
Received: 25 June 2021 Accepted: 20 August 2021

DOI: 10.1002/pamm.202100205

Existence of weak solutions of diffuse interface models for magnetic fluids
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In this article we collect some recent results on the global existence of weak solutions for diffuse interface models involving
incompressible magnetic fluids. We consider both the cases of matched and unmatched specific densities. For the model
involving fluids with identical densities we consider the free energy density to be a double well potential whereas for the
unmatched density case it is crucial to work with a singular free energy density.
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1 Introduction to the model and existence results

In this article we present a summary of some recent results on the global existence of weak solutions of diffuse interface
models involving two incompressible fluids with different magnetic properties. The results presented here are based on our
recent research detailed in [2,3]. To the best of our knowledge there are only a few articles so far dealing with diffuse interface
magnetic fluids. The models we present here (see also [2, 3]) differ from the ones introduced in [5, 6] for modeling diffuse
interface for magnetic fluids.
Concerning the fluids undergoing partial mixing, we consider two cases: (a) the fluids have identical densities and (b) the
fluids have unmatched specific densities.

We will use a unified set up to introduce the models corresponding to the two cases mentioned above. The fluids undergoing
partial mixing are confined in a bounded domain Ω ⊂ Rd, d = 2, 3, with the boundary ∂Ω of class C2. Let QT = Ω× (0, T )
be the space time cylinder for a fixed final time T > 0. The lateral boundary of QT is denoted by ΣT = ∂Ω× (0, T ).
We use an order parameter (which might be considered as the difference of the volume fractions of the fluids involved)
ϕ : QT → R to describe the partial mixing of the two fluids involved. We denote by v : QT → Rd the mean fluid velocity, by
ρ = ρ(ϕ) : QT → R the mean mass density, p : QT → R the pressure, M : QT → R3 the magnetization and µ : QT → R
the chemical potential. The diffuse interface model we consider reads as follows





∂t(ρv) + div(ρv ⊗ v)− div(2ν(ϕ)D(v)) + div(v ⊗ J) +∇p

= µ∇ϕ+
ξ(ϕ)

α2
((|M |2 − 1)M)∇M − div(ξ(ϕ)∇M)∇M in QT ,

divv = 0 in QT ,

∂tM + (v · ∇)M = div(ξ(ϕ)∇M)− ξ(ϕ)

α2
(|M |2 − 1)M in QT ,

∂tϕ+ (v · ∇)ϕ = ∆µ in QT ,

µ = −η∆ϕ+Ψ′(ϕ) + ξ′(ϕ)
|∇M |2

2
+

ξ′(ϕ)
4α2

(|M |2 − 1)2 in QT ,

v = 0, ∂nM = 0, ∂nϕ = ∂nµ = 0 on ΣT ,
(v,M, ϕ)(·, 0) = (v0,M0, ϕ0) in Ω.

(1)

where J is a relative flux related to the diffusion of the components and is defined as follows

J = − ρ̃2 − ρ̃1
2

∇µ. (2)

In (2), ρ̃i (i = 1, 2) denotes the specific density of the i−th fluid and the mean mass density ρ is related to the phase field ϕ
via

ρ(ϕ) =
1

2
(ρ̃1 + ρ̃2) +

1

2
(ρ̃2 − ρ̃1)ϕ in QT . (3)

The factor α > 0 penalizes the saturation condition of the length of the magnetization vector |M | from 1 and η > 0 measures
the thickness of the region where the two fluids mix. In our case the viscosity coefficient of the mixture ν(ϕ) is concentra-
tion dependent and D(v) = 1

2

(
∇v + (∇v)⊤

)
is the symmetric velocity gradient. The function ξ(ϕ) denotes the exchange

parameter reflecting the tendency of the magnetization to align in one direction. The free energy density of the fluid mixture
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is denoted by Ψ(ϕ). We consider two different kinds of potentials Ψ(ϕ) and we will specify them later. The derivation of
the model from the total energy of the system can be found in [2] (the matched density case) and [3] (the case of unmatched
density). We specify that the energetic variational approach used in our modeling is motivated from [4] and the density de-
pendence is inspired from [1].
From now on we assume the following concerning the boundedness and non-degeneracy of ξ(·), ξ′(·) and ν(ϕ) :

Assumption 1.1 The function ξ ∈ C1(R) satisfies

0 < c1 ≤ ξ ≤ c2 on R, for some c1, c2 > 0,
ξ′ ≤ c3 on R, for some c3 > 0.

(4)

The viscosity coefficient ν ∈ C1(R) satisfies

0 < ν1 ≤ ν ≤ ν2 on R, for some ν1, ν2 > 0. (5)

First we present our result on the global existence of weak solutions for the model (1) in case of matched densities.

Theorem 1.2 [2, Theorem 2.2] Let T > 0, Ω ⊂ Rd be a bounded domain of class C2, the fluids involved have matched
specific densities i.e. ρ̃1 = ρ̃2 = 1 (which implies J = 0 and ρ = 1 via (2) and (3) respectively), the free energy density Ψ(ϕ)
is of double well shape and is given by Ψ(ϕ) = 1

4η (|ϕ|2 − 1)2 for η > 0, the assumptions in (4) and (5) hold and the initial
data

(v0,M0, ϕ0) ∈ L2(Ω)×W 1,2(Ω)×W 1,2(Ω) (6)

be given. Then there exits a weak solution to (1)–(2)–(3) in the functional framework

v ∈ Cw

(
[0, T ];L2

div(Ω)
)
∩ L2

(
0, T ;W 1,2

0,div(Ω)
)
,

M ∈ Cw

(
[0, T ];W 1,2(Ω)

)
∩ C0

(
[0, T ];L2(Ω)

)
∩W 1,2

(
0, T ;L

3
2 (Ω)

)
,

ϕ ∈ Cw

(
[0, T ];W 1,2(Ω)

)
∩ C0

(
[0, T ];L2(Ω)

)
, µ ∈ L2

(
0, T ;W 1,2(Ω)

)
,

(7)

where

L2
div(Ω) = {v ∈ C∞

c (Ω) : divv = 0 in Ω
∥·∥L2

and W 1,2
0,div(Ω) = {v ∈ C∞

c (Ω) : divv = 0 in Ω
∥·∥W1,2 (8)

and for some Banach space X, Cw([0, T ];X) denotes a subspace of L∞(0, T ;X) containing functions f for which the
mapping t 7→ ⟨ϕ, f(t)⟩ is continuous on [0, T ] for each ϕ ∈ X ′.

Our next result concerns the global existence of weak solutions for the model (1) for the case of unmatched densities.

Theorem 1.3 [3, Theorem 1.1] Let T > 0, Ω ⊂ Rd be a bounded domain of class C2 and let the initial datum (v0,M0, ϕ0)
satisfy (6) and |ϕ0| ≤ 1. Further suppose that the free energy density Ψ ∈ C([−1, 1]) ∩ C2((−1, 1)) solves

lim
s→−1

Ψ′(s) = −∞, lim
s→1

Ψ′(s) = ∞ and Ψ′′(s) ≥ −κ for some κ ∈ R (9)

and the mean density is given by (3). Then under the assumptions (4) and (5) there exists a quadruple (v,M, ϕ, µ) which
solves (1)–(2)–(3) in the functional framework (7) and |ϕ| ≤ 1 on QT . Moreover there exists a p > 2 such that the triplet
(M,ϕ,Ψ′(ϕ)) enjoys the following improved regularity

M ∈ L2
(
0, T ;W 1,p(Ω)

)
, ϕ ∈ L2

(
0, T ;W 2, 2p

p+2 (Ω)
)

and Ψ′(ϕ) ∈ L2
(
0, T ;L

2p
p+2 (Ω)

)
. (10)
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