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Abstract

The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity

of the kinase complex P-TEFb. Release of P-TEFb from 7SK stimulates transcription

at many genes by promoting productive elongation. Conversely, P-TEFb sequestration

by 7SK inhibits transcription. Recent studies have shown that 7SK functions are

particularly important for neuron development and maintenance and it can thus be

hypothesized that 7SK is at the center of many signaling pathways contributing to

neuron function. 7SK activates neuronal gene expression programs that are key for

terminal differentiation of neurons. Proteomics studies revealed a complex protein

interactome of 7SK that includes several RNA-binding proteins. Some of these novel

7SK subcomplexes exert non-canonical cytosolic functions in neurons by regulat-

ing axonal mRNA transport and fine-tuning spliceosome production in response to

transcription alterations. Thus, a picture emerges according to which 7SK acts as a

multi-functional RNA scaffold that is integral for neuron homeostasis.
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INTRODUCTION

Gene expression is a highly organized process, which helps cells to

maintain their functional state and allows them to achieve a coordi-

nated physiological response to changes in environmental conditions.

Additionally, erasure and activation of specialized gene expression pro-

grams underlies the functional specialization of cells along develop-

mental trajectories. Gene expression itself is regulated at multiple

levels. Transcription factor binding at promoters of individual genes

is modified by enhancer and silencer elements, the combination of

which determines the transcriptional outcome at these genes. More-

over, modulation of transcription kinetics in conjunction with post-

transcriptional processes such as splicing and polyadenylation con-

tributes to the production of mRNAs. In addition to these regulatory
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events at individual sites of gene transcription, it has emerged that

‘master regulators’ of gene expression modulate transcriptional out-

comes at the global level. Among these, the noncoding RNA 7SK acts

as a scaffold for the coordinated regulation of transcriptionalmodifiers

and RNA-binding proteins.

7SK is a highly structured RNA with a length of 331 nucleotides.[1]

It folds into four stem-loops that act as interaction sites for pro-

teins (Table 1). The ‘core’ 7SK ribonucleoprotein particle (RNP) con-

sists of 7SK and the interactors methyl phosphate capping enzyme

(MePCE) and La-related protein 7 (LARP7).[2,3] These two proteins

protect the ends of 7SK from exonucleolytic degradation (Figure 1A).

MePCE adds a methyl group to the γ-phosphate of the 5′ guanosine
of 7SK.[4] Following methylation, MePCE remains bound to the 5′ end
of 7SK and provides protection from degradation.[3,5] At the 3′ end of

BioEssays. 2021;43:2100092. wileyonlinelibrary.com/journal/bies 1 of 9

https://doi.org/10.1002/bies.202100092

https://orcid.org/0000-0001-7137-8260
mailto:Briese_M@ukw.de
mailto:Sendtner_M@ukw.de
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/bies
https://doi.org/10.1002/bies.202100092


2 of 9 BRIESE AND SENDTNER

TABLE 1 7SK-interacting proteins and their functions

Component Name Function

LARP7 La-related protein 7 Stabilization of 7SK[2]

MePCE methyl phosphate capping enzyme Methylation of the 5′ end of 7SK[3]

HEXIM1 hexamethylene bisacetamide-induced protein 1 Binding of P-TEFb to 7SK[16]

CDK9

Cyclin T1

Cyclin-dependent kinase 9

Cyclin T1

Components of the positive transcription elongation

factor b (P-TEFb) complex;

Transcription pause release through phosphorylation

of RNA polymerase II[9]

hnRNPA1, A2/B1, Q and R heterogeneous nuclear ribonucleoprotein A1, A2/B1,

Q and R

RNA binding[22,23]

BAF complex BRG1/BRM-associated factor Chromatin remodeling[20]

KAP1

SRSF2

DDX21

Kruppel-associated box (KRAB)-interacting protein 1

Serine/arginine-rich splicing factor 2

DEAD box protein 21

Promoter recruitment of 7SK/P-TEFb[17,18,26]

JMJD6

Brd4

jumonji C-domain-containing protein 6

bromodomain-containing protein 4

Enhancer-mediated P-TEFb release from 7SK[19]

SMN Survival motor neuron Spliceosome biogenesis[24]

7SK, LARP7 binds to the fourth stem-loop and the terminal uridines

for stabilization.[5–7] The resulting 7SK/MePCE/LARP7 core RNP pro-

vides a landing platform for various transcriptional and RNA regula-

tors.

At many genes, RNA polymerase II pauses just downstream of

the transcription initiation site.[8] The conversion of stalled RNA

polymerase II into elongation-competent polymerase is controlled

by the positive transcription elongation factor b (P-TEFb) complex

composed of Cyclin-dependent kinase 9 (CDK9) and Cyclin T1. The

P-TEFb complex achieves this task by phosphorylating Serine 2 of

the C-terminal domain (CTD) of RNA polymerase II.[9,10] Target-

ing of P-TEFb to the CTD involves a histidine-rich domain of low

complexity located at the C-terminus of Cyclin T1.[11] This domain

is intrinsically disordered and induces the formation of liquid-like

nuclear speckles containing P-TEFb and the CTD through phase

separation.[11] This process is thought to enhance the efficiency of

phosphorylation by increasing the local concentration of P-TEFb and

the CTD. Additionally, P-TEFb phosphorylates the negative transcrip-

tional regulators DRB sensitivity-inducing factor (DSIF) and negative

elongation factor (NELF).[12] Together, these events release promoter-

proximally paused polymerase II, allowing productive elongation to

continue.[13]

Under steady state conditions, approximately half of nuclear

7SK is associated with P-TEFb and inhibits its kinase activity (Fig-

ure 1A).[14,15] This interaction between P-TEFb and 7SK is mediated

by hexamethylene bisacetamide-induced protein 1 (HEXIM1).[16] The

7SK/P-TEFbcomplexes are tethered topromoter andenhancer regions

of many genes allowing local release of P-TEFb and induction of tran-

scription elongation.[17–20] This way, 7SK provides regulatory support

for fine-tuning global transcription and there is evidence that such

mechanisms are implicated in neuronal differentiation.[21] The other

half of 7SK core RNPs that is not associatedwith P-TEFb interacts with

a diverse range of RNA-binding proteins (Table 1).[22–24] While con-

siderably less is known about these 7SK subcomplexes, research over

the past years has revealed that they play important roles for neu-

ronal development and function, such as axon growth and regulation of

spliceosome formation.[24,25] Therefore, through regulation of several

important RNA-binding proteins and chromatin effectors, 7SK exerts

a key intermediary role for transcriptional and post-transcriptional

regulatory processes in neurons. Disruption of such 7SK signal-

ing pathways through mutation or aggregation of 7SK-interacting

proteins might contribute to neuronal dysfunction in neurological

diseases.

7SK PROVIDES REGULATORY SUPPORT FOR AXON
GROWTH DURING NEURON DEVELOPMENT

Proteomics analyses have revealed a complex and dynamic protein

interactome of 7SK.[22,23] In addition to the core interactors MePCE

and LARP7, and the P-TEFb complex, the heterogeneous nuclear

ribonucleoproteins (hnRNPs) A1, A2/B1, Q and R were identified as

7SKbinders throughpull-downexperiments followedbymass spectro-

metric analysis (Figure 1A; Table 1).[22,23] These hnRNPs use stem loop

3 of 7SK as interaction site and thus differ from P-TEFb, which asso-

ciates with stem-loop 1 via HEXIM1.[22,25,27,28]

Importantly, bindingof hnRNPsandP-TEFb to7SK ismutually exclu-

sive and the balance between these 7SK subcomplexes is determined

by the transcriptional activity of a cell (Figure 1A).[22,23] At high lev-

els of transcription, hnRNPs associate with nascent RNA, which pro-

motes sequestration of P-TEFb by 7SK, thereby limiting its kinase

activity. Under conditions of low transcription, lack of nascent RNA

enables hnRNP interactions with 7SK. As a result, P-TEFb is released

and can activate paused RNA polymerase II through phosphorylation.

This feedback mechanism ensures a balanced transcriptional output in

response to transcriptional deviations from the status quo.
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F IGURE 1 Schematic representation of 7SK subcomplexes and their functions in the nucleus and cytosol. (A) 7SK RNA is protected at the 5′
and 3′ end by the core interactorsMePCE and LARP7, respectively. In the nucleus, 7SK interacts with the P-TEFb complex composed of CDK9 and
Cyclin T1 and inhibits their kinase activity. Upon release from 7SK, P-TEFb is recruited to paused RNA polymerase II to phosphorylate its
C-terminal domain, which triggers productive elongation. The fraction of 7SK not associated with P-TEFb binds to the hnRNP proteins A1, A2/B1,
Q and R. The relative amounts of 7SK/P-TEFb and 7SK/hnRNP complexes are determined by transcriptional activity. At high levels of transcription,
hnRNP proteins are associated with nascent RNA, allowing P-TEFb sequestration by 7SK. At low levels of transcription, 7SK is captured by hnRNP
proteins, which releases and activates P-TEFb. (B) In motoneurons, 7SK/hnRNP R complexes regulate the axonal transport of mRNAs during
development. (C) Transcriptional inhibition enhances the interaction of 7SK/hnRNP Rwith SMN complexes in the cytosol, inhibiting their function
in snRNP biogenesis. SMN facilitates the assembly of Sm proteins at a uridine-rich sequence (blue box) on snRNAs. (D) Through interaction with
the RNA helicase and chromatin interactor DDX21, 7SK regulates transcription of ribosomal genes

While this mechanism of 7SK action has been investigated in detail

and is likely to exist acrossmany cell types, research over the past years

has revealed that 7SK-associated signaling pathways are particularly

important for neurons to support their development and function.

7SK is highly expressed in the nervous system during development

and into adulthood.[29] During differentiation, 7SK expression is

low in progenitor cells but is increased in differentiated neurons.[29]

These findings point toward specific functions of 7SK for neuronal

differentiation andmaintenance.What could these functions be?

The hnRNPs that are associated with 7SK are known to exert post-

transcriptional functions related tomRNAmetabolism such as splicing,

polyadenylation, stabilization, and subcellular mRNA transport. Neu-

rons in particular utilize such mechanisms to establish and maintain

their elaborate structural complexity. In motoneurons, hnRNP R is

abundant in thenucleusbut also localizes to the cytosol including axons

and growth cones.[30] In these compartments, hnRNP R binds to the 3′
UTR of mRNAs and facilitates their axonal transport.[25] This has been

demonstrated in detail for the mRNA encoding β-actin, a cytoskeletal
component that is locally synthesized in growing axons to enable their

elongation and navigation.[31,32] The main RNA interactor of hnRNP

R is 7SK.[25] Conspicuously, 7SK/hnRNP R complexes were detected

not only in the nucleus but also in the cytosolic compartment of
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motoneurons, including axons. This indicates that 7SK/hnRNP R

complexes are exported from the nucleus and adopt non-canonical

functions such as the assembly and transport ofmessenger ribonucleo-

protein particles (mRNPs) (Figure 1B). In support of this notion, deple-

tion of 7SK in motoneurons altered the axonal localization of a subset

of transcripts in a manner similar to loss of hnRNP R demonstrating

the RNA transport functions of 7SK/hnRNP R particles.[25] Further-

more, knockdown of 7SK in motoneurons impaired axon growth but

not survival, which is phenotypically similar to the consequences of

hnRNP R depletion.[25,31,32] Additional evidence for a role of 7SK

in mRNP metabolism comes from the finding that the 7SK core

interactors LARP7 and MePCE bind to β-actin mRNA and thus might

be components of such transport mRNPs involving hnRNP R.[24]

Apart from hnRNP R, other hnRNPs associated with 7SK are also

expressed in the nervous system. Thus, it can be assumed that separate

7SK/hnRNP complexes exist with distinct functions in regulating the

RNA composition of different subcellular compartments. Techniques

to investigate subcellular transcriptome alterations such as APEX-seq
[33] could help to elucidate thesemechanisms in future studies.

7SK FACILITATES NEURONAL GENE EXPRESSION

In addition to the regulation of RNA processingmechanisms, 7SK com-

plexes might be directly involved in the induction of gene expres-

sion programs that underlie the postmitotic specification of neurons.

A recent study has dissected the reprogramming of fibroblasts into

motoneurons through combined expression of microRNAs miR-9/9*

and miR-124 and the transcription factors ISL1 and LHX3.[21] While

the repression of KLF-family transcription factors by miR-9/9* and

miR-124 was important for erasure of the fibroblast identity, 7SK

played a role for the induction of neuronal gene expression programs

at later stages of differentiation. Specifically, 7SK was found to regu-

late the accessibility of ∼ 3,000 chromatin regions that are associated

with genes required for induction of the neuronal fate. Upon depletion

of 7SK, neuron conversion did not proceed, signifying the importance

of 7SK for neuron development. This function of 7SKmight depend on

its interaction with chromatin-remodeling complexes such as the BAF

complex.[20,21]

A distinguishing feature of gene expression in neurons is the tran-

scription of long genes exceeding 100 kbp in length.[34,35] The neu-

ronal RNA-binding protein Sfpq has been identified as a critical fac-

tor in this process.[36] To sustain transcription across large distances,

Sfpq binds to the long introns of pre-mRNAs of such genes and recruits

CDK9 to locally maintain Serine 2 phosphorylation of the CTD of RNA

polymerase II. Consequently, Sfpq depletion in cultured cells impaired

the RNA polymerase II occupancy along gene bodies. Moreover, the

expression of long genes was particularly perturbed in Sfpq knockout

brains. Transcription of long genes was also reduced when 7SK was

knocked down during neuronal reprogramming of fibroblasts indicat-

ing that a functional 7SK/P-TEFb complex is necessary for the delivery

of CDK9 to long pre-mRNAs.[21]

Taking these results together, a picture emerges in which 7SK is a

multi-faceted RNA that simultaneously controls not only nuclear pro-

teins involved in gene activation and RNAprocessing but also cytosolic

RNA-binding proteins in order to modulate subcellular RNA localiza-

tion and local translation.

7SK LINKS THE ACTIVITIES OF
MACROMOLECULAR MACHINERIES

While the 7SK complex has been studied in detail for its function in

regulating the transcriptional machinery, a recent study described a

non-canonical role of 7SK in modulating the biogenesis of spliceoso-

mal small nuclear ribonucleoproteins (snRNPs) in neuronal cells.[24]

Spliceosomal snRNPs are producedby the SMNcomplex,which assem-

bles a seven-membered ring of Sm proteins around a uridine-rich

region of snRNAs (Figure 1C).[37] This step is essential for snRNP for-

mation and takes place in the cytosol, prior to re-import of snRNPs

into the nucleus where they form the spliceosome.[38,39] SMN and sev-

eral GEMINs, which are key components of the SMN complex, were

identified as interactors of 7SK.[24] Notably, this interaction of SMN

with the 7SK complex was not mediated through 7SK itself but rather

through RNA-independent contacts with LARP7 and MePCE. Tran-

scriptional inhibition of cells by treatment with the antibiotic Actino-

mycin D enhanced the association of hnRNP R and the SMN complex

with 7SK (Figure 1C). This association occurred in the cytosol and was

accompanied by reduced assembly of several snRNPs. Given that tran-

scription rates are altered on a global scale during neuronal differen-

tiation and during nervous system development, the regulation of the

SMNcomplexby7SKprovides amechanism throughwhich theproduc-

tion of snRNPs is adjusted accordingly. Thisway, the number of spliceo-

somes produced is linked to the transcriptional demand of a cell such

that a surplus of spliceosomes is avoided, whichmight otherwise cause

detrimental effects at thepost-transcriptional level. Interestingly, a link

betweenU2snRNP function in splicing andpromoter-proximal pausing

of RNA polymerase II has recently been reported, according to which

spliceosome assembly on pre-mRNA stimulates productive transcrip-

tional elongation through P-TEFb recruitment.[40] This suggests that

spliceosome biogenesis, splicing, and transcription are co-regulated

through complex feedback loops.

There is also evidence that 7SK regulates the biogenesis of ribo-

somes. 7SK interacts with the RNA helicase DDX21 and regulates

the expression of ribosomal protein genes (Figure 1D).[26] DDX21

binds to the promoter regions of ribosomal genes and facilitates the

local release of P-TEFb from 7SK for transcriptional activation. Addi-

tionally, through association with the little elongation complex (LEC),

7SK promotes transcription of small nucleolar RNAs (snoRNAs), which

are involved in maturation of ribosomal RNA (rRNA).[41] In neurons,

the 7SK core component LARP7 localizes to nucleoli and modulates

ribosome production.[42] Thus, neurons might utilize 7SK to crosstalk

between major macromolecular machineries involved in transcription,

splicing, and translation.
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DISTURBED 7SK SIGNALING PATHWAYS IN
NEUROLOGICAL DISEASES

Additional evidence for the importance of 7SK complexes for nervous

system function comes from observations showing that dysfunction

of 7SK interactors leads to neuronal diseases. Mutations in the LARP7

gene cause Alazami syndrome, an autosomal recessive developmental

disorder.[43] Patients show growth retardation and mental disability.

Given LARP7’s function in 7SK stabilization, 7SK levels are strongly

reduced in cells from Alazami syndrome patients suggesting that 7SK

signaling is perturbed by LARP7 mutations. However, more recently,

a function for LARP7 in post-transcriptional modification of the U6

snRNA has been identified.[44] LARP7 was shown to guide specific

C/D Box snoRNAs to U6, thereby facilitating its 2′-O-methylation.

This modification is critical for U6 function as part of the spliceosomal

machinery. Consequently, loss of LARP7 function impaired U6 2′-O-

methylation, leading to certain splicing defects in cells derived from

Alazami syndrome patients.[44]

Not only LARP7, but also MePCE, the other 7SK core component,

has been implicated in neurodevelopment. A patient with a de novo

nonsense mutation in MePCE has been described who developed

motor defects, cognitive impairment and seizures.[45] 7SK levels

were reduced in patient cells haploinsufficient for MePCE in line

with MePCE’s function in 7SK 5′ end modification and protection. As

a result of 7SK depletion, reduced inhibition of P-TEFb by the 7SK

interactor HEXIM1 and, consequently, enhanced phosphorylation

of RNA polymerase II were observed. This, in turn, led to upregu-

lated transcription of RNA polymerase II-controlled genes. Thus,

disruption of 7SK signaling due to loss of MePCE function impairs

neurodevelopment.

While LARP7 and MePCE exert regulatory functions during neu-

rodevelopment, several of the hnRNPs interacting with 7SK have been

implicated in neurodegenerative diseases such as amyotrophic lateral

sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). These

disorders are characterized by the presence of cytoplasmic protein

inclusions in neurons in affected brain regions.[46,47] In sporadic

forms of ALS, cytoplasmic inclusions containing TAR DNA-binding

protein-43 (TDP-43) are a pathological hallmark and mutations in the

TARDBP gene encoding TDP-43 have been identified in familial forms

of the disease.[46,48,49] Among 7SK interactors, mutations in hnRNP

A2/B1 and A1 have been identified in patients with multisystem

proteinopathy and ALS.[50] In brains of FTLD patients, hnRNP R and Q

were found in pathological inclusions alongside the fused in sarcoma

(FUS) protein.[51]

In agreement with the functions of RNA-binding proteins in tran-

scription and post-transcriptional processing, widespread alterations

in gene expression have been observed in ALS and FTLD.[52,53] Addi-

tionally, TDP-43 aggregates in ALS affect the nucleocytoplasmic trans-

port of proteins and mRNA.[54–56] These transcriptome alterations

are likely to affect also the balance of 7SK subcomplexes, particu-

larly those containing hnRNPs. As a result, the 7SK signaling axis

might be perturbed, further dysregulating the dynamics of tran-

scription. Additionally, genome-wide analysis of binding sites and

functions of hnRNPs in alternative splicing has revealed extensive

cross- and autoregulation among them.[57] Thus, dysregulation of

one hnRNP protein is likely to affect the function of others. Such

alterations in RNA processing might not only occur in ALS and FTLD

but also in other neurodegenerative conditions such as Alzheimer’s

disease (AD), in which depletion of certain hnRNPs has been

observed.[58]

Many RNA-binding proteins including the hnRNPs interacting with

7SK contain low-complexity domains (LCDs) that are intrinsically

disordered.[59] The LCDs facilitate the assembly of hnRNPs into

subcellular membraneless structures such as stress granules through

a process termed liquid-liquid phase separation.[60] Stress granules

are transient repositories of translationally inactive mRNAs and

contain a complex repertoire of proteins.[61,62] In familial forms of

ALS and other neurodegenerative disorders, mutations in the LCDs

of hnRNPs enhance their tendency to aggregate, thereby preventing

stress granule disassembly and inducing the formation of insoluble

inclusions.[60,63] Sequestration of hnRNPs into such inclusions might

further disturb the balance between 7SK subcomplexes containing

P-TEFb and those that are associated with hnRNPs. As a result of

such an imbalance, 7SK signaling pathways would be altered, which

might exacerbate transcriptional defects and neuronal dysfunctions.

Conspicuously, besides the aggregation of RNA-binding proteins,

cytoplasmic accumulations of spliceosomal snRNPs have also been

reported in ALS and AD.[64–66] This suggests the possibility that

failure of proper regulatory control of SMN complex activity due to

alterations in 7SK/hnRNP levels results in aberrant production of

snRNPs in these disorders.

The most common genetic cause of ALS in Europe and the US is

expansion of the GGGGCC (G4C2) hexanucleotide repeat in the gene

C9ORF72.[67,68] Production of dipeptide repeat proteins (DPRs) from

these repeats through repeat-associated non-ATG (RAN) translation

has been identified as a mechanism contributing to the underlying

motor pathology.[69,70] Arginine-containing DPRs, which are partic-

ularly toxic, sequester many RNA-binding proteins and render them

non-functional. Interestingly, not only hnRNP A1, A2/B1, Q and R but

also LARP7 and MePCE were detectable in the DPR interactome.[71]

This points to the possibility that aggregation of 7SK core and auxiliary

components byDPRs disturbs 7SK-regulated transcriptional control in

the nucleus. Future research investigating 7SK-mediated regulation of

P-TEFb and other complexes in cell and animal models of neurodegen-

eration will help to identify such dysfunctions.

Taken together, several lines of evidence have implicated 7SK-

interacting proteins in neurological diseases. In the case of the 7SK

core interactors LARP7 and MePCE, mutations in these factors have

been shown to directly disturb 7SK signaling pathways. Beyond that,

pathological aggregation of 7SK-associated hnRNPs during neurode-

generation might indirectly affect the dynamics of 7SK assembly as

a consequence. Thus, while mutations in 7SK itself have not been

implicated in disease contexts so far, it is possible that alterations in

7SK-relatedmechanisms contribute to the pathophysiological cascade

of events leading to neuron dysfunction and loss in neurodegenerative

disorders.
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CONCLUSIONS AND OUTLOOK

Research over the last years has continuously elucidated novel roles

of 7SK in neurons, extending the canonical model of 7SK function in

transcriptional regulation. With these new findings a picture emerges

according towhich 7SK acts as a versatile RNAplatform for the coordi-

nated regulation of different RNA-binding proteins and macromolec-

ular machineries. Nevertheless, several open questions remain. First,

while 7SK has been shown to associate with a range of hnRNPs in cul-

tured cells it is unclear whether these 7SK/hnRNP complexes exist in

a similar manner in vivo and whether their relative abundance and

composition differs between tissues and between neuronal subtypes

in the nervous system. This question could be addressed by proteomics

approaches following 7SK purification from different cell types and at

different stages of neuronal differentiation. Second, the importance

of 7SK signaling for nervous system development and maintenance in

vivo remains to be determined through constitutive and conditional

knockout strategies. Third, recent studies have revealed novel func-

tions of 7SK that are related to the control of cytosolic processes such

as the assembly and subcellular transport of various RNPs. Investigat-

ing the composition of 7SK complexes in different subcellular compart-

mentsof neurons could shed further lighton these roles. Finally, several

of the 7SK interactors, including the core binders MePCE and LARP7,

have been detected in neuronal pathological inclusions. It can thus be

hypothesized that aberrant 7SK signaling pathways contribute to the

etiology of neurodegenerative disorders. To what extent such alter-

ations are cause or consequence of neurodegeneration remains to be

determined in future studies. Investigations ondiseasemodelswill help

to understand the degree of 7SK dysregulation in neurodegenerative

diseases and reveal whether correcting such imbalancesmight provide

therapeutic approaches towards ameliorating the underlying neuronal

dysfunctions.
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