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Genetic algorithms use recombination and mutation of solution 
trials to derive near optimal solutions for problems involving 
complex and large state spaces. Protein engineering represents such a 
demanding task and we illustrate how genetic algorithms are a 
promising new design tool to identify optimal amino acid mutations 
and to study protein stability in a variety of applications. A first 
example illustrates optimal substitutions in the core of a protein. The 
next example searches for mutations in a long protein sequence 
which improve protein stability by several criteria which do not 
compromise the critical features of the starting wild type sequence. A 
three-dimensional lattice simulation achieves a compact and stable 
fold for a simple model protein composed of four beta strands. Loop 
length and overall hydrophobicity prove to be most important for the 
stability of the fold. In grid-free simulations the strength of different 
beta strand propensities assigned to extended residues can be 
simulated to test their effect on stability. The influence of 
hydrophobicity on helix stability is studied in grid-free simulations 
of four helix bundles: strong hydrophobicity in a few particular 
residues stabilizes more effectivly in the simulations than using 
hydrophobic residues distributed over larger regions of the helices. 

1. INTRODUCTION 

Genetic algorithms in engineering applications are only metaphors 
of life borrowed for the purpose of optimization [1] . In contrast, we 
have begun to apply genetic algorithms to analyze and improve 
protein stability. The following aspects of genetic algorithms promise 
to offer advantages over earlier approaches to model proteins in a 
simplified way. 
(i) The genetic technique can be more realistic as it models the 
evolution of an adapted protein structure by mutation, 
recombination and selection in a natural way. 
(ii) Genetic algorithms process in each generation and in parallel 
many structures and even more schemata [1] in search of the global 
minimum for a protein conformation. 
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(iii) The simulations should be achieved computationally faster than 
with the use of full molecular dynamics [2], another frequently 
utilized technique to minimize a protein's conformational energy. 
(iv) The confomational space is searched in a unique way such that 
two "bad" solutions (as judged by the parameters given for the 
selection) which have only partial regions of optimal structure may 
recombine to yield a much better ("fitter") new structure. 
(v) Complex parameters may be incorporated into genetic algorithms. 
The increase in caiculation time is relatively modest as even a rough 
estimate of each parameter is sufficient to drive selection [1]. 

In the following we illustrate by simple examples for a variety of 
applications how these advantages can be used to simulate and 
identify mutations and design criteria which should enhance 
protein stability. 

2. MATERIALS AND METHODS 

Simulation programs were written in VAX-PASCAL using 
modified versions of the simple genetic algorithm [1]. The fittest 
individuals from several (0-24) selection runs ("epochs", typically 
runs of 120 generations, population sizes of 500 individuals) were 
collected for a final competition run against a random background. 

In protein structure simulations it is critical to encode the 
structure in an efficient way. 
(0 In the sequence models, amino acid sequences were encoded in 
each individual by six-bit tupels according to the genetic code. 
(ii) In the three-dimensional grid simulations, coordinates were 
calculated according to the four possible directions (two-bit tupels) 
of the Ca atom trace on a tetrahedral lattice. 
(iii) For the grid-free simulations standard conformations were 
encoded by tupels and coordinates calculated from these according 
to their <I> and \jI dihedral angles. 

Genetic algorithms also allow discrimination amongst many 
different parameters known to be important in protein structural 
stability and folding (hydrophobicity, accessibility, charges, amino 
acid content, helical propensity, etc.). The optimal fitness function 
made from such parameters and their relative weights which 
efficiently drives selection to realistic and observable structures 
contains the crucial parameters necessary to select and fold a 
particular structure. In practice it is important to be as simple as 
possible and to introduce or alter only one parameter at a time to 
understand its effect. The refined fitness functions used here are 
sketched in the examples given. Details of the protein engineering 
program and the grid-bound simulation are described in [3]. 
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3. RESULTS 

3.1. Stability of core residues and protein sequences 
Residues in the core of a protein are sometimes essential for the 

performance of its function and critical for the overall stability of the 
protein. They provide an example of the strategy used in genetic 
algorithms. Their sucessful identification by the genetic algorithm is 
effected by modeling evolution. A first population is composed of 
individuals having genomes with random nucleotides. Each 
chromosome is translated according to the genetic code. Three 
amino acids assumed in the illustrative case determine the fitness of 
each individual where optimal core packing is calculated and amino 
acids known to pack well get an additional bonus. The probability to 
be selected as a parent for the next generation of solution trials 
increases according to fitness. 

Table I. Optimization of lambda-repressor core residues 

Epoch 1 FFR MFY 
Epoch 2 IFE IIV VIV 
Epoch 3 LLA FVG FLA FFA FMA 
Epoch 4 LFE FNI VLI LLV 

Epoch 7 VVV VVI MVV 

(final epoch: MVV remains the fittest) 

Three core residues, experimentally analyzed by [4] in lambda-repressor, were 
optimized for core packing. The simulation began with random sequences of these 
residues, a population of 30 individuals, and a string length of 18. The fitness 
function was (Aadiff x 2000 + 2000-(257-packaging)2) where packaging is the 
volume of V,I,L,M or F residues in A3 and Aadiff is the number Qf V,I,L.M or F in the 
sequence. The value 257 represents the ideal and likely conserved core volume as 
observed in the known lambda-repressor core structure [4]. New fittest individuals 
appearing in 7 epochs, each of 11 generations. are given. MVV agrees with that 
known from the protein structure. 

The genomes for the children in the second generation are formed by 
crossing over some of the parent genomes (20%) and by occasional 
mutations (O.Ollbit) in copying the parent genome. The resulting 
genomes are translated again and the fitness of the encoded peptides 
determines who will be preferentially selected as parent for the third 
generation encoding fitter peptides. After several generations, (near) 
optimal solutions are reached. An illustration is given in Table I 
where amino acids are denoted by their single letter code. The 
optimal solution found in nature (MVV) is correctly picked by the 
simulation even before the final competition run (see Materials and 
Methods). 
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A particular advantage of genetic algorithms is that they can 
optimize several parameters in long protein sequences to improve 
protein stability while maintaining desired features of the native 
sequence which are taken into account in calculating the fitness 
value of a new individual. Table II illustrates an attempt to achieve 
in lambda-repressor a sequence with more structurally stabilizing 
characteristics than the wildtype. These include stronger 
hydrophobic packaging by increasing the overall composition of 
hydrophobic aminoacids (I ,L,V,A,H ,M,F,W,T,P) and more stable 
helical regions by increasing the number of helix preferring amino 
acids (A,L,M ,E; [5]) while simultaneously conserving solvent 
accessibility [6], packing of seven critical core residues [7] and 
overall secondary structure (sometimes leading to compensatory 
mutations ). 

Tablel!. Engineering of the N-terminal half of lambda repressor 

.... .. .. .. . . .. .. ...... ........ .. .. . . ... .. .. ....... .... .. ............. l .......... v .. . ........ . E .. .. R ... 

.... .. F .... .... . ........ ............ .... ....... . .. .. .......... .. .... .... .. ... .. ... . L .... . .. . .. .... "m .. 

.... ........ .. .. ......... ... ...... .. .. .... ... .. ......... . .. H ........ .. .. .......... ... ....... ..... w .. .. 

.... .............. ...... .... .... E ... . .. I .. ..... R .. ..... P .. ........... ..... .. C ........... ...... ...... .. 

. M .............. . .......... D.D ...... .. E ...... R ..... D .. .. . K ........ EM .................. I ... .. K ........ V 

...... PS ........ .. .................. . .......... S .... R .. . ... F ............ L .. . ....... LC ............. "m .. 

.. .. .... ................ ... V ... F . .. . .. E ........ S .. .. .. ... ...... 1 ..... L .. A ....... V ... N ... .... IE .... RK.V 

.A. . N . ..... v . . .. . .. ..... N ...... . !K ••••• l ....... S . ........... .. . l .. ... L .. A ....... V ••• N •• F .... IE • • •• RK .V 

.A. .R ...... V .. .. . ....... I . ..... N!K .. .. . l .. CE.D.S ... Y ........... 1 .... MP . . ... l ... ... W .... . .. P .... .. .. S. 

The wild type sequence is represented by dots; mutated amino acids are indicated 
by capital letters. Each new row represents an individual appearing in the 
population which is fitter than all before. 

3.2. Three-dimensional grid simulation 
The stability of a protein fold may also be investigated in three­

dimensional simulations. The genetic algorithm starts with random 
conformations . Selection for fitter and fitter individuals leads in an 
evolving manner to a proper protein fold. This is illustrated in Figure 
1 for the ab initio folding of a four membered beta strand bundle on a 
tetrahedral grid that we first investigated. The vast conformational 
space was searched in only 8 hours processing time on a V AX 3200 
workstation. Different simulations showed that global, unspecific 
forces like overall hydrophobicity (modeled by the scatter of the 
residues of the model protein around the center of mass) were more 
critical for a stable fold than specific and particular (e.g. 
electrostatic) point interactions. Loop lengths close to or greater than 
those of the secondary structural elements resulted in folding 
instability. 
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Figure 1. Ab initio folding of a four beta bundle model protein with eight-residue 
long strands and three-residue interconnecting loops: (a) random start; (b) 
intermediate; (c) stereo picture of the final bundle fold. Within the strands, a 
selection was imposed from the four possible directions on the tetrahedral grid such 
that a residue is in trans relative to the residue preceding it (zig-zag pattern). 
Clashes (atom overlap) in the three-dimensional structure lead to a heavy loss in 
fitness. The selection tried to minimize the scatter around (distance from) the center 
of mass for all residues, mimicking the global and attractive hydrophobicity of the 
protein core. 

3.3. Grid-free model of a beta bundle 
Simulations which use grid-free coordinates are currently under 

investigation. The expanded conformational space enables a more 
detailed simulation, avoids possible conformational biases due to 
grid type [8] and allows closer similarity to real structures; however, 
it is also a greater computational challenge due to the increased 
search space. The complete backbone of the proteins is modeled in 
the simulations, including Ca., N, C and O. The simulation starts with 
random chain conformations. The fitness function selects against 
clashes (no van der Waals overlaps between residues); for close 
scatter around the center of mass according to the hydrophobicity of 
the amino acids(loop residues are assumed to be hydrophilic); and 
for maximizing the number of backbone hydrogen-bonds in 
secondary structural regions without dictating any specific bonding 
pattern as found in helices or strands. In addition a high residue 
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propensity for a given conformational state can be included in the 
simulation fitness such that the importance of this propensity for the 
stability of the overall fold can be investigated. Figure 2a illustrates 
the result for the folding simulation of a model protein made up of 
four beta-strands. The simulation shown terminates in a bundle-like 
conformation formed by the extended beta-strands which was only 
possible if a very high beta-strand propensity was present throughout 
the simulation for residues forming strands. In contrast the 
simulation terminates in a coiled and thus more compact structure if 

(a) 

(b) 

Figure 2. (a) Stereo picture of a grid-free four beta-strand folding simulation 
predefining high beta-strand propensity for each residue in the beta structures. (b) 
A folding simulation similar to (a) but each residue has only a very weak beta­
strand propensity. Only the Ca trace is shown though all heavy mainchain atoms 
were included in the simulations. 

a very weak beta-strand propensity is utilized (Figure 2b; similar 
fitness function used but beta strand propensity changed). More 
intermediate cases can be mode led to test which parts of the 
structure remain stable if several residues are mutated from high to 
low beta-propensity . 

3.4. Alpha helical structures 
The stability of alpha helical structures was also studied. The fit of 

individual helices to 0 those from experimental structures is good 
(RMS distance < l.5 A over the mainchain atoms N,Cu,C and 0) . A 
similar fitness function used in the grid-free beta bundle simulations 
was also employed here. Despite the general fitness function alpha 
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helices were achieved without predefining for each residue a high 
propensity for the helical conformation; however, the hydrophobici~y 
of the residues must be distributed according to an amphipathlc 
wheel [9]. 

(a) 

(b) 

Figure 3. (a) Stereo picture of a grid-free four-helix bundle folding simulation 
assuming strongly hydrophobic residues to be present at the center of the 
hydrophobic side in a helical wheel ([1 D]; positions 1,5,8 .. of an alpha helix) (b) A 
similar simulation as in (a), but assuming the entire hydrophobic half of the helical 
wheel to be evenly populated by hydrophobic residues; the other wheel half is 
always assumed to be hydrophilic. Only the Ca trace is shown, but all heavy 
mainchain atoms were included in the simulations. 

The genetic algorithm simulation investigated two different 
strategies: many but weaker hydrophobic residues on the 
hydrophobic side of the helical wheel or only a few strong 
hydrophobic residues . The latter possibility reliably led to the 
formation of helices (Figure 3a) in the simulation while the former 
was far less effective (Figure 3b). These folding results are consistent 
with the folding experiments on apomyoglobin [11] which support the 
prior significance of hydrophobic interactions across secondary 
structural association surfaces in achieving the proper protein fold. 

The simulation in Figure 3a mimicks an important native fold of 
many protein structures , a four helical bundle [12J. Currently an 
investigation of which forces most effectively stabilize this overall 
structure in simulations using different fitness functions 
representing helix / helix interactions in detail is underway. 
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4. DISCUSSION 

The examples shown here show the potential of genetic algorithms 
as a new tool to study protein stability through versatile applications 
involving the stability of protein cores, secondary structures and 
loops. Potentially useful amino acid mutations and substitutions 
fulfilling many criteria simultaneously for engineering and stability 
studies can be identified by genetic algorithm applications as 
illustrated in the early examples given here. General principles can 
also be tested to improve engineering and understanding of 
structures like helices or loops. Experimentally solved structures may' 
be compared with the models from the grid-free simulations which 
allow folding of proteins in a much less restrained space [8]. 

Genetic algorithms were originally borrowed from nature to solve 
engineering problems and were applied in artificial intelligence soon 
thereafter. In tackling protein folding problems one turns back again 
to the natural algorithm. The many degrees of freedom proteins 
display in folding make ab initio simulations by molecular dynamics 
computationaly expensive while the genetic approach may be able to 
provide with relatively small computational effort valuable 
suggestions for protein design. 
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