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Thesis Outline

In this thesis, applications of the microarray technology to answer biological
questions as well as novel approaches for microarray data analysis are pre-
sented. Among others, microarrays can be used to provide a snapshot of the
transcription level of thousands of genes simultaneously, which is a main theme
of this thesis.

Part I gives an introduction into the microarray technology and analysis.
In the individual chapters of part II, the main part of this thesis, the results of
the experiments and analyses conducted during my PhD studies are presented.
The first publication presented in Part II is concerned with the question how
biodiversity studies interrogating the species composition of a certain habi-
tat could be improved using the microarray technology. Existing microarray
approaches are typically based on the evaluation of unprocessed signal inten-
sities of the individual species spots. For very closely related species, however,
cross-hybridization impedes species detection based on signal intensities alone.
I present in this thesis the design of a phylogenetic DNA microarray and a novel
approach for its data analysis. Using simple linear regression modeling on the
signal intensities, I could show that this analysis approach greatly improves
the resolution of phylogenetic DNA microarrays for species detection.

The second publication, chapter 2 of part II, addresses the question of
how the large amounts of gene expression microarray datasets which have
accumulated in public repositories can effectively be integrated into a coherent
analysis. While several studies have integrated microarray data targeting the
same biological question, approaches to integrate data from a wide range of
experimental conditions are missing. In chapter 2, I present an explorative
meta-analysis approach exemplified on Arabidopsis thaliana datasets which
makes use of the large amounts of microarray gene expression data stored in
public databases.

In later chapters of part II, I describe projects using microarrays for gene
expression profiling to answer a defined biological question. One experiment
was conducted to find out if microwave irradiation has an effect on the tran-
scription levels of an Arabidopsis thaliana cell culture (publication/chapter 3).
With explorative analysis methods, I found that the irradiation had an ef-
fect on gene expression, but this effect was very small and might not have an
influence on the physiology of a whole plant.

To answer the question how plant tumors differ from normal inflorescence
tissue and how they sustain growth, another gene expression microarray ex-
periment was performed and is described here. Microarray data and solute
measurements were used to characterize Arabidopsis thaliana tumors by their
transcription and solute profiles (publication/chapter 4). Among others, the
results showed that the plant tumor cells change from an auxotrophic to a
heterotrophic metabolism. The tumor acts like a sink tissue, reducing its pho-
tosynthesis to a minimum and accumulating nutrients from the host plant.

Besides using the microarray technology to answer biological questions, I
also participated in the development of a new approach to integrate microarray
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gene expression data with other data types (publication/chapter 5). Integra-
tion of gene expression with chromosomal localization, functional annotation
or other high-throughput data can facilitate the interpretation of microarray
experiment results. The web application and database GEPAT allows inte-
grating microarray data results with other data types like annotation data on
gene function, protein interactions or CGH data. GEPAT has been used to
analyze a data set of Mantle Cell Lymphoma (MCL) patients consisting of
gene expression microarray and CGH (Comparative Genomic Hybridization)
data which is described in publication/chapter 6. The last chapter of the re-
sults part presents a re-analysis of Diffuse Large B-cell Lymphoma (DLBCL)
gene expression data revealing regulation differences between long and short
surviving patients.

The results of part II are discussed in a concluding discussion in part III.

The microarray technology

The central part and common theme of this thesis is the analysis of microarray
data. Except the first publication which describes the development and analy-
sis of a phylogenetic DNA microarray, the individual publications of this thesis
are concerned with measuring and analyzing gene expression levels to answer a
biological question. The reason to study gene expression levels is, that they are
fundamentally important for living cells. They are dependent on the cell type,
developmental stage and influenced by environmental factors. Transcriptional
activity needs to be well-coordinated to assure the proper function of a cell.
On the other hand, a dysregulated level of transcription can lead to disease
and cancer.

To study whole genome transcription levels, microarrays have become pop-
ular in recent years. A DNA microarray can be pictured as a miniture gene-
detection assay. The detection is based on the complementary binding proper-
ties of DNA to DNA or DNA to RNA. Microarrays hold thousands of spots of
different DNA sequences each interrogating a particular gene. Different plat-
forms exist, the most common are cDNA arrays, short oligonucleotide arrays
and long oligonucleotide arrays (Figure 1).

For cDNA arrays, as used in publications 6 and 7 of this thesis, first a
library of cDNA clones, each containing the sequence of one expressed gene,
needs to be constructed. The gene sequences are amplified with PCR and
printed on a glass array. Because the size of the individual gene spots and the
amount of immobilized DNA varies between spots, usually cDNA from two
samples is labelled with different fluorescent dyes and hybridized to the same
array. Then the fluorescent signal intensities are read out with a laser scanner.
With this technique, one achieves relative measurements of gene expression:
expression signal of sample 1 relative to the expression signal of sample 2.
Thus, variation in spots size and amount of DNA are evened out.

The probes of short oligonucleotide microarrays are synthesized in situ
directly on the array and are usually only about 25 bp long. Because they
are so short, they are less specific for a gene which is compensated for by
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using several probes for the same gene. Some short oligonucleotide arrays
also contain probes which have a non-matching base at the central position
of the oligonucleotide. The measurements from these probes can be used to
estimate cross-hybridization effects. Because the size of the spots can be better
controlled, each array is hybridized with cDNA or RNA from only one sample
and the signal intensities are read with a laser scanner (Figure 1). A short
oligonucleotide microarray commercially available from Affymetrix was used
in publications 2, 3 and 4.

The third platform makes use of long oligonucleotides. Gene specific oligonu-
cleotides of about 70 bp length are selected with an oligo design algorithm,
synthesized in situ and printed on a glass array. Usually, the arrays are then
treated like cDNA arrays and hybridized with two differently labeled samples
to achieve relative expression measures (Figure 1), (Barrett and Kawasaki,
2003). In principle, this platform was used in publication 1, except that in-
stead of in situ synthesized oligonucleotides, PCR fragments of 100-150 bp
length were spotted on the microarrays and only one sample was labeled and
hybridized at a time.

Applications of the microarray technology

The main application of the microarray technology is to analyze the expression
level of thousands of genes simultaneously, finding genes expressed in signif-
icantly different patterns in condition or tissue A compared to condition or
tissue B. Expression arrays provide a snapshot of cells, tissue or whole organ-
isms at a certain timepoint. Currently several hundred up to millions of cells
are needed for one microarray measurement, therefore the expression values
give an average estimate over a possibly heterogenous population of cells. Al-
though laser caption dissection allows to collect only cells from the same cell
type yielding a homogenous starting material but the amounts are generally so
low that the RNA needs to be amplified before it can be used for a microarray
hybridization. RNA amplification steps, however, can introduce amplification
bias. Although recently it has been shown that single cell expression measure-
ments are feasible for a number of different cell types, they are not in extensive
use yet. As of December 2007, in PubMed 1 only a few publications describe
experiments where RNA had been extracted from a single cell to hybridize a
microarray (Hartmann and Klein, 2006; Kamme et al., 2003; Tietjen et al.,
2003; Chiang and Melton, 2003). Besides the complicated protocols to isolate
single cells and extract RNA or DNA, care needs to be taken of possible am-
plification bias. However, data about the transcription levels of single cells
would vastly increase the possibilities to learn about cell functions and regu-
lation. In this thesis, samples consisting of a composition of cells were used
to estimate differences in transcription levels of two different conditions or tis-
sues, a fact that one might want to bear in mind when interpreting the results
of microarray analyses. The differences in expression can be considered as an

1www.pubmed.gov
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Figure 1: The three most common microarray platforms. A) cDNA arrays. cDNA clones
are cultured in bacteria and stored in 96- or 384-well plates. The cDNA sequences are
amplified and typically spotted onto glass slides. Sample RNA is labeled, hybridized to an
array and scanned by a laser scanner. B) Short oligonucleotide arrays. Perfectly matching
oligomers and for some types of arrays also oligomers with one mismatch are synthesized
in situ directly on the array. Sample RNA is hybridized to an array and scanned. C)
Long oligonucleotide arrays. Long specific oligomers of equal length are bioinformatically
designed. Printing, hybridization and data analysis is similar to cDNA arrays. The schema
is based on Barrett and Kawasaki (2003).
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averaged measurement over the cells contained in the sample, while individual
cells might have higher or lower changes in expression.

Apart from finding differentially expressed genes between different tissues,
treatments, healthy and diseased patients, there are several other areas where
expression arrays are applied. Among them are the discovery of biomarkers
which can be used to describe a certain tissue or a disease state (Iqbal et al.,
2006; Nagata et al., 2003; Tibshirani et al., 2002). Once appropriate biomark-
ers are found, their transcription level can be measured with low-throughput
techniques to characterize the tissue or disease state. For the purpose of diag-
nostics, also special diagnostic arrays have been developed to classify diseases
and their subtypes, e.g. different types of cancer (Golub et al., 1999; Bullinger
et al., 2007; Wright et al., 2003), with a limited number of genes.

In clinical applications, gene expression microarrays can be used to find
targets for drug development (Clarke et al., 2001; Marton et al., 1998). If the
altered transcription of a gene can be associated to a disease, drugs can be de-
veloped to recover the transcription level of healthy people. Since this is often
difficult, for most cases, it is easier to substitute or influence the product of
transcription, the corresponding protein or the cellular processes it influences.
A prominent example of altered transcription levels that lead to disease is
again cancer. Many so-called oncogenes are transcription factors which act at
early stages in signaling pathways (e.g. Ras gene, (Chang et al., 2003)). Their
deregulation leads to changes in the transcription of genes further down the
pathway and ultimately leads to the development of a cancer cell. For exam-
ple, the tumor suppressor protein p53 acts as a transcription factor which can
activate several independent pathways to sustain a normal cell. If a cell lacks
p53 expression, cell growth is unrestrained and tumors can develop (Oren,
2003). In publications 6 and 7 of this thesis, genes could be identified whose
expression levels can be used to predict survial of patients, another important
clinical application. Additionally, the genes of the predictors might point to
possible drug targets.

Further applications of the microarray technology are: DNA arrays for
barcoding, comparative genomic hybridization (CGH), genotyping (SNP ar-
rays), chromatin immunoprecipitation (ChIP-chip experiments) and tiling ar-
rays. These will be briefly introduced in the following sections.

Genotyping or SNP (Single Nucleotide Polymorphism) arrays measure sin-
gle base pair changes, which can be caused by mutations, insertions or dele-
tions. SNP arrays are used to simultaneously identify the genetic variation
of numerous single nucleotide positions of individuals and across populations.
This process is called genotyping. A famous example of a disease which can be
caused by a single nucleotide exchange is sickle cell anemia (Campbell, 1997).
In genome wide association studies, the SNPs of populations of healthy individ-
uals are compared to populations of diseased individuals to find base changes
associated with the disease. In principle, the analysis of single nucleotide
polymorphisms is a classification problem. For each SNP, an algorithm has to
decide on the allele frequency. The SNP can be absent, present in one allele
or present in both alleles.
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Comparative genomic hybridization (CGH) arrays measure absence, pres-
ence and amplifications of genomic regions. DNA copy number alterations are
key genetic events in the development of cancer. With CGH arrays diseases
can be characterized and related to chromosomal abberations (Lichter et al.,
2000). Genes that cause the disease can be found, and diseases with known
chromosomal abberations can be diagnosed. Additionally, carriers of a disease
which might have symptoms in later years of life (e.g. Huntington’s disease)
can be identified.

To get a holistic view of a system, e.g. a disease, the integration of data
from different sources is necessary. For certain types of cancer, it is known that
chromosomal abberations increase when the disease progresses. In these cases,
the integration of gene expression and DNA copy numbers is indicated. For
example, Bussey et al. (2006) have integrated CGH data with transcription
levels and drug sensitivities for 60 human cancer cell lines (NCI-60). They
found a correlation of the gene ERBB2 (v-erb-b2 avian erythroblastic leukemia
viral oncogene homologue 2) which induces cancer when over-expressed and
the copy number of the genomic region where this gene is found (chromosome
3p). ERBB2 overexpression is observed when 3p is deleted or heterozygosity
is lost. From these findings, the authors suggest that the lost regions on
chromosome 3 may harbor tumor suppressor genes involved in ERBB2-induced
carcinogenesis.

The use of microarray gene expression data to study transcript regulation
is limited. A more appropriate but also labor-intensive method to study the
regulation of transcription is to determine the locations of binding sites of
regulatory proteins on genomic DNA (e.g. transcription factors). Interactions
between proteins and DNA can be found by chromatin immunoprecipitation
(ChIP) combined with DNA microarray technology into so called ChIP-chip
analysis. For a ChIP-chip experiment, a protein is incubated with DNA and
then bound protein is cross-linked to the DNA. The protein-DNA complex is
pulled out by an antibody specific to the protein. The DNA is eluted, labelled
and hybridized to a genomic array which either spans promoter regions or the
entire genome at regular intervals. The spots of fragments which are enriched
in the DNA sample can be identified as protein binding sites. The drawback of
this technique is that only one protein (e.g. transcription factor) can be studied
at a time. For an overview of design, analysis and application of ChIP-chip
experiments, see Buck and Lieb (2004).

To determine which sections of a genome are transcribed at a certain time
or under a certain condition, tiling arrays offer a high-throughput solution.
The probes on this kind of array are spaced equally and cover the complete
genome, whether they are known to code for a transcript or not. Thus, in
contrast to gene expression arrays, these arrays are used to find transcripts
which have not been characterized so far (Johnson et al., 2005; Mockler et al.,
2005).

A field that has only recently discovered microarray technology for their
purposes is DNA barcoding (Moritz and Cicero, 2004). A DNA barcode is
a defined region in the genome which allows the identification of a species.



9

Barcoding approaches sequence a marker region of several species, but for a
large number of samples, this is time and cost-intensive. DNA microarrays
for species detection have a fundamentally different design than for example,
gene expression arrays. While expression arrays contain thousands of genes
of one organism, arrays for species detection harbor the complementary se-
quences of one marker gene for several hundred species. With this design,
phylogenetic arrays can be used to distinguish species in environmental sam-
ples (Avarre et al., 2007; Hajibabaei et al., 2007). While for most of the other
array technologies, a broad spectrum of analysis methods exist, the analysis
of DNA arrays for species detection or phylogenetic arrays has been neglected
in the past. In this thesis, a data analysis method to improve the detection
power of phylogenetic arrays on closely related species is presented in publi-
cation 1. Furthermore, applications of microarray technology and approaches
for their analysis of finding differentially expressed genes, meta-analysis, and
comparative genomic hybridization are presented in later chapters.

Introduction to microarray statistics

Normalization

In the past decade, a number of different microarray technologies and platforms
for the analysis of gene expression have been developed. The most prominent
ones are: two-color cDNA arrays, where two samples are hybridized simultane-
ously to the same array with two different colors and a direct comparison of the
samples is possible; Affymetrix Gene Chip Technology with short oligomers on
a glass wafer and only one color and arrays with long oligomers and usually two
colors (Figure 1). The different technologies and platforms require specific al-
gorithms to compute expression values, usually one value per gene. The signal
intensities of the individual probes on the microarray are read out with a scan-
ner. Optical noise and non-specific binding requires that the raw signals are
preprocessed before statistical data analysis methods are applied. This step is
usually called normalization (Quackenbush, 2001). To make the gene expres-
sion measurements from the single microarray hybridizations comparable, the
gene expression values are first adjusted in respect to the other measurements
on the same array (within-array-normalization) and then- if needed- they are
adjusted in respect to the measurements of the other arrays (between-array-
normalization) (Smyth et al., 2003). The more complex normalization methods
usually include both steps. These preprocessing steps should ideally remove
any technical variation due to slightly different hybridization conditions, spa-
tial and scanning effects and other factors and conserve the biological signal
in the data. Because of the bias-variance trade-off, one tries to use a normal-
ization method which adjusts the data just as much as needed to remove the
bias and keep as much of the biological signal as possible (Huber et al., 2005;
Yang and Paquet, 2005).

A popular normalization method which can be applied to both Affymetrix
and cDNA arrays because it works on single channels is VSN (normalization
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and variance stabilizing transformation) (Huber et al., 2002). Methods which
take into account the multiple probes for each gene on Affymetrix arrays are
RMA (Irizarry et al., 2003), gcRMA (Wu et al., 2004), and PLIER (Hubbell
et al., 2004). Preprocessing methods mainly used on cDNA arrays are loess,
lowess and print-tip loess (Yang et al., 2002). They are applied on the gene
expression ratios of the red and green channel (often termed “M”) and assume
that the majority of genes do not change their expression level over the different
conditions. A more detailed review about the multiple normalization methods
can be found in Irizarry et al. (2006) and Smyth and Speed (2003). Once
expression values have been calculated, the statistics for differential expression,
clustering, classification and others can be applied to the data independent of
their origin.

Explorative analysis and quality control

Quality control is closely intertwined with the preprocessing steps. A mi-
croarray consists of a set of DNA sequences often called probes which are
immobilized on a solid surface (array). A sample contains a complex mixture
of nucleic acid sequences often referred to as targets, which can bind to the
probes on the array (Huber et al., 2005). This binding takes place because
complementary nucleic acid sequences hybridize to each other. The amount of
labeled and bound sample sequences is read out with a laser scanner. At each
of these steps, systematic error can be introduced which must be identified and
possibly be reduced during normalization. Therefore, graphical inspection of
the data before and after normalization is important to identify problematic
samples, spatial effects on one or several arrays and the appropriateness of
all preprocessing steps. Problematic hybridizations can be found with density
plots and histograms which display the general shape of the data distribution.
After normalization, the arrays should have a similar distribution under the
assumption that most of the genes do not change under a certain treatment.

Further means to visualize microarray data are box plots, MA-plots (Minus-
versus-Add-plots) and methods which reduce the dimensions of data like Prin-
cipal Components Analysis (PCA) and Correspondence Analysis (CA).

Box plots give a compact overview over a distribution by graphically repre-
senting the five-point-summary. The boxplot displays the minimum, first quar-
tile, median, third quartile and maximum of a distribution. The interquartile
range is represented by a box, minimum and maximum by whiskers. Thus,
several distributions can be aligned in one plot and their median and variance
can be easily compared (Yang and Paquet, 2005).

MA-plots display the difference in expression (M) versus the mean expres-
sion (A) over two conditions (Huber et al., 2005). With a loess curve drawn
on top of the MA-plot, it can be used for quality control. An oscillating loess
curve or a large variability in the M values of one array compared to the others
indicates problems with this array. If the quality of the arrays can be consid-
ered good, MA-plots can also be used to visualize differentially expressed genes
(large M values). However, MA-plots cannot estimate significance.
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Correspondence analysis (CA) and Principal Component Analysis (PCA)
are unsupervised clustering techniques which are used to project high-dimensional
data in a low-dimensional space while retaining as much information as possi-
ble. In CA, the data is scaled such that rows and columns are treated equiva-
lently and can be represented in the same space. By displaying both rows and
columns of a matrix in the same graph, CA allows to connect row- to column
vectors and vice versa. In the context of microarray analysis, CA is applied to
project the vectors of microarray samples and genes into a lower-dimensional
subspace (typically two dimensions) that accounts for the main variance in the
data, in a way that distances among points reflect their original distances in
the high-dimensional space as closely as possible (Fellenberg et al., 2001).

Like CA, Principal Component Analysis (PCA) tries to reduce the dimen-
sions of a dataset, but the data is not scaled. Therefore, PCA is typically
applied on one dimension (rows or columns) of a data matrix. The axes of
the new coordinate system are chosen in a way that each axis or principal
component explains as much of the (remaining) variance of the data as possi-
ble and that all axes after the first are orthogonal to the ones before (Jolliffe,
1986). Visually inspecting CA and PCA graphs, one can assess similarities
and differences between microarray samples and/or genes and also discover
experimental artifacts.

The statistical software R (R Development Core Team, 2007) and Biocon-
ductor (Gentleman et al., 2004) offer an excellent environment for the produc-
tion of diagnostic plots for quality control and explorative analysis.

Differential expression measures

Probably the most central question researchers want to answer with microar-
ray experiments is: which genes are differently transcribed in two conditions,
tissues, developmental stages or time points. This question also recurs in all
but the first chapters of this thesis. A very simple approach is to calculate a
fold change, that is the difference in gene expression between two conditions
or tissues, for each gene and rank the genes according to the fold change. But
the drawback of this approach is that first, the fold change does not include
an assessment of significance on gene expression differences and second, the
genes with the largest changes in expression might not be the genes which are
biologically most interesting. Therefore, statistics which will rank the genes in
the order of significance of differential expression are more popular today. In
microarray data analysis, the t-test and variations thereof are very common
(Cui and Churchill, 2003; Hatfield et al., 2003; Smyth, 2004; Tusher et al.,
2001). The t-test is applied on each individual gene and the significance of a
change in gene expression given the variance of this gene is calculated. A draw-
back of this approach is that a large number of hypothesis tests are performed
which can lead to many falsely called significant genes. Multiple testing proce-
dures adjust the p-values (measure of significance) of the individual tests such
that they are valid considering the total number of tests (Dudoit et al., 2003;
Scholtens and von Heydebreck, 2005). Because microarray experiments typi-
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cally interrogate a large number of genes and only a small number of samples
(large n, small p), applying a classical t-test is not appropriate. The variance
of a gene cannot be reliably calculated when there are only a small number of
replicate microarray hybridizations. The Bioconductor package limma offers
a robust solution for small sample sizes and has therefore been used for the
differential expression analyses contained in this thesis. It fits a linear model
to the expression values of each gene. Because empirical Bayes methods are
used to borrow information across genes, the analyses are also stable for a
small number of arrays (Smyth, 2004; Smyth et al., 2005). A variance prior
is estimated from the data and added to the variance of each gene, lower-
ing the chances that a gene is falsely called differentially expressed because it
shows a very low variance. In the linear model, several groups of arrays can
be compared and different effects can be included. These effects can be dye or
batch effects or correlations of replicate spots on the same array (within-array
technical replicates). To set up the linear model, two matrices are required:
the design matrix which represents which RNA has been used to hybridize
each array and the contrast matrix, which holds the information of how the
coefficients of the design matrix need to be combined to yield the contrasts
(comparisons) of interest. After the linear models have been fit to the data,
an ordered list of differentially expressed genes with logarithmic fold changes
and p-values can be obtained.

In the next step, one has to decide on a critical value above which the
gene is considered to be significant. While ranking the genes by significance
is relatively easy to achieve and several different softwares exist (Smyth, 2004;
Tusher et al., 2001), the decision on the p-value criterion has to be made by the
individual researcher taking into account any peculiarities about the experi-
ment and what the further analysis and experimental steps will be. Often, only
a limited number of genes can be followed up with confirmative experiments
in the laboratory, so the number of genes for further research will be kept low.
If a more general overview is aspired, Gene Ontology (GO) (Gene Ontology
Consortium, 2001) or functional category analysis is appropriate which can
handle larger numbers of genes. A functional category analysis approach to
characterize Arabidopsis thaliana tumors is presented in publication 4.

Integration of different data types improves mi-

croarray results

The results of the statistical microarray analysis are the basis for the subse-
quent biological or medical analysis. Again, bioinformatic methods can aid in
this step of the analysis. Further data like functional annotation and classifica-
tion, chromosomal localization and interaction data can point to the biological
processes that are regulated by transcriptional changes.

Enrichment analysis of functional categories, e.g. defined by Gene Ontol-
ogy (Gene Ontology Consortium, 2001) or MapMan (Usadel et al., 2005) or
metabolic or regulatory pathways from KEGG (Kanehisa et al., 2006) help in



13

getting an overview of the transcriptional changes. An example of a functional
analysis based on MapMan is demonstrated in chapter 4, describing the expres-
sion profiles of Arabidopsis thaliana tumors. In this chapter, the expression
profiles are also integrated with solute measurements to round off the char-
acterization of plant tumor cells. Integrating expression data with functional
annotation is one of the strengths of the web application GEPAT (publication
5). The chromosomal position of a gene can also influence its expression pro-
file. In bacteria, the organization of genes in operons leads to the collective
regulation of an operon (Campbell, 1997). In eukaryotes, the regulation of
genes is more complicated, here, methylation can repress transcription over
large areas of the genome. Certain types of cancer display typical chromoso-
mal aberrations which also lead to position specific gene expression profiles.
Thus, it is worthwile to analyze gene expression data under its chromoso-
mal context, which can also be done in GEPAT. Where data on chromosomal
aberrations (CGH) is available, its integration with gene expression data can
yield additional insights into tumor biology as demonstrated by the analysis
of gene expression and CGH data of Mantle Cell Lymphoma patients in chap-
ter 6. Thus, several examples of how results from gene expression microarray
experiments can be integrated with other data types, e.g. functional annota-
tion, protein interactions and chromosomal position are given in the individual
chapters of this thesis. This data integration helps in interpreting the results
and draw meaningful conclusions.
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Abstract1

DNA microarrays are a popular technique for the detection of microorganisms. Several approaches2

using specific oligomers targeting one or a few marker genes for each species have been proposed.3

Data analysis is usually limited to call a species present when its oligomer exceeds a certain intensity4

threshold. While this strategy works reasonably well for distantly related species, it does not work well5

for very closely related species: Cross-hybridization of non-target DNA prevents a simple identification6

based on signal intensity. The majority of species of the same genus has a sequence similarity of7

over 90%. For biodiversity studies down to the species level, it is therefore important to increase the8

detection power of closely related species. We propose a simple, cost-effective and robust approach for9

biodiversity studies using DNA microarray technology and demonstrate it on scenedesmacean green10

algae. The internal transcribed spacer 2 (ITS2) rDNA sequence was chosen as marker because it is11

suitable to distinguish all eukaryotic species even though parts of it are virtually identical in closely12

related species. We show that by modeling hybridization behavior with a matrix algebra approach,13

we are able to identify closely related species that cannot be distinguished with a threshold on signal14

intensity. Thus this proof-of-concept study shows that by adding a simple and robust data analysis15

step to the evaluation of DNA microarrays, species detection can be significantly improved for closely16

related species with a high sequence similarity.17

Introduction18

In recent years, DNA barcoding has become popular to study the inventory of natural communities. For19

DNA barcoding of species, a short standardized genomic region is sequenced and compared to a sequence20

library of known species (Hebert et al., 2003). DNA microarrays offer an alternative to sequencing and21

have been shown to perform comparably well in the detection of mammalian species (Hajibabaei et al.,22

2007a). While a limitation of DNA microarrays is that the sequences to be detected need to be known23

beforehand, they have the advantage that also complex mixtures of species (e.g. from environmental24

samples) can be analyzed (Summerbell et al., 2005). In this article, we present a DNA microarray approach25

which offers the potential to perform large scale biodiversity studies.26

The applicability of DNA microarrays for microbial diagnostics has been shown by several publications27

(He et al., 2007; Kostić et al., 2007; Lehner et al., 2005; Loy et al., 2002, 2005; Peplies et al., 2003). The28

16S rDNA has been a popular marker to distinguish bacterial species, but the 18S rDNA is not suited for29

closely related eukaryotic species when resolution on the species level is desired.30

To distinguish mammalian species, mitochondrial marker genes cytochrome c oxidase I and cytochrome31

b yielded promising results (Hajibabaei et al., 2007a; Pfunder et al., 2004). While cytochrome c oxidase I32

and cytochrome b sequences are available for a wide range of animal taxa, the coverage of plant, protist33

and fungi sequences is rather poor. The internal transcribed spacer regions 1 and 2 (ITS1, ITS2) cover a34

wide range of taxonomic levels (animals, plants, protists and fungi); however, fewer ITS than cytochrome35
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sequences are available for animals (Hajibabaei et al., 2007b).36

For DNA microarrays distinguishing fungal species, Leinberger et al. (2005) and Nicolaisen et al. (2005)37

have chosen the ITS region of the rRNA gene cassette. Leinberger et al. designed an oligonucleotide38

array to diagnose pathogenic Candida and Aspergillus species. They used a more complicated microarray39

design with 51 capture and control probes for 12 species lying in the ITS1, ITS2, 5.8S or 18S rDNA.40

Hybridizing genomic DNA from only one strain at a time, classification was performed with a threshold41

on signal intensity. Nicolaisen et al. used an oligonucleotide array with ITS2 capture probes to distinguish42

12 Fusarium species living on cereal grain and of which some produce toxic compounds. While they43

could group the species in different groups of toxic compound producers and non-producers with a simple44

intensity cutoff, it was difficult to find specific ITS2 oligonucleotides that would yield resolution on species45

level. They succeeded for 7 out of 12 species, leaving potential to improve results by a more sophisticated46

data analysis.47

We also use the ITS2 sequence to detect closely related species with a DNA microarray. While the48

ITS2 sequence has been widely used for phylogenetic reconstruction on the genus and species level in the49

past, it has also been proposed as a marker for taxonomic classification over a wide range of levels by50

Coleman (2003); Müller et al. (2007); Schultz et al. (2006, 2005); Wolf et al. (2005). Because the ITS251

sequence is surrounded by the highly conserved 5.8S and 28S rDNA, sequences from different species can52

be amplified with universal primers, so the ITS2 sequences of all species present in the sample can be53

amplified in a single PCR reaction. Within the ITS2 sequence, some parts are very conserved, others are54

highly variable. Choosing the variable parts of the ITS2 sequences of algae species as microarray capture55

probes, we analyzed whether this microarray is capable of distinguishing between closely related algae56

species.57

While for the analysis of gene expression microarrays, numerous algorithms based on parametric58

models exist for normalization, differential expression, classification and so on, there are practically no59

such algorithms for species microarrays. Data analysis of species microarrays has been neglected in the60

past and was mostly restricted to calling a species present when the signal intensity was above an arbitrary61

threshold (Bodrossy et al., 2003; Leinberger et al., 2005; Loy et al., 2002; Mitterer et al., 2004; Nicolaisen62

et al., 2005; Nübel et al., 2004). While this strategy works well for many distantly related species, it does63

not when very closely related species with high sequence similarity are studied. Cross-hybridization will64

then inhibit a straightforward analysis. But sometimes, it is of particular interest to identify organisms65

down to the species or even strain level, for example when one species is pathogenic, blooming or toxic66

and the other closely related ones are not.67

The limitations of the intensity threshold approach become even more apparent when mixtures of68

species are to be diagnosed. While most DNA microarray applications are capable of identifying the69

majority of species when they were hybridized in pure culture, they have difficulties in identifying mixtures70
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Figure 1: Distribution of the sequence identity of two randomly drawn species from the same genus. From the multiple
sequence-structure alignments of four hundred genera (Müller et al., 2007), 10 pairs of sequences were randomly chosen and
the percent identity was calculated. Using standard methods (cutoff on signal intensity), species with up to 87% sequence
similarity can be distinguished with microarrays. Thus 78.9% of species are missed. With our approach, 70.5% of species
can be identified and only 29.5% are missed.

of different species (Wilson et al., 2002), if mixtures were considered at all. Recent theoretical work of71

Klau et al. (2007) and Ragle et al. (2007) on the design of non-unique probes, especially in the context of72

a given phylogenetic tree (Schliep and Rahmann, 2006) suggests that species detection may be possible73

with a sufficiently large number of oligonucleotide probes, but these approaches have not been applied in74

practical wet lab work, as far as we know.75

In the literature, it has been reported that species with a sequence identity of up to 75-87% in a long76

capture oligo can be identified with a cutoff on signal intensity. For species with higher sequence similarity,77

cross-hybridization of non-target probes impedes applying a cutoff criterion. Figure 1 shows that the78

majority of two species from the same genus has a higher sequence similarity than 87% in the ITS2 rDNA.79

If assuming a standard microarray approach detecting species based on a cutoff on signal intensity can80

distinguish species with up to 87% sequence similarity, then, this approach can only identify 21.1% of81

closely related species. Therefore it is important to develop approaches that raise the value of percent82

sequence identity to be able to identify closely related species. With the approach proposed here, we could83

identify species with a sequence similarity of at least 97%. Therefore, we are now able to distinguish at84

least 70.5% of closely related species (Figure 1).85

We chose green algae (Chlorophyta) species for this proof of concept study because they show a86

high degree of biodiversity comprising a large number of species and because many of them can only be87

identified by an algae expert using light microscopy or by sequencing. Recently, Johnson et al. (2007)88

described the diversity of Scenedesmus Meyen 1829 and Desmodesmus (Chodat) An, Friedl & E. Hegewald89
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Figure 2: Neighbor-Joining tree (Kimura-2-Parameter model) of amplified ITS2 sequences of the five green algae under
study. The tree is in concordance with Hegewald and Wolf (2003).

1999 species in Itasca State Park, Minnesota, USA using light microscopy and ITS2 sequence analysis. For90

this kind of studies, algae species detection with a microarray would be a sensible alternative because it91

can be less time consuming on large datasets and more powerful on mixed environmental samples. While92

low amounts of DNA of one species in a mixture of several species are not detectable with typical Sanger93

sequencing, a carefully designed DNA microarray coupled with our proposed data analysis can in principle94

predict any concentration of DNA.95

This pilot study resembles a worst case scenario: five closely related green algae classified within the96

Scenedesmaceae Oltmanns 1904 (Sphaeropleales, Chlorophyceae) with sequence similarities up to 97%97

(Figure 2). Our goal was to keep everything as simple as possible and thus easily transferable to different98

settings. Therefore the design of the microarray included only one marker gene per species, represented99

by a capture probe that was spotted in several replicates on the microarray. To take into account the100

different hybridization and cross-hybridization properties of the different algae, we propose an approach101

that models the affinities of the capture probes to their targets and non-targets to be able to diagnose102

which species are present in a sample. If our DNA microarray is capable of distinguishing very closely103

related species, it will be comparatively easy to extend it to more species, which can either be closely or104

more distantly related.105

Methods106

Taxon sampling107

Algae cultures were obtained from the Culture Collection of Algae (SAG) at the University of Göttingen,108

Germany and The Culture Collection of Algae at the University of Texas at Austin, USA (UTEX).109

The following five closely related algae species were chosen:110

Scenedesmus hindakii E. Hegewald et Hanagata 2000 (SAG47.86),111

5
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Table 1: Primers to amplify ITS2 capture probes for the microarray.

Scenedesmus hindakii (SAG47.86) 5’-GCTTTCCCAATCCTTTAGGG-3’ (forward);

5’-AAGCCGTTGCTACCTATCCA-3’ (reverse)

Scenedesmus acuminatus (UTEX415) 5’-TACCCTCACCCCTCTCTCCT-3’ (forward);

5’-CCATATCGGGTCCTTGCTTA-3’ (reverse)

Scenedesmus obliquus (UTEX1450) 5’-TACCCTCACCCCTCTCTCCT-3’ (forward);

5’-CCATATCGGGTCCTTGCTTA-3’ (reverse)

Desmodesmus pleiomorphus (UTEX1590) 5’-ACCCTCACCCCTCTTCCTTA-3’ (forward);

5’-CTATCCAGTTGAGCCCGAAT-3’ (reverse)

Scenedesmus platydiscus (UTEX2457) 5’-GGCTTGTTAGCCAGCCATAG-3’ (forward);

5’-CCATAACGGGTCCTTGCTTA-3’ (reverse)

Scenedesmus acuminatus (Lagerheim) R. Chodat 1902 (UTEX415),112

Scenedesmus obliquus (Turpin) Kützing 1833 (UTEX1450),113

Desmodesmus pleiomorphus (Hindák) E.Hegewald 2000 (UTEX1590),114

Scenedesmus platydiscus (G.M. Smith) R. Chodat 1926 (UTEX2457).115

Selection of representative DNA sequences as capture probes116

ITS2 sequences from the selected Scenedesmus and Desmodesmus species were retrieved from GenBank117

(gi|37727740, gi|6625510, gi|6625531, gi|12055733, gi|56122680). The sequences were aligned with Clustal V118

(Higgins et al., 1992) and for each alga, suitable specific primers were created manually that capture as119

much of the variable region of the ITS2 sequence as possible with a sequence length between 100-152 bp.120

Primers were checked for forming dimers and hairpin structures with the primer3 software (Rozen and121

Skaletsky, 2000), BLAST searches were performed to ascertain that the primers are specific for the ITS2122

sequence. The chosen primers are shown in Table 1. PCR fragments of the specific primers were used as123

capture probes and spotted on the glass arrays.124

Primers for sample ITS2 sequences125

Universal primers ITS3 and ITS4 (White et al., 1990) were used to amplify the ITS2 sequences of the126

sample DNA.127

ITS3: 5’-GCATCGATGAAGAACGCAGC-3’ (forward)128

ITS4: 5’-TCCTCCGCTTATTGATATGC-3’ (reverse)129

6
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DNA extraction and PCR amplification130

DNA was extracted from liquid algae cultures following the protocol described in Doyle and Doyle (1990).131

We used a modified version of this protocol where the concentration of CTAB buffer was increased from132

2% to 4%. The cells were not ground in liquid nitrogen but with sea sand in CTAB buffer. These133

modifications were proposed by Anke Braband (Berlin, Germany, personal communication). DNA from134

several DNA extractions of the same alga species was pooled before PCR amplification.135

For PCR amplification of the ITS2 sequences used as capture probes on the microarray, 40 cycles of136

denaturation at 94°C, primer annealing at 62°C for 20 s, and elongation at 70°C for 20 s were performed.137

Algae ITS2 PCR products were sequenced to confirm that the cultures were not contaminated by other138

species.139

The thermal profile used for PCR amplification of the sample DNA (ITS3, ITS4 primers) was as140

follows: 10 cycles of denaturation at 94°C for 45 s, primer annealing at 55°C for 45 s, elongation at 70°C141

for 3 min followed by 30 cycles of a ramp protocol increasing the elongation step by 0.5 s per cycle.142

Microarrays: Spotting, labeling, scanning143

PCR products were spotted using 3xSSC + 1.5 mol betaine as spotting buffer and immobilized (30 min.144

humid chamber followed by baking for 60 min. at 120°C). Each PCR product was spotted 64 times on the145

microarray. Blocking and washing was performed according to the Schott Nexterion manual for Nexterion146

Slide E. 100 ng total of algae PCR product for the hybridization of one alga were labeled using Cy3 following147

manufacturers instructions (CyScribe Direct Labeling Kit, GE Healthcare, UK). For the simultaneous148

hybridization of two algae, 50 ng of each algae PCR product was used for hybridization. Hybridization to149

the microarrays was performed in a hybridization station (Lucidea SlidePro, GE Healthcare) at 42°C,150

overnight. For scanning a ScanArray 4000 (PerkinElmer, MA, USA) was used. Data acquisition was done151

using the ScanAlyze Software (M. Eisen, LBNL, CA, USA).152

Data preprocessing153

All calculations were performed in the statistical programming environment R (R Development Core Team,154

2007). Spot intensities were normalized with the vsn algorithm (Huber et al., 2002) and the values were155

mapped back to a non-logarithmic scale (x 7→ ex). The median of all 64 spots of one algae per array156

was used for setting up the measurement (algae × microarrays) intensity matrix Y ; thus Yi,k denotes the157

median of the 64 alga-i capture probe intensities on array k.158

Data and R scripts to reproduce our analysis are available at http://www.biozentrum.uni-wuerzburg.159

de/phylochips.html.160
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Figure 3: A) Signal intensities of individual algae (columns) when one algae was hybridized to an array (rows). B)
Predictions of our model. Predicted amount of PCR product of each algae (columns) when one algae was hybridized (rows).
A value of 1 corresponds to 100 ng DNA.

Results161

Data analysis with an intensity threshold162

For most cases, it is not possible to predict the algae which had been used for hybridization from the163

signal intensities (Figure 3). If one applies a threshold criterion on the signal intensities, only two algae164

can be diagnosed correctly. The signal for the alga with the largest sequence divergence, Desmodesmus165

pleiomorphus, is highly specific even when looking at intensity values. This confirms that species detection166

with microarrays performs well on the genus level. The second alga that can be diagnosed with a threshold167

on signal intensity is Scenedesmus acuminatus. Its capture probes also display the highest intensities168

when its DNA is hybridized to a microarray.169

In concordance with their phylogenetic neighborship (Figure 2), when Scenedesmus obliquus is hy-170
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bridized on an array, the capture probes for both species, Scenedesmus obliquus and Scenedesmus171

acuminatus show high intensities (Figure 3). Thus the capture probe of Scenedesmus obliquus is not spe-172

cific. This example shows that for closely related species, cross-hybridization prevents a simple prediction173

applying a threshold criterion, even when a divergent marker like the ITS2 sequence is used.174

The capture probe of Scenedesmus platydiscus apparently has a very low binding affinity. When DNA175

from Scenedesmus platydiscus is hybridized, the intensity of its capture probe is lower than the intensities176

from the other algae (Figure 3).177

Looking at exemplary mixtures of two algae, the capture probes of the algae which are present in the178

sample show the strongest signal, although on one array, the capture probe of an alga not present also179

displayed a high intensity (signal intensities not shown).180

As expected, a simple threshold criterion does not lead to satisfying results when closely related species181

are involved; therefore we model hybridization behavior.182

Modeling hybridization behavior183

In DNA microarray analysis, the measured signal intensity of a probe depends on (i) amount of bound184

target DNA, (ii) amount of bound non-target DNA (cross-hybridization), and (iii) unspecific binding of185

DNA (background ”noise”). In addition, probe affinities to their perfect match targets vary between the186

different probes making a direct comparison of signal intensities of different probes impossible. Therefore,187

in our approach the hybridization behavior of each alga was modeled separately. Because the algae species188

chosen are closely related, cross-hybridization affinities are included in the model. Considering both effects,189

hybridization and cross-hybridization, we predict the presence of an alga from the probe intensities.190

We assume a linear correlation between the amount of algae DNA hybridized to a microarray and the191

measured fluorescence. For 50-mers of bacterial genes, a linear correlation has been shown by Tiquia et al.192

(2004). Thus, we set up a linear matrix model by193

Y = A ·X or Yik =
∑

j

AijXjk,

where Y is the (algae probes × microarrays) matrix with Yi,k denoting the median of all spot intensities194

of the alga-i probes in array k; A is an (algae probes × algae targets) affinity matrix with Ai,j being the195

affinity of alga-i probes to bind to alga-j target DNA, and X is the unknown (algae targets × microarrays)196

design matrix, i.e., Xj,k is the amount of DNA of alga j in microarray hybridization experiment k.197

Since initially A is not known, we estimate A by carefully designed spike-in experiments with known198

concentrations of each alga: For each alga, two microarrays with 100 ng PCR product were hybridized199

(single alga hybridizations). Two microarrays were hybridized with mixtures of two different algae with200

50 ng PCR product each (mixed hybridizations). In the absence of cross-hybridization, A would be a201

9
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diagonal matrix. In the case of cross-hybridization, A is non-diagonal and its coefficients are estimated by202

least squares regression as follows.203

First, note that probes can be treated independently, since the linear model assumes that there is no204

competition for PCR product among probes. Fix a row α := Ai of A, corresponding to probe i, and set y205

to the i-th row of Y . The model for probe i then becomes yk =
∑

j αjXjk, or y = α ·X, or equivalently206

yT = XT · αT,

where (·)T denotes transposition, so yT and αT are column vectors. This model is an over-determined207

linear system in standard form, which we solve for α by the standard least-squares principle using the208

statistical software R, as explained above.209

Note that we only assume that X has full rank (equal to the number of different algae), so XXT
210

is invertible. Other than that we make no specific assumptions about the spike-in experiments, in211

particular they need not be single-alga experiments, but can be mixture experiments. However, using212

single alga-experiments is beneficial in the sense that the matrix condition of XXT is small, yielding more213

precise estimates.214

Since X has full rank, we can express the least-squares solution by the Moore-Penrose inverse of XT
215

(Penrose, 1955) in the form α̂T = [(XTTXT)−1XTT] · yT. This holds for every row i of A; writing these216

equations next to each other yields217

ÂT = (XXT)−1X · Y T or Â = Y ·XT · (XXT)−1.

The resulting affinity matrix is shown in Figure 4. The larger part of the matrix is diagonally dominant,218

demonstrated by the fact that the capture probes of four algae have the highest binding affinities to their219

target DNA. Scenedesmus acuminatus target DNA shows cross-hybridization, it has a strong affinity to220

both its capture probe and the capture probe of Scenedesmus obliquus. The target DNA from Scenedesmus221

platydiscus binds poorly to all of the capture probes, including its perfectly matching probe.222

Since we do not constrain Â to positive values, in principle, we may obtain a solution with negative223

affinity coefficients. We did not observe this, suggesting that nothing went terribly wrong with the224

experiments or measurements.225

Note that the exact same approach would work if we had two (or a variable number of) probes per226

alga. In this case, the matrix A would be rectangular.227

Now samples with unknown amounts X of PCR product can be hybridized, each probe response can228

be measured as Y , and the linear system Y = ÂX with estimated A can be solved. If A is square and229

invertible, as in our case, we can express the solution as X̂ = Â−1 ·Y ; if A is rectangular but has full rank,230

10
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Figure 4: Affinity matrix A. The rows represent the capture probes of the green algae immobilized on the microarray, the

columns represent the target DNA which is hybridized to the microarray. The values in the cells need to be multiplied by 103

to yield the rounded affinities of alga-i probe to alga-j target DNA. In the case of no cross-hybridization, the matrix would
be diagonal. Here the capture probe of Scenedesmus obliquus cross-hybridizes with DNA from Scenedesmus acuminatus.
The DNA from Scenedesmus platydiscus has a very low binding affinity, even to its capture probe.

a pseudoinverse (like the Moore-Penrose inverse) can be used to obtain a prediction X for the amount of231

labelled PCR product used for hybridization for each alga.232

For the spike-in experiments, we can evaluate the difference between X̂ and the known X to assess233

the accuracy of the estimated affinity matrix Â. This is discussed in detail below.234

Comparison of model versus intensity threshold235

By applying a linear model to the probe intensities of our ITS2 microarray, we considerably improve236

the predictions of which algae are present in a sample. In Figure 5 we show exemplarily how our model237

outperforms a simple threshold criterion.238

For Desmodesmus pleiomorphus, whose ITS2 sequence is more divergent from the rest, both the239

threshold criterion and our model yield the correct result. When DNA from Scenedesmus obliquus is240

hybridized, both the target probe and the probe interrogating Scenedesmus acuminatus display the highest241

intensities and thus the correct alga cannot be detected from the pure intensities. Our model, however,242

clearly predicts Scenedesmus obliquus as the only alga in the sample.243

Thus by applying a simple linear model to the microarray data, the five algae species can be perfectly244
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Figure 5: Exemplary comparison of the results of applying a threshold criterion with our model approach. Signal intensities
Y of individual algae when one alga (D. pleiomorphus or S. obliquus, see headers of sub-figures) is hybridized are shown in
the left column. A threshold-based approach would only consider these values; note the two high intensities when S. obliquus
is hybridized. The right column shows the predicted amounts of PCR product X̂ of the linear regression model for the same
alga. In all cases, Y and X̂ should be compared to the true amount of PCR product, which is zero for all algae except the
hybridized one which has a true amount of PCR product of 1.

distinguished (Figure 6). The model takes into account the cross-hybridization between the algae and245

the different binding affinities of the capture probes to their targets. This is particularly evident for246

Scenedesmus platydiscus, where the model takes into account the lower binding properties of its capture247

probe to correctly predict its presence. The model estimates the affinities such that the overall error is248

minimized (in a least-squares sense), yielding good predictions for all of the algae at the cost of a less249

striking separation between the only Desmodesmus species and the Scenedesmus species, compared to250

pure signal intensities (Figure 3).251

Figure 6A shows the results of our model approach. Training the model on all the microarrays and252

then predicting the amount of labelled PCR product used for hybridization yields the training error. The253

amount of DNA for hybridization was standardized, a value of 1 on the vertical axis corresponds to 100254
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ng of labelled PCR product, 0.5 corresponds to 50 ng. In Figure 6, the predictions for the two replicates255

of every single alga hybridization and the two mixture hybridizations are shown. For every microarray256

hybridization (horizontal axis), the alga which was hybridized has the highest predicted amount of PCR257

product, which varies between approx. 0.6 and 1.3. Furthermore, there is a clear separation between258

absent and present algae concerning the predicted amount of DNA. Although a quantitative evaluation is259

possible with our approach, we prefer a qualitative evaluation for this proof-of-concept study. Using a260

cutoff anywhere between 0.4 and 0.6 to call a species present when it exceeds the cutoff results in 100%261

correct predictions for the hybridizations of one alga.262

The mixtures of two algae are more difficult to predict because here, only 50 ng labelled PCR product263

of each algae were used for hybridization. The predictions for the microarray hybridized with DNA from264

Scenedesmus hindakii and Scenedesmus acuminatus are very good: The predicted amounts are around265

0.6 and the predictions for the absent algae are around zero. For the other mixture, the prediction of266

the present algae are also very good (around 0.5), but the prediction for the absent algae Scenedesmus267

hindakii is too high to speak of a clear separation between present and absent algae.268

In Figure 6B, the results of a leave-one-out cross-validation, representing the prediction power of the269

model on new data, are displayed. Here the model is trained on 11 array hybridizations and the amounts270

of labelled PCR product of the 12th array are predicted. This procedure is repeated 12 times such that271

each array is left out once. Looking at the predicted amounts of PCR product of the individual algae,272

the separation between present and absent algae is still visible, but less clear than in Figure 6A. When273

using again a cutoff of 0.6 to call a species present, the two predictions of Scenedesmus platydiscus are not274

correct. The amount of this alga is hard to predict, most likely because the signal intensity of its capture275

probe is always low, even if the alga itself is hybridized to the array. The predictions of the two mixtures276

of algae are again close to the true DNA amounts used for hybridization, only the amount of Scenedesmus277

hindakii is over-estimated in the mixture where Scenedesmus acuminatus and Scenedesmus obliquus were278

hybridized.279

Discussion280

While several publications describe the development and application of DNA microarrays for species281

detection, data analysis has been neglected in the past and is typically restricted to calling a species282

present when the signal intensity exceeds an arbitrary threshold (Loy and Bodrossy, 2006). Determining283

whether a species is present or not is usually done manually, a tedious work especially when several284

probes are used for the same species or when many species are studied. Cross-hybridization of non-target285

DNA even prevents the prediction of closely related species. These major drawbacks can be overcome by286

applying statistical models, as proposed here, on the microarray data.287
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For this pilot study, we have chosen a worst case scenario with five closely related green algae from the288

family of Scenedesmaceae. Our aim was to keep the approach simple and easily transferable to different289

biological problems, therefore only one capture probe per species was chosen for the DNA microarray. In290

contrast to many former studies, our data analysis does not stop after signal intensities of the single probes291

have been calculated. From the signal intensities, we model hybridization and cross-hybridization behavior292

with a simple linear model to estimate which species had been in the sample. With this approach, we get293

better predictions compared to applying an intensity threshold directly on the fluorescence intensities.294

In a cross-validation, for the single alga hybridizations, the accuracy of our model was 80%, considering295

a species present when the predicted concentration of labelled PCR product used for hybridization of the296

microarray exceeds 60 ng of DNA. This is a significant improvement compared to a 40% accuracy when297

an arbitrary but most beneficial threshold was used on the fluorescence intensities. While the predicted298

amounts of DNA were close to the correct 100 ng for the majority of species present in the sample, the299

amount of Scenedesmus platydiscus was underestimated with a predicted concentration of about 60 ng300

DNA. Considering that very closely related species were studied here, this is a promising result indicating301

that even species with a high sequence similarity can be detected with DNA microarrays.302

While former studies estimated the threshold for species differentiation around 75-87% sequence303

similarity (Loy and Bodrossy, 2006, and references therein), we could show that species identification is304

possible even for sequences of at least 97% sequence similarity in the marker gene.305

We have shown here that it is feasible to design a DNA microarray distinguishing closely related306

species using cost-effective methods. Our system is also sensitive, yielding good results with only 100 ng307

of PCR products. The shorter PCR fragment used as capture probe for Scenedesmus platydiscus (100 bp308

long) most likely caused the lower overall intensities of that probe. Although we suspected this behavior309

when choosing the capture probes, we could not find an appropriate primer pair to yield a 140-150 bp310

fragment like the ones used for the other algae. Using a more accurate but also more expensive technology311

probing long oligomers on the arrays will make it easier to design oligomers of approximately the same312

length and with similar binding affinities. This will most likely further improve the predictions and allow313

quantitative analysis. A combination of both, optimized technology and enhanced data analysis is needed314

to further increase the sensitivity and accuracy of species microarrays. The proposed linear model is315

simple but efficient and can easily be applied to different datasets, studying the same or different species.316

Other modeling approaches with general linear models or kernel support vector machines with several317

different kernels were also applied on the microarray data and yielded comparable results. The linear318

regression approach was finally chosen because it gave the best results in the leave-one-out cross-validation.319

In this study, we used specific primers to generate the capture probes on the microarray and a universal320

primer to amplify the sample ITS2 region. While we are aware of possible biases that might be introduced321

by PCR amplification when analyzing complex samples, we believe that these biases are small because of322
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the perfectly matching universal primers. Still, optimization strategies need to be developed to improve323

specificity and allow quantification of species before this approach can be applied for environmental324

studies.325

To test whether our model is also capable of correctly predicting mixtures of algae species, we hybridized326

DNA from two different algae in equal amounts to the same array, keeping the total amount of DNA327

(100 ng) constant. Results are promising: on two test arrays, the present algae had the highest predicted328

concentrations. On one array, however, the concentration of the non-present Scenedesmus hindakii was329

over-estimated.330

An advantage of our model aproach is that not all possible combinations of species have to be hybridized331

to microarrays to be able to predict them. The only requirement at the moment is that each species has332

to be hybridized once, either by itself or in a mixture. Then, all possible combinations can in principle be333

predicted. Nonetheless, future work will include more hybridizations with different mixtures of algae to334

fully characterize the potential of the model to predict complex mixtures of DNA.335

In principle, quantification of algae DNA is possible with our modeling approach using only one336

color in the hybridization. Nonetheless, quantification would be more robust when using two colors and337

measuring relative differences between two samples. This would be particularly useful to measure spatial338

and temporal changes in the composition of species in environmental samples.339

With the advent of ultra-fast sequencing technologies, much more precise quantitative measurements340

become feasible. But because at present, a large initial investment is required for this technique, it will341

not be an option for many small laboratories. ITS2 DNA microarrays coupled with sound statistical342

analysis, however, offer the potential to conduct more cost-effective large-scale studies.343

Recently, it has been shown that multicopy genes such as rDNA display variation between the344

individual copies which can confound biodiversity estimates (Thornhill et al., 2007). Unlike DNA345

barcoding approaches using sequencing, DNA microarray approaches like the one presented here are less346

affected by this phenomenon. Because the resolution of DNA microarrays is not high enough to discover347

single base pair changes on a sequence length of about 150 bp, single mutations between different copies348

of a multicopy gene will not affect hybridization.349

With a well-annotated 100k ITS2 sequence database at hand (Schultz et al., 2005, 2006; Wolf et al.,350

2005), it is fairly easy to design any ITS2 species array with the eukaryotic species of interest. Focused as351

well as large-scale biodiversity studies with hundreds or even thousands of species can be set up based on352

this database. Possible applications for these microarrays would be the diagnosis of species in water or353

soil samples, changes of species composition in these samples over time or the diagnosis of toxic species.354
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Figure 6: Modeling results. A) Training error. The affinities were derived from all microarrays and used to predict the

amounts of PCR product (X̂) of each alga. There were two replicates of each single alga hybridization and two microarrays
with mixtures of two different algae (x-axis). B) Test error of leave-one-out cross-validation. It represents the prediction
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Abstract

Over the past years, microarray databases have increased rapidly in size. While
they offer a wealth of data, it remains challenging to integrate data arising from
different studies. Here we propose an unsupervised approach of a large-scale meta-
analysis on Arabidopsis thaliana whole genome expression datasets to gain addi-
tional insights into the function and regulation of genes. Applying kernel principal
component analysis and hierarchical clustering, we found three major groups of ex-
perimental contrasts sharing a common biological trait. Genes associated to two
of these clusters are known to play an important role in indole-3-acetic acid (IAA)
mediated plant growth and development or pathogen defense. Novel functions could
be assigned to genes including a cluster of serine/threonine kinases that carry two
uncharacterized domains (DUF26) in their receptor part implicated in host defense.
With the approach shown here, hidden interrelations between genes regulated under
different conditions can be unraveled.

Keywords: Arabidopsis thaliana, microarray, unsupervised meta-analysis, function
prediction, database, gene expression
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Introduction

In the last years, enormous data has been generated with microarray experiments from
different organisms, tissues and platforms under various experimental conditions. Databases
like the NCBI Gene Expression Omnibus (GEO) (Barrett et al. 2007), ArrayExpress
(Parkinson et al. 2007) and NASCArrays (Craigon et al. 2004) have been set up to
archive these datasets and to make them available to the scientific community. The size
of microarray databases is likely to increase exponentially in the future, as is typical for
all molecular databases, increasing the need for sophisticated methods to analyze these
large amounts of data appropriately.

Several factors impede a straight-forward analysis of microarray database content:
standards for data submission vary between different databases, some microarray datasets
do not provide raw data and on the experimental side, protocols and experimental con-
ditions can differ between diverse laboratories conducting microarray hybridizations.
However, a major advantage of microarray meta-analysis is that through the integration
of a potentially large number of datasets, additional insights into gene regulation can
be gained which could have been overseen or not detected in the single experiments.
Reasons for this could be that either the signal from a particular gene or group of genes
was too weak to be detected in the single experiment or because it can be put into
a functional context taking into consideration its regulation under other conditions or
treatments.

Several methods for microarray meta-analysis have been proposed in recent years,
most of them using models which compute an “effect size” and take care of inter-study
variation (Choi et al. 2003; Conlon et al. 2006; Hu et al. 2005; Moreau et al. 2003).
Thus, they often resemble procedures applied for the detection of differential expression
but add the study as an extra explanatory variable. Several datasets from different
microarray experiments are integrated in the meta-analysis to increase the number of
replicates and thereby the power to detect differentially expressed genes. Because this
design implies that datasets addressing the same topic such as the same cell type or
treatment are used, microarray meta-analyses of this kind usually consist of only a small
number of studies.

A second approach to supervised microarray meta-analysis is to integrate knowledge
of biological functions into the analysis to predict global co-expression relationships and
to infer functional relationships between co-regulated genes (Huttenhower et al. 2006).

Nevertheless, all the above methods are based on parametric models which have
several biological and statistical assumptions. Similar to classical microarray analysis,
in which a first explorative analysis reveals possible signals in the data which can then be
verified or disproved by parametrical hypothesis testing, our approach of unsupervised
meta-analysis yields insights into the biological structure of the data and may thus
lead to precise biological hypotheses. These could then be tested by the parametric
models described above. The aim of this study is to compare the results from a large
number of microarray experiments on Arabidopsis thaliana using the well established
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Affymetrix ATH-1 Genome Array 1 as a starting point. We restricted our analysis
to this highly-standardized platform to reduce uninformative variability introduced by
different technologies.

In this unsupervised meta-analysis, we show how to overcome the challenges posed
by the heterogeneity of microarray data and apply exploratory data analysis methods.
First, microarray datasets from public web sources were collected and pre-processed to
remove noise from the data and build a common data basis for further analyses. Later,
exploratory data analysis was applied to the processed datasets, namely kernel Prin-
cipal Component Analysis (kPCA) and spectral and hierarchical clustering, to group
contrasts from different microarray experiments and to find genes regulated in a specific
cluster. Identification of regulated genes in a specific cluster was achieved by unsuper-
vised feature subset selection using the kernel principal component loadings. Although
gene selection or feature subset selection is a challenging task for classification, many
different approaches have been proposed for the same. According to our knowledge,
gene selection or feature subset selection has not yet been performed using loadings of
features on kernel PCA scores in the context of meta-analysis.

Genes selected to play a role in either plant growth and development (related to
indole-3-acetic acid, a plant growth hormone) or pathogen defense were mapped onto
physiological processes and functions and could be validated by previous studies. For
genes which have not completely been characterized yet, our approach was able to pro-
pose a function and a possible regulatory mechanism as shown here for DUF26 (Domain
of Unknown Function) kinase genes.

Methods

Data pre-processing

Microarray data were collected from the Gene Expression Omnibus (GEO) database
(Barrett et al. 2007). For our analysis, we defined a dataset as a GEO entry with a
unique GSE series accession number. Each dataset consisted of several Affymetrix CEL-
files, each one representing the raw data from one microarray hybridization. The raw
data of one microarray is termed a sample in the following section. Instead of comparing
whole GEO datasets with each other, we broke down each dataset into contrasts and used
these as ’entities’ for our analysis (Fig. 1, (Everitt 2005)). A contrast is the difference
in gene expression between any two sample groups of the same dataset. A sample group
contains all replicate samples from one condition (e.g. treatment, mutant, see Table 2).
Therefore, for most GEO datasets, several contrasts were set up. For example, a contrast
could be a comparison of an Arabidopsis thaliana mutant with a wild type plant.

A contrast was then represented by a vector of the logarithmic (base 2) fold changes
of all 22810 probe sets on the ATH1 chip. The majority of probe sets on the ATH1
chip interrogates the expression level of one gene, some match to two or more genes.
Before computing the fold changes, raw intensity values of all samples of a contrast

1http://www.affymetrix.com/products/arrays/specific/arab.affx
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were normalized using the gcRMA algorithm implemented in the gcrma package (Wu
et al. 2005) which is part of Bioconductor (Gentleman et al. 2004) and runs under the
statistical software R (R Development Core Team 2004). Logarithmic fold changes and
p-values adjusted for multiple testing using the false discovery rate method (Benjamini
and Hochberg 2000) were computed using the limma package (Smyth 2004) which is
also integrated into Bioconductor.

We imposed the following selection criteria on the datasets: a) Availability of the
Affymetrix raw data (CEL-files) for download, b) at least two replicates of each condition
are available c) time-course experiments were excluded. 20 GEO datasets fulfilled these
criteria as of November 2006. From these datasets, 76 contrasts could be set up on the
basis of 424 CEL-files. The final data matrix used for the unsupervised meta-analysis
was a 76× 22810 matrix, 76 contrasts with 22810 log fold changes.

Outlier removal and transformation

To remove experimental outliers from the data which could negatively influence any
further analysis, a filtering criterion was set up as follows. Across all experiments, 15%
and 85% quantiles of the distributions of medians and variances of the log fold changes
were calculated. Experiments whose medians laid outside the inter-quantile-range or
whose variances were below the 15% quantile threshold were excluded from further
analysis. This resulted in a reduced data matrix X with 41 remaining contrasts. We
randomly inspected the 35 removed contrasts for detectable problems and found several
contrasts having a low-variant distribution of multiple-testing corrected p-values with
almost all p-values close to one.

When dealing with heterogenous experimental datasets from different laboratories
and experimental settings, efficient data transformation methods are necessary to pro-
duce a reasonable level of comparability. Log fold changes from microarray experiments
deserve special attention in that they implicitly define a “direction” of differential ex-
pression by their algebraic sign which is semantically not sustainable when comparing
contrasts from divergent settings. We therefore only evaluated the absolute value of the
log fold changes and brought all remaining 41 contrasts approximately to a standard nor-
mal distribution by applying the Box-Cox-Transformation (Eq.1, (Box and Cox 1964))
using Maximum-Likelihood estimated power coefficients.

For a power coefficient p and data x the box-cox-transformed data x′ is defined as
follows:

x′ =
{

(xp − 1)/p if p 6= 0
log(x) if p = 0

(1)

The average p values were about 0.13, resulting in an approximately logarithmic
transformation of the log fold changes. Subsequently, all datasets were standardized
to zero mean and unit variance to analyze datasets without regard to their scale and
location.
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Kernel PCA

Principal Component Analysis (PCA) aims to provide a lower dimensional view of high
dimensional data by projecting the data points from a data matrix X onto a new co-
ordinate system retrieved by eigen-decomposition of the associated covariance matrix.
The axes of the new coordinate system are thereby chosen in a way that each axis or
principal component explains as much of the (remaining) variance of the data as possible
and that all axes after the first are orthogonal to the ones before.

Kernel PCA (Schölkopf et al. 1998) is a non-linear extension of the regular PCA,
performing the same projection in a possibly even higher dimensional feature space.
The data points are implicitly projected from the input space I into the feature space F
by replacing the standard Euclidean dot product with a positive-semidefinite symmetric
bilinear form, the kernel function κ (Eq. 2). The algorithm is represented in a dual form
such that all computation takes place using only the matrix of pairwise dot products
XX ′ (Shawe-Taylor and Cristianini 2004), the Gram or Kernel matrix K (Eq. 3), instead
of using the data points or its variances directly.

More precisely, for a row-indexed data matrix X and a mapping φ : I → F , x 7→ φ(x)
the kernel function κ and its associated kernel matrix K is defined as

κ(xi, xj) = 〈φ(xi), φ(xj)〉 (2)
Kij = κ(xi, xj). (3)

Kernel PCA has the advantage of being able to detect non-linear patterns in the
data which might be overlooked or not covered appropriately when using conventional
PCA.

For our analysis we used the Kernel PCA algorithm implemented in the “kernlab”
package (Karatzoglou et al. 2004), for the kernel function κ we chose a polynomial kernel

κ(xi, xj) = (s 〈xi, xj〉+ k)d

of degree d = 2, scale s = 1 and offset k = 0.

Clustering

Clustering was performed on all remaining contrasts after removal of outliers. For an
initial identification of the three main clusters of contrasts, we applied a spectral cluster-
ing algorithm from the “kernlab” package (Karatzoglou et al. 2004). Spectral clustering
algorithms cluster points using eigenvectors of matrices derived from the data, the kernel
matrix K in this case. Similar to k-means clustering for data in the input space, the
initial number of clusters has to be specified.

To gain structured clustering results, we applied hierarchical clustering using Ward’s
minimum variance method, which aims to find compact and spherical clusters based on
Euclidean distance (Ward 1963). Decomposition of the symmetric kernel matrix K

K = SΛS′ (4)
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Figure 1: Outlier removal. Median vs. log(variance) plot of all 76 contrasts and the associated
bivariate box plot, colors indicate the type of outlier (see legend). The bivariate box plot is the two-
dimensional analog of the familiar box plot of univariate data and consists of a pair of concentric ellipses,
the hinge and the fence (Everitt 2005). This box plot is based upon a robust estimator for location,
scale and correlation. Uncolored contrasts were kept for further analysis.

leads to a product of the orthogonal matrix S of its eigenvectors, a diagonal matrix Λ
consisting of its eigenvalues and the transpose of S, S′. As the eigenvalues of K are
directly linked to the proportion of explained variance of the principal component axes,
the axes were scaled by the square roots of their respective eigenvalues, i.e.

X̃ = SΛ1/2. (5)

The result is a Euclidean distance

d(xi, xj) =
√
〈x̃i, x̃j〉 (6)

weighted by the information content of each of the vector coefficients, thus scaling down
axes that were given a low information content in the previous kPCA analysis.

Uncertainty of the predicted clusters was estimated by a 1000-fold multi-scale boot-
strap resampling using the “pvclust” algorithm (Suzuki and Shimodaira 2006).

6

2. UNSUPERVISED META-ANALYSIS ON DIVERSE GENE EXPRESSION
DATASETS 45



Table 1: Variance of kernel principal components. Variance of the first 15 principal components on the
41× 22810 data matrix of Arabidopsis thaliana microarray data, explaining close to 60% of the variance
of the data. Abbreviations: PV = Proportion of Variance, CP = Cumulative Proportion of variance.

PC1 PC2 PC3 PC4 PC5
PV 0.10035 0.05383 0.05003 0.04640 0.03887
CP 0.10035 0.15418 0.20422 0.25062 0.28949

PC6 PC7 PC8 PC9 PC10
PV 0.03725 0.03250 0.03226 0.03142 0.02973
CP 0.32674 0.35925 0.39151 0.42293 0.45267

PC11 PC12 PC13 PC14 PC15
PV 0.02793 0.02699 0.02647 0.02606 0.02470
CP 0.48061 0.50761 0.53409 0.56016 0.58486

Results

Dimension reduction by kernel principal component analysis (kPCA)

The ATH-1 whole genome chip consists of 22810 probe sets, this led to a 41×22810 data
matrix (contrasts × log fold changes of probe sets) after outlier removal. To reduce the
dimension of the data matrix, a kernel PCA algorithm was applied which was able to
cover virtually the complete information content by defining an orthonormal system of
38 principal component axes. The 22810 log fold changes could therefore be represented
by a 41 × 38 data matrix without any measurable loss of information. Using only the
first 25 principal components, 80.585% of the variance could be described. If we state
that the remaining 20% of the variance in the data describe noise, an estimation which
is certainly not too strict in the context of large-scale gene expression measurements, an
effective de-noising can be reached by considering only the first 25 principal components
in further steps of the analysis. For a detailed overview of the variance distribution on
the first 15 principal components, see Table 1.

Unsupervised analysis reveals three clear clusters of contrasts

The principal component plot (Fig. 2) revealed three major clusters of contrasts and
several minor ones. In contrast to typical meta-analyses these clusters were not a priori
defined, but detected by the proposed unsupervised meta-analysis. Based on this clus-
tering we used an implementation (Karatzoglou et al. 2004) of the spectral clustering
algorithm proposed by Ng et al. (2001), a variant of the k-means clustering algorithm
in a kernel defined feature space, to support the clusters shown in Fig. 2. According
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Figure 2: Kernel PCA on 41 Arabidopsis thaliana contrasts. Plot of all 41 contrasts using the
first two principal component axes. Comparisons are colored according to the experiment they originated
from and correspond to the colors used in Figure 3, different shapes indicate the three different clusters
obtained from spectral clustering: Indole-3-acetic acid (IAA) related contrasts (solid circle), pathogen
related contrasts (triangles) and others (outlined circle).

to the annotation of the datasets retrieved from GEO, the three clusters were related
to indole-3-acetic acid (IAA) addition or inhibition (cluster 1, triangles), pathogen de-
fense activation (cluster 2, solid circles) and “others” (cluster 3, outlined circles). For a
detailed biological interpretation, see section “Biological interpretation of clusters”. Ad-
ditionally, inspection of the pairwise plots of the other principal components contributing
to a lower extent to the variance of the data revealed more contrast clusters.

To get further structural insights into the relationships between contrasts and the
experimental settings, we performed hierarchical clustering assessed by multi-scale boot-
strapping (Fig. 3). In agreement with the spectral clustering performed earlier and the
graphical inspection of the pairwise scatterplots of contrasts on the kPCA axes, the three
main clusters of contrasts could also be found as the first two splits in the resulting den-
drogram with high bootstrap support.
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Figure 3: Hierarchical clustering on 41 Arabidopsis contrasts. Cluster dendrogram using hi-
erarchical ward clustering on all 38 principal component vectors resulting from kernel PCA. Contrasts
are colored according to their experimental affiliation. Approximately unbiased (au, (Suzuki and Shi-
modaira 2006)) and standard bootstrap (bp) values are given for all splits and support the results from
the previous spectral clustering (Fig. 2).

As the three clusters were mainly separable through the x-axis on the kPCA scatter-
plot using the first two axes (Fig. 2), we postulated that the first principal component
alone might be enough to select genes whose co-regulation patterns could clearly distin-
guish between IAA related, pathogen-defense related and other contrasts.

Gene selection with kPCA loadings

To accomplish an efficient feature subset selection, i.e. to identify genes that are respon-
sible for the clustering, a variety of methods have been described, e.g. Self-Organizing
Maps (SOMs) (Tamayo et al. 1999), Maximal Margin Linear Programming (MAMA)
(Antonov et al. 2004), Correlation Based Feature Selection (CFS) (Hall 1999) or Recur-
sive Feature Elimination (RFE) using Support Vector Machines (SVM) (Guyon et al.
2002; Zhang et al. 2006). In consequent continuation of our approach of exploratory
meta-analysis, we looked for genes that have a strong association with the first kPCA
axis, i.e. we calculated the loadings of each of the genes onto the principal components.
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To achieve this with respect to the kernel defined feature space we projected single ar-
tificial contrasts containing only one de-regulated gene onto the new coordinate system.
Each of the 22810 artificial contrasts was set up in a way that it showed a high absolute
fold change value in one of the genes and all others being set to zero. From the resulting
22810 × 38 matrix of loadings of each of the genes onto the 38 principal components,
we selected the 500 top genes for both positive (IAA related) and negative (pathogen
related) extrema. To assess the accuracy of the gene selection process exploratively,
we repeated the previous kernel PCA analysis using only the selected genes, i.e. on the
remaining 41×500 data matrices, and inspected pairwise scatterplots of the first 20 prin-
cipal components for each dataset of either IAA-related or pathogen-associated genes.
All kPCA plots of the IAA-related gene set, even the one of the first two axes which
contribute most to the overall variance of the data, showed a wide spread of IAA con-
trasts along the principal component axes. This indicated a high variance of the selected
genes in IAA-related contrasts. All other contrasts were projected onto a compact local
cluster by kPCA, demonstrating that the selected genes do not vary in these contrasts.
The same was found in the kPCA plots of the matrix with pathogen-associated genes
(data not shown). These findings indicate that expression patterns related neither to
IAA nor pathogen treatment were efficiently stripped off by the gene selection process.

Biological interpretation of clusters

The hierarchical clustering on all kPCA scores in Figure 3 revealed three main clusters
of contrasts: contrasts studying pathogen defense (blue), contrasts analyzing indole-3-
acetic acid (IAA) effects (violet) and other contrasts studying various effects (gray).
These three clusters were well-supported by high bootstrap values. The labels at the
edges include the GEO accession number followed by an index indicating the contrast
number. For a detailed description of contrasts see Table 2. For each contrast, two groups
of samples were compared and for each group, the genetic background and treatment is
listed. The last column of Table 2 indicates the cluster this contrast was assigned to in
kernel PCA clustering.

Zooming into the IAA cluster, a cluster containing only contrasts with IAA inhi-
bition (GSE1491 2, GSE1491 3, GSE1491 4 and GSE1491 5) was well-separated from
the remaining contrasts, including GSE1491 1, a contrast from the same dataset, but
where IAA instead of an IAA inhibitor was added to one sample group. The remaining
contrasts in the IAA cluster mainly studied the effect of IAA on different mutants with
defects in IAA biosynthesis or signaling. Indole-3-acetic acid (IAA) belongs to a group
of plant growth hormones called auxins. The “others”- cluster consisted of contrasts
studying various effects like the effect of lincomycin which is an inhibitor of plastid pro-
tein translation, regulation changes of an embryogenesis transcription factor mutant or
of stress tolerant mutants. Naturally, in this cluster of divergent contrasts, contrasts
from the same dataset clustered closely together. The architecture of the hierarchical
cluster tree shows that data preprocessing followed by kernel PCA adjusted the data
in such a way that contrasts stemming from biologically similar experiments are indeed
more similar to each other than to other contrasts. Thus, with our analysis, we were able
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to achieve comparability of microarray datasets from different laboratories addressing
different biological questions. This is nontrivial and important considering the numerous
sources of variation that affect the nature of the datasets underlying this analysis.

Arabidopsis thaliana genes regulated by indole-3-acetic acid (IAA)

To get an overview of the functions of the selected genes representative for the con-
trast clusters “IAA” or “pathogen”, the Arabidopsis thaliana pathway analysis program
MapMan (Usadel et al. 2005) was used. With MapMan, gene expression values can be
displayed onto diagrams of functional categories and metabolic and regulatory pathways.
In this study, MapMan was used to visualize the representative genes for the two clusters
“IAA” and “pathogen”.

Among the genes representative for IAA contrasts, the functional category “hor-
mones” with the subgroup “IAA” defined by MapMan showed the highest proportion
of regulated genes (diagram not shown). The subgroup “IAA” consists of 215 genes in
MapMan. We selected 500 genes representative for IAA with our approach and out of
these, 43 genes are cataloged in the MapMan subgroup “IAA”. Thus, by selecting 500
genes from the ATH1 microarray which comprises roughly 2% of the array, we were able
to capture 20% of the genes annotated as IAA-related in MapMan.

In the “hormones” subgroup “ethylene”, and in the category “transcription factor”
many genes are regulated under IAA treatment, while a smaller number of genes is
regulated in the categories “Cytochrome P450” and “cell wall” (data not shown).

Regulated genes in the subgroup “ethylene” are either involved in ethylene synthesis
or signal transduction. Ethylene plays a role in the regulation of a number of develop-
mental processes, often in interaction with other plant hormone signals. For example,
auxins can induce ethylene formation and in turn ethylene can trigger an auxin increase.
Some processes such as root elongation, differential growth in the hypocotyl and root
hair formation and elongation are regulated by both auxin and ethylene in Arabidopsis
thaliana (Stepanova et al. 2005). All the GEO datasets we annotated as IAA-related
originate from seedling RNA extracts. Since IAA belongs to the group of auxins, the
aforementioned processes are likely to be regulated under IAA treatment.

Cytochrome P450 monooxygenases are involved in various biosynthetic reactions
which synthesize for example plant hormones or defense compounds. Regulation of cell
wall genes is also expected as auxins mediate cell elongation by stretching of the cell
wall which requires restructuring processes.

In conclusion, the gene selection of our unsupervised meta-analysis approach chose
many genes which are annotated and independently validated as being IAA regulated.

Arabidopsis thaliana genes regulated by pathogen exposure

Gene selection for contrasts studying plant response to pathogens revealed a high num-
ber of regulated genes in the following functional categories of MapMan (Usadel et al.
2005): “biotic stress”, “receptor kinases”, “photosynthesis” (light reactions), “alkaloid-
like proteins” from “secondary metabolism”, “nitrilases”, “cell wall” genes and “WRKY
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Table 2: Overview of all contrasts included in the explorative meta-analysis. Each contrast consists of
two groups which are described by their genetic background (genotype) and treatment. The last column
“Cluster” derives from the clustering on the kernel PCA scores. Contrasts are labeled with the GEO
series number followed by a contrast index.

Sample Group 1 Sample Group 2
Contrast Genotype Treatment Genotype Treatment Cluster

GSE1491 1 WT Col-0 IAA WT Col-0 non IAA
GSE1491 2 WT Col-0 IAA inhibitor A WT Col-0 non IAA
GSE1491 3 WT Col-0 IAA inhibitor B WT Col-0 non IAA
GSE1491 4 WT Col-0 IAA/IAA inhibitor A WT Col-0 non IAA
GSE1491 5 WT Col-0 IAA/IAA inhibitor B WT Col-0 non IAA
GSE3959 1 MU LEC2GR 1h LEC2 induction MU LEC2GR no LEC2 induction other
GSE3959 2 MU LEC2GR 4h LEC2 induction MU LEC2GR no LEC2 induction other
GSE3959 3 MU LEC2GR 1h LEC2 induction WT WS-0 4h LEC2 induction other
GSE3959 4 MU LEC2GR 4h LEC2 induction WT WS-0 NA other
GSE431 1 pmr4-1 MU non pmr4-1 MU powdery mildew pathogen
GSE4662 1 MU STA1 non WT NA other
GSE5465 2 MU OETOP6B non WT NA other
GSE5520 1 WT Col-0 DC1318 Cor 10e6 MU STA1 non pathogen
GSE5520 10 WT Col-0 EcTUV86-2 fliC 10e8 WT Col-0 non pathogen
GSE5520 3 WT Col-0 DC3000 10e6 WT Col-0 non pathogen
GSE5520 5 WT Col-0 DC1318 Cor 5x10e7 WT Col-0 non pathogen
GSE5520 6 WT Col-0 DC3000 hrpA-fliC 10e8 WT Col-0 non pathogen
GSE5520 7 WT Col-0 DC3000 hrpA 10e8 WT Col-0 non pathogen
GSE5520 9 WT Col-0 EcO157H7 10e8 WT Col-0 non pathogen
GSE5526 1 WT? non WT? non other
GSE5759 1 WT Col-0 dark plus lincomycin WT Col-0 dark other
GSE5759 2 WT Col-0 red light plus lincomycin WT Col-0 red light other
GSE5770 1 WT Col-0 lincomycin WT Col-0 non other
GSE5770 2 abi4-102 MU lincomycin abi4-102 MU non other
GSE5770 3 gun1-1 MU lincomycin gun1-1 MU non other
GSE630 1 WT Col-0 IAA (2h 5µM) WT Col-0 EtOH (2h) IAA
GSE630 10 MU arf2-6 IAA (2h 5µM) MU arf2-6 EtOH (2h) IAA
GSE630 17 MU IAA17-6 EtOH (2h) WT Col-0 I EtOH (2h) IAA
GSE630 18 MU arx3-1 EtOH (2h) WT Col-0 I EtOH (2h) IAA
GSE630 19 MU i5i6i19 EtOH (2h) WT Col-0 I EtOH (2h) IAA
GSE630 2 MU nph4-1 IAA (2h 5µM) MU nph4-1 EtOH (2h) IAA
GSE630 20 MU IAA17-6 IAA (2h 5µM) WT Col-0 I IAA (2h 5µM) IAA
GSE630 21 MU arx3-1 IAA (2h 5µM) WT Col-0 I IAA (2h 5µM) IAA
GSE630 22 MU i5i6i19 IAA (2h 5µM) WT Col-0 I IAA (2h 5µM) IAA
GSE630 24 MU arf2-6 IAA (2h 5µM) WT Col-0 A2 IAA (2h 5µM) IAA
GSE630 3 MU arf19-1 IAA (2h 5µM) MU arf19-1 EtOH (2h) IAA
GSE630 6 MU IAA17-6 IAA (2h 5µM) MU IAA17-6 EtOH (2h) IAA
GSE630 8 MU i5i6i19 IAA (2h 5µM) MU i5i6i19 EtOH (2h) IAA
GSE631 2 MU arf2-6 IAA (2h 5µM) MU arf2-6 non IAA
GSE631 4 MU arf2-6 IAA (2h 5µM) WT Col-0 IAA (2h 5µM) IAA
GSE911 4 35S::LFY non WT ler 35S::LFY other
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transcription factors”. For all of the functional categories mentioned above, it has been
reported that genes in these categories are regulated after pathogen attack and play a
role in plant defense. Figs 4 and 5 show details of the MapMan maps which harbor
these categories. In the figures, gray areas inside the diagrams represent all the indi-
vidual genes present on the ATH1 chip and annotated in MapMan. The selected genes
representative for contrasts studying the effects of pathogen exposure are highlighted by
small dark blue squares. For example, Fig. 4 C shows that there are 41 DUF26 receptor
kinases present on the ATH1 chip, of which 9 are regulated after pathogen exposure. In
the following, we give a short description of the functions of the genes regulated after
pathogen exposure.

A change in carbohydrate metabolism after pathogen attack as observed here (Fig.
4 A, upper right: “light reactions”) has also been reported by Berger et al. (2004) for
the pathogens Pseudomonas syringae or Botrytis cinerea. The authors have shown a
co-regulation of defense, sink and photosynthetic gene expression in response to the
pathogens under study.

As the cell wall is a natural barrier for plant pathogens, plant defense includes cell wall
modifications and biosynthesis to thicken cell walls and impede further pathogen attack
(Cheong et al. 2002). Figure 4 A shows that several genes of the cell wall metabolism
are regulated after pathogen exposure.

The regulation of WRKY transcription factors (Fig. 4B, upper left) is also described
in the publication accompanying the GEO dataset GSE5520 (Thilmony et al. 2006). Our
findings confirm their suggestion that these transcription factors regulate plant response
to bacteria.

Alkaloids (Fig. 4 A, lower left) are secondary metabolites listed in the “N-misc.”
category of MapMan. They are generally not essential for the basic metabolic processes
of the plant but play an important role in plant defense (Dixon 2001). They are produced
by the plant to restrict pathogen feeding. The accumulation of antimicrobial substances
is often regulated by signal-transduction pathways which require the perception of the
pathogen by a plant receptor encoded by host resistance genes (Dangl and Jones 2001;
Piroux et al. 2007). Thus, the regulation of DUF26 containing genes postulated by
our analysis of the Arabidopsis thaliana transcriptome (Fig. 4 C) might reflect their
function in pathogen recognition. Receptor kinases are discussed in more detail in the
next section.

The functional category “biotic stress” (Fig. 5 A) comprises a number of different
genes which are annotated to be pathogen related.

Nitrilases (Fig. 5 B, upper right) are involved in IAA biosynthesis and catalyze the
conversion of indole-3-acetonitrile to IAA. The induction of four Arabidopsis thaliana
nitrilases by the pathogen Pseudomonas syringae has been shown by Bartel and Fink
(1994).

Thus, gene selection by unsupervised meta-analysis was able to pinpoint biologically
important genes of which many are experimentally validated to be regulated by pathogen
attack. Clearly, one could postulate that the remaining genes of unknown function are
also associated with responses to pathogen attack.
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Figure 4: Overview of genes regulated in pathogen associated contrasts. The gray areas
inside the individual diagrams of the functional categories represent all genes present on the ATH1 chip.
Dark blue squares highlight genes regulated in contrasts of the “pathogen” cluster. Regulation of cell
wall genes (upper left), alkaloids which fall into the category “N-misc.” of “secondary metabolism”
and “Light Reactions” of photosynthesis (upper right) is apparent. B) Part of the “transcription” map
indicating regulation of WRKY transcription factors. C) Section of the “receptor like kinases” map
indicating regulation of DUF26 kinases. Figure reading example: In subfigure C, a total of 41 DUF26
kinases are represented on the ATH1 chip of which 9 are regulated after pathogen exposure. The figure
is based on maps from the pathway analysis program MapMan (Usadel et al. 2005).
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Figure 5: Overview of (A) stress genes and (B) genes of large enzyme families regulated
in pathogen-associated contrasts. The gray areas inside the individual diagrams of the functional
categories represent all genes present on the ATH1 chip. Dark blue squares indicate regulated genes.
Subcategories “Biotic Stress” (A) and “Nitrilases etc.” (B) contain a high number of genes regulated
after pathogen exposure. The figure is based on maps from the pathway analysis program MapMan
(Usadel et al. 2005).

Serine-threonine kinases involved in plant response to pathogens

As presented in Figure 4 C, the extracted set of genes deregulated in response to
pathogens includes a number of receptor kinases. Many kinases belong to the group
of serine/threonine kinases of the DUF26 subfamily. They all share the same domain
composition and order consisting of a signal peptide, an extracellular region containing
two domains of unknown function (DUF26, PF01657) and a cytosolic serine/threonine
kinase domain (pkinase, PF00069). According to the SMART database (Letunic et al.
2006), proteins of this family are exclusively found in Streptophyta. The 9 putative
receptor kinases exhibit high similarity in domain composition and nucleotide sequence
with the receptor-like kinase 4 of Arabidopsis thaliana (Swiss-Prot-ID Q9C5T0). This
enzyme is reported to be a member of the systemic acquired resistance pathway in higher
plants. Its expression can be activated by a regulatory protein induced via pathogen and
salicylic acid interaction (Du and Chen 2000). Salicylic acid is a signaling molecule which
induces systemic acquired resistance in the host plant (Ryals et al. 1996). These findings
suggest a function for the putative receptor-like kinases in host defense processes.

Two of the DUF26 kinase genes (At4g21400, At4g21410) were also regulated in the
contrasts from dataset GSE3959 and in one contrast from the dataset GSE5770. In
the former dataset, the function of B3 domain protein LEAFY COTYLEDON2 (LEC2)
was studied. This transcription factor is required for several aspects of embryogenesis
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Figure 6: Regulation of DUF26 kinase genes. Red cells indicate low p-values for a gene in a
particular contrast, light yellow cells represent high p-values. The DUF26 kinase genes are strongly
regulated in four pathogen-associated contrasts.
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including the maturation phase. In the latter contrast, abi4 mutant plants were treated
with lincomycin and compared to untreated mutants. ABI4 is a transcription factor,
lincomycin inhibits plastid protein translation. From this finding it may be concluded
that these two DUF26 kinase genes either play a role in more than one signaling path-
way or that the same pathway is used to regulate several functions. This might be an
interesting starting point to study these pathways in more detail.

As can be seen from Figure 6, the DUF26 kinase genes were not regulated in all
of the contrasts involving pathogen exposure. This could be due to several reasons.
For example either the variance in the single microarray intensities was so high that
differential expression could not be detected in the contrast or the difference in expression
levels (i.e. the logarithmic fold change) was too low to be significant because of biological
reasons. Again, this finding might be an interesting starting point to analyze the function
and regulation of the DUF26 kinase genes.

Discussion

Public microarray data repositories accumulate large amounts of data which have so far
rarely been used for large-scale analyses. Using this wealth of information, additional
implications for the function and regulation of genes can be made which could not be
derived from single microarray datasets. This stresses the importance of meta-analyses
and their benefit over classical microarray experiments.

In this study, we apply a novel approach of an unsupervised meta-analysis on a large
number of gene expression microarrays. Before conducting the analysis, we performed a
pre-processing which included a conservative outlier removal. Kernel PCA, followed by
hierarchical clustering, revealed robust and significant clusters of contrasts which reflect
similar experimental conditions. Thus we were able to detect biologically important
known and unknown factors (e.g. IAA- or pathogen-associated) through an unsupervised
analysis.

To find genes specifically regulated in these clusters, a novel approach of gene selec-
tion was conceived. Gene selection was performed using loadings of features on kernel
PCA scores, which has to our knowledge not been performed in the context of meta-
analysis before. Gene selection based on loadings of features on kernel PCA scores
circumvents a major drawback of most proposed methods of feature selection: They
tend to find linear combinations of features, i.e. genes, that separate the given experi-
mental classes best (e.g. different cancer types, etc.). This is challenging as the search
space for all possible linear combinations is too large to be searched exhaustively and
sophisticated heuristics and optimization methods have to be chosen which likely yield
differing results, see e.g. Zhang et al. (2006). An unsupervised analysis as proposed
here circumvents this problem efficiently by working directly on the loadings from the
kPCA analysis. Eigen-decomposition of the kernel matrix is deterministic and so are the
results from our gene selection process, provided the projection is capable of clustering
the contrasts appropriately. The genes selected by our feature extraction were found to
be representative of a group of contrasts and could in part be experimentally validated.
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Furthermore, adding random noise to the data did not change the set of selected genes,
proving the robustness of the proposed gene selection method.

It is the gene-selection in the first place that benefits most from an analysis across
several datasets. Weak regulation signals can easily be overlooked in a single dataset,
i.e. the genes will likely receive an insignificant p-value due to their low fold changes
compared to a relatively high variance. The situation becomes even worse after a cor-
rection for multiple testing has raised the overall p-value level, efficiently removing those
subtle signals. In a meta-analysis approach which integrates many datasets, even a small
signal that is consistent across several contrasts can be detected. To ensure this surplus
and to prevent early losses of information, we used fold changes and not p-values for
our analysis. We performed the unsupervised meta-analysis on absolute fold changes to
reduce variation introduced by different experimental settings. For example, when there
are contrasts in the dataset which compare a surplus of a factor with a control and other
contrasts comparing a lack of a factor with another control, we might expect fold changes
with opposite signs but still want the contrasts to cluster closely together because the
same factor was studied in both. In some cases the direction of the experimental setup
was not even apparent from the description of the dataset.

To ensure that results of similar quality could not be obtained by a simpler model
and thus to prevent overfitting of the data we compared the results to the ones obtained
from traditional linear PCA. Even though linear PCA was also able to detect some of
the major clusters in principle, its accuracy as assessed by hierarchical clustering as well
as by the gene selection process fell far short of the results from the kernelized version.
Additionally, it should be noted that kernel PCA outperforms the traditional approach
significantly, considering that the dimension of the kernel matrix as a matrix of pairwise
scalar products between the data points is independent of the dimension of the data,
which is 22810 (the number of probe sets) in the case of the ATH-1 arrays.

For a large Arabidopsis thaliana microarray dataset, we demonstrate here that gene
selection, based on the study of principal components, proposed genes typical for either
IAA- or pathogen-associated contrasts. These genes were proved to be related to either
IAA effects or plant reactions in response to pathogen exposure by previous studies.
Furthermore, starting from our finding that DUF26 kinases are regulated in pathogen-
associated contrasts, we applied homology modeling to propose that DUF26 kinases have
a function in plant pathogen defense. Further experiments are needed to confirm this
hypothesis. Nonetheless, this example demonstrates how unsupervised analysis can aid
and guide the next steps of such an analysis.

In general, unsupervised meta-analysis embracing several highly divergent experi-
mental settings can suggest novel gene functions by revealing the regulation of a gene
under different conditions. It is noteworthy that these analyses are not restricted to
datasets addressing the same topic, but that they profit from the divergence of the
experimental settings.

However, it has to be mentioned that an unsupervised meta-analysis is suggestive
rather than definitive. But since it is common in classical statistics to precede a su-
pervised, parametric analysis with an explorative approach to check the integrity and
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quality of the data, we recommend the same here for microarray meta-analyses. Hy-
potheses from unsupervised analyses can then be tested with supervised methods and
biological experiments.

We have shown here that it is feasible to integrate various datasets spanning a large
range of experimental questions and originating from various laboratories into a coher-
ent unsupervised analysis. This analysis can be applied to find genes representative of a
cluster of related contrasts. Based on expression changes between clusters, the function
and regulation of genes can be predicted. Our study is based on the Affymetrix ATH1
Genome Array platform here, but our approach can be transferred to any platform, or-
ganisms and experimental design which allows one to compute a logarithmic fold change,
e.g. human or mouse microarray datasets. To achieve easy access to our unsupervised
meta-analysis results, we intend to set up a database web server where new datasets can
easily be added and compared to our curated database of Arabidopsis thaliana ATH-1
microarrays.

Availability

R code is available on request from the authors.
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Abstract 

Mobile phone technology makes use of radio frequency (RF) electromagnetic fields 

transmitted through a dense network of base stations in Europe. Possible harmful effects 

of RF fields on humans and animals are discussed, but their effect on plants has 

received little attention. In search for physiological processes of plant cells sensitive to 

RF fields, cell suspension cultures of Arabidopsis thaliana were exposed for 24 h to a 

RF field protocol representing typical microwave exposition in an urban environment. 

mRNA of exposed cultures and controls was used to hybridize Affymetrix-ATH1 whole 

genome microarrays. Differential expression analysis revealed significant changes in 

transcription of 10 genes, but they did not exceed a fold change of 2.5. Besides that 3 of 

them are dark-inducible, their functions do not point to any known responses of plants 

to environmental stimuli. The changes in transcription of these genes were compared 

with published microarray datasets and revealed a weak similarity of the microwave to 

light treatment experiments. Considering the large changes described in published 

experiments, it is questionable if the small alterations caused by a 24 h continuous 

microwave exposure would have any impact on the growth and reproduction of whole 

plants. 
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Introduction 

The use of radio frequency (RF) electro magnetic fields in mobile phone technology has 

led to a discussion on possible harmful effects on humans and animals (Scientific 

Committee on emerging and newly identified health risks (SCENIHR) 2006; European 

Commission-Research Directorate-General-European Communities 2005). A number of 

studies suggested that RF fields can affect living organisms by increasing the 

occurrence of brain tumors (Hardell et al 2005) and leukemia (Hocking et al 1996). 

Comparable studies, however, did not confirm these results and the possibility of 

carcinogenic risks imposed by these non-ionizing electromagnetic fields therefore is 

still a matter of debate (Moulder et al 2005). In contrast to ionizing radiation, it is 

unclear how non-ionizing fields can trigger physical events that will affect small 

biological structures such as organelles (Adair 2003). The energy absorbed by 

organelles or small cells from RF fields seems to be too small to force changes in their 

physiology. However, larger biological structures may sense weak electrical fields. This 

is obvious from the electroreceptors found in a number of fish species, such as sharks 

and rays, which enables them to communicate or localize their prey (Hopkins 1995; 

Kalmijn 1966). Likewise, migrating birds are sensitive to the earth magnetic field, using 

a sensory system that probably involves cryptochrome blue light receptors (Mouritsen 

and Ritz 2005). The latter group of photo-receptors is also found in plants (Cashmore 

2003) and an effect of electromagnetic fields on cells of animals and plants therefore 

should not be ruled out, a priori. 

In comparison to humans and animals, the possible effect of RF fields on plants has 

received very little attention. In a study on cuttings of Tradescantia, increased numbers 
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of micronuclei were determined, suggesting that RF fields enhanced breakage of DNA 

strands (Haider et al 1994). In search for possible targets of high frequency 

electromagnetic fields in plant cells, we undertook a whole genome approach. Many 

cellular processes will feed in on gene regulation and thus will alter gene activity. In 

case the electromagnetic fields used in mobile phone technology alter such a cellular 

process, it is likely that gene activity is also altered. The activity of approximately 

23.000 genes in Arabidopsis thaliana, the model plant for molecular biology, can be 

determined with the Affymetrix ATH1 genome microarray. The application of 

microarrays thus provides a means to identify possible molecular targets of RF 

electromagnetic fields in plants. 

 

Materials and Methods 

Growth of cell culture 

Arabidopsis thaliana suspension-cultured cells were derived from a callus culture 

originally gained from Col-0 seeds (Deeken et al 2003) and grown in media containing 

1x MS+MES salts (Duchefa, Haarlem, The Netherlands), 0.56 mM myo-inositol, 0.1 

mM FeSO4, 0.13 mM EDTA, 2.26 μM 2,4-Dichlorophenoxyacetic acid, 4.06 μM 

nicotinic acid, 2.5 μM pyridoxal hydrochloride, 0.3 μM thiamine hydrochloride and 2% 

D-sucrose, pH 5.7. The suspension-cultured cells were grown at 26°C on a rotary shaker 

(140 rpm) and sub-cultured weekly by transferring 20 ml cells into 50 ml fresh medium. 

Exposition of suspension-cultured cells to electromagnetic fields 

For the irradiation experiment in which microwave exposition in an urban environment 

was simulated, a stock of suspension-cultured cells was divided into fourteen 50 ml sub-
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cultures that were kept in 250 ml Erlenmeyer flasks. After one day, eight of these sub-

cultures were transferred to a temperature-controlled dark room at 25°C. All eight sub-

cultures were placed on a single rotary shaker (type 3015, GFL, Burgwedel, Germany) 

rotating with 140 rpm (Figure 1). The rotary shaker was covered with reflection free 

absorber in order to avoid standing wave patterns or magnetic fields, which may be 

caused by the motion of the rotary shaker. Extremely low frequency fields (ELF) and 

their magnetic components were found below the 50 Hz noise level in the laboratory. 

Four sub-cultures were positioned in the far field of an antenna that irradiated 

microwaves with a frequency of 1.9 GHz UMTS (universal mobile telecommunication 

system) modulation. The UMTS electromagnetic field was produced by the following 

equipment: A Signal Generator (SMIQ 03B, Rhode & Schwarz, München, Germany) 

operating at 300 kHz - 3.3 GHz and a pulse modulator at 5 MHz (Model 184, Wandel & 

Goltermann, Eningen, Germany). The operation modus was FDD and a periodic 

modulation CDMA at a carrier frequency of 1.9 GHz. There was one control channel 

with a 1.5 kHz modulation and 6 data channels. The power supply of the signal was 

controlled by a computer, which simulated a scenario in an urban environment (Bilz et 

al 2001). In this scenario, there was a 3 dB up and down power modulation for 45 s and 

during 15.3 s there was a 30 dB periodic attenuation, resulting in a total period of 60.3 s. 

The RF field had an average power of 8 mW/cm2 and a peak power of 20 mW/cm2, 

measured at the samples' locality with an EM radiation monitor (EMR-20, Wandel & 

Goltermann). During the periodical exposure time, the peak power was transmitted for 

37.5 % of the time. The total time of exposure was 24 h. The wavelength was much 

larger than the sample size and the bottle walls, therefore the irradiated inhomogeneous 

dielectric system behaved as an effective medium. The effective electric field is  
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Figure 1. Schematic representation of the experimental setup used for UMTS field exposition of 

suspension-cultured cells.  

The distance between the dipole antenna and the sample solution was 1 m. The dipole was placed in front 

of a metallic reflector. The linearly polarized microwave carrier frequency of 1.9 GHz was modulated 

with a special UMTS signal (Bilz et al. 2001). 

 

therefore some percentage higher in the microscopic dielectric heterostructure than it 

would be in the bulk material. Four control sub-cultures were shielded from 

electromagnetic fields by a Faraday cage attenuating the field with >> 30dB (Figure 1). 

The aluminium cage was wrapped by an anti-reflecting layer to avoid reflection and 

thus suppress standing wave patterns. Taking into consideration a refractive index of 9 

at this frequency and an absorption coefficient of 0.5 1/cm, the peak and the average 
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SAR values are 2 and 0.75 W/kg, respectively. A possible rise in the liquid temperature 

during exposure was ruled out by comparing additional flasks with culturing medium 

with a liquid-based thermometer.  

The remaining six sub-cultures were divided into two groups, one of which was tested 

for sensitivity to 50 µM abscisic acid, while the others were kept as controls. The latter 

six cultures were incubated for 3 h in a growth chamber on a rotary shaker at 25°C and 

140 rpm. All Arabidopsis thaliana cultures were quickly harvested on a filter paper, 

frozen in liquid nitrogen and stored at -80°C. 

RNA-extraction, microarray hybridization and quantitative RT-PCR  

RNA-extraction and digestion of contaminating DNA was carried out with the Plant 

RNeasy Extraction kit (Qiagen, Hilden, Germany). The hybridization of a total of eight 

microarrays (ATH1) was performed according to the manufacturer’s protocol 

(Affymetrix, Santa Clara, CA, USA). Four arrays were hybridized with RNA from 

microwave treated and another four arrays with RNA from microwave shielded sub-

cultured Arabidopsis suspensions-cultured cells. For each array, RNA extracted from 

one sub-culture was used for hybridization, resulting in four replicates for each 

treatment group.  

For quantitative real time RT-PCR, the contaminating DNA was digested using RNase-

free DNase (Amersham, Freiburg, Germany) according to the manufacturer’s protocol. 

First-strand cDNA was prepared using the M-MLV-RT kit (Promega, Mannheim, 

Germany) and diluted for PCR 20-fold with water. Quantitative PCR was performed in 

a LightCycler (Roche, Mannheim, Germany) with the LightCycler-Fast Start DNA 

Master SYBR Green I kit (Roche, Mannheim, Germany). The following primers were 

used: AtACTfwd (5'-GGT GAT GGT GTG TCT), -rev (5’-ACT GAG CAC AAT GTT AC); 
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At3g47340fwd (5’-ACT CTG CGA GAC TAA C), -rev (5’-CAA AAC ACT TCA CCC A); 

At3g15460fwd (5’-GAT TTA GCA CAG CCT T), -rev (5’-ACT GTA TGT TTC TAG GG); 

At4g39675fwd (5’-TTG GAG CAA GTT ACG C), -rev (5’- CGA CCA AGA TAC GTT T); 

At4g26260fwd (5’- GTG CAT TTG ATG AAT CT), -rev (5’- GTA GTA AGG CTT GAC C); 

AtCg00630fwd (5’- ATA TCT TTC CGT AGC A), -rev (5’- AGG GAA ATG TTA ATG C); 

At3g60140fwd (5’- AGG ATA TTA CGC ATG G), -rev (5’-CAA AGG AGC AAC GAT TA); 

At3g24500fwd (5’-AGT AAC ACA AGA CTG G), -rev (5’-ACA GCC TGA TTA GGA A); 

At5g10040fwd (5’- GTG AAT ACA ACG GCA G), -rev (5’- GGT GAT TAG AGA AGC AA); 

AtCg00120fwd (5’- AAG CTA TGA AAC AGG T), -rev (5’- CTT GGT AGA GGC TAT GA). All 

mRNA quantifications were normalized to 10,000 molecules of actin cDNA fragments 

amplified by AtACTfwd and AtACTrev. Each type of transcript was quantified by 

using its individual standard. In order to detect contaminating genomic DNA, 

quantitative RT-PCR was performed with the same RNA template used for cDNA 

synthesis. To compute a p-value for the fold changes of each gene, the Student’s t-test 

was applied on the normalized transcript numbers from quantitative RT-PCR. 

Normalization of microarray data 

The microarray data were analyzed using the Bioconductor software (Gentleman et al 

2004) designed for genomic data analysis running under the statistical programming 

environment R (Ihaka and Gentleman 1996). To obtain a normalized gene expression 

value from Affymetrix probe intensities for each gene of each microarray, variance 

stabilization (VSN) within the Bioconductor software (Gentleman et al 2004; Huber et 

al 2002) was applied. As recommended in the VSN manual, no background correction 

was performed on the Affymetrix probe intensities prior to VSN-normalization. Only 

the perfect match (PM) probes were used to compute an expression value for each gene. 
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For summarization of probe intensities into gene expression values, the median polish 

algorithm was applied which is also incorporated in the commonly used Robust 

Multiarray Analysis (RMA) (Irizarry et al 2003). 

Correspondence Analysis 

Correspondence analysis (CA) was conducted using the R package MASS (Venables 

and Ripley 2002). It was applied on the data matrix of 22810 genes (in the rows) and 6 

array samples (in the columns). We used CA to project the vectors of array samples into 

a lower-dimensional subspace (typically two dimensions) that accounts for the main 

variance in the data, in a way that distances among points reflect their original distances 

in the high-dimensional space as closely as possible (Fellenberg et al 2001). The same 

reduction of dimensions was carried out for all genes at the same time. In the CA graph, 

dissimilar objects are separated along the component axes while similar objects cluster 

close to each other. 

Hierarchical cluster analysis 

Hierarchical cluster analysis was performed in R using the stats package (Venables 

2002). We applied complete linkage clustering on Euclidian distances between objects 

to form hierarchical cluster trees. The bootstrapping algorithm for judging the 

robustness of the estimated tree was programmed in R as described by Efron and 

Tibshirani (1993). To calculate bootstrap values, 100 single trees were calculated 

drawing genes uniformly with replacement from the selected genes. In this procedure 

one gene may appear more than once while others do not appear at all. The function 

“consense” of the PHYLIP software (Felsenstein 1989) was applied to calculate a 

consensus tree with bootstrap values out of the single trees. The bootstrap value 
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indicates how often each split was found in the single trees indicating the strength of the 

cluster signal to separate the groups (here: arrays). In principle, the procedure described 

above is equivalent to the well-known bootstrap method in phylogenetic analysis. Here, 

microarray hybridizations represent sequences and genes replace the sites of the 

multiple sequence alignment (Efron et al 1996).  

Differential expression of genes 

Differential expression of genes between microwave exposed and control cultured cells 

was performed by applying a moderate t-statistic implemented in the Linear Models for 

Microarray data package (limma (Smyth 2004)) which is part of the Bioconductor 

software project. The linear models were fitted on the expression values of each gene 

with the factor “microwave-exposure” or “no treatment”. The function eBayes was used 

to compute moderated t-statistics by empirical Bayes shrinkage of the standard errors 

towards a common value. The null hypothesis of differences between treatments being 

equal to zero was tested under the assumption of independent errors following a normal 

distribution. For each gene, a fold change and a p-value measuring the statistical 

significance of differential expression was calculated. P-values were corrected for 

multiple testing by applying “False Discovery Rate” (FDR) (Benjamini and Hochberg 

1995).  

Comparison of different ATH1-microarray experiments using Principal 

Component Analysis 

Principal Component Analysis (PCA) was applied to compare the microwave dataset 

with other Arabidopsis thaliana microarray datasets of several categories, available 

from Genevestigator online (Zimmermann 2004). Since all microarray datasets stored in 

Genevestigator are normalized with the MAS5 algorithm (Affymetrix 2002), the 
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microwave dataset was also normalized with this algorithm to achieve comparability, 

but these values were only used for PCA. Principal Component Analysis was used to 

reduce the dimensionality of the dataset without a significant loss of information to 

better recognize patterns in the data (Jolliffe 1986). The top ten genes with lowest p-

values of the microwave dataset were selected and their fold changes were compared to 

the fold changes of the same genes in the Genevestigator datasets. Therefore the vectors 

of 10 genes of each microarray dataset were projected into two dimensions which 

contain the main variance of the data. Thus, each experiment was represented by one 

point in a two-dimensional space. PCA was performed in R using functions from the 

stats package (Venables 2002).  

Results  

UMTS irradiation and preliminary data analysis 

For this study, a single batch of suspension-cultured cells of Arabidopsis thaliana was 

used, providing a homogeneous starting material. The starting batch was divided into 

sub-cultures, to ascertain a minimal degree of biological variation between control and 

RF-exposed sub-cultures. Because of the identical starting cultures, a maximal 

sensitivity for stimulus-induced changes in transcription was obtained. This 

experimental approach thus allowed the detection of very small changes in transcription. 

Such small transcriptional changes may be superimposed by natural variation, in case of 

cell suspensions cultured separately or in experiments carried out with whole plants. 

Four of the sub-cultures were exposed for 24 h to microwaves with a frequency of 1.9 

GHz, a field strength considerably higher than the international recommended exposure 

for UMTS mobile communication (1 mW/cm2, (International Commission on Non-
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Ionizing Radiation Protection 1998)). The other four sub-cultures were shielded from 

the RF field and served as controls for UMTS exposure. In addition to the first eight 

sub-cultures, six sub-cultures were divided into two groups, of which one group was 

tested for responsiveness to stress signals by exposing them to the stress hormone 

abscisic acid (50 µM) and the other three served as controls for the hormone treatment. 

Then, transcript numbers of the potassium channel gene GORK, which has been shown 

to be very sensitive to abscisic acid treatment (Becker et al 2003), were quantified 

applying real time RT-PCR. After an incubation period of 3 h, abscisic acid induced an 

11-fold increase in the transcript number of the GORK gene. This indicated that the 

suspension-cultured cells used for the microwave experiment were sensitive to stress 

signals.  

After termination of the RF field exposure, the analysis was carried out blinded, the 

code on the cultures was neither known by the experimenters handling the samples nor 

by those that performed the initial data analysis. A first analysis of the data indicated 

that the hybridization procedure had failed for two of the eight microarrays. Since this 

was due to technical problems, the RNA from these samples was hybridized to two new 

microarrays. To avoid any impact of differences due to hybridization conditions, the 

newly hybridized arrays were excluded from the initial analysis. At this point of 

analysis, at which the grouping was still unknown, the data of all genes of an array were 

incorporated and possible small changes caused by altered hybridization conditions thus 

would have caused a loss of sensitivity.  

Cluster analysis reveals grouping of microwave treated and untreated samples 

At the beginning of our analysis, the grouping of the microarray hybridizations was still 

unknown to the data analysts. In order to uncover the so far unknown “group labels” of 
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the 6 remaining microarrays (Arrays 1 and 5 were left out), a correspondence analysis 

(CA) was performed with all genes of the Affymetrix microarray. When all genes were 

taken into account, a separation of arrays into two distinct groups along the first or 

second component axis was not found (Figure 1S). This indicates that the 

electromagnetic fields did not alter the expression of the majority of genes. 

Since a major effect of microwave exposition on the transcription levels of Arabidopsis 

thaliana genes could not be found by CA, in the next step it was studied whether 

microwaves had a notable effect on the expression of a small number of genes. To 

perform a hierarchical cluster analysis, genes were arranged according to the degree of 

variance in signal intensity between the 6 arrays. The variation in signal intensity might 

come from differences between the microwave-treated and untreated RNA-samples or 

from variation that is unrelated to this grouping. In case of an influence of RF fields, 

differentially expressed genes should be among the most variant genes and hierarchical 

clustering should result in a clear separation between these groups. In the case of no 

differential expression, a clear split between microwave treated and untreated samples 

should not be found. 

In the first step of this hierarchical cluster analysis, the two genes with the highest 

variance were used to construct a hierarchical cluster tree of microarray samples and in 

each following step one gene was added. In case the transcription levels of these genes 

would vary randomly over the microarray measurements, frequent changes in the cluster 

tree topology would be expected when adding more genes to the dataset. The analyses 

of 2 to 20 genes consistently revealed the same clear split between the cluster of arrays 

3 and 7, and the remaining four arrays (Figure 2 A). In case 21 to 30 genes were used 

for the analyses, no consistent group of two arrays could be detected. From the clear  
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Figure 2. Hierarchical cluster trees of arrays hybridized with cDNA of control (uneven numbers) or 

microwave-exposed (even numbers) samples 

Numbers on the edges indicate bootstrap values. A Clustering of 6 arrays using 10 genes with highest 

variance in signal intensity. B Clustering of 8 arrays (6 original arrays and 2 arrays hybridized later), 

bootstrap values from trees with 10 genes are given in bold numbers, those of 20 genes in normal 

numbers in parentheses.  

 

split between arrays 3 and 7, and the remaining arrays when using 2 up to 20 genes 

(Figure 2 A), it was concluded that arrays no. 3 and 7 had been probed with different 

samples than the other four arrays. This grouping of arrays 3 and 7 versus the remaining 

arrays must have been due to genes differentially expressed between the two sample 

groups. These differentially expressed genes were among the uppermost variant genes. 

Adding more genes to the dataset eventually diluted the signal until it disappeared when 

using more than 20 genes for the hierarchical cluster tree. Therefore, the robustness of 

the hierarchical cluster tree was examined with a bootstrap algorithm based on the 10 

most variant genes. This revealed a cluster of arrays 3 and 7 separated from the other 

arrays in 97 of 100 cluster trees, indicating a strong difference between both sets of 
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arrays considering those 10 genes (Figure 2 A, bold numbers on the lines). As expected, 

the separations between the remaining 4 arrays were less clear, indicating a stronger 

similarity of these arrays (Figure 2 A). The hierarchical cluster analysis was repeated, 

incorporating the data of arrays 1 and 5, which were hybridized later than the other 6 

arrays. Again, the 10 genes with highest variance (Table 1) were used for constructing a 

hierarchical cluster tree with bootstrap values (Figure 2 B).  

 

Table 1. Genes with the highest variance in expression signals 

The variance was determined over all 8 arrays hybridized with control or microwave exposed samples. 

The fold change and corresponding p-values are given for the microarray assay as well as for quantitative 

real time RT-PCR.  

* The Affymetrix probeset for this gene also hybridizes with At3g15450. 

 

 AGI Code Fold change 

microarray 

p-value 

microarray 

Fold change 

RT-PCR 

p-value 

RT-PCR 

Protein function 

1. At3g47340 0.4 0.91 10-4 0.4 0.05 
glutamine-dependent 

asparagine synthetase 

2. At3g15460* 0.5 0.27 10-2 0.5 0.09 brix domain protein  

3. AtCg00590 1.7 0.22 n.d. n.d. orf31 hypothetical protein 

4. At4g39675 1.5 0.30 1.9 0.14 expressed protein 

5. At4g26260 0.5 0.12 10-3 0.3 0.04 
protein similar to myo-

inositol oxygenase 

6. AtCg00630 1.5 0.28 0.9 0.70 PSI J protein (chloroplast) 

7. At3g60140 0.6 0.68 10-3 0.6 0.19 beta-glucosidase-like protein  

8. At3g24500 1.1 0.73 1.0 0.92 
ethylene-responsive 

transcriptional coactivator  

9. At5g10040 1.4 0.31 1.4 0.17 expressed protein 

10. AtCg00120 1.4 0.28 0.9 0.73 
ATPase alpha subunit 

(chloroplast) 

 

A partition into evenly (arrays 2, 4, 6 and 8) and unevenly (arrays 1, 3, 5 and 7) 

numbered arrays was found, which reflected the true sample grouping. It was supported 
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by a bootstrap value of 82. The bootstrap values dropped when the tree was based on 

the signals of 20 genes (Figure 2 B, numbers in parentheses). Apparently, the two 

clusters of arrays were found as long as only a small group of genes with a high 

variance was taken into account. Since the hierarchical cluster analysis correctly 

identified two distinct groups of arrays, their code was disclosed. Microarray samples 

with even numbers had been hybridized with RNA of microwave-treated cell cultures 

and those with uneven numbers represented the untreated controls.  

 

Quantitative RT-PCR analysis confirms gene expression changes 

The differences in microarray signals of the genes which were used in the hierarchical 

cluster analysis (Table 1) could reflect either biological meaningful differences in 

transcript numbers between the microwave-exposed and control samples, or technical 

variations due to slightly differing hybridization properties of the arrays. The transcript 

numbers of the 10 genes in Table 1 were determined with a second technique. For 9 of 

the 10 genes listed, the fold change in transcription number was measured applying real 

time RT-PCR and tested for significance with a student’s t-test. No PCR product could 

be obtained for ORF 31 using several primer pairs designed after the published 

sequence (TAIR-database). Three out of four significant changes in transcription 

(p < 0.05) observed with microarrays, were confirmed with quantitative RT-PCR 

(At4g26260, At3g47340, At3g15460; Table 1). However, the degree of variation was 

higher with the latter method and revealed p-values < 0.05 only for two genes 

(At4g26260, At3g47340; Table 1). Although the third gene (At3g15460) had a non-

significant p-value (p = 0.09), we considered it confirmed claiming that the higher p-

value is due to higher variance in the qRT-PCR measurements.  

 16

3. IS GENE ACTIVITY AFFECTED BY UMTS IRRADIATION? 79



Independent from p-values, agreement between the microarray assay and quantitative 

RT-PCR, can be seen when ordering the genes measured by qRT-PCR by their p-value: 

The first three genes with smallest p-values (At4g26260, At3g47340; At3g15460, 

Table 1) are among the 4 most significant differentially expressed genes in the 

microarray measurements (Table 2). 

 

Table 2. Genes with most significant p-values (p < 0.05) 

Fold changes and corresponding p-values for genes differentially expressed between microwave exposed 

and control samples in the microarray assay. 

* The Affymetrix probesets for these genes also hybridize with At3g15450 (1) and At5g34780 (2). 

 

Nr. AGI Code Fold change 

microarray 

p-value 

 

Protein function 

1. At3g47340 0.4 0.91 10-4 glutamine-dependent asparagine synthetase 1 

2. At4g26260 0.5 0.12 10-3 protein similar to myo-inositol oxygenase 

3. At3g60140 0.6 0.68 10-3 beta-glucosidase-like protein 

4. At3g15460*1 0.5 0.26 10-2 brix domain protein 

5. At1g62480 0.6 0.66 10-2 vacuolar calcium-binding protein-related 

6. At1g15380 0.8 0.010 lactoylglutathione lyase family protein 

7. At1g21400*2 0.8 0.027 putative 2-oxoisovalerate dehydrogenase 

8. At1g80160 0.8 0.027 lactoylglutathione lyase family protein 

9. At2g05540 0.7 0.027 glycine-rich protein 

10. At4g35770 0.7 0.027 senescence-associated protein 

 

A small number of genes is differentially expressed between microwave-treated 

and shielded samples 

After disclosing the group labels of the microarray samples which had been correctly 

predicted by hierarchical cluster analysis, differential expression could be analyzed. 
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Using a moderate t-test, the genes were tested for differential expression between the 

four microwave-treated and four untreated microarray samples. This revealed 3 genes 

that were highly significant differentially expressed (p < 0.001), 2 genes significant 

differentially expressed (p < 0.01) and 5 genes weakly significant differentially 

expressed (p < 0.05) (Table 2) after multiple testing correction. 

To further confirm that differentially expressed genes exist in the microarray dataset of 

microwave-treated and untreated samples, the distribution of uncorrected p-values was 

analyzed and contrasted to the distribution of uncorrected p-values of a random 

grouping of arrays into two groups. For the random grouping, the array dataset was split 

into two groups irrespective of microwave treatment and tested for differential gene 

expression. In this case, the analysis revealed no significant differentially expressed 

genes. This finding is confirmed by the distribution of uncorrected p-values (see Figure 

2S). In case of no differential expression, uncorrected p-values follow a uniform 

distribution (Wassermann 2004). This can be observed for random sample groupings 

irrespective of microwave treatment (Figure 2S A). However, for the correct sample 

grouping into microwave treated and untreated microarray samples, the p-value 

distribution differs from the uniform distribution, having a higher number of genes at 

low p-values, indicating differential expression (Figure 2S B). 

Comparison of significant genes with other gene expression datasets 

In order to dissect stimuli acting in a similar manner on the activity of these genes and 

since the physiological role of most of the genes is not known yet, gene expression 

changes found in the microwave dataset were compared to publicly available 

microarray data. Seventy-four Arabidopsis thaliana Affymetrix ATH1-datasets 

available at Genevestigator (Zimmermann et al 2004), belonging to one of the following 
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categories were selected for comparison: “biotic”, “chemical”, “hormone”, “light”, 

“nutrient”, and “stress”.  

From these datasets, the logarithmic fold changes of the 10 differentially expressed 

genes of the microwave dataset (Table 2) were extracted and compared in a principal 

component analysis (PCA). With the analysis of the selected gene expression values in 

a single PCA, the microwave dataset could be related to the datasets and categories 

provided by Genevestigator. The PCA-plot (Figure 3) shows similar objects situated 

close to each other while dissimilar objects are separated along the principal component 

axes. The strongest factor of variance is represented by the horizontal axis, the second 

strongest factor by the vertical axis. For interpretation of the PCA-plot, the experiment 

categories “hormone” (blue), “light” (turquoise), “nutrient” (magenta) and “stress” 

(yellow) were highlighted by convex hulls in the same color as the data points (Fig. 3). 

The convex hull was drawn such that all points lie either within or on the line of the hull 

(Everitt 2005) except for the large categories “hormone” and “stress”, for which a 

robust convex hull less sensible to outliers was drawn. For these categories, the convex 

hull was computed twice: after the first computation it was again computed on the 

remaining points resulting in shaded areas (Figure 3).

The microwave dataset is not located close to any of the clusters formed by the 

experimental categories “hormone”, “light”, “nutrient” or “stress”, implying that the 

genes differentially expressed in the microwave dataset are differently regulated in the 

Genevestigator datasets. 

Considering PC1, the microarray datasets in which light conditions were altered 

(turquoise), comprise the closest cluster to the microwave dataset. This suggests 

similarities in gene regulation of the genes used for principal component analysis. The  
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Figure 3. Principal Component Analysis of 75 ATH1 microarray datasets.  

The fold changes of 10 genes differentially expressed in the microwave dataset (Table 2, no. 1 in Figure 

3) were compared with fold changes of 74 ATH1 microarray datasets of Genevestigator (no. 2 to 75). The 

categories based on several datasets are: “biotic”, “chemical”, “hormone”, “light”, “nutrient”, and “stress” 

conditions, and are shown by symbols as indicated in the graph. Convex hulls encircle datasets treated 

with different light conditions (turquoise) or nutrient availability (magenta). Datasets treated with 

phytohormones (blue) or stress conditions (yellow) are encircled by a robust convex hull, disregarding 

data points on the outer convex hull and encompassing the remaining data points. 
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The following datasets are displayed but not all of them are numbered in the graphic: 1. microwaves, 2. A. 

brassiciola, 3. A. tumefaciens, 4. B. cinerea, 5. E. cichoracearum, 6. E. orontii, 7. F. occidentalis, 8. M. 

persicae, 9. M. persicae, 10. mycorrhiza, 11. nematode, 12. P. infestans, 13. P. rapae, 14. P. syringae, 15. 

P. syringae, 16. 2,4,6-trihydroxybenzamide, 17. 4-thiazolidinone / acetic acid, 18. 6-benzyl adenine, 19. 

AgNO3, 20. aminoethoxyvinylglycine (AVG), 21. brassinazole 220, 22. brassinazole 91, 23. chitin, 24. 

high CO2, 25. cycloheximide, 26. daminozide, 27. furyl acrylate ester, 28. hydrogen peroxide, 29. 

ibuprofen, 30. isoxaben, carbobenzoxyl-leucinyl-leucinyl-leucinal (MG13), 31. norflurazon, 33. 

naphthylphthalamic acid (NPA), 34. ozone, 35. paclobutrazole, 36. p-chlorophenoxyisobutyric acid 

(PCIB), 37. n-octyl-3-nitro-2,4,6-trihydroxybenzamide (PNO8), 38. prohexadione, 39. propiconazole, 40. 

syringolin, 41. 2,3,5-triiodobenzoic acid (TIBA), 42. uniconazole, 43. zearalenone, 44. absisic acid, 45. 1-

aminocyclopropane-1-carboxylic acid (ACC), 46. brassinolide, 47. brassinolide / H3BO3, 48. ethylene, 49. 

giberellic acid (GA3), 50. indole acitic acid, 51. methyl-jasmonate, 52. salicylic acid, 53. zeatin, 54. white 

light , 55. blue light, 56. far red light, 57. red light, 58. UV-A-irradiation, 59. UV-AB-irradiation, 60. 

white light, 61. Cs+, 62. glucose/sucrose, 63. (-) potassium, 64. (-) nitrogen, 65. (-) sulfur, 66. cold, 67. 

drought, 68. genotoxic, 69. heat, 70. hypoxia, 71. osmotic, 72. oxidative, 73. salt, 74. UV-B, 75. 

wounding.  

 

datasets of the stress experiments (yellow symbols and hull), behave differently 

compared to the microwave dataset because they have positive values on PC1. Thus, 

there is a clear separation between “light” and “stress” experiments along PC1. One 

dataset in the category “nutrient” (magenta) has a large negative value of PC1 indicating 

some similarity to the microwave experiment, but the remaining “nutrient” experiments 

form a cluster around the center of PC1, taking an intermediate position between the 

“light” and “stress” cluster. The datasets of the category “hormone” (blue) are spread 

over positive and negative values of PC1, but most experiments are situated around 

zero. They also take an intermediate position between the “light” and the “stress” 

datasets. Both categories, “biotic” (red) and “chemical” (green), are spread over the 
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whole range of values of PC1, indicating that their gene expression values concerning 

the selected genes differ between the single datasets.  

While the first principal component axis (PC1) accounts for the majority of variation 

(51%), and thus conveys a large part of the information contained in the data, the 

second principal component axis (PC2, Figure 3) which holds the second strongest 

factor of variance, only accounts for 12% of the variation. Here, no obvious separation 

of groups is identifiable. The Principal Component Analysis did not unequivocally 

reveal which environmental factors or signaling pathways are involved in the regulation 

of the 10 genes listed in Table 2.  

 

Discussion 

The question if electromagnetic fields have an influence on gene expression in plant 

cells was addressed by a 24 h treatment of Arabidopsis cell suspensions with a 

microwave protocol which represents a worst case scenario of a pedestrian walking 

around in an urban area. This study was carried out with cell suspensions to ensure a 

minimal variation in the starting material. The experiments were performed double 

blinded, in which neither the experimenters handling the cell cultures nor the data 

analysts performing the initial microarray gene expression analysis knew which samples 

had been treated with microwaves. This procedure ensured an unbiased and 

unprejudiced analysis of the data. Exploratory analysis of Affymetrix ATH1 microarray 

data revealed that high frequency electromagnetic fields did not cause any major 

changes in gene activity (Figure 1S). This indicates that a 24 h period of exposure to 

electromagnetic fields as used in UMTS-technology does not have a major impact on 
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gene expression in plant cells. Hierarchical cluster analysis, however, revealed that 

microwave exposure could alter the activity of just a few genes. After disclosing which 

microarray samples had been treated with microwaves, differential gene expression 

analysis revealed significant changes in the transcription of 10 genes. Although the 

changes in gene activity were small, they were statistically significant. Real time RT-

PCR experiments confirmed these changes in transcript numbers, but the degree of 

variation was much higher due to the higher sensitivity of this technique.  

Of the 10 genes with significant p-values (p < 0.05), highest fold changes were maximal 

2.5 fold down-regulated between microwave-exposed and control-cultured cells (Table 

2). Compared, for example, to the elevation of the K+ channel transcripts GORK after 

treatment of these suspension cultured cells with the stress phytohormone ABA (11-

fold), this is very moderate. It indicated that the cells of the cell suspensions were able 

to react very sensitively to stress signals. Since the functions of several of the 10 genes 

differentially transcribed in the microwave experiment did not directly point to known 

responses of plants to any other environmental factors, their fold changes were 

compared to those of 74 ATH1-microarray experiments available online 

(Genevestigator, Figure 3). The microwave dataset clustered most closely to 

experiments in which plants were exposed to different light conditions. This is in 

concordance with the annotation of three out of the 10 genes listed in Table 2, which are 

known to be dark-inducible (At3g47340, At3g60140, At3g15450). In contrast, stress 

experiments formed the most distant cluster to the microwave dataset, implying that the 

genes studied here (Table 2) are regulated in a different way under stress conditions. If 

at all, radio frequency fields as used in UMTS-communication might be perceived by 

plants as irradiation, but are not recognized as a stress signal.  
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The microwave experiment was designed to achieve a maximal sensitivity. For this 

purpose, the biological variation was kept at a minimum, since it might otherwise have 

hidden small changes in gene transcription caused by RF fields. To confirm that the 

microwave dataset displays a low variability of gene expression, it was compared to 

publicly available datasets from the NCBI GEO database 

(http://www.ncbi.nlm.nih.gov/geo). Of these datasets which originally consisted of 

treated and untreated (= control) samples only the microarray data of the control 

hybridizations were selected. This comparison underlined that indeed the variation of 

the microwave dataset (exposed and shielded samples) was small compared to the 

variability of the publicly available control hybridizations (Figure 3S). For example, the 

degree of variation between control leaves of Arabidopsis plants (controls from GEO 

dataset GSE5611) was much larger than that between suspension cultured cells exposed 

to or shielded from RF fields.  

Furthermore, we found that the transcript numbers of the genes listed in Table 2 varies 

considerably between the different untreated control hybridizations of published 

microarray datasets (Figure 3S). Even between suspension cultured cells that were used 

as controls (GEO dataset GSE5748), the variation in transcript number of several genes 

listed in Table 2 was larger than their variation due to RF field exposure. Therefore, the 

significant changes found in the microwave experiment would most likely be hidden by 

biological variation if cell cultures were cultured separately (e.g. at different times of 

the year) or if whole plants were used.  

Because of the limited number of genes altered in RF-exposed cells and because their 

physiological functions are not well-annotated, it is difficult to predict what the impact 

of the observed changes in transcription would be in intact plants. Based on the 

 24

3. IS GENE ACTIVITY AFFECTED BY UMTS IRRADIATION? 87



comparisons of variability between the microwave dataset and controls of different 

other datasets, it is very unlikely that the small changes in transcript numbers found in 

our analysis would have been observed when whole plants or tissues would have been 

used as starting material.  

Conclusions  

Overall, we conclude that RF fields used in mobile phone communication have no 

dramatic effect on the gene activity of plant cells in suspension culture. Only few genes 

displayed an altered transcription level after 24 h of exposure to high frequency 

electromagnetic fields and the alterations did not exceed a 2.5 fold reduction or increase 

in gene activity. It is unlikely that these small changes in gene activity of very few 

genes will have pronounced effects on the physiology of plant cells. Cells of a 

suspension culture, however, do not resemble autotrophycally growing plants in every 

respect and their responses to RF fields may differ from those of intact plants. Future 

experiments may be set out to test responses of whole plants, including trees, to further 

estimate the impact of UMTS technology on the green environment. 
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Additional files 

Figure 1S. Correspondence Analysis of expression signals of all genes on the 6 

ATH1 microarrays of the microwave dataset  

Smoothed color density representation of genes. Dark blue areas reflect high densities 

of genes and light blue areas represent low gene densities. Single genes in the outer area 

are marked by small black points. Single microarrays are marked with black squares. 

There is no clustering of two groups of arrays along the first or second component axis 

(Array 1 and 5 were left out, since these were hybridized later). 
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Figure 2S. Distribution of unadjusted p-values of differential gene expression 

(A) Unadjusted p-values for a sample grouping irrespective of microwave treatment.  

(B) Unadjusted p-values for true sample grouping: microwave treated vs. untreated 

samples. Shaded red areas represent the uniform distribution of p-values of no 

differential expression. For the true grouping, blue bars reaching out of the shaded area 

represent differentially expressed genes. Naturally, after multiple testing correction of p-

values, the number of genes with significant p-values (Table 2) is substantially lower 

than what could be estimated from the distribution of unadjusted p-values. 
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Figure 3S. Comparison of gene expression variability of the microwave dataset 

with untreated control microarrays from publicly available datasets.  

(A) Box-plots of standard deviations of all genes on the ATH1 microarray. The 

microwave dataset, the controls of a cell culture dataset (GSE5748), those of seedlings 

(GSE1491), and of leaves (GSE5611) are shown.  

(B) Scatter-plots of standard deviations of all genes on the ATH1 microarray. The 10 

differentially expressed genes of the microwave dataset are highlighted with red stars in 

each of the datasets.  

The controls of the cell culture, seedlings and leaves dataset are accessible at NCBI 

GEO database, (http://www.ncbi.nlm.nih.gov/geo) with their GSE identifier. Raw data 

of the microarray hybridizations were normalized with the same methods as the 

microwave microarrays, as described in the Methods section.  
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Transformation of plant cells with T-DNA of virulent agrobacteria is one of the most extreme triggers of developmental

changes in higher plants. For rapid growth and development of resulting tumors, specific changes in the gene expression

profile and metabolic adaptations are required. Increased transport and metabolic fluxes are critical preconditions for

growth and tumor development. A functional genomics approach, using the Affymetrix whole genome microarray (;22,800

genes), was applied to measure changes in gene expression. The solute pattern of Arabidopsis thaliana tumors and

uninfected plant tissues was compared with the respective gene expression profile. Increased levels of anions, sugars, and

amino acids were correlated with changes in the gene expression of specific enzymes and solute transporters. The

expression profile of genes pivotal for energy metabolism, such as those involved in photosynthesis, mitochondrial electron

transport, and fermentation, suggested that tumors produce C and N compounds heterotrophically and gain energy mainly

anaerobically. Thus, understanding of gene-to-metabolite networks in plant tumors promotes the identification of

mechanisms that control tumor development.

INTRODUCTION

Integration and expression of oncogenes, encoded by the T-

DNA of the Agrobacterium tumefaciens Ti plasmid, induce the

development of plant tumors, also referred to as crown galls (Van

Larebeke et al., 1974; Chilton et al., 1977). Rapid cell proliferation

of tumors is promoted by high concentrations of cytokinin and

auxin, which are synthesized by bacterial enzymes encoded by

genes of the T-DNA (Kado, 1984). These plant growth factors not

only control dedifferentiation of plant cells into primary tumor

cells but also induce tumor cells to differentiate a vascular

network of vessels and sieve elements. This network connects to

vascular bundles of the host plant and thus sustains a rapid

supply of nutrients and water (Malsy et al., 1992). Moreover,

inevitable transpiration of noncutinized tumors with a disrupted

epidermal layer drives nutrient flow into the tumor and mediates

the accumulation of nutrients (Schurr et al., 1996; Wachter et al.,

2003).

The growth of solid animal and human tumors also depends on

neovascularization (Folkman, 1971; Gimbrone et al., 1974). Hu-

man tumors induce a dense network of blood vessels that supply

the tumor with nutrients, water, and oxygen. Likewise, plant

tumor cells proliferate only in vascularized regions, whereas in

nonvascularized areas they necrotize (Ullrich and Aloni, 2000).

Animal tumors overexpress angiogenic growth factors, such as

tumor necrosis factor, fibroblast growth factor, and vascular

endothelial growth factor, the latter of which is considered to be a

major mediator in tumor angiogenesis (Risau, 1990; Carmeliet

and Jain, 2000). In plants, gradients of growth factors such as

cytokinins and auxin are established, inducing and controlling

vascular differentiation (Aloni et al., 2003; Scarpella et al., 2006).

A common property of cancer cells is their capacity to metab-

olize glucose at high rates (Warburg, 1930; Aisenberg, 1961;

Pedersen, 1978). Tumor mitochondria show impaired respira-

tion, which is compensated for by an unusually high contribution

of glycolysis to total ATP production. Some types of cancer have

increased activity of the glucose transporter-1 (Chang et al., 2000),

and its activity correlates inversely with survival (Wachsberger

et al., 2002). The aberrant glucose metabolism provides a con-

stant supply of energy even when oxygen levels decrease; as a

result, the tumor has a metabolic growth advantage over normal

tissues.

To attain a comprehensive picture of a T-DNA–induced plant

tumor, we combine here bioinformatics and genome-wide ex-

pression analysis with direct analysis of metabolites, ions, oxy-

gen consumption, and photosynthesis. The different data and

approaches complement and strengthen each other and allow a

detailed picture of the induced changes in the host cell from an
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auxotrophic, aerobic metabolism to a heterotrophic, transport-

dependent, sugar-degrading, and cell wall–synthesizing (gall

formation) anaerobic metabolism.

RESULTS

In this work, we have studied alterations in the gene expression

and solute content of Arabidopsis thaliana tumors and compared

them with tumor-free inflorescence stalk tissue. When we ana-

lyzed the composition of metabolites of Arabidopsis tumors, we

realized that their contents differed substantially from those of

tumor-free tissue (see below). To understand the molecular

mechanism causing these changes, we determined the gene

expression profile of the transcriptome of Arabidopsis tumors.

Because Agrobacterium-induced tumors might be composed of

T-DNA–transformed and nontransformed cells responding to the

altered milieu, the alterations in transcript levels and metabolite

contents may reflect responses of both cell types. To interpret

gene expression and metabolite data concerning tumor physi-

ology correctly, we have used an in situ hybridization technique

to calculate the percentage of transformed cells within Arabi-

dopsis tumors. Using nopaline synthase (NOS) antisense RNA as

a probe, >95% of tumor cells revealed a hybridization signal

(reddish color in Figures 1A to 1D), indicating that they express

NOS mRNA encoded by the T-DNA. However, this estimation

differs from previous reports (see Discussion). Strong hybridiza-

tion signals were observed in small and plasma-rich tumor cells

(Figures 1A and 1C) but not in inflorescence stalk cells adjacent

to the tumor (Figure 1B). In tumor cells with a large central

vacuole, the hybridization signal was visible in the cytoplasmic

border layers (Figure 1D, arrows). No signal was found in small or

large tumor cells hybridized with the NOS sense RNA probe

(Figures 1E and 1F, respectively). We cannot exclude the pos-

sibility that Arabidopsis tumors also contain a few nontrans-

formed cells, but most cells appear transformed and express

genes located on the T-DNA. Therefore, our studies of changes

in gene expression and solute content reveal the results of the

T-DNA integration event.

To analyze tumor gene expression data gained by microarrays

(ATH1; Affymetrix), we checked the reliability of microarray data

applying bioinformatics tools. After bioinformatic analysis (see

below) of the transcriptome and biochemical analysis of the

metabolome, we found concerted changes from autotrophic to

heterotrophic metabolism in the tumor tissue. These involve the

upregulation of genes involved in transport, glycolysis, sucrose

degradation, and cell wall synthesis (for gall formation) as well as

the downregulation of genes for photosynthesis, lipid metabo-

lism, N metabolism, and amino acid synthesis. These results are

described in detail below and are integrated into a comprehen-

sive model (see Figure 9 below).

Bioinformatic Analysis of Affymetrix Microarrays

Data Acquisition

The Affymetrix microarray (ATH1 121501) was used to explore

the differential expression profiles of genes in plant tumors

induced by the nopaline-using Agrobacterium strain C58. Differ-

entially expressed genes were identified from the expression

data acquired from eight independent microarray hybridizations.

Four replicates of tumor RNA and four of injured but not infected

inflorescence stalks as reference RNA were used to calculate the

expression value for each gene. Each replicate of four contained

tissue fragments from at least 10 to 12 individual plants. For

analysis of the expression profile, the fold change of normalized

signals derived from tumor versus reference stalk tissue was

calculated. Only fold changes of genes that met the significance

criterion of P < 0.01 are presented here. Of 22,810 spotted genes

on the Arabidopsis ATH1 microarray, 5054 (22%) met this

criterion. Among them, 2340 genes (10%) were higher expressed

in tumors (see Supplemental Table 1 online), and 2714 genes

(12%) were higher expressed in reference inflorescence stalk

tissue (see Supplemental Table 2 online). Of the 2340 genes with

higher expression in tumors, 551 had a more than threefold

difference, and of the 2714 with lower transcription, 608 were

reduced at least threefold. The largest fold changes among all of

the genes was a 56-fold (P ¼ 2.3E-04) upregulation of an auxin-

responsive GH3 family gene (At2g23170) and a 49-fold (P ¼
1.2E-04) downregulation in tumor tissues of the branched chain

amino acid aminotransferase gene (At3g19710).

Clustering Microarray Data by Correspondence Analysis

Correspondence analysis revealed that the main difference

between the eight microarray hybridization assays is attributable

to differential expression between the two tissue types, tumor (T)

and noninfected inflorescence stalk (N) tissue (Figure 2). This can

be seen by the clear separation of the microarray assays from

tumor and noninfected inflorescence stalk along the axis of the

first component (x axis), confirming the high quality of the data.

To examine whether the genes were also dispersed along the

axis of the first component according to differential expression

between tissue types, the locations of the 10 differentially ex-

pressed genes with lowest P values (Figure 2, circles) or highest

fold changes (Figure 2, crosses) according to Linear Models for

Microarray (LIMMA) analysis (Smyth, 2004) are highlighted in the

correspondence analysis plot. Their positions at extreme values

of the first component axis reflect differential expression of

genes in different tissue types. Genes with the highest fold

change are located at the outmost range of the first component,

whereas genes with lowest P values have less extreme levels.

The latter effect is attributable to the fact that genes with higher

variance receive lower P values in the moderate t test analysis.

This again indicates that genuine differential expression between

tissue types is the strongest factor of variation in the data.

Functional Categorization

To structure the genes present on the Arabidopsis whole genome

microarray, they were assigned to functional categories using

the pathway analysis program MapMan (http://gabi.rzpd.de/

projects/MapMan, version 1.8.0 [January 30, 2006]). MapMan

is a user-driven tool that displays large data sets such as gene

expression data from Arabidopsis Affymetrix microarrays onto

diagrams of metabolic pathways or other processes (Usadel

et al., 2005). Of 22,810 genes on the Affymetrix ATH1 chip,
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13,642 (59.8%) could be assigned to categories with known

biological functions (see Supplemental Figure 1 and Supple-

mental Table 3 online). The largest number of annotated genes of

the ATH1 chip fall into the functional categories of protein and

RNA.

To functionally categorize differentially expressed genes, we

chose the 5046 genes with P < 0.01, which constituted ;22% of

the 22,810 genes and gave a robust overview of differential gene

regulation within functional categories. Among the 5046 genes

selected, 3357 genes could be classified by MapMan into

functional categories (see Supplemental Table 3 online). The

distribution of these genes (total of 3357) within functional

categories was compared with the distribution of all classified

genes of the microarray (total of 13,642) and is presented as

factorial changes in Figure 3. The factorial change describes the

natural logarithm of the ratio of the percentage of differentially

expressed genes in a functional category and the percentage of

all annotated genes on the microarray in that category. For better

comparison, the logarithmic factorial change of each category

was plotted according to the following equation:

factorial change ¼ ln½ðDEcat=DEallÞ=ðAcat=AallÞ�;

Figure 1. Detection of T-DNA–Transformed Cells in Arabidopsis Tumors.

(A) to (D) In situ hybridization using NOS antisense RNA as a probe.

(E) and (F) Hybridization with the sense RNA as a control. Positive hybridization signal appears as reddish color.

(A) Cross section through an inflorescence stalk (Stalk) and a tumor (Tu) attached to it.

(B) and (C) Enlargements of the marked areas in (A) of the inflorescence stalk and tumor.

(D) Enlargement of a tumor area with large cells marked in (C) showing hybridization signals close to the cell wall.

(E) Cross section of a tumor.

(F) Enlargement of a tumor area with large cells.

Arabidopsis Tumor Functional Genomics 3619

100 III. RESULTS



where DEcat represents differentially expressed genes in a func-

tional category, DEall represents all differentially expressed

genes, Acat represents all annotated genes in a functional cat-

egory, and Aall represents all annotated genes on the array.

Thus, the factorial change represents a relative measure for

overall gene regulation in a category. Functional categories with

a positive factorial change have a higher fraction of differentially

expressed genes than would be expected from the total number

of genes assigned to that category. A negative value indicates a

lower number of differentially regulated genes in the respective

category than expected. Of the 17 functional categories shown in

Figure 3, 11 contained a higher number of differentially ex-

pressed genes, whereas in six categories the number was lower.

Categories 1 (photosynthesis [PS]), 36 (primary metabolism), and

34 (transport) were the three with a higher number of differentially

expressed genes, in contrast with category 28 (DNA), in which a

larger number of genes were not differently transcribed in the

tumor and reference tissue (Figure 3; see Supplemental Table 4

online). The mean percentage of genes differentially expressed

in a functional category was 28%, whereas in the DNA category,

only 8% of the total gene number (882 genes) were significantly

differentially expressed (P < 0.01; 71 genes). However, among

the 71 significantly differentially expressed genes in the DNA

category, 70% were activated in tumors. In the subcategory of

DNA synthesis, even 73% of the genes involved in cell prolifer-

ation showed increased expression levels (cf. the subtables

DNA_all and DNA_P < 0.0.1 in Supplemental Table 4 online).

Because the categories PS, primary metabolism, and trans-

port were the three with the greatest number of differentially

expressed genes, all annotated genes of the complete micro-

array belonging to these categories were assigned to subcate-

gories (see Supplemental Figures 2A to 2C and Supplemental

Tables 5 to 7 online). The greatest number of genes in the pho-

tosynthesis category was formed by the subcategory light reac-

tion, and within the category of primary metabolism were major

and minor CHO (carbohydrate metabolism) and mitochondrial e�

(electron) transport. In the category of transport, the subcategories

ABC (for ATP binding cassette), metal, sugars, and metabolite

contained the greatest number of differentially expressed genes.

The distribution of genes in these functional subcategories

was again compared with the distribution of all differentially

expressed genes of the microarray via factorial changes (Figure

4). Subcategories 14 (S assimilation), 12 (N metabolism), and 7

(oxidative pentose phosphate [OPP]) revealed the greatest num-

ber of differentially regulated genes, followed by subcategories

2 (major CHO), 5 (fermentation), and 4 (glycolysis) of the primary

metabolism category (Figure 4A; see Supplemental Table 5 on-

line). The greatest number of differentially expressed genes of

the photosynthesis category belonged to subcategories 1.1 (light

reaction) and 1.3 (Calvin cycle) (Figure 4B; see Supplemental

Table 6 online). Among the 15 subcategories of the transport

category, only two, 34.1 (P- and V-ATPases) and 34.8 (metab-

olite) contained a lower number of differentially regulated genes.

It has to be mentioned that in the transporter subcategory me-

tabolite, only mitochondrial membrane transporters are listed (see

Supplemental Table 7 online). Because the four subcategories 9

Figure 3. Factorial Changes within Functional Categories of All Differ-

entially Expressed Genes.

The natural logarithm of factorial changes is plotted against each

functional category. Positive factorial changes indicate a larger fraction

of differentially expressed genes; negative factorial changes represent

categories with a smaller fraction of regulated genes than expected from

the total number of genes in the respective category. AA, amino acid.

Figure 2. Correspondence Analysis of the Gene Expression Levels of

the Arabidopsis Transcriptome.

Correspondence analysis shows that the main difference between the

expression values of the different microarray hybridizations is attribut-

able to differential gene expression between tumor and uninfected

tissue. This can be seen from the separation of tumor and uninfected

tissue microarray assays and differentially expressed genes along the

horizontal axis. Genes are represented by tiny gray spots, and single

microarray slides are indicated by black dots. N stands for reference

slides, and T stands for tumor slides. Genes with lowest P values and

highest fold change are marked with circles and crosses, respectively.

Genes verified by RT-PCR are marked by plus signs.
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(mitochondrial e� transport), 14 (S assimilation), 12 (N metabolism),

and 7 (OPP) contain only a small numbers of genes, their factorial

changes displayed in Figure 4A and in Supplemental Table 5 online

are less reliable than those from the larger subcategories, such as 2

(major CHO) and 4 (glycolysis).

Members of the functional category transport are highlighted

(black dots) in a MA plot (see Methods; Figure 5), because this

category contained a large number of differentially expressed

genes (Figure 3; see Supplemental Table 4 online). This plot

shows that a considerable number of transporter genes with high

mean intensities (high A values) are differentially expressed.

These changes are referred to in more detail below.

Verification of Microarray Data by Quantitative RT-PCR

Numbers of transcripts of selected genes with either moderate or

high differential expression values from microarray analysis were

independently quantified by quantitative RT-PCR. They include

a cytochrome oxidase (At5g56970), a wound-induced protein

(At4g10270), a glycosyl hydrolase (At1g66280), a receptor pro-

tein kinase (At1g51805), a 2,4-D–inducible glutathione S-trans-

ferase (At1g78370), and a Ser carboxypeptidase I (At2g22990).

The quantitative RT-PCR results of the latter six genes showed

similar differential expression patterns as obtained by micro-

arrays. Comparing the results of previous quantitative RT-PCR

studies of Arabidopsis ion channel genes (Deeken et al., 2003)

with those derived from the ATH1 microarray (KCO1, At5g55630;

KCO2, At5g46370; KCO5, At4g01840; KCO6, At4g18160; KAT1,

At5g46240; KAT2, At4g18290; AKT1, At2g26650; AKT2/3,

At4g22200; At KC1, At4g32650; and GORK, At5g37500), a

similar differential gene expression profile was obtained. Quan-

titative RT-PCR confirmed the microarray data. Of nine potas-

sium channel genes of the Arabidopsis genome, two, AKT2/3

and GORK, were repressed in tumor tissues, whereas AKT1 and

At KC1 were induced. Thus, both methods, microarray analysis

and quantitative RT-PCR, revealed a high correlation between

their identified fold changes of gene expression. The Pearson’s

correlation coefficient of microarray gene expression and quan-

titative RT-PCR data was 0.9453 (P¼ 3.4E-8) (see Supplemental

Figure 3 online).

Figure 4. Factorial Changes of Functional Subcategories with the Highest Number of Differentially Expressed Genes.

The natural logarithm (ln) of factorial changes is plotted against the functional categories of photosynthesis (A), primary metabolism (B), and transport

(C). Positive factorial changes indicate more regulated genes; negative factorial changes indicate a smaller number of regulated genes in that category

than expected from the size of the category. TCA, tricarboxylic acid; MIP, major intrinsic protein family; CNGC, cyclic nucleotide gated channel.
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Solute Patterns and Gene Expression Profiles

Carbohydrate Metabolism and Photosynthetic

Light Reactions

The carbohydrate pool (Figure 6) in tumor tissue was dominated

by glucose (14.9 mmol/g fresh weight) compared with sucrose

(2.8 mmol/g fresh weight) and fructose (1.7 mmol/g fresh weight)

levels. Glucose concentration in tumors was 3.3 times higher

than that in reference stalks (4.4 mmol/g fresh weight). Sucrose

was found only in tumors and was undetectable in reference

stalks.

Glucose accumulation in Arabidopsis tumors is most likely not

derived from photosynthesis de novo, as transcript levels of the

majority of differentially expressed genes (P < 0.01) related to

photosynthesis were decreased (see Supplemental Table 4

online). This reflects the reduced number of chloroplasts in tu-

mor cells that were smaller than those of mesophyll cells and the

reduced expression of all genes encoded in the chloroplast

genome (see Supplemental Table 6 online). A comparison of

chlorophyll content revealed a three times reduced level in

tumors compared with that in inflorescence stalk tissues (161

versus 499 mg chlorophyll a/b per gram fresh weight). This was

paralleled by the downregulation of six genes out of seven

involved in tetrapyrrole synthesis (see Supplemental Table 6

online). However, the relative quantum efficiency of chlorophyll

fluorescence (Schreiber et al., 1986) was very similar in both

tissues (0.67 6 0.05 in tumors and 0.65 6 0.04 in controls), which

indicates that the still existing photosynthetic membranes were

functional. Of 100 genes with differential expression (P < 0.01)

involved in photosynthetic light reactions, all were significantly

lower expressed in tumors. The same holds true for Calvin cycle

genes (24 of 27; see Supplemental Table 6 online).

In tumor tissues, we found a strong activation of sucrose-

degrading enzymes, accompanied by activation of STP4

(At3g19930), a sink-specific monosaccharide transporter (see

Supplemental Table 7 online), and increased glucose levels

(Figure 6). The cluster of sucrose-degrading enzymes comprised

14 differentially regulated genes, of which 9 were activated. Most

pronounced was the induction of two sucrose synthase genes

(SuSy3 [At3g43190] and SuSy5.2 [At5g20830]), a fructokinase

(At2g31390), and a cell wall invertase gene (At3g13790), whereas

the genes of two vacuolar invertases were expressed to a much

lower level in tumors (At1g12240 and At1g62660). Transcription

of genes of the major CHO pathway coding for starch-synthe-

sizing enzymes (7 of 10) and starch-degrading enzymes (13 of 14)

was also reduced, again reflecting the reduced number of

chloroplasts in tumor cells (see Supplemental Table 5 online).

Energy Production

Genes coding for proteins of mitochondrial electron transport

were mainly unchanged in tumors, with the exception of an

uncoupling protein, At PUMP1 (At3g54110), involved in the

alternative respiratory chain, which was 2.6-fold (P ¼ 4.6E-04)

induced (see Supplemental Figure 5 and Supplemental Table 5

online). Genes required for fermentation were strongly upregu-

lated: Pyruvate Decarboxylase (PDC1 [At4g33070], P ¼ 1.2E-05)

and Alcohol Dehydrogenase (ADH [At1g77120], P ¼ 9.3E-05).

The increased transcript level of the latter two genes was

paralleled by a threefold increase of ethanol concentrations in

tumors (4.4 6 1.5 mmol/g fresh weight) compared with reference

stalk tissue (1.4 6 0.4 mmol/g fresh weight), whereas lactate

contents were not significantly different in both tissues. In

addition, the oxygen uptake rate at air saturation of tumor tissue

was 5.7 times higher per gram fresh weight (71 6 31 versus 12 6

3 mmol�g�1 fresh weight�h�1) and 3.8 times higher per gram of

soluble protein (1622 6 207 versus 427 6 117 mmol�g�1�h�1).

Cell Wall Formation

The majority of genes (87 of 103) involved in cell wall synthesis,

degradation, or modification showed increased expression in

tumor tissue, of which 25 genes were more than threefold higher

Figure 5. MA Plot of Genes of the Functional Category of Transport.

Many genes of the functional category transport are regulated between

tumor and uninfected tissue. Regulated genes have large M values in the

MA plot. The M values on the vertical axis represent differential expres-

sion between the two tissue types, and the A values on the horizontal axis

represent average expression over all of the microarray assays. All genes

are shown as gray dots, and genes of the functional category of transport

are marked with black dots.

Figure 6. Sugar Content of Arabidopsis Tumors Induced by Agrobacte-

rium.

Glucose, fructose, and sucrose were determined from tumors and

tumor-free main inflorescence stalk segments (means 6 SD; n ¼ 3).

FW, fresh weight.
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expressed (see Supplemental Table 4 online). Among these were

genes of the expansin family (At EXP1 [At1g69530], P¼ 1.0E-04;

At EXP10 [At1g26770], P ¼ 2.6E-03; At EXP6 [At2g28950], P ¼
3.7E-03), the xyloglucosyl transferase family (At5g48070, P ¼
5.8E-04; At2g06850, P ¼ 3.6E-04), the b-glucanase family

(At1g70710, P ¼ 4.6E-04; At4g02290, P ¼ 3.4E-03), pectate

lyases (At4g24780, P ¼ 3.7E-03; At3g53190, P ¼ 6.9E-04;

At4g13210, P ¼ 4.5E-05), cellulose synthase isoforms

(At1g02730, P ¼ 5.0E-04; At5g22740, P ¼ 1.1E-03), members

of the pectin esterases (At1g11580, P ¼ 1.9E-04; At2g47550,

P ¼ 7.0E-04), polygalacturonase inhibitors (PGIP1 [At5g06860],

P ¼ 3.1E-04; PGIP2 [At5g06870], P ¼ 2.9E-03), an a-xylosidase

(At1g78060, P¼ 1.4E-03), a UDP-glucose-4-epimerase (At1g63180,

P ¼ 1.1E-03), and a polygalacturonase (At1g70500, P ¼ 1.5E-

04), indicating an increased reorganization and growth of cell

walls.

Lipid Metabolism

Expression levels of the majority of genes involved in lipid

metabolism were lower (68 of 101) in tumors than in inflores-

cence stalk tissue, except those belonging to the gene family of

fatty acid desaturation. Genes of this family were higher tran-

scribed in tumors, and three of five were induced even more than

threefold (see Supplemental Table 4 online): a stearoyl acyl

carrier protein desaturase (At1g43800, P¼ 7.5E-05), an v-3 fatty

acid desaturase (At2g29980, P ¼ 4.2E-04), and a D-9 fatty acid

desaturase (At2g31360, P ¼ 4.4E-04). In addition, one gene of

the lipid transfer protein family (LPT) showed 10-fold increased

transcript levels (LTP2 [At2g38530], P ¼ 2.3E-04). The fact that

tumors lack an intact epidermal cell layer covered by a cuticle is

reflected by a 13-fold lower expression of CUT1 (At1g68530, P¼
1.5E-04) and a 4-fold lower expression of WAX2 (At5g57800, P¼
2.2E-04), two genes involved in cutin biosynthesis (see Supple-

mental Table 4 online).

N Metabolism

The total amino acid content in tumors was 8.4-fold higher than in

inflorescence stalk tissue (Figure 7A). Among the proteinaceous

amino acids, Gln was most prominently increased (14.7-fold).

Furthermore, Ser, Asp, Glu, Thr, Pro, and Asn were increased

severalfold in tumor tissues (6.4-, 6-, 3.1-, 6.5-, 11.7-, and 31-

fold, respectively), and Ala, Val, Ile, Leu, His, and Arg were 25- to

7-fold higher in tumors than in controls.

Amino acids may accumulate in the tumor by import, de novo

synthesis, and/or protein degradation. Uptake of amino acids

into tumor cells might be mediated by two amino acid trans-

porters (At1g47670, threefold, P ¼ 8.9E-04; At1g25530, three-

fold, P ¼ 5.0E-03) in addition to two Hþ-dependent oligopeptide

transporters (At4g21680, 17-fold, P ¼ 1.6064E-05; At1g59740,

11-fold, P ¼ 4.8E-04), the genes of which were strongly upregu-

lated in tumor tissues (see Supplemental Table 7 online).

The first step in autotrophic N metabolism is the reduction of

nitrate, which may be taken up by nitrate transporters into tumor

cells. Transcription of two-high affinity nitrate transporter genes

(At3g45060, 6-fold, P¼ 3.1E-04; At5g60780, 2-fold, P¼ 5.3E-03)

was significantly induced in tumors, whereas that of low-affinity

nitrate transporters, active in the millimolar range (NTP2

[At2g26690], 0.13-fold, P ¼ 9.5E-04; NTP3 [At3g21670], 0.08-

fold, P ¼ 4.6E-05), was reduced severalfold (see Supplemental

Table 7 online). The nitrate concentration (Figure 8A) was low in

tumors (8 mmol/g fresh weight) and fivefold higher in reference

tissues (41 mmol/g fresh weight). Expression of the two Arabi-

dopsis nitrate reductase genes, NR1 (At1g77760) and NR2

(At1g37130), was 0.88 (P ¼ 8.4E-02) and 1.45-fold (P ¼ 6.0E-

02), respectively, and thus not significantly different among both

tissues. Corresponding to the nitrate content, the actual nitrate

reductase enzyme activity was reduced fivefold in tumors. The

maximal nitrate reductase activity was even 11-fold lower (Figure

8B). One gene encoding a mitochondrial Gly decarboxylase

complex H (At2g35120), a source for photorespiratory ammonia,

was 2-fold (P ¼ 5.6E-03) higher in tumors, but two others

(At2g35370, 0.13-fold, P ¼ 9.9E-05; At1g32470, 0.53-fold, P ¼
7.9E-03) were strongly repressed (see Supplemental Table 6

online). Uptake of ammonium into tumor cells was most likely not

facilitated by transporters, because the two differentially ex-

pressed ammonium transporter genes (AMT2 [At4g13510], 0.54-

fold, P ¼ 2.5E-03; AMT1.1 [At2g38290], 0.59-fold, P ¼ 5.1E-03)

and the only differentially expressed gene encoding a tonoplast-

located aquaporin (TIP2.2 [At4g17340], 0.13-fold, P ¼ 2.8E-04)

showed decreased expression levels in tumors (see Supple-

mental Table 7 online).

Among the 73 differentially expressed genes (P < 0.01) in-

volved in amino acid metabolism (see Supplemental Table 4

online), only those coding for enzymes of Trp (ASA1 [At5g05730],

3-fold, P ¼ 5.2E-04; At5g38530, 3-fold, P ¼ 3.2E-04) and Asp

(At5g19550, 4.5-fold, P ¼ 1.3E-04) biosynthesis were strongly

induced in tumors, correlating with the increased level of Asp, but

not that of Trp, which was below the detection level (Figure 7A).

Although transcript levels do not necessarily correlate with

enzyme activity, or with the accumulation of metabolites, this

finding suggests an increased consumption of Trp in tumors,

most likely as a precursor for auxin biosynthesis through

enzymes expressed by the bacterial T-DNA. None of the mem-

brane permease genes participating in auxin uptake (AUX1

[At2g38120], LAX1 [At5g01240], LAX2 [At2g21050], LAX3

[At1g77690]) or release (PIN1 [At1g73590], PIN2 [At5g57090],

PIN3 [At1g70940], PIN4 [At2g01420], PIN5 [At5g15100], PIN6

[At1g77110], PIN7 [At1g23080]) were significantly (P < 0.01)

differentially expressed (see Supplemental Table 4 online).

Genes of the ABC superfamily, coding for p-glycoproteins

(PGPs), were recently shown to actively transport auxin (Geisler

et al., 2005; Geisler and Murphy, 2006). Two genes of the PGP

subfamily (At PGP1 [At2g36910], 3-fold, P ¼ 1.3E-03; At PGP4

[At2g47000], 3-fold, P¼ 7.3E-04) were significantly expressed to

a higher level in tumors (see Supplemental Table 2 online),

indicating that auxin relocation in tumors might be controlled by

this type of transporter.

The accumulation of Arg in tumors might be attributable in part

to the differential expression (P < 0.01) of four genes involved in

Arg metabolism. Three genes (At3g27740, P ¼ 7.1E-03;

At1g75330, P ¼ 3.7E-03; At3g57560, P ¼ 8.1E-03) coding

for enzymes of Arg synthesis were upregulated (1.3- to 1.4-fold),

but the only gene for Arg degradation, Arg decarboxylase 2

(At4g34710), was downregulated (0.72-fold; P ¼ 4.4E-03) in
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tumors (see Supplemental Table 4 online). Levels of nopaline,

which is synthesized in transformed tumor cells from Arg, were

determined in tumors by applying HPLC–electrospray ioniza-

tion–mass spectrometry. Endogenous nopaline was unambigu-

ously identified by its retention time and product ion spectrum of

[MþH]þ at m/z 305 (Figures 7B and 7C). Quantification in the

multiple reaction monitoring mode was performed using [18O]2-

nopaline as internal standard. Nopaline was found in Arabidopsis

crown gall tumors in the millimolar concentration range (5.58 6

1.89 mmol/g fresh weight; mean 6 SD [n ¼ 4]).

Most abundant among nonprotein N compounds were levels

of g-aminobutyric acid (GABA), a-aminoadipinic acid (AAA), and

urea, which were either present in reference tissues in very low

concentrations or not detectable (Figure 7). GABA accumulation

might be explained by the strong induction of the Glu decarbox-

ylase gene GAD1 (At5g17330, sixfold, P ¼ 3.3E-05). Urea is a

product of nopaline degradation, catalyzed by arginase, an en-

zyme of Agrobacterium. Agrobacteria are present in the apoplast

of growing tumors, and expression of the bacterial arginase gene

within Arabidopsis tumors was confirmed by RT-PCR (data not

shown). Uptake of urea into Arabidopsis tumor cells could be

mediated by aquaporins, because it has been shown that at least

the tobacco (Nicotiana tabacum) plasma membrane–located

water channel, Nt AQ1, in addition to water, facilitated the

transport of urea (Otto and Kaldenhoff, 2000). Two genes en-

coding plasma membrane–located aquaporins were severalfold

higher expressed in tumors (PIP2.5 [At3g54820], 12-fold, P ¼
3.3E-05; PIP1.3 [At1g01620], 6-fold, P ¼ 8.1E-05), whereas the

urea transporter (At5g45380) was downregulated (see Supple-

mental Table 7 online).

Figure 7. Content of N Components and Nopaline Determination of Arabidopsis Tumors Induced by Agrobacterium.

(A) Proteinaceous and nonproteinaceous amino acids were determined from tumors and tumor-free main inflorescence stalk segments (means 6 SD;

n ¼ 3). FW, fresh weight.

(B) Multiple reaction monitoring ion chromatograms of an extracted Arabidopsis tumor sample. Mass chromatograms for the multiple reaction

monitoring transitions at m/z 305/139 (endogenous nopaline) and m/z 309/139 ([18O]2-nopaline, internal standard) are shown. Endogenous nopaline

levels were calculated from the ratio of the peak areas (nopaline:[18O]2-nopaline].

(C) Product ion spectra of [MþH]þ of endogenous nopaline (m/z 305) and [18O]2-nopaline (internal standard, m/z 309). Retention times and spectra

obtained from liquid chromatography–tandem mass spectrometry (LC-MS/MS) runs of nopaline extracted from tumor samples were identical to

spectra of authentic reference compounds.
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Among the genes for amino acid degradation, only one, an

osmotic stress–induced Pro dehydrogenase (At3g30775, four-

fold, P ¼ 1.0E-03) was prominently increased in tumors. In

addition, more than half of the differentially expressed genes (65

of 126; P < 0.01), encoding enzymes of ubiquitin-dependent

protein degradation, showed increased transcription in tumors

(see Supplemental Table 4 online).

Inorganic Anions

Concentrations of sulfate and phosphate were increased in

tumors (Figure 8A). The sulfate concentration was 12-fold higher

in tumors than in reference stalk tissue. The phosphate content in

tumor tissue reached 117 mmol/g fresh weight and was 23-fold

enriched compared with that in the stalk. Chloride levels were

increased in tumors (55 mmol/g fresh weight), but not signifi-

cantly compared with the control stalks (28 mmol/g fresh weight).

Because tumors show increased water loss and solute flow,

certain anions might accumulate in the apoplast of tumors to a

higher degree than in reference stalk tissue. As a crude approx-

imation to apoplastic anion concentrations, we determined the

relative anion content of the apoplast and found that the per-

centage of anions (except for nitrate) washed out of the apoplast

within 10 min was approximately two times higher in tumors

compared with inflorescence stalk segments of the same size

(Figure 8C). All genes for sulfate transporters with P < 0.01

(At3g12520, At5g13550, At1g77990, At5g10180, At1g23090,

At3g51895) were downregulated, whereas two of six coding for

phosphate transporters (At1g26730, At1g14040) showed in-

creased transcript levels (see Supplemental Table 7 online).

This finding could indicate that tumor cells take up phosphate

preferentially.

Finally, in a bioinformatic comparison, the tumor gene ex-

pression profile of the functional categories described above

(photosynthesis, cell wall, lipid metabolism, amino acid metab-

olism, secondary metabolism, hormone metabolism, transport,

primary metabolism, and tetrapyrrole synthesis from the cate-

gory of others) was compared with the transcriptome of indole

acetic acid– or zeatin-treated plant tissues (see Supplemental

Table 8 online). These microarray data from the RIKEN Labora-

tory (Japan) are available at the AtGenExpress database (The

Arabidopsis Information Resource [TAIR] accession: expression

sets 100796604 and 1007965859) and revealed that a number of

tumor genes (11 genes, P ¼ 0.01; see Supplemental Table 8

online) were also differentially expressed after a 3-h treatment

with indole acetic acid. The transcription of only two differentially

expressed tumor genes (P ¼ 0.01) was similarly regulated by

zeatin, suggesting that auxin dominates the transcriptional reg-

ulation of tumor genes within the functional categories analyzed

here.

DISCUSSION

This study shows that transformation of plant cells with T-DNA of

the virulent Agrobacterium strain C58 results in genome-wide

effects reflecting the adaptation of transport and metabolism. To

our knowledge, a comprehensive transcriptome analysis of a

crown gall tumor that integrates data of the tumor metabolome

Figure 8. Anion Content and Nitrate Reductase Activity of Arabidopsis

Tumors Induced by Agrobacterium.

(A) Sulfate, nitrate, phosphate, and chloride were determined from

tumors and tumor-free main inflorescence stalk segments (means 6

SD; n ¼ 3). FW, fresh weight.

(B) Comparison of the actual nitrate reductase activity (NRAact) and

maximal nitrate reductase activity (NRAmax) of tumor and inflorescence

stalk tissue (means 6 SD; n ¼ 3).

(C) Relative proportions of apoplastic anion to total anion contents of

equally sized tumor and reference stalk tissue fragments.
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had not been performed previously. A transcriptome study that

focused on the timing of plant responses to short-term Arabi-

dopsis–Agrobacterium interactions was performed recently. It

shows that already at 48 h after inoculation of Arabidopsis cell

suspensions with Agrobacterium, genes of the functional cate-

gories cell wall, primary metabolism, and protein/amino acid

metabolism as well as transport were differentially expressed

(Ditt et al., 2006). A comparison of the 303 regulated genes found

by Ditt and coworkers with those of crown gall tumors revealed

that 12% of the genes, irrespective of functional clusters, were

regulated in both experiments. However, only 7% of these genes

were similarly regulated, either activated or repressed (P < 0.01),

in both data sets, when comparing only the genes belonging to

the same functional clusters. This divergence in gene expression

profile reflects the facts that (1) the study by Ditt et al. (2006) used

a different plant system, (2) a different approach for the gene

expression analysis was used, and (3) the gene set involved in the

metabolism and transport of crown gall tumors differs even more

from those of early signals of plant–pathogen interaction.

The question whether all tumor cells are transformed or most

of them are only adapted to increased phytohormone levels

produced by a few transformed cells has been addressed for

almost 30 years. In earlier work, when no molecular markers were

available, it was found that 1.2% of the cells were transformed

(Sacristan and Melchers, 1977; Ooms et al., 1982). Later, Van

Slogteren (1983) calculated by cloning of isolated axenic tumor

tissues that 10 to 25% of the tumor cells were transformed.

Recent studies, using b-glucuronidase (gus) gene–containing

wild-type bacteria (A281p35S gus-int) and RT-PCR, provided

strong evidence that in Agrobacterium-induced tumors, most

cells, or even all cells (i.e., ;100%), were transformed (Rezmer

et al., 1999). Here, using the in situ hybridization technique, a

similar result was obtained. When several images, like those

presented in Figure 1, were assessed visually by staining, >95%

of the tumor cells were shown to express NOS mRNA. However,

even if all cells are transformed, expression may be prevented by

epigenetic phenomena as well. In fact, it has been shown that

T-DNA–encoded genes can be inactivated through methylation

(Gelvin et al., 1983; Amasino et al., 1984).

In the studies presented here, the metabolite and anion

concentrations determined for whole tumors do not permit

conclusions about their localization in bacteria, plant cell apo-

plast, or symplast, or about their subcellular distribution. How-

ever, gene expression analysis reflects exclusively the response

of the plant cell. This study, using two different approaches, gene

expression and solute analysis, indicates changes in the whole

plant cell physiology. In a model of a plant tumor cell, we sum-

marize the major changes in gene expression of transporters and

metabolic pathways (Figure 9).

Nutrient Accumulation

Rapid growth of plant tumors creates strong metabolic sinks on

host plants (Malsy et al., 1992; Pradel et al., 1996, 1999; Mistrik

et al., 2000). In Arabidopsis tumors, almost all major nutrients

were at higher concentrations than in the respective host tissues

(Figures 6 to 8). However, some nutrients may appear specifically

accumulated as a result of agrobacteria existing in developing

crown gall tumors. Agrobacteria metabolize nopaline, synthe-

sized by the transformed tumor cell, to Glu via Arg, Orn, and Pro

(Dessaux et al., 1986). With the exception of Orn, the other three

amino acids are markedly accumulated in tumors. However, in

1 mL of a suspension from the Agrobacterium strain C58 (OD ¼
0.873), a concentration that we have used for the induction of

tumors, all amino acids were below the detection level. Even in

1 g of a bacterial pellet, the concentrations of the stress metab-

olites Pro, AAA, and GABA (see below), which accumulate in

tumors, were not measurable (data not shown). Arg, the precur-

sor of nopaline, was found in the bacterial pellet at a concentra-

tion of 0.44 mmol/g bacterial pellet, still slightly lower than in

tumors (0.63 mmol/g fresh weight). Because the bacterial bio-

mass in crown galls is much lower compared with that of plant

cells, the contribution of bacterial Arg to the total content of Arg

should be negligible in crown galls. Nopaline, which is synthe-

sized by the T-DNA–encoded enzyme NOS, was found in tumors

in the millimolar range. Because genes encoding enzymes of Arg

synthesis were only slightly upregulated in Arabidopsis crown

galls, their Arg content results most likely from translocation by

the host plant via the transpiration stream. It has been shown

that the content of several amino acids, including Arg, increases

in the xylem sap of tumorized plants (Mistrik et al., 2000). Thus,

amino acids do not reach the tumor only via the phloem but also

via the transpiration stream. Moreover, Arg accumulation ap-

pears necessary, because the Km of purified NOS for Arg is 0.74

mM (Kemp et al., 1979). This concentration is close to that

measured in Arabidopsis tumors (0.63 mM).

Recently it was shown that the higher potassium concentration

of Arabidopsis tumors was accompanied by the induction of

root-specific Kþ channels in favor of shoot-specific channels

(Deeken et al., 2003). A three times higher total anion concen-

tration in tumors (266 versus 81 mmol/g fresh weight) might be

the result of excessive transpiration and/or a lack of retrans-

location from the tumor back to the plant. It has been shown that

tumors are not covered by a cuticle and have a higher transpi-

ration rate (Schurr et al., 1996), which might also cause the strong

induction of the two water channel genes (Figure 9A). Thus, a

high transpiration–driven solute movement may cause the ac-

cumulation of solutes in tumors (Wachter et al., 2003). Interest-

ingly, most differentially expressed genes of anion transporters

were downregulated in tumors (Figures 9B and 9C), indicating

that part of the anions might actually be located within the

apoplast. This hypothesis is supported by our observation that

tumors lost a higher percentage of anions after 10 min of washing

(Figure 8C). In addition, a higher protein content (55 6 12 versus

33 6 8 mg/g fresh weight) and neutral red staining (data not

shown) indicated that tumors very likely possess more plasma-

rich cells with smaller vacuoles. This suggests that anions most

likely accumulate in the apoplast rather than in vacuoles of tumor

cells. The uptake of nutrients into tumor cells is controlled by

membrane transporters, of which a number of genes were dif-

ferentially expressed between Arabidopsis tumors and tumor-

free stalk tissues (Figures 3 and 4). Active transport is fueled

by ATP hydrolysis, and in fact, two P-type Hþ-ATPase genes

(At4g30190, At1g80660) were upregulated, whereas all vacuolar

ATPases were expressed at a lower level in tumors (see Sup-

plemental Table 7 online). The latter might again support the
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notion that tumors possess a smaller vacuolar compartment.

Another reason for metabolite accumulation might be that tu-

mors are deprived of oxygen. It has been shown that roots that

endure hypoxic stress accumulate sugars, amino acids, and

GABA, as do the T-DNA–transformed tumor cells (Sousa et al.,

2002).

Heterotrophic Metabolism

Glucose and amino acids appear to be the main carbon and

nitrogen sources of the tumor. The C content calculated from

sugars was 3.7 times higher in tumors than in tumor-free inflo-

rescence stalks. De novo carbohydrate production should be

low, as the transcription of the vast majority of the Calvin cycle

genes was repressed (Figure 9D). Therefore, carbohydrates have

to be supplied by the host plant, probably as sucrose via the

phloem. The uptake of glucose into tumor cells is substantiated

by an increased transcription of cell wall invertase and sucrose

synthase (Figure 9E, 1 and 2) in addition to STP4 (Figure 9F, 3), a

sink- and pathogen-induced member of the monosaccharide

transporter gene family (Truernit et al., 1996). An increased

enzyme activity of acid cell wall invertase was described for

tumors of Kalanchoë, tobacco, and Ricinus (Weil and Rausch,

1990; Pradel et al., 1999). It is a general phenomenon in the

physiology of sink tissues to accumulate nutrients, although the

expression of degrading enzymes is activated. This has been

Figure 9. Scheme of Gene Expression Profiles of Transporters and Metabolic Pathways in Agrobacterium-Induced Arabidopsis Tumors.

Fold changes (log2) of expression values of tumor versus inflorescence stalk tissues with P < 0.01 are presented as red (downregulated), blue

(upregulated), and white (unchanged) squares for each gene, based on the pathway analysis program MapMan (https://gabi.rzpd.de/projects/MapMan/).

Differential gene expression of water channels (A), anion transporters (B), chloride channels (C), Calvin cycle enzymes (D), sucrose degradation

enzymes (E), sugar transporters (F), nitrate transporters (G), light reaction enzymes (H), ammonium transporters (I), amino acid transporters (J), peptide

transporters (K), electron transport enzymes (L), glycolysis enzymes (M), fermentation enzymes (N), photorespiration enzymes (O), and fatty acid

desaturation enzymes (P) is shown. Numbers þ3 to �3 on the color scale represent log2 of the fold change. The flow of ions, water, and nutrients from

xylem and phloem of the host plant into the tumor is indicated by the large open arrow. AA, amino acids; C, chloroplast; Fru, fructose; Glu, glucose; M,

mitochondrion; P, peroxisome; Pep, peptide; Suc, sucrose; UDP-Glu, UDP-glucose.
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reported by Wachter et al. (2003) for crown gall tumors of Ricinus

communis, of which the high sucrose level in the periphery of the

large tumor was accompanied by high cell wall invertase enzyme

activity. These observations and our findings in Arabidopsis

suggest that the influx of metabolites exceeds consumption in

tumors.

Amino acid levels were eightfold higher in tumors compared

with tumor-free tissue, whereas nitrate content was very low (8 6

1 versus 41 6 2 mmol/g fresh weight). Uptake of nitrate was not

facilitated by anion transporters, because genes were down-

regulated except for two high-affinity-type transporters (Figure

9G, 4). The low nitrate content of tumors reflected the almost

immeasurable nitrate reductase enzyme activity (Figure 8B).

These findings confirm earlier data found by Mistrik et al. (2000),

who have shown that tumors of R. communis have no detectable

nitrate reductase activity, because of high levels of ethylene that

inhibit nitrate reductase activity. In addition, abscisic acid, known

to inhibit NO�3 and PO�4 uptake (Suleiman et al., 1990), was, as in

Ricinus tumors (Mistrik et al., 2000), ;10 times higher in

Arabidopsis tumors compared with uninfected inflorescence

stalks (data not shown). Thus, a conclusion would be that

increased amino acid levels probably are not attributable to

higher nitrate assimilation. This is again substantiated by a

reduced expression of genes involved in photosynthetic light

reactions (Figure 9H) and by transporters for ammonium uptake

(Figure 9I). The formation of ammonium from urea is most likely

not favored in tumors, because transcripts of both urea-degrad-

ing enzymes appear not to be increased. Thus, nitrogen supply

for amino acid and protein biosynthesis in tumors is most likely

derived from Gln and Glu, which are translocated by the host

plant through the vascular system and seem to be imported into

tumor cells by amino acid transporters, of which three genes

were induced in tumors (Figure 9J). In addition, peptide transport

may provide another source of organic nitrogen. In tumors, two

genes of oligopeptide transporters, one homologous with the

PTR1 gene from barley (Hordeum vulgare), were expressed

(Figure 9K, 5). The PTR1 transporter was associated with peptide

transport in germinating barley grains (West et al., 1998), which

represent a sink tissue, like a tumor.

Anaerobic Energy Production in Tumors

Within the functional group photosynthesis, which includes

photosynthetic light reactions, the majority of genes were

strongly downregulated (Figure 9H). This implies less light-

dependent oxygen production within the tumor, as confirmed by

chlorophyll fluorescence. Expression of genes encoding the

respiratory electron transport chain was mainly unchanged (Fig-

ure 9L) except for an uncoupling gene, At PUMP1 (At3g54110).

Suspensions of small tissue fragments from tumors gave a 5.7-

fold higher oxygen uptake rate per gram fresh weight, or 3.8-fold

higher on a protein basis, compared with stalk fragments.

Because of their small size, these fragments in stirred solution

probably were not limited by oxygen diffusion, and the higher

oxygen uptake of tumor fragments over stalk fragments might

reflect an uncoupling of respiratory electron transport. However,

an intact tumor lacks intracellular air spaces. Thus, as a result of

diffusional limitation together with an increased respiratory elec-

tron transport capacity, cells in the tumor core may easily be-

come hypoxic. Under such conditions, plant cells switch to

fermentative energy metabolism (Tadege et al., 1999). Genes

coding for enzymes of the glycolytic pathway (Figure 9M) and

ethanolic fermentation (Figure 9N) appear to prevail in tumors.

Fructose seems to be the carbohydrate fed into the glycolytic

pathway of tumors, because transcripts of two of three fructo-

kinases (At2g31390, At4g10260) were 5.2-fold (P¼ 3.8E-04) and

2.4-fold (P¼ 1.3E-04) increased, whereas none of the genes that

encode glucose-using enzymes was differentially expressed

(see Supplemental Table 6 online). In addition, glucose was

highly enriched in tumors, but fructose and sucrose contents

were low (Figure 6). An increased ethanol level and the induction

of PDC1 transcripts (Figure 9N, 6) and ADH (Figure 9N, 7) confirm

the switch to fermentation. The PDC1 gene encodes the main

regulatory enzyme of ethanolic fermentation and is also induced

by abscisic acid (Kursteiner et al., 2003). In addition, it has been

shown that genes involved in alcoholic fermentation, such as

ADH (At1g77120), PDC1 (At4g33070), and PDC2 (At5g54960),

showed a dramatic increase in expression under low-oxygen

conditions in Arabidopsis roots (Klok et al., 2002). Both hypoxia

and high abscisic acid levels might add to the induction of PDC1

in tumors. ADH is also strongly induced by abscisic acid. These

results imply that transformation of plant cells with T-DNA of the

virulent Agrobacterium strain C58 is accompanied by a change

from autotrophic to heterotrophic metabolism, in which ATP

production is powered mainly by glycolysis and fermentation.

Stress Metabolites in Tumors

In addition to increased abscisic acid levels (see above), other

stress metabolites, such as Pro, GABA, and AAA, were also

strongly accumulated in Arabidopsis tumor cells (Figure 7) but

were not measurable in pure agrobacteria. AAA might accumu-

late through the catabolism of Lys by the saccharopine pathway,

which is important for the regulation of Lys homeostasis (Karchi

et al., 1994). AAA is supposed to regulate growth, development,

and responses to environmental changes by regulating the

expression of genes involved in nitrogen metabolism (Arruda

et al., 2000). In the case of osmotic stress responses, Glu, which

is generated during Lys catabolism, might also act as a precursor

of enhanced Pro biosynthesis. The increased Pro content (12-

fold) was correlated with a strong repression of Pro oxidase

(At5g38710). However, Pro dehydrogenase (At3g30775), another

Pro-degrading enzyme, was induced, most likely as a result of

increased Pro concentrations. Pro levels appear tightly con-

trolled through feedback regulation (Kiyosue et al., 1996; Peng

et al., 1996). GABA is probably increased as a consequence of

anaerobic conditions within the tumor tissue, because oxygen

deprivation and the resulting cellular acidosis strongly induce

GABA accumulation (Kinnersley and Turano, 2000).

Signals derived from increased sugar levels lead to the inhi-

bition of genes involved in photosynthesis, the Calvin cycle, and

chlorophyll synthesis (Sheen et al., 1999; Pego et al., 2000;

Smeekens, 2000). In Arabidopsis tumors, the vast majority of

genes for light reactions (Figure 9H), the Calvin cycle (Figure 9D),

and photorespiration (Figure 9O) show reduced transcription, in

addition to genes encoded by the chloroplast genome (see
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Supplemental Table 6 online). The latter reflects the reduced

number of chloroplasts in tumor tissue. Whether that was attrib-

utable to the increased glucose remains unclear. The recent

discovery of genes encoding enzymes of trehalose metabolism

in higher plants has revealed trehalose-6-phosphate synthase

and/or its product, trehalose-6-phosphate, as another potential

player in sugar sensing (Rolland et al., 2001; Eastmond and

Graham, 2003; Eastmond et al., 2003). Trehalose-6-phosphate

synthase, of which the transcript levels of two members were

strongly increased in Arabidopsis tumors (At1g23870, At2g18700),

is required for embryo maturation and might also control devel-

opmental processes.

Expression of genes for the modification of fatty acids, such as

desaturases (Figure 9P), and the transport of lipids, such as the

lipid transfer protein LTP2 (At2g38530), was strongly increased in

tumors. Within this group, some are involved in pathogen defense

signaling. Stearoyl acyl-carrier protein desaturase (S-ACP-Des)

catalyzes the initial step in fatty acid desaturation to form oleic

acid. This monounsaturated fatty acid serves as a stimulator of

phospholipase Dd, which was shown to prevent cell death in

parsley (Petroselinum crispum) suspension cells upon pathogen

elicitation (Kirsch et al., 1997; Ryu, 2004; Wang, 2004) and

modulates the activation of defense signaling pathways in plants

(Kachroo et al., 2001, 2003, 2004). Activation of the S-ACP-Des

gene in Arabidopsis tumors may help to prevent a hypersensitive

response in defense against Agrobacterium. Defective in Induced

Resistance1 encodes a putative apoplastic LTP that is involved in

systemic, but not local, resistance to pathogens (Maldonado et al.,

2002). LTPs could also play a major role in cell wall modification.

In tumors, they might shuttle lipids such as suberine monomers

from their sites of biosynthesis through the plasma membrane into

the cell wall, as suggested by Kunst and Samuels (2003), to mini-

mize loss of water.

Auxin and Cytokinin May Control the Expression of Genes

Involved in Tumor Metabolism

The differential expression of several of the genes discussed

here may be regulated by auxin and cytokinin, two phytohor-

mones that are known to be increased in crown gall tumors.

Tumor cells are not only exposed to increased auxin and cyto-

kinin levels for weeks but also to high levels of abscisic acid,

ethylene, or jasmonic acid (Veselov et al., 2003). However, a

comparison with the transcriptome of plant cells, treated with

auxin and cytokinin for 3 h, indicated that the expression of at

least 13 tumor genes (see Supplemental Table 8 online) might be

regulated by auxin and cytokinin. The majority of these genes (10

of 13) are involved in phytohormone metabolism or signaling.

In conclusion, we have shown that plant tumors are charac-

terized by anaerobic and heterotrophic metabolism and display

an altered differentiation with modified, tissue type–specific gene

expression patterns for photosynthesis, amino acid, cell wall,

and lipid metabolism as well as for solute transporters. The

transcription of several of these genes might be regulated by

auxin and cytokinin. Metabolic changes and altered metabolite

signaling seem to maintain vigorous growth of plant tumors after

intrusion and successful transformation by agrobacteria.

METHODS

Plant Material and RNA Preparation

Arabidopsis thaliana plants (ecotype Ws-2) were cultivated in growth

chambers under short-day conditions (8 h of light) at 228C and 168C

during the dark period (16 h). Tumors were induced by applying the

nopaline-using Agrobacterium tumefaciens strain C58 (nocc) to the base

of a wounded, very young inflorescence stalk (2 to 5 cm). At 35 d after

infection, tumor tissue was separated from the host inflorescence stalk

using a scalpel. Wounded but uninfected tumor-free inflorescence stalk

segments of the same age served as reference tissues. To reduce data

variation, total RNA was prepared from four independent biological

replicates and used in four separate microarray hybridizations. Each

replicate consisted of material from 10 to 12 individual plants. Total RNA

was extracted from tumor and inflorescence stalk tissues and treated

with DNase using the RNeasy plant mini kit (Qiagen) according to the

manufacturer’s protocol.

Probe Synthesis and in Situ Hybridization

Probes were generated by PCR using a 460-bp fragment of NOS cDNA

and the following primers carrying a T7- or T3-RNA polymerase binding

site at the 59 end: NOSas-T7, 59-CTTCTTTACCTATTTCCGCC-39; NOSs-

T3, 59-TGATCCGATAGCTTAGACG-39. Labeling with digoxygenin-11-

dUTP of sense and antisense RNA strands was performed with the

DIG-RNA labeling mix, applying either T7- or T3-RNA polymerase,

respectively, according to the manufacturer’s protocol (Roche Diagnos-

tics). Labeled probes were dissolved in 100 mL of water. For hybridization,

pieces of tumors with adjacent stalks were fixed in PBS þ 4% parafor-

maldehyde at 48C overnight, dehydrated in a series of increasing con-

centrations of ethanol and Histo-Clear (National Diagnostics), and finally

embedded in paraffin at 608C. Embedded material was cut with a

microtome (Leica RM2245) in 9-mm sections and transferred to charged

slides (Cnops et al., 2006). Samples were inspected with an inverted

microscope (Axiovert 200M; Zeiss) and photographed with a digital

camera (Axiocam MRC; Zeiss), applying the AxioVision LE software

(Zeiss).

Microarrays and Data Preprocessing

A total of eight microarray slides (ATH1 121501; Affymetrix) containing the

almost complete genome of Arabidopsis were used to monitor differen-

tially expressed genes in tumor and inflorescence stalk tissue. Two

different laboratories conducted two microarray hybridizations of each

tissue type: (1) Nottingham Arabidopsis Stock Centre, Plant Science Di-

vision School of Biosciences, University of Nottingham, UK (http://www.

york.ac.uk/res/garnet/providers); and (2) VBC-Genomics Bioscience Re-

search, Vienna, Austria (www.vbc-genomics.com). Altogether, four ar-

rays were hybridized with four different samples of tumor RNA and four

with four different samples of inflorescence stalk RNA.

Data preprocessing was performed using Bioconductor software

(Huber et al., 2002; Gentleman et al., 2004) running under the statistical

programming environment R (Ihaka and Gentleman 1996). To obtain a

normalized gene expression value from oligomer intensities for each gene

of each microarray slide, variance stabilization (Huber et al., 2002) was

applied. Variance stabilization calibrates for variations between the arrays

through shifting and scaling and transforms the intensities to a scale on

which the variance is approximately independent of the mean intensity.

Before applying variance stabilization, no background correction was

performed to the Affymetrix probe intensities, according to recommen-

dations in the variance stabilization manual, and only the perfect match

probes were used to compute the expression values for individual genes.
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For summarization of probe intensities into gene expression values, we

applied the median polish algorithm (D. Holder, R.F. Raubertas, V.B.

Pikounis, V. Svetnik, and K. Soper, unpublished data), which is also

incorporated into the commonly used robust multiarray analysis by

Irizarry et al. (2003).

Assessing the Quality of the Data

To examine the quality of the microarray data, we applied three indepen-

dent methods: two statistical methods (scatterplot and correspondence

analysis) and one biological method (quantitative RT-PCR). First, the

reproducibility of the individual Affymetrix microarray hybridizations was

checked by scatterplot analyses. Normalized expression values of all

genes of one microarray were plotted versus the expression values of

another microarray. The scatterplots comparing two uninfected inflores-

cence stalk or tumor tissues with each other (see Supplemental Figure 4

online) displayed the variability of repeated measurements. The average

correlation coefficients for the six scatterplots each of tumor and refer-

ence stalk arrays were 0.9725238 and 0.9623506, respectively. Thus,

expression signals of genes from the same tissue type showed high

consistency. The 12 scatterplots resulting from a comparison of tumor

versus reference arrays indicated differentially expressed genes (see

Supplemental Figure 5 online, red dots). Here, the average correlation

coefficient was 0.86326 and indicated that many more genes differ

between two microarray hybridizations of different tissue types.

In the next step, the reproducibility of chip hybridizations was con-

firmed by applying correspondence analysis. Correspondence analysis

was conducted using a self-made script within MATLAB (MathWorks).

Correspondence analysis represents genes as numerical vectors, with

the number of elements of a vector being the number of microarray

assays considered. Those vectors are projected into a lower dimensional

subspace (typically, two dimensions) that accounts for the main variance

in the data such that distances among points reflect their original dis-

tances in the high-dimensional space as closely as possible (Fellenberg

et al., 2001). The same reduction of dimensions is done for the microarray

assays; here, a 22,810-dimensional vector (of genes) is reduced to lower

dimensions. By embedding both genes and assays in the same graph,

correspondence analysis finds the most pronounced factor of differences

between genes and microarray hybridizations.

Differential Gene Expression Analysis

To give a first graphic overview of differential gene expression between

tumor and inflorescence stalk tissue, we performed an MA plot on gene

expression data (Figure 5). In such an MA plot, the difference of log

expression values (Minus) of the two tissue types [M ¼ log(tumor) �
log(reference)] is plotted against the sum (Add) of the log expression

values divided by 2 [A¼ flog(tumor)þ log(reference)g/2]. Thus, the x axis

represents the extent of expression levels and the y axis represents

differential gene expression.

For the statistical evaluation of differential expression between the two

tissue types, we used a moderate t statistic implemented in the LIMMA

package, which is part of the Bioconductor software project (Gentleman

et al., 2004; Smyth, 2004). We applied the function lmFit() in the LIMMA

software package to fit linear models on the expression values of each

gene with the factors tissue type and laboratory. The function eBayes()

was used to compute moderated t statistics by empirical Bayes shrinkage

of the standard errors toward a common value. The advantage of the

LIMMA package is its robustness and suitability for experiments with

small sample numbers. Four repeated microarray hybridizations of each

tissue type are not enough repeats for stable predictions using standard

statistical t test analyses. To circumvent this limitation, the Bayesian

functions were applied, exploiting information across genes and balanc-

ing the lack of more repeats needed for a classical t test. Thus, analyses

with the LIMMA package are still stable with a small number of arrays

(Smyth, 2004). The null hypothesis of differences between tissues being

equal to zero was tested under the assumption of independent errors

following a normal distribution. For each gene, we calculated a fold

change and a P value measuring the statistical significance of differential

expression. The significance level was corrected for multiple testing by

applying the false discovery rate from Benjamini and Hochberg (2000). All

of the P values given are corrected for multiple testing.

Fold changes of significantly differentially expressed genes (P < 0.01)

were analyzed with the pathway analysis program MapMan. MapMan is a

user-driven tool that displays large data sets (e.g., gene expression data

from Affymetrix microarrays) onto diagrams of metabolic pathways or other

processes (Thimm et al., 2004; https://gabi.rzpd.de/projects/MapMan/).

A color code symbolizes the fold change of differential gene expression,

where blue indicates higher expression in tumors and red indicates higher

expression in inflorescence stalk tissue (Figure 9).

Comparison of Tumor- and Phytohormone-Dependent

Gene Expression

Differential gene expression discussed for crown gall tumors was com-

pared with two Affymetrix microarray data sets addressing differential

expression arising from phytohormone treatments. Both data sets were

produced by the RIKEN Laboratory (Japan) and are available at the

AtGenExpress database. One data set includes the comparison of

seedlings treated with indole acetic acid for 3 h with untreated seedlings

(TAIR accession: expression set 100796604), the other set compares

gene expression of seedlings treated with zeatin for 3 h with untreated

seedlings (TAIR accession: expression set 1007965859). In both micro-

array data sets, there are two biological replicates of each treatment

group, leading to a total of four microarray assays per data set. We

analyzed the raw data (Affymetrix CEL files) in the same way as the tumor

data, using variance stabilization normalization and LIMMA for differential

gene expression analysis. Consistent with the P criterion for the crown

gall tumor gene expression data set, genes with a multiple testing

corrected P < 0.01 were considered differentially expressed. Although

the lower number of replicates in the phytohormone data sets results in

higher P values in the differential gene expression analysis, the P criterion

was kept constant for consistency.

Quantitative Real-Time RT-PCR

Total RNA was extracted from tumor and stalk tissue with the plant

RNeasy extraction kit (Qiagen). Poly(A)þRNA was isolated from total RNA

with Dynabeads according to the protocol of the Dynabeads mRNA

Direct kit (Dynal). To eliminate contamination with genomic DNA, poly(A)þ

RNA samples were treated twice with Dynabeads. First-strand cDNA

synthesis and quantitative real-time RT-PCR experiments were per-

formed as described previously (Szyroki et al., 2001) using LIGHTCY-

CLER 3.1 (Roche). Primers used were as follows: cytokinin oxidase

(At5g56970), 59-GATAGTTTAAACCATGT-39 (forward), 59-CAAAACTTC-

AGTATTTCC-39 (reverse), 390 bp; wound-induced protein (At4g10270),

59-TGGAACTACATACTCCG-39 (forward), 59-AATTTGAGTCACATTGAT-39

(reverse), 316 bp; glycosyl hydrolase (At1g66280), 59-GACACAACTA-

CATTTGGA-39 (forward), 59-AACAGCAACAGAATCT-39 (reverse), 390 bp;

receptor protein kinase (At1g51805), 59-TGGTTCTGTGTGGAAA-39 (for-

ward), 59-AATCTACCTAGCCATTG-39 (reverse), 214 bp; 2,4-D–inducible

glutathione S-transferase (At1g78370), 59-TTATTGAGGCAGTGAAG-39

(forward), 59-CGCATTATTAGGGGAA-39 (reverse), 352 bp; Ser carboxy-

peptidase I (At2g22990), 59-GGATCCATCTAACACAC-39 (forward), 59-AAG-

CTCTCGTGTATCCA-39 (reverse), 446 bp. The number of transcripts was

normalized to the constitutively expressed Actin2/8 mRNA (An et al.,

1996).
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Measurements of Solutes

Contents of amino acids, sugars, and anions were determined from

aqueous extracts of 20 mg of fresh tumor or inflorescence stalk tissue.

Amino acids were quantified with an amino acid analyzer (LC5001,

Biotronic; Eppendorf-Nethler-Hinz), sugars by HPLC (Dionex series 4500i

chromatography system), and anions by ion chromatography (IC 1000;

Biotronic). For extraction of apoplastic anions, fresh tumor or inflores-

cence stalk tissues were cut into small pieces (2 to 3 mm) with a razor

blade and briefly incubated in a large volume of water for 10 to 15 s to

remove contamination of destroyed cells on the surface of the tissue.

After incubation for 10 min in 1 mL of deionized water, the anion content of

the washing solution was measured. Ethanol and lactate were deter-

mined enzymatically from 70 to 100 mg of fresh plant tissue (Roche

Diagnostics).

Quantification of Nopaline

Synthesis of [18O]2-Nopaline Standard

Labeled nopaline was synthesized through an acid-catalyzed oxygen-

exchange reaction according to a previously described procedure

(Mueller et al., 2006). Briefly, unlabeled nopaline (25 mg) was dissolved

in 50 mL of H18
2 O (99 atom % 18O; Isotec). After addition of 50 mL of a 4 M

HCl solution in 1,4-dioxane (premade solution; Aldrich Chemicals), the

sample was incubated in a tightly closed screw-cap vial for 1 h at 608C.

Thereafter, the sample was dried in vacuum, dissolved in methanol, and

stored at �208C. Theoretically, all six oxygens of the three carboxyl

groups of nopaline can be exchanged by 18O through this procedure.

Because of the instability of nopaline in the acid-exchange medium,

incubation was terminated after 1 h when the majority of the recovered

nopaline was labeled with two 18O atoms and unlabeled nopaline became

undetectable. In addition to [18O]2-nopaline, the mixture also contained

labeled nopaline molecules with one to four 18O atoms; these, however,

did not interfere with the analysis. [18O]2-Nopaline was quantified against

unlabeled nopaline and used as an internal standard.

Plant Extraction and LC-MS/MS Quantitation of Nopaline

For nopaline analysis, frozen plant material (50 mg) was mixed with 750

mL of a pre-warmed mixture (758C) of methanol:water (75:25, v/v). After

addition of a ceramic bead (6 mm in diameter), the tissue was homog-

enized and extracted using a vibrating ball mill for 1 min. After an

incubation period of 1 min at 758C, 250 ng of the internal standard, [18O]2-

nopaline, was added and homogenization was repeated. Thereafter, the

sample was centrifuged (1000g for 10 min), and the supernatant was

dried in a vacuum centrifuge at 508C. The residue was suspended in

acetonitrile:water (20:80, v/v). After centrifugation (1000g for 2 min), the

supernatant was transferred into an HPLC vial, and 10 mL was injected

into the LC-MS/MS system. LC-MS/MS analyses were performed using a

1200 Agilent HPLC system coupled to a Micromass Quattro Premier

triple-quadrupole mass spectrometer (Waters). The column (Phenomenex

Synergi Hydro-RP, 150 3 4.6 mm, particle size, 4 mm) was eluted with a

linear mobile phase gradient (0.5 mL/min flow rate) starting from water

containing 0.1% formic acid at 0 min to acetonitrile:water:formic acid

(20:80:0.1, v/v) at 10 min. The mass spectrometer was operated in the

ESIþ mode using multiple reaction monitoring. Argon was used as colli-

sion gas (22 eV of collision energy).

Pulse Amplitude–Modulated Measurements and Determination

of Chlorophyll Content

The relative quantum efficiency of chlorophyll fluorescence was mea-

sured with 30-d-old tumors and inflorescence stalks using a MINI-PAM

photosynthesis yield analyzer (Heinz Walz). Chlorophyll content was

determined according to Arnon (1949).

Measurements of Oxygen Uptake and Protein Content

Polarographic measurements of oxygen uptake were performed with a

Clark-type oxygen electrode (Hansatech Instruments). Tumor and inflo-

rescence stalk tissue fragments of 2 to 3 mm were submerged in 10 mM

CaSO4, and their O2 consumption was recorded for 8 min. Three samples

were measured, containing tissue fragments from at least three plants.

Protein content of tumor and inflorescence stalk tissue was determined

using the BSA protein assay (Pierce).

Determination of Nitrate Reductase Activity

Nitrate reductase activity was determined from ;300 mg of frozen tissue

of tumors without stalk or tumor-free stalks as described previously

(Kaiser and Brendle-Behnisch 1995).
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daigremontiana. Plant Cell Environ. 15, 519–529.

Mistrik, I., Pavlovkin, J., Wachter, R., Pradel, K.S., Schwalm, K.,

Hartung, W., Mathesius, U., Stohr, C., and Ullrich, C.I. (2000). Impact

of Agrobacterium tumefaciens-induced stem tumors on NO3-uptake in

Ricinus communis. Plant Soil 226, 87–98.

Mueller, M.J., Mene-Saffrane, L., Grun, C., Karg, K., and Farmer,

E.E. (2006). Oxylipin analysis methods. Plant J. 45, 472–489.

Ooms, G., Bakker, A., Molendijk, L., Wullems, G.J., Gordon, M.P.,

Nester, E.W., and Schilperoort, R.A. (1982). T-DNA organization in

homogeneous and heterogeneous octopine-type crown gall tissues of

Nicotiana tabacum. Cell 30, 589–597.

Otto, B., and Kaldenhoff, R. (2000). Cell-specific expression of

the mercury-insensitive plasma-membrane aquaporin NtAQP1 from

Nicotiana tabacum. Planta 211, 167–172.

Pedersen, P.L. (1978). Tumor mitochondria and the bioenergetics of

cancer cells. Prog. Exp. Tumor Res. 22, 190–274.

Pego, J.V., Kortstee, A.J., Huijser, G., and Smeekens, S.G.M. (2000).

Photosynthesis, sugars and the regulation of gene expression. J. Exp.

Bot. 51, 407–416.

Peng, Z., Lu, Q., and Verma, D.P. (1996). Reciprocal regulation of delta

1-pyrroline-5-carboxylate synthetase and proline dehydrogenase

genes controls proline levels during and after osmotic stress in plants.

Mol. Gen. Genet. 253, 334–341.

Pradel, K.S., Rezmer, C., Krausgrill, S., Rausch, T., and Ullrich, C.I.

(1996). Evidence for symplastic phloem unloading with concomitant

high activity of acid cell wall invertase in Agrobacterium tumefaciens-

induced plant tumors. Bot. Acta 109, 397–404.

Pradel, K.S., Ullrich, C.I., Santa Cruz, S., and Oparka, K.J. (1999).

Symplastic continuity in Agrobacterium tumefaciens induced tu-

mours. J. Exp. Bot. 50, 183–192.

Rezmer, C., Schlichting, R., Wachter, R., and Ullrich, C.I. (1999).

Identification and localization of transformed cells in Agrobacterium

tumefaciens-induced plant tumors. Planta 209, 399–405.

Risau, W. (1990). Angiogenic growth factors. Prog. Growth Factor Res.

2, 71–79.

Rolland, F., Winderickx, J., and Thevelein, J.M. (2001). Glucose-

sensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26,

310–317.

Ryu, S.B. (2004). Phospholipid-derived signaling mediated by phos-

pholipase A in plants. Trends Plant Sci. 9, 229–235.

Sacristan, M.D., and Melchers, G. (1977). Regeneration of plants from

habituated and Agrobacterium-transformed single-cell clones of to-

bacco. Mol. Gen. Genet. 152, 111–117.

Scarpella, E., Marcos, D., Friml, J., and Berleth, T. (2006). Control of

leaf vascular patterning by polar auxin transport. Genes Dev. 20,

1015–1027.

Schreiber, U., Schliwa, U., and Bilger, W. (1986). Continuous record-

ing of photochemical and nonphotochemical chlorophyll fluorescence

quenching with a new type of modulation fluorometer. Photosynth.

Res. 10, 51–62.

Schurr, U., Schuberth, B., Aloni, R., Pradel, K.S., Schmundt, D.,

Jaehne, B., and Ullrich, C.I. (1996). Structural and functional evi-

dence for xylem-mediated water transport and high transpiration in

Agrobacterium tumefaciens-induced tumors of Ricinus communis.

Bot. Acta 109, 405–411.

Sheen, J., Zhou, L., and Jang, J.C. (1999). Sugars as signaling

molecules. Curr. Opin. Plant Biol. 2, 410–418.

Smeekens, S. (2000). Sugar-induced signal transduction in plants.

Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 49–81.

Smyth, G.K. (2004). Linear models and empirical Bayes methods for

assessing differential expression in microarray experiments. Stat.

Applic. Genet. Mol. Biol. 3, Article 3 (http://www.bepress.com/sagmb/

vol3/iss1/art3/).

Sousa, C., De Ferreira, A., and Sodek, L. (2002). The metabolic

response of plants to oxygen deficiency. Braz. J. Plant Physiol. 14,

83–94.

Suleiman, S., Hourmant, A., and Penot, M. (1990). Influence de l’acide

abscissique sur le transport d’ions inorganiques chez la pomme de

terre (Solanum tuberosum cv. Bintje). Etude comparée avec quelques

autres phytohormones. Biol. Plant. (Praha) 32, 128–137.

Szyroki, A., Ivashikina, N., Dietrich, P., Roelfsema, M.R.G., Ache, P.,

Reintanz, B., Deeken, R., Godde, M., Felle, H., Steinmeyer, R.,

Palme, K., and Hedrich, R. (2001). KAT1 is not essential for stomatal

opening. Proc. Natl. Acad. Sci. USA 98, 2917–2921.

Tadege, M., Dupuis, I., and Kuhlemeier, C. (1999). Ethanolic fermen-

tation: New functions for an old pathway. Trends Plant Sci. 4,

320–325.

Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P.,

Selbig, J., Muller, L.A., Rhee, S.Y., and Stitt, M. (2004). MAPMAN: A

user-driven tool to display genomics data sets onto diagrams of

metabolic pathways and other biological processes. Plant J. 37,

914–939.

Truernit, E., Schmid, J., Epple, P., Illig, J., and Sauer, N. (1996). The

sink-specific and stress-regulated Arabidopsis STP4 gene: Enhanced

expression of a gene encoding a monosaccharide transporter by

wounding, elicitors, and pathogen challenge. Plant Cell 8, 2169–

2182.

Ullrich, C.I., and Aloni, R. (2000). Vascularization is a general require-

ment for growth of plant and animal tumours. J. Exp. Bot. 51, 1951–

1960.

Usadel, B., et al. (2005). Extension of the visualization tool MapMan to

allow statistical analysis of arrays, display of corresponding genes,

and comparison with known responses. Plant Physiol. 138, 1195–

1204.

Van Larebeke, N., Engler, G., Holsters, M., Van den Elsacker, S.,

Zaenen, I., Schilperoort, R.A., and Schell, J. (1974). Large plasmid

in Agrobacterium tumefaciens essential for crown gall-inducing ability.

Nature 252, 169–170.

Van Slogteren, G.M.S., Hoge, J.H.C., Hooykaas, P.J.J., and

Schilperoort, R.A. (1983). Clonal analysis of heterogeneous crown

gall tumor tissues induced by wild-type and shooter mutant strains of

Agrobacterium tumefaciens expression of T-DNA genes. Plant Mol.

Biol. 2, 321–333.

Veselov, D., Langhans, M., Hartung, W., Aloni, R., Feussner, I., Gotz,

C., Veselova, S., Schlomski, S., Dickler, C., Bachmann, K., and

Ullrich, C.I. (2003). Development of Agrobacterium tumefaciens

Arabidopsis Tumor Functional Genomics 3633

114 III. RESULTS



C58-induced plant tumors and impact on host shoots are controlled

by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic

acid. Planta 216, 512–522.

Wachsberger, P.R., Gressen, E.L., Bhala, A., Bobyock, S.B., Storck,

C., Coss, R.A., Berd, D., and Leeper, D.B. (2002). Variability in

glucose transporter-1 levels and hexokinase activity in human mela-

noma. Melanoma Res. 12, 35–43.

Wachter, R., et al. (2003). Vascularization, high-volume solution flow,

and localized roles for enzymes of sucrose metabolism during tumor-

igenesis by Agrobacterium tumefaciens. Plant Physiol. 133, 1024–1037.

Wang, X.M. (2004). Lipid signaling. Curr. Opin. Plant Biol. 7, 329–336.

Warburg, O. (1930). The Metabolism of Tumors. (London: Arnold

Constable).

Weil, M., and Rausch, T. (1990). Cell wall invertase in tobacco crown

gall cells: Enzyme properties and regulation by auxin.. Plant Physiol.

94, 1575–1581.

West, C.E., Waterworth, W.M., Stephens, S.M., Smith, C.P., and

Bray, C.M. (1998). Cloning and functional characterisation of a pep-

tide transporter expressed in the scutellum of barley grain during the

early stages of germination. Plant J. 15, 221–229.

3634 The Plant Cell

4. GENE EXPRESSION AND SOLUTE PROFILES OF ARABIDOPSIS
TUMORS 115





Chapter 5

Genome Expression Pathway
Analysis Tool - Analysis and
visualization of microarray gene
expression data under genomic,
proteomic and metabolic
context

117



BioMed Central

Page 1 of 12
(page number not for citation purposes)

BMC Bioinformatics

Open AccessSoftware
Genome Expression Pathway Analysis Tool – Analysis and 
visualization of microarray gene expression data under genomic, 
proteomic and metabolic context
Markus Weniger*, Julia C Engelmann and Jörg Schultz

Address: Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany

Email: Markus Weniger* - markus.weniger@biozentrum.uni-wuerzburg.de; Julia C Engelmann - julia.engelmann@biozentrum.uni-
wuerzburg.de; Jörg Schultz - joerg.schultz@biozentrum.uni-wuerzburg.de

* Corresponding author    

Abstract
Background: Regulation of gene expression is relevant to many areas of biology and medicine, in
the study of treatments, diseases, and developmental stages. Microarrays can be used to measure
the expression level of thousands of mRNAs at the same time, allowing insight into or comparison
of different cellular conditions. The data derived out of microarray experiments is highly
dimensional and often noisy, and interpretation of the results can get intricate. Although programs
for the statistical analysis of microarray data exist, most of them lack an integration of analysis
results and biological interpretation.

Results: We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an
analysis of gene expression data under genomic, proteomic and metabolic context. We provide an
integration of statistical methods for data import and data analysis together with a biological
interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of
oligonucleotide and cDNA array data formats. Different normalization methods can be applied to
the data, afterwards data annotation is performed. After import, GEPAT offers various statistical
data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or
chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of
biological terms, pathway analysis or interaction networks. Different biological databases are
included, to give various information for each probe on the chip. GEPAT offers no linear work flow,
but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT
relies on established data analysis packages, offers a modular approach for an easy extension, and
can be run on a computer grid to allow a large number of users. It is freely available under the LGPL
open source license for academic and commercial users at http://gepat.sourceforge.net.

Conclusion: GEPAT is a modular, scalable and professional-grade software integrating analysis and
interpretation of microarray gene expression data. An installation available for academic users can
be found at http://gepat.bioapps.biozentrum.uni-wuerzburg.de.
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Background
Introduction
Gene expression analysis using microarrays opened new
insights into the living cell, revolutionizing biological
research in many fields. Gene expression of a whole sys-
tem can be measured at once, yielding information about
the mRNA level of every gene. Microarrays have become a
standard tool for gene expression measurement in biology
and medicine. Their application ranges from identifica-
tion of gene expression changes in different states of the
cell cycle over the classification of disease types to drug
development. Although microarrays are widely used, a
fundamental challenge is to cope with the immense
amount of data generated. Therefore special software
packages have been developed, capable of handling the
analysis of microarray data. Still, we think that many of
the existing tools are not optimal in respect of usability
and integration. To date, most freely-available programs
split the data analysis into two parts: In the first, statistical
methods are used to identify lists of 'interesting' genes, in
the second these lists are searched for biological relevance.
Although these two steps are dependent on each other
and should be highly interconnected, currently most anal-
ysis tools lack an integration of these steps. In the follow-
ing, we will give an overview of selected tools.

Existing Tools
One of the most sophisticated software for microarray
data analysis is the Bioconductor toolkit [1], based on the
R statistical programming language [2]. Most algorithms
developed for microarray data analysis are available
within this package. Unfortunately, Bioconductor is a text-
driven command line tool and does not provide an easy-
to-use graphical interface. Therefore, it offers advanced
analysis methods and the possibility of easy extension
only for professional users, and is difficult to use for peo-
ple unskilled in R. Results could be misinterpreted if peo-
ple are not understanding the data they are working with
or the way to perform the analysis. To solve this problem,
different tools were developed wrapping the Bioconduc-
tor toolkit for an easier usage. AMDA [3] is an R package,
providing a graphical user interface and a workflow for
the analysis of Affymetrix microarray data. CARMAWeb
[4] acts as a web-based user interface, making the Biocon-
ductor modules available for data analysis over the inter-
net.

Besides Bioconductor, other data analysis tools are availa-
ble. Expression Profiler [5] offers an integrated, web based
approach for microarray data analysis. Various normaliza-
tion, filtering, between-group-testing, clustering, cluster
comparison and GO term enrichment analysis methods
are available. Expression Profiler integrates analysis meth-
ods in an application-like web interface. GEPAS [6] is also
a widely used web-based approach for microarray data
analysis. In addition to the functionality of Expression
Profiler, it also offers class prediction methods, survival

analysis and multiple tree viewers. GEPAS functionality is
split up into a number of tools, connected by the same file
format. The user interface is more web-styled than Expres-
sion Profiler, making the usage more complicated for
untrained users.

Other Tools are not web-based, but installed on the local
machine. EXPANDER [7] includes biclustering methods
and analysis methods regarding regulatory elements. TM4
[8] is a collection of 4 programs, covering all computa-
tional steps for microarray analysis. TM4 includes spot
detection/image analysis, data normalization and data
analysis, linked together by the same file format. The data
analysis part includes, beside other analysis methods, sup-
port vector machines, gene shaving and relevance net-
works.

All these programs share the focus on the data analysis
part, but most of them lack tools for the interpretation of
the results. Only GEPAS offers with Babelomics [9] an
approach into data interpretation. On the other hand
there exist tools focusing on the interpretation of analysis
results. Besides many others, WebGestalt [10] offers bio-
logical term enrichment analysis, protein domain tables,
tissue expression analysis, links to chromosome location
and textmining analysis. The widely used DAVID [11]
allows an enrichment analysis for GO categories, pathway
enzymes, protein domains and other biological terms.
Cytoscape [12] supports the integration of network infor-
mation with microarray gene expression data. Other tools
for acquiring gene set information are MAPPFinder [13],
GFINDer [14] and Pathway Explorer [15]. The Ensembl [16]
annotation system ENSMART allows the user to perform
a genome information search and retrieval for sets of
genes, but does not help in exploring the information
associated with the gene set. All these tools provide anno-
tation ability, the drawback of these tools is the inability
of an integrated analysis. They require precalculated gene
sets as input, needing other tools for normalization, clus-
tering and subset determination.

GEPAT
For interpreting microarray analysis results with the tools
described above, researchers need first to obtain a list of
differential expressed genes from an analysis program,
and use this list in an interpretation program to get bio-
logical information for the results. This might prove feasi-
ble for smaller number of experiments, but is time-
consuming and complicated if used for larger numbers.

As we were unhappy with the separation of analysis and
interpretation, we developed our own tool, GEPAT.
GEPAT offers combined genome-, expression- and path-
way analysis and interpretation methods. Our idea was
the integration of gene expression data evaluation with
the cellular regulation and interaction network. Therefore,
we provide gene annotation for the probes on the micro-
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array and allow the visualization of analysis results on
metabolic pathways and gene interaction networks.
GEPAT includes different biological databases, making
them directly usable in data analysis and interpretation.
As a large number of databases require lots of disk space
and the analysis methods demand much computation
power, we developed GEPAT as a web-based toolkit.
GEPAT offers an application-like user interface with menu
bar and dialog boxes for easy usage. The installation as
server system allows either installation and usage on a sin-
gle computer, installation on a web server for use within a
workgroup, or installation on a web server connected to a
computer cluster for large user groups. GEPAT is distrib-
uted under LGPL and can be freely downloaded [17], an
installation on our server can be used by academic users
[18]. For an easy start, GEPAT provides a video tutorial for
the basic steps, and offers online help for most functions.
For a first impression of GEPAT, a guest login is available,
preloaded with microarray data from cancer type classifi-
cation [19] and cancer subgroup profiling of diffuse large
B-cell lymphoma [20], including chromosomal alteration
information [21]. All figures in this paper are based on the
B-cell lymphoma dataset.

Implementation
Web Server
GEPAT is implemented in the Java programming language
[22] and requires a J2EE-compatible servlet container to
run. Our server installation uses Apache Tomcat [23] as
base. The JavaServer Faces technology is used for the gen-
eration of web pages. This technology offers a Model-
View-Controller-based programming approach for inter-
net applications, allowing application development simi-
lar to desktop applications. Access control and image
generation are implemented using Java Servlets. All data-
bases used and algorithms implemented in GEPAT are
wrapped in modules. The program itself provides only
user management and data management capabilities, all
other functionality is modularly implemented. This
allows an easy extension with new databases or new anal-
ysis methods. Modules are used for import of gene expres-
sion data, subset selection of probes or samples, gene
information, analysis and interpretation methods. The
currently implemented modules for data analysis can
either run calculation on the server itself or calculation
can be directed to a computer grid running a DRMAA-
compatible grid engine [24]. In our case, the computation
scripts are run on our 10-node cluster system, based on
the Sun Grid Engine [25]. For data analysis, we used the
powerful abilities of the Bioconductor toolkit combined
with an easy-to-use interface. For graph layout and visual-
ization, the JUNG [26] graph library is used.

Databases
The modular approach of GEPAT allows the usage of any
database by developing new modules. We have already
integrated modules for the access of some important bio-

logical databases as Ensembl [16]. As the format of most
databases was not suitable for our purposes, we reformat-
ted these databases for our needs. For storage a mySQL 5
[27] database server is used. GEPAT provides scripts for
the creation of the database tables and the conversion of
already existing databases into these tables.

For gene annotation, we found no available database for
all clone identifier mapping purposes needed. Therefore
we created our own database. We used the UniGene data-
base (Build #197, 12/2006) [28] to provide a mapping
from cDNA Clone identifiers (ids) and Genbank ids to
UniGene clusters, and used the UniGene information for
Ensembl gene entries to map each probe to an Ensembl
gene ID. Affymetrix probe identifiers are directly anno-
tated with the information provided from the Ensembl
database (41_36c). At the moment, our database is
focused on human datasets, support for other organisms
will follow in the future.

Unluckily, Ensembl-identifiers do not exist for all probes,
as some probes are derived from EST tags for which no
gene is annotated, or some probes may bind to more than
one mRNA. If an Ensembl identifier is available for a
probe, the Ensembl database entry is used to gain infor-
mation about gene name, chromosomal location, pro-
teins, GO Annotation and enzymatic activity. All data
annotation in GEPAT is performed via the Ensembl iden-
tifier. The identifier used for annotation is selected auto-
matically out of the array files, or can be selected by the
user for tabular file input.

Linking a probe to a gene is necessary for interpretation of
the results, but may lead to various problems. Microarray
probes may not only hybridize with one specific mRNA,
but crosshybridize with mRNAs of different genes. It is
also possible that a probe detects only one specific splice
variant of a gene, while another probe detects all splice
variants. Different probes may hybridize more or less effi-
ciently with the mRNA they were designed for. And at last,
it is not always sure if the probes contain the cDNA-mate-
rial they are supposed to. Therefore it is necessary to com-
pare the sequence of somehow interesting probes with a
sequence database, to make sure annotation was right,
and to verify the results of the microarray analysis by other
experimental methods.

Results
Microarray experiments generate a large amount of data in
a very short time. In most cases it is not desirable to work
with all these data at once. Only few probes may be differ-
entially expressed, so in some cases it is useful to limit
data interpretation to only these probes. The array dataset
may consist of numerous subsets of somehow different
samples. For the probe and sample set, subsets may be
used to focus only on a specific group, or to compare two
groups. Defining and working with different subsets for
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any kind of analysis and interpretation is one of the main
concepts of GEPAT. For visualization purposes, a working
set can be defined, and all output is generated for this
working set. For example, as it is not always desirable to
have all data mapped to a metabolic pathway map, by
limiting the working set to a subset of all probes, the
amount of displayed probes shown on a pathway map
can be limited.

The subsets used in GEPAT can be selected by different
characteristics. For an easy access in analysis, a subset can
be named and stored as "group". For example, in a clinical
study, all samples belonging to a specific type of disease
may be stored in a group with the disease name. This
allows quick data analysis by just selecting the desired dis-
ease groups. As source for the selection of subsets, either
the whole dataset or subsets defined as a group can be
used. It is also possible to use a previous subset as source
for the selection, allowing to subset subsets. An overview
of possible criteria for subset selection is given in Table 1.
As an example, it is possible to select all differentially
expressed genes, to limit this set to all genes located in the
nucleus, and to limit this set further to all genes that orig-
inate from a specific chromosome. Any other combina-
tion of subset selection criteria is possible. The probe and
sample subset selection process is handled modular,
allowing an easy extension with yet unimplemented selec-
tion modules for other criteria.

GEPAT includes the following processing steps for micro-
array data:

• Import and normalization of microarray gene expres-
sion data

• Information for specific genes in the dataset

• Various analysis methods for microarray data, including
a moderate t-test and clustering

• Interpretation methods for subsets of the data

The analysis and interpretation steps can be performed in
any order, allowing the usage of interpretation results as a
start for further analysis. The following text describes the
processing steps in detail.

Data Import
Data Input
Data input is an important step in data analysis. Most
existing programs require processed data in a specific for-
mat, frequently tab-separated tables, or support only a
limited amount of formats. To allow broad usage of differ-
ent input file formats, we decided to use a modular system
allowing the extension for any type of file format. All
input files are handled by a specific module, and follow-
ing the import the data is stored in an internal, format-
independent and fast-accessible format on the server.

At the moment, three different modules are available for
data import. The first module enables data import for tab-
separated data files, containing either already normalized
data or unnormalized single- or dual-channel data. The
other two modules allow the import of oligonucleotide
and cDNA microarray data. Affymetrix oligonucleotide
arrays are handled by read.affybatch, the cDNA-import
uses read.maimages R methods. All formats supported at
the moment are listed in Table 2.

For saving bandwidth and mouseclicks, multiple array
files are imported wrapped in a Zip-File. This allows the
upload of a large amount of arrays without separate
uploading of each single file. Upload of tab-separated
microarray files provides an easy selection of identifier
and data columns, shown in figure 1a. After upload, the
data channels of the arrays and the data characteristics can
be inspected visually to allow a quick identification of
blurred or otherwise erroneous arrays. The microarray
selection process is shown in figure 1b. Here arrays can be

Table 2: Supported microarray input file formats

Oligonucleotide
Affymetrix CEL Files (Human)

cDNA
Agilent Feature Extraction
ArrayVision
BlueFuse
GenePix
ImaGene
QuantArray
SPOT
Stanford Microarray Database

Tabular
Unnormalized Dual-Channel Data
Unnormalized Single-Channel Data
Normalized Data

Table 1: Possible criteria for selection of probe and sample 
subsets

Probe set Sample set

Name Search Name Search
Groups Groups
GO Category k-Means-Cluster Analysis Results
k-means-Cluster Analysis 
Results

Principal Component Analysis 
Results

t-test Results
KEGG Maps
Chromosomal location
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skipped, removing them from further processing. After the
selection of microarrays, data normalization methods can
be applied to the data.

Normalization
Normalization of microarray data is needed to remove
variations in gene expression levels caused by the meas-
urement process, enabling the comparison of different
microarrays with each other. It aims to remove the system-
atic effects while keeping the most of the signal, and
brings the data from different microarrays onto a com-
mon scale.

Before normalization, missing value imputation can be
performed to fill outmasked probes with the k nearest
neighbors averaging method provided by the impute

package [29] of Bioconductor. Missing value imputation
offers an established method to compute values for
flagged probes. This allows the usage of analysis methods
not capable of handling unknown data values, but may
lead to false results, as imputed values may not reflect the
real gene expression levels.

After missing value imputation, a normalization method
must be chosen. Most normalization methods distinguish
between within- and between-array normalization.
Within-array normalization normalizes the expression
log-ratios of two-color spotted microarray experiments so
that the log-ratios average to zero within each array or
sub-array. Between-array normalization normalizes
expression intensities so that the intensities or log-ratios

Data import pagesFigure 1
Data import pages. a)import of tabular dual channel unnormalized data. Below the heading of the columns drop-down 
boxes are used to provide information for import. b)Microarray import view. The table on the left side can be used to select 
microarrays by name, the right side shows the scanned microarray image and data characteristics. The value distribution of all 
arrays is given in black, the selected array is marked in red. c)Normalization parameter selection page d)overview of imported 
and annotated microarray expression data. Probes are shown in the rows, the columns show gene information and sample 
expression.
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have similar distributions across a series of arrays. Figure
1c shows the normalization configuration page of GEPAT.

GEPAT uses the package limma [30] for normalization of
two-color microarrays. Different methods are available:
One method combines loess within-array normalization
[31] and scale between array normalization. The loess
method fits the arrays to a polynomial surface, the scale-
method scales the log-ratios to have the same median-
absolute-deviation across arrays. The other methods use
quantile [32] to ensure that the intensities have the same
empirical distribution across arrays and across channels or
vsn [33] for a robust estimation of variance-stabilizing
and calibrating transformations for microarray data. Back-
ground correction can be performed via the normexp-
method. This method results in a smooth monotonic
transformation of the background subtracted intensities
such that all the corrected intensities are positive.

For the normalization of Affymetrix arrays the expresso-
function of the affy-package is used. Perfect match adjust-
ment ensures that only perfect match oligonucleotides are
used for further calculation. For the calculation of the
expression values, medianpolish is used. No background-
correction is performed. As normalization methods loess,
quantile and vsn can be chosen. After normalization,
annotation is performed, and data is ready for further
analysis. After import, the dataset is shown in an overview
table, giving annotation information for the spots and
showing the gene expression values for the samples. Fig-
ure 1d shows an overview table of the B-cell lymphoma
test dataset.

Gene Information
To gain insight about the biological function of the genes
on the microarry chip, different sources can be used for
gene information. We include some of the most impor-
tant sources in GEPAT. Gene information is available in
most analysis and interpretation views. A click on a probe
or gene opens a new window, giving all available gene
information. A tab-bar at the top of the page can be used
for changing between the different types of information.
Gene Information is also modularized and therefore eas-
ily expandable with additional information.

Gene Information
For each gene in GEPAT a quick overview showing gene
information can be accessed. We offer a subset of the
Ensembl gene information, and link to the corresponding
Ensembl page for further information. Besides gene name
a short description of gene function, chromosomal loca-
tion, expression values, GO identifier and enzymatic
activity are shown if available and link directly to the cor-
responding pages in GEPAT. An example of an Ensembl
information page for the MYC gene is given in figure 2a.

The information given on the dataset overview page is a
subset of the information given on the gene information
page, and is modularly expandable.

Gene Associations
The STRING database [34] provides an overview of the
physical and functional associations and interactions
between proteins. STRING integrates known and pre-
dicted protein interaction data from a variety of sources.
These associations can be shown in a summary network,
displaying the genes as nodes, and different kinds of asso-
ciations as edges. In GEPAT, we adopted this kind of view.
A local instance of the STRING database can be used with
GEPAT, and we provide a mapping from Ensembl genes to
STRING proteins.

To give an overview of genes interacting with the selected
gene, a graph view displaying associated genes can be gen-
erated. Similar to the STRING database, possible gene
associations are gene neighborhood, gene fusion, co-
occurrence, co-expression, experiment, databases and text
mining. To keep the graph understandable, the maximal
count of nodes can be limited by score and number. For
an easier interpretation of the data, differential expression
results can be overlaid. A mouse click on a node selects the
new gene as center of the graph, allowing browsing
through the gene interaction network. The gene associa-
tion graph for MYC is shown in figure 2b.

Literature References
Literature about genes can be found in various journals.
To give a quick overview of scientific articles related to a
gene, we implemented a literature reference view. We used
the RefSeq [35] database from NCBI and the Ensembl Ref-
Seq annotation for the genes to find literature references.
For each reference, journal, author and title are provided,
and a pubmed outlink offers quick access to abstract and
full text. If available in RefSeq, a short summary of the
gene function is given, as shown in figure 2c for the MYC
gene.

Protein Information
Although microarrays designed for resolving different
splice variants of genes [36] are starting to get available,
most actual microarray techniques provide information
on gene level. Nevertheless, sometimes it is necessary to
gain information about the proteins derived from these
genes. This information is provided in the protein infor-
mation table. The protein information is drawn out of the
Ensembl database, a direct link to the Ensembl website is
provided for each protein. The protein information table
shows the different possible transcripts of a gene, and pro-
vides information about the features, e.g. protein
domains, of each protein build out of these transcripts.
Figure 2d shows the protein information page for MYC.
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Data Analysis
A wide variety of data analysis methods is available for
gene expression data. We decided to implement differen-
tial expression analysis, clustering methods and an analy-
sis of chromosomal alterations in GEPAT. As all analysis
methods are implemented as modules, new analysis
methods can be added quite easily. With our subset-selec-
tion procedure, it is possible to take any probe or sample
subset as input for the data analysis methods. The results
of the analysis can again be used as criteria for subset
selection.

Differential Expression
An important analysis of microarray data is the compari-
son of expression profiles from different sample groups.
Different kinds of tests are available; one of the most
advanced is the moderate t-statistics, as it provides stable

results even for experiments with small numbers of arrays.
We use the limma package of Bioconductor for this anal-
ysis [30]. Two sample subsets can be specified and com-
pared. For each probe, the log2 fold change and p-value
are calculated. Benjamini-Hochberg and Benjamini-Yeku-
tieli multiple testing adjustment methods can be applied
on raw p-values. These multiple testing correction meth-
ods control the false discovery rate, the expected propor-
tion of false discoveries amongst the rejected hypotheses.
The false discovery rate is a less stringent condition than
the family wise error rate, so these methods are more pow-
erful compared to other methods, e. g. the Bonferroni cor-
rection.

The results can be visualized in an M/A-Plot, allowing an
overview of the data distribution. The Y Axis shows the M
value, the log2-fold change of probe values in the different

Gene information pagesFigure 2
Gene information pages. a)Shows an overview of probe 15841 that measures expression level of the MYC gene. The infor-
mation shown can be modularly extended. b)associated genes for this probe, overlaid with differential gene expression results 
c)shows literature references and a short description derived from RefSeq, d)shows protein information for the gene. The 
upper part shows the coding regions, the lower part shows features for the different transcripts.
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groups. The X Axis shows the A value, the average expres-
sion level for the probe across all the arrays and channels.
Additional information is provided via mouse cursor tool-
tips; a click on a spot provides full information for a
probe. An example of an M/A plot is given in figure 3a.

The fold change of differential expression of the compared
groups can be mapped onto the visualization components
on GEPAT. This allows a direct view of the differential
expression on pathways or interaction networks. An
important aspect of the t-test is its usage in testing a
hypothesis, as it provides error probability values for each
tested probe.

Clustering
Clustering means the partitioning of data into subsets
(clusters), so that each element of the subset shares a com-
mon feature. Clustering methods allow visual insight into
the data and can be used for class discovery, e.g. for find-
ing disease categories among experiment samples. GEPAT
offers the widely used hierarchical clustering, principal
component analysis (PCA) and k-means clustering as
unsupervised clustering methods.

The hierarchical clustering method is based on the dist
and hclust commands of R. Clustering methods include
the widely used unweighted pair-group method using
arithmetic averages (UPGMA), single linkage, complete
linkage and Ward's algorithm. The single linkage method,

Data Analysis result viewsFigure 3
Data Analysis result views. Results are shown for activated B-cell (ABC) type cancer samples and germinal center B-cell 
(GCB) type cancer samples: a)M/A plot of moderate t-test result comparing ABC with GCB b)hierarchical clustering results. 
The color of the samples marks the different disease types. c)PCA analysis results. Characteristical probes for disease were 
used as source for clustering. d)CGH profile comparison. The yellow bar in the chromosome shows the difference between 
the profiles. Above the chromosome the CGH Profile of the ABC group is shown, the GCB group is shown below.
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closely related to the minimal spanning tree, adopts a
'friends of friends' clustering strategy, the complete link-
age methods finds similar clusters, whereas Ward's mini-
mum variance method aims at finding compact, spherical
clusters. Figure 3b shows an example of hierarchical clus-
tering results.

PCA is a technique for retrieving information out of a
dataset by dimensionality reduction, retaining those char-
acteristics of the dataset that contribute most to its vari-
ance. GEPAT can perform PCA on the sample data of the
dataset. The samples are shown in a two-dimensional
plot, where the principal components for each direction
can be chosen freely. A lasso-like selection function pro-
vides easy subset selection based on the clustering results.
The results of PCA clustering are shown in Figure 3c.

The k-means clustering requires a user input, the expected
number k of clusters. GEPAT uses the kmeans command
of R to perform a clustering based on the Hartigan-Wong
algorithm. As a result, k clusters are returned, and can be
used in subset selection for further analysis. These subsets
can even be used as base for further clustering, allowing
the analysis of complex datasets step by step.

Value Calculation
Other characteristics of the microarray data can be calcu-
lated using the expression values. Median and variance
can be calculated for all probes and samples, or only for
specific subsets of the data. This allows using probes with
the highest variance across samples for further analysis.

CGH Data Analysis
GEPAT not only handles microarray data, but is also able
to handle additional information for each sample. In can-
cer datasets, most samples not only differ by gene expres-
sion, but have a specific profile of genetic alterations.
Comparative genomic hybridization (CGH) is a well-
established method that allows the detection of chromo-
somal imbalances in entire genomes. This technique is
widely used in routine molecular diagnostics [37], and
many experiments combine CGH and microarray data.
We developed a data analysis module capable of compar-
ing the CGH-profile of two sample groups. An unpaired
Wilcoxon-Rank test is performed on each chromosomal
segment, for comparison of both sample groups. The
resulting p-value is plotted directly on the chromosome
view, along with the CGH profiles of every group, allow-
ing a quick identification of differing parts. Figure 3d
shows a CGH profile comparison example for the lym-
phoma test dataset.

Data Interpretation
While performing the analysis steps on the data, sets of
interesting genes will be found. Methods for correlating

these data with prior biological knowledge are necessary.
We developed different modules to facilitate the interpre-
tation of these genes and gene sets in a cellular context.
The modules are fully integrated with the analysis steps
described above and with each other. Therefore, an inter-
pretation can be performed on any subset of data. This
integration is a major focus of GEPAT and distinguishes it
from many other available tools for the analysis of gene
expression data. Data Interpretation in GEPAT is modu-
larly extensible, allowing implementation of any yet
unimplemented interpretation method. Out of each Data
Interpretation view, gene information can be provided for
each probe.

GO Term Enrichment Analysis
At the moment, an automatic ontological approach is one
of the most popular methods to gain insights into a set of
differentially expressed genes. The Gene Ontology project
[38] provides a set of structured vocabularies to describe
molecular function, biological process, and cellular com-
ponent in a hierarchical manner. For interpretation of the
data, the GO profile of a subset of genes is compared to
the GO profile of a reference set, in most cases all genes of
the microarray. The change in the relative frequency of
GO terms is used to measure enrichment of GO terms in
the subset. A large number of tools exists for performing
these analysis for a given list of genes [39]. Out of the dif-
ferent statistical tests used by these tools, we chose an
analysis based on a hypergeometrical distribution for
GEPAT, as it is an appropriate model for the probability
that a certain category occurs x times just by chance in the
list of differentially expressed genes. Because of the
directed acyclic graph structure of GO multiple testing
correction for GO term enrichment analysis is not easy to
perform and is still discussed [40], and therefore not pro-
vided at the moment.

The results of the GO term enrichment analysis are shown
in a tree, representing the direct acyclic graph organization
of GO. The tree view of the graph is clearer and enables an
easier navigation, but leads to multiple entries of GO cat-
egories in different branches of the tree. The tree can be
searched for GO Identifiers or GO category names. For
each node, the number of genes belonging to the category
in the subset, in the reference set, the ratio and p-value is
shown. An example for the GO term enrichment view is
given in figure 4a. We additionally provide a results table
for a quick, sortable overview over all categories.

Pathway Analysis
The GO term enrichment analysis provides information
about the biological process genes are involved in, but
does not tell how genes interact. Therefore, another
important task in microarray analysis is the identification
of regulated pathways. The KEGG PATHWAY [41] data-
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base represents networks of molecular interactions and
reactions in the cell in a graphical manner. The available
pathways provide key information of the functional and
metabolic systems within a living cell. We use this data-
base and color differential gene expression of the current
working set onto a pathway, allowing the exploration of
functional relationships between genes. The enzymatic
activity, described by EC numbers [42] in Ensembl, is used
for connecting KEGG maps to the probes on the chip. As
an enzymatic activity can be catalyzed by more than one
gene the pathway view shows different expression values
for each different enzyme. If multiple probes exist for one
gene, the median value is calculated and used for coloring.

Figure 4b shows an example of a KEGG map overlaid with
differential expression results. To give a fast overview on
which maps are containing what amount of genes for the
selected working set, a sortable overview table can be dis-
played.

For each probe on the microarray all KEGG Maps associ-
ated with this probe, if there exist some, can be listed. On
the other hand, all probes given on a specific map can be
used as probe subset in analysis. All enzymes and genes
on a KEGG map can be selected by mouse click, giving
detailed information about the corresponding genes in
the dataset.

Views of data interpretationFigure 4
Views of data interpretation. The overlaid differential expression values are the result of the t-test shown in figure 3a. 
Node colors reflect the differential gene expression. The light gray nodes represent associated genes not on the array. a)Com-
paring the genes with the lowest p-value shows enriched lymphocyte activation in the GO Term enrichment analysis. b)Gluco-
lysis KEGG map overlaid with differential expression result. c) gene association network of the glucolysis genes. 
d)Chromosomal location detail view of a chromosome part containing a differential expressed gene. Genes measured on the 
chip are marked in yellow on the chromosome, differential gene expression is shown above and below the chromosome.
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Graph View
KEGG pathway information is not available for all genes
in a gene subset, because they are not part of a specific
pathway, or they are part of a pathway not included in
KEGG. However, information about functionally relevant
protein interactions is essential for understanding cell
behavior. Therefore, an automated display of a STRING
summary graph for a subset of genes is implemented in
GEPAT. For an easier understanding the differential
expression of genes can be mapped onto the graph, giving
a fast overview of the expression profile of connected
genes. If more than one probe exists for a given gene in the
current working subset, the median value is used for visu-
alization. The summary graph can be limited by different
types of associations and by the association score pro-
vided by STRING.

For each node in the graph, tooltip information is availa-
ble, and a mouse click on a node provides more informa-
tion of the selected gene. However, because of the scale-
free properties of the gene interaction graph the view is
not suitable for larger subsets, as too many nodes do not
allow a proper graph layout. An association graph exam-
ple is shown in figure 4c.

Chromosome Location
To investigate the relationship between gene expression
changes and physical gene location, a combined view of
gene expression and chromosomal location of the probes
is available. The mouse cursor can be used to zoom into a
specific genomic region. Inside the zoom view, tooltips
are provided for each gene, allowing a quick detail inves-
tigation at interesting points of the genome, as shown in
figure 4d.

Conclusion
Despite the availability of many programs for microarray
data analysis, most of them lack an integration of analysis
and interpretation. To understand the effects of differen-
tial gene expression an isolated look at genes is not suffi-
cient. It is rather necessary to interpret the results in the
context of the cellular network. With the analysis of met-
abolic or signaling pathways integrating differentially
expressed genes, the effects of gene expression on the con-
ditions of cells or tissues can be understood.

GEPAT serves as a toolkit capable of handling the whole
progress of microarray data analysis and interpretation in
one program. It provides algorithms for the main steps in
data analysis, as data import, clustering and differential
expression analysis, and offers different methods for data
interpretation and visualization, as gene set enrichment
analysis or gene association overview. A modular probe
and sample selection system allows the usage of analysis
and interpretation results as start for new analysis or inter-

pretation methods, facilitating an easy validation of
hypotheses or the development of new ones. These inte-
grated capabilities and the build-in annotation support
for human microarrays makes GEPAT a powerful tool for
microarray data analysis.

It is necessary to be open for new technologies, as biolog-
ical research develops at fast pace. We implemented large
parts of our software in a modular way. Data handling
functions serve as a framework that can be extended with
various modules for data import, data analysis, data inter-
pretation, subset selection and gene information. As
nearly any analysis method can be implemented in this
framework, we hope for a future growth of our open-
source system. Modules focusing on microRNAs and drug
development are currently worked on.

We developed an internet application, focused on easy
usage, with a desktop-application like design. This allows
a platform-independent remote usage with no need of
installation on a local system. With the free availability of
the web server, local workgroup installation is possible.
To support users untrained in GEPAT, a video tutorial, an
online help and test datasets are provided.

Availability and Requirements
Project Name: GEPAT

Project Home Page: http://gepat.sourceforge.net

Operating Systems: Platform independent, tested on win-
dows and linux

Web browser: tested with Internet Explorer 6 and Mozilla
Firefox [43]

Programming language: Java > 1.5, R > 2.2

Other requirements: MySQL 5.0, Apache Tomcat 5.0, JSF
1.1

Licence: Free for academic or commercial users under the
GNU Lesser General Public Licence (LGPL)

Example Webserver Home Page: http://gepat.bio
apps.biozentrum.uni-wuerzburg.de
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Abstract 

Background: Mantle cell lymphoma (MCL) is an incurable B cell lymphoma and accounts for 6% 

of all non-Hodgkin’s lymphomas. On the genetic level, MCL is characterized by the hallmark 

translocation t(11;14) that is present in most cases with few exceptions. Both gene expression and 

comparative genomic hybridization (CGH) data vary considerably between patients with 

implications for their prognosis. 

 

Methods: We compare patients over and below the median of survival. Exploratory principal 

component analysis of gene expression data showed that the second principal component correlates 

well with patient survival. Explorative analysis of CGH data shows the same correlation.  

 

Results: On chromosome 7 and 9 specific genes and bands are delineated which improve prognosis 

prediction independent of the previously described proliferation signature. We identify a compact 

survival predictor of seven genes for MCL patients. After extensive re-annotation using GEPAT, 

we established protein networks correlating with prognosis. Well known genes (CDC2, CCND1) 

and further proliferation markers (WEE1, CDC25, aurora kinases, BUB1, PCNA, E2F1) form a 

tight interaction network, but also non-proliferative genes (SOCS1, TUBA1B CEBPB) are shown 

to be associated with prognosis. Furthermore we show that aggressive MCL implicates a gene 

network shift to higher expressed genes in late cell cycle states and refine the set of non-

proliferative genes implicated with bad prognosis in MCL. 

 

Conclusions: The results from explorative data analysis of gene expression and CGH data are 

complementary to each other. Including further tests such as Wilcoxon rank test we point both to 

proliferative and non-proliferative gene networks implicated in inferior prognosis of MCL and 

identify suitable markers both in gene expression and CGH data. 
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Background 

Mantle cell lymphomas (MCL) make up about 6% of all cases of non-Hodgkin’s lymphomas. They 

occur at any age from the late 30s to old age, are more common in the over 50 years old population 

and three times more common in men than in women. Morphologically, MCL is characterized by a 

monomorphic lymphoid proliferation of cells that resemble centrocytes. MCL is associated with a 

poor prognosis and remains incurable with current chemotherapeutic approaches. Despite response 

rates of 50-70% with many regimens, the disease typically relapses and progresses after 

chemotherapy. The median survival time is approximately 3 years (range, 2-5 y); the 10-year 

survival rate is only 5-10%.  

The characteristic translocation t(11;14) leads to overexpression of Cyclin D1 in the tumor cells 

which therefore comprises an excellent marker in the diagnostic setting [1]. The present study is an 

effort to improve molecular insights and markers of the disease [2, 3, 4, 5, 6] to improve the 

diagnosis and potential therapeutic strategies. We used gene expression data from 71 cyclin D1-

positive patients and coupled these to data on their corresponding chromosomal aberrations (n=71). 

We found molecular markers in addition to cyclin D1 and characteristic antigens (shared with blood 

cells from which the tumor may develop) CD5, CD20 and FMC7 with the aim to better delineate 

the regulatory network regulated differently in MCL. 

Starting from the proliferation signature [6] we compare long and short living patients subgroups 

“s” (survivor, above median of survival) and “b” (bad prognosis, below median of survival). 

Exploratory analysis of gene expression and CGH-data shows new genes differentiating both 

subgroups, proliferation associated genes and non-proliferative genes. For clinical application a 

seven gene predictor is derived from these gene markers, distinguishing patients with good or bad 

survival prognosis. A Wilcoxon rank-sum test on CGH data identifies specific changes on 

chromosome 9 and 7.  
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Methods 

Data and Materials:  

MCL gene expression data (n=71) were obtained from cDNA arrays containing genes preferentially 

expressed in lymphoid cells or genes known or presumed to be part of cancer development or 

immune function (“Lymphochip” microarrays [7]; data have been deposited at NCBI’s Gene 

Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) under GEO series accession 

number GSE10793). The dataset is completed by comparative genomic hybridization (CGH) data 

for each patient (n=71). The samples were collected from cyclin D1-positive patients of several 

hospitals in the “Lymphoma and Leukemia Molecular Profiling Project” (LLMPP) [6].  

 

Statistical analysis 

Most of the statistical analyses were performed using the “Genome Expression Pathway Analysis 

Tool” (GEPAT). This is a web-based platform for annotation (allowing also extensive re-annotation 

of the data), analysis and visualization of microarray gene expression data [8] including genomic, 

proteomic and metabolic features.  

The database performs the analyses applying Bioconductor [9], an open source software for the 

analysis and comprehension of genomic data, based on the R programming language [10]. 

For identification of differentially expressed genes, GEPAT uses the “limma” package which offers 

moderate t-statistics [11, 12]. It fits linear models on the gene expression values of each gene with 

respect to the groups which are compared. After that empirical Bayes shrinkage of the standard 

errors is performed. Due to its robustness the method can be applied to experiments with a small 

number of samples. To correct for multiple testing it offers three options, we chose the method by 

Benjamini and Hochberg [13].  

For identifying all protein-protein network interactions GEPAT uses the “Search Tool for the 

Retrieval of Interacting Genes/Proteins” (STRING) [14]. The STRING database comprises known 

and predicted protein-protein interactions. The interaction information arises from genomic context, 
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experiments, other databases, coexpression and textmining. 

For explorative correspondence analysis and principal component analysis, functions from the R 

package “Modern Applied Statistics with S” (MASS) was applied [15]. A constrained or canonical 

correspondence analysis (CCA) [16] was performed using the vegan package [17]. 

The Wilcoxon rank-sum test [18], a non-parametric statistical test, was applied to the CGH data. It 

tests here each of the chosen bands against the null hypothesis that there is no statistically 

significant difference between our proposed two MCL patients “b” and “s”. The R package 

“survival“ is used to calculate all Cox regression hazard models [19, 20]. It examines the correlation 

between the given measurements and the survival data. For the exploratory analysis of the CGH-

data as well as for the new predictor of MCL overall survival, we used the Wald test to determine 

the significance of the association between the model and the outcome. 

 

Results 

Exploratory analysis and lymphoma prognosis 

The survival time itself is the most obvious and biological meaningful parameter in which 

subgroups should show a big difference for realising individual clinical treatment. We selected 

3.000 genes with the highest variance and applied correspondence analysis (Figure 1). We found 

(71 MCL patients) that already the second axis separated almost perfectly the longer and the shorter 

living patients above and below the median of survival. Furthermore, this coincides well with the 

median of the proliferation signature [6] values in a multidimensional data space (see Methods). 

This finding was re-examined by exploratory data analysis of the genes of the proliferation 

signature and a huge amount of further genes. We ranked a total of 71 MCL patients according to 

their proliferation signature values and separated them according to the median. We define two 

groups - “s” for small and “b” for big proliferation signature with big difference in the survival 

time. Patients with a high proliferation signature value live shorter on average, than patients with a 

low proliferation signature value. 
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Figure 1: Correspondence analysis identifies the two Mantle cell lymphoma subgroups. The gene expression data 

are projected on the first two principal axes. The patients can be clearly separated by this exploratory analysis 

considering the 3.000 genes (red dots) of the highest variance. In the correspondence plot this is indicated by the 

horizontal separation line. The patients are labelled with “s” and “b” which represent the separation by the median of 

the proliferation signature into two different entities. Patients with a proliferation signature value smaller than the 

median are marked with „s“ and the other patients with „b“.  

 
To each single chromosome of the CGH data exploratory data analysis was applied, correspondence 

analysis (Supplement: Figure 1S) and principal component analysis (Figure 2). Both methods are 

useful for exploring information and structures in data in order to get a first and unbiased 

impression. Principal components analysis reduces multidimensional data sets to lower dimensions 

for analysis. Correspondence analysis works similarly, but scales the data, such that both rows and 

columns can be visualized in one plot. Results show a strong correlation for four bands of 

chromosome 9, 9p24, 9p23, 9p22 and 9p21 and above median (“s”) or below median patient 

survival (“b”).  
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Figure 2: Principal Components Analysis of chromosome 9 bands separating the "s" and "b" group. The second 

principal component separates almost all patients of the subgroup “b” from the remain. They are grouped together close 

to the first four vectors, corresponding to the first four bands 9p24, 9p23, 9p22, 9p21, which go into the same direction 

and are of similar length. Remarkable are the vectors of the bands 9q33 and 9q34. They also are of similar length and 

go exactly into the same direction. Along their length, they congregate almost all patients of the type “s”. This leads to 

the assumption, that the first four and the last two bands of chromosome 9 play a crucial role for “s” and “b” 

classification. 

 

In the correspondence analysis plot Figure 1S (supplement), the four bands mentioned before 

attract most patients of the subgroup “b” and the 1st factor axis separates almost completely the two 

groups. Bands 9q33 and 9q34, are located relatively far away from the remaining ones. In Figure 2 

the second principal component groups almost all the “b” - patients near the four bands 9p24, 9p23, 

9p22, 9p21 with vectors of similar length and similar direction. The vectors of 9q33 and 9q34 

include along their lengths almost all “s” samples. These results indicate that these 6 bands of 

chromosome 9 correlate with good and bad survival between patients. The principal component 1 is 
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an interesting main component, carrying 51% of the variance, but non-trivial to link to a known 

phenotype (we investigated different possibilities including sex differences, cancer sub-types, 

patient accrual and correlation with different gene signatures). 

Further exploratory data analysis was performed to merge the survival time and the CGH-data by 

the Cox regression hazard model. A univariate Cox regression hazard model was performed on all 

available bands of the CGH-data of all 71 patients. The mentioned four bands of chromosome 9 

delivered amongst others the most significant results. The resulting bands are “9p24”, “9p23”, 

“9p22”, “9p21”, “9q31” and “9q32”. These comprise the first four bands found on chromosome 9 

by the analyses before. 

 

A compact predictor of survival with seven genes 

Exploratory analysis pointed to differences between longer and shorter living MCL patients, but 

rather than forming two distinct subgroups, the patients constitute a coherent continuum. Therefore, 

the results of the exploratory analysis above were not additionally confirmed by classification tools. 

However, the differences in gene expression above and below the median of survival correlate well 

with different gene signatures identified before (proliferation signature) as well as with the new 

ones described in our study (non-proliferative signatures, see below). To improve survival 

predictions we further searched with univariate Cox regression hazard analysis for highly 

significant genes, which correlate strongly with the overall survival time. The cox regression was 

applied to all data points. However, the first 50 MCL samples served as training set for 

classification by gene signatures and the remaining data (21 patients) for validation. The idea was 

here to have a large training data set, but still keep a third of the available data for validation. 

A four gene predictor with the genes CDC2, ASPM, tubulin-α and CENP-F reported in [6] could 

not be tested, as after reannotation by GEPAT [8], mapping of CENP-F seemed uncertain. 

Predictors with 4, 5 or 6 genes delivered not the same predictive power as the proliferation 

signature [6] (data not shown). The prediction power was calculated from the correct classification 
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and misclassification for patients over or below the median of survival for 69 patients (the two 

patients with the median value were excluded).  

However, we identified a set of seven genes delivering similar good prognosis separation. It 

includes (i) the well known key cell cycle kinase CDC2 [21, 22], (ii) the “cell division cycle 20 

homolog” (CDC20) required for anaphase and chromosome separation [23] and (iii) the salvage 

pathway gene HPRT1 (hypoxanthine phosphoribosyltransferase 1), three genes from the 20 genes 

proliferation signature of Rosenwald [6]. We get improved prediction power including four 

additional genes (Table 1): (i) centromere protein E (CENPE), a kinesin-like motor protein; it 

accumulates during G2 phase of cell cycle for chromosome movement or spindle elongation (24). 

(ii) BIRC5 (baculoviral IAP repeat-containing 5 gene), an inhibitor of apoptosis (IAP gene family) 

is expressed in most tumours and in lymphoma (25), participates in the spindle checkpoint and 

associates with AURKB (26). (iii) ASPM (abnormal spindle homolog) is essential for normal 

mitotic spindle function (27). (iv) Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), 

is found in the nucleolus, is over-expressed in human tumours and represses IGF2 during late 

development (28, 29, 30).  

 

Table 1: The genes of the survival predictor. Univariate Cox regression hazard analysis revealed these seven genes 

best correlating with the survival time (see Material and Methods). The first column indicates the gene accession 

number in the data set (Acc), the second the gene name, followed by the Ensembl identifier and the official full name. 

The genes are ordered by their significance in decreasing order. CENPE is the most significant gene. 

Acc gene EnsemblID official full name 

6558 CENPE ENSG00000138778 Centromeric protein E 

7495 CDC20 ENSG00000117399 Cell division cycle protein 20 homolog 

7892 HPRT1 ENSG00000165704 Hypoxanthine-guanine phosphoribosyltransferase 

7019 CDC2 ENSG00000170312 Cell division control protein 2 homolog 

7376 BIRC5 ENSG00000089685 Baculoviral IAP repeat-containing protein 5 

6422 ASPM ENSG00000066279 
Abnormal spindle-like microcephaly-associated 

protein 

5923 IGF2BP3 ENSG00000136231 IGF-II mRNA-binding protein 3 
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Figure 3: Correspondence analysis separates two MCL subgroups derived by the 7 genes survival predictor. The 

3.000 genes with highest variance (red dots) separate between the two subgroups, which were delivered by the seven 

gene predictor and are drawn as “S” and “B”. They were separated by the median of the predictor values. In contrast to 

the proliferation signature based predictor (Figure 1), the patients here show a little more overlap, but cluster clearly. 

 

The seven genes were used to calculate a multivariate Cox regression hazard model and with its 

coefficients, a gene expression based survival estimator separated all 71 patients into two 

subgroups. Two patients had exactly the median of survival and were excluded in this comparison, 

56 agreed with the classification according to the gene signatures, 13 did not. Compared to the 

proliferation [6] signature’s ability to distinguish patients with good and bad survival prognosis, the 

seven gene predictor does it similarly well (Figure 4). The correlation between this classification 

and the “s” and “b” groups of the proliferation signature is overall about 0.62 and in our validation 

set (patients 51 - 71) it is 0.81.  

A correspondence analysis of the 3.000 genes with the highest variance showed clear clustering of 

patients with good or bad prognosis, respectively (Figure 1). Using proliferation signature [6] 
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(Figure 3), samples show a little overlap, but are again separated clearly. 

Taken together, these results show that the seven gene predictor is able to distinguish patient 

prognosis as well as the complete proliferation signature, but with less effort.  
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Figure 4: Kaplan Meier plot of survival data in MCL subgroups. The x-axis denotes the course of time in years and 

the y-axis marks the probability of survival. Both, the proposed proliferation signature (black) and the seven genes 

predictor (grey) separate clearly two risk groups in the survival data. The overlap between the patients of the two 

classifications is relatively high. 

 

Protein networks and interactions differently regulated in good and bad 

prognosis tumors 

We found a dense regulatory network of interacting genes correlated with prognosis. Applying a 

moderate t-test, the well known cell division cycle 2 gene (CDC2 / CDK1) for G1 to S and G2 to M 

transition [31, 32] shows the most significant difference between the longer living “s” and the 

shorter living “b” patients (Table 2). Furthermore, its interaction partners according to HPRD  
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Table 2: Most significant genes separating good (s) and bad (b) prognosis. The most significant differentially 

expressed genes regarding good (“s”) or bad (“b”) prognosis determined with a moderate t-test. P-values were corrected 

for multiple testing [13]. The gene “cell division cycle 2” (CDC2), which is important for the transition G1 to S and G2 

to M shows the biggest difference in gene expression between the two groups. This indicates that these cell cycle 

transitions are part of the difference between the two groups. 

 
Acc gene fold change p-value EnsemblID 

7019 CDC2 1.3737029 1.8651454E-13 ENSG00000170312 

6632 NP_057427.3 0.94384 3.4574367E-13 ENSG00000117724 

3399 UHRF1 1.1446086 1.5513529E-12 ENSG00000034063 

5112 NP_060880.2 1.0916529 1.5513529E-12 ENSG00000123485 

6994 AURKB 1.4594886 1.5513529E-12 ENSG00000178999 

6388 MKI67 1.5062114 1.7304206E-12 ENSG00000148773 

6721 Q9Y645_HUMAN 1.2185314 3.2408542E-12 ENSG00000140451 

7024 BUB1 1.2488679 3.2408542E-12 ENSG00000169679 

6392 NP_057427.3 1.3208085 3.2902188E-12 ENSG00000117724 

5726 MKI67 1.4871315 3.6012686E-12 ENSG00000148773 

6029 NP_057427.3 1.2980943 5.249176E-12 ENSG00000117724 

7423 BIRC5 1.3726515 6.49239E-12 ENSG00000089685 

4985 ASPM 1.3310171 7.281489E-12 ENSG00000066279 

5754 KIF23 1.2461857 1.6424877E-11 ENSG00000137807 

5271 ASPM 1.3205649 2.2259293E-11 ENSG00000066279 

6104 KIF23 1.1683029 2.4981522E-11 ENSG00000137807 

 
 
database [33] show a significant up or down regulation comparing good and bad surviving patients 

(Figure 5), e.g. WEE1 and CDC25. Moreover, aurora kinases A, B [34] and BUB1 kinase 

(activating the spindle checkpoint, [35]) are differently regulated between shorter and longer living 

patients. However, there are further genes involved in this network of directly interacting genes 

differently regulated in good or bad prognosis patients (Figure 5) such as (i) proliferating cell 

nuclear antigen” (PCNA), a cofactor of DNA polymerase delta, helps to increase the processivity of 

leading strand synthesis during DNA replication in group “b”. Because of its ability to interact with 

multiple partners, it is involved in Okazaki fragment processing, DNA repair, translation, DNA  
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Figure 5: Protein interaction network of significantly different expressed genes. The genes encoding these proteins 

show a significant expression difference between the “s” and “b” group (moderate t-test). Remarkably CDC2 is 

involved in a small interaction network of protein kinases and almost all of these interaction partners(CDC25, WEE1, 

AURKB, AURKA, BUB1) are associated with the cell cycle. 

 

synthesis, DNA methylation, chromatin remodelling and cell cycle regulation [36]. (ii) E2F 

transcription factor 1 (E2F1), this protein can mediate both cell proliferation and p53-

dependent/independent apoptosis [37]. It is lower expressed in group “s”. (iii) Nucleolin is an 

abundant multifunctional phosphoprotein of proliferating and cancerous cells [38, 39, 40, 41] and 

highly expressed in “b”.  

Interaction partners of CCND1 are also significantly differently expressed (Figure 7): CCND1 and 

CDK4 are assumed to be involved in cell cycle progression of MCL, MYC is suspected of 

increasing MCL’s proliferation rate. FOS, JUN and MYBL2 are partly known to play a role in 

cancer, but not explicitly in MCL. FOS ("v-fos FBJ murine osteosarcoma viral oncogene homolog") 

and JUN ("jun oncogene") are weakly downregulated in "b". Other interaction partners such as 

MYC ("V-myc myelocytomatosis viral oncogene homolog (avian)"), MYBL2 ("V-myb  
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Figure 6: Differences in gene expression of interaction partners of CDC2 in MCL subgroups. In this network 

figure, red indicates high expression and blue low expression in the subgroup “b” of the proliferation signature. White 

indicates no gene expression difference and grey the unavailability of the gene in our data set. “Cell division cycle 2” 

(CDC2) gene interacts in different manners with “cyclin D1” (CCND1), “cell division cycle 25C”(CDC25C), 

“proliferating cell nuclear antigen”(PCNA), “E2F transcription factor 1”(E2F1) and WEE1. CDC2 and CCND1 are 

both required for the G1/S transition. The genes WEE1 and CDC25C phosphorylate and dephosphorylate the 

complexes bound with CDC2 in a cell cycle regulating manner. The "proliferating cell nuclear antigen" (PCNA) is 

involved in DNA replication whereas "E2F transcription factor 1" (E2F1) controls cell cycle and mediates cell 

proliferation and apoptosis. A cell cycle regulated transcription activator “Nucleolin” (NCL) shows little difference. 

 

myeloblastosis viral oncogene homolog (avian)-like 2"), CDK4 ("Cyclin-dependent kinase 4") and 

CDK6 show higher gene expression values in bad prognosis patients below the median of survival. 

Moreover, there are some genes with similar significance and expression difference, associated with 

other functions (Table 3). Most of them are associated with DNA metabolism. Three of them, 

"suppressor of cytokine signaling 1" (SOCS1), "tubulin, alpha 1b" (TUBA1B), and  
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Figure 7: Protein interaction partners of CCND1: Different gene expression in MCL subgroups. The colors red, 

blue and grey mean “over expressed”, "down regulated” (in “b”) and “not available in the data set”. FOS encodes for a 

leucine zipper protein and plays a role in regulation of cell proliferation, differentiation, transformation and 

tumourigenesis [58]. The JUN protein interacts directly with specific target DNA sequences to regulate gene expression 

[59] and is involved in tumorigenesis by cooperating with oncogenic alleles of Ras, an activator of the mitogen 

activated protein kinases [60]. MYC and MYBL2 play a role in cell cycle progression and act as transcription factors. 

MYC is also associated with apoptosis, cellular transformation, cell growth, proliferation, differentiation, and a variety 

of hematopoietic tumors, leukemias and lymphomas [61, 62, 63], and was part of the original proliferation signature [6]. 

MYBL2 has been shown to play a role in the G1/S transition [64] and proliferation [65] and is known to be regulated by 

CCND1 [66, 67]. CDK4 and CDK6 are important regulators of cell cycle transition from G1 to S, phosphorylate, and 

thus regulate the activity of tumor suppressor protein Rb [68]. 

 

“CCAAT/enhancer binding protein (C/EBP), beta” (CEBPB) are mentioned here. CEBPB, is a 

transcription factor. It plays an important role in immune and inflammatory responses [42]. 

Additionally it can stimulate the expression of the collagen type I gene. TUBA1B encodes for an 

important part of the microtubules. SOCS1 is a member of cytokine-inducible inhibitors of 

signalling [43] and inhibits protein kinase activity. 
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Table 3: Genes separating good (s) and bad (b) prognosis not associated with cell cycle and proliferation 

association 

EnsemblID gene p-value fold change 

ENSG00000185338 SOCS1 2.3029981E-10 1.0293059 

ENSG00000123416 TBAK_HUMAN 6.1972505E-10 1.0070857 

ENSG00000172216 CEBPB 7.545418E-10 0.7460686 

 

CGH data reveals new genes implicated in MCL outcome 

We applied the Wilcoxon rank-sum test on the CGH data and compared the patients with good “s” 

and bad prognosis “b” (over and below median of survival). The null hypothesis corresponds to no 

differences between the two entities. The resulting p-values for every band of chromosome 9 are 

compared in Figure 8. They show strongly the significance of the first four bands 9p24, 9p23, 9p22 

and 9p21. On these bands are MCL related genes such as "cyclin-dependent kinase inhibitor 2B" 

(CDKN2B) and "cyclin-dependent kinase inhibitor 2A" (CDKN2A). TP53 mutations are associated 

with the blastoid variant of MCL and with a worse prognosis. The bands 9q33 and 9q34 have a 

weaker significance. To visualize this result more clearly Figure 2S in the supplement plots the 

densities of the p-values. A peak in the density indicates significant bands of the Wilcoxon test.  

The Wilcoxon rank sum test showed similar results for chromosome 7. Here, the bands 7p21, 7p15, 

7p14 are potentially related to the classification of “s” and “b” patients. Now the log p-values and 

their densities are plotted against the bands in Figure 9 and in Figure 3S (supplement). The 

explorative analyses of chromosome 7 could not show such a clear relation as in chromosome 9.  

Specific gene expression differences in patients with good or bad prognosis are well supported by 

the CGH data of chromosome 9. We checked the location of the signature genes as we wondered if 

they were on chromosome 7 or 9, however this was not the case. Also the genes of the gene 

network in Figure 6 are located elsewhere. No result mentioned before could explain the 

relationship between the subgroups and the subgroup-separating CGH-data of chromosome 9. We 

thus investigated the gene expression data of these bands. Again a moderate t-test was applied to  
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Figure 8: P-values of the Wilcoxon test for the bands of chromosome 9. This figure plots the bands of Chromosome 

9 on the x-axis against the p-values of the Wilcoxon test(y-axis), which tested each band between the two groups "s" 

and "b". The p-values of the first four bands 9p24, 9p23, 9p22, 9p21 are very small, compared to the remaining ones. 

This affirms the proposed subgroups "s" and "b" and indicates that the first four bands have a relation to this 

classification. 
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Figure 9: P-values of the Wilcoxon test for the bands of chromosome 7. The Wilcoxon test was applied to all bands 

of chromosome 7 over the two groups "s" and "b". The bands of chromosome 7 (x-axis) are plotted against the log p-

values (y-axis). Three bands show a very low p-value: 7p21, 7p15, 7p14. As the four bands of chromosome 9, they 

could have a relation to the “s” – “b” classification. 
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rank genes differentially expressed between “s” and “b”. The top five are listed in Table 4, e.g. the 

"Heat Shock 70kDa protein 5" and a catalytic subunit of "Protein Phosphatase 6". Several of their 

functions implicate them to be critical in cancer development. Their genomic position revealed a 

quite remarkable clustering of these genes, shown in Figure 4S. Three of the genes seem to be 

located very closely to each other. The “heat shock 70kDa protein 5” (HSPA5), also referred to as 

’immunoglobulin heavy chain-binding protein’ (BiP) targets misfolded proteins for degradation, 

and has an anti-apoptotic property. It is induced in a wide variety of cancer cells and cancer biopsy 

tissues and contributes to tumor growth and confers drug resistance to cancer cells [44]. The PPP6C 

gene encodes for a catalytic subunit of the Ser/Thr phosphatases, the “protein phosphatase 6 

catalytic subunit” [45]. The pre-B-cell leukemia transcription factor 3 (PBX3) shows extensive 

homology to PBX1, a human homeobox gene involved in t(1;19) translocation in acute pre-B-cell 

leukemias. But in contrast to PBX1 the expression of PBX3 is not restricted to particular states of 

differentiation or development [46]. It is also known that if HoxB8, a homeobox gene identified as a 

cause of leukaemia, binds to the Pbx cofactors it blocks differentiation in certain cell types [47]. 

“Prostaglandin-endoperoxide synthase 1” (PTGS1) is the key enzyme in prostaglandin biosynthesis, 

and is also known to play a role in the human colon cancer [48, 49]. The expression of the 

alternative splice variants is differentially regulated by cytokines and growth factors [50, 51, 52]. 

Very little is known about “quiescin Q6-like 1” (QSCN6L1), except its major role in regulating the 

sensitization of neuroblastoma cells for IFN-gamma-induced apoptosis [53]. A similar clear 

clustering as on chromosome 9 could not be detected on chromosome 7.  
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Table 4: The best “s” and “b” separating genes of chromosome 9 bands 9p24, 9p21, 9q33, and 9q34. A moderate 

t-test revealed the following ones as the genes with the highest significance. Althogh the significance is weak, it is quite 

remarkable that these genes here show a distinct clustering on the basis of genomic positions, which can be observed in 

Figure 4S. 

 

gene start bp. end bp. fold change p-value official full name 

HSPA5 127036953 127043430 0.4364743 0.03039 Heat shock 70kDa protein 5 

PPP6C 126948673 126991918 0.2798860 0.03385 
Protein phosphatase 6, 

catalytic subunit 

PBX3 127548372 127769477 0.3976210 0.03385 
Pre-B-cell leukemia 

homeobox 3 

PTGS1 124173050 124197803 0.4124149 0.03927 
Prostaglandin-endoperoxide 

synthase 1 

QSCN6L1 138240395 138277470 -0.3886557 0.03927 
Quiescin Q6 sulfhydryl 

oxidase 2 

 
 
Discussion 

Several different marker genes and events have been proposed for MCL, e.g the translocation 

t(11;14)(q13;q32) [1], immunohistochemically [54] and Repp86 proteins as a proliferation markers 

[55] and increased levels of cyclin D1. 

The present study consolidates gene expression and CGH-data regarding MCL subgroups with 

good or bad prognosis to an overall picture. These subgroups are indicated and confirmed by 

exploratory analyses. This picture shows as yet unknown relations and differences between patients 

from these groups. 

Correspondence analysis is an unsupervised tool to project high dimensional data into lower 

dimensional subspaces. Surprisingly, its second component separates well the shorter and longer 

living patients according to the median of survival. This result is in close agreement with the 

median of the outcome predictor score derived by the proliferation signature [6] as a discriminator.  

A new predictor of survival with similar predictive power as the proliferation signature of 20 genes 
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[6] was developed requiring gene expression values of only seven genes. With the key genes 

CDC20, HPRT1 and CDC2 the seven-gene-predictor matches with three genes from the 20 genes 

proliferation signature. Moreover, the four genes CENPE, BIRC5, ASPM and IGF2BP3 add to its 

predictive power and are associated with chromosome movement, inhibition of apoptosis and 

tumors. It was shown that a four gene predictor (CDC2, ASPM, tubulin-alpha, CENP-F) [6] is also 

able to predict length of survival with high statistical significance. Besides the fact, that the 

proliferation signature is more efficient and powerful than the four gene model, our model meets 

extensive re-annotation of the genes through the clone IDs. 

These CGH data support the association of alterations in chromosomal regions and outcome of 

MCL patients.  

Gene expression analysis comparing long and short surviving patients delivered cell cycle related 

genes and their protein-protein interactions. A dense interaction network differently regulated in 

good or bad prognosis includes CDC2 and interaction partners for cell cycle control and 

proliferation (CCND1, CDK4, MYC and E2F1; CDC25, WEE1, AURKB, AURKA, BUB1, PCNA, 

FOS, JUN and MYBL2). However, we identified furthermore non proliferation genes differentially 

implicated in MCL prognosis such as SOCS1 and CEBPB. 

The Wilcoxon rank sum test revealed relations between the bands 9p24, 9p23, 9p22 and 9p21 and 

the difference between the longer and shorter living patients. Investigation of those bands regarding 

most significant differentially expressed genes revealed a cluster of genes with properties such as 

“differentiation blocking”, “anti apoptotic” and “apoptosis inducing”. Supporting our finding, the 

band 9p21 was suggested be implicated in MCL patient outcome [56]. Some bands of chromsome 7 

identified further expression differences somewhat weaker associated with the outcome. As the 

annotation and properties of embedded genes are not completely known, further data are required to 

better explain the relation between gene functions and survival. CGH-data may improve the power 

of gene expression based predictors [57]. Besides others, the band 9p21 was associated with a poor 

clinical outcome, which affirms our finding.  
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Our study extends these CGH results in two ways: (i) exploratory analysis shows here for the first 

time, that in fact CGH-data alone can predict prognosis in MCL, (ii) CGH-data point here directly 

to several genes regulated differently in good or bad prognosis patients. 

 

Conclusion 

After careful re-annotation of involved genes we found two subgroups of MCL patients which were 

found and supported by exploratory analysis of gene expression values and CGH-data, network 

analysis and literature mining. We obtained an improved classification of MCL regarding 

prognosis. Differentially expressed genes formed a tight protein interaction network of kinases. A 

seven gene predictor appeared as an easy to measure prognosis indicator for clinical use. The 

Wilcoxon rank sum test as well as PCA was applied successfully to a CGH data set in this study. 

Both identify bands on chromosome 9. Following the indicated bands, we found differentially 

expressed MCL related genes.  
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Additional Files: 

Additional File 1. 

File Name: Figure 1S.pdf 

File format: PDF 

Title: Correspondence analysis of chromosome 9 over the "s" and "b" group. 

Description: The first order factor axis separates almost completely these two groups. It is also 

obvious that the first four bands 9p24, 9p23, 9p22, 9p21 attract most of all b-patients. This leads to 

the assumption, that these four bands are responsible for the difference of the longer living “s” and 

the shorter living “b” patients. The second order factor axis separates at first glance strongly the last 

two bands 9q33 9q34 from the rest.  
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Additional File 2. 

File Name: Figure 2S.pdf 

File format: PDF 

Title: Density plot of p-values of the Wilcoxon test for the bands of chromosome 9. 

Description: The p-values of Wilcoxon test for the bands (x-axis) of chromosome 9 over the 

subgroups “s” and “b” are represented in their relative frequencies (y-axis). The peak of the first 

bands indicates that signal of the test ranges from p-value 0 to 0.1. The p-values of the first four 

bands 9p24, 9p23, 9p22, 9p21 vary between these limits.  

This affirms the proposed subgroups "s" and "b" and indicates that the first four bands have a 

relation to this classification. 

 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

p−Values

re
la

tiv
e 

Fr
eq

ue
nc

ie
s

 

160 III. RESULTS



 

 30

Additional File 3. 

File Name: Figure 3S.pdf 

File format: PDF 

Title: Density plot of p-values of the Wilcoxon test for the bands of chromosome 7. 

Description: The p-values from the Wilcoxon test applied on the bands of chromosome 7 are 

plotted against their relative frequencies. A peak occurs between the limits of 0 and 0.1. The p-

values of some bands vary between these limits. These bands are the significant signal of the 

performed test, affirm the proposed subgroups "s" and "b" and could have a relation to this 

classification. 
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Additional File 4. 

File Name: Figure 4S.pdf 

File format: PDF 

Title: Plotted base pair positions of genes on Chromosome 9. 

Description: Here all genes, which are located on the bands 9p24, 9p21, 9q33, and 9q34 of 

chromosome 9 are sorted and plotted according to their starting genomic position. The positions are 

plotted on the y axis. The x-axis represents the genes. 

A moderate t-test revealed the best “s” and “b” separating genes in our dataset in these bands. 

Their starting points are drawn in red. Remarkably three are close to each other. 
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Additional File 5. 

File Name: RatiosBlenk 

File format: Text 

Title: Gene expression ratios used in this study. 

Description: The text file contains all the data (Patients, Ensembl.ID etc.) used for the study after 

normalization. For the raw intensities please refer to the GEO accession number.  

(Text file too large to be printed here, please refer to the supplement of the manuscript at BMC 

Cancer.) 

 

 

Additional File 6. 

File Name: Prognosis List 

File format: Text 

Title: Different prognosis assigned to patients 

Description: The text file contains how different prognosis can be assigned to patients (over / 

below median of survival). Please refer to the paper for detailed explanation. 

(Text file too large to be printed here, please refer to the supplement of the manuscript at BMC 

Cancer.) 
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Germinal Center B Cell-Like (GCB) and Activated B Cell-Like 
(ABC) Type of Diffuse Large B Cell Lymphoma (DLBCL): 
Analysis of Molecular Predictors, Signatures, Cell Cycle 
State and Patient Survival
S. Blenk1, J. Engelmann1, M. Weniger1, J. Schultz1, M. Dittrich1, A. Rosenwald2, 
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Abstract: Aiming to fi nd key genes and events, we analyze a large data set on diffuse large B-cell lymphoma (DLBCL) 
gene-expression (248 patients, 12196 spots). Applying the loess normalization method on these raw data yields improved 
survival predictions, in particular for the clinical important group of patients with medium survival time. Furthermore, we 
identify a simplifi ed prognosis predictor, which stratifi es different risk groups similarly well as complex signatures.

We identify specifi c, activated B cell-like (ABC) and germinal center B cell-like (GCB) distinguishing genes. These 
include early (e.g. CDKN3) and late (e.g. CDKN2C) cell cycle genes.

Independently from previous classifi cation by marker genes we confi rm a clear binary class distinction between the ABC 
and GCB subgroups. An earlier suggested third entity is not supported. A key regulatory network, distinguishing marked 
over-expression in ABC from that in GCB, is built by: ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, 
FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5. It predicts and supports the aggres-
sive behaviour of the ABC subgroup. These results help to understand target interactions, improve subgroup diagnosis, risk 
prognosis as well as therapy in the ABC and GCB DLBCL subgroups.

Keywords: regulation, gene expression, cancer, immunity, prognosis

Introduction
Diffuse large B-cell lymphomas (DLBCL) are the most frequent B cell Non-Hodgkin’s lymphomas. Diag-
nosis relies at present on morphological, immune-phenotypic and laboratory parameters. Clinically, the 
International Prognostic Index (IPI; age, tumor stage, serum lactate dehydrogenase concentration, perform-
ance status, and the number of extranodal disease sites) (The International NHL Prognostic Factors Project, 
1993) is often used to predict outcome in DLBCL. On the molecular level, gene expression signatures 
have been defi ned that predict outcome in DLBCL independent of the IPI (Rosenwald et al. 2002).

Alizadeh et al. (2000) investigated the gene expression patterns of “diffuse large DLBCL, follicular 
lymphoma and chronic lymphatic leukemia. They identifi ed two novel distinct types of the DLBCL by 
gene expression profi ling. The “activated B cell-like DLBCL”(ABC) group has a lower overall survival 
rate than the “germinal centre B cell-like DLBCL” (GCB) group. Von Heydebreck et al. (2001) applied 
their class discovery method ISIS on a subset of 62 samples and 4026 clones of the data by Alizadeh 
et al. (2000) and confi rmed for these data the two entities ABC and GCB. The survival analysis of 
Rosenwald et al. (2002), assigned several genes to gene expression signatures and based on this an 
outcome predictor of survival. The constituents are the “Germinal-center B-cell signature”, “MHC class 
II signature”, “Lymph-node signature”, “Proliferation signature” and the gene “BMP6”. The predictor 
has a greater prognostic power in classifying patients into risk groups than the IPI (The International 
Non-Hodgkin’s Lymphoma Prognostic Factors Project 1993). Starting with 36 well known DLBCL 
prognosis genes from the literature, Lossos et al. (2004) found a six gene based outcome predictor and 
applied it to the data sets of Alizadeh et al. (2000) and Rosenwald et al. (2002). The latter one is an 
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ongoing study and thus an extension and revision 
of the old data from Rosenwald et al. (2002) was 
possible for us (see Material and Methods).

In this study we investigate fi rst the robustness 
of the data (Rosenwald et al. 2002) with respect to 
advanced and more appropriate normalization meth-
ods. For that, “loess” and “scale” are performed on 
the data set, as we are aware, for the fi rst time and 
the results are discussed. Next, unbiased statistical 
classifi cation analysis confi rms for this enlarged data 
set the classical subgroups ABC DLBCL and GCB 
DLBCL independent from hierarchical clustering. 
Furthermore it supports those subgroups being 
homogeneous entities in the data.

Our analysis includes the expression values for 
the above 36 DLBCL prognosis genes and we 
apply more adequate tools from the Bioconductor 
library (Gentleman et al. 2004) to derive better 
predictors than e.g. the six-spot predictor found by 
(Lossos et al. 2004). Moreover, we identify and 
demonstrate that expression of early and late cell 
cycle genes distinguishes well the pathological 
entities ABC and GCB DLBCL.

Finally, we show that the most signifi cant gene 
expression differences found including cell cycle 
genes, classical marker genes and all best separat-
ing genes are integrated into a compact key regula-
tory network with clear expression differences 
between both diffuse large B-cell-lymphoma sub-
groups. This fi nding is confi rmed comparing the 
average distribution of genes on the Lymphochip 
and the connection distances between them in the 
human interactome as well as by confi rming key 
gene expression differences found in our main data 
set from new analysis of further gene expression 
data by Shipp et al. 2002. A picture emerges where 
a central regulatory circuit tunes immune signa-
tures, apoptotic and proliferation pathways in dif-
ferent ways between ABC and GCB DLBCL. The 
introduced methods can also be applied to other 
studies of gene expression analysis in cancer to 
establish improved prognosis predictors, identify 
regulatory circuits and for proper group 
classifi cation.

Materials and Methods

Gene expression data and materials
Patient samples were obtained after informed 
consent and were treated anonymously during 
microarray analysis. DLBCL lymph-node biopsies 

were either snap frozen, frozen in OCT or disag-
gregated and frozen as a viable cell suspension. 
DLBCL gene expression was measured with cDNA 
arrays containing genes preferentially expressed 
in lymphoid cells or genes known or presumed to 
be part of cancer development or immune function 
(“Lymphochip” microarrays (Alizadeh et al. 
1999)). Our array includes spots to measure 
individual exons of the same gene which may be 
expressed differently in both lymphoma sub-
groups.

Microarray procedures
Fluorescent images of hybridized microarrays were 
obtained using a GenePix 4000 microarray scanner 
(Axon Instruments). Images were analysed with 
ScanAlyze (M. Eisen; http://www.microarrays.
org/software), and fl uorescence ratios (along with 
numerous quality control parameters; see ScanAlyze 
manual) were stored in a custom database. Single 
spots or areas of the array with obvious blemishes 
were flagged and excluded from subsequent 
analyses. Messenger RNA was extracted according 
to standard procedures (Sambrook and Russel, 
2001) from tumor biopsy specimens of DLBCL 
patients. All cDNA microarray analyses were 
performed using poly-(A)+ mRNA (Fast Track, 
Invitrogen). For each hybridization, fl uorescent 
cDNA probes were prepared from an experimental 
mRNA sample (Cy5-labelled) and a reference 
mRNA sample (Cy3-labelled) consisting of a pool 
of nine lymphoma cell lines (Raji, Jurkat, L428, 
OCI-Ly3, OCI-Ly8, OCI-Ly1, SUDHL5, SUDHL6 
and WSU1). The use of a common reference cDNA 
probe allows the relative expression of each gene 
to be compared across all samples.

The original data generated by Rosenwald et al. 
(2002), in which the subgroups were defi ned by 
hierarchical clustering was provided to us by the 
authors. In our study we analyse an enlarged data 
set as follows: more patients (a total of 248 patients, 
each patient array included 12196 gene spots cor-
responding to 3717 genes), including a more recent 
classifi cation. The outcome of this are 12.3% more 
ABC and 5.2% less GCB patients. 19 patients have 
been removed from the ABC and GCB groups. In 
detail, fi ve ABC patients were removed from the 
earlier ABC classifi cation, however, 14 other ones 
are now associated with it. From the earlier GCB 
group, 14 patients were assigned to other entities 
and 11 other patients were newly classifi ed as GCB. 
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Altogether, 25 patients were thus newly recruited 
into these two groups. Moreover, each spot is now 
analyzed in the new study individually. There was 
no pooling of data on datapoints (spots) as done in 
older analyses (Rosenwald et al. 2002). We further 
fully account for the changes in patients analysed 
(described above) by such an individual spot 
analysis. In summary this yielded about 3.3 times 
more data points per patient.

Statistical analyses were performed using the 
statistical software package R (R Development 
Core Team 2005) and Bioconductor (Gentleman 
et al. 2004). For normalization of gene expression 
data, methods such as vsn, loess and scaling meth-
ods were used. To detect differentially expressed 
genes, functions from the Bioconductor package 
“limma” were applied. Its special strength is the 
robust statistics based on linear models and a mod-
erated t-test statistics including multiple testing 
correction methods (Smyth, 2005, pp 397–420; 
Smyth, 2004). Based on diagnostic plots we chose 
gene expression normalization using within-array 
and between-array normalization methods. The 
within-array normalization “loess” (Yang et al. 
2001, pp 141–152; Yang et al. 2002) adjusts expres-
sion log-ratios in the way that they average to zero 
within each array to make genes on one array 
comparable to each other. We applied the “scale” 
method (Yang et al. 2001, pp 141–152; Yang et al. 
2002; Smyth and Speed, 2003) for between-array 
normalization. It scales log-ratios to have the same 
median-absolute-deviation (MAD) across arrays. 
By this, log-ratios are normalized to show similar 
variance across a batch of arrays.

Unbiased class discovery was performed using 
the ISIS method (identifying splits with clear 
separation; von Heydebreck et al. 2001). It searches 
for binary class distinctions in the gene expression 
levels in an unsupervised fashion. The diagonal 
linear discriminat score (DLD) quantifi es for every 
found bipartition how strongly the two classes are 
separated. A maximum sample size of 150 patients 
for each ISIS run considered 3000 measurements 
and delivered 50 best separating genes.

Cox regression hazard models were done 
applying the R package “survival” (Andersen 
et Gill 1982; Therneau et al. 1990), to calculate the 
infl uence of gene expression values on the survival 
time and Kaplan Meier estimates. The outcome 
predictor score is calculated with the coeffi cients 
of the Cox model and the gene expression 
values.

Supervised class analyses were performed 
using “Prediction Analysis of Microarrays” (PAM) 
(Tibshirani et al. 2002). PAM performs a nearest 
shrunken centroid method to identify a subset of 
genes that best characterizes samples as ABC or 
GCB DLBCL. It computes a standardized centroid 
for each class and shrinks the prototypes for a given 
classifi cation error threshold. In the resulting list 
the obtained optimal (for the given error) shrunken 
centroid identifi er is followed by the number of 
genes it contains. The chosen classifi er is validated 
by ten-fold cross-validation.

Smaller gene sets typically show larger error 
rates. However, if almost equally good performing 
classifi ers existed, we parsimoniously chose the 
one containing the smallest number of genes. The 
proposed best gene set used for our analysis had 31 
spots (labelled by an ‘x’ character in Fig. 2).

Protein association networks were identifi ed 
by the STRING database, version 6.3 (von Mering 
et al. 2005), of known and predicted protein-
protein interactions. It combines information from 
genomic context, experiments, other databases, 
co-expression and text-mining. Homology predic-
tions transfer and extend these data further. We 
used the STRING database with a Bayesian con-
fi dence level of 0.400 (medium confi dence) and a 
custom limit of 0 (only direct interactions of pro-
teins are considered).

Results

Improving prognosis prediction 
and separation of DLBCL subtypes

Statistical validation of the DLBCL 
subgroups ABC DLBCL and GCB DLBCL
Both subgroups were originally introduced on the 
basis of gene expression profi ling. There has been 
some suggestion that certain diffuse large B-cell 
lymphomas form a third group (Hans et al. 2004). 
Furthermore, it was interesting to see whether this 
classifi cation is also valid for this data set by an 
unsupervised classification method. To decide 
independently of any pre-clustering of specifi c 
marker genes whether there are two, three or even 
more lymphoma subgroups and whether they 
overlap with groups according to other group 
defi nitions (e.g. pathology). ISIS (see Materials and 
Methods) systematically investigates unsupervised 
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all possible bipartitions of the gene expression data 
(excluding mediastinal lymphomas; see Materials 
and Methods) without prior knowledge of marker 
genes or signature pre-classification (Fig. 1). 
Nevertheless the bipartitions with the three highest 
separation scores support and identify the two 
pathological entities ABC and GCB. Distinct 
subgroups (splits) within the ABC or GCB entities 
are not validated by ISIS. In particular, no 
appropriate bipartition could be observed using 
previously putatively classifi ed Type 3 patients and 
the ABC or GCB samples (data not shown). 
The precise separation into exactly these two 
subgroups is thus well supported even by an 
unbiased statistical method independent of 
predefi ned expression signatures.

Survival prognosis detection on the updated 
data and after advanced normalization
The signatures by Rosenwald et al. (2002) are 
independent from the clinical IPI score (see Intro-
duction) and useful predictors within the low, 

medium and high IPI risk groups on their data set 
(Rosenwald et al. 2002). We now tested the per-
formance of advanced normalization methods, 
namely the methods “loess” (Yang et al. 2001; 
Yang et al. 2002) and “scale” (Smyth and Speed, 
2003; Yang et al. 2001; Yang et al. 2002) on our 
data set. The IPI score is considered here only as 
an independent and established clinical prognosis 
marker. On a normalized data set of 240 patients 
and considering all individual spots we utilised 
Kaplan Meier plots (Fig. S1) and reveal the good 
performance of the gene expression profiles 
(Rosenwald et al. 2002) also for this data set using 
the improved normalization procedure. The low 
risk IPI group in the renormalized data is not as 
well separated between the best and worst quartile 
as in Rosenwald et al. (2002). The separation of 
the high risk group is virtually unchanged. How-
ever, in the medium risk group a better separation 
was achieved by the renormalization and single 
spot analysis of the enlarged patient data. For the 
medium risk patients a better separation into high 

Figure 1. DLBCL splits into sub-groups independent of signatures. Optimal bipartitions of patients are calculated by ISIS based on 
optimal bipartition subsets of genes (50). Every column of the x-axis represents a patient. On the bottom, the DLBCL-type of the patient is 
labelled. On the y-axis every row shows the bipartitions ranked in increasing score of separation quality. The three best bipartitions show a 
very consistent and clear signal separating the ABC- from the GCB-patients. The unsupervised method ISIS reveals the ABC-GCB classifi cation 
independent of proliferation signatures. No evidence for a previously suggested third group “Type 3” was found. Only a few patients are 
falsely assigned if compared to the DLBCL gene signature assignment.
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and low risk is particularly important for prognosis 
prediction. This method including the advanced 
normalization can also be applied to any other 
microarray data set.

An improved six-spot predictor for survival 
prognosis comparing multi- and univariate 
analysis
The immune signature requires the measurement 
of gene expression for many genes. We investi-
gated whether a combination of array spots 
achieves similar good classifi cation. Multivariate 
analysis (4 spots results in Table S1 and Table S2, 
they include immune genes) was computationally 
prohibitive for more than 4 spots. However, by 

univariate analysis we could systematically test the 
capability of gene expression values from indi-
vidual spots to separate patients with good or bad 
prognosis in Kaplan-Meier plots. We considered 
for all three IPI classes the separation of best 
patient quartile with good prognosis from the worst 
patient quartile with poor prognosis. Using all 
genes and the 160 patients from the training-set 
we identifi ed the spots predicting outcome best. 
Together, in a multivariate model, they form a 
predictor separating best and worst quartiles for 
all three IPI categories including the 80 patients 
from the validation-set. The fi ve-spot-predictor 
considers different splicing forms in HLA-DRB5. 
Five spots (HLA-DPa, Brca, HLA-DQa, and two 
clones of HLA-DRB5; details in Suppl. Material) 
are about equal to the six gene predictor of Lossos 
et al. (2004). However, six genes and spots (HLA-
DPa, HLA-DQa, HLA-DRb5, SEPT1, EIF2S2 and 
IDH3A genes, Fig. 2) show even an improvement 
for this classifi cation task. The separation of the 
best and worst quartiles in the three IPI classes is 
comparable (Fig. 3) to the prediction success of 
the complete signature of Rosenwald et al. (2002) 
and classifi es different patient quartiles better than 
the set proposed by Lossos et al. (2004; using 
LMO2, BCL6, FN1, CCND2, SCYA3 and BCL2 
for overall survival in DLBCL). Our predictor is 
delivered by bioinformatical analysis of gene 
expression measurements, whereas Lossos et al. 
used real time PCR. However, our method can also 
be applied to real time PCR data.

Moreover, we tested the infl uence of the high 
correlation between the genes HLA-DPa, HLA-
DQa and HLA-DRB5 on the quality of the predictor. 

Figure 2. Prognosis prediction applying a molecular predictor of 6 gene spots after improved normalization. Kaplan-Meier plots 
show large differences in the survival rate for all risk groups. They are estimated by a Cox-Regression Hazard model of the genes listed in 
Table 1. Normalization was improved applying the “loess” method. x-axis: time (years); y-axis: probability of survival, predicted for the risk 
groups “low”, “medium” and “high”.

Table 1. Optimal molecular survival predictor applying 
six genes.

Gene name Gene description
HLA-DPa Major histocompatibility complex,
 class II, DP alpha 1
HLA-DQa Major histocompatibility complex,
 class II, DQ alpha 1
HLA-DRb5 Major histocompatibility complex,
 class II, DR beta 1
SEPT1 Serologically defi ned breast cancer 
 antigen NY-BR-24=Similar to DIFF6
EIF2S2 Eukaryotic translation initiation factor 2
 subunit 2
IDH3A Isocitrate dehydrogenase 3 (NAD+) alpha
The gene symbol (left side) is followed by the gene description. 
Three of these genes are HLA major histocompatibility complex 
genes (HLA).
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The survival prediction with predictors of non 
correlated genes from the univariate analysis yields 
no improvement in the results (data not shown).

Genes best distinguishing DLBCL subgroups
Nearest shrunken centroid analysis using the 
R-package PAM (“Prediction Analysis of Microar-
rays”) identifi es best separating genes for the two 
subgroups (ABC and GCB DLBCL) with smallest 
cross-validation error (Fig. S2). Gene numbers of 
classifi ers are plotted versus the resulting error 
rates. The optimal classifi er (Table S3) requires 
only 18 genes (31 spots) with an overall cross 
validation error of 6.2% (5 out of 82 ABC DLBCL 
samples were falsely predicted as GCB (6.1%); 
7 out of 112 GCB DLBCL as ABC (6.25%)). 

Larger gene sets show similar error rates (see 
Materials and Methods), smaller gene sets result 
in inferior classifi cation (Fig. S2). GCB DLBCL 
is correctly predicted even with fewer genes, how-
ever, the error for ABC DLBCL samples increases 
strongly (Fig. S2 lower plot). For clinical applica-
tion both entities have to be well separated.

Functional relationship of the genes 
differently expressed in ABC and GCB

Classical lymphoma gene-markers compared 
to the identifi ed best separating genes
We tested whether 35 classical lymphoma genes 
(listed in Table S4; as described in Monti et al. 2005; 

Table 2. Regulatory network of genes best distinguishing ABC and GCB.

Functional categories Gene Description
Proliferation CCND2 cyclin D2, regulates G1 to S transition of CDK4/CDK6; CTGF,
  fi broblast growth factor
 MAPK10 map kinase 10
 MYBL1 transcriptional activator in the proliferation of neurons, sperma-
  togenic and B-lymphoid cells (recognition sequence:
  5´YAAC(GT)G-3´)
 ASB13 ankyrin repeat and sox box-containing protein 13, mediates
  protein-protein interactions, sox box couples suppressors of
  cytokine signalling and binding partners with elongin B and C
  complex to target them for degradation
 SH3BP5 SH3 domain binding protein, targets protein-protein interaction

Block of proliferation MME synonyms CALLA, common acute lymphocytic leukemia
  antigen, the synonym CD10 stresses its properties as a tumor
  suppressor gene
 BCL7A putative tumor suppressor gene in T-cell lymphoma
  
Apoptosis BCL2 integral outer mitochondrial protein to block apoptosis
 BCL6 transcriptional repressor, necessary for germinal center forma-
  tion in lymph nodes

Differentiation CTGF fi broblast differentiation
 FOXP1 forkhead box P1
 LMO2 LIM domain only 2 transcription factor for hematopoetic
  development
 LAMP expressed in lymphoid cells during development
 COL3A1 collagen type III
 FN1 fi bronectin 1, cell adhesion
 NEIL1 base excision repair

Immune cell specifi c IGHM immunoglobulin heavy chain gene
 IRF4 interferon regulatory factor 4
The genes of the network in Figure 4 (suppl.) are associated to the functional categories “Proliferation”, “Block of proliferation”, “Apoptosis”, 
“Differentiation” and “Immune cell specifi c”, by their annotation. Most of them are part of the antagonists “Proliferation” and “Block of 
proliferation”. This indicates the complex regulation and importance of proliferation in the determination of ABC and GCB lymphomas. 
Classical lymphoma genes (see Table S4) known previously are given in italics.
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Lee et al. 2003; Willis et al. 1999; Polo et al. 2004; 
Rosenwald et al. 2002) separate well the two major 
subtypes of DLBCL. Three metabolic enzyme genes 
for LDH (IPI score prognosis marker), IDH and 
PDH were added. Altogether these 38 genes cor-
respond to 180 spots. PAM analysis identifi ed a set 
of 9 well classfying genes (21 spots) (Table S5 and 
S6), with an overall error rate of 14% (10% training 
set; 15% for the validation group). However, the 
classical genes require more spots and their separa-
tion is not as good as the optimal prediction set 
above (Fig. S2). After this we merged these classi-
cal lymphoma marker genes with the best separat-
ing gene set found above for classifi cation. We 
found, however, that here the best separating genes 
achieve all top ranks in this task (Table S7). Only 
mitogen-activated protein kinase 10 (MAPK10), 
the best classical lymphoma marker, reaches top 
ranks. BCL6 as the next best classical marker 
reaches only rank 31. Below we show that classical 
lymphoma genes are close to but not identical to 
the central regulatory network and genes best 
separating GCB and ABC DLBCL.

Cell cycle genes are differently expressed 
in ABC and GCB
Cell cycle is critical for cancer cell proliferation 
and we next investigated by PAM analysis (see 
Material and Methods) whether the functional 
group of cell cycle genes alone could separate the 
two B-cell lymphoma groups. We identifi ed 473 
spots, which correspond and are homologous to 
the cell cycle genes found by de Lichtenberg et al. 
(de Lichtenberg et al. 2005). These genes are anno-
tated according to expression in the cell cycle state 
(100 steps between 0 and 99 for a full cell cycle).

The separation between the lymphoma subgroups 
improves as more genes are used. 77 cell cycle 
genes (Table S8, Table S9; error rate of 15.4%) 
yield low error rates using a medium sized 
gene set (classifi cation optimum, see materials and 
methods). These include genes such as Butyrophilin-
like protein 9 (BTNL9), early B-cell factor 
(EBF), TSC22 domain family member 1, Cyclin-
G2 (CCNG2), Interleukin-6 (IL6), immediate 
early response protein 5 (IER5) and further 
homologues of typical cell cycle stage-specifi c 
genes (de Lichtenberg et al. 2005) such as TIMP 
metallopeptidase inhibitor 1(TIMP1) and v-maf 
musculoaponeurotic fibrosarcoma oncogene 
homolog (MAF), which mainly refl ect the late cell 

cycle states. Figure 3 compares the complete cell 
cycle genes in our data set with the subset of 77 
genes in a density plot. The black line indicates all 
cell cycle states of the whole chip and the blue line 
the subset of 77 genes. The densities of these gene 
sets clearly differ in the early (steps 0–18) and in 
the late steps (75–85) of cell cycle (p = 6.65·10−10; 
Wilcoxon one sided test).

Cell cycle spots, which show the biggest differ-
ence in gene expression values between ABC and 
GCB DLBCL, are in the late steps 72, 80, 84 and 
85 (Fig. S3; M/A plot, ie,middle intensity of the 
genes against difference in expression of both 
lymphoma subgroups). Moreover, these cell cycle 
states form a compact cluster in the plot. This data 
indicate a clear difference in cell cycle states 
regarding the two DLBCL subgroups.

Cell cycle genes, classical lymphoma genes 
and best separating genes form a compact 
network important for DLBCL subtype 
distinction between ABC and GCB
Are the genes differentially expressed in ABC and 
GCB DLBCL specially connected, and in particular, 
if so, how do their respective gene products interact 
with each other? To analyze this systematically, 
different large scale protein interaction databases 
were investigated such as the hand curated HPRD 
database (Peri et al. 2003). The large protein-
protein interaction database STRING (von Mering 
et al. 2005) allowed us to establish an interaction 
network (Fig. S4, Fig. S5). Note that this analysis 
focuses on the clearly differentially expressed 
genes in ABC and GCB (Table S7). Classical 
lymphoma gene markers (dark grey boxes) as listed 
in Table S5 combine and interact with the compact 
cluster of the most powerful differentiating genes 
(white boxes) for the whole data set (Table S3) 
as delivered by PAM. The connections are 
mainly found by text-mining; however, the two 
interactions between BCL6—IRF4 and between 
SH3BP5—MAPK10 are available from the HPRD 
data set (experimental/biochemical data) as a direct 
physical interaction (blue). The different article 
sources re-examine the interaction predictions for 
different cancer entities: “DLBCL”, “no cancer 
disease” and “other cancer”. Note that these 
categories support the interactions from three 
different view points (Fig. S5). We fi nd that 11 of 
the 18 best separating genes and 8 of the 9 
separating classical lymphoma genes are members 
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of this dense interaction network. This is supported 
by the interaction data, the HPRD database and 
various specifi c interaction evidence types collated 
by the STRING database.

The remaining 8 genes, 7 from the first 
mentioned set and 1 from the latter one, are not 
part of the databases. Cyclin D2 (CCND2) occurs 
in both subsets and we obtain a protein association 
network of 18 nodes. Regarding network regulation 
the underlined genes are higher expressed in ABC, 
all others are higher expressed in GCB subtype: 
ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, 
CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, 
MAPK10, MME, MYBL1, NEIL1 and SH3BP5 
(Table S10). The characteristics of the network are 
described in Table 2: Protein functions involved in 
the network include stimulation of proliferation, 
block of proliferation, apoptosis, differentiation 
and immune cell specifi c functions. Both DLBCL 
subgroups show clear differences in these specifi c 

pathways and sub-networks. Furthermore, the large 
collection of protein associations from the STRING 
database shows that all these different proteins 
separating the two subgroups are connected by fi rst 
order interactions. As a control for this fi nding of 
a compact regulatory network separating both 
entities regarding gene expression, we tested that 
all Lymphochip genes are equally distributed with 
regard to the human interactome and not pre-
clustered (Fig. S6). Moreover, the characteristic 
path length for randomly picked genes from the 
Lymphochip is 3.985 (Fig. S7) and clearly longer 
than the direct interactions (path lengths one or 
two) found for the differentially regulated network 
(Fig. S4).

Moreover, 5 of the 8 cell cycle genes, identifi ed 
in Figure S3 above, to be regulated differently are 
directly interacting with this regulatory network 
(Fig. S5). The genes with a signifi cantly higher 
expression in the ABC group are marked by a red 

Figure 3. Early and late cell cycle genes are overrepresented in the best separating cell cycle gene set. The density plot compares 
the distribution of different cell cycle gene sets. x-axis: cell cycle states (from 0 to 99; complete cell cycle). y-axis: relative frequencies. Black 
line: density of all mapped cell cycle genes of de Lichtenberg et al (de Lichtenberg et al. 2005) in the data set. The area under this line is 
coloured for easier comparison. Blue line: Optimal separating subset of cell cycle genes (77 spots). Two peaks in the early and late cell cycle 
states show cell cycle gene expression differences between the subgroups ABC and GCB.
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rectangle, whereas green ellipses mark higher 
expression in GCB. These differences are an 
interesting pointer for a more specifi c anti-cancer 
treatment.

Gene functions for well separating genes
The shorter survival of patients with ABC DLBCL 
is connected to pathways expressed differently 
from GCB DLBCL; thus the well known BCL2, 
as a central apoptosis blocker is higher expressed 
and allows cancer cell survival in ABC DLBCL. 
BCL6, a transcriptional repressor important for 
B-cell differentiation, is down-regulated in ABC 
DLBCL. Altogether, apoptosis genes are lower 
expressed in the ABC DLBCL subtype.

Furthermore, the low gene expression values of 
the gene MME, a proliferation blocker, CCND2 
and BCL7A, both genes which promote prolifera-
tion, and high values of SH3BP5 in the ABC 
DLBCL patients stimulate proliferation.

Both the immune cell specifi c genes IGHM and 
IRF4 are higher expressed in ABC DLBCL; how-
ever, all genes which are associated with differen-
tiation are down-regulated.

In conclusion, this network indicates down-
regulation of apoptosis and differentiation for the 
ABC DLBCL patients whereas the proliferation 
and immune cell stimulating genes are up-
regulated.

From the cell cycle genes which are connected 
to the network, IL6 and IER5 show higher values 
in the ABC group whereas BTNL9 and CCNG2 
show an up-regulation in the GCB group. For the 
latter it is known that CCNG2 and IL6 block the 
proliferation.

In order to further validate the found gene 
expression differences, we show that several of 
these are found again after analyzing further data 
from Shipp et al. (Shipp et al. 2002; Wright et al. 
2003; Table S12).

Do the clear gene expression differences 
between both subgroups refl ect only differences in 
B-cell specifi c regulation? In order to gain a fi rst 
impression regarding T-cell regulatory pathways 
from our data we tested whether notch genes, 
trans-membrane receptors important in T cell 
differentiation and repressed in many cancers 
(Reizis and Leder, 2002), regulate differently the 
target genes in the two groups. Target genes are 
regulated by GY-box-, Brd-box-, and K-box-class 
microRNAs in the 3’-UTRs e.g. in Drosophila 

(Lai et al. 2005). We mapped all genes of the 
Lymphochip to the transcripts annotated in 
ensembl. We screened these and found candidate 
notch target genes, whose transcripts bear the 
mentioned target sequences. All three boxes were 
found in the genes given in supplementary 
Table S11. From these transcripts the “Deoxycytidine 
kinase” gene (ENSG00000156136, DCK) and the 
“Translocation associated membrane protein 2” 
(ENSG00000065308, TRAM2) show clear gene 
expression differences between the ABC and GCB 
subgroups.

Discussion

Marker genes for DLBCL subtypes
This study improves marker gene detection for 
prognosis and subtype diagnosis of diffuse large 
B-cell lymphomas (DLBCL) applying a wide range 
of methods useful also for other gene expression 
measurements in cancer. A special patient group 
are primary mediastinal B-cell lymphomas. 
Patients recognized with this disease (6 cases) were 
excluded from the data set and hence are neither 
visible nor contained in the further analysis. This 
is in accordance with previous studies (Rosenwald 
et al. 2002) and other data sets (Alizadeh et al. 
2000; Shipp et al. 2002; Wright et al. 2003).

The classifi cation of all other diffuse large B-
cell lymphoma into two pathological entities has 
been established by marker genes and their expres-
sion (Alizadeh et al. 2000). A third entity has been 
discussed (Hans et al. 2004) but was disputed again 
in the light of recent data. Our statistical analysis 
by ISIS method (von Heydebreck et al. 2001) 
provides an independent method and validates and 
supports only these two subgroups. In addition to 
previous work (Rosenwald et al. 2002), ISIS 
analysis here clearly indicates for a large data set 
the bipartition of all patient data into the two sub-
groups ABC and GCB through an unbiased and 
independent statistical method. An adequate nor-
malization of the gene expression intensities apply-
ing the loess method (Yang et al. 2001; Yang et al. 
2002) allowed a better separation for best and 
worse outcome quartiles of survival, in particular 
for patients with medium IPI score where a better 
separation is important for accurate prognosis. We 
found a simplifi ed (6 instead of 17 gene spots) 
survival predictor useful for clinical monitoring 
e.g. applying RT-PCR (Lossos et al. 2003). 
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Multivariate analysis showed that a four-spot pre-
dictor does not perform well. However, univariate 
analysis found a six spot prognosis predictor which 
is superior to a previous six-spot predictor (Lossos 
et al. 2004) and to an alternative fi ve spot predictor, 
in particular regarding high risk patients.

Integrated picture of all gene 
regulation differences
Following this, the statistical analysis identifi ed all 
genes which well distinguish the ABC and GCB 
DLBCL subgroups including differences in early 
and late cell cycle which could be exploited for a 
differential cytostatic therapy in the two sub-
groups.

We considered all the identifi ed gene expression 
differences in order to obtain a detailed description 
of the differences between both DLBCL subgroups 
regarding regulation of the cellular network. We 
show that immune signatures, apoptotic and pro-
liferation pathways are tuned in different ways 
between ABC and GCB DLBCL. A central circuit 
of genes is formed by genes that distinguish both 
lymphoma subgroups and are regulated differently. 
We also verifi ed this for other data after completion 
of the fi rst analysis. For the data in Shipp et al. 
(2002) and Wright et al. (2003) once again key 
genes from the central network shown in Figure S4 
are confi rmed as having a signifi cant different 
regulation in this totally different data and patient 
set (Table S12). Classical lymphoma genes are 
either directly or indirectly interacting with it. 
Besides this central network other pathways are 
also implicated, we showed that two Notch path-
way targets are specifi cally up-regulated. PAM has 
been shown previously to be a powerful method 
for gene selection (Tibshirani et al. 2002).

The different predictors shown in this study 
were the best predictors according to PAM curves 
and statistical analysis and gave clear improve-
ments for prognosis prediction compared to previ-
ous studies (Rosenwald et al. 2002; Lossos et al. 
2004) including a six spot predictor for clinical 
application. Furthermore, our results are based on 
experimental gene expression data on 248 patients 
and individual analysis of 12196 array spots 
whereas pooled data and fewer patients were used 
in older studies (Rosenwald et al. 2002; Lossos 
et al. 2004). Interesting marker genes were found 
in this study by different statistical methods (PAM, 
ISIS, LIMMA). Clearly, using other methods 

(e.g. support vector machines) different gene sets 
can be obtained. In our study, the ISIS method is 
applied for explorative analysis and unbiased clas-
sifi cation without prior knowledge or gene signa-
tures. It supports independently the two distinct 
B-cell lymphoma subgroups. The different gene 
sets were further validated against each other by 
including classical marker genes. Moreover, we 
validate in our study key marker genes we found 
by analysis of additional and further data (Shipp 
et al. 2002; Wright et al. 2003). A new perspective 
from this study is that genes found differently 
expressed in the two B-cell lymphoma types form 
a compact interaction network including cell cycle 
genes. This is obtained by another independent 
analysis method (protein-protein interaction data-
base STRING). Furthermore, the delineated regu-
latory network adds biological data and data from 
large-scale interaction databases to show that the 
identifi ed marker genes are in fact members of a 
closely interacting regulatory network, with 
molecular functions that mirror the differences in 
pathology of the two subgroups GCB and ABC 
DLBCL.

The identifi cation of cell cycle genes expressed 
differently indicates here new possible targets for 
therapy. Differences between the ABC and GCB 
DLBCL subgroups are at the beginning and the 
end of the M-phase and the early part of the G1 
phase. Inhibiting early cell cycle genes, overex-
pressed in ABC and adding known cytostatic drugs 
such as mitosis inhibitors and early G1 blocker 
may be particularly useful for ABC DLBCL 
patients. A more detailed therapy profi le would 
take the further differences in regulation into 
account.

Conclusion
The present analysis reveals through the use of an 
array of methods a detailed picture of molecular 
markers differentiating cancer subtypes. We apply 
it to GCB and ABC DLBCL for clinical use in 
determining prognosis and diagnosis. This included 
effi cient six spot predictors for prognosis and 
clinical application. The entities ABC and GCB 
DLBCL have been confi rmed by statistical analy-
sis independent of gene expression signatures, a 
third entity could not be supported. The resulting 
genes with altered expression were found to 
form a tightly connected regulatory network 
including cell cycle genes, apoptosis and immune 
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differentiation implicated in the aggressive behav-
iour of ABC DLBCL compared to the GCB 
DLBCL subtype.
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Germinal Center B Cell-Like (GCB) and Activated B Cell-Like 
(ABC) Type of Diffuse Large B Cell Lymphoma (DLBCL): 
Analysis of Molecular Predictors, Signatures, Cell Cycle 
State and Patient Survival
S. Blenk1, J. Engelmann1, M. Weniger1, J. Schultz1, M. Dittrich1, A. Rosenwald2, 
H.K. Müller-Hermelink2, T. Müller1 and T. Dandekar1

Supplemental Methods
To systematically identify spots which describe the outcome and  cooperate well with each other in the 
Cox regression hazard model a multivariate analysis is desirable. However, this requires a huge search 
space of combinations to be tested. To reduce this we considered only four spot combinations of (i) the 
gene spots suggest by Rosenwald et al. (Rosenwald et al. 2002), (ii) the 36 important genes for diffuse 
large B-cell lymphoma chosen by Lossos et al. (Lossos et al. 2004) or (iii) the LDH-, IDH-, and PDH 
gene spots  (the latter to better refl ect IPI-scores). Cox Regression Hazard analysis was performed on 
all possible four tuples of these 153 indicator spots testing 160 patients (several days of calculation time 
on a LINUX cluster with 20 nodes of Pentium IV CPUs). Table S1 shows the gene content of the ten 
best multivariate four-spot-predictors (the next best combinations after removing these spots is found 
in Table S2). The best multivariate four-spot combination is compact and small, but neither as good as 
the fi ve spot predictor in results nor as the signatures from Rosenwald et al. (Rosenwald et al 2002). 
The analysis further shows that there is a correlation with survival prediction for the clinical parameter 
LDH (Table S2), but the prediction based on this well known parameter (part of the IPI score) is even 
worse then the results shown in Table S2.

In contrast (see below), the new fi ve-spot and six-spot predictors identifi ed by univariate analysis will 
be useful heuristics for diagnosis and clinic, e.g. to identify risk quartiles and subgroups (Fig. S1). 

Figure S1. Kaplan Meier plots of the IPI groups. The Kaplan Meier plots estimated by the molecular predictor of Rosenwald et al. (Rosenwald 
et al. 2002) applied on the new normalized gene expression data of the 240 diffuse large B-cell lymphoma patients. The plots show different 
groups according to their IPI risk and the training set as Training, Validation and all patients. The left column represents the training-group, 
the middle one the validation group and the right one all patients. The rows show the IPI risk groups. The fi rst line shows low risk, the second 
one the medium risk and the last line the high risk patients. The x-axis is the time in years and the y-axis the probability of survival.
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Figure S2. PAM misclassifi cation error of the ABC and GCB subgroups over all genes. The upper plot shows the overall error while 
the lower one shows the subgroup specifi c errors. In both, the various thresholds on the lower x-axis correspond to different numbers of 
genes, labelled on the upper x-axis. The y-axis represents the error and ranges from 0 to 1. The good overall performance of PAM requires 
only few genes to decrease the error dramatically. The error rate decreases strongly between the thresholds of 6 and 5, which represent the 
amount of shrinkage. Hence we chose a threshold below 5 with the corresponding set of best separating genes (an optimal choice with few 
errors and a low number of genes). The performance for the single subgroups shows a big difference between ABC and GCB. Whereas 
GCB shows a good performance even with few genes, the prediction quality of ABC decreases dramatically in the case of ABC patients. 
This indicates a complex pattern of gene expression in ABC patients which is defi ned in more than 15 genes.

Figure S3. Cell cycle genes with extreme expression differences shown by a MA-plot of normalized gene expression values. The 
M values on the y-axis correspond to the gene expression difference between the ABC and GCB patient medians and the A values on the 
x-axis correspond to the average expression of all genes in both groups. The colored points represent the 77 cell cycle spots chosen by 
PAM analysis. The color scale ranges from yellow to red, whereas yellow is annotated to cellcycle state 0 and red to state 99. Additionally 
some cell cycle genes show more extreme A values(circle). They are labeled with their names and their cell cycle state. Remarkably, some 
genes associated with a late high cell cycle state cluster together regarding their gene expression values in both dimensions (ellipse). Again, 
late cell cycle states indicate a high difference in the M-value (difference in gene expression) between the two subgroups. A locally weighted 
regression smoothing line (lowess) shows that systematic and random variations are well controlled by the normalization procedure: Its 
shape fi ts almost perfectly the horizontal line.
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Figure S4. Regulatory network differently regulated in ABC and GCB B-cell lymphomas. This fi gure shows the resulting network and 
interaction pattern with each other for the best separating genes applying data from the STRING meta-database of protein interactions. 
Classical lymphoma genes and best separating gene set form a tight network with the best separating genes in the centre. Shown are the 
strongly connected network members. They consist of (i) classical lymphoma marker genes (grey boxes), and (ii) the most powerful predic-
tive genes in the PAM analysis (white boxes). Genes which show a signifi cant higher expression in the ABC subgroup are marked by a red 
rectangle. They are associated to proliferation, block of proliferation, apoptosis, differentiation and specifi c for immune cells, as most of the 
remaining ones. Green ellipses mark higher expression in GCB. The almost fully connected gene network demonstrates that both classes 
of genes are well participating in the interaction network according to the STRING meta-database. Furthermore, the STRING analysis shows 
that almost all connections between both classes – the yellow colored edges - are based on literature (mainly Medline reports). Only the 
interaction of “interferon regulatory factor 4” (IRF4) and “B-cell CLL/lymphoma 6” (BCL6) is confi rmed by large-scale interaction screen 
experiments.

Figure S5. Regulatory network differently regulated in ABC and GCB B-cell lymphomas. Functional protein association network using 
interactions predicted by the STRING database: the most powerful predictive genes in the PAM analysis (white boxes; see Figure 4S), clas-
sical textbook lymphoma genes (dark grey boxes), additional the cell cycle genes (light grey boxes; see Figure 3S: 5 of these 8 cell cycle 
genes are connected directly with the network. TIMP1 even connects the so far uninvolved classical lymphoma gene CTGF with the network. 
This indicates how well the cell cycle genes fi t to the existing graph). The new connections are confi rmed by text mining of PubMed 
abstracts(circles: DLBCL, diamonds: “no cancer disease”, empty square: “other cancer”); these different data complement each other. The 
genes with a signifi cantly higher expression in the ABC group are marked by a red rectangle. Green ellipses mark higher expression in GCB. 
Black hexagons mark genes which have a very high average gene expression value in both entities and are an important part for the 
network.
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Figure S6. The Lymphochip genes in the human interactome. This plot shows the human interactome as a protein interaction network. 
The proteins(circles) of the lymphochip are fi lled out. Interactions are drawn as a line.  Characteristic path length and the longest path are 
4.642 and 15, respectively.

Figure S7. Histogram of the protein interaction distances. The genes of the Lymphochip were mapped to the protein interaction graph 
in the human interactom. The histogram shows the occurring distances of these genes in the interactome. The longest distance is 11 whereas 
the characteristic path length is 3.985.
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Table S1. Multivariate Cox regression hazard models.

Nr Multivariate Cox regression hazard model
1 HGAL Germ-S ACTa1 HLA-DRA
2 HGAL CD54(2) ACTa1 HLA-DRA
3 HGAL CD54(2) HLA-DRA(2) ACTa1
4 HGAL CD54(2)  HLA-DRA(3) ACTa1
5 HGAL ACTa1  HLA-DRA CD54
6 HGAL MHCIIDQa1 CD54(2) ACTa1
7 HGAL CD54(2) MHCIIDRb ACTa1
8 HGAL Germ-S MHCIIDRb ACTa1
9 HGAL Germ-S HLA-DRA(2) ACTa1
10 HGAL Germ-S HLA-DRA(3) ACTa1
A heuristic search of multivariate Cox regression hazard models revealed this 10 best fi tting models. All possible multivariate Cox 
regression hazard models of four 4 genes from 36 important genes for diffuse large B-cell lymphoma and the metabolic genes LDH, IDH 
and PDH were calculated and these ten gene sets fi t best. Genes are abbreviated according to GenBank nomenclature.

Table S2. Next best multivariate Cox regression hazard models.

Nr. Multivariate Cox regression hazard model
1 CD10 IRF4 HLA-DRb5 LDH(2)
2 IRF4(2) BCL7A HLA-DRb5 LDH(2)
3 MYC IRF4(2) HLA-DRb5 LDH
4 MYC IRF4(2) HLA-DQa1 LDH
5 PLAU IRF4 BCL7A HLA-DRb5
6 IRF4 BCL7A HLA-DRb5 LDH(2)
7 PLAU IRF4(2) BCL7A HLA-DRb5
8 IRF4 BCL6 BCL7A HLA-DRb5
9 CD10 IRF4(2) HLA-DRb5 LDH(2)
10 MYC IRF4(2) HLA-DRb5 LDH(2)
If the genes appearing in Table S1 are removed, and the heuristic search of multivariate Cox regression hazard models is redone, these 
ten models are the next best fi tting. The genes are represented by their GenBank abbreviation. The metabolic marker LDH from the IPI 
score occurs in the four best fi tting models as well as in the the majority of the models.
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Table S3. Genes which distinguish best between ABC 
and GCB according PAM analysis.

Nr. Gene
1 MYBL1
2 *Centerin
3 FOXP1
4 LOC96597
5 SH3BP5
6 KIAA0864
7 IRF4
8 ASB13
9 *Similar to human endogenous 
 retrovirus-4 Clone=417048
10 NEIL1
11 MME
12 IGHM
13 LMO2
14 LOC152137
15 KIAA1039
16 LRMP
17 FLJ123633
18 CCND2
From all twelve thousand spots from the lymphoma 
chip, the listed genes distinguish best between ABC 
and GCB according to PAM analysis. The best 
separating genes are written on the top.

Table S4. Classical lymphoma genes.

Nr. Gene
1 BCL6
2 BRAF
3 ARAF1
4 RAF1
5 RAS
6 MEK
7 MAP
8 HLA-DPα
9 HLA-DQα
10 HLA-DRα
11 HLA-DRβ
12 α-Actinin
13 COL3A1
14 Connective-tissue
 growth factor
15 FN1
16 KIAA0233
17 PLAUR
18 E2IG3
19 NPM3
20 BMP6
21 CASP10
22 POU2AF1
23 CDKN2A
24 MYC
25 BCL2
26 FCGR2B
27 CyclinD1
28 NFKB2
29 PAX5
30 BCL10
31 CDK6
32 DDX6
33 BCL7A
34 CyclinD2
35 IL-10
36 LDH
37 IDH
38 PDH
Lymphoma associated genes were collected from literature and 
were also found in the data set. Furthermore we added the 
metabolic enzymes “lactate dehydrogenase”(LDH), “isocitrate 
dehydrogenase” (IDH) and “pyruvate dehydrogenase”(PDH). The 
latter are represented in the data by the genes PDHB, PDHA1, 
IDH3A, IDH3G, IDH3B, IDH1, IDH3B, IDH3A, LDHB and LDHA.
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Table S5. Classical marker genes of lymphoma disease 
distinguish between ABC and GCB lymphoma subtype 
(PAM analysis; error rates for this gene set: TR:10% 
VAL:15.38%; F:CV:14%))

Nr. Gene
1 FN1
2 BCL6
3 CTGF
4 BCL2
5 MAPK10
6 CCND2
7 COL3A1
8 KIAA0233
9 BCL7A

Table S6. Lymphochip spots of known lymphoma 
genes.

SpotID Gene Name
19384 MAPK10
24787 CCND2
15914 MAPK10
24429 BCL6
28472 MAPK10
19268 BCL6
16858 CCND2
17646 BCL2
16789 BCL2
19361 COL3A1
26535 BCL6
28859 BCL2
24367 BCL2
17791 FN1
16016 FN1
16732 FN1
31398 FN1
19379 FN1
27499 KIAA0233
24415 BCL7A
29222 CTGF
180 spots, which are known to deal with lymphoma were tested to 
distinguish between ABC and GCB subtype by PAM analysis. 
Successful genes are given in descending order (gene set error 
rate:TR:10% VAL:15.38%; F:CV:14%)

Table S7. Combined classifi er for lymphoma sub-
types.

SpotID Gene Name
24376 *Centerin
17496 MYBL1
28014 MYBL1
19326 IGHM
19254 MME
33991 FOXP1
19384 MAPK10
19375 FOXP1
16049 IGHM
26454 SH3BP5
22118 KIAA0864
24787 CCND2
24787 CCND2
28979 LMO2
15914 MAPK10
19346 SH3BP5
15864 MME
19238 LMO2
30263 ASB13
19291 MYBL1
19312 NEIL1
25036 FLJ12363
26385 MME
19227 LOC96597
22122 IRF4
16886 LRMP
24480 KIAA1039
27378 LRMP
27379 LRMP
24729 IRF4
27673 LRMP
19348 *Similar to
24429 BCL6
28472 MAPK10
26516 *Similar clone=417048
19268 BCL6
 @Homo sapiH08 (LOC152137) 
 Sur_clone=232
32529 2321
17646 BCL2
The resulting gene list that distinguishes ABC and GCB if the PAM 
analysis is performed only on the 31 best spots merged with the 
well known lymphoma genes. Marked in grey are the 31 best spots 
from all twelve thousand spots compared. Remarkably, the two 
classical lymphoma marker genes MAPK10 and CCND2 reach a 
similar quality in distinguishing ABC and GCB as the best separat-
ing ones.
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Table S8. Cell cycle gene set that best distinguishes ABC and GCB subgroup. The genes are annotated by their 
spot ID, ensembl gene-ID and their gene name. Additionally the cell cycle states are given. The latter parameter 
shows a strong signal in the early and late cell cycle states compared with all available cell cycle states in the 
data set.

SpotID Ensembl ID cell cycle state Gene
24927 ENSG00000165810 85 BTNL9
33929 ENSG00000165810 85 BTNL9
26913 ENSG00000138764 72 CCNG2
24750 ENSG00000136244 80 IL6
32430 ENSG00000162783 56 IER5
24491 ENSG00000165810 85 BTNL9
30172 ENSG00000138764 72 CCNG2
24930 ENSG00000187837 69 HIST1H1C
24725 ENSG00000011007 59 TCEB3
24908 ENSG00000118515 83 SGK
30355 ENSG00000164330 84 EBF
32096 ENSG00000164330 84 EBF
31931 ENSG00000164543 18 STK17A
26081 ENSG00000180447 80 GAS1
19374 ENSG00000124762 21 CDKN1A
24969 ENSG00000164330 84 EBF
24647 ENSG00000164330 84 EBF
34708 ENSG00000118515 83 SGK
27774 ENSG00000134058 92 CDK7
26401 ENSG00000118515 83 SGK
26725 ENSG00000164330 84 EBF
28881 ENSG00000163918 52 RFC4
17786 ENSG00000102804 1 TSC22D1
24613 ENSG00000102804 1 TSC22D1
33901 ENSG00000100644 2 HIF1A
27538 ENSG00000171656 96 ETV5
27952 ENSG00000179583 76 CIITA
34557 ENSG00000052841 2 TTC17
30021 ENSG00000099953 95 MMP11
27704 ENSG00000164330 84 EBF
26992 ENSG00000102804 1 TSC22D1
26344 ENSG00000138764 72 CCNG2
24832 ENSG00000163918 52 RFC4
26080 ENSG00000163739 76 CXCL1
33329 ENSG00000179583 76 CIITA
17290 ENSG00000134058 92 CDK7
30922 ENSG00000185658 5 BRWD1
26162 ENSG00000135541 91 AHI1
34288 ENSG00000134884 48 NA
33646 ENSG00000185658 5 BRWD1
26951 ENSG00000102804 1 TSC22D1
24977 ENSG00000153936 92 HS2ST1
16661 ENSG00000123080 75 CDKN2C
25942 ENSG00000145050 49 ARMET
22163 ENSG00000169926 6 KLF13
17405 ENSG00000178573 30 MAF
27275 ENSG00000100644 2 HIF1A
30415 ENSG00000164330 84 EBF
34484 ENSG00000151150 50 ANK3
33221 ENSG00000065809 2 FAM107B
32218 ENSG00000179583 76 CIITA
29637 ENSG00000145632 99 PLK2PLK2
27939 ENSG00000179583 76 CIITA
27328 ENSG00000108984 44 MAP2K6

(Continued)
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Table S8. (Continued)

SpotID Ensembl ID cell cycle state Gene
28792 ENSG00000099326 53 ZNF42
30725 ENSG00000175455 65 CCDC14
16736 ENSG00000136244 80 IL6
30874 ENSG00000081320 77 STK17B
28707 ENSG00000123080 75 CDKN2C
33336 ENSG00000175455 65 CCDC14
15871 ENSG00000168310 7 IRF2
28640 ENSG00000100526 0 CDKN3
28748 ENSG00000136244 80 IL6
28430 ENSG00000168310 7 IRF2
26084 ENSG00000128590 38 DNAJB9
30859 ENSG00000117650 93 NEK2
28674 ENSG00000138061 66 CYP1B1
16127 ENSG00000138061 66 CYP1B1
24868 ENSG00000012963 52 C14orf130
30508 ENSG00000081320 77 STK17B
34108 ENSG00000169926 6 KLF13
16053 ENSG00000173757 83 STAT5B
16091 ENSG00000100526 0 CDKN3
33594 ENSG00000179583 76 CIITA
32924 ENSG00000185658 5 BRWD1
32766 ENSG00000135164 74 DMTF1
16597 ENSG00000109971 0 HSPA8

Table S9. The cell cycle genes, which were chosen to distinguish the ABC and the GCB group.

Ensembl gene ID cell cycle state Gene symbol
ENSG00000011007 59 TCEB3
ENSG00000012963 52 C14orf130
ENSG00000052841 2 TTC17
ENSG00000065809 2 FAM107B
ENSG00000081320 77 STK17B
ENSG00000099326 53 ZNF42
ENSG00000099953 95 MMP11
ENSG00000100526 0 CDKN3
ENSG00000100644 2 HIF1A
ENSG00000102804 1 TSC22D1
ENSG00000108984 44 MAP2K6
ENSG00000109971 0 HSPA8
ENSG00000117650 93 NEK2
ENSG00000118515 83 SGK
ENSG00000123080 75 CDKN2C
ENSG00000124762 21 CDKN1A
ENSG00000128590 38 DNAJB9
ENSG00000134058 92 CDK7
ENSG00000134884 48 NA
ENSG00000135164 74 DMTF1
ENSG00000135541 91 AHI1
ENSG00000136244 80 IL6
ENSG00000138061 66 CYP1B1
ENSG00000138764 72 CCNG2
ENSG00000145050 49 ARMET
ENSG00000145632 99 PLK2PLK2
ENSG00000151150 50 ANK3

(Continued)
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Table S9. (Continued)

Ensembl gene ID cell cycle state Gene symbol
ENSG00000153936 92 HS2ST1
ENSG00000162783 56 IER5
ENSG00000163739 76 CXCL1
ENSG00000163918 52 RFC4
ENSG00000164330 84 EBF
ENSG00000164543 18 STK17A
ENSG00000165810 85 BTNL9
ENSG00000168310 7 IRF2
ENSG00000169926 6 KLF13
ENSG00000171656 96 ETV5
ENSG00000173757 83 STAT5B
ENSG00000175455 65 CCDC14
ENSG00000178573 30 MAF
ENSG00000179583 76 CIITA
ENSG00000180447 80 GAS1
ENSG00000185658 5 BRWD1
ENSG00000187837 69 HIST1H1C
The cell cycle genes annotated by their ensembl gene-ID and their gene name. Additionally the cell cycle states are annotated. The latter 
parameter shows a strong signal in the early and late cell cycle states compared with all available cell cycle states in the data set.

Table S10. Gene expression values of the main regu-
latory network distinguishing ABC and GCB.

Gene ABC GCB
ASB13 − +
MYBL1 − +
MME − +
MAPK10 − +
LRMP − +
LMO2 − +
FN1 − +
CTGF − +
COL3A1 − +
BCL6 − +
BCL7A − +
NEIL1 − +
SH3BP5 + −
BCL2 + −
CCND2 + −
IRF4 + −
IGHM + −
FOXP1 + −
Genes from Figure 2 and their gene expression values in the 
subgroups ABC and GCB are shown. The symbol “−” indicates a 
lower gene expression than “+”. In this network, more genes of the 
more aggressive ABC type have a lower gene expression than the 
GCB type.
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Table S11. List of potential Notch target transcripts.

Gene ID Transcript ID Description
ENSG00000156136 ENST00000286648 Deoxycytidine kinase
ENSG00000148158 ENST00000277244 Sorting nexin family member 30
ENSG00000179388 ENST00000317216 Early growth response protein 3
ENSG00000198833 ENST00000361212 Ubiquitin-conjugating enzyme E2 J1 
ENSG00000198833 ENST00000361333 Ubiquitin-conjugating enzyme E2 J1 
ENSG00000065308 ENST00000182527 Translocation associated membrane protein 2
ENSG00000170584 ENST00000302764 NudC domain containing protein 2 
ENSG00000074706 ENST00000265198 phosphoinositide-binding protein PIP3-E 
ENSG00000134108 ENST00000256496 ADP-ribosylation factor-like 10C)
For all genes of the Lymphochip, all available transcripts annotated in ensembl were screened for the GY, Brd and K boxes. Only these 
transcripts bear all three boxes, GY, Brd and K in the 3’-UTRs. They are possible candidates to be regulated by the Notch signalling 
pathway. Moreover, the Deoxycytidine kinase (ENSG00000156136) and the Translocation associated membrane protein 2 
(ENSG00000065308) show different gene expression values between the ABC and GCB subgroups.

Table S12. T-test result of network genes in another 
data set.

Genes P-value T-value
CCND2 6.260705e-06 5.56939706
BCL6 2.490035e-02 −2.34449786
BCL2 1.843571e-03 3.43618678
IRF4 2.082072e-07 6.49044833
LMO2 3.820841e-07 −6.66162303
MAPK10 3.888633e-02 −2.15403094
The genes from the proposed STRING-network in Figure 4 were 
used to apply a T-test between the ABC and the GCB group in the 
gene expression data of Shipp et al. The authors Wright et al. 
found some evidence for these DLBCL groups in there.
The most obvious rejection of the null hypothesis is delivered by 
IRF4, LMO2, CCND2, BCL2, BCL6 and MAPK10, which are also 
part of the predictor of Wright et al.
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Microarray experiments can aid in answering scientific questions in very
diverse fields, some of them being cancer research and diagnostics, basic re-
search in plant and animal physiology and biodiversity studies. In this work,
applications of the microarray technology to fields named above are described.
The development of a phylogenetic DNA microarray demonstrated the com-
plete workflow from designing an array, experimental laboratory work to mi-
croarray data analysis. In other chapters of this work, the analysis of primary
microarray data was performed. In two chapters, the analysis of whole genome
expression data of Arabidopsis thaliana was described. The first experiment
was set up to find out if microwave irradiation had an effect on gene expres-
sion on a plant cell culture. In the second experiment, physiological differences
between normal and tumor plant cells were analyzed. Secondary data anal-
ysis was performed on a dataset of human Diffuse Large B Cell Lymphoma
(DLBCL) and a meta-analysis on a large number of datasets from a public
database was performed on Arabidopsis thaliana datasets. Furthermore, a
new software is presented to improve microarray gene expression data analysis
from a functional perspective (“GEPAT”, chapter 5).

In the chapter about the development of a phylogenetic microarray
(publication 1, (Engelmann et al., 2008b)), the complete process from selecting
appropriate species, selecting capture probes (array design) over hybridization
of the microarrays to data analysis is described. On phylogenetic arrays, in
contrast to gene expression microarrays, the sequence of one marker gene is
spotted for many different species. Evaluating the signal intensities from the
individual spots, predictions about which species had been in the sample can
be made. DNA microarrays are suitable and cost-effective tools to measure
biodiversity when a large number of measurements needs to be performed or
when the same habitat needs to be measured regularly.

In chapter 1, I have presented the data analysis of a phylogenetic DNA
array based on 12 microarray hybridizations, 10 single alga hybridizations and
two mixtures of two algae each. Although we had performed more microar-
ray hybridizations, they could not be integrated in the analysis presented in
the paper because of several reasons. The first batch of arrays was spot-
ted with probes made from universal primers located in the 5.8S and 28S
rDNA which amplify the complete ITS2 sequence. These probes share about
50 bp of identical sequence at both ends of the probe leading to high levels
of cross-hybridization. For the second batch of array hybridizations we used
algae-specific primers to amplify shorter probe sequences with less sequence
similarity. Cross-hybridization was much less on these arrays and therefore
these data were used for the data analysis described in the publication. A
third batch of 18 arrays was created with both probes made from universal
and from specific primers. The idea was that integrating data from the two
probes per alga may yield more robust results for the detection of species. Un-
fortunately, the spots of the probes with the sequences from universal primers
were much brighter than the ones from the specific primers and outshined the
spots from the specific probes. Although there was considerable high back-
ground, I still analyzed the data of the spots of the specific primers. With the
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same approach presented in the publication, I was able to correctly predict for
about 50 % of the microarray hybridizations which species were in the sample
in a leave-two-out cross-validation. The third batch contained 8 hybridiza-
tions with mixtures of two or three algae. Similar to the results described
in the publication, the two closest related alga Scenedesmus acuminatus and
Scenedesmus obliquus were the most difficult to distinguish. Besides this, the
predictions of the mixtures were very good, indicating that our species microar-
ray is able to detect also complex mixtures of species. Unfortunately, it was
not possible to integrate the microarray data from batches two and three into
one coherent analysis, which would have increased the number of microarray
hybridizations dramatically. This was most likely due to the high background
level observed on the arrays of batch three.

One problem in the current analysis procedure is that the case “no species
present” cannot be distinguished from the case “all species present in equal
amounts”. This is due to the variance stabilization preprocessing step where
the signal intensities are scaled such that the mean signal intensity is about
equal in all arrays. If all spot intensites are very low because no species is
present, they are scaled up. This problem could be approached in several
ways. One way could be to include a control probe on the array which will
bind only to a spiked-in control sequence added to the sample in a known
concentration. Then the signal intensities could be calibrated with the control
signal intensity. For environmental applications there might be species which
are virtually always present in the environment and could serve as controls,
but with these “natural” controls, quantitative calibration is of course not
possible. Another way would be to change the preprocessing. Once the exper-
imental workflow is more robust, variance stabilization might not be necessary
any more and calculations could directly be performed on the median signal
intensities.

Compared to light microscopy or sequencing of a barcode region, DNA mi-
croarrays require some time and preliminary experiments to design and test the
microarray. But once a particular microarray has been established, processing
of many samples can be performed rapidly. Nonetheless, DNA microarrays for
species detection also face competition from recently developed high through-
put sequencing technologies. The advantage of these technologies is that in
principle, every species can be identified, not just the ones which would be
represented on a particular microarray. But because the initial investment for
high throughput sequencing machines is still very high at the moment, it will
take several years before they pose serious competition. Until then, phylo-
genetic DNA microarrays have to compete with barcoding approaches, which
are based on classical Sanger sequencing. Their limitation is, however, that
they only yield reliable sequence reads for one individual sequence. Mixed en-
vironmental samples can therefore only be analyzed when the sequences of the
sample are individually cloned and then sequenced. This is more laborious and
the sequences of some species might be missed in the cloning procedure. Also,
quantification of species is impossible because the cloning step introduces bias.

While for gene expression microarray data, numerous public databases ex-
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ist, databases for phylogenetic array data are still missing. This is probably
in parts due to the fact that there are no established platforms and data for-
mats for this kind of data yet. It would be desirable to establish such public
data repositories and common standards on the design and analysis of phylo-
genetic arrays, to facilitate future DNA microarray experiments and allow the
comparison of existing DNA array datasets.

As stated above, the situation is different for gene expression microar-
ray data. The size of public gene expression array databases has increased
rapidly in the past years, but still, the wealth of information stored there
could be used more extensively. Most meta-analysis performed so far com-
bined datasets which were set up to answer the same scientific question. They
were mainly used to increase the number of replicates which again increases the
number of statistically significant differentially expressed genes. Exploratory
meta-analysis over a wide range of experimental conditions as described here
(chapter 2, (Engelmann et al., 2008c)), has the potential to discover novel
functions of genes which would have been missed in the analysis of individual
datasets. In a meta-analysis of Arabidopsis thaliana, for example, a function in
pathogen defense could be assigned to a group of serine/threonine kinases with
two uncharacterized domains in their receptor part (DUF26). Few web appli-
cations like Genevestigator (Zimmermann et al., 2004) which allows browsing
in the human, mouse, rat, Arabidopsis, and barley transcriptome under dif-
ferent conditions, have been set up to better exploit microarray databases.
Also the number of scientifc questions they can answer are usually limited. A
general problem in meta-analysis is to achieve comparability. The individual
experiments deposited in the database were typically performed in different
laboratories, maybe with different chemicals and slightly differing protocols.
Despite a standard which defines what information needs to be given by the
authors on a microarray experiment (MIAME, Minimal Information About a
Microarray Experiment, (Brazma et al., 2001)), standard protocols on how a
microarray experiment should be performed are missing. This makes a com-
parison of datasets from different studies very difficult, especially when only
processed data is supplied by the database.

Chances to get reasonable results from a meta-analysis are better when it
can be based on unprocessed (”raw”) data, e.g. CEL-files from Affymetrix ar-
rays or the scanner outputs from other platforms. Therefore, databases which
require unprocessed data to be deposited should be preferred. Still, the prob-
lem of normalizing a possibly very heterogenous dataset persist. Great care
needs to be taken in the preprocessing steps and possible outlier hybridiza-
tions or even complete datasets need to be removed to achieve comparability.
Once this more elaborate preprocessing has been done, a meta-analyis can
yield additional insights into the function of genes and their regulation.

We have dealt with this issue with a very strict outlier removal, discarding
35 of 76 contrasts (pairwise comparisons of groups of similarly treated microar-
rays). Although the remaining data was considerably more homogenous than
the complete data set, one can argue that too much information was lost when
discarding almost 50% of the data. In this trade-off between homogeneity of
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the data and using as much data as possible, we favored homogeneity to lower
the risk that our analysis would be confused by experimental artifacts.

Another promising meta-analysis approach has been proposed by Hibbs
et al. (2007). To better exploit the available microarray data of Saccharomyces
cerevisiae experiments, Hibbs et al. (2007) have built a web application named
SPELL where the regulation of a gene can be studied over about 2400 condi-
tions. Given a small set of query genes, SPELL determines the most informa-
tive conditions for these genes and searches for genes with similar expression
profiles in the selected conditions. By this co-expression analysis, hypotheses
about gene functions can be proposed which can then be experimentally vali-
dated. It would be desirable to have similar methods also for other more com-
plex organisms, although they might require more sophisticated approaches
because of their more complex regulation mechanisms compared to the single-
cell organism Saccharomyces cerevisiae.

Co-expression analysis might also be reasonable for Arabidopsis thaliana
datasets. Although the regulation mechanisms are more complicated than for
yeast, individual variation is smaller than for example between humans or mice.
With principal components analysis, an unsupervised cluster method, a sim-
ple explorative meta-analysis was performed to find similarities between a mi-
crowave treated Arabidopsis thaliana gene expression dataset and 75 datasets
from a public repository. The initial question in this analysis was to find out if
microwave irradiation had an effect on the physiology of plant cells
(chapter 3, (Engelmann et al., 2008a)). Because the problem was formulated
as a question, this was an excellent opportunity to apply explorative analysis
methods. The scientific question was unusual: prove or disprove that there is
an effect of a treatment. This asked for a non-standard analysis of the gene
expression microarray data. Unsupervised clustering methods could show that
differences exist between the two sample groups and small changes in gene ex-
pression could be confirmed by supervised differential gene expression analysis
and quantitative real-time PCR. But are these small changes physiologically
relevant to the plant cells? Some of the differentially expressed genes have
functions in photosynthesis and a comparison of the microwave dataset to
publicly available datasets indicated similarities to datasets which analyzed
the effect of different light treatments. From these findings, one might set up
the hypothesis that plants perceive electromagnetic irradiation as some kind of
energy which might even have an effect on photosynthesis. However, the time
of irradiation was only 24 h in the experiment described here, to get a more
realistic picture of the influence of UMTS irradiation on plants, cell cultures
and whole plants should be treated for weeks or even month. Additionally,
it would be interesting to study whether microwaves have an effect on the
genomic level. If there was an effect on defined regions on the genome, this
could be studies with SNP arrays in resequencing studies, but if the irradia-
tion would induce genomic changes at different positions in different cells, this
effect would be very difficult to trace. In any case, further experiments are
needed to clarify if the small changes in gene expression observed here on a
cell culture could have an effect on the physiology of whole plants.
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Infection with Agrobacterium tumefaciens, on the other hand, has a very
dramatic effect on the gene expression of plant cells. The bacteria induce
changes in gene expression which lead to rapid tumor growth and the pro-
duction of nutrients used by the bacteria. With the same type of microarray
as used in the microwave irradiation experiment (Affymetrix ATH-1 whole
genome arrays), the gene expression and metabolite profiles of Ara-
bidopsis thaliana tumors were analyzed (chapter 4, (Deeken et al., 2006)).
With a functional analysis of differentially expressed genes, a shift from aerobic
to anerobic energy production necessary for rapid cell growth was observed.
The tumor cells reduce photosynthetic energy production which is reflected by
the repression of genes involved in photosynthesis and mitochondrial electron
transport. These transcriptional changes were accompanied by increased levels
of anions, sugars and amino acids. In this analysis, gene expression data was
complemented by solute measurements, demonstrating that the integration of
different data types has great potential to gain a better understanding of what
is going on in a cell or tissue. Future studies could focus on the development
of a plant tumor with for example a time-course experiment of samples taken
very early, early, after a medium period of time and late after infection to
analyze the transcriptional changes during the reorganisation from regular to
tumor cells. If early events that finally lead to tumor growth could be iden-
tified, these could also help in developing crop plants which are resistant to
Agrobacterium tumefaciens infection.

Plant tumors show some analogies to animal and human cancers and there-
fore plant tumor experiments could also yield valuable insights into cancer
biology. But in this thesis, also analyses of human cancer patient data were
demonstrated. Besides elucidating the molecular changes which lead to cancer
development, gene expression data generated with microarrays can aid in the
classification of patients into subgroups of the disease or into risk groups with
different predicted survival times. These diagnostic applications are clinically
very important because they can first help in developing and secondly help
in selecting the appropriate therapy for each individual patient. For Man-
tle Cell Lymphoma (MCL) patients, a novel seven gene predictor could
be discovered to predict patient survival (chapter 6, (Blenk et al., 2008)). It
performs similarly well to former predictors but uses less genes, making it eas-
ier to apply in the clinic with low throughput techniques like real-time PCR.
Explorative analysis of Comparative Genomic Hybridization (CGH) data of
the same patients showed that patients could also be grouped into groups of
longer or shorter survival based on this data type. However, for clinical ap-
plications, measuring the gene expression levels of the predictor genes will be
easier than the analysis of chromosomal aberrations. Integrating the gene ex-
pression data with interaction data from STRING (von Mering et al., 2007),
an interaction network of proliferation markers and cell cycle genes showed
that more aggressive MCL increase the expression of late cell cycle genes.

For Diffuse Large B Cell Lymphoma (DLBCL) patients, the two sub-
groups ABC (Activated B Cell-like) and GCB (Germinal Center B cell-like)
described previously could be confirmed by an unsupervised analysis (chap-
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ter 7, (Blenk et al., 2007)). Furthermore, a survival predictor with only six
spots was derived which yields better predictions for the clinically important
patient group with medium survival. A regulatory network with proliferation,
anti-proliferation, apoptosis and differentiation genes pointed to differences be-
tween the subgroups ABC and GCB which could explain why ABC lymphomas
are more aggressive.

All of the projects presented in this work demonstrated that careful selec-
tion and application of analysis methods is needed to deduce biological knowl-
edge from high throughput data. As presented in chapter 5, GEPAT (Weniger
et al., 2007) offers statistical analysis methods and graphical representations
for gene expression microarray and comparative genomic hybridization data
and connects to several biological databases which allow integration of chro-
mosomal localization, functional annotation and interaction data.

Great potential also lies in the integration and combination of different high
throughput data types to get a more holistic picture about differences between
two or more sample types. Chromosomal rearrangements are known to play
a crucial role in cancer develoment and have an effect on gene expression,
therefore, integrating gene expression with CGH data can help to get further
insights into cancer biology (Bussey et al., 2006; Nigro et al., 2005). GEPAT
currently allows to graphically overlay gene expression and CGH data to find
genomic regions of interest, but this approach is of course absolutely model-
free. To facilitate and improve this integration, methods need to be developed
which are not only valid for a single study, but which are standardized such that
they can be applied to all gene expression plus CGH data sets. One possible
approach could be to use a hidden Markov model that has all combinations of
increased-normal-decreased levels of gene expression and CGH data as states.
With this approach, regions where gene expression and CGH data match and
others where they disagree could be predicted.

To get further insights into the regulation of gene expression, again with
applications to cancer, it is worthwile to integrate microarray gene expression
data with transcription factor binding site information. Although many tran-
scription factors are known, their motifs are often very short or degenerated
and therefore sophisticated computational methods are needed to spot them in
the genome if they are based on the sequence alone (D’haeseleer, 2006; Stormo,
2000). Jeffery et al. (2007) presented a more promising approach using unsu-
pervised analysis to identify transcription factor binding motifs associated to
gene expression differences between two sample groups. Known transcription
factor binding sites could also easily be displayed in GEPAT.

Furthermore, other relatively new high throughput technologies could be
combined to yield additional insights. Single nucleotide polymorphism (SNP)
data from linkage and association studies could also be combined with gene
expression data to analyze the effect of SNPs on gene expression levels when
they lie within a coding region but also the effect of SNPs in non-coding,
possibly regulatory regions. Small non-coding RNAs (miRNA, siRNA, piRNA)
also modulate gene expression and much research and new methods are needed
to first discover them in the genome and then fully characterize their functions
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(Mattick and Makunin, 2006; Berezikov et al., 2006). miRNA annotation data
has also been included in GEPAT. Tiling arrays are used to find non-coding
RNAs in the genome. In combination with gene expression data, tiling arrays
could be used to find and characterize non-coding RNAs which modulate gene
expression in for example different tissues or in cancer. Additional modules to
analyze and integrate all the different data types mentioned above could be
integrated into GEPAT in the future.

Much research is still required to understand the modulators of gene ex-
pression. Besides genomic aberrations, epigenetic changes also play a role in
the regulation of transcription. DNA methylation and histone modifications
alter the packaging of the DNA which in turn has an effect on gene expression.
In general, methylation and histone modifications lead to a tighter packag-
ing of the DNA which makes the genes in these regions less accessible for the
transcription machinery (Bock and Lengauer, 2008). It has been shown that
methylation patterns change during the life of an individual (Lewin, 2000)
and differ between tissues, thereby influencing gene expression patterns (Song
et al., 2005). Differential DNA methylation has also been found in human
cancers (Weber et al., 2005). In prostate cancer, hypermethylation of CpG
islands might be the earliest somatic genome changes which eventually lead
to unrestricted cell growth (Yegnasubramanian et al., 2004). ChIP-on-chip
experiments using tiling arrays can be used to analyze DNA methylation pat-
terns on a large scale. In these experiments, antibodies are used to pull down
methylated regions which are then hybridized to a tiling array and compared
to a control sample (Lippman et al., 2005). But because this approach is
still rather new, further improvements to the experimental steps and methods
for data analysis are needed. The bioinformatic challenge is here to derive
a ranked list of overrepresented (methylated) regions of the sample. Methods
similar to the ones used in gene expression analysis are applied to the data and
have been modified to answer specific needs (see Bock and Lengauer (2008) for
a review of available methods). In cancer epigenetics, the challenge is to de-
tect common patterns or functional relationships of specific regions to cancer.
This task as well as developing methods to improve diagnosis and therapy can
be approached with the modulation of existing bioinformatic methods for the
analysis of high throughput data.

Allele-specific transcription is another interesting topic to be addressed in
the future. Although today it is known that for most genes, both maternal
and paternal alleles are more or less active, for almost 10% of genes, only one
allele from the mother or the father is active (Gimelbrant et al., 2007). Before
Gimelbrant’s work was published, only some immuno globulin genes and genes
coding for olfactory receptors had been known to be expressed monoallelicly.
More than 1000 genes in the human genome could be monoallelicly expressed
and amongst others, they might explain differences in disease susceptibility of
monozygotic twins. Dependent on which copy of a gene is expressed, one twin
might have a higher chance to develop a disease than the other. This example
shows that identical genome information, as in monoallelic twins, does not
make identical organisms. Transcription of genes and their regulation play a
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crucial part in the characteristics of an individual.
With the advent of massively parallel high throughput sequencing tech-

niques, for the first time, microarrays face serious competition in whole genome
expression analysis. Torres et al. (2008) report on using the 454 sequencing
technology (Margulies et al., 2005) to measure the gene expression profile of
Drosophila melanogaster. An advantage of the sequencing approach is that
also new isoforms and antisense transcripts can be detected and that a quan-
titative analysis of the transcripts is in principle possible. Even allele-specific
gene expression measurements might be feasible, because SNPs in transcripts
can be detected by sequencing. While interspecies gene expression studies are
difficult to conduct with microarrays because the gene expression values are
always relative and usually a reference suitable for several species can only be
set up for very closely related species (Oshlack et al., 2007), they are more fea-
sible with the sequencing approach. If a database of high quality is available,
the sequence reads can also be mapped to a interspecies database.

Nonetheless, microarrays will remain an invaluable tool for the analysis of
whole genome transcription changes, chromosomal rearrangements, single nu-
cleotide polymorphisms and modulators of gene expression. The challenge for
the future will be to deduce novel biological knowledge by integrating different
data types to get a more systemic picture of the organism under study.



Summary

Microarrays have been used in diverse research fields to answer many biological
and medical questions. One important application of DNA microarrays is
whole genome gene expression analysis. Because of the large number of genes
interrogated in one experiment, statistical analysis methods are needed to
handle these huge datasets and receive meaningful and interpretable results. In
this thesis, the development of a phylogenetic DNA microarray, the analysis of
several gene expression microarray datasets and new approaches for improved
data analysis and interpretation are described.

In the first publication, the development and analysis of a phylogenetic
microarray is presented. I could show that species detection with phylogenetic
DNA microarrays can be significantly improved when the microarray data is
analyzed with a linear regression modeling approach. Standard methods have
so far relied on pure signal intensities of the array spots and a simple cut-
off criterion was applied to call a species present or absent. This procedure
is not applicable to very closely related species with high sequence similar-
ity because cross-hybridization of non-target DNA renders species detection
impossible based on signal intensities alone. By modeling hybridization and
cross-hybridization with linear regression, as I have presented in this thesis,
even species with a sequence similarity of 97% in the marker gene can be
detected and distinguished from related species. Another advantage of the
modeling approach over existing methods is that the model also performs well
on mixtures of different species. In principle, also quantitative predictions can
be made.

To make better use of the large amounts of microarray data stored in pub-
lic databases, meta-analysis approaches need to be developed. In the second
publication, an explorative meta-analysis exemplified on Arabidopsis thaliana
gene expression datasets is presented. Integrating datasets studying effects
such as the influence of plant hormones, pathogens and different mutations on
gene expression levels, clusters of similarly treated datasets could be found.
From the clusters of pathogen-treated and indole-3-acetic acid (IAA) treated
datasets, representative genes were selected which pointed to functions which
had been associated with pathogen attack or IAA effects previously. Addi-
tionally, hypotheses about the functions of so far uncharacterized genes could
be set up. Thus, this kind of meta-analysis could be used to propose gene
functions and their regulation under different conditions which could then be
experimentally validated.

In this work, also primary data analysis of Arabidopsis thaliana datasets
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is presented. In the third publication, an experiment which was conducted
to find out if microwave irradiation has an effect on the gene expression of a
plant cell culture is described. During the first steps, the data analysis was
carried out blinded and exploratory analysis methods were applied to find
out if the irradiation had an effect on gene expression of plant cells. Small
but statistically significant changes in a few genes were found and could be
experimentally confirmed. From the functions of the regulated genes and a
meta-analysis with publicly available microarray data, it could be suspected
that the plant cell culture somehow perceived the irradiation as energy, similar
to perceiving light rays. However, further experiments are needed to analyze
whether microwave irradiation has an effect on whole plants.

The fourth publication describes the functional analysis of another Ara-
bidopsis thaliana gene expression dataset. The gene expression data of the
plant tumor dataset pointed to a switch from a mainly aerobic, auxotrophic
to an anaerobic and heterotrophic metabolism in the plant tumor. Genes in-
volved in photosynthesis were found to be repressed in tumors; genes of amino
acid and lipid metabolism, cell wall and solute transporters were regulated in
a way that sustains tumor growth and development.

Furthermore, in the fifth publication, GEPAT (Genome Expression Path-
way Analysis Tool), a tool for the analysis and integration of microarray data
with other data types, is described. It consists of a web application and
database which allows comfortable data upload and data analysis. GEPAT
also links to biological databases which help in interpreting the results by
supplying functional annotation, metabolic or regulatory interaction network
membership and chromosomal localization.

In later chapters of this thesis (publication 6 and publication 7), GEPAT
is used to analyze human microarray datasets and to integrate results from gene
expression analysis with other datatypes. Gene expression and comparative
genomic hybridization data from 71 Mantle Cell Lymphoma (MCL) patients
was analyzed and allowed proposing a seven gene predictor which facilitates
survival predictions for patients compared to existing predictors. In this study,
it was also shown that CGH data can be used for survival predictions. For
the dataset of Diffuse Large B-cell lymphoma (DLBCL) patients, an improved
six-spot survival predictor could also be found based on the gene expression
data. From the genes differentially expressed between long and short surviving
MCL patients as well as for regulated genes of DLBCL patients, interaction
networks could be set up. They point to differences in regulation for cell cycle
and proliferation genes between patients with good and bad prognosis for both
cancer types.

The results of the different projects described in this thesis have shown
that great potential lies in the analysis of microarray data. Novel methods
for data analysis open up new perspectives and enable the researcher to draw
meaningful conclusions. Challenges for the future lie in finding and charac-
terizing modulators of gene expression and in the integration of different high
throughput data types.



Zusammenfassung

Microarrays werden in zahlreichen Forschungsbereichen eingesetzt, um biolo-
gische und medizinische Fragestellungen zu beantworten. Eine wichtige Anwen-
dung der DNA-Microarray-Technologie ist die genomweite Analyse der Genex-
pression. Da die Anzahl der Gene, die in einem Microarray-Experiment unter-
sucht werden, sehr groß ist, werden statistische Auswerteverfahren benötigt um
diese Datensätze zu verarbeiten und aussagekräftige und interpretierbare Er-
gebnisse zu erhalten. In der vorliegenden Dissertation wird die Entwicklung ei-
nes phylogenetischen DNA Microarrays, die Analyse von mehreren Microarray-
Genexpressionsdatensätzen und neue Ansätze für die Datenanalyse und Inter-
pretation der Ergebnisse vorgestellt.

Die Entwicklung und Analyse der Daten eines phylogenetischen DNA Mi-
croarrays wird in der ersten Publikation dargestellt. Ich konnte zeigen,
dass die Spezies-Detektion mit phylogenetischen Microarrays durch die Da-
tenanalyse mit einem linearen Regressionsansatz signifikant verbessert werden
kann. Standard-Methoden haben bislang nur die Signalintensitäten der ein-
zelnen Microarray-Messpunkte betrachtet und eine Spezies als an- oder abwe-
send bezeichnet, wenn die Signalintensität ihres Messpunktes oberhalb eines
willkürlich gesetzten Schwellenwertes lag. Dieses Verfahren ist allerdings auf-
grund von Kreuz-Hybridisierungen nicht auf sehr nah verwandte Spezies mit
hoher Sequenzidentität anwendbar. Durch die Modellierung des Hybridisierungs-
und Kreuz-Hybridisierungsverhaltens mit einem linearen Regressionsmodell
konnte ich zeigen, dass Spezies mit einer Sequenzähnlichkeit von 97% im Mar-
kergen immer noch unterschieden werden können und ihre Anwesenheit richtig
vorhergesagt werden kann. Ein weiterer Vorteil der Modellierung gegenüber
herkömmlichen Methoden ist, dass auch Mischungen verschiedener Spezies
zuverlässig vorhergesagt werden können. Theoretisch sind auch quantitative
Vorhersagen mit diesem Modell möglich.

Um die großen Datenmengen, die in öffentlichen Microarray-Datenbanken
abgelegt sind, besser nutzen zu können, bieten sich Meta-Analysen an. In der
zweiten Publikation wird eine explorative Meta-Analyse auf Arabidopsis
thaliana-Datensätzen vorgestellt. Mit einer gemeinsamen explorativen Analy-
se verschiedener Datensätze, die den Einfluss von Pflanzenhormonen, Pathoge-
nen oder verschiedenen Mutationen auf die Genexpression untersucht haben,
konnten die Datensätze anhand ihrer Genexpressionsprofile in drei große Grup-
pen eingeordnet werden: Experimente mit Indol-3-Essigsäure (IAA), mit Pa-
thogenen und andere Experimente. Gene, die charakteristisch für die Gruppe
der IAA-Datensätze beziehungsweise für die Gruppe der Pathogen-Datensätze
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sind, wurden näher betrachtet. Diese Gene hatten Funktionen, die bereits mit
Pathogenbefall bzw. dem Einfluss von IAA in Verbindung gebracht wurden.
Außerdem wurden Hypothesen über die Funktionen von bislang nicht anno-
tierten Genen aufgestellt. Daher könnte die hier vorgestellte Meta-Analyse
generell dazu dienen, Genfunktionen und ihre Regulation unter verschiedenen
Bedingungen vorherzusagen. Diese sollten anschließend experimentell bestätigt
werden.

In dieser Arbeit werden auch Primäranalysen von einzelnen Arabidopsis
thaliana Genexpressions-Datensätzen vorgestellt. In der dritten Publikation
wird ein Experiment beschrieben, das durchgeführt wurde um herauszufinden,
ob Mikrowellen-Strahlung einen Einfluss auf die Genexpression einer Zellkultur
hat. Die ersten Schritte der Datenanalyse dieses Datensatzes wurden doppelt-
blind durchgeführt und explorative Analysemethoden wurden angewendet um
herauszufinden, ob die Strahlung einen Effekt auf die Genexpression der pflanz-
lichen Zellkultur hat. Es wurden geringe aber signifikante Veränderungen in
einer sehr kleinen Anzahl von Genen beobachtet, die experimentell bestätigt
werden konnten. Die Funktionen der regulierten Gene und eine Meta-Analyse
mit öffentlich zugänglichen Datensätzen einer Datenbank deuten darauf hin,
dass die pflanzliche Zellkultur die Strahlung als eine Art Energiequelle ähnlich
dem Licht wahrnimmt. Allerdings sind weitere Experimente notwendig um
dies zu bestätigen und den Einfluss von Mikrowellen-Strahlung auf komplette
Pflanzen zu untersuchen.

Des weiteren wird in der vierten Publikation die funktionelle Analyse ei-
nes Arabidopsis thaliana Genexpressionsdatensatzes beschrieben. Die Analyse
der Genexpressionsdaten eines pflanzlichen Tumores zeigte, dass der pflanz-
liche Tumor seinen Stoffwechsel von aerob und auxotroph auf anaerob und
heterotroph umstellt. Gene der Photosynthese werden im Tumorgewebe repri-
miert, Gene des Aminosäure- und Fettstoffwechsels, der Zellwand und Trans-
portkanäle werden so reguliert, dass Wachstum und Entwicklung des Tumors
gefördert werden.

In der fünften Publikation in dieser Arbeit wird GEPAT (Genome Ex-
pression Pathway Analysis Tool) beschrieben. Es besteht aus einer Internet-
Anwendung und einer Datenbank, die das einfache Hochladen von Datensätzen
in die Datenbank und viele Möglichkeiten der Datenanalyse und die Integration
anderer Datentypen erlaubt. GEPAT ist außerdem mit biologischen Datenban-
ken verlinkt, die dadurch, dass sie funktionelle Annotationen, Zugehörigkeiten
zu metabolischen und regulatorischen Netzwerken und die chromosomale Po-
sition der Gene anbieten, bei der Interpretation der Ergebnisse hilfreich sind.

In den folgenden zwei Publikationen (Publikation 6 und Publikation 7)
wird GEPAT auf humane Microarray-Datensätze angewendet um Genexpres-
sionsdaten mit weiteren Datentypen zu verknüpfen. Genexpressionsdaten und
Daten aus vergleichender Genom-Hybridisierung (CGH) von primären Tumo-
ren von 71 Mantel-Zell-Lymphom (MCL) Patienten ermöglichte die Ermittlung
eines Prädiktors aus sieben Genen, der die Vorhersage der Überlebensdauer
von Patienten gegenüber herkömmlichen Methoden verbessert. Die Analyse
der CGH Daten zeigte außerdem, dass auch dieser Datentyp für die Vorher-
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sage der Überlebensdauer geeignet ist. Für den Datensatz von Patienten mit
großzellig diffusem B-Zell-Lymphom DLBCL konnte aus den Genexpressions-
daten ebenfalls ein neuer Prädiktor vorgeschlagen werden, der aus sechs Genen
besteht. Mit den zwischen lang und kurz überlebenden Patienten differentiell
exprimierten Genen der MCL Patienten und mit den Genen, die zwischen
den beiden Untergruppen von DLBCL reguliert sind, wurden jeweils Interak-
tionsnetzwerke gebildet. Diese zeigen, dass bei beiden Krebstypen (MCL und
DLBCL) Gene des Zellzyklus und der Proliferation zwischen Patienten mit
kurzer und langer Überlebensdauer unterschiedlich reguliert sind.

Die Ergebnisse der in dieser Arbeit vorgestellten Projekte zeigen, dass in
der Analyse von Genexpressionsdaten großes Potential steckt. Neue Analyse-
methoden können neue Einblicke ermöglichen und erlauben den Wissenschaft-
lern, aussagekräftige Schlussfolgerungen zu ziehen. Die Herausforderungen der
Zukunft liegen darin, Regulatoren der Genexpression zu finden und zu charak-
terisieren, sowie die Daten verschiedener Hochdurchsatz-Technologien mitein-
ander zu verflechten.
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