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Abstract: The analysis of the Earth system and interactions among its spheres is increasingly impor-
tant to improve the understanding of global environmental change. In this regard, Earth observation
(EO) is a valuable tool for monitoring of long term changes over the land surface and its features.
Although investigations commonly study environmental change by means of a single EO-based
land surface variable, a joint exploitation of multivariate land surface variables covering several
spheres is still rarely performed. In this regard, we present a novel methodological framework for
both, the automated processing of multisource time series to generate a unified multivariate feature
space, as well as the application of statistical time series analysis techniques to quantify land surface
change and driving variables. In particular, we unify multivariate time series over the last two
decades including vegetation greenness, surface water area, snow cover area, and climatic, as well
as hydrological variables. Furthermore, the statistical time series analyses include quantification of
trends, changes in seasonality, and evaluation of drivers using the recently proposed causal discovery
algorithm Peter and Clark Momentary Conditional Independence (PCMCI). We demonstrate the
functionality of our methodological framework using Indo-Gangetic river basins in South Asia as a
case study. The time series analyses reveal increasing trends in vegetation greenness being largely
dependent on water availability, decreasing trends in snow cover area being mostly negatively cou-
pled to temperature, and trends of surface water area to be spatially heterogeneous and linked to
various driving variables. Overall, the obtained results highlight the value and suitability of this
methodological framework with respect to global climate change research, enabling multivariate time
series preparation, derivation of detailed information on significant trends and seasonality, as well as
detection of causal links with minimal user intervention. This study is the first to use multivariate
time series including several EO-based variables to analyze land surface dynamics over the last two
decades using the causal discovery algorithm PCMCI.

Keywords: time series analysis; trends; seasonality; partial correlation; causal networks; NDVI; snow
cover area; surface water area; Indus-Ganges-Brahmaputra-Meghna; Himalaya Karakoram

1. Introduction

Amplified global climate change results in modified climate variability and severely
impacts land surface processes worldwide [1]. Accordingly, a continuous monitoring of
these transformation processes is required to quantify and understand their characteristics,
drivers, and impacts [2]. In this context, time series analysis tools are crucial to identify
spatio-temporal patterns and examine changes over time [3]. In terms of continuous
monitoring of the land surface, Earth observation (EO) provides increasing amounts of data
streams over the entire globe for already decades [4,5]. In addition to raw EO data, many
subsequently generated geospatial data products, so-called analysis ready data (ARD) that
characterize the global land surface are available. These include geophysical variables,

Remote Sens. 2022, 14, 197. https://doi.org/10.3390/rs14010197 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14010197
https://doi.org/10.3390/rs14010197
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-3733-0049
https://orcid.org/0000-0001-6181-0187
https://doi.org/10.3390/rs14010197
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14010197?type=check_update&version=2


Remote Sens. 2022, 14, 197 2 of 24

such as land surface temperature, net primary productivity, or albedo (e.g., [6–8]), index
variables such as the normalized difference vegetation index (NDVI) or the leaf area index
(LAI) (e.g., [9,10]), and thematic variables representing, e.g., forest cover, surface water area,
snow cover area, and settlement area (e.g., [11–17]). The large availability of EO and further
geoscientific time series enables the joint exploration of interactions among various spheres
of the Earth system at global scale and have the potential to enhance our understanding of
environmental change considerably [18–20]. However, the investigation of multivariate
time series including several EO-based land surface variables in combination with climatic,
hydrological, and anthropogenic variables remains underexploited and is hampered by
varying data characteristics in terms of spatial and temporal resolution as well as processing
and storage capacities.

To exploit the full potential of multivariate time series, methodological frameworks
integrating both the preparation of multisource geospatial time series and the application
of respective statistical analysis tools are necessary. In this connection, Sudmanns et al. [21]
provides an overview of selected architectures and data portals allowing the access to
and the analysis of large amounts of EO data, particularly ARD, with the Google Earth
Engine [22] being probably the most prominent example. A further solution to store,
organize, and analyze EO data is the data cube environment [21,23,24]. In this regard,
there is a variety of operational data cubes at regional scale using the Open Data Cube
framework [25–30]. Recent progress in data cubes and multivariate analysis methods point
towards the importance of joint analyses of time series rather than a single variable [18,31].
In agreement with these developments, the aim of this study is to implement a simplified
methodological framework for both preparation and statistical analysis of multivariate
time series. Compared to other approaches, we envision an easy-to-implement and flexible
framework with respect to the unification of multisource data streams. In particular, this
applies to the spatial and temporal resolution, which should ideally be adjustable to any
grid space or geographical entity and temporal intervals, respectively.

In the context of statistical time series analysis with respect to land surface dynamics,
studies often investigate time series on a single EO-based land surface variable, such as
the vegetation index to calculate change over time. This univariate domain measures one
variable and includes techniques, such as trend estimation (e.g., [32–35]), changepoint
detection (e.g., [36,37]), and calculation of phenological metrics (e.g., [38–40]). On the other
hand, fewer studies investigate the influence of driving variables using multivariate time
series. Multivariate time series analyses aim at quantifying the relation between two or
more variables, as well as at exploring interdependencies between several features. For this
purpose, past studies used methods including traditional correlative approaches between
two variables (e.g., [41–43]) or partial correlation analyses using one or more controlling
variables (e.g., [44,45]). Recently, studies investigating causal inference from empirical
data provided important insights and directions on the application of causal discovery
approaches [46–48]. The application of such causal discovery algorithms aims at reduc-
ing potential spurious links, which could appear in traditional correlation approaches,
and include advanced analysis of interactions in a high dimensional feature space. Specifi-
cally, Runge [49] introduced an approach called Peter and Clark Momentary Conditional
Independence (PCMCI) to construct causal networks. Here, a causal network describes
and quantifies the relation between variables at different time steps in the past. PCMCI
constructs causal networks to analyze relationships between several features at past time
lags while being capable of dealing with a high dimensional feature space and highly
autocorrelated variables [49]. However, up to date, a detailed application and evaluation of
causal networks with PCMCI for multivariate time series covering EO-based land surface
variables remains limited [50].

In order to address the lack of multivariate remote sensing time series analyses across
spheres, we present a novel methodological framework allowing the large scale processing
of multisource geospatial time series and demonstrate its potential to characterize land
surface dynamics for a case study in South Asia over the last two decades. Accordingly,
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the objectives of this study are to: (1) implement a framework being transferable in space
and time and aiming at preparing and unifying multivariate time series and (2) enable
quantitative analyses of land surface dynamics through derivation of trends, changes in
seasonality, as well as evaluation of driving variables using PCMCI. For the first time, we
jointly analyze land surface variables including EO time series on vegetation greenness,
surface water area, and snow cover area in combination with climatic and hydrological
variables over two decades. In the following, Section 2 presents the study area. Next,
Section 3 describes the used time series, as well as the implemented methodological
framework for time series preprocessing, generation of the unified database, and the
employed statistical time series analysis techniques. Following this, Section 4 presents the
results of the statistical analyses and Section 5 discusses the results, remaining limitations,
and future requirements. Ultimately, Section 6 summarizes the findings of this paper.

2. Study Area

Our framework is demonstrated using the Indus-Ganges-Brahmaputra-Meghna river
basins (IGBMRB) in South Asia as a case study (Figure 1). These river basins stretch over
Pakistan, India, China, Nepal, Bhutan, and Bangladesh covering an area of approximately
2.9 million km2 [51]. The northern regions of the river basins are marked by the Himalaya
mountains being dominated by cold and polar climate in high elevation. South of the high
altitude areas, the Himalaya is characterized by forest vegetation and temperate as well
subtropical climate, whereas the low altitude areas in the Indo-Gangetic plain are marked
by intensive agricultural and highly urbanized land use (Figure 1B). Here, the climate
is arid in the West as well as temperate and tropical in the South and East of the study
area, respectively (Figure 1C). Moreover, moist southwest monsoon causing high rainfall is
dominating the climate between June and September, while dry northeast monsoon winds
prevail during the winter months between December and February.

Figure 1. Characteristics of the study area showing (A) elevation [52] and outlines of the river basins
extracted from the hydrographic information dataset HydroSHED [53], (B) reclassified European
Space Agencies (ESA) Climate Change Initiative (CCI) land cover data, (C) mean annual precipitation
based on Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) [54], (D) mean
annual temperature based on TerraClimate [55], and (E) location of study area in South Asia.
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3. Materials and Methods

Our methodological framework focuses on the analysis of land surface dynamics
by means of multivariate geospatial time series. First, the gathered time series data are
introduced. Next, our approach to generate a unified feature space is presented and, lastly,
the implemented statistical time series analysis techniques are described. At this point it
has to be noted that all implemented processing steps ranging from preprocessing over
database generation to statistical time series analyses can be run automatically with a
global set of parameters. A brief summary of our implemented framework is presented
in Figure 2.

Figure 2. Schematic overview of the developed framework including data procurement, prepro-
cessing, spatial and temporal averaging, as well as statistical time series analyses. During statistical
analyses, we used monthly or seasonally aggregated data to perform trend estimation.

3.1. Data
3.1.1. MODIS NDVI

To assess vegetation dynamics, we employed the global MODIS NDVI product
(MOD13C2.006) at 0.05◦ spatial resolution and monthly temporal resolution covering
the years 2000 to 2019 [9]. This cloud-free product is based on spatial and temporal aver-
ages of high quality MODIS 16-day 1 km NDVI. The preprocessing of these data includes
the exclusion of all pixels flagged “mixed cloud”, “adjacent cloud”, and “possible shadow”
in the quality assurance layer and the filling of gaps using linear interpolation [34]. Next,
we remove NDVI pixels labeled as “snow” in the reliability layer of the respective time
step. Finally, to exclude non-vegetated areas all NDVI pixels with a long-term mean lower
than 0.15 are masked, as suggested in Wittich and Hansing [56].

3.1.2. Global Snowpack (GSP)

GSP is processed at the German Remote Sensing Data Center of the German Aerospace
Center (DLR-DFD) using daily MODIS products (M*D10A1.006) at 500 m pixel resolu-
tion [14]. This daily time series represents snow cover area as a binary mask with pixels
classified as “snow” and “no-snow”. GSP data were already employed in several stud-
ies to investigate snow cover phenology [57–59]. Details on validation of MODIS snow
products are provided in Dietz et al. [14] and Notarnicola [42]. To reduce uncertainties and
ephemeral snow, we calculate a long-term mean at pixel scale and remove pixels with a
fractional snow cover lower than 10%. Additionally, snow patches with less than 10 pixels
are filtered as suggested by Notarnicola [42] and water bodies are excluded using the
European Space Agency (ESA) Climate Change Initiative (CCI) land cover product [60].
Furthermore, to minimize uncertainties in low altitudes caused by clouds during the mon-
soon season, we exclude pixels at an elevation lower than 1500 m and being located in
temperate or tropical zones. For this purpose, the Copernicus Digital Elevation Model
(DEM) with 90 m resolution [52] and climate classification data from Beck et al. [61] were
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used. Finally, we aggregated daily GSP to monthly mean composites covering the period
between 2000 and 2019.

3.1.3. Global Waterpack (GWP)

Surface water area dynamics are represented by GWP being produced at DLR-DFD at
a spatial resolution of 250 m and a daily temporal resolution using global MODIS imagery
(M*DGQ09.006) [13,38]. This dataset characterizes surface water area as a binary mask with
pixels classified as “water” and “no-water”. For details on data processing and validation,
the reader is referred to Klein et al. [13]. After mosaicking and reprojecting the GWP tiles,
we aggregate daily GWP to monthly composites. In contrast to NDVI and GSP, GWP is
available between 2003 and 2019 only as it relies on the combination of both Terra and
Aqua sensor data.

3.1.4. Climatological and Hydrological Data

Furthermore, climatic and hydrological variables were assembled to estimate their
influence on land surface parameters. We selected these time series based on the relevance
as a driving variable with respect to the land surface variables, their availability over
the last two decades, and their spatial and temporal resolution. In particular, we use
the Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) v2.0 being
a blend of station measurements, satellite acquisitions, and long-term climatology to
characterize precipitation at monthly scale [54]. This product has a spatial resolution
of 0.05◦ (5 km) and shows good performance in capturing precipitation patterns over
India [62,63]. Moreover, we calculate monthly mean air temperature based on minimum
and maximum air temperature from the TerraClimate dataset at a spatial resolution of
1/24◦ (4 km) [55]. From TerraClimate, we also embed downward shortwave radiation and
vapor pressure deficit (VPD). TerraClimate data are widely used (e.g., [64,65]) and accuracy
measures are available in Abatzoglou et al. [55]. Next, to analyze surface water dynamics,
we incorporate the Global Flood Awareness System (GloFAS)-ERA5 river discharge data at
a spatial resolution of 0.1◦ (10 km) [66]. Despite the fact that the gridded river discharge
data have not been extensively validated over the investigated river basins, Harrigan
et al. [66] reported good performance compared with globally distributed observations.
In addition, we include soil moisture from the Global Land Evaporation Amsterdam Model
(GLEAM v3.5a) at a spatial resolution of 0.25◦ (25 km) [67,68]. These data cover the period
between 2000 and 2019.

3.2. Database Generation

Since all time series come with different characteristics, the generation of a unified
feature space in terms of spatial and temporal resolution is required, in order to enable joint
analyses with multisource variables (Figure 3). In this study, the multivariate time series
are unified by means of grid cells covering our study area at a spatial resolution of 0.1◦

(approximately 10 km). During this process, all time series are aggregated to the uniform
grid at monthly temporal resolution. Spatial aggregation is performed by averaging pixels
intersecting a given grid cell, weighted by the fraction of the pixel that is covered by
the grid cell. Likewise, the spatial and temporal aggregation is applicable to any other
geographical entity and temporal intervals, respectively. We implement our framework
using R and Python programming language. In particular, we employ, i.e., the exact extract
library (https://github.com/isciences/exactextract/; accessed on 10 November 2021) for
spatial aggregation of all variables. The preprocessing and spatial aggregation of the
geospatial time series is conducted on a high performance cluster using docker containers
with minimum user interaction. The unified feature space is represented by dataframes,
including the respective time series variables for each grid cell. These dataframes are used
as input for the following time series analyses methods (Figure 3).

https://github.com/isciences/exactextract/
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Figure 3. Detailed schematic overview of the database generation step in Figure 2. The preprocessed
multisource time series are aggregated to a selected uniform grid, which might be replaced by any
geographical entity. ID: unique feature number. T: time step.

3.3. Time Series Analyses

In the following, the statistical time series analysis methods and global parameter
settings implemented in our framework are introduced. In order to measure change over
time, monotonic trends of the land surface variables NDVI, GWP, and GSP are analyzed.
Specifically, we quantify the significance of trends and the magnitude of change per unit
time. Since the variables are characterized by clear seasonal cycles, we use the non-
parametric seasonal Mann–Kendall (MK) test [69] in association with the Theil–Sen (TS)
slope estimator [70,71]. For this purpose, we split the time series keeping the monthly
resolution into the following seasons: winter (December, January, February; “DJF”), pre-
monsoon (March, April, May; “MAM”), monsoon (June, July, August, September; “JJAS”),
and post-monsoon season (October, November; “ON”) [72]. Figure 4 illustrates details
on the implemented workflow related to trend tests. Throughout this study, trends are
considered as significant at a confidence level of 95% (p-value < 0.05). Trends with a p-value
above this threshold are treated as no change. As for seasonal MK test, the TS slope is first
determined for each season. The global slope value is calculated based on the median of
the seasonal slopes and only assigned if these are homogenous at a confidence level of
90% [73]. In order to quantify the magnitude of the slope at decadal time scale, the obtained
global slope is multiplied with the number of years per decade.

3.3.1. Trend Tests

Furthermore, both statistical measures have no requirement for data distribution,
but expect the time series to be serially independent. Approaches to account for serial
correlation include aggregation of time series to annual scale or pre-whitening (PW).
However, temporal aggregation to annual resolution reduces the number of data points and
consequently yields smaller statistical significance [73]. Thus, to reduce seasonal influence
and serial correlation, seasonal anomalies are derived by calculating the departure of the
actual monthly observation from the long term mean of the respective month (Figure 5).
Afterwards, we check the existence of lag-1 autocorrelation (r1). If r1 is not significant, MK
test and TS slope estimator are applied on the seasons of the anomalized time series. If r1
is significant, the time series is pre-whitened to reduce autocorrelation. In general, PW
removes the lag-1 autocorrelation from the time series. Depending on the selected PW
approach, it can result in high or low type I error and biased slope estimates. Findings
in literature indicate that trend-free pre-whitening after Yue et al. [74] (TFPW-Y) has a
high test power and is the most frequently applied PW algorithm [73]. TFPW-Y blends
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the time series by removing r1 coefficient from it. However, studies show that application
of TFPW-Y might cause high type I error and an overestimated slope estimate [73,75].
In this regard, studies suggest not to rely on only one PW algorithm [75]. Hence, we
additionally use the trend-free pre-whitening approach after Wang and Swail [76] (TFPW-
WS) being characterized by a low type I error and high test power. TFPW-WS removes serial
correlation in an iterative procedure while preserving the trend. Furthermore, to account
for biased slope values through PW, Collaud Coen et al. [73] recommend to apply the TS
slope estimator on a time series pre-whitened with a variance correction procedure (VCPW)
after Wang et al. [75]. As depicted in Figure 4 we apply one setting including the TFPW-Y
approach for both MK test and slope estimation and a further setting using TFPW-WS and
VCPW to assess significance of trend and derive an unbiased slope estimate, respectively.

Figure 4. Overview of the trend test procedure including Mann–Kendall (MK) test and Theil–Sen
(TS) slope estimator. Pre-whitening is applied if lag-1 autocorrelation is significant.

Figure 5. Diagram illustrating exemplary monthly time series of (A,B) MODIS NDVI, (C,D) DLR
Global Waterpack (GWP), and (E,F) DLR Global Snowpack. The diagrams A, C, and E show the
original time series, whereas B, D, and F the seasonally anomalized (blue line), as well as detrended
anomalized (red line) time series. NDVI is extracted from a grid cell over the southern Ganges river
basin, GWP from the confluence of the Ganges and Brahmaputra rivers, and GSP from the upper
Ganges river basin.
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3.3.2. Seasonality Analysis

In addition to trends, phenological metrics are derived to evaluate changes in sea-
sonal characteristics. For this purpose, the Timesat tool (version 3.3) is used in this
framework [77,78]. Timesat is commonly applied in the context of seasonal analysis of
water or vegetation parameters [38,39,79] and is here employed to derive phenological
metrics for NDVI, GWP, and GSP. In detail, we determine the metrics seasonal amplitude,
timing of seasonal peaks, value of seasonal peak, and duration of season. With respect
to Timesat, we use the seasonal amplitude setting with a 50% fraction of the amplitude
to retrieve the start and end of the season [38]. Since the time series are already interpo-
lated and smoothed by means of temporal and spatial aggregation during preprocessing
and database generation, additional smoothing is not performed using Timesat. This
avoids a further loss of information and modification of the generated monthly time series.
Moreover, within this framework we assume one annual season for all variables. Only
for NDVI, a second setting is implemented to additionally consider areas characterized
by two annual growing seasons. Furthermore, for derivation of phenological metrics for
GWP and GSP, the hydrological year starting in June and ending in May is considered [80].
The retrieved seasonal properties are utilized to calculate changes in the phenological
metrics by splitting the time series into two decades (2000–2009 and 2010–2019). To this end,
the derived seasonal properties are averaged per decade and then the difference of both
decades is determined by using the respective mean seasonal peak and seasonal duration
at monthly scale.

3.3.3. Causal Discovery Algorithm

The implemented framework includes a further step to exploit the multivariate feature
space by means of the causal discovery algorithm PCMCI. This step enables the analysis of
drivers for the land surface variables NDVI, GWP, and GSP, in the following denoted as
targets. The driving variables were introduced in Section 3.1.4. In the context of PCMCI,
drivers are also called parents. To explore the causal network structure of the underlying
feature space, we use the PCMCI approach with the ParCorr linear independence test based
on partial correlation [48,49].

In general, PCMCI is capable of eliminating spurious links and, thus, assessing true
causal links for a defined set of temporal lags (τ) [49]. As pointed out by Runge [49],
several assumptions need to be considered when conducting causal interpretation. In this
study, we assume the detected causal links to be relative with respect to the feature space,
meaning that the causal network might differ when changing the feature space. Further-
more, stationarity in time series is an important requirement of PCMCI when employing
partial correlation as independence test [48]. To meet this requirement to account for
an important requirement of PCMCI when adopting partial correlation as independence
test is stationarity in time series [47]. For this purpose, we remove the linear trend by
least square fit and calculate seasonal anomalies (Figure 5). Afterwards, all univariate
detrended anomaly time series are processed by a two-step approach within the PCMCI
framework, including the modified Peter and Clark (PC1), as well as the momentary condi-
tional independence (MCI) algorithm [49] being available in the Python package tigramite
(https://github.com/jakobrunge/tigramite/; accessed on: 10 November 2021).

With more detail, the first step consists of condition selection using PC1. As an
example, when GSP is our target variable X j

t , we include further variables Xi
t as potential

parents with i being the variable index and t the time index, i.e., i ∈ {T, P, DSR}, and t ∈
{1, ..., τmax}, respectively. If during PC1 step any lagged variable is found to be significantly
influencing a target variable, it is considered in the set of parents P̃

(
X j

t

)
. According to the

defined significance level (αpc), a potential parent might be classified as irrelevant. In the
second step, MCI uses all identified lagged parents together with contemporaneous (lag 0)
pairs accounting for common drivers, indirect links, and autocorrelation [48]. Moreover,
in this study MCI quantifies the strength of a causal link using partial correlation and the

https://github.com/jakobrunge/tigramite/
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statistical significance based on a two-sided t-test. For a detailed description of the theory
behind PCMCI, the reader is referred to Runge et al. [48], Runge [49], and Krich et al. [50].

To set up PCMCI for this framework, the global settings listed in Table 1 are used. First,
we define a maximum time lag of 3 months for causal network generation. Causal links
are detected based on lagged dependencies, while contemporaneous links are usually left
undirected. Since we only calculate parents for the target variables NDVI, GWP, and GSP,
we can use the direction of influence also for contemporaneous links. Furthermore, the mask
option is employed to all target variables to construct the causal networks at a defined
temporal scale. Considering NDVI, the time series are limited to the growing season by
excluding all NDVI values lower than 0.2 and temperature lower than 0, as suggested by
Wu et al. [45]. Similarly, for GWP and GSP, time steps with a minimum surface water and
snow cover extent below a threshold of 0.5% are excluded. Here, masking only limits the
target variable, whereas the lagged drivers also include data points of masked time steps in
the past. In addition, we correct the derived p-values from MCI to control the number of
false positive discoveries due to multiple testing [49].

Table 1. Summary of selected settings for PCMCI. For further details the reader is referred to
Runge et al. [48] and Runge [49].

Parameter Description Used Value

Dataframe
Includes time series variables and temporal
information. If data mask is used, it is appended to
the data frame.

Targets and drivers

Data mask Mask defining time steps to include and exclude (0:
False, 1: True). Seasons

Mask type

Definition of which variables and time steps to
mask, e.g., type “y” masks target variable as
defined in mask, but allows drivers depending on
temporal lags to be outside of mask.

“y”

Lags Temporal lags to test (minimum, maximum). min: 0, max: 3

Independence test
Conditional independence test including linear
(e.g., partial correlation) and non-linear
dependencies.

“ParCorr”

αpc

Significance threshold in condition selection step
(PC1), comparable to hyperparameter optimization
in model selection process. If “None” is used,
optimal value is selected via Akaike information
criterion score.

“None”

α
Threshold to extract significant links detected for
each target variable in MCI test. 0.05

Selected links

Definition of potential causal links to be tested.
A detailed specification of, i.e., a target variable,
potential parents, and maximum lags is possible.
We only consider parents for the three target
variables.

Xi
t−τ → X j

t

False discovery rate Parameter to account for inflated p-value due to
multiple testing in MCI step. “fdr_bh”

4. Results
4.1. Trends

As illustrated in Figure 6, the design of the trend test’s results in a different amount of
statistically significant trends for each setting (Figure 4). To account for serial correlation,
we applied TFPW-Y and TFPW-WS in association with VCPW. The results indicate that
for 100.0%, 99.8%, and 99.8% of all grids, lag-1 autocorrelation is significant for NDVI,
GWP, and GSP, respectively. In addition, Table 2 demonstrates that trends identified over
the seasons and aggregated to annual scale are more frequently heterogeneous when
using VCPW. On the contrary, the usage of TFPW-Y yields more significant trends than



Remote Sens. 2022, 14, 197 10 of 24

TFPW-WS and more homogeneous trends than VCPW for almost all land surface variables.
Additionally, it becomes evident that the application of no PW algorithm yields similar
percentages for positive and negative trends as TFPW-Y, with TFPW-Y indicating mostly
higher percentages. Considering the magnitude of significant trends derived with TFPW-Y
and VCPW, Figure 6G shows that the usage of VCPW results in lower absolute slope values.
In particular, the mean absolute slope with NOPW, TFPW-Y, and VCPW amounts to 0.034,
0.034, and 0.014; 1.885, 1.690, and 0.873; as well as 2.815, 2.615, and 1.658 for NDVI, GWP,
and GSP, respectively.

Figure 6. Trends based on seasonal MK test for NDVI, GWP, and GSP based on monthly observations
from 2000 (GWP: 2003) to 2019. (A–C) Spatial distribution of trends derived with TFPW-WS (in
combination with VCPW) and (D–F) TFPW-Y. The magnitude of trends is denoted at decadal scale.
Only trends being significant and homogeneous over the seasons are colored. Trends not being homo-
geneous at annual scale are illustrated by a white colored box of a respective grid cell. (G) Magnitude
of trends with respect to the different settings.
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In terms of spatial distribution, significant NDVI trends at annual scale indicate
widespread increases in vegetation greenness almost over the entire study area (Figure 6).
These trends are most pronounced in the southwest of the Ganges river basin and less over
high altitudes and the foothills of the Himalayan mountain range in the Brahmaputra river
basin. Moreover, trend analysis of GWP data results in heterogeneous patterns of significant
positive and negative trends for surface water area. Strong significant positive trends occur,
e.g., in the south of the Ganges river basin. TFPW-Y indicates strong significant negative
trends particularly at the conjunctions of the rivers Ganges, Brahmaputra, and Meghna.
Mixed patterns of significant positive and negative trends occur at the Brahmaputra river
downstream the Himalaya mountains. Additionally, trends derived with GSP data demon-
strate a two-fold pattern at annual scale. In particular, significant positive trends appear in
the Upper Indus river basin, whereas significant negative trends prevail within the Upper
Ganges and Brahmaputra river basins.

Table 2. Comparison of significant trends and their direction (pos.: positive, neg.: negative) derived
with different PW algorithms. The results of the seasonal MK test are listed as percentages for NDVI,
GWP, and GSP and include each season and trends at annual scale (NH: not homogeneous, NS:
not significant).

Variable Sum of Grids Setting
DJF MAM JJAS ON Annual

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. NH NS

NDVI 19,333
NOPW 81.1 1.1 73.5 0.9 79.8 1.4 81.7 0.8 91.0 0.9 1.1 7.0
TFPW-Y 92.2 1.5 86.9 1.4 90.8 1.1 84.7 1.1 94.3 1.5 0.7 3.5
TFPW-WS 52.6 3.9 26.1 23.6 47.3 2.0 20.0 19.5 23.3 0.1 48.8 27.8

GWP 3395
NOPW 28.5 19.4 29.1 15.9 22.0 27.1 26.5 23.3 32.6 27.0 11.2 29.2
TFPW-Y 29.7 21.8 32.7 25.3 28.0 29.0 31.3 22.1 38.6 32.7 9.5 19.2
TFPW-WS 17.1 15.6 17.8 11.5 12.5 21.9 20.9 17.0 12.0 9.6 28.7 49.7

GSP 6364
NOPW 0.6 5.5 14.2 4.5 11.3 6.2 1.5 7.0 15.8 13.1 0.6 70.5
TFPW-Y 0.6 3.0 18.6 4.3 5.6 11.0 3.0 8.8 18.3 16.7 0.7 64.3
TFPW-WS 0.5 4.8 10.6 4.5 3.7 5.9 1.5 6.2 1.9 7.1 7.1 83.9

4.2. Seasonal Characteristics

In light of phenological metrics, our framework used a global setting for all land
surface variables and for NDVI also a second one to capture two growing seasons. In this
respect, Figure 7A shows timing of peaks for NDVI during the first decade. Here, our
analysis reveals that 52.3% and 47.7% of the vegetated areas are characterized by one
and two annual growing seasons, respectively. Timing of peaks is found to largely occur
between September and October for areas with one annual growing season, while areas
with two growing seasons have their first seasonal peak in February or March and second
peak in September or October. In high altitudes, the seasonal peak is reached in August.
As illustrated in Figure 7D, a forward and backward shift of the timing for areas with
one growing season is detected in 13.5% and 11.5% of the grids, respectively. In addition,
areas with two growing seasons indicate a forward and backward shift of the timing for
19.8% and 7.9% during the first season and 10.5% and 14.1% during the second season,
respectively. Furthermore, the duration of season mostly ranges between five and eight
months and four months for high altitude areas (Figure 8A). Regions with two growing
seasons indicate a duration of two to four months for each growing season. Differences
between the two decades in duration are positive in 24.8% and negative in 17.3% of the
grids (Figure 8D). In comparison, grids characterized by two growing seasons show a
similar relative distribution of positive and negative changes in duration for both seasons.
Considering differences in the amplitude for areas with two growing seasons, the results
show a higher percentage of negative changes during the first season (26.7%) compared to
the second season (19.4%). However, these variations are not reflected in the differences in
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the value of seasonal peak where negative changes are much lower with 9.4% and 6.5%,
respectively (Figure 9A,D).

Moreover, for GWP, we found that timing of peak mostly occurs between February
and April in the northern and Central Indus river basin, while in GBM river basins peaks
are mostly reached between August and October (Figure 7B). Spatially, the patterns of
positive and negative differences between both decades are found to be heterogeneous.
In this context, positive shifts (43.2%) in the timing outweigh negative shifts (26.0%). Next,
duration is greatest in high altitudes and along river streams in the central Indus river basin
(greater than seven months). In most of the grids, duration lasts between three and seven
months. Considering the entire study area, changes in duration are also heterogeneous.
As an example, a cluster indicating increases in duration is found in the wetlands of the
Meghna river basin south of the Meghalayan mountains. Furthermore, the parameters
amplitude and peak value show matching spatial patterns (Figure 9B,E). The percentage of
increases (positive changes) in the amplitude amount to 46.9% and are slightly lower than
those of the peak value (50.4%) and, in comparison, decreases (negative changes) in the
amplitude are with 52.9% more frequent than of the peak value (49.2%).

Figure 7. Average timing of the seasonal peak based on TIMESAT with (A–C) showing the mean
seasonal peak between 2000 (GWP: 2003) and 2009 and (D–F) the difference between the mean peak
of the first (2000–2009) and second (2010–2019) decade. NDVI is partially characterized by two annual
seasons (A/D: values of first season together with areas characterized by one annual season, A.1/D.1:
values of second season). Regarding (D–F), no change indicates a difference in average seasonal
peaks of the two decades ranging between −0.25 and 0.25. A positive change indicates a forward
shift in time of the seasonal peak in the second study period compared to the first and vice versa.
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Regarding GSP, the timing of seasonal peak values indicate that 83.3% of the grids
reach the maximum snow cover extent in February or March. In addition, 14.5% of
the grids have a maximum in April. The latter mostly occurs in eastern regions of the
Brahmaputra river basin. In contrast, in western regions of the Indus river basin the peak
is reached in February. Differences between the two decades show that negative changes
prevail in the east and positive changes in the west (Figure 7F). In comparison, Figure 8F
demonstrates that similar patterns are present in differences of the duration. In particular,
a cluster of increasing duration in the second decade is prominent in the Upper Indus river
basin. However, decreases in the duration appear in 33% of the grids and outweigh the
increases (29.4%). We also found changes in amplitude and peak value show similar spatial
patterns over the study area, indicating that decreases in the amplitude are accompanied
by decreases in peak values (Figure 9C,F).

Figure 8. Average duration of season based on TIMESAT with (A–C) illustrating the mean duration of
the season between 2000 (GWP: 2003) and 2009 and (D–F) the difference between the mean duration
of the first (2000–2009) and second (2010–2019) decade. NDVI is partially characterized by two annual
seasons (A.1/D.1: values of second season). Regarding (D–F), no change indicates a difference in
average seasonal duration of the two decades ranging between −0.25 and 0.25. A positive difference
indicates an increase in the seasonal duration in the second study period compared to the first and
vice versa.
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Figure 9. Difference of average seasonal amplitude (A–C) and average seasonal peak value (D–F)
between the first (2000–2009) and second (2010–2019) decade. NDVI is partially characterized by two
annual seasons (A.1/D.1: values of second season). A positive difference indicates an increase in the
phenological metric in the second study period compared to the first and vice versa.

4.3. Relation with Climatic and Hydrological Drivers

In our framework, we quantify the importance of driving variables on NDVI, GWP,
and GSP using PCMCI. Here, we have to note that the target variables might also be
influenced by anthropogenic influences not being covered within this study. In this study,
for NDVI, we investigate the drivers precipitation, soil moisture, GWP, VPD, temperature,
and radiation, while the feature space for GWP and GSP includes precipitation, GSP,
river discharge, and temperature, as well as precipitation, temperature, and radiation,
respectively. The results are illustrated in Figure 10 showing the maximum MCI value per
grid reached by one of the drivers and the corresponding temporal lag. In addition, we
depict the relation between the target and each of the driving variables being controlled by
all respective driving variables in the Supplementary Figure S1.

As visualized in Figure 10A,D, the results reveal spatially varying relations between
NDVI and driving variables. According to the used settings and feature space, we found
that in 49.6% of the grids, NDVI is mostly positively coupled to soil moisture. The dominant
temporal lag amounts to 1 month. Furthermore, in the western regions of the study area,
with climate being arid, NDVI shows a high response to precipitation at a time lag of
0 and 1. In fact, the impact of precipitation on NDVI is strongest in 6.0% of the grids.
Additionally, radiation has a comparatively large effect on NDVI, mostly in the Ganges
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river basin (10.8%). Here, the temporal lag is mostly at 0 (6.7%). At the same time, when
NDVI reacts negatively to radiation, it mostly shows a positive response to precipitation
(Figure S1). Moreover, in the east of the study area, VPD tends to have a high influence on
NDVI with lag 1 being dominant. NDVI largely responds negatively to VPD. In addition,
along the large river streams and confluences towards the delta region, PCMCI detects a
high importance of GWP with respect to NDVI at lag 1. Considering high altitude areas in
the northeast of the study area, precipitation and soil moisture appear to be the strongest
drivers at lag 0 and 1. It has to be noted, that for 26.0% of the grids no significant link
is identified.

Figure 10. Spatial distribution of the dominant driving factors for NDVI, Global Waterpack (GWP),
and Global Snowpack (GSP) (A–C) and their corresponding lags at monthly scale (D–F). The driving
factors include precipitation (P), soil moisture (SM), temperature (T), radiation (DSR), vapor pressure
deficit (VPD), discharge (Q), GWP, and GSP. The prefixes ‘+’ and ‘−’ of the driving factors indicate
a positive and negative MCI measure, respectively. In this study, the MCI measure is based on the
partial correlation coefficient. Gray colored grids in (A–C) indicate no causal link between targets
and drivers.

For GWP, the results reveal that in high altitudes 12.9% of the grids respond negatively
to GSP at lag 0 (Figure 10B,E). In addition, grids located in high altitudes also show GWP
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reacting positively to temperature, mostly at lag 0 and 1. In contrast, we found that GWP
responds negatively to temperature in the lower river basins, but only for a small fraction
of the grids (2.2%). As expected, discharge and precipitation are the strongest drivers of
GWP in the lower river basins. Specifically, 20.0% and 7.4% of the grids indicate a positive
relation between GWP and discharge, as well as GWP and precipitation. Relating to GWP,
we could not derive significant links for 53.5% of the grids.

Next, as illustrated in Figure 10C,F, PCMCI indicates that GSP is significantly neg-
atively influenced by temperature. This negative dependency is dominant at lag 0 for
46.1% of the grids. Only 5.6% of the grids indicate a negative relation between GSP and
temperature at lag 1. Furthermore, in areas where the influence of precipitation on GSP is
strongest, we identified a temporal lag of 0 being prominent. In terms of spatial distribution,
precipitation has highest impact on GSP in the western parts of the study area. In addition,
the results reveal a negative response of GSP to radiation mostly located in the Upper Indus
river basin. For GSP, PCMCI results indicate no causal link for 27.1% of the grids.

5. Discussion
5.1. Trends and Seasonality

In this study, we present a novel framework for both preparation and analysis of
multivariate time series. First, monotonic trends and changes in phenological metrics are
assessed for vegetation greenness, surface water area, and snow cover area. The results
suggest that the design of the MK test and the TS slope estimator are of high importance
with respect to the amount of the detected significant trends and the magnitude of slope
values. Furthermore, it is important to consider serial correlation of the time series. In this
context, PW algorithms are frequently applied to minimize lag-1 autocorrelation [44,81–84].
Since the choice of a respective PW algorithm may strongly impact the results it is important
to consider advantages and disadvantages of PW methods, as summarized by Collaud
Coen et al. [73]. Accordingly, several studies assessed the power of trend tests, amount
of type I errors, and slope biases of various PW algorithms concluding that there is no
single PW algorithm meeting all criteria satisfactory [75]. As visualized in Figure 6 and
Table 2, the application of TFPW-Y yields much more statistically significant trends than,
e.g., TFPW-WS. Additionally, the retrieved mean absolute slope values are higher for
TFPW-Y than for VCPW and are highest without application of a PW algorithm prior
to trend slope estimation. In fact, high serial correlation leads to inflated slope values
and additionally increases the probability of type I errors [85]. Wang et al. [75] suggest
to employ multiple PW methods and consider trends as significant when there is a high
agreement between different methods. Similarly, Patakamuri et al. [86] utilized five PW
algorithms and considered a result as a trend, if at least three were significant.

Given the spatial distribution of detected significant trends and their direction, our
results are consistent with the available literature. However, a direct comparison between
studies remains challenging due to variations in data sources and preprocessing, study
period, design of trend test, or used significance level. To name a few studies, Zhu et al. [87]
investigated vegetation condition using LAI and identified greening trends for IGBMRB
covering the period 1982 to 2009. In addition, Chen et al. [33] used LAI data between 2000
and 2017 and reported strong positive trends for the river basins covered in our study.
Trend estimation based on NDVI (1982–2012) also resulted in positive slope values [88].
Considering trends of surface water area, the results partially indicate heterogeneous
patterns of positive and negative slopes along the Brahmaputra river south of the Himalaya.
These might be caused by the highly meandering river streams. Further on, patches of
significant positive trends in southern regions of the Ganges basin can be explained by
dam constructions. In consideration of snow cover extent, Notarnicola [42] used MODIS
snow data (2000–2018) to quantify trends using MK test based on annually and seasonally
aggregated intervals. A visual comparison with our results indicates similar directions of
trends in the northwest and northeast of our study area.
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Furthermore, we analyzed seasonality of land surface variables. As can be seen from
Figures 6–9, the spatial patterns of positive and negative significant trends are generally
matching change analyses based on phenological metrics. Regarding the analysis of
phenological metrics, studies note the difficulty in quantifying one and two growing seasons
at the same time with an approach being globally transferable [38,89]. In view of NDVI, we
addressed this issue by simply using two models, one tailored to one (growing) season and
another to two (growing) seasons. A comparison of our results (Figure 7A) with a regional
land use classification differentiating between single and double crops in the Indo-Gangetic
plain, reveals the spatial agreement in distinguishing one and two growing seasons [90].
Apart from that, Cheng et al. [91] retrieved phenological metrics over the Tibetan Plateau.
Here, the duration of the growing season of NDVI is between three to five months for the
Upper Brahmaputra basin being consistent with our results. In light of phenological metrics
derived for GWP, we found an agreement between peaks in river discharge occurring
between July and August for the outlets of the Indus, Ganges, and Brahmaputra rivers [92].
However, there is a disagreement in our results covering the central Indus river, where
the timing of the seasonal peak is determined mostly around April (Figure 7B). Regarding
seasonality of GSP, our results show similar directions with literature. Notarnicola [42]
analyzed trends in snow cover duration (2000–2018) and found significant decreasing trends
in eastern regions and non-significant increasing trends in western regions of IGBMRB
(Figure 8C). Similar findings are also reported by Wang et al. [93].

5.2. Analysis of Causal Links

The use of a multivariate time series has the potential to enhance causal interpreta-
tion. On the other hand, the inclusion of irrelevant variables could not only increase the
dimensionality but might also decrease the detection of true causal links [48]. This issue
is mitigated in PCMCI through the application of a two-step procedure, where the PC
step excludes irrelevant variables and the MCI step controls highly independent variables
using a conditional independence test [48]. It is also important, to mention that causal
interpretation depends on several assumptions, including causal sufficiency, causal station-
arity, and in case of partial correlation as conditional independence test also stationarity
in time series [49]. To achieve stationarity in time series, we detrended and anomalized
the time series. However, these procedures do not always guarantee elimination of non-
stationarities and thus, possibly lead to violation of the assumption. Stationarity in time
series can also be improved taking causal stationarity into account. This assumption impli-
cates consideration of time steps, i.e., belonging to a meteorological or growing season [49].
Furthermore, causal sufficiency expects that all common drivers are included in the feature
space and might be regarded as the most important assumption considering causal interpre-
tations [48]. Therefore, the design of causal network analysis needs careful consideration
during composition of the feature space. In this study, we primarily focus on the influence
of climatic and hydrological variables, being aware that anthropogenic influences might
have a great influence as well. However, causal sufficiency might not be solely depending
on the feature space, but also on the temporal resolution of the variables. In particular, a too
coarse temporal granularity in time series might induce disappearing causal links [49].

This study restricts the analysis of causal networks to driving variables having largest
MCI effect size per grid (Figure 10). Reviewing studies dealing with relationships between
land surface and climatic variables, we only identified one using PCMCI to quantify the
influence of precipitation, temperature, and radiation on NDVI at large spatial scale [50].
In detail, the authors used a grid size of 0.5◦ at global scale and a different feature space,
which is why a direct comparison is not adequate. However, the spatial pattern of influ-
encing variables and behavior between target and the driving variables are comparable
(Figure S1). For example, our feature space and settings capture the same opposite behavior
of precipitation and radiation. Furthermore, the authors also found water availability being
the most important driver in high altitudes of IGBMRB at lags 0 and 1 [50]. In addition
to PCMCI, there are also investigations using Granger causality framework or regression
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to estimate lagged dependencies of NDVI [45,46,94]. In light of GWP, river discharge
strongly influences surface water area (Figure S1). However, it has to be considered that
discharge is most likely positively coupled to precipitation and GSP and might not always
be linearly coupled to surface water area. In detail, snowmelt and rainfall largely contribute
to discharge in our study area [92], which is why the detected causal link Q +→ GWP might
be a result of the indirect path P +→ Q +→ GWP or GSP +→ Q +→ GWP. Further on, PCMCI
indicates that temperature is negatively impacting snow cover in the Himalayan mountains.
Huang et al. [95] analyze changes in snow cover over the entire Tibetan Plateau and also
identified a negative coupling of temperature and snow cover. In detail, we identified
an instantaneous impact of temperature on snow cover at lag 0 (Figure S1). The driving
variables precipitation and radiation again show an adverse relation, where precipitation
is positively influencing GSP over the northern Indus and Ganges river basin, radiation
shows a negative effect.

5.3. Limitations and Future Requirements

In general, the developed framework demonstrates good functionality over large river
basins in South Asia highlighting its potential for transferability to any other study area and
time series data. For our case study, we used NDVI, GWP, and GSP derived from MODIS
sensors in combination with climate variables to investigate land surface dynamics and
driving variables. In this context, the temporal and spatial resolution of the land surface
variables are defined by the characteristics of MODIS sensors. In particular, the analysis
of inland water bodies based on GWP data is hampered by its spatial resolution. This
means that water bodies and river streams being smaller than the pixel size of 250 m are
not included in the geospatial time series. However, we also have to note that consistent
geospatial time series featuring multiple decades and high observation intervals are at
present only available at the cost of spatial resolution. With respect to this issue, we
identified inconsistencies in the Indus river basin, where the main river stream is not
always captured. However, mapping of water bodies with optical data at large scale still
remains a challenge [96], making the GWP a valuable source to analyze seasonal changes
of surface water area. These characteristics also apply on MODIS-based NDVI and GSP.

Furthermore, due to availability of most climate data at monthly temporal resolution
and data harmonization purposes, we aggregate daily GWP and GSP time series to monthly
scale. When working with MODIS data, future studies could also consider performing
investigations at finer temporal granularity such as biweekly intervals instead of monthly.
A higher temporal resolution has the potential to enhance the analysis of characteristics in
seasonality, as well as the detection of causal links that might disappear due to temporal
aggregation to monthly scale.

Moreover, we show that trend analysis requires careful design of the respective tests to
derive reliable and comparable results. To this end, we want to highlight the importance in
addressing seasonality and serial correlation. However, we add that monotonic trend tests
might not be sufficient to evaluate land surface dynamics over multiple decades. Further
quantification of changepoints in time series might enhance the analysis and provide more
insight into the dynamics. In addition, we demonstrate that our seasonality analysis is
capturing grids with one or two growing seasons at the same time. This is important when
conducting such analyses at large scale and aiming at using a global setting.

6. Conclusions

In times of accelerating global climate change, the joint analysis of multivariate time
series across spheres is crucial to improve our understanding of the interactions within
the Earth system. In this context, we used multisource geospatial time series, including
vegetation greenness, surface water area, and snow cover area in combination with climatic
and hydrological variables over the last two decades to analyze land surface dynamics
and driving variables. We developed a novel methodological framework including both
the preparation of multisource data to generate a unified feature space as well as the
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consecutive application of statistical time series analysis techniques. These include the
calculation of trends and changes in seasonality, as well as the application of the causal
discovery algorithm PCMCI. The findings regarding the employed statistical analyses can
be summarized as follows:

• Seasonality and autocorrelation must be dealt with when using the Mann–Kendall
test. Thus, we used the seasonal Mann–Kendall test on pre-whitened time series
keeping the monthly resolution. At the same time, advantages and disadvantages of
pre-whitening algorithms need to be considered. In this regard, experiments suggest
not to rely on only a single algorithm;

• Through application of Timesat, we examined the existence of seasonal changes
between two decades. For NDVI, we used a global setting considering areas with one
and two growing seasons. Although we used monthly time series, we found that the
retrieved phenological metrics show consistency with the spatial patterns of positive
and negative trends;

• This study is the first to use such a high dimensional feature space for the quantification
of drivers of vegetation greenness, surface water area, and snow cover area using the
causal discovery algorithm PCMCI. The dependencies between the target and driving
variables indicate consistent and homogeneous patterns, confirming its functionality.

Moreover, the analyses for the case study of Indo-Gangetic river basins in South Asia
revealed the following:

• MODIS NDVI indicates that greening trends are dominant downstream of the
Himalaya-Karakoram. Seasonality of NDVI indicates decreasing seasonal amplitude
being accompanied by stable or increasing seasonal peak values. Hence, greening of
vegetation in this region is ongoing. We also found that NDVI is mostly impacted by
water availability;

• According to the DLR Global Waterpack, negative trends are prominent at the con-
fluence of the Ganges and Brahmaputra rivers and in wetlands of the Meghna basin.
Positive trends occur north of the Bay of Bengal and in the Southwest of the Ganges
basin. In high altitudes, snow cover and temperature influence surface water area.
In the lower river basins, we found discharge and precipitation to be of high relevance;

• The DLR Global Snowpack indicates weak increasing trends over the Upper Indus
river basin. Negative trends prevail in the Upper Ganges and Brahmaputra river
basins. Accordingly, our results demonstrate that changes in duration of snow cover
area match spatial patterns of detected significant trends. Snow cover is largely
negatively coupled to temperature, while precipitation shows positive influence over
the western Upper Indus river basin.

We want to emphasize that the developed methodological framework is transferable
in space and time to any geospatial data and region. In this study, spatial grids were
used to unify the multivariate feature space. However, aggregating time series to other
geographical entities such as river basins is also possible. Future research will investigate
the analysis of time series at finer temporal granularity, e.g., using biweekly instead of
monthly observations. This might enhance the analysis of seasonality and the detection of
causal links. In addition, further detailed geoscientific analyses are required to attribute
land surface dynamics in the context of climate change as well as anthropogenic influences.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14010197/s1, Figure S1: Target variable: DLR Global WaterPack.
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