
Biofabrication 11 (2019) 013001 https://doi.org/10.1088/1758-5090/aaec52

PERSPECTIVE

A definition of bioinks and their distinction from biomaterial inks

JGroll1, J ABurdick2, D-WCho3, BDerby4,MGelinsky5, S CHeilshorn6, T Jüngst1, JMalda7,8,
VAMironov9,10, KNakayama11, AOvsianikov12,13,W Sun14,15,16, S Takeuchi17, J J Yoo18 and
TBFWoodfield19

1 Department of FunctionalMaterials inMedicine andDentistry and Bavarian Polymer Institute, University ofWürzburg, D-97070
Würzburg, Germany

2 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA,United States of America
3 Department ofMechanical Engineering, Center for rapid prototyping based 3D tissue/organ printing, POSTECH, 77Cheongam-ro,

Nam-gu, Pohang, Kyungbuk 37673, Republic of Korea
4 School ofMaterials, University ofManchester,Manchester,M13 9PL, UnitedKingdom
5 Centre for Translational Bone, Joint and Soft Tissue Research, TUDresden, D-01307Dresden, Germany
6 Department ofMaterials Science&Engineering, StanfordUniversity, Stanford, CA 94040,United States of America
7 Department ofOrthopedics, UniversityMedical CenterUtrecht, Utrecht University, Utrecht, TheNetherlands
8 Department of Equine Sciences, Faculty of VeterinaryMedicine, UtrechtUniversity, Utrecht, TheNetherlands
9 3DBioprinting Solutions,Moscow, Russia
10 RegenerativeMedicine Institute, SechenovMedical University,Moscow, Russia
11 Department of RegenerativeMedicine andBiomedical Engineering, Faculty ofMedicine, SagaUniversity, Saga City, 840-8502, Japan
12 AdditiveManufacturing Technologies (AMT)Group, Institute ofMaterials Science andTechnology, TUWien, A-1060Vienna, Austria
13 AustrianCluster for Tissue Regeneration (www.tissue-regeneration.at), Vienna, Austria
14 Biomanufacturing andRapid Forming TechnologyKey Laboratory of Beijing, Department ofMechanical Engineering, Tsinghua

University, Beijing, People’s Republic of China
15 111 ‘Biomanufacturing andEngineering Living Systems’ Innovation International Talents Base, Beijing, People’s Republic of China
16 Department ofMechanical Engineering, Drexel University, Philadelphia, PA,United States of America
17 Institute of Industrial Science, University of Tokyo, Tokyo, Japan
18 Wake Forest Institute for RegenerativeMedicine,Wake Forest School ofMedicine,Winston-Salem,NC,United States of America
19 Department of Orthopedic Surgery and Centre for Bioengineering &Nanomedicine, University of Otago, Christchurch,

New Zealand

E-mail: juergen.groll@fmz.uni-wuerzburg.de

Keywords: bioink, biomaterial ink, definition

Abstract
Biofabrication aims to fabricate biologically functional products through bioprinting or
bioassembly (Groll et al 2016 Biofabrication 8 013001). In biofabrication processes, cells are
positioned at defined coordinates in three-dimensional space using automated and computer
controlled techniques (Moroni et al 2018Trends Biotechnol. 36 384–402), usually with the aid of
biomaterials that are either (i) directly processed with the cells as suspensions/dispersions, (ii)
deposited simultaneously in a separate printing process, or (iii) used as a transient support
material. Materials that are suited for biofabrication are often referred to as bioinks and have
become an important area of research within the field. In view of this special issue on bioinks, we
aim herein to briefly summarize the historic evolution of this termwithin the field of
biofabrication. Furthermore, we propose a simple but general definition of bioinks, and clarify its
distinction from biomaterial inks.

Introduction

In recent years, the fabrication and characterization of
new bioinks gained increasing attention, particularly as
the lack of materials suitable for bioprinting was
identified as one of the major drawbacks limiting rapid
progress in the field [1, 2]. This resulted in the evolution

of new strategies to develop and modify materials to
be used as, or in, bioink formulations for bioprinting,
which is elegantly reviewed in a number of recent
articles [1–9]. However, along with this rising interest,
the apparent definition of the term bioink became
increasingly divergent. This is particularly obvious
when the evolutionof theuse of the term is reviewed.
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Origin of the termbioink

The term bioink was first used in the context of organ
printing in 2003 and was introduced together with the
term biopaper [10, 11]. Initially, the concept was to
provide, or even print, a biopaper (hydrogel) and then
insert living cells or tissue spheroids as the ‘bioink’ by
bioprinting. Thus, the term bioink originally referred
to the cellular component that was positioned in
three-dimensional (3D) on or within hydrogels. In
many of the pioneering studies in the field, cells and
cell aggregates were used as the bioink [10–12].
However, even at this stage, some authors were
arguing that a practical bioink formulation should be
‘structurally and functionallymore sophisticated’ [10].
Simultaneously, the number of additive manufactur-
ing techniques capable of being used for bioprinting
increased over time to include extrusion, droplet
deposition such as inkjet and microvalve based
techniques, laser forward transfer, and lithography-
based techniques, all of which have different physical
and rheological requirements for a workable ink.

With the further development of the field of bio-
printing and especially the increasing adaptation of
direct write extrusion-based printing, appreciation for
the understanding of material rheological properties
used in the printing process increased. For example, in
extrusion-based approaches, the key challenge is that
the ink must be dispensed through a narrow nozzle,
which is often achieved through exploiting shear-thin-
ning behavior; however, after deposition, the printed
3D object must be stable. Therefore, thematerial must
rapidly increase in viscosity after exiting the nozzle,
which is typically supported by post-printing cross-
linking. Consequently, the need for a separate biopa-
per was no longer required, and accordingly, a single
unified concept of a bioink being the dispensed mat-
erial was attained.

Recent trend for diversified use of the term
bioink

Regardless, the term bioink is now ubiquitously used
in a growing number of review articles [5–9, 13, 14].
Some of these suggest an extension of the definition
towards additivelymanufacturedmaterials. For exam-
ple, the term ‘fugitive bioink’ has been introduced for
sacrificial biomaterials that can be processed by an
additive manufacturing technology and result in
cytocompatible constructs that can be leached or
washed away or dissolved to result in pores [15].
Recently, a division of the term bioink into four sub-
categories was proposed [16]: support bioinks, fugitive
bioinks, structural bioinks and functional bioinks. The
suggested discrimination between the different classes
in this case was that: (i) support bioinks are materials
designed to support cell populations during delivery
and act as an artificial extracellular matrix as cells

multiply; (ii) fugitive bioinks are sacrificial or tempor-
ary materials that can be rapidly removed to form
internal voids or channels within a printed construct;
(iii) structural bioinks are used to provide mechanical
integrity to printed structures andmay also be fugitive
but over a relatively long timescale (e.g. thermoplastics
such as polycaprolactone), and finally; (iv) functional
bioinks provide biochemical, mechanical or electrical
cues to influence cellular behavior after a structure is
printed. We think that this classification is unnecessa-
rily complicated and, as pointed out in more detail
below, derived from the definition of biomaterials,
which in our opinion is not reasonable for a definition
of bioinks.

Similar to other recent articles, this classification
of four classes of bioink has been driven by the role of
the constituent materials in the final function of a
printed construct, rather than by the fabrication pro-
cedure itself. The definition of biomaterials has for a
long time been a vital discussion that is still ongoing.
This is due to the broad range of biomaterials (includ-
ing metals, ceramics, polymers and semi-conductors
as the most important examples)with strongly deviat-
ing properties, and an equally broad application from
basic research to clinical translation, covering contact
times with the body from seconds to decades. This led
to an application and purpose driven definition of the
term biomaterial, rather than a material-based defini-
tion. A comprehensive and well-accepted article by
Williams describes the evolution of biomaterials
research and the definitions for terms, such as bioma-
terial and biocompatible [17].

It is reasonable to define biomaterials, which com-
prise a variety of materials that are suitable for a broad
range of manufacturing and processing techniques,
including spinning, knitting, extruding, machining,
chipping and additive manufacturing, from the per-
spective of their final purpose and utilization. Biofab-
rication, however, is a more focused field of research,
and is characterized by the exploitation of automated
procedures to directly create a 3D arrangement of
cells, often with the aid of biomaterials. The potential
applications of such products are not important for
the definition of the bioink. Hence, the ‘bio’ in the
term bioink relates to cells as true biological compo-
nents of the formulation. This is an important feature,
as this biological component drastically limits the pro-
cesses andmost importantly the processing conditions
that are suitable, and thus significantly raises the
demands on biomaterials and technology.

In our view, and in agreement with the recently
updated definition of Biofabrication [18], bioinks can
generally be described as a formulation of cells that is
suitable to be processed by an automated biofabrica-
tion technology. Cell-encapsulating materials are
often used, but not necessarily mandatory as an addi-
tional bioink component, in line with the pioneering
studies mentioned above where in these cases the
bioink consisted of only aggregated cells in the form of
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cell spheroids ormicrotissues. Cell-based bioinks are a
vital field of research today [19–21] and very promis-
ing studies involving functional tissue constructs
and translational perspectives have recently evolved
[22–24]. Therefore, cells are a mandatory component
of a bioink, so that a formulation that includes biologi-
cally active components or molecules, but does not
contain any cells, would not qualify as a bioink. By way
of example, formulations that cannot be considered as
bioinks include: thermoplasts supplemented with drug
molecules, inorganic powders or slurries that release
bioactive ions. Furthermore, aqueous formulations of
polymers or hydrogel precursors that contain biologi-
cal factors would be considered biomaterial inks, that
—by definition—would become bioinks following the
addition of cells into that formulation.

A relatively new set of technologies applied in Bio-
fabrication are lithography-based technologies, such
as stereolithography (SLA), digital light processing
(DLP), continuous liquid interface production, or
two-photon polymerization, which allow for the fabri-
cation of 3D structures with high spatial resolution
[25–30]. These approaches involve spatial patterning
of light to photo-crosslink specific regions of a bioink
(acting as a resin), usually composed of a low-viscosity
photocrosslinkable hydrogel precursor [29, 31]. Thus,
bioinks that are suitable for these technologies, so
called bioresins, must exhibit characteristics that are
compatible for lithographic processes andwhich differ
significantly from the requirements for bioprinting
[27]. These difference comprise, for example, rheolo-
gical properties facilitating layer-by-layer deposition
in case of DLP and SLA, and/or supporting high spa-
tial resolution, which is usually a function of reactivity
and number of cross-linkable groups per volume of
the material. Nonetheless, it is possible to develop sys-
tems that can be used for bioprinting and lithography,
and in some cases without the need for a photo-absor-
ber [32]. Therefore, in addition to the recently updated
definition of Biofabrication and in agreement with our
definition of bioinks, bioresins could be considered as
a subset of bioinks consisting of a formulation of
cells that is suitable to be processed by an automated
lithography-based biofabrication technology. Further
development and characterization of this potential
class of bioinks within this emerging field is required
to elaborate on this distinction.

Bioinks and biomaterial inks

With these definitions in mind, biomaterials that
qualify as a bioink must serve as a cell-delivery
medium during formulation and processing [33]. It is
often stated in literature that hydrogels are the most
commonly used bioinks. This is, however, only true
for a few studies where physical hydrogels are applied
that form a gel before printing. Examples of this
include, designed peptide-polymer hybrids [34] and

spider silk protein-based hydrogels [35]. In most
studies, materials used for formulation of bioinks are
hydrogel precursors that can be cross-linked into
hydrogels post-fabrication. A recent intermediate
approach is the pre-cross-linking of precursor solu-
tions to a state of higher viscosity, followed by
complete cross-linking post-fabrication [36]. This can
generally be extended also to cross-linking at the final
stage of the extrusion process in the needle immedi-
ately before deposition for extrusion-based biofabrica-
tion of bioinks [37], or by core-shell approaches at the
timepoint when the bioink leaves the nozzle [38]. In
addition, it is important to note that bioinks are not
restricted to molecular solutions of precursors.
Bioinks can also contain microcarriers that may be
cell-seeded [39] or nanoparticles that may serve for
drug release [40] or to improve rheological and
mechanical properties [41]. Also, cell-loaded micro-
gels [42] or microspheres [21] can be used as bioink
components to impart additional functionality
(figure 1).

For further clarification and distinction, (bio-)
materials that can be printed and subsequently seeded
with cells after printing, but not directly formulated
with cells, thus do not qualify as a bioink. We suggest
that these are termed biomaterial inks. Such biomater-
ial inks may be used to produce scaffolds for cell seed-
ing, bioreactors, implants, or they may be used in
parallel to bioink-fabrication in hybrid approaches to
generate an intrinsic mechanical support within the
construct [43, 44]. Accordingly, sacrificial materials
that can be printed and dissolved afterwards in a way
that does not affect the survival of living cells are not
bioinks, but biomaterial inks. This by no means
diminishes their importance, but clarifies their termi-
nology for this rapidly growing field. Examples of bio-
material inks are thermoplastic polymers such as
polycaprolactone as a biodegradable example, poly-
propylene as non-degradable example, and poly-
oxazolines as a non-degradable but thermoresponsive
example, biopolymers such as gelatin, inorganic mate-
rials such as cements and slurries, and metals, usually
in the form of powders, thus covering a broad range of
biomaterials, with the additional requirement that the
material must be processable by an additive manu-
facturing or a biofabrication technology. These bio-
material inks may also include lithography-based
resins which offer biocompatible substrates with high
resolution features to support scaffold fabrication, cell
seeding or microfluidic device fabrication, but do not
contain cells which distinguishes them from a
bioresin.

Proposal for a definition of bioinks

In summary, we would like to emphasize that, in
contrast to the term biomaterials, the term bioink
should be defined from a process and technology
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point of view. In order to embrace the two main
strategies of biofabrication, bioprinting and bioas-
sembly, and the different possible compositions of
cells and materials in bioinks discussed above, we
propose that bioinks should be defined as ‘a formula-
tion of cells suitable for processing by an automated
biofabrication technology that may also contain biolo-
gically active components and biomaterials’. Bioinks
may include cells in different environments and
forms, such as: single cells, cells aggregated in
spheroids, cellular rods, cells organized in mini-
tissues or organoids, cells coated by a thin layer of
material, cells seeded ontomicrocarriers, or encapsu-
lated in tailored colloidal microenvironments. In
addition, bioinks can, but do not have to, contain
bioactive molecules such as growth factors, DNA,
miRNA, cytokines, exosomes or also biomaterials.
This definition of bioinks is independent of the
technology used for biofabrication, such as laser
forward transfer, microfluidics, assembly, inkjet,
dispense plotting, and lithographic techniques. This
definition applies to all applications for which
biofabrication is performed, including but not lim-
ited to, cell printing, tissue or organ printing,
fabrication of in vitromodels, assembly of organ- and
body-on-a-chip systems, and the printing of
bacteria, algae and plant cells for biotechnological
applications.
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