level found in post mortem brain of 

patients with sAD can contribute t  (Steen et al., 2005). 

Another level at which the insulin/IR balance is maintained is at the level of IR.  

Activation state of this tyrosine kinase receptor is regulated by the action of 

phosphotyrosine phosphatase and serin-threonine kinase (Goldstein, 1993). 

Glucocorticoids can desensitize IR by inhibition of phosphorylation of its 

tyrosine residues (Giorgino et al., 1993). Catecholamines were shown to 

decrease the activity of the receptor's tyrosine kinase by phosphorylation of 

the IR serine/threonine residues and can also decrease the insulin-induced 

tyrosine phosphorylation of the IRS1 and IRS2 (Häring et al., 1986). Tumor 

necrosis factor is another molecule involved in IR regulation by decreasing 

autophosphorylation of IR and tyrosine phosphorylation of IRS1 and IRS2 

(Hoyer and Frölich, 2006)  This all shows the complexity of insulin/IR 

regulation and points to the necessity for preserving its homeostasis which is 

important for memory. 
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1.3 Glucocorticoids and their interaction with the insulin system 

One of the main endocrine systems involved in stress reaction is the 

hypothalamic-pituitary-adrenal axis (HPA-axis) (Lupein SJ. et al. 2005). When 

the organism is under psychological and physical treat the HPA-axis is 

activated. Corticotropin releasing factor (CRF) of the hypothalamus is the first 

to respond to stress, which triggers the release of the adrenocorticotropin 

hormone (ACTH) from the pituitary gland to the bloodstream. The last target is 

the adrenal gland in which ACTH stimulates the secretion of glucocorticoides 

(GCs; cortisol in humans, corticosterone in rats) (Lupein et al., 2005). Actions 

of GCs are mediated by two types of receptors; the mineralocorticoid (MR or 

type I) and glucocorticoids (GR type II) (de Kloet et al., 1998.). The MR 

receptors are found in the hippocampus, parahippocampal gyrus, entorhinal 

and insular cortices while GR receptors are distributed in the hypothalamus, 

hippocampus, parahippocampal gyrus and cortex (McEwen et al., 1999). 

Glucocorticoids with different effect are aiming to increase the energy 

substrates to the target organism giving the organism ability to cope, adapt 

and recover from the stress (Lupein et al., 2005). The glucocorticoid hormone 

cortisol is involved in numerous brain functions, including process of learning 

and memory, attention and perception with still unknown mechanism. When 

humans or rats are subjected to a high chronic level of GCs cognitive functions 

of learning and memory are found to be impaired, as well as there is a 

decrease in hypothalamus volume as compare to control (Landfied et al., 

1978; Starkman et al., 1992). On a genetic level polymorphism in the gene 

codin -hydroxystero -HSD I) shows a 6-fold 
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increased risk for sAD (de Quervain et al., 2004), demonstrating a connection 

with memory losse and corticosteron level, because the -HSD I in the brain 

acts as a reductase rescuing the GCs from its inert 11-keto form, thus 

amplifying the GCs action (de Kloet et al., 1998). Growing evidence shows 

that the basal tonus of the HPA-axis increases with aging leading to 

hypercortisolemia, what can finally compromise the function of the insulin/IR 

system (Lupein et al., 2005; Landfield et al., 2007). It was mentioned earlier in 

the text that GCs influence the insulin cascade at the level of IR causing its 

resistance by disregulation of its phosphorilation of the tyrosine residue 

(Giorgino et al., 1993). Thus, higher levels of GCs and lower activity of the 

insulin/IR signaling cascade found in AD could be the main mechanism by 

which corticosterone impairs cognition. 

 

1.4 Changes of the brain insulin signaling cascade in sAD  

Research of the brain insulin system has been more pronounced in the last 

decade, particularly regarding its function in the brain. There is a growing 

interest in finding the role of neuronal insulin signalling cascade in the brain, 

and off course in the brain of sAD. Recent literature data indicate that brain 

insulin deficiency and insulin resistance brain state are related to the late-

onset sAD (

2005). The late-  

utilization abnormalities distributed all over the cerebral cortex, and particularly 

in structures with both high glucose demands and high insulin sensitivity 

(Henneberg and Hoyer, 1995). Neuronal glucose metabolism is under the 
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regulation of neuronal insulin, and abnormalities in the brain glucose 

at the level of insulin signal transduction (Hoyer, 2002; Hoyer and Fr

2005). In line with this decreased brain insulin protein and its mRNA levels 

were found post mortem in the brain (frontal cortex, hippocampus and 

(Craft et al., 1998; 

Steen et al., 2005), while IR density was found to be increased and tyrosine 

kinase activity decreased (Frolich et al., 1998; Steen et al., 2005). 

Interestingly, strikingly reduced expression of genes encoding insulin like 

growth factor-1 (IGF-1) and IGF-1 receptor has also been found in the frontal 

cortex, hippocampus and hypothalamus of patients with AD post mortem 

(Steen et al., 2005). Regarding the downstream IR signalling pathways, 

reduced levels of PI3-K have been found (Steen et al., 2005). Regional 

specificity of changes and difference in AD severity stage probably account for 

some inconsistency in results reported in relation to Act/PKB and GSK-3 

alterations, whose phosphorylated form was mainly found to be decreased 

(Pei et al., 2003; Steen et al., 2005). Increased activity of GSK-3 found in 

hippocampus and hypothalamus could be related to decreased activity of 

Act/PKB found in the same regions (Steen et al., 2005). Regarding that the 

total amount of Akt/PKB and GSK-3 was found unchanged, alteration of the 

phosphorylation/dephosphorylation balance of these proteins seems to be 

involved (Steen et al., 2005). 

disease has been found also to involve GSK-3 (Sengupta et al., 2006), and in 

line with increased activity of GSK-3 found in brains of AD patients post 
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mortem, increased level of phosphorylated tau protein was found in the frontal 

cortex of these patients (Steen et al., 2005). Recent data have pointed to 

another important enzyme, involved in tau dephosphorylation, the protein 

phosphatase 2A (PP2A), which can directly dephosphorylate tau (Planel et al., 

2001). Immunoblotting analysis revealed a significant reduction in the total 

amount of PP2A in frontal and temporal cortices of sAD patients that matched 

the decrease in PP2A activity and lower PP2A expression in 

immunohistochemical studies (Sontag et al., 2004; Gong et al., 1995). Thus, it 

seems likely that hyperphosphorylated tau formation is the consequence of 

increased GSK-

mentioned, GSK- (Phiel et al., 2003). APP 

are generated intracellularly in the endoplasmic 

reticulum, and their accumulation is reduced by accelerating their transport to 

the plasma membrane. The promotion of APP secretion from the intra- to the 

extracellular space and the inhibition of its degradation by IDE is mediated by 

insulin and the tyrosine kinase activity (Gasparini et al., 2002; Zhao et al., 

2004).  

 

1.5 Streptozotocin intracerebroventriculary (STZ-icv) treated rats 

Considering the fact that sAD has been recognised as an insulin resistant 

brain state, the STZ intracerebroventricularly (STZ-icv) treated rat has become 

the proposed experimental model of this disease (Hoyer, 2004; Lannert and 

Hoyer, 1998; Prickaerts et al., 1999). Streptozotocin (2-deoxy-2-(3-(methyl-3-

nitrosoureido)-D-glucopyranose) is a toxic substance which, for decades has 
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been used to induce experimental diabetes mellitus (DM). Streptozotocin 

enters the B cell via a glucose transporter (GLUT2) and causes alkylation of 

DNA and generation of free radicals. DNA damage induces activation of poly 

ADP-ribosylation which leads to depletion of cellular NAD+ and ATP (Fig 2). 

When applied intraperitoneally in high doses (>65 mg/kg) STZ is toxic for 

insulin producing/secreting cells, which induces experimental diabetes mellitus 

type I. Low doses (40-60 mg/kg) of STZ given intraperitoneally damages IR 

and causes diabetes mellitus type II (Szkudelsky, 2001) (Fig. 3). STZ-icv 

administration of low doses ( 3 mg/kg) does not alter basal blood glucose or 

produce diabetes mellitus (Nitsch and Hoyer, 1991; Plaschke and Hoyer, 

1993) but induces behavioural, neurochemical and structural changes that are 

similar to those found in sAD. STZ-icv treatment causes marked reduction in 

brain glucose/energy metabolism and shows a progressive trend towards 

oxidative stress (Duelli et al., 1994; Nitsch and Hoyer 1991; Lannert and Hoyer 

1998). Regarding the structural changes, STZ-icv administration has been 

associated with astrogliosis and extensive cell loss. Also, deficit in the 

cholinergic transmission has been found in the brain of STZ-icv treated rats, 

but no morphological changes in cholinergic neurons could been found. As 

mentioned before in the text, sAD is now recognised as an insulin resistant 

brain state, therefore there is a growing interest in research in the insulin/IR 

system in the brain of STZ-icv treated rats. Regarding the enzymes 

downstream of the IR-PI3-K pathway, experiments have shown alterations of 

hippocampal GSK-

however, observed changes were of a greater extent in the phosphorylated 
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than in the non-phosphorylated form of GSK-3 (Salkovic-Petrisic  et al., 2006) 

Also the changes were regionally specifically distributed; increased GSK-3 

levels in the frontal cortex and unchanged GSK-3 levels in hippocampus, 1 

and 3 months following the drug treatment (Salkovic-Petrisic et al., 2006). 

Regarding the phosphorylated GSK-3 (pGSK-3) form, levels in hippocampus 

were increased after 1 month, but decreased 3 months after the drug 

treatment, while in the frontal cortex, pGSK-3 was found to be decreased in 

both observational periods, 1 and 3 months following the STZ icv treatment 

(Salkovic-Petrisic et al., 2006). Akt/PKB levels were unchanged in 

hippocampus and decreased in frontal cortex 1 month following the STZ-icv 

treatment, while 3 months following the drug treatment Akt/PKB levels in 

hippocampus were decreased (Salkovic-Petrisic et al., 2006). All those 

neurochemical findings plus impairments of passive avoidance behaviour, and 

both, working and reference memory in STZ-icv rat model, demonstrate the 

resemblance of the STZ-icv rat model to the changes found in human sAD 

(Blokland and Jolles, 1993; Lannert and Hoyer 1998; Mayer et al., 1990; 

Prickaerts et al., 1999). Mechanism of this central action of STZ is still 

unknown but there is some evidence supporting the similarity to its peripheral 

action; GLUT2 and IR have been found regionally specifically distributed in the 

brain, also insulin is synthesised in the particular regions of the brain and 

depletion in ATP and increase in oxidative species has shown also regionally  

specific distribution. Due to the slow progression of sAD and postmortal 

diagnosis, initial pathophysiological changes and their further course in the 

human brain are unknown, making a search for the representative 
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experimental model additionally difficult. The STZ-icv rat model has a potential 

of being the good experimental model that gives us the possibility to follow up 

brain changes at different time points after  the STZ-icv treatment. 

 

The mechanism of STZ action
STZ

NO DNA alkylation

Poly(ADP-ribosylation)

NADATP

DNA damage

FREE RADICALS

mitochondrial
damage

 

Fig. 2 Mechanism of streptozotocin (STZ) action. After entering  the B cell via 

a glucose transporter (GLUT2) STZ causes alkylation of DNA and generation 

of free radicals and NO. Activation of poly ADP-ribosylation caused by DNA 

damage induces depletion of cellular NAD+ and ATP. Mitochondrial damage 

caused by NO leads to ATP-depletion as well.  
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Streptozotocin 
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IR Insulin producing/secreting  
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DM-Type II                                       DM- Type I

 

 

Fig. 3 Peripheral effect of streptozotocin (STZ). When applied intraperitoneally 

in low doses STZ damages IR and causes diabetes mellitus (DM) type II.  

High doses of STZ are toxic for insulin producing/secreting cells, which 

induces experimental DM type I. 
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2 HYPOTHESIS 

Recent literature data suggests that sAD is associated with changes of brain 

insulin/IR signalling pathway which may lead to the hyperphosphorylation of 

tau protein and changes in A  metabolism (Hoyer, 2004; Lupein et al., 2005). 

Namely, activation of the brain IR triggers the intracellular signalling pathways 

which regulate phosphorylated state of tau protein and metabolism of A . 

Thus, it could be hypothesized that alteration of the brain insulin system 

precedes A  pathology (Kaytor and Orr, 2002.; Pei et al., 2003; Phiel et al., 

2003). However, the time course of changes in the brain insulin system cannot 

be investigated in humans. Additionally, if one assumes that altered brain 

insulin system is preceding the A  pathology, the question still remains what 

could cause brain insulin changes. One of the missing links could be plasma 

corticosterone levels. Basal activity of HPA-axis in sAD is increased leading to 

increased concentration of cortisol. Cortisol is one of the inhibitors of the IR 

tyrosine kinase activity and could possibly induce IR signaling dysfunction 

(Giorgino et al., 1993). Some literature data reports that stress-level of 

corticosteron administration increases A  formation and promotes tau 

accumulation in the animal model of sAD but the mechanisms underlying 

these effects are still unknown (Green et al., 2006). Under normal condition 

cortisol and insulin could act as antagonists; cortisol has catabolic effects and 

insulin has anabolic effects, so balance between insulin and cortisol might be 

important for the sAD pathogenesis (Landfield et al., 2007). In line with this 

finding, and assuming that peripheral action of STZ affecting IR is similar to 

that in the brain, STZ-icv rats are a representative experimental model of sAD. 
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As the model is not related to gene manipulation it could reliably demonstrate 

time development of changes in expression of genes of the brain insulin/IR 

system (3 months and 6 months after the STZ-icv treatment) and their 

relevance in sAD pathogenesis. Furthermore, we hypothesized that chronic 

treatment of rats with corticosterone as experimental model of chronic stress 

can decrease the activity of the brain insulin/IR system which, in line with 

physiological role of insulin in learning and memory, will lead to impairment of 

cognitive functions.   
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3 MATERIAL AND METHODS 
 
3.1 STZ-icv treatment 

3.1.1 Animals  

Three-month-old male Wistar rats weighing 280-330 g (Department of 

Pharmacology, School of Medicine, University of Zagreb) were used 

throughout the study. . Animals were housed in the temperature controlled 

animal room (22.0±0.5ºC) and were kept on standardized food pellets and 

water ad libitum. 

3.1.2 Drug treatments 

For STZ-icv experiment, rats were randomly divided in 2 groups (5-6 per 

group) and given general anaesthesia (chloralhydrate 300 mg/kg, ip), followed 

by injection of STZ bilaterally into the lateral ventricle (2 L/ventricle), 

according to the procedure described by Noble et al. (Noble et al., 1967). The 

following treatments were applied in a single dose: STZ (1 mg/kg, dissolved in 

0.05M citrate buffer pH 4.5) in group I, and an equal volume of vehicle icv in 

group II. Animals were sacrified three and six months after the drug treatment. 

Brains were quickly removed, hippocampus cut out, immediately frozen and 

stored at -80 oC. STZ-icv-treated animals had no symptoms of diabetes and 

steady-state blood glucose level did not differ in comparison with control 

animals. 

3.1.3 Morris Water Maze Swimming Test 

Cognitive functions were tested in Morris Water Maze Swimming Test (Anger, 

1991). Adaptation of rats to the experimental environment and behavioural 

activity was done during two days before the experimental trials. On the first of 
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these two days animals were subjected to 1 min of freely swimming in a pool 

(150x60 cm, 50 cm deep), with water temperature set at 25±1 oC, and on the 

second day rats were allowed to freely swim in the pool divided in four 

quadrants (I-IV). In the experimental trials, performed from day 1 to day 4, rats 

were thought to escape from water by finding an unseen rigid platform 

submerged about 2 cm below the water surface in quadrant IV. Stay on the 

platform was allowed for 15 s. One trial consisted of three starts, each from a 

different quadrant (I  III), separated by a 1-min rest period. Three consecutive 

trials were performed per day, separated by a 30-min rest period. After the 

third trial on day 4, the fourth trial was performed (starts from quadrants I-III) 

with a platform being removed from the pool, and the time spent in searching 

for the platform after entering quadrant IV was recorded. The cut off time was 

1 min. Those rats who had no alterations in memory functions (control) were 

supposed to remember that the platform had previously been there, and, in 

line with that, to spend a long time swimming within quadrant IV, looking for 

the platform. In case of drug-induced deterioration of memory functions, rats 

were supposed to remember less intensively that the platform had been in 

quadrant IV, thus to spend less time in searching for the platform within this 

quadrant, in comparison with control rats. 

 

3.2 Corticosterone subcutaneous (CTS-s.c.) treatment  

3.2.1 Animals 

Twelve-month-old male Wistar rats weighing 576±64 g (breeder: Thomae, 

Biberach, Germany) were used throughout the study. Animals were housed in 
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the temperature controlled animal room (22.0±0.5ºC) with a reversed light/dark 

cycle and were kept on standardized food pellets and water ad libitum. 

3.2.2 Drug treatments 

For the corticosterone treatment rats were divided in the 3 groups; group-I 

controls without the treatment (n= 8), group-II placebo rats treated with vehicle 

only (n=9), and group-III corticosterone treated group (n=9). In the group III 

rats received subcutaneous (s.c.) injections of corticosterone (Sigma, 

Germany) alternately on the right or left side of the neck at 26.8 mg/kg body 

weight (equivalent to 10 mg/day, in 1 ml of sesame oil). Literature data shows 

that this dose of corticosterone results in peak plasma non-stress levels within 

24 h (Coburn-Litvak et al., 2003; Haugher et al., 1987). Before the 

corticosteron or vehicle treatment the animals were anaesthetized with 1.5 

vol% halothane (O2: N2O = 30:70). Significant effect of daily short halothane 

anesthesia on corticosterone and on the HPA axis can be excluded (de Haan 

et al., 2002; Karuri et al., 1998). For placebo rats, 1 ml sesame oil alone as 

vehicle was also administered daily at 8--9 a.m. for 60 days (Stein-Behrens et 

al., 1994). The control group did not receive daily injections of corticosterone 

or vehicle and they were not anaesthetised. Rats were scarified after 60 days 

of corticosterone/vehicle treatment, brains were quickly removed, and cortex 

cut out, immediately frozen and stored at -80 oC. 

3.2.3 Psychometric test parameters 

To measure memory capacities and rat behavior, the psychometric holeboard 

memory test was performed according to Lannert & Hoyer (1998) and 

Plaschke et al. (1999). Habituation, training, and retesting of memory 
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measurements were performed in a defined holeboard box. This square 

closed-field area (70 x 70 x 40 cm) contained 16 holes on the flat in a 4 x 4 

array. Each hole contained a metal cup (3.5 cm in diameter, 3 cm deep) which 

had a perforated bottom. The holes were of the same diameter as the outer 

diameter of the cups (4 cm), the inner diameter of the cups was 3.5 cm. On 

one side of the wall, a starting box was attached and separated from the 

testing area by means of a guillotine door which could be operated from a 

distance. For habituation, the rats were placed into the starting box and 

allowed to enter the testing area to explore the holeboard in which all 16 holes 

were baited with 50 mg of food pellet (Altromin, standard no. 1320, Lage, 

Germany). A trial started when the door was opened and ended when the rat 

had dipped into all 16 holes. Even if the rat did not find all food pellets, the trial 

ends after 10 minutes. After repeating the habituation process five times, the 

rats were trained to search in 4 out of 16 baited holes in a fixed order. The trial 

was terminated when the rat had found all food pellets or when 5 minutes had 

elapsed, whichever occurred first. Two training trials were performed each 

day. For (re)testing values, the rats were tested by the same procedure as 

during training, but different combinations of food holes were selected to avoid 

the possibility of habituation as experienced for the baited set of food holes 

during the training period. Working memory ratio (number of food rewarded 

visits / number of visits and revisits to the baited set of holes) and reference 

memory (number of visits and revisits to the baited set of holes / number of 

visits and revisits to all holes) were determined at the beginning and after the 

end of the corticosterone treatment and were calculated according to van der 
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Staay et al. (1990) and expressed as %. As example, the task for working 

memory was fulfilled by 100%, if all 4 out of 16 pellets were found without 

revisits of food- and non-food-baited holes. In addition, the latency time (time 

from the start of the experiment until the first food-rewarded hole was visited) 

and the whole run time (time to fulfill the task) were determined as behavioural 

determinants of locomotor activity. Each of the 16 holes supplied with food 

pellets was covered by a false bottom (a metal cup, 3 cm deep) to mask 

Thus, 

rats were unable to distinguish between baited and unbaited holes by olfactory 

stimuli.  

3.2.4 Corticosteron determination 

Plasma corticosterone concentrations were measured with a specific 

radioimmunoassay (RIA) after extraction according to a previously published 

method (Vecsei, 1979; Vollmayr et al., 2001). Briefly, 10 µl plasma was 

supplemented with 100 µl of 5% aqueous ethanol, tritium-labeled 

corticosterone (to determine individual loss), and the mixture was extracted 

with 1 ml of cyclohexane / dichloromethane (2:1, v/v). The organic extract was 

separated, evaporated to dryness, dissolved in 1 ml of 5% aqueous ethanol 

and quantified with a specific RIA. Intra-assay variation was 12.4%, inter-

assay variation 14.3%. Each result was corrected for the individually 

determined procedural loss. 
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3.3 Quantitative real-time RT-PCR 

Total-RNA extraction 

Isolation of total RNA was done using RNeasy midi kit (Qiagen GmbH, 

Germany, Cat. No. 75144) for the hippocampal tissue and RNeasy maxi kit 

(Qiagen GmbH, Germany, Cat. No. 75162) for the cortical tissue. Isolation of 

total mRNA for each animal and brain region were separately. Original 

protocol was changed by adding an additional step in order to receive more 

pure DNA free total-RNA.  The total RNA on the column was pretreated with 

DNase I (Qiagen GmbH, Germany, Cat. No. 79254) and the original protocol 

was continued in order to isolate total RNA from the tissue.  

Q-PCR 

Before performing the gene expression profile with real time RT-PCR, the total 

mRNA from each sample was reverse transcribed with random hexamer and 

oligo dT primers using iScript TM cDNA Synthesis Kit (BioRad Labaratories; 

Cat. No. 170-8890). Transcribed cDNA was then used for the analysis of gene 

expression profile of IR, Insulin 1, Insulin 2, IDE and tau (Table 1.). The results 

for gene expression profile in the hippocampus of rats treated with STZ-icv 

were normalized to the house-keeping genes: beta actin (ACTB), ribosomal 

18S (Rnr 1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Table 

2).  The house-keeping genes used for normalization of gene expression 

profile in the cortex of rats treated with CTS-s.c. were: actin (ACTB), 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-2-Mikroglobulin 

(B2m), ubiquitin (UBC) (Table 3.). All the house-keeping genes were tested for 
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the stability with the geNorm program (Vandesomple 2002), and according to 

the geNorm program a normalization factor was calculated.  

For the RT-PCR iCycler iQ system (BioRad Co., Hercules, CA, USA) was 

used as described previously (Svaren et al., 2000). Transcribed cDNA from 

each sample was mixed with gene specific primer (200 nmol/L final 

concentration) and the QuantiTect SYBR Green PCR Kit (Qiagen GmbH, 

Germany, Cat. No. 204145). Real-time PCR was subjected to PCR 

amplification starting with one cycle at 95ºC for 15 minutes continuing with 34-

45 cycles at 94ºC for 15 seconds. Annealing and detecting of specific 

fluorescent color at 55ºC for 30 seconds and extension at 76ºC for 30 

seconds. The PCR reaction were run in the triplicates. The comparative 

threshold cycle (CT) method analyzed with BioRad iCycler iQ system program, 

was used to quantify the amplified transcripts. Standards cDNA were isolated 

from agarose gel using MiniEluet TM gel extraction kit (Qiagen Inc) or using Bio 

Rad Freeze N' Squeeze Kit. For each amplification product standard curves 

generated from 10-fold diluted pooled cDNA amplicons were used to 

determine efficiency and quantification.  
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Table 1 Gene of interest analyzed in both STZ-icv and CTS-s.c. treatment 

 

Table 2 House-keeping genes for STZ-icv treatment 

 

 

 

 

 

Gene Gene symbol Kit description 

Insulin receptor IR Qiagen, Cat. No. QT 00198968 

Insulin 1 Ins1 Qiagen, Cat. No. QT 00373303 

Insulin 2 Ins2 Qiagen, Cat. No. QT 00177380 

IDE IDE Qiagen, Cat. No. QT 00191464 

tau Mapt-tau Qiagen, Cat. No. QT 00174797 

Gene Gene 
symbol 

Kit description 

Actin beta ACTB Qiagen, Cat. No. QT 00193473 

Ribosomal 18S Rnr1 Qiagen, Cat. No. QT 00199374 

Glyceraldehyde-3-

phosphate dehydrogenase 

GAPDH Qiagen, Cat. No. QT 00199633 
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Table 3  House-keeping genes for CTS-s.c. treatmant 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gene Gene 

symbol 

Kit description 

Actin beta ACTB Qiagen, Cat. No QT 00193473 

Beta-2-Mikroglobulin B2m Qiagen, Cat. No QT00176295 

Glyceraldehyde-3-

phosphate dehydrogenase 

GAPDH Qiagen, Cat. No QT00199633 

Ubiquitin UBC Qiagen, Cat. No QT 00372596 
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4 RESULTS 
 
4.1 STZ-icv treated rats 

4.1.1 RT-PCR  

STZ- icv 3 months after the treatment 

The effect of STZ-icv treatment (3 mg/kg) on the gene expression profiles of 

IR, Insulin 1 (Ins1), Insulin 2 (Ins2), IDE and tau protein mRNA in the 

hippocampus 3 months after the treatment compared with control is shown in 

Fig. 4. In the hippocampus 3 months after the STZ-icv treatment a significant 

decrease in the expression of IR mRNA was found (-19%, p< 0.05). 

Expression of Ins1 was significantly down-regulated (-84.5%, p<0.05), mRNA 

expression of Ins2 and tau-protein was unchanged compared to control 

respectively while a significant down-regulation of IDE mRNA (-19.25%, 

p<0.05 ) was also found in hippocampus.  

STZ-icv 6months after the treatment 

The effect of STZ-icv treatment on the gene expression profiles of IR, Insulin 

1, Insulin 2, IDE and tau protein mRNA in the hippocampus 6 months after the 

treatment compared with control is shown in Fig. 5. Expression of IR mRNA 

stayed significantly down-regulated in hippocampus of STZ-icv treated rats (-

25.7%, p<0.05) 6 months after the STZ treatment. Again, the expression of tau 

protein and Ins2 mRNA was unchanged. STZ-icv treatment caused a 

significant decrease by 57% (p<0.05) in the expression of Ins1 mRNA and a 

significant decrease by 38% (p<0.05) in the expression of IDE mRNA in 

comparison with control.  
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Fig. 4 Normalized gene expression of: IR-insulin receptor, Ins1-insulin-1, 
Ins2-insulin-2, tau protein and IDE-insulin degrading enzyme in hippocampus 
3 months after the streptozotocin (STZ) treatment in comparison to control 
(CTRL). Mann-Whitney U-test; p<0.05 
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Fig. 5 Normalized gene expression of: IR-insulin receptor, Ins1-insulin-1, 
Ins2-insulin-2, tau protein and IDE-insulin degrading enzyme in hippocampus 
6 months after the streptozotocin (STZ) treatment compared to control 
(CTRL). Mann-Whitney U-test; p<0.05 
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4.1.2 Learning and memory function in STZ-icv treated rats 

Control rats have spent more time searching for the removed platform which 

shows that cognitive function of learning and memory in these rats is preserved. 

In contrast STZ-icv treated rats spent a less time swimming in the right quadrant 

looking for the platform indicating reduction in cognitive functions. STZ-icv 

treated rats did more mistakes in looking for the removed platform than control 

ones, thus they have a problem in remembering where the platform was. These 

STZ-icv induced cognitive deficits were found as early as 2 weeks after the 

treatment and were persisting 1,2,3,4 and 5 months following the STZ-icv 

treatment (Fig. 6).   

               A                                                                  B 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Memory functions in the Morris water maze swimming test of rats treated 

with streptozotocin intracerebroventriculary (STZ-icv). A Mistakes were 

measured when the rat had entered the wrong quadrant i.e. quadrant without 

the platform. B The better the memory had been preserved, the longer the rats 

were searching for the platform and vice versa. 
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4.2 CTS- s.c. treated rats 

4.2.1 RT-PCR 

The effect of CTS-s.c. treatment on the gene expression profiles of IR, Insulin 1, 

Insulin 2, IDE and tau protein mRNA in the cortex after the corticosterone (CTS) 

treatment compared with control is shown in Fig. 7.  Expression of IR mRNA 

was significantly down-regulated in CTS treated rats by 25.5% compared to 

untreated control i.e. control without stress, p<0.05. However, no significant 

difference was found between the vehicle (control with stress) and CTS-treated 

rats, while a significant difference was found between the untreated (stress free) 

and vehicle (with stress) control groups (25.5%). In all groups Ins2 mRNA 

expression stayed unchanged. CTS treatment caused a significant decrease by 

57.5% (p<0.05) in the expression of Ins1 mRNA and a significant increase by 

28% (p<0.05) in the expression of tau protein mRNA in comparison with 

untreated controls. Expression of IDE mRNA showed significant decrement in 

CTS treated rats compared to vehicle treated control (i.e. control exposed to 

acute stress of injection) as measured 60 days after the CTS treatment. When 

compared to untreated control (stress free) expression in CTS treated rats was 

decreased but because of the big intergroup variability this decrement was not 

significant. In both untreated (stress free) and vehicle control (with stress) no 

changes in the expression of IDE mRNA was observed. 

4.2.2 Cognitive function in CTS treated rats 

Daily corticosterone injection led to significant changes in rat behavior shown in 

Table 4a and 4b (Plaschke et al. 2006- with permission). After corticosterone 

treatment the total running time for the food search was increased from 116  
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57 sec to 246  88 sec (p<0.05) as shown in Table 4a. In addition, the latency 

time increased from 3.1  4.9 sec to 12.4  11.8 sec after two months of daily 

corticosterone administration. Both memory capacities, working and reference 

memory were markedly reduced after chronic corticosterone treatment in 

comparison to control rats (Table 4b). Working memory fell from 76  24 % to 

31  20 % in corticosterone-treated rats (p<0.05), while reference memory was 

reduced from 57  13 % to 38  14 % (p<0.05).Placebo-treated rats 

demonstrated a significant increase in total run time from 116  57   to 262  86 

sec (p<0.05), while the increase in latency time from 3.1 sec  4.9 to 6.5  6.6 

sec was not statistically significant. No significant changes in working (from 61  

22 % to 58  45%) and reference memory (from 66  14 % to 58  23%) were 

observed in placebo-treated rats. In control animals without any treatment, the 

time to fulfil the holeboard task showed no significant changes (from 116  57 

sec to 97  48 sec). Also, no changes in the working and reference memory 

capacity were found. 

Table 4 Behavioural changes at the beginning and after the end of the 

corticosterone treatment. (Plaschke et al. 2006- with permission). 

LOCOMOTOR ACTIVITY 
TOTAL RUNNING TIME (SEC) 

CTS 
(n=8) 

PLACEBO 
(with stress, 

n=8) 

CONTROL 
(n=12) 

1st day 116±57 116±57 116±57 

after 60thday 246±88* 262±86* 97±48 

a) 
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    b) MEMORY CAPACITIES 
WORKING MEMORY 

(%) 
REFERENCE MEMORY (%) 

CTS 
(n=8) 

PLACEBO 
(n=8) 

CTS 
(n=8) 

PLACEBO 
(n=8) 

1st day 76±2 61±22 57±13 66±14 

after 60th day 31±20* 58±45 38±14* 58±23 

 
st day 

 

4.2.3 CTS concentrations in plasma 

A significant increase in the plasma level of CTS treated rats after the 60 days 

of treatment confirms that treatment had induced chronic stress in treated 

animals. A tendency of increase of CTS in placebo control group was observed 

but due to high intragroup variability it was not statistically significant (Table 5).  

 

Table 5 Corticosterone levels measured in plasma (Plaschke et al. 2006- with 

permission). with permission)  

Treatment Plasma corticosterone  

Control  (n = 12) 15.4  5.4 

Vehicle  sesame oil (n=8) 27.7  10.4 

CTS   (n=8) 32.4  8.4* 

 

*p 0.05 vs control 
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Fig. 7 Normalized gene expression of: IR-insulin receptor, Ins1-insulin-1, Ins2-
insulin-2, tau protein and IDE-insulin degrading enzyme in cortex of 
corticosterone (CTS) treated rats, placebo control (CTRLp) and untreated 
control (CTRL). Mann-Whitney U-test; *p<0.05 
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Table 6 Summary of the brain insulin system gene expression data in STZ-icv 

rat model of sAD and the  

 
 
 
 

 

 
 
 decreased 
 increased 
 unchanged 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STZ CTS 
3 months 6 months 2 months 

Ins1    
Ins2    
IR    
IDE    
tau    
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DISCUSSION 
 
To explore the link between chronically elevated plasma levels of corticosterone 

and changes in the brain insulin/IR system, and to determine the effect of STZ-

icv treatment on brain insulin/IR system, we investigated the expression of the 

insulin pathway genes in the hippocampus of STZ-icv treated rats and in the 

cortex of corticosterone s.c. treated rats.    

When given peripherally STZ enters the cell trough GLUT-2 receptors and 

causes damage of DNA and generates free radicals (Szkudelsky, 2001). We 

can assume that the same mechanism of action takes place after a central (icv) 

application of STZ since the evidence of oxidative stress and reduced ATP 

levels in the STZ-icv rat model were reported (Sharma and Gupta, 2001). It is 

well established that when given intracerebroventriculary STZ induces cognitive 

deficits associated with changes in neuronal glucose metabolism and 

dysfunction of cholinergic neurotransmission (Lannet and Hoyer, 1998; Lester-

Coll et al., 2006). All those mechanisms are a very important part of processes 

underlying learning and memory. These findings indicate that a changed brain 

insulin/IR signaling pathway plays a major role in learning and memory.  

We have found a decrement of insulin gene expression in the STZ-icv rat 

model. In contrast to humans, rats have two genes for insulin Ins1 and Ins2, but 

our studies have shown that STZ-icv treatment has significantly decreased only 

expression of the Ins1gene. Considering the fact that the difference in function 

between Ins1 and Ins2 in rat brain is not yet clear, we can only speculate that 

the role of Ins1 is far more important for the physiological function of insulin in 

the rat brain. Our results of a decremeased synthesis of brain insulin are in the 
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line with findings of down-regulation of this gene in the brain of STZ intra 

cerebral treated young rats (Lester-Coll N. et al., 2006) and what is most 

important is the fact that the same results of down-regulation of the gene 

encoding insulin was found post-mortem in brains of people with sAD (Steen et 

al., 2005). Additionally, this finding is important because it shows that only small 

amounts of insulin are synthesized in the brain compared to the amount which 

is transported in the brain from periphery; thus insulin synthesized in the brain 

could have an important role in maintaining physiological functions of brain 

insulin. The present study shows down-regulation of IR mRNA expression in the 

STZ-icv rat model which could lead to the changes downstream of the brain 

insulin signaling cascade. In the STZ-icv rat model decrement of Akt/PKB and 

increase in activity of GSK-3  3 months after the STZ-icv treatment was found 

regardless the STZ dose; 1mg/kg or 3mg/kg (Salkovic-Petrisic et al., 2006). Our 

findings goes in line with the results in humans showing decreased mRNA 

expression of IR, decreased level of PI-3K, activated Akt/PKB, increased GSK-3 

activity and amyloid precursor protein mRNA expression in the brain of people 

with sAD (Steen et al., 2005). Consequently, we can assume that changes in 

brain IR synthesis and changes found in enzymes downstream the insulin 

signaling cascade can lead to hyperphosphorylation of tau protein and changes 

 

Decreased IDE mRNA expression found in this study further supports 

involvement of the 

pathology. Additionally, accumulation of A  3 

months after the STZ-icv treatment  goes in line with our findings of decreased 
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synthesis of IDE which is the main A  enzyme (Salkovic-Petrisic et 

al., 2006; Zhao et al., 2004). Our results are in agreement with data of IDE 

deficiency reported in patients with sAD, caused by variations in the gene 

encoding IDE which are associated with the severity of clinical symptoms (Qiu 

et al., 2006).   

However, these changes were not followed by alterations of gene expression of 

tau protein found in STZ-icv rat model. With respect to human sAD, literature 

data concerning the expression of tau protein show that splicing regulation of 

the tau gene and the relative expression of tau isoforms are not significantly 

changed in sporadic cases of the Alzheimer disease (Boutajangout et al., 2004). 

Both findings in humans and the STZ-icv rat model suggest that tau 

hyperphosphorylation and formation of neurofibrillary tangles is more likely to be 

caused by a misbalance between phosphorylation/dephosphorylation of tau 

protein i.e. a misbalance between the kinase/phosphatase homeostasis. STZ-

icv treatment induces a changes similar to changes found in sAD, and therefore 

provides supportive evidence that sAD may be caused in part by neuronal 

insulin resistance. 

One of the additionally findings in patients with AD is increased level of plasma 

corticosterone (de Leon et al., 1988). Normal secretion of corticosterone shows 

a daily rhythm with peak concentrations in the early morning and in the late 

afternoon. This rhythm is diminished in sAD because of the increased basal 

level of cortisol (de Leon et al., 1988). Such chronical elevation of cortisol may 

disturb the negative feedback regulation of the HPA-axis and may lead to the 

brain insulin resistance and its affecting the neuronal Ca2+ homeostasis (Hoyer 
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and Frölich, 2006). It is reported that high circulating levels of glucocorticoide 

(GS) can affect cognition and reduce memory (McEwen, 2005), however the 

question of whether a chronically increased corticosterone level affects the 

cortex IR/insulin system has not been answered yet. Research regarding high 

glucocorticoide level and its connection to impaired cognitive function were 

mostly done on rat hippocampal tissue, reporting dendritic remodeling/atrophy 

(McEwen, 1999), up-regulated expression of both NR2A and NR2B subunit 

mRNA of glutamate NMDA receptors (Weiland et al., 1997) and down-

regulation of 5HT1A mRNA in the dentate gyrus (Meijer and De Kloet, 1998). 

Another interesting data was found after a bolus injection of cortisol in addition 

to cognitive decline and that was suppressed glucose reuptake in the temporal 

lobe (De Kloet et al., 1998). Other data showed that GCs inhibited glucose 

transport approximately by 15-30% in both primary and secondary hippocampal 

astrocyte cultures (Virgin et al., 1991). Cognitive decline found in humans 

treated with GS and in individuals with Chushing syndrome suggests that stress 

levels of GCs indeed affect cognition (De Kloet et al., 2005). Bearing in mind 

that when the activated insulin/IR signaling pathway increases the glucose 

reuptake in the brain and has a beneficial effect on learning and memory 

functions, one can come to the logical conclusion that the missing link between 

high GCs levels found in sAD and the cognitive decline is caused by the change 

of the brain insulin/IR system. One group of authors has recently found a down-

regulation of hippocampal insulin pathway genes in aged, cognitively impaired 

rats suggesting that insulin/IR may be decreased as a cause of increased GS 

action as found in aging (Landfield et al., 1978).  
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In our experiments we observed significant reduction in the rats working and 

reference memory after 60 days of daily corticosterone injections. Paralelly in 

the placebo group (sesame oil) changes in rat locomotor performance were 

detected associated with elevated plasma levels of corticosterone, 

demonstrating that 60 day lasting placebo daily injection may also have some 

stress effect on the handled animals. Decreased expression of IR mRNA in the 

corticosterone treated rats was observed in comparison to the untreated control 

but also a significant decrease was observed in the placebo treated rats 

compared to controls suggesting that beside the chronical stress induced by 

daily corticosterone injection, acute stress due to the  injection procedure and 

handling of the animals may have the same effect (Horner et al., 1991). The 

influence of acute stress induced by the injection procedure (i.e. acute daily 

increase in cortisol plasma level) has been seen in some of the measured 

parameters. Namely, a significant decrease in IR and Ins1 mRNA in 

corticosterone treated animals compared to untreated controls was 

accompanied by, in general, a similar decrease in these genes expression in 

placebo treated animals compared to untreated ones, although the statistical 

significance could not been reached due to the a high intra group variability. In 

the corticosterone treated rats tau mRNA expression was found to be up-

regulated compared to untreated controls. In the placebo group tau mRNA 

stayed the same as in untreated controls suggesting that acute stress induced 

by injection do not affect tau expression. Our results are in line with the 

literature as in sAD both a decrease in IDE levels and an increase in peripheral 

glucocorticoid levels have been documented (de Leon et al., 1988; Zhao et al., 
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2004). In nonhuman primates (Macaca nemestrina) exposure to the high-dose 

of glucocorticoid cortisol (hydrocortisone acetate) reduced both IDE protein 

levels in the inferior frontal cortex and IDE mRNA levels in the dentate gyrus of 

the hippocampus (Kulstad et al., 2005). In this study IDE mRNA expression was 

significantly decreased after corticosterone treatment compared to placebo 

control, but the decrease compared to untreated controls was not statistically 

significant. Placebo control and the untreated control group showed no 

difference in IDE mRNA expression suggesting that the acute stress of injection 

has no influence on IDE expression.  

The data presented here indicate that prolonged elevation of corticosterone 

significantly disrupts hippocampal-sensitive behavior (working and reference 

memory) suggesting that cerebral energy deficits and control of gene 

expression might play a role. Additionally decreased expression of Ins1, IR, IDE 

mRNA and unchanged expression of Ins2 mRNA, was found in both STZ-icv 

and CTS treated rats showing similarity in those two models (Table 6). This 

indicates that increased levels of plasma corticosterone, often found in sAD 

patients, with time leads to changes in the brain insulin system and IR signaling 

pathway. On the other hand possible differences at the level of tau mRNA 

expression may indicate that obviously insulin is not the only factor involved in 

the regulation of its homeostasis. Also, results presented here goes in line with 

our hypothesis that changes found in brains of people with sAD may not be and 
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6 SUMMARY 

This research was aimed to evaluate the time-course of changes in the brain 

insulin and some elements of the insulin receptor (IR) signalling cascade in the 

streptozotocin-intracerebroventricullarly (STZ-icv) treated rats representing 

to compare 

them with effects of chronically increased corticosterone on the brain insulin 

system. 

 

This study shows down-regulation in mRNA expression of insulin, insulin 

receptor (IR), and insulin degrading enzyme (IDE) but no changes were 

observed in the expression of tau mRNA in hippocampus of STZ-icv treated 

rats. Comparing these results to the ones found in corticosterone treated rats 

similarities at the level of insulin, IR and IDE mRNA expression can be 

assumed. In contrast tau mRNA expression in corticosterone treated rats were 

increased, data which are in line with sAD. Behavioural deficits were found in 

both STZ-icv and corticosterone treated rats. 

 

In conclusion, these results demonstrate that many of the characteristic features 

of sporadic Alzheimer sAD) can be produced experimentally by 

impairing the insulin/IR signaling pathway combined with a chronic increase of 

corticosterone. This supports our hypothesis that sAD represents a neuro-

endocrine disorder associated with brain-specific disregulation in insulin and IR 

signaling, caused in part by increased level of corticosterone. In line with that 

our study puts a question on the classical am ) hypothesis, supporting  
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the view of brain insulin system dysfunction as a trigger for the 

an experimental sAD model. 
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 Zusammenfassung 

Ratten, die intrazerebroventricular (icv) mit Streptozotocin (STZ) behandelt 

werden, eignen sich gut als Tiermodelle für die sporadische 

Alzheimererkrankung (sAD). In der hier vorgelegten Arbeit wurden 

Veränderungen bezüglich der Insulinkonzentration sowie einiger Bestandteile 

der Insulinrezeptor (IR)  Signalkaskade in Rattengehirnen, welche icv mit STZ 

behandelt wurden, zu verschiedenen Zeitpunkten untersucht. Die Auswirkungen 

von STZ auf die zerebrale IR-Signalkaskade wurden dann mit denen von 

chronisch erhöhten Corticosteronkonzentrationen verglichen. 

 

In dieser Studie wurde im Hippocampus eine verminderte mRNA-Expression 

von Insulin, der IR sowie des insulinabbauenden Enzyms (IDE) nachgewiesen; 

bezüglich der tau-mRNA-Expression konnten jedoch in diesem Gehirnareal der 

mit STZ behandelten Ratten keine Veränderungen beobachtet werden. Die 

Resultate der Insulin-, IR- und IDE-mRNA-Expression fielen bei den mit 

Corticosteron behandelten Ratten ähnlich aus Im Gegensatz hierzu nahm die 

tau-mRNA-Expression bei Ratten, die mit Corticosterone behandelt wurden, zu, 

was auch für eine sAD kennzeichnend ist. Sowohl bei den mit STZ als auch bei 

den mit Corticosteronen behandelten Ratten konnten Verhaltensanomalien 

beobachtet werden. 

 

Die in dieser Arbeit erzielten Resultate deuten darauf hin, dass viele Merkmale 

einer sAD experimentell durch eine Beeinträchtigung des Insulin/IR-Signalwegs 

sowie eine chronische Erhöhung der Corticosteronkonzentration hervorgerufen 
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werden können. Dies untermauert wiederum unsere Hypothese, dass es sich 

bei sAD um eine neuroendokrine Störung handelt, die mit gehirnspezifischen 

Fehlfunktionen in der Insulin/IR-Signalkaskade einhergeht, welche zum Teil 

durch erhöhte Corticosteronkonzentrationen ausgelöst werden können. Auf 

Grund der in dieser Arbeit erzielten Resultate stellt sich die Frage, ob -Amyloid 

(A ) ein Auslöser oder eine Konsequenz einer sAD darstellt. Die hier vorgelegte 

Arbeit last den Schlus zu, dass bei sAD-Tiermodellen ein Zusammenhang 

zwischen primären Fehlfunktionen im zerebralen Insulinsystem und dadwol 

sekundär ausgeloster A -Pathologie besteht. Weiterfübende Untersuchungen 

wird aber notwendig um diese Aussagen zu bestätigen. 
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