
On the rôle of entanglement in
quantum field theory

Julius-Maximilians-Universität Würzburg
Fakultät für Physik und Astronomie

Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der
Julius-Maximilians-Universität Würzburg

vorgelegt von

Pascal Fries
aus Würzburg

Würzburg, 2020

This document is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0):  
http://creativecommons.org/licenses/by/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.



Eingereicht am . . . . . . . . . . . . . . . . . . . bei der Fakultät für
Physik und Astronomie.

1. Gutachter: Prof. Dr. Haye Hinrichsen . . . . . . .

2. Gutachter: Prof. Dr. Thorsten Ohl . . . . . . . . . .

3. Gutachter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

der Dissertation.

Vorsitzende(r): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Prüfer: Prof. Dr. Haye Hinrichsen . . . . . . .

2. Prüfer: Prof. Dr. Thorsten Ohl . . . . . . . . . .

3. Prüfer: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

im Promotionskolloquium.

Tag des Promotionskolloquiums: . . . . . . . . . . . . . . . . . . . .

Doktorurkunde ausgehändigt am: . . . . . . . . . . . . . . . . . . .



to Larissa



Half of the people can be part right all of the time
Some of the people can be all right part of the time
But all of the people can’t be all right all of the time
I think Abraham Lincoln said that
“I’ll let you be in my dreams if I can be in yours”
I said that

Bob Dylan
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Abstract
In this thesis, I study entanglement in quantum field theory, using methods
from operator algebra theory. More precisely, the thesis covers original research
on the entanglement properties of the free fermionic field.
After giving a pedagogical introduction to algebraic methods in quantum

field theory, as well as the modular theory of Tomita-Takesaki and its re-
lation to entanglement, I present a coherent framework that allows to solve
Tomita-Takesaki theory for free fermionic fields in any number of dimensions.
Subsequently, I use the derived machinery on the free massless fermion in two
dimensions, where the formulae can be evaluated analytically. In particular,
this entails the derivation of the resolvent of restrictions of the propagator, by
means of solving singular integral equations. In this way, I derive the modular
flow, modular Hamiltonian, modular correlation function, Rényi entanglement
entropy, von-Neumann entanglement entropy, relative entanglement entropy,
and mutual information for multi-component regions. All of this is done for
the vacuum and thermal states, both on the infinite line and the circle with
(anti-)periodic boundary conditions. Some of these results confirm previous
results from the literature, such as the modular Hamiltonian and entanglement
entropy in the vacuum state. The non-universal solutions for modular flow,
modular correlation function, and Rényi entropy, however are new, in partic-
ular at finite temperature on the circle. Additionally, I show how boundaries
of spacetime affect entanglement, as well as how one can define relative (en-
tanglement) entropy and mutual information in theories with superselection
rules.
The findings regarding modular flow in multi-component regions can be

summarised as follows: In the non-degenerate vacuum state, modular flow is
multi-local, in the sense that it mixes the field operators along multiple tra-
jectories, with one trajectory per component. This was already known from
previous literature but is presented here in a more explicit form. In particular,
I present the exact solution for the dynamics of the mixing process. What was
not previously known at all, is that the modular flow of the thermal state on
the circle is infinitely multi-local even for a connected region, in the sense that
it mixes the field along an infinite, discretely distributed set, of trajectories.
In the limit of high temperatures, all trajectories but the local one are pushed
towards the boundary of the region, where their amplitude is damped exponen-



ii

tially, leaving only the local result. At low temperatures, on the other hand,
these trajectories distribute densely in the region to either—for anti-periodic
boundary conditions—cancel, or—for periodic boundary conditions—recover
the non-local contribution due to the degenerate vacuum state.
Proceeding to spacetimes with boundaries, I show explicitly how the pres-

ence of a boundary implies entanglement between the two components of the
Dirac spinor. By computing the mutual information between the components
inside a connected region, I show quantitatively that this entanglement de-
creases as an inverse square law at large distances from the boundary. In
addition, full conformal symmetry (which is explicitly broken due to the pres-
ence of a boundary) is recovered from the exact solution for modular flow, far
away from the boundary. As far as I know, all of these results are new, al-
though related results were published by another group during the final stage
of this thesis.
Finally, regarding relative entanglement entropy in theories with superse-

lection sectors, I introduce charge and flux resolved relative entropies, which
are novel measures for the distinguishability of states, incorporating a charge
operator, central to the algebra of observables. While charge resolved relative
entropy has the interpretation of being a “distinguishability per charge sector”,
I argue that it is physically meaningless without placing a cutoff, due to infi-
nite short-distance entanglement. Flux resolved relative entropy, on the other
hand, overcomes this problem by inserting an Aharonov-Bohm flux and thus
passing to a variant of the grand canonical ensemble. It takes a well defined
value, even without putting a cutoff, and I compute its value between various
states of the free massless fermion on the line, the charge operator being the
total fermion number.
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Zusammenfassung
In dieser Dissertation untersuche ich quantenmechanische Verschränkung mit-
tels Methoden aus Theorie der Operatoralgebren. Genauer gesagt stelle ich
eigene Forschung über die Verschränkungseigenschaften des freien Fermions
vor.
Die Arbeit beginnt mit einer pädagogischen Einführung in algebraische Quan-

tenfeldtheorie und stellt die modulare Theorie nach Tomita und Takesaki,
sowie ihre Verbindung zu Verschränkung vor. Darauffolgend stelle ich einen
vollständigen Satz an Werkzeugen vor, mit dem Tomita-Takesaki-Theorie für
freie fermionische Felder in beliebiger Anzahl von Dimenionen gelöst werden
kann. Diese Werkzeuge wende ich dann auf das freie, masselose Dirac-Fermion
in zwei Dimensionen an, wo die hergeleiteten Formeln exakt gelöst werden
können. Dies beinhaltet insbesondere die Herleitung der Resolvente von Ein-
schränkungen des Propagators mittels der analytischen Lösung singulärer In-
tegralgleichungen. Daraus ergeben sich schließlich der modulare Fluss, der mo-
dulare Hamiltonian, der modulare Korrelator, Rényi Verschränkungsentropien,
von-Neumann Verschränkungsentropien, relative Verschränkungsentropie und
Transinformation für nicht-zusammenhängende Verschränkungsgebiete. Dies
alles wird im Vakuum und bei endlicher Temperatur ausgearbeitet, für ein Fer-
mion sowohl auf der Geraden, als auch auf dem Kreis mit (anti-)periodischen
Randbedingungen. Einige der Ergebnisse, besipielsweise der modulare Hamil-
tonian und von-Neumann Verschränkungsentropie, bestätigen Resultate aus
bereits existierender Literatur. Die nicht-universellen Lösungen für den modu-
laren Fluss, den modularen Korrelator und die Rényi Verschränkungsentropie
dagegen sind neu, insbesondere für den Fall des thermischen Zustandes auf dem
Kreis. Zusätzlich demonstriere ich den Einfluss von Rändern der Raumzeit auf
Verschränkung und zeige, wie man relative Entropie und Transinformation in
Theorien mit Superselektionsregeln definieren kann.
Die Ergebnisse bezüglich modularen Flusses in nicht-zusammenhängenden

Gebieten lassen sich wie folgt zusammenfassen: Im nicht-entarteten Vakuum
ist der modulare Fluss multi-lokal, was bedeutet, dass er Feldoperatoren ent-
lang mehrerer Trajektorien – eine pro Zusammenhangskomponente der Re-
gion – untereinander vermischt. Dies war bereits vorher bekannt, allerdings
folgt es sich hier in expliziter Form aus exakten Lösungen. Ein vollkommen
neues Ergbnis ist, dass der modulare Fluss des thermischen Zustandes auf
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dem Kreis sogar für zusammenhängende Regionen multi-lokal ist: Er mischt
Feldoperatoren entlang unendlich vieler, diskret verteilter Trajektorien in der
Verschränkungsregion. Im Hochtemperaturgrenzwert befinden sich alle diese
Trajektorien, bis auf die lokale, nahe am Rand der Region, wo ihre Amplitude
exponentiell gedämpft wird – es bleibt nur die lokale Lösung. Bei tiefen Tem-
peraturen dagegen sind die Trajektorien dicht in der Region verteilt, sodass
sie entweder (bei antiperiodischen Randbedingungen) sich durch destrukti-
ve Interferenz gegenseitig aufheben oder (bei periodischen Randbedingungen)
durch konstruktive Interferenz einen nicht-lokalen Term erzeugen, der auf das
entartete Vakuum zurückgeführt werden kann.
Im Falle von Raumzeiten mit Rand zeige ich explizit, wie der Rand Ver-

schränkung zwischen beiden Komponenten des Dirac-Spinors impliziert. Mit
zunehmdendem Abstand vom Rand nimmt diese Verschränkung invers quadra-
tisch ab, wie ich quantitativ durch Berechnung der Transinformation zwischen
den Komponenten in einem zusammenhängenden Gebiet zeige. Zusätzlich lässt
sich die volle konforme Symmetrie der Theorie (die durch den Rand explizit
gebrochen wird) aus der exakten Lösung für den modularen Fluss wiederher-
stellen, indem man den Grenzwert eines weit entfernten Randes betrachtet.
Meines Wissens sind alle diese Resultate neu, allerdings wurden während der
Fertigstellung dieser Dissertation verwandte Ergebnisse von einer anderen Ar-
beitsgruppe veröffentlicht.
Die letzten Resultate in dieser Arbeit beziehen sich auf die Untersuchung

relativer Entropie in Systemen mit Superselektionsregeln. Hier führe ich neue
informationstheoretische Maße für die Unterscheidbarkeit von Zuständen ein:
Die ladungs- und flussbezogenen relativen Entropien. Beide werden mittels
eines Ladungsoperators aus dem Zentrum der Observablenalgebra definiert.
Während die ladungsbezogene relative Entropie sich physikalisch als „Unter-
scheidbarkeit pro Ladungssektor“ interpretieren lässt, argumentiere ich, dass
sie nur innerhalb eines Regularisierungsschemas physikalisch bedeutsam ist,
da die universell unendliche Verschränkung auf kurzen Längenskalen sonst zu
Widersrpüchen führt. Flussbezogene relative Entropie dagegen hat dieses Pro-
blem nicht: Durch das Hinzufügen eines Aharonov-Bohm-Flusses betrachtet
man hier eine lokale Variante des großkanonischen Ensembles, wodurch sie
sich auch ohne Regularisierung definieren und berechnen lässt. Ich berechne
ihren Wert zwischen verschiedenen Zuständen des freien masselosen Fermions
auf der Geraden. Die erhaltene Ladung ist hierbei die Gesamtzahl der Fermio-
nen im System.
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1 Introduction
Since its foundations in the early twentieth century, quantum physics has per-
plexed the minds of probably everyone who came across it. Appearing at
scales much smaller than we are accustomed to deal with naturally, its prob-
abilistic laws dictate that some properties of a system can not be measured
simultaneously with arbitrary precision1 and that you can not perform any
measurement at all without disturbing the state of said system.2 While such
peculiarities are, of course, in conflict with our human intuition, quantum
physics is not witchcraft nor wizardry – already in 1925, Heisenberg discov-
ered3 that it can be formulated axiomatically as a theory where the observables
are non-commutative.
This insight paved the way for our modern understanding of quantum me-

chanics, although some implications of the axioms were not yet clear. In
particular, as was famously argued by Einstein, Podolsky, and Rosen (EPR),4
the non-commutative formulation allows for states showing a novel kind of
correlation: In their proposed thought experiment, they constructed a para-
doxical situation in which the information about the state of a system is not
“stored” locally, in the sense that you can not determine the state of a sub-
system without disturbing its environment. To cite them directly, they were
“thus led to conclude that the description of reality as given by a wave function
is not complete”. Here, by “complete”, the authors mean locally complete in
the above sense. Soon after, these EPR-type correlations were baptised entan-
glement by Schrödinger5 but it was still unknown, whether they were a real
physical phenomenon or just an absurd artefact of a theory that needs to be
fixed, as suggested by EPR. It took a long time until, almost thirty years later,
Bell6 proved mathematically that it was possible to detect entanglement ex-
perimentally and discriminate it from classical correlations and experimental
evidence was given a few years later by Freedman and Clauser.7 Since then,
entanglement has become an integral part of our understanding of quantum
physics, in particular in low-dimensional systems that are relevant in quantum
information processing.8
All of this was initially done for theories involving a fixed, finite num-

ber of particles, which are easily tractable in full detail in Heisenberg’s or
Schrödinger’s9 formalism. The development of a quantum version of the the-
ory of fields, a quantum field theory (QFT), happened somewhat independently
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and was limited, for a long time, to exactly solvable models that we now call
free theories.10–14 Furthermore, due to the infinite number of degrees of free-
dom in a QFT, studying entanglement by the usual methods is difficult in
this framework. Nevertheless, as was shown by Reeh and Schlieder in 1961,15
entanglement is a universal feature in QFT and is the source of particle fluctu-
ations in the vacuum. As a result, entanglement is at the heart of phenomena
such as black hole evaporation through Hawking radiation16 and the Unruh
effect.17
The omnipresence of entanglement in quantum physics is also a key ingre-

dient in our current understanding of quantum gravity: As first proposed by
Maldacena in what is now the most cited paper in high energy physics of
all time,18 a weakly coupled theory of quantum gravity (supergravity) in an
Anti-de-Sitter background is equivalent to a strongly coupled conformal field
theory (N = 4 supersymmetric SU(N)-Yang-Mills theory at large N) on the
flat conformal boundary. This results in a holographic dictionary that relates
between quantities in the “bulk” and “boundary” theory. In particular, (mas-
sive) minimal surfaces in the bulk are dual to (Rényi) entanglement entropies
in the boundary.19–21 Even more so: The ever increasing number of discov-
ered relationships between entanglement and geometry22–35 indicates that the
study of entanglement in QFT, even in flat spacetime, might pave the way to
a quantum theory of gravity.36,37
The question is thus: What do we know about entanglement in QFT? Un-

fortunately, the short answer is: Not much. Apart from a few universal re-
sults,38,39 the entanglement properties of a QFT depend crucially on the details
(Hilbert space, observables, symmetries, ...) of the theory under consideration.
In addition, the above mentioned quantum Yang-Mills theories are still poorly
understood non-perturbatively, in the sense that we do not even know how to
rigorously define, let alone study them.40 Instead, I think it makes sense to
step back a bit and consider entanglement in theories that are better behaved,
in order to obtain results that might serve as a guidance on the way to more
involved challenges.
Therefore, in this thesis, I study in detail the entanglement properties of one

of the oldest QFTs – the free Dirac fermion. As you might have noticed already,
this thesis is written in the style of a very long research paper, albeit slightly
more personal. This is because it is intended to serve two purposes: First, it
contains details to and extensions of the results in the research papers41–43 that
I was working on in my time as a PhD student, as well as preliminary results of
works in progress.44,45 Secondly, it contains a pedagogical introduction to the
methods used in the study of entanglement in QFT, a topic that is generally
difficult to access due to the sparsity of “physicist-friendly” literature.46
Finally, I would like to mention that, during my time as a PhD student, I
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also worked on applications of signal processing methods in QFT,47 continuing
previous work from my time as a master’s student of our group.48 This work
is not included in this thesis, in order to stick with one, coherent topic.

1.1 Structure and main results of this thesis
In order to keep the presentation self-contained, I give a short pedagogical
summary of the algebraic formulations of QFT and entanglement in section 1.2.
Of course, this is not intended as a thorough introduction to these fields of
research – nevertheless this section may give a somewhat unusual point of
view on things and I hope it helps in building an intuition for the meaning of
entanglement.
Chapter 2 presents the main body of this thesis. It starts in with an in-

troduction to the modular theory of Tomita and Takesaki section 2.1.2, pro-
viding a physics-oriented approach to the field rather than the usual abstract
mathematical treatment. It is this framework that I will use in the study of
entanglement in QFT. To get a better feeling for it, in section 2.2, I rederive
previously known universal results that can be related to geometric symmetries
of the theory. Again, I try to keep the explanations as physical as possible.
Section 2.3 then specialises to free fermions and introduced the mathematical
machinery that is needed in order to solve Tomita-Takesaki theory in the free
fermion QFT. Most of the formulae there were previously known – the main
objective of this section is to put them into a coherent framework and derive
the new eqs. (2.47) and (2.49), which we introduced in our most recent paper.43
The formulae derived in this section are summarised in tables 2.1 and 2.2 for
later reference.
Building on this machinery, section 2.4 presents the derivation and exten-

sions of non-universal results in free fermion entanglement: Sections 2.4.1, 2.4.2
and 2.4.5 summarise and extend the results from our paper on the modular
Hamiltonian on the circle at finite temperature.41 This includes the solution of
a singular integral equation, which is of fundamental importance to all results
in this thesis. The solutions of this equation for different boundary conditions
are summarised in table 2.3 for later reference. Section 2.4.6 summarises our
work on entanglement entropy42 and includes a new extension of the results
to Rényi entanglement entropy. Sections 2.4.3 and 2.4.4 gives detailed deriva-
tions of the results in our paper on the implementation of modular flow and
the Kubo-Martin-Schwinger condition.43 In particular, section 2.4.4 contains
a new, detailed discussion of the analyticity structure of the modular correla-
tion function. Section 2.4.7 extends the previous results to free fermions on a
spacetime with boundaries – the results there are completely new and not yet
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published.45 Finally, in section 2.5, I introduce (and evaluate) a novel notion
of relative entanglement entropy that is adapted to the study of entanglement
in the presence of conserved charges. These results are also not published yet
and present a growing work in progress.44
The main results of this thesis are as follows: As I will show in eqs. (2.137)

and (2.149), modular flow of a free fermion is not a local, geometric symmetry
but rather multi-local, in the sense that it mixes the fields between discretely
distributed trajectories. In the non-degenerate vacuum state and the thermal
state on the line, these trajectories are distributed as “one per component” of
the entangling region (compare eq. (2.137)). At finite temperature on the cir-
cle, however, we find an infinity of coupled trajectories within each component
(compare eq. (2.149)), which “condense” at low temperatures to a completely
non-local flow if the vacuum is degenerate. Furthermore, this picture extends
naturally to spacetimes with a boundary by virtue of the boundary condi-
tion (2.100): Here, modular flow of a single interval couples between the two
chiralities along a local trajectory. While this trajectory is not given by a con-
formal transformation, it approaches one when the boundary is very far away,
so that it yields a way to recover full conformal symmetry. The amount of en-
tanglement between the two chiralities is quantified by eq. (2.205). Finally, as
shown in eqs. (2.233) and (2.234), we will find that adding an Aharonov-Bohm
flux—a local flux corresponding to a conserved charge—to the entangling re-
gion, will always increase the amount of correlations between the different
components of the region (or the different chiralities, in the presence of a
boundary), indicating that vacuum correlations are unevenly distributed with
respect to the different superselection sectors.
I conclude in chapter 3, with a discussion and physical interpretation of the

main results.

1.2 Initial questions

1.2.1 What is theoretical physics?
Before we get going, I would like discuss what I think theoretical physics is
all about. The line of thought presented in this subsection is strongly inspired
by the great works of von Neumann2 and Dirac.49 There are several reasons
why I think that this motivation belongs here: Firstly, I feel like whenever we
want to talk about a subject in scientific terms, we should properly define what
this subject is about. Secondly, during both my undergraduate and graduate
studies, the question about what physics actually is was always answered dif-
ferently by different people, depending on individual own experiences in their



1.2 Initial questions 5

respective field. Finally, I believe that this diversity of opinions is key to dis-
covering the beauty of physics – depending on what physics means to you,
different aspects of it will be more exciting to you than to someone else. My
hope for this thesis is to convey to you my perspective of physics, so that
you will hopefully agree that entanglement is one of the most exciting things
imaginable.
So, what is theoretical physics? In my opinion, theoretical physics comprises

of the mathematical analysis of physical models, each of which usually contains
at least three crucial elements:

1. Observables – Every physical model should clearly state a collection of
observables, i.e., things that can be measured. In classical mechanics,50
these can be arbitrary functions on phase space, such as energy, velocity,
angular momentum etc. In quantum physics,2,49,51 the observables are
usually (though not necessarily52–55) given as self adjoint operators on
a Hilbert space H, examples are the position and momentum operators
in quantum mechanics or current operators in quantum field theory. In
statistical mechanics, they are random variables on a sample space, e.g.,
the magnetisation of an Ising magnet.56

Note that, in all these examples, the collections of observables always
have the structure of an (associative) algebra. Whether this algebra is
commutative or not marks the difference between classical and quan-
tum physics. Note that the variables which we use in our description of
a physical system need not be observables themselves – a phenomenon
which is called gauge invariance. For example, the Riemannian metric
gµν in general relativity is not an observable, because it is not invari-
ant under the gauge group of diffeomorphisms. On a final note, there
are physical models, where the collection of observables do not form an
algebra: Prominent examples are large N gauge theories and effective
field theories, where we choose to consider only observables on a specific
energy scale. Taking arbitrary powers of such observables, we might exit
said scale, hence we are not dealing with an algebra. This was most
brilliantly explained by Papadodimas and Raju,57,58 where it was pro-
posed as a starting point for the resolution of the black hole information
paradox.16,59,60

2. States – Starting from a collection of observables, we need to know how
to generate measurement results a.k.a. expectation values by specifying
which state the system is in. In classical mechanics, a state can be given
by a point (q, p) ∈ T ∗Q in phase space. An observable f ∈ C∞(T ∗Q) can
then be evaluated to yield the measured value f(q, p). More generally, we



6 1 Introduction

can consider an arbitrary probability measure P on phase space, whose
corresponding expectation value is

〈f〉P =
∫

dP (q, p) f(p, q).

Note that the choice of a point in phase space can be recovered from
this by taking P to be a Dirac (point) measure. These states are special
in the sense that they can not be written as a convex combination1 of
different states, hence we call them pure.61 In contrast, all states that
can be written as a convex combination are called mixed.

In quantum physics, pure states are usually given by vectors Ω ∈ H in
the Hilbert space of unit norm 〈Ω|Ω〉 = 1 and an expectation value of
the observable A is computed by evaluating the inner product 〈Ω|AΩ〉.
Since this expression is quadratic in the state, rather than linear as in the
classical case, it has the meaning of an overlap 〈Ω|Ω̃〉 between different
states Ω and Ω̃. This overlap, or rather its absolute value, can also
be interpreted as a transition amplitude51 and is a unique feature of
quantum theories. Mixed states, on the other hand, are positive trace
class operators ρ > 0 with unit trace Tr[ρ] = 1, commonly referred to as
density matrices. Expectation values are generated by taking the trace

〈A〉ρ = Tr[ρA]

and we can consider pure states as a special case of this by assigning to
them the rank one projection density matrix |Ω〉〈Ω|.

Of course, depending on the particular implementation of the observ-
ables, states of a model always have to be chosen accordingly. For exam-
ple, in gauge theories, observables have several equivalent representations
as phase space functions or operators, each for a different choice of gauge.
To compensate for this redundancy, we have to require that expectation
values agree on these equivalence classes, so that they only depend on
the choice of observables. In the quantum case, this leads to the dis-
crimination between the kinematical Hilbert space, which supports the
operators, and a physical Hilbert space, on which all gauge equivalent
operators agree.62

3. Symmetries – So far, I listed static features of physical systems without
any relation to one another. The symmetries of a system now give a way

1We say that P is a convex combination of Q and R, if we can write P = λQ + (1− λ)R
with 0 < λ < 1.
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to transform different observables into one another. For example, in
classical mechanics, translations q → q + α are trivially implemented on
the observables by transforming f(q, p)→ f(q + α, p).

However, not all possible transformations deserve to be called a symme-
try: The general practice is to single out a specific set of transformations
which are defined to be the fundamental symmetries. One then requires
all other symmetries to be compatible with them, meaning that they have
to commute with one another.51 In almost all cases, these fundamen-
tal symmetries consist of time translations, possibly augmented to the
full Galilean (non-relativistic physics) or Poincaré (relativistic physics)
group. The implementation of these symmetries, i.e., their action on
observables, is part of the definition of the model and given by the equa-
tions of motion. Since additional symmetries are required to commute
with the fundamental symmetries, equivalently, you can define them as
those transformations that leave invariant the equations of motion.2,49

Since observables and states pair up expectation values, we can require
invariance of this pairing under symmetries and dually think of symme-
tries as transformations of states. In quantum mechanics, for example,
instead of working in the Heisenberg picture, which describes the time
evolution of operators, one can equivalently work in the Schrödinger pic-
ture, where instead states evolve in time. Additionally, one then requires
the aforementioned transition amplitudes 〈Ω|Ω̃〉 to be invariant under
symmetries, which implies that symmetries are necessarily implemented
as (anti-)unitary operators on the Hilbert space H.63 Furthermore, the
action of symmetries on states allows to search for invariant states and
minimum energy states that spontaneously break a symmetry.64

Finally, I would like to add that there are physical theories, where the
symmetries do not form a group. For example, in statistical mechanics56
or its non-commutative variant, open quantum systems,65 time evolution
is not reversible, hence, only forms a semi-group. As it turns out, this
means that transition amplitudes are not invariant either, allowing non-
unitarity, decoherence, and thermalisation.66,67

Of course, these three constituents are not enough to cover every physical
theory, nor does every physical model allow for a strict separation of them.
However, I found that thinking about physics in terms of the three pillars
observables, states, and symmetries helps clearly recognising similarities and
differences between different theories.



8 1 Introduction

1.2.2 What is quantum field theory?
Let us now be a little bit more specific and wander into the realm of QFT.
To do this, I will use the approach by Haag and Kastler,64,68 since it fits very
nicely in the above discussion. This approach builds on the historical vision
of Faraday: The idea of fields as localised observables. In fact, the founders of
this framework baptised it local quantum physics to highlight the key rôle of
locality.
The axioms of this approach are usually given in a rather formal fashion,

while I would like to elaborate a bit on their physical meaning. To keep the
discussion brief, I will restrict to QFT in d+1 dimensional Minkowski spacetime
and only mention that variants exist for QFT in curved spacetime,69 spacetime
with boundaries,70 and additional symmetries.71 The key axioms are:

1. Isotony – This axiom is concerned with the localisation of observables.
To each open subregion R of spacetime, we associate a C∗-algebra A(R)
of observables that are localised within R. Additionally, we require that
for any two regions

R ⊂ R̃, there exists an inclusion A(R)→ A(R̃), (1.1)

implying that whenever an obervable is localised in R, it is also localised
in the bigger R̃. In mathematical terms, this is equivalent to saying that
the assignment R 7→ A(R) is required to be a net, indexed by spacetime
regions. For the sake of brevity, I will often omit the argument of A if
the region in question is clear from context or not relevant.

Figure 1.1: Different regions in spacetime and their relevance in AQFT:
Isotony states that A(R1) ⊂ A(R2) since R1 ⊂ R2. Einstein
causality means that [A(R2),A(R3)] sinceR2 andR3 have space-
like separation.

Note that we do not require A to be an algebra of operators on a Hilbert
space, nor do we require the existence of a Hilbert space at all. The
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only technical requirement that we put on A is that it is a C∗-algebra.
Among other things, this entails that every observable A ∈ A has finite
norm ‖A‖ <∞, i.e., is bounded, as every physical observable should be.

2. Einstein causality – This axiom makes sure that no information can
travel faster than light. It is implemented at the level of observables
and states that the algebras of spacelike separated regions (see fig. 1.1)
commute. To write as a formula, please note that throughout this thesis,
I will use the mostly negative convention for the Minkowski metric

(ηµν) = diag(1,−1,−1, ...,−1). (1.2)

Einstein causality then means that

[A(R),A(R̃)] = 0 if ‖x− x̃‖2 < 0 for all x ∈ R, x̃ ∈ R̃. (1.3)

Physically, this means that measurements at spacelike separated points
can not interfere with one another.

3. Covariance – This is where symmetry comes into play. We require that
the Poincaré group P = O(1, d)nR1,d, consisting of relativistic rotations
and translations, acts on the algebras in a consistent way. Namely, we
require

g .A(R) = A(gR) for all g ∈ P. (1.4)

Furthermore, this group action allows to forbid non-local observables by
requiring additivity of the local algebras: For any region R, the global
algebra A(R1,d) should be coverable by the translations of A(R), i.e.,

A(R1,d) =
∨

v∈R1,d

[
v .A(R)

]
, (1.5)

where ∨ denotes the union of C∗-algebras.

4. The vacuum – Finally, we talk about states. In this algebraic language,
a state ω is a positive, normalised functional on the algebras, i.e.,

ω : A → C, ω(A∗A) ≥ 0, and ω(1) = 1. (1.6)

Introducing states at this stage is also the main reason for choosing A
to be a C∗-algebra: For any such state on a C∗-algebra, one can use the
celebrated Gelfand-Naimark-Segal (GNS) construction61,72,73 to obtain
a Hilbert space Hω carrying a representation πω of A. As a result, there
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is a designated vector Ωω ∈ Hω with

ω(A) = 〈Ωω|πω(A)Ωω〉 for all A ∈ A, (1.7)

which is also cyclic, in the sense that

πω(A)Ωω is dense in Hω. (1.8)

Out of all the possible states that one might choose, a vacuum state
ω0 has to satisfy further properties, which in a physically sound theory,
should single out a unique vacuum state:

Firstly, it should be invariant with respect to the action of the Poincaré
group P, in the sense that

ω0(g . A) = ω0(A) for all g ∈ P and A ∈ A. (1.9)

This implies that the corresponding GNS vector Ω0 ∈ H0 is Poincaré
invariant, allowing to define a unitary representation of P via

U(g)π0(A)Ω0 := π0(g . A)Ω0. (1.10)

Secondly, and this will turn out to be an extremely important in doing
actual computations, the spectrum of the generator

Pµ := −i d
dsU(1, sêµ)

∣∣∣∣
s=0

. (1.11)

of translations should be contained in the forward light cone. To see why
this is a property of the state ω0, note that U(g), as defined in eq. (1.10),
depends on the GNS representation, which in turn is state dependent.
We can formalise this so called spectrum condition64 as

〈ψ|P0ψ〉 > 0 and 〈ψ|PµP µψ〉 > 0 for all ψ ∈ H. (1.12)

Thirdly, a vacuum state should be faithful, i.e.,

ω0(A) = 0 if and only if A = 0. (1.13)

As a result, Ω0 is separating72

π0(A)Ω0 = 0 if and only if A = 0, (1.14)
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which has the physical interpretation that Ω0 is highly entangled, as we
will discuss later in section 1.2.3.

Lastly, a vacuum should be pure in the sense discussed in section 1.2.1.
Equivalently,72 one could require the corresponding GNS representation
to be irreducible. This requirement fails in the case of spontaneous sym-
metry breaking: In spontaneously broken symmetry, you are dealing with
a invariant state that is a mixture of non-invariant false vacua. We will
also have to consider mixed states later on when talking about states of
finite temperature.

Together, the above axioms give a solid foundation to modern QFT. In con-
trast to, e.g., path integral formulations,74,75 the focus on algebraic structure
allows for a mathematically rigorous treatment of the subject and has been
fruitful both for physics and mathematics: On the physical side, great insights
into the structure of QFT can be deduced directly from the axioms, such
as the spin-statistics theorem64 and CPT invariance76 (see also section 2.2),
which we will link to entanglement of the vacuum in section 2.2. On the math-
ematical side, the programme of algebraic QFT (AQFT) has been a driving
force in the study and classification of von-Neumann algebras,77 as well as
non-commutative integration theory.61

1.2.3 What is entanglement?
The last big question that I want to discuss in this introduction is what en-
tanglement actually is. As explained in section 1.2.1, quantum physics is a
probabilistic theory, in the sense that a pairing between observable and state
(even a pure one) yields an expectation value for the corresponding measure-
ment, instead of a sharp prediction. This probabilistic nature allows to ask
whether there might be correlations between different components of the same
system, even in a pure state: These quantum correlations are called entan-
glement. They are in contrast to classical correlations, which are due to the
probabilistic nature of the “mixedness” of a state, be it classical or quantum.
For mixed quantum states, it is often hard to discriminate classical from

quantum correlations – there even are several non-equivalent definitions of
what these terms precisely mean.8,78,79 While this discussion opens up an
incredibly rich fauna of quantum information theoretical concepts, such as en-
tanglement witnesses,78 entanglement distillability,80 quantum discord79 and
generalised measurements,8 I do not want to go down this rabbit hole and in-
stead focus on entanglement for pure states, where only one kind of correlation
is present.
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To give a proper definition of entanglement for pure states, consider a bi-
partite Hilbert space H = H1⊗H2. Intuitively, Hi are the local Hilbert spaces
of different parts of a system, e.g., the individual polarisation vector spaces
of two photons. A state ψ ∈ H is called separable if it can be written as a
product

ψ = ψ1 ⊗ ψ2 for some ψi ∈ Hi, (1.15)

while every state which does not factorise in this form is called entangled.
In a more general context, we can define separability in terms of algebras of

observables:81 Assume a global algebra of observables A and two commuting
subalgebras Ai ⊂ A, [A1,A2] = 0. The intuition is that Ai are local opera-
tions that can be performed on the individual portions of the system. In this
framework, a state ω ∈ A∗ is a functional on the global algebra A and a pure
state is called separable with respect to the given subalgebras if all expectation
values factorise as

ω(A1A2) = ω(A1)ω(A2) for all Ai ∈ Ai, (1.16)

while entanglement is again the absence of such a factorisation. This definition
is equivalent to the one in eq. (1.15) if the subalgebras A1 = B(H1) ⊗ 1 and
A2 = 1 ⊗ B(H2) consist of all bounded operators on the individual Hilbert
spaces. This is usually the case in quantum information theory, where all
Hilbert spaces under consideration are finite dimensional. In QFT however,
the vast number of degrees of freedom usually makes it impossible to “measure
everything”. Additionally, symmetries and superselection rules might exclude
large classes of operators from actually being observable. In this case, a state
might be entangled with respect to definition (1.15), while these quantum
correlations are not measurable by any physical process. We will come back to
this in section 2.5. For now, just note that eq. (1.16) provides a strictly more
general definition of entanglement than what the usual Hilbert space approach
is able to provide.
Anyway, since entanglement is a kind of correlation, it seems desirable to

have a measure for “how much” entanglement is present in a state. In the
Hilbert space approach to separability (1.15), one such measure is the so called
entanglement entropy,78 which is obtained by tracing out one system and com-
puting the von-Neumann entropy of the resulting reduced density matrix via

SEE = −Tr
[
ρ1 log ρ1

]
with ρ1 = TrH2

[
|ψ〉〈ψ|

]
. (1.17)

This measure is symmetric in the sense that it does not make a difference
which subsystem we choose to trace out. Furthermore, it is non-negative and
vanishes precisely for separable states, as follows from Jensen’s inequality.82
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Note that eq. (1.17) can also be evaluated for mixed quantum states, albeit
picking up classical correlations as well and thus losing its symmetry. I will
discuss entanglement entropy in section 2.4, where I present its computation
for different states in a QFT of free fermions.
Another measure for entanglement of a pure state is the Schmidt rank rS,

which is the minimum number of extra terms that have to be added to the
right hand side of eq. (1.15), i.e., the minimal number rS, such that

ψ =
rS∑
k=1

√
pk ψ

(k)
1 ⊗ ψ

(k)
2 for some ψ

(k)
i ∈ Hi, 0 < pk < 1. (1.18)

Obviously, the Schmidt rank is bounded from above by the dimensions of Hi

and is larger than one if and only if a state is entangled. Notably, you can
always make sure that the ψ(k)

i in eq. (1.18) are orthonormal to one another,
meaning that ψ can be written as a “Bell-like” superposition. Such a de-
composition, also called Schmidt decompostion, is unitarily unique,8 as can be
shown using the singular value decompostion. This uniqueness implies that
the Schmidt numbers pk are identical to the eigenvalues of the reduced den-
sity matrices ρi, hence the Schmidt rank measures the number of non-zero
eigenvalues of the reduced density matrix, while entanglement entropy gives
the corresponding entropy. Both can be obtained from the entanglement Rény
entropy83

Sα = 1
1− α log Tr ρα1 = 1

1− α log
rS∑
k=1

pαk , <(α) > 0, α 6= 1 (1.19)

via the limits
SEE = lim

α→1
Sα and log rS = lim

α↘0
Sα. (1.20)

For the sake of completeness, let me mention that there have also been efforts to
generalise the Schmidt decomposition to mixed states,84 however, uniqueness
is lost and classical correlations are picked up as in the case of entanglement
entropy.
To get a better picture of the meaning of SEE and rS, I would like to present a

short discussion for finite dimensional systems, roughly based on the excellent
presentations by Witten46 and Papadodimas and Raju.58 Consider first the
Bell state

ψ = 1√
2
[
ψ(0) ⊗ ψ(0) + ψ(1) ⊗ ψ(1)

]
∈ C2 ⊗ C2 (1.21)

and an arbitrary operator

A : C2 → C2 with matrix elements Aij = 〈ψ(i)|Aψ(j)〉.
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Acting with A on the first qubit is equivalent to acting with Aᵀ on the second
qubit, as

(A⊗ 1)ψ = 1√
2
∑
ij

Aijψ
(i) ⊗ ψ(j) = 1√

2
∑
ij

(Aᵀ)jiψ(i) ⊗ ψ(j) = (1⊗ Aᵀ)ψ.

This is the essence of entanglement: In an entangled state, an action on one
subsystem is equivalent to an action on the other subsystem. Note that this
does not mean that an action on one subsystem has some kind of instant
reaction in the other system – the actions are just equivalent. All non-locality
is contained in the state, while measurements still happen locally within a
single subsystem, resolving Einstein’s issue with entanglement being a “spooky
action at a distance”.85
To generalise slightly, consider now a state ψ with general Schmidt decom-

postion as in eq. (1.18) and an arbitrary operator A on the space spanned by
the ψ(k)

1 . The same reasoning as above leads to

(A⊗ 1)ψ =
∑
kl

√
pkAlkψ

(l)
1 ⊗ ψ

(k)
2

=
∑
kl

√
pk

√
pl
pk
Aklψ

(k)
1 ⊗ ψ

(l)
2 = (1⊗ Ã)ψ,

where Ã is an operator in the space spanned by the ψ(k)
2 with matrix elements

Ãlk =
√
pl
pk
Akl. (1.22)

This relation has recently been proposed as the starting point for the uni-
tarisation of black hole evaporation.57 It also admits a generalisation to the
operator algebraic setting and is the basis for entanglement in AQFT, as will
be discussed in section 2.1.2. Furthermore, the above discussion gives a nice
interpretation to SEE and rS: We already established that entanglement is
the equivalence of actions on different subsystems. Now, from relation (1.22),
you can directly see that rS is the size of the operator algebras where this
equivalence holds, while SEE tells us how similar the equivalent operators are,
since large entanglement entropy means that the prefactor (pl/pk)1/2 is ap-
proximately unity.
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2 Entanglement in quantum field
theory

Let us now proceed to the main concern of this thesis: the rôle of entanglement
in QFT. To this end, I would first like to introduce some universal results in
QFT that might seem non-intuitive at first glance, but make perfect sense when
interpreted in terms of entanglement. After that, beginning in section 2.3, I
will specialise to free fermions, where much stronger variants of these results
can be derived. Finally, in section 2.5, I will discuss which adaptions can
(and should) be made if the theory under consideration has conserved charges.
Again, I will make these adaptions explicit for free fermions with a conserved
number of fermions.

2.1 Entanglement and modular flow

2.1.1 The failure of the reduced density matrix
In section 1.2.3, I already discussed the interpretation of entanglement as an
equivalence of local operations in different subsystems. Interestingly, entangle-
ment in this form can be shown to be a direct consequence of the Haag-Kastler
axioms from section 1.2.2, hence, is present in any vacuum state of a QFT.
This fact is known as the Reeh-Schlieder theorem15,64 and is formulated as

follows: Assume you are dealing with a QFT in the sense of section 1.2.2 and
a vacuum state ω0 on the global algebra of observables A(R1,d). In particular,
this means that the corresponding GNS vector Ω0 is cyclic and separating
for A(R1,d) in the sense of eqs. (1.8) and (1.14). Then, surprisingly, Ω0 is
also cyclic and separating for the local algebra A(R) of any open subregion
R ⊂ R1,d. Here, A(R) is considered to be a subalgebra of A(R1,d) by virtue
of the isotony axiom.
In particular, cyclicity means that you can generate the entire Hilbert space
H0 (or, more precisely, a dense subset) by acting on the vacuum only with
operators localised in R.
The Reeh-Schlieder theorem is usually proven with a rather technical argu-

ment, the key points of which I would like to highlight here: Since A(R) ⊂ A
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is a subalgebra of the global algebra A, the separating property of Ω0 is imme-
diate. The cyclic property is proven by contradiction. If A(R)Ω0 is not dense
in H0, then there has to be a vector ψ 6= 0 ∈ H0 with

〈ψ|AΩ0〉 = 0 for all A ∈ A(R).

Please note that I kept the GNS representation π0(A) implicit here and just
write A, as I will continue to do for the rest of this thesis. The idea of proof is
that, because of covariance (1.4) and the spectrum condition (1.12), you can
move the A in this relation to any different region in R1,d of your choice. To
see how this works, pick an even smaller subregion R̃ ⊂ R such that you can
move it around in time by ±ε without leaving R (see fig. 2.1. Formally this
means that

tê0 . R̃ ⊂ R for t ∈ [−ε, ε],

where tê0 . denotes time translation by t.

Figure 2.1: The two regions R (grey) and R̃ (light grey) in the proof of the
Reeh-Schlieder theorem. The smaller region R̃ can be translated
in time by ±ε without leaving the larger region R.

Now, since the Poincaré group has a unitary implementation U on H0, you
can pick any A ∈ A(R̃) to find

〈ψ|U(tê0)AU(tê0)−1Ω0〉 = 〈ψ|(tê0 . A)Ω0〉 = 0 for t ∈ [−ε, ε].

Introducing the Hamiltonian H, i.e., the generator of time translations, and
using Poincaré invariance of the vacuum, this can be rewritten as

〈ψ|eitHAΩ0〉 = 0 for t ∈ [−ε, ε].

This correlation function has a remarkable property: Since H > 0 by the
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spectrum condition, eitH is a bounded operator for =(t) > 0, hence

〈ψ|eitHAΩ0〉 is holomorphic for =(t) > 0.

Therefore, 〈ψ|eitHAΩ0〉 is a function of t that is holomorphic in the upper half
plane and vanishes along a finite interval of the real axis, hence, vanishes along
the entire real axis because of the edge of the wedge theorem.64,86 As a result,

〈ψ|(tê0 . A)Ω0〉 = 0 for any t ∈ R, A ∈ A(R̃).

This argument can of course be repeated with any other timelike vector instead
of ê0 and since any point in R1,d can be reached by a combination of two timelike
translations (one into the future, one into the past), you find

〈ψ|(v . A)Ω0〉 = 0 for any v ∈ R1,d, A ∈ A(R̃),

implying that 〈ψ|AΩ0〉 vanishes for any A ∈ A(R1,d) because of the additivity
axiom (1.5). This is, of course, in contradiction to the assumption that Ω0 is
cyclic for the global algebra and completes the proof.
The reason why I included this proof is twofold: Firstly, I would like to

mention that the proof does not require the state to be pure – all we need is
Poincaré invariance and the spectrum condition, along with the usual axioms
for the net of observable algebras. This means that the Reeh-Schlieder theorem
also holds for mixed states, most prominently thermal states, which we will
come back to later in this chapter. Secondly, the proof showcases the most
ubiquitous technique in all of QFT: Using the spectrum condition (positivity
of energy) to obtain holomorphic correlation functions. This technique will be
of great use in section 2.1.2.
So what does the Reeh-Schlieder theorem tell us about entanglement in

QFT? As discussed at the end of section 1.2.3, the fact that the vacuum state
vector Ω0 is cyclic for any open subregion R ⊂ R1,d, implies an equivalence all
local algebras, no matter how small they are. In the interpretation of entangled
states as non-local entities, this means that all degrees of freedom in a QFT are
delocalised! Let us try to model such behaviour in a simpler system. To this
end, begin with the archetypical example of delocalised degrees of freedom:
the Bell state ψ ∈ C2 ⊗ C2 as given in eq. (1.21). This state is separating for
the set of operators on the first subsystem, all of which are of the form A⊗ 1
for some matrix A ∈ C2×2. You can now build a Hilbert space

Hψ := (C2×2 ⊗ 1)ψ = C2 ⊗ C2,

such that ψ is cyclic and separating for the action of A1 := C2×2 ⊗ 1 on the
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first subsystem. As explained in section 1.2.3, this action is equivalent to that
of A2 := 1⊗ C2×2 on the second subsystem via eq. (1.22) with p0 = p1 = 1/2
and, indeed, ψ is also cyclic and separating for the action of A2. It is also
noteworthy that these algebras are linked by a specific property: A1 consists
of all bounded operators on Hψ that commute with everything in A2 – we say
that

A1 = A′2 :=
{
A ∈ B(Hψ)

∣∣∣[A,A2] = 0
}

(2.1)

is the commutant of A2. Of course, since we are working in finite dimensions,
A2 is also the commutant of A1.
Now, in a QFT, we are not dealing with finite dimensional operator algebras.

Instead, we have to switch gears and consider infinite dimensions. To get an
idea of important implications without unnecessary complications, take a look
at the following model of a so called von-Neumann factor of type II, which can
be found, e.g., in Witten’s pedagogical article:46 Consider the tensor product

ψ(∞) :=
⊗
k∈N

ψ ∈
(
C2 ⊗ C2

)⊗alg∞ (2.2)

of an infinite number of Bell states. The subscript in ⊗alg denotes that we
are working in the algebraic tensor product, i.e., that the vector space on the
right hand side has no Hilbert space structure. This is because we have not
yet defined an inner product or sense of convergence, with respect to which the
Hilbert space would have to be complete. Instead, we first define the infinite
variant of the algebras Ai by allowing for an individual copy of Ai to act on
each copy of ψ in ψ(∞). In order to have a well defined action on ψ(∞), we
allow only for algebra elements that have a finite number of non-unity tensor
factors, i.e., we define

A(∞)
1 :=

{⊗
k∈N

Ak

∣∣∣∣Ak ∈ A1, Ak = 1 up to finite exceptions
}

(2.3)

and similarly for A2. As a result, the vector space

H(∞)
ψ := A(∞)

1 ψ(∞) = A(∞)
2 ψ(∞) (2.4)

is well defined and can be endowed with the obvious inner product, given by
tensor contraction, as sketched in fig. 2.2.
This inner product is finite by construction, since all but a finite number of

the contractions are of the form 〈ψ|ψ〉. We can use it to complete H(∞)
ψ to a

Hilbert space. Similarly, we can complete A(∞)
i to von-Neumann algebras: A

von-Neumann algebra is an algebra of bounded operators which is complete in
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Figure 2.2: Sketch of the Hilbert space structure of the type II von-Neumann
factor (2.3) as an infinite tensor network. The inner product
of two vectors Aψ(∞) and Bψ(∞) is given by tensor contraction
(dotted vertical lines).

the weak (or, equivalently, strong) operator topology. Equivalently,61,72 it is
an operator algebra that is its own bi-commutant, i.e., to pass from A(∞)

i to
the smallest von-Neumann algebra containing A(∞)

i , we just have to take the
commutant twice

A(∞)
i → (A(∞)

i )′′ :=
(
(A(∞)

i )′
)′
.

Finally, ψ(∞) is cyclic and separating for A(∞)
i and both algebras are commu-

tants, as they were in the finite dimensional case.

The interesting thing is now that, while we still have an equivalence of local
algebras, tracing out the second subsystem is technically impossible, as there
is no such thing as a local Hilbert space of the first subsystem – the definition
of the inner product and completion were only performed at the level of the
global Hilbert space. Out of pure curiosity, we could put a cutoff to the
number of degrees of freedom, by restricting the range of the tensor products in
eqs. (2.2) and (2.3) to k = 1, . . . , N . We would then obtain a diagonal reduced
density matrix with eigenvalues pl = 2−N , yielding an entanglement entropy of
SEE = N log 2, which is clearly divergent. Indeed, one can show46 that for any
state in H(∞)

ψ , the entanglement entropy diverges as N log 2 to leading order in
N . This implies that entanglement entropy and reduced density matrices can
only ever be understood in the presence of a cutoff, while the interpretation of
entanglement as an equivalence of the local algebras of observables works in all
settings: For any cyclic vector in H(∞)

ψ the prefactors (pl/pk)1/2 in eq. (1.22)
turn out to be finite in the limit N →∞.
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2.1.2 Tomita-Takesaki theory

In the previous subsection, we have seen that the equivalence (1.22) of local
observable algebras holds even in limits where a reduced density matrix is
not definable as an operator on a Hilbert space. You could therefore expect
that the equivalence can be established without introducing a cutoff in the
first place. This is done in the mathematical framework of Tomita-Takesaki
modular theory,61 which lies at the heart of structure theory of von-Neumann
algebras,61,77 is a cornerstone of AQFT,87,88 and is a key element in our current
understanding of the interplay between QFT and gravity,27,58,89–95 as well as
the celebrated AdS/CFT correspondence.19,22–26,28–35,57,96–99 To discuss its
most important features, let me first present some definitions, leading to the
infinite dimensional variant of eq. (1.22). After that we will quickly proceed
to its important rôle in QFT and relations to thermal states.
To get started, consider a von-Neumann algebra A of bounded operators

on a Hilbert space H and a designated vector Ω ∈ H. As discussed before in
sections 1.2.3 and 2.1.1, for an equivalence between A and its commutant A′,
it is important that Ω is cyclic separating for A – we say that A is given in
normal form with respect to Ω. We already saw that Ω is cyclic separating
for A′ as well and, indeed, a vector is cyclic for a von-Neumann algebra if and
only if it is separating for its commutant. To see why this is the case, let Ω be
cyclic for A and consider A′ ∈ A′ with A′Ω = 0. Then

0 = AA′Ω = A′AΩ for all A ∈ A,

i.e., A′ vanishes on the dense subspace AΩ ⊂ H and Ω is separating for A′.
On the other hand, if Ω is not cyclic for A, consider the orthogonal projection
Π onto AΩ and its commutator

[A,Π] = (AΠ− ΠA)Π = (1− Π)AΠ.

with an arbitrary operator A ∈ cA. By definition of Π, this vanishes on both
A′Ω and its orthogonal complement. This implies that 1−Π 6= 0 is an element
of A′ with (1 − Π)Ω = 0, hence Ω is not separating for A′, which completes
the proof.
Let now Ω be cyclic separating for A. We define the Tomita operator S by

SAΩ := A∗Ω for every A ∈ A. (2.5)

This definition is non-contradictory because Ω is separating and it defines S
on a dense subspace of H because Ω is cyclic. A technical argument shows
that S is actually a closable operator61,72 and we will denote its closure by the
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same symbol. Note that the definition (2.5) depends both on A and Ω. As
argued in the previous paragraph, Ω cyclic separating for A′, too – in fact, we
the Tomita operators S and S ′ of A and A′ are adjoint one another:

S ′ = S∗, i.e., 〈ψ|S ′φ〉 = 〈φ|Sψ〉 for all ψ, φ ∈ H. (2.6)

This follows directly from the definition of S on the dense subspaces ψ ∈ AΩ
and φ ∈ A′Ω, since

〈AΩ|S ′A′Ω〉 = 〈Ω|A∗(A′)∗Ω〉 = 〈Ω|(A′)∗A∗Ω〉 = 〈A′Ω|SAΩ〉 for all

for all A ∈ A, A′ ∈ A′. Since S is a closed anti-linear operator, it has a unique
polar decomposition

S = J∆1/2, (2.7)

where J is anti-unitary in the sense that

J∗J = JJ∗ = 1, i.e., 〈Jψ|Jφ〉 = 〈φ|ψ〉 = 〈J∗ψ|J∗φ〉 for all ψ, φ ∈ H

and ∆ > 0 is positive self-adjoint. We call J and ∆ the modular conjugation
and modular operator, respectively. Since ∆ = S∗S = S ′S and both S and S ′
preserve Ω, we obtain the important property

∆Ω = Ω = JΩ. (2.8)

Furthermore, since S2 = 1, you see that

∆−1/2 = J∆1/2J (2.9)

and multiplying this equation with its adjoint yields

∆−1 = J∗∆1/2J∗J∆1/2J = J∗∆J.

You can take arbitrary powers of this equation to find

f(∆−1) = J∗f(∆)J (2.10)

for any complex function f that can be expressed as a convergent power series.
In particular, choose f(∆) = ∆−1/2 and multiply by eq. (2.9) a to find

1 = ∆−1/2(∆−1)(−1/2) = J∆1/2JJ∗∆−1/2J = J2, (2.11)

hence, J is self-adjoint anti-unitary. Furthermore, you can choose f(∆) = ∆it
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to obtain
∆itJ = J∆it. (2.12)

In addition to leaving Ω invariant, the modular conjugation and modular
operator encode the relationship between A and A′. This is the content of
Tomita’s theorem,61,77,100 which says that

JAJ = A′ and ∆itA∆−it = A for all t ∈ R. (2.13)

To see why this is true, note that72

SASBCΩ = SAC∗B∗Ω = BCA∗Ω = BCSASΩ for all A,B,C ∈ A.

Since the set of all CΩ is dense in H, this means that [SAS,B] = 0, hence

SAS ⊂ A′ and, similarly, S∗A′S∗ ⊂ A. (2.14)

Note that the above equations have to be taken with a grain of salt, since S is
unbounded and operator products SAS might be ill defined or yield unbounded
operators. Nevertheless I would like to continue with this line of thought to
give some intuition and refer to, e.g. Takesaki’s books61 for a more rigorous
treatment. Since ∆ = S∗S and ∆−1 = J∆J = SS∗, eq. (2.14) implies

∆A∆−1 = S∗SASS∗ ⊂ S∗A′S∗ ⊂ A.

Again, this extends to arbitrary powers series of ∆, hence,

∆itA∆−it ⊂ A for all t ∈ R.

Replacing t → −t in this expression reverses the direction of inclusion, such
that the left and right hand side are actually equal. Finally, the inclusion
JAJ ⊂ A′ follows as a direct result of ∆1/2A∆−1/2 ⊂ A and eq. (2.14),
implying the first part of eq. (2.13) and completing the sketch of proof.

So the question is, what are J and ∆ and why are they interesting? To get
a feeling for them, let us consider the finite dimensional case: Starting from
a state ψ with Schmidt decomposition (1.18) and a local algebra of operators
A = B(H)⊗ 1, we have

(A⊗ 1)ψ =
∑
ij

√
pjAijψ

(i)
1 ⊗ ψ

(j)
2 and (A∗ ⊗ 1)ψ =

∑
ij

√
piAijψ

(j)
1 ⊗ ψ

(i)
2 ,
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implying that S is antilinear with

S(ψ(i)
1 ⊗ ψ

(j)
2 ) =

√
pi
pj
ψ

(j)
1 ⊗ ψ

(i)
2 .

Note how much this resembles eq. (1.22)! As for the polar decomposition (2.7),
note that the operators defined by

∆(ψ(i)
1 ⊗ ψ

(j)
2 ) := pi

pj
ψ

(i)
1 ⊗ ψ

(j)
2 and J(ψ(i)

1 ⊗ ψ
(j)
2 ) := ψ

(j)
1 ⊗ ψ

(i)
2 (2.15)

do the trick. Without referring to the particular bases ψ(i)
k , this means that

∆ = ρ1 ⊗ ρ−1
2 (2.16)

can be expressed in terms of the reduced density matrices

ρ1 = Tr2[ψ ⊗ ψ∗], ρ2 = Tr1[ψ ⊗ ψ∗],

while
J(A⊗ 1)J = 1⊗ A (2.17)

exchanges the algebra with its commutant. Finally, note that the equiva-
lence (1.22) of local algebras can be expressed directly in terms of the modular
data: For any A ∈ A, we have

AΩ = SA∗SΩ = J∆1/2A∗∆−1/2JΩ =: ÃΩ with Ã ∈ A′. (2.18)

As before, this expression is not entirely kosher in the infinite dimensional set-
ting, as S might be (and often is) an unbounded operator. However, eq. (2.18)
at least formally describes an equivalence of the local algebras and indeed one
recovers eq. (1.22) when inserting eqs. (2.16) and (2.17).

2.1.3 Thermal states and the KMS condition

Considering that the modular operator associated to an algebra A preserves
the vacuum via eq. (2.8), as well as A itself in the sense of Tomita’s theo-
rem (2.13), it constitutes a symmetry in the sense of section 1.2.1. This is
remarkable, since the modular data is a purely algebraic entity and, as dis-
cussed in section 2.1.2, originates in the entanglement of a state with respect
to an algebra of observables. In the spirit of reducing properties of physical
models to first principles, it thus makes sense to ask if there are cases where
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the modular flow
σt(A) := ∆itA∆−it, A ∈ A (2.19)

recovers a known symmetry of the model.
To this end, consider a quantum system in a thermal state ωβ. As discussed

in section 1.2.1, we can take the global algebra of observables to be the set of
bounded operators on a Hilbert space H. Expectation values are generated by
tracing against the thermal density matrix ρβ via

ωβ(A) := Tr[ρβA], ρβ = e−βH
Tr[e−βH ] , A ∈ B(H), (2.20)

where the Hamiltonian H = H∗ ∈ B(H) is the generator of time translations.
Of course ρβ fails to be cyclic separating for B(H) as it is not even a vector
in H but rather an operator. To resolve this issue, you can use a construction
known as purification8 in the framework of quantum information theory. The
idea is that any operator H → H can equivalently be considered as an element
of H⊗H∗. Applying this reasoning to the operator √ρβ, you obtain a vector
ψβ ∈ H ⊗H∗ that satisfies

〈ψβ|(A⊗ 1)ψβ〉 = Tr[ρβA] = ωβ(A) = 〈ψβ|(1⊗ Aᵀ)ψβ〉, A ∈ B(H), (2.21)

as can be seen pictographically in fig. 2.3.

Figure 2.3: Tensor network diagram of the purification (2.21). The vector
ψβ ∈ H ⊗ H∗ yields the same expectation values as the den-
sity matrix ρβ on H. Furthermore, the actions of the operators
Atimes1 and 1 ⊗ Aᵀ are equivalent on ψβ. Contraction is again
denoted by dotted lines, while the dual pairing H ⊗H∗ → C is
given by a “bent” line.

By construction, the Schmidt numbers of ψβ coincide with the eigenvalues
of ρβ, which are non-zero because of eq. (2.20). This means that ψβ is cyclic
separating for the observable algebra A = B(H)⊗ 1 and its commutant A′ =
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1 ⊗ B(H). Note that we could equivalently have arrived at this situation by
means of the GNS construction, as discussed in Haag’s book.64
The discussion that lead to eq. (2.16) remains valid in this case and we find

∆ = ρβ ⊗ ρ−1
β = e−βH ⊗ eβH

for the modular operator associated to A and ψβ. As a result, the modular
flow

σt(A⊗ 1) = ∆it(A⊗ 1)∆−it = e−itβHAeitβH ⊗ 1, A ∈ B(H) (2.22)

coincides with a rescaled time evolution!
As will be discussed in section 2.2, even more physical symmetries can be

recovered from modular flow. At this point, however, I would like to highlight
an extremely important aspect of modular flows and eq. (2.22) in particular.
Assume again that we are in a setting where the modular operator is given

by eq. (2.16). For any operator in B ⊗ 1 ∈ A, we then have

σt(B ⊗ 1) = ∆it(B ⊗ 1)∆−it = ρit
VBρ

−it
V ⊗ 1 ∈ A.

This means that the correlation function

〈ψ|(A⊗ 1)σt(B ⊗ 1)ψ〉 = Tr[Aρit
VBρ

1−it
V ]

is analytic on the strip −1 < =(t) < 0. This is because, on this strip, both it
and 1− it have positive real part and as a result ‖ρit

V ‖, ‖ρ1−it
V ‖ < 1. Similarly,

the correlation function

〈ψ|σt(B ⊗ 1)(A⊗ 1)ψ〉 = Tr[ρ1+it
V Bρ−it

V A]

is analytic on the strip 0 < =(t) < 1 and the two are related by

〈ψ|σt+i(B ⊗ 1)(A⊗ 1)ψ〉 = 〈ψ|(A⊗ 1)σt(B ⊗ 1)ψ〉. (2.23)

Remarkably, this relation continues to hold for general modular flows,46,72
even in settings where a reduced density matrix does not exist. Explicitly,
for operators A,B ∈ A in a von-Neumann algebra A and a cyclic separating
vector Ω, we have that 〈Ω|Aσt(B)Ω〉 is analytic on −1 < =(t) < 0, while
〈Ω|σt(B)AΩ〉 is analytic on 0 < =(t) < 1 and both are related by

〈Ω|σt+i(B)AΩ〉 = 〈Ω|Aσt(B)Ω〉 (2.24)

In the context of QFT, this relation is known as the Kubo-Martin-Schwinger
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(KMS) condition.64,101 Its fundamental importance was first discovered in the
context of thermal states by Haag, Hugenholtz, and Winnink.102 The KMS
condition provides a neat characterisation of the modular flow, as stated by
Takesaki’s theorem:61,100 Let U(t) be any strongly continuous one-parameter
group onH preserving Ω. If σ̃t(B) := U(t)AU(t)∗ preserves A and has analytic
continuations satisfying eq. (2.24), then U(t) = ∆it.
Defining the modular correlation function by

Gt(A,B) :=

〈Ω|Aσt(B)Ω〉 for − 1 < =(t) < 0
〈Ω|σt(B)AΩ〉 for 0 < =(t) < 1,

(2.25)

you can use the KMS condition (2.24) to periodically extend Gt(A,B) to arbi-
trary non-integer imaginary parts. The resulting function might be discontinu-
ous along the real axis (hence at all integer imaginary parts of t), its behaviour
being linked to the expectation value of the commutator[

Gt−i0(A,B)−Gt+i0(A,B)
]

= 〈Ω|[A, σt(B)]Ω〉 (2.26)

for real t. A variant of this link will be of great use later on in sections 2.3
and 2.4.

2.2 Universal results for modular flow

2.2.1 The argument by Bisognano and Wichmann
In section 2.1.3, I already explained that time evolution of a physical system
is the same as modular flow of the thermal state. The key element of this
connection is that the thermal state encodes the structure of the Hamiltonian in
thermal correlations, which then show up as entanglement in the purification.
While this may seem trivial at first glance—going from e−βH to e−iβtH—the
construction of symmetries from entanglement is extremely powerful in the
context of QFT. An important example of how it works in non-thermal cases
is the celebrated Unruh effect.17,59 I will discuss it in the context of Tomita-
Takesaki theory, where it was discovered by Bisognano and Wichmann.38,76
While the result can be derived for an arbitrary Wightman QFT in any

number of dimensions, I will stick to a simple example for the sake of clarity:
Consider the vacuum state of a complex scalar field Φ in 1 + 1 dimensions.
We will derive the modular data of the algebra associated to the right Rindler
wedge

RRindler := {(x0, x1) ∈ R1,1|x1 > |x0|} = {(x+, x−) ∈ R1,1|x− < 0 < x+},
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where I switched to lightray coordinates x± = x0 ± x1, as shown in fig. 2.4.

Figure 2.4: Axes (dashed) of the lightray coordinate system x± = x0 ± x1.

Since modular flow has to preserveA(RRindler), it makes sense to ask whether
there is a geometric symmetry preserving RRindler and, indeed, there is one:
The Lorentz boost Λθ with rapidity θ transforms the lightray coordinates asx

+

x−

 Λθ7−→

eθ

e−θ


x

+

x−

 ,

hence, preserves the signs of x±. As in any QFT, elements (g, α) ∈ P of the
Poincaré group P = O(1, 1) n R1,1 have a unitary representation U(g, α) on
the vacuum Hilbert space H0 leaving the cyclic vector Ω0 invariant, i.e.,

U(g, α)Φ(x)U(g, α)∗ = Φ(gx+ α)Ω0 and U(g, α)Ω0 = Ω0.

The aim is to relate U(Λθ, 0) to the modular flow ∆iτ and we will achieve it by
working out some analyticity properties similar to those in section 2.1.3. First,
note that within the Poincaré group P, we have the commutation relation

(Λθ, 0)(0, x) = (0,Λθx)(Λθ, 0),

hence,

U(Λθ, 0)Φ(x)Ω0 = U(Λθ, 0)U(1, x)Φ(0)Ω0

= U(0,Λθx)U(Λθ, 0)Φ(0)Ω0

= U(0,Λθx)Φ(0)Ω0

= eieθx+P+eie−θx−P−Φ(0)Ω0, (2.27)

where P± are the generators of translations in the coordinate directions x±.
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Because of the spectrum condition, the spectrum of Pµ has to lie in the forward
light-cone, implying P± > 0. Now, since x− < 0 < x+ in RRindler, we can actu-
ally perform an analytic continuation of eq. (2.27) to =(e−θ) < 0 < =(eθ) > 0,
which translates to 0 < =(θ) < π. In particular, expressing

U(Λθ, 0) = eiθK

in terms of the boost generator K, we find

e−πKΦ(x)Ω0 = lim
θ→iπ

U(Λθ, 0)Φ(x)Ω0

= e−ix+P+eix−P−Φ(0)Ω0

= Φ(−x)Ω0.

Using the same reasoning, you can extend this result to arbitrary products of
the field operators, e.g., you can check that

U(Λθ, 0)Φ(x1)Φ(x2)Ω0 = U(Λθ, 0)U(1, x1)Φ(0)U(1, x1)∗U(1, x2)Φ(0)Ω0

= U(0,Λθx1)U(Λθ, 0)Φ(0)U(1, x1)∗U(1, x2)Φ(0)Ω0

= U(0,Λθx1)Φ(0)U(Λθ, 0)U(1, x2 − x1)Φ(0)Ω0

= eieθxµ1PµΦ(0)eieθ(xµ2−x
µ
1 )PµΦ(0)Ω0,

which again possesses an analytic continuation to 0 < =(θ) < π with

e−πKΦ(x1)Φ(x2)Ω0 = Φ(−x1)Φ(−x2)Ω0 = Φ(−x2)Φ(−x1)Ω0,

as long as x1, x2−x1 ∈ RRindler. The reordering on the right hand side is legal
due to Einstein causality, because xi have spacelike separation. By cyclicity of
Ω0, this shows that e−πK is well defined on a dense subset of H0 and allows to
define an operator Θ on a dense subset of H0 via

ΘAΩ0 := e−πKA∗Ω0 for every A = Φ(x1) · · ·Φ(xn) (2.28)

with x1, xi+1 − xi ∈ RRindler.

We can now show that this charge, parity, and time (CPT) reversing opera-
tion Θ is anti-unitary. To do this, first note that for each A of the above form
we have

ΘAΩ0 = ΘΦ(−x1)∗ · · ·Φ(−xn)∗Ω0 =: A′Ω0,

with A′ in the algebra of the left Rindler wedge. Also note that, for any
such A′, the vector valued function eiθKA′Ω0 admits an analytic continuation
to −π < =(θ) < 0, by the same argument as before, such that eπθK is well
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defined on the dense set of states of the form A′Ω0. As a result, we can compute

〈BΩ0|Θ∗ΘAΩ0〉 = 〈ΘAΩ0|ΘBΩ0〉
= 〈A′Ω0|e−πKB∗Ω0〉
= lim

θ→iπ
〈A′Ω0|eiθKB∗Ω0〉

= lim
θ→iπ
〈e−iθKA′Ω0|B∗Ω0〉

= 〈eπKe−πKA∗Ω0|B∗Ω0〉
= 〈BΩ0|AΩ0〉,

hence Θ is anti-unitary. This fact is known in QFT as the CPT theorem38,46,64

and, as shown here, it can be traced back to the entanglement of the vacuum
state.
Finally, anti-unitarity of Θ implies that we can rewrite eq. (2.28) as

SAΩ0 = A∗Ω0 = Θ∗e−πKAΩ0

which gives a polar decomposition of the Tomita operator S = J∆1/2 of
A(RRindler). Since such a decomposition is unique, we must have

∆it = e−2πitK = U(Λ−2πt, 0) and J = Θ∗ = Θ. (2.29)

Since the above argument does not depend on any details of the model, eqs. (2.28)
and (2.29) are valid for arbitrary Wightman QFTs. In fact, the only place
where we used that Φ is a scalar field, was back in eq. (2.27). If Φ had val-
ues in some finite dimensional representation of P, you would expect some
finite dimensional matrices in this equation, which would however not affect
the analyticity argument at all. Note the emphasis on finite dimensionality:
For fields in infinite dimensional P-representations such as large spin limits,
there is no guarantee that eqs. (2.28) and (2.29) are still valid, hence, there
might be no CPT theorem.64

2.2.2 Stronger results in conformal field theory

The idea of Bisognano and Wichmann hinges on using geometric symmetries to
construct the modular operator. This means that we can expect even stronger
results if we have more symmetry and so it is no surprise that, in a QFT with
conformal symmetry (conformal field theory, CFT), Hislop and Longo39 found
a general result for the modular flow of a double cone. To illustrate this, let
us again restrict to two dimensions. To match standard CFT notation, I will
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denote the lightray coordinates by

z = x+ and z̄ = x−. (2.30)

As we saw before, z, z̄ transform independently, so we can first restrict to z and
deal with z̄ later. We consider the algebra associated to the interval z ∈ [a, b].
To derive the modular flow, we will proceed as follows: First, we map [a, b] to
[0,∞] via symmetry transformations. Since [0,∞] is the z component of the
right Rindler wedge, we can employ the Bisognano-Wichmann result (2.29).
Finally, we use symmetry transformations to map back to the interval [a, b].
To this end let us first recall that the symmetry group of a CFT on a lightray

is given by the projective special linear group

PSL(2,R) := {g ∈ R2×2| det g = 1}
/
{1,−1}, (2.31)

acting on the coordinates via Möbius transformations, which amounts to the
group action α β

γ δ

 . z = αz + β

γz + δ
. (2.32)

In generalisation of the covariance axiom from section 1.2.2, this group has a
strongly continuous unitary representation on the Hilbert space of the CFT,
such that

U(g)O(z)U †(g) =
[
(g . z)′

]h
O(g . z) = (γz + δ)−2hO

(
αz + β

γz + δ

)
(2.33)

for any primary field O of scaling dimension h. It is instructive to check that
eqs. (2.32) and (2.33) indeed give a group action and group representation.
Having discussed the general structure, we can now map [a, b] to [0,∞] in

three simple steps

[a, b] translation−−−−−−→ [a− b, 0] inversion−−−−−→ [1/(b− a),∞] translation−−−−−−→ [0,∞]. (2.34)

The fist step, a translation by −b, is given by the action of the PSL(2,R)
element 1 −b

0 1

 , since

1 −b

0 1

 . z = 1z − b
0z + 1 = z − b.

Proceeding similarly for the other steps and multiplying the corresponding
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group elements, we find that

I :=

1 −1/(b− a)

0 1


0 −1

1 0


1 −b

0 1

 =

−1/(b− a) a/(b− a)

1 −b

 .

indeed maps the interval [a, b] to the half line [0,∞].

Now, from eq. (2.29), we already know that modular flow on [0,∞] im-
plements the symmetry transformation z 7→ e−2πtz, which coincides with the
action of the PSL(2,R) elemente−πt 0

0 eπt

 , because

e−πt 0

0 eπt

 . z = e−πtz + 0
0z + eπt = e−2πtz.

Putting it all together, we find that modular flow on [a, b] has to implement
the PSL(2,R) element

I−1

e−πt 0

0 eπt

 I = eπt
b− a

be
−2πt − a ab(1− e−2πt)

e−2πt − 1 b− ae−2πt

 .

Finally, you can plug this into eqs. (2.32) and (2.33) to find the Hislop-Longo
result22,39,64,103

∆itO(z)∆−it =
[eπt(b− z) + e−πt(z − a)

b− a

]−2h

×O
(e2πta(b− z) + b(z − a)

e2πt(b− z) + (z − a)

)
. (2.35)

Again, to obtain the modular conjugation J , first consider the analytic con-
tinuation

∆1/2O(z)Ω0 = lim
t→−i/2

∆itO(z)Ω0

=
[
−
(2z − (a+ b)

b− a

)2
]−h
O
(
z(a+ b)− 2ab
2z − (a+ b)

)
Ω0.
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Combining this with

∆1/2O(z)Ω0 = JJ∆1/2O(z)Ω0 = JO∗(z)JΩ0,

you then find the CFT generalisation of the CPT theorem

JO(z)J =
[
−
(2z − (a+ b)

b− a

)2
]−h
O∗
(
z(a+ b)− 2ab
2z − (a+ b)

)
. (2.36)

It is instructive to show from this that J is indeed an involution.
We can now recover the second variable z̄ by replacing all quantities by their

barred siblings, i.e., the total modular flow is given by

∆itO(z, z̄)∆−it =
[eπt(b− z) + e−πt(z − a)

b− a

]−2h

×
[eπt(b̄− z̄) + e−πt(z̄ − ā)

b̄− ā

]−2h̄

×O
(e2πta(b− z) + b(z − a)

e2πt(b− z) + (z − a) ,
e2πtā(b̄− z̄) + b̄(z̄ − ā)
e2πt(b̄− z̄) + (z̄ − ā)

)
.

It is, however, important to keep in mind that [a, b] is the projection of a
double cone to the z axis, while [ā, b̄] is its projection to the z̄ axis, as pictured
in fig. 2.5. In particular, we always require that a < b and ā < b̄, such that
the ∞ in eq. (2.34) is positive.

Figure 2.5: A double cone (grey) and its projections to the lightray coor-
dinate axes (solid dark blue). Our convention for the order of
boundary points is a < b and ā < b̄.

As an example, consider the unit double cone, whose left and right corners
are located at x1

L/R = ∓1, x0
L/R = 0. The top and bottom corners are then
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given by x1
T/B = 0, x0

T/B = ±1, so that

a = x+
L = −1, b = x+

T = 1, ā = x−R = −1, b̄ = x−T = 1.

Modular flow then transports an operator initially localised at (z, z̄) along the
trajectory

(
z(t), z̄(t)

)
=
(
z cosh πt− sinh πt
cosh πt− z sinh πt,

z̄ cosh πt− sinh πt
cosh πt− z̄ sinh πt

)
.

A plot of this trajectory in coordinates x0, x1 for various initial locations is
given in fig. 2.6. You can see that modular flow approaches xT in the limit
t → −∞ and xB in the limit t → ∞. It never leaves the unit double cone, in
accordance with Tomita’s theorem (2.13).

Figure 2.6: Trajectories (solid dark blue) of the modular flow (2.35) in stan-
dard coordinates for the unit double cone (light grey).

2.3 A framework for free fermion entanglement
In the previous section, we discussed vacuum modular flows of wedge and dou-
ble cone geometries, which were universally given by eqs. (2.29) and (2.35) for
any QFT and CFT, respectively. The aim of this section is to show how to
extend these results to thermal states and different geometries in theories of
free fermions. The reason why this is possible is because the thermal and vac-
uum state of a free theory are gaussian, which means that it is characterised
by a functional kernel. As I will show in the following, computations of entan-
glement entropy, modular flow, the modular correlation function, and many
others can be expressed in terms of this kernel only. This fact was initially
discovered by Araki104 but it was only made accessible to the general physics
audience 30 years later by Peschel.105,106 The first analytic results were pre-
sented by Casini and Huerta107 and subsequently generalised by a small group
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of people, including myself.41,42,108–114 By now, after finishing the presentation
of the method,43 I feel like the case of free massless fermions in two dimensions
(without boundaries) can be considered completely solved.

To explain the general procedure, consider a free fermion ψ in d+ 1 dimen-
sions. For the sake of simplicity, we shall assume that the d spacial directions
are compact. Assume now a generic quadratic Hamiltonian operator

H :=
∫

ddx ddy ψ∗(x)h(x, y)ψ(y), (2.37)

where h(x, y) = h(y, x) is some kernel which is hermitian to ensure self-
adjointness of H. Since h is hermitian, there is some orthonormal basis of
eigenfunctions fk and eigenenergies ωk such that∫

ddx fk(x)fk′(x) = δk−k′ ,
∑
k

fk(x)fk(y) = δ(x− y), and∫
ddy h(x, y)fk(y) = ωkfk(x).

Here, the discreteness of the sum in the second equation is a result of com-
pactness. Note that the last equality is equivalent to the eigendecomposition

h(x, y) =
∑
k

ωkfk(x)fk(y). (2.38)

The above implies that

ψ(x) =
∫

ddy δ(x− y)ψ(y) =
∑
k

∫
ddy fk(x)fk(y)ψ(y) =

∑
k

fk(x)ck

with
ck :=

∫
ddy fk(y)ψ(y),

such that

H =
∑
k,k′

c∗kck′
∫

ddx ddy fk(x)h(x, y)fk′(y) =
∑
k

ωkc
∗
kck. (2.39)

Since the terms in this series commute among each other, this allows to expo-
nentiate H to obtain

e−H =
∏
k

e−ωkc∗kck =
∏
k

[
1 + (e−ωk − 1)c∗kck

]
=
∏
k

[
ckc
∗
k + e−ωkc∗kck

]
.
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Here, the last equality is a result of the canonical anti-commutation relations

{ck, c∗k′} := ckc
∗
k′ + c∗k′ck = δk−k′ . (2.40)

Again, since the terms c∗kck commute among another, we can assume that they
act on individual Hilbert spaces Hk, i.e., the total Hilbert space H has the
form H = ⊗

kHk. In particular, to achieve an irreducible representation of
eq. (2.40), each Hk can be taken to be two dimensional, carrying eigenvalues 0
and 1 of c∗kck. As a result, we can define a trace on H and obtain the thermal
state

e−H
Tr[e−H ] =

∏
k

[ 1
1 + e−ωk ckc

∗
k + e−ωk

1 + e−ωk c
∗
kck

]
. (2.41)

Finally, you can compute the propagator G in this state via

G(x, y) = Tr[e−Hψ(x)ψ∗(y)]
Tr[e−H ]

=
∑
k,k′

fk(x)fk′(y)Tr[e−Hckc∗k′ ]
Tr[e−H ]

=
∑
k,k′

fk(x)fk′(y)δk−k′
1

1 + e−ωk

=
∑
k

1
1 + e−ωk fk(x)fk(y).

Compare this with eq. (2.38) to see that G and h have the same eigenfunctions
and their eigenvalues are related by

ωk ↔
1

1 + e−ωk ,

which means that the same relation also must hold on the level of operators,
i.e.,

G = 1
1 + e−h , (2.42)

where the functional dependence has to be defined in terms of convergent
power series or some functional calculus, such as the one introduced in the
next subsection.

Now, going back to entanglement, we essentially reverse the above argument.
Consider a fermionic theory in d dimensions and a gaussian state, given by
the density matrix ρ. By Wick’s theorem,74 the gaussian state ρ is entirely
characterised by its propagator on a Cauchy slice. Now pick a (compact)
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subregion V of this Cauchy slice and consider the algebra of observables

A(V ) := {
∫
V

ddx f(x)ψ(x) : f test functions on V }′′ (2.43)

associated to it. As in section 2.1.1, we have to take a bi-commutant—denoted
by the double prime—in order to obtain a von-Neumann algebra. The assign-
ment V 7→ A(V ) satisfies all the axioms of a Haag-Kastler net in the sense
of section 1.2.2, we only have to generalise the axiom of Einstein causality to
mean graded commutativity of spacially separated regions. While V is only
defined as a subset of the chosen Cauchy slice, we can luckily identify A(V )
with the algebra localised on the minimal union R of double cones that cover
V , as sketched in fig. 2.7. This is possible because a field localised anywhere
inside R may be evolved in time until it is localised entirely inside V .

Figure 2.7: A Cauchy slice (dashed black) with subregion V (solid dark blue).
The region V can be covered by a minimal union R of double
cones (light grey), whose corresponding local algebra we denote
by A(V ).

We are now interested in the modular data of A(V ) with respect to ρ. To
obtain it, we will assume that a reduced density matrix ρV exists, instead of
working with analyticity arguments as in section 2.2.1. If you are worried that
this may not be a justified assumption, I would like to refer you to the rigorous
paper by Hollands,112 where some of the following computations were indeed
derived from the basic axioms of AQFT.
So, if a reduced density matrix ρV exists, what can we say about it? Cer-

tainly, it should be expressible as an element of the local algebra A(V ) and it
should yield the same expectation values for algebra elements as the original
state ρ, i.e.,

Tr[ρVA] = Tr[ρA] for all A ∈ A(V ). (2.44)
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This implies that ρV is gaussian, since ρ is gaussian. We can thus write

ρV = e−K
Tr[e−K ] with K =

∫
V

ddx ddy ψ∗(x)k(x, y)ψ(y) (2.45)

for some hermitian kernel k, where the integration is performed only over V ,
as ρV ∈ A(V ). In addition, inserting A = ψ(x)ψ∗(y) for x, y ∈ V in eq. (2.44),
you see that

Tr[ρV ψ(x)ψ∗(y)] = Tr[ρψ(x)ψ∗(y)] = G|V (x, y),

where the right hand side is the restriction of the propagator G to V . However,
as we saw earlier in eq. (2.42), this already implies that105

k = − log(G|−1
V − 1) = − log

[1−G|V
G|V

]
, (2.46)

which is a formula for the reduced density matrix in terms of the restricted
propagator. This formula is at the heart of modular theory for free fermions.104
In fact, because of eq. (2.16), we could say that the reduced density matrix ρV
and the modular operator ∆ coincide inside V . In this sense, K is actually the
(negative) logarithm of the modular operator and we will call it the modular
Hamiltonian from hereon.

We can now do additional computations in the same way: The modular
flow (2.19) is given by

σt(ψ∗(x)) = ∆itψ∗(x)∆−it

= ρit
V ψ
∗(x)ρ−it

V

= e−itKψ∗(x)eitK

= e−it[K,−]ψ∗(x)

= ψ∗(x) + (−it)1

1! [K,ψ∗(x)] + (−it)2

2! [K, [K,ψ∗(x)]] + . . .

and since

[K,ψ∗(x)] =
∫
V

ddy ddz k(y, z)[ψ∗(y)ψ(z), ψ∗(x)]

=
∫
V

ddy ddz k(y, z)
(
− {ψ∗(x), ψ∗(y)}ψ(z) + ψ∗(y){ψ∗(x), ψ(z)}

)
=
∫
V

ddy ψ∗(y)k(y, x),
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this yields

σt(ψ∗(x)) =
∫
V

ddy ψ∗(y)Σt(y, x) with Σt = e−itk =
[1−G|V

G|V

]it
. (2.47)

As a direct consequence, the kernel of the modular Hamiltonian can be recov-
ered from Σt via

k = i d
dtΣt

∣∣∣∣
t=0
. (2.48)

Furthermore, for the modular correlation function (2.25) of two fields, we find

Gt(x, y) := Tr
[
ρV ψ(x)σt

(
ψ∗(y)

)]
=
∫
V

ddz Tr[ρV ψ(x)ψ∗(z)]Σt(z, y)

=
∫
V

ddz G(x, z)Σt(z, y)

=
(
G|V

[1−G|V
G|V

]it)
(x, y). (2.49)

As far as I know, this formula as well as eq. (2.47), were first introduced by
our group at Würzburg.43

An observation that was also presented in our paper43 is the following: Some-
times it might be easier to compute the modular correlation function eq. (2.49)
than the modular flow of the fields eq. (2.47). In such a case, or also just as a
sanity check of results, you can use the following graded variant of eq. (2.26):
For fermionic fields, the analytic continuation of the modular correlation func-
tion is actually defined via112

Gt(x, y) :=

〈Ω|ψ(x)σt(ψ∗(y))Ω〉 for − 1 < =(t) < 0
−〈Ω|σt(ψ∗(y))ψ(x)Ω〉 for 0 < =(t) < 1.

(2.50)

Note the peculiar negative sign in the second case, which yields, in analogy to
eq. (2.26),

Gt−i0(x, y)−Gt+i0(x, y)
= Tr

[
ρV {ψ(x), σt(ψ(y))}

]
=
∫
V

ddzΣt(z, y) Tr
[
ρV {ψ(x), ψ∗(z)}

]
= Σt(x, y), (2.51)

which gives a direct way for retrieving Σt from the modular correlation func-
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tion.
Entanglement entropy (1.17) and entanglement Rényi entropy (1.19) can be

computed similarly to the above: From eq. (2.41), we know that the reduced
density matrix takes the form

ρV =
∏
k

[
gkckc

∗
k + (1− gk)c∗kck

]
,

where gk are the eigenvalues of G|V . With regards to entanglement Rényi
entropy, this means that

Tr[ραV ] =
∏
k

Tr
[
gαk ckc

∗
k + (1− gαk )c∗kck

]
=
∏
k

[
gαk + (1− gk)α

]
,

hence

log Tr[ραV ] =
∑
k

log
[
gαk + (1− gk)α

]
= Tr log

[
G|αV + (1−G|V )α

]
.

It is important to keep in mind that the trace on the right hand side is a
trace of a distributional kernel, while the trace on the left hand side is a trace
on the Hilbert space of the theory. Plugging this into the formula (1.19) for
entanglement Rényi entropy, you obtain

Sα = 1
1− α Tr log

[
G|αV + (1−G|V )α

]
. (2.52)

As a result of this and eq. (1.20), you also find that entanglement entropy is
given by106,107

SEE = −Tr log
[
G|V logG|V + (1−G|V ) log(1−G|V )

]
. (2.53)

This concludes the derivation of the most important formulae for free fermion
entanglement. For later convenience, they are summarised in table 2.1.
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Table 2.1: Functional formulae for deriving entanglement data of free
fermions from the restricted propagator G = G|V for later ref-
erence, along with their locations in the main text to find their
derivation.

Formula Location

σt(ψ∗(x)) =
∫
V ddy ψ∗(y)Σt(y, x), Σt = [(1−G)/G)]it (2.47)

Gt(x, y) =
(
G[(1−G)/G]it

)
(x, y) (2.49)

k = − log[(1−G)/G)] (2.46)

Sα = 1
1−α Tr log

[
Gα + (1−G)α

]
(2.52)

SEE = −Tr log
[
G logG+ (1−G) log(1−G)

]
(2.53)



2.3 A framework for free fermion entanglement 41

2.3.1 Resolvent method
So far, we have seen in eqs. (2.46), (2.49), (2.52) and (2.53), that the entangle-
ment structure of free fermions can be recovered in functional dependence from
the restricted propagator G|V . The next question is now, how these equations
can be evaluated: How do you actually compute arbitrary functions f(G|V ) of
the propagator G|V and how are these even defined? To this end, one has to
introduce some notion of functional calculus.115
The easiest way to do this is by the functional generalisation of Cauchy’s in-

tegral formula. To this end, note first that eq. (2.42) implies that the spectrum
of G and G|V are contained in the open unit interval (0, 1). For any complex
function f that is analytic on this interval, we therefore have115

f(G|V ) = 1
2πi lim

ε↘0

∮
[ε,1−ε]	

dλ f(λ)
λ−G|V

, (2.54)

where [ε, 1 − ε]	 denotes a contour that wraps tightly around the interval
[ε, 1− ε] in a counter-clockwise manner. In the limit ε↘ 0, the above contour
encircles all points in the open unit interval (0, 1). The points λ = 0, 1 are never
contained, which makes sense since eq. (2.42) tells us that they correspond to
infinite eigenenergies of the kernel of the modular Hamiltonian. Typically in
QFT, you want to avoid such points, which is exactly what the ε in eq. (2.54)
is for. This reduces the computation of f(G|V ) to finding the resolvent 1/(λ−
G|V ) and performing a complex integral.

Figure 2.8: Contour of integration (dashed black) in eq. (2.54), wrapping
around the interval [ε, 1 − ε] (solid dark blue). As pictured, it
can be decomposed into circular and horizontal contributions,
the latter of which lead to the spectral calculus (2.55).

As sketched in fig. 2.8, the above contour can be decomposed into four pieces:
two portions running along the interval just above and below the real axis, as
well as two circles around the endpoints ε, 1 − ε. Let us assume now that
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G|V has continuous spectrum (this will be the case for all propagators that we
consider). This implies that 1/(λ−G|V ) has no poles of order ≥ 1 inside the
open interval (0, 1), hence, you immediately see that the contribution from the
circular pieces of the contour vanishes.41,43 In this case, eq. (2.54) reduces to

f(G|V ) = 1
2πi

∫ 1

0
dλ f(λ)

[ 1
λ− i0−G|V

− 1
λ+ i0−G|V

]
, (2.55)

where the ±i0-terms denote that the integral is performed as the (weak) limit

lim
ε↘0

∫ 1

0
dλ f(λ)

[ 1
λ− iε−G|V

− 1
λ+ iε−G|V

]
.

Considering now the spectral calculus115

f(G|V ) =
∫

[0,1]
dEλ f(λ) =

∫ 1

0
dλ dEλ

dλ f(λ) (2.56)

of G|V with the corresponding spectral measure Eλ originating in the spectral
decomposition

G|V =
∫

[0,1]
dEλ λ,

you see that eq. (2.55) allows to express the Radón-Nikodym derivative116 of
Eλ by

dEλ
dλ = 1

2πi

[ 1
λ− i0−G|V

− 1
λ+ i0−G|V

]
. (2.57)

In particular, if you are interested in computing the trace of a function of
G|V , as in eqs. (2.52) and (2.53), you can write

Tr[f(G|V )] =
∫ 1

0
dλ Tr

[dEλ
dλ

]
f(λ) (2.58)

and the trace only has to be performed on the (derivative of the) spectral
measure. This is very useful since this trace is done by a separate integration
over V via107

Tr
[dEλ

dλ

]
=
∫
V

dx lim
y→x

dEλ(x, y)
dλ . (2.59)

As stated before, the problem of evaluating arbitrary functions of the re-
stricted propagator is now reduced to finding the resolvent and a (generally
non-trivial) complex integration. So how to find the resolvent 1/(λ − G|V )?
As it turns out, this problem can again be reduced to a well understood one
in the following way: By its very definition, the resolvent has to satisfy the
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functional equation
(λ−G|V ) 1

λ−G|V
= 1.

You can now insert the ansatz

1
λ−G|V

= 1
λ

+ Fλ
λ2 (2.60)

with some kernel Fλ to find the functional equation41,109

−G|V + Fλ −
1
λ
G|V Fλ = 0.

Since multiplication in this equation is actually given by integration of the free
variables, this translates to the integral equation41,107

−G(x, y) + Fλ(x, y)− 1
λ

∫
V

ddz G(x, z)Fλ(z, y) = 0 for x, y ∈ V. (2.61)

Remarkably, all of this subsection is valid for fairly general fermionic theories
– the only requirement being that the state under consideration is gaussian.
In particular, eq. (2.61) yields the correct resolvent in arbitrary dimensions, as
well as for massive theories. However, and this is the bad news, eq. (2.61) has
been solved analytically only for massless theories in two dimensions, because
there the specific form of the propagator G allows to use complex analysis
methods,117 as will be discussed in section 2.4.1.

2.3.2 Deriving the propagator

As already stated in the previous subsection, from now on, we will restrict to
massless fermions in two dimensions in order to be able to solve the integral
equation (2.61). I would like to begin this discussion at its very start: The
quantisation of the Dirac field. To this end, consider the Dirac action

S[ψ, ψ̄] :=
∫

d2xL with L = iψ̄γµ∂µψ, (2.62)

where the Dirac adjoint is given by ψ̄ = ψ∗γ0 and the Dirac matrices γµ have
to satisfy

{γµ, γν} = 2ηµν .

As before, I am using the convention of mostly negative signature (ηµν) =
diag(1,−1), even though this term does not make much sense in two dimen-
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sions. A possible real-valued choice for the γµ is

γ0 = σx =

 1

1

 and γ1 = iσy =

 1

−1

 . (2.63)

To derive the Hamiltonian corresponding to eq. (2.62), first note that

∂L
∂∂0ψ

= iψ̄γ0 = iψ∗,

hence

H = iψ∗∂0ψ − L = −iψ∗γ0γ1∂1ψ =

ψ+

ψ−


∗ i∂1

−i∂1


ψ+

ψ−

 .

This means that

H = H+ +H− with H± = ±
∫

dx iψ∗±(x)∂xψ±(x), (2.64)

so that the equations of motion are

∂tψ± = ∂H±
∂(iψ∗±) = ±∂xψ±

or, equivalently,
∂∓ψ± = 1

2(∂0 ∓ ∂1)ψ± = 0 (2.65)

in terms of the lightray coordinates x± = x0±x1. As a result, ψ± is a function
of x± only and we can rewrite

H± = ±
∫

dx± iψ∗±(∂+ − ∂−)ψ± =
∫

dx± iψ∗±∂±ψ± :, (2.66)

such that H± are formally identical. In this setting H± generate translations
along the lightray coordinates x±. Furthermore, since H± commute, they can
be quantised individually and the quantum theory consists of two identical
copies of a single one dimensional theory, the two so-called chiralities. From
now on, I will drop the ± and deal with just one of the two chiralities. The
full result can be restored later on in the same way as discussed at the end of
section 2.2.2.
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We are now ready to derive the propagator for different geometries. Let us
begin with the propagator on the real line x(±) ∈ R at inverse temperature
β > 0. It can be derived from eq. (2.42) as

G = 1
1 + e−iβ∂ (2.67)

but of course, the right hand side looks rather cryptic. To evaluate it, we use
the following Fourier technique: Since

δ(x− y) = 1
2π

∫
R

dk e−ik(x−y),

we have

G(x, y) = 1
2π

∫
R

dk
∫
R

dz G(x, z)e−ik(z−y)

= 1
2π

∫
R

dk
∫
R

dz 1
1 + e−iβ∂ (x, z)e−ik(z−y)

= 1
2π

∫
R

dk 1
1 + e−iβ(−ik) e−ik(x−y)

= 1
2π

∫
R

dk e−ik(x−y)

1 + e−βk . (2.68)

Note that
G(x, y) = G(x− y) (2.69)

is translationally invariant, as was to be expected since G is a function of ∂
via eq. (2.67). Note also that the integral in eq. (2.68) converges absolutely
for −β < =(x − y) < 0 and thus yields an analytic function on this strip, as
already implied from the KMS condition (2.24).
Now, before evaluating eq. (2.68) for general β, first consider the low tem-

perature limit β → ∞. In this limit the integrand vanishes for negative k
due to the e−βk in the denominator. For positive k, the denominator becomes
unity and we find the vacuum propagator on the line

G(z) = 1
2π

∫ ∞
0

dk e−ikz = 1
2π

e−ikz

−iz

∣∣∣∣k→∞
k=0

= 1
2πiz . (2.70)

For the case of finite temperature in eq. (2.68), first change variables to
s = e−βk with ds/s = −βdk to find

G(z) = 1
2πβ

∫ ∞
0

ds
s

ziz/β

1 + s
.
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This can be related to the contour integral

I = 1
2πβ

∮
Γ

ds
s

(−s)iz/β

1 + s

along the Hankel contour Γ as shown in fig. 2.9.

Figure 2.9: Hankel contour Γ (dashed black), encircling all of the complex
plane except for the origin and the positive real axis R+ (solid
dark blue). This contour is particularly useful for evaluating
integrals whose integrand possesses a multiplicative branch cut
along R+, as explained in the main text.

You can decompose Γ into four pieces: One just above and one just below
the real axis, as well as circular contributions around the origin and at infinity.
The contribution at the origin s→ 0 vanishes, since the integrand behaves as
∼ s−1−=(z)/β and we always have =(z) < 0 by assumption. Similarly, the con-
tribution at infinity |s| → ∞ vanishes as well, because the integrand behaves
as ∼ |s|−2−=(z)/β and we have −β < =(z) by assumption. You thus find

I = 1
2πβ

∫ ∞
0

ds
s(1 + s)

[
(−s+ i0)iz/β − (−s− i0)iz/β

]
= 1

2πβ

∫ ∞
0

ds
s(1 + s)s

iz/β
[
e−πz/β − eπz/β

]
= −2 sinh πz

β
×G(z),

On the other hand, I can be evaluated via the residue theorem for the interior
of the Hankel contour. As a result,

I = − 1
2πβ 2πi lim

s→−1

(−s)iz/β

s
= − 1

iβ
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and, hence,118

G(z) = 1
2iβ sinh πz/β . (2.71)

Note that eq. (2.71) looks like eq. (2.70) for |z| � β, in the sense that

1
2iβ sinh πz/β = 1

2πiz +O(1) as |z|/β → 0.

This is a general feature of CFTs:118 For very small |z|, we approach the
ultraviolet (UV) fixed point of the theory, where any scale such as β is infinite.
In fact, we could have used this reasoning to arrive at eq. (2.71) in an entirely
different way: At finite temperature, G(z) has to be analytic on the strip
−β < =(z) < 0 and satisfy

G(z) = −G(z − iβ) (2.72)

due to the KMS condition (2.24). Near the real axis, we can employ eq. (2.51),
where translation in t equals translation in z = x− y because modular flow of
the thermal state coincides with e−itβH . Since Σ0(x, y) = 0 except at x−y = 0,
we find that G(z) is continuous, hence, analytic by the Schwarz reflection
principle,116 except at z = 0. Finally, as seen above, G(z) ∼ 1/2πiz near z = 0.
This puts enough restrictions on G to uniquely fix it due to the Riemann-Roch
theorem,119 which is basically a statement about the uniqueness of solutions
of the Cauchy-Riemann differential equations. Since 1/2iβ sinh(πz/β) satisfies
these restrictions, it has to coincide with G(z) due to uniqueness.

Let us now proceed to the propagator on the circle x(±) ∈ [0, 1] at inverse
temperature β. Since we are dealing with fermions, only even powers of the
field operators have to be periodic on the circle. As a result, the fermion field
could be periodic (P) or antiperiodic (A), i.e,

ψ(x+ 1) = ±ψ(x). (2.73)

Historically these two spin structures are known as the Ramond (P) and Neveu-
Schwarz (A) sectors of the free fermion CFT.118 Note also that we restrict to
a circle circumference of 1. This, however, does not limit generality, as we
are dealing with a CFT and a different circumference can be recovered by a
scale transformation. For the propagator G, eq. (2.73) implies (anti-)periodic
behaviour in both arguments. This means that we can obtain it from eq. (2.67)
by another Fourier method: Note that on the unit interval [0, 1], the (anti-
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)periodic Dirac distributions are given by82

δP(x− y) =
∑
k∈Z

e−2πik(x−y) and δA(x− y) =
∑

k∈Z+1/2
e−2πik(x−y).

This implies that

G(x, y) =
∑
k

∫ 1

0
dz G(x, z)e−2πik(z−y)

=
∑
k

∫ 1

0
dz 1

1 + e−iβ∂ (x, z)e−2πik(z−y)

=
∑
k

e−2πik(x−y)

1 + e−2πβk , (2.74)

where the sum runs over Z (Z+1/2) in the periodic (anti-periodic) case and you
see that translational invariance (2.69) sill holds. Also, as you can easily check,
the above series are absolutely convergent on the strip −β < =(x− y) < 0, in
accordance with the KMS condition (2.24).

Again, let us first have a look at the limit β → ∞ of low temperature. In
this case we obtain

GP(z) = 1
2 +

∞∑
k=1

e−2πikz and GA(z) =
∞∑

k=1/2
e−2πikz, (2.75)

where the first term in GP arises for k = 0. These series converge absolutely
for =(z) < 0 and evaluate to118

GP(z) = 1
2i cot πz and (2.76)

GA(z) = 1
2i csc πz, (2.77)

respectively. There are two ways to see why this is the case: First, similarly
to the case of eq. (2.71), GP/A has the correct UV behaviour ∼ 1/2πiz, the
required analyticity, and the correct periodicity. It is thus the unique solution
of eq. (2.75) because of the Riemann-Roch theorem. Second and more directly,
one can compute the Fourier series of GP/A and verify that it coincides with
eq. (2.75). Let us do this exercise explicitly for GA. Because of anti-periodicity,
there has to be a Fourier decomposition of the type

1
2i cscπz =

∑
k∈Z+1/2

gke−2πikz,
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with Fourier coefficients gk. Note that we require this representation to be valid
for z in the lower half plane. I will make this explicit by replacing z → z − iε
for some small ε > 0 that will be sent to 0 in the end of the computation. The
Fourier coefficients are then given by

gk =
∫ 1

0
dz e2πikz 1

2i csc π(z − iε) =
∫ 1

0
dz e(2k−1)πikz

1− e−2πiz + ε
,

where the second step is valid since ε is very small. Change variables to
w = e−2πiz with dw/w = −2πidz to find

gk = 1
2πi

∮
|w|=1

dw
w(2k+1)/2

1
1 + ε− w

.

Note that (2k+ 1)/2 ∈ Z, hence the integrand is analytic and the integral can
be evaluated via residues. Since the pole at w = 1 + ε is outside of the contour
|w| = 1, you only have to deal with the pole at w = 0. As a result, you find
that gk = 0 for negative k, since then there is no pole at all. For positive k,
Cauchy’s integral formula yields

gk = 1
[(2k − 1)/2]!

d(2k−1)/2

dw(2k−1)/2
1

1− w

∣∣∣∣
w=0

,

where I already sent ε→ 0, since it is not necessary anymore. To compute the
higher derivatives, you can use the fact that

1
1− w =

∞∑
k=0

wk

is a geometric series, hence

gk =

1 for k > 0
0 for k < 0,

which validates the equality of eqs. (2.75) and (2.77) for the anti-periodic case.
The periodic case is entirely analogous and I will omit it here.

Finally, we can proceed to the evaluation of eq. (2.74) for finite inverse
temperature β. Again, I will state the solution first and verify it afterwards.
Before doing so, however, note that eqs. (2.72) and (2.73) imply that G will be
(anti-)periodic both in imaginary and real direction. This makes it necessary
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to introduce the Jacobi theta function120

ϑ3(z|τ) :=
∑
k∈Z

eiπk2τe2πikz. (2.78)

This series converges absolutely and is analytic for =(τ) > 0 and z ∈ C. We
will usually set τ = iβ and think of eq. (2.78) as defining an entire function in
z. Please note that ϑ3 is periodic with respect to z → z + 1 by construction.
Furthermore, you can show that

ϑ3(z + τ |τ) =
∑
k∈Z

eiπ(k2+2k)τe2πikz = e−iπτe−2πizϑ3(z|τ)

by completing the square. Introducing in addition the auxiliary theta func-
tions120

ϑ4(z|τ) := ϑ3(z + 1/2|τ) (2.79)
ϑ2(z|τ) := eiπτ/4eiπzϑ3(z + τ/2|τ) (2.80)
ϑ1(z|τ) := −ieiπτ/4eiπzϑ3(z + 1/2 + τ/2|τ), (2.81)

you have

ϑν(z + 1|τ) = ±ϑν(z|τ) and ϑν(z + τ |τ) = (±)′e−iπτe−2πizϑν(z|τ), (2.82)

where the signs depend on ν = 1, 2, 3, 4 and should be obvious from eqs. (2.79)
to (2.81). In particular, you can easily verify that

GP/A(z) ∝ ϑ2/3(z|iβ)
ϑ1(z|iβ) (2.83)

satisfies

GP/A(z + 1) = ±GP/A(z) and GP/A(z + iβ) = −GP/A(z), (2.84)

hence, has the correct (anti-)periodicities to solve eq. (2.74). Furthermore, the
analyticity of ϑν implies that GP/A is also analytic, except at points where the
denominator ϑ1 vanishes.

We will now show that this only happens for z ∈ Z, yielding a simple pole
at z = 0 and integer translates by (anti-)periodicity. To see why this is the
case, make use of the Jacobi triple product120,121

ϑ3(z|τ) =
∞∏
k=1

(1− e2πikτ )(1 + e(2k−1)πiτe2πiz)(1 + e(2k−1)πiτe−2πiz), (2.85)
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which is a corollary of Euler’s pentagonal number theorem.122 As a result of
eq. (2.85), we have

ϑ1(z|τ) = −ieiπτ/4eiπz
∞∏
k=1

(1− e2πikτ )(1− e2πikτe2πiz)(1− e2πi(k−1)τe−2πiz).

In the fundamental domain of the periodicities (2.84), this product only van-
ishes at z = 0, as you can see from the last factor for k = 1. Furthermore, you
can compute

∂ϑ1(z|τ)
∂z

∣∣∣∣
z=0

= 2π
[
eiπτ/12

∞∏
k=1

(1− e2πikτ )
]3

= 2πη3(τ),

where I introduced the Dedekind eta function121,122

η(τ) := eiπτ/12
∞∏
k=1

(1− e2πikτ ). (2.86)

As a result, we can fix the factor of proportionality in eq. (2.83) can be fixed
to118

GP/A(z) = η3(iβ)
iϑ1(z|iβ)

ϑ2/3(z|iβ)
ϑ2/3(0|iβ) (2.87)

in order to normalise the UV pole to 1/2πiz. Again, eq. (2.87) is uniquely
fixed by the Riemann-Roch theorem, but you can also verify explicitly that its
Fourier series is given by eq. (2.74). I will only sketch this computation for GA
here. The details were worked out in collaboration with Christine Bott and
can be found in her Bachelor’s thesis.123 First off, note that eqs. (2.78), (2.81)
and (2.87) imply that GA is actually a function of w = eiπz. Furthermore,
because of the pole 1/2πiz at z = 0, you can see that

GA(z) = 1
w − w−1 + gA(w),

where gA is an odd meromorphic function of w and has no poles on the annulus
e−πβ < |w| < eπβ. This is equivalent to z = 0 being the only zero of ϑ1 in the
fundamental domain. Since we already know the Fourier series of

1
w − w−1 = 1

2i csc πz,

we only have to deal with gA. As an odd meromorphic function of w, it
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certainly has a convergent Laurent expansion

gA(w) =
∑
k∈Z

g2k+1w
2k+1

with coefficients

g2k+1 = 1
2πi

∮
|w|=1

dw
w

gA(w)
w2k+1 = 1

2πi

∮
|w|=e−πβ/2

dw
w

gA(w)
w2k+1 , (2.88)

where I moved the contour of integration to |w| = e−πβ/2. This is possible
because the integrand is analytic on the annulus e−πβ < |w| < eπβ. Now,
change variables w → e−πβw to find

g2k+1 = 1
2πie

(2k+1)πβ
∮
|w|=eπβ/2

dw
w

gA(e−πβw)
w2k+1 .

Next, note that eq. (2.84) implies

gA(e−πβw) = GA(z + iβ)− 1
e−πβw − eπβw−1

= −GA(z)− 1
e−πβw − eπβw−1

= −gA(w)− 1
w − w−1 −

1
e−πβw − eπβw−1 ,

hence

g2k+1 =− 1
2πie

(2k+1)πβ
∮
|w|=eπβ/2

dw
w

1
w2k+1

×
[
gA(w) + 1

w − w−1 + 1
e−πβw − eπβw−1

]
=− e(2k+1)πβg2k+1

− 1
2πie

(2k+1)πβ
∮
|w|=eπβ/2

dw
w2(k+1)

[ 1
w − w−1 + 1

e−πβw − eπβw−1

]
.

Rearranging this a little, you find

g2k+1 = 1
1 + e−(2k+1)πβ

1
2πi

∮
|w|=eπβ/2

dw
w2k+1

[ 1
1− w2 + e−πβ

1− e−2πβw2

]
,
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which can be evaluated by residues. As a result123

g2k+1 = 1
1 + e−(2k+1)πβ ×

−1 for k < 0
e−(2k+1)πβ for k ≥ 0,

hence
gA(w) =

∞∑
k=0

e−(2k+1)πβ

1 + e−(2k+1)πβ

[
w2k+1 − w−(2k+1)

]
,

so that

GA(z) = 1
2i csc πz +

∞∑
k=0

e−(2k+1)πβ

1 + e−(2k+1)πβ

[
e(2k+1)iπz − e−(2k+1)iπz

]
. (2.89)

Finally, replacing the cosecant in this equation by its Fourier series (2.75)
verifies the equality between eq. (2.74) and eq. (2.87). Again, the periodic
case is entirely analogous and yields

GP(z) = 1
2i cotπz +

∞∑
k=1

e−2πkβ

1 + e−2πkβ

[
e2πikz − e−2πikz

]
, (2.90)

which is also identical to eq. (2.74) because of eq. (2.75).
You can find a summary of all the propagators that we just derived in

table 2.2.
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Table 2.2: Propagators G(z) = G(z, 0) on the line and circle, in the vacuum
and thermal states, along with their locations in the main text to
find their derivation.

Geometry/State Formula Location

line/vacuum G(z) = 1/2πiz (2.70)

line/thermal G(z) = 1/[2iβ sinh(πz/β)] (2.71)

circle/vacuum GP(z) = 1/2i× cotπz (2.76)

GA(z) = 1/2i× csc πz (2.77)

circle/thermal GP/A(z) = η3(iβ)
iϑ1(z|iβ)

ϑ2/3(z|iβ)
ϑ2/3(0|iβ) (2.87)



2.3 A framework for free fermion entanglement 55

2.3.3 Adding a chemical potential

Later on in section 2.4, we will need the thermal propagator on the circle
with a chemical potential µ. This means that, instead of taking the density
matrix (2.20) of the canonical ensemble, we instead work in the grand canonical
ensemble

ρ = e−βH−µN
Tr[e−βH+µN ] ,

where
N :=

∫
dxψ∗(x)ψ(x) (2.91)

is the fermion-number operator. SinceN is quadratic, all computations leading
to eq. (2.42) go through unchanged, hence, the corresponding propagator is
given by

G = 1
1 + e−iβ∂+µ .

Evaluating this on the circle leads to the series representation (compare eq. (2.74))

G(x− y) =
∑
k

e−2πik(x−y)

1 + e−2πβk+µ , (2.92)

where the summation is over k ∈ Z for periodic and k ∈ Z + 1/2 for anti-
periodic boundary conditions. This propagator satisfies a variant of the KMS
condition (2.24): Since [H,N ] = 0, we have

ρ = e−βHeµN
Tr[e−βH+µN ] ,

hence,

G(z) = Tr[eµNψ(0)ψ∗(−z)e−βH ]
Tr[e−βH+µN ] = Tr[eµNψ(0)e−izHψ∗(0)e(iz−β)H ]

Tr[e−βH+µN ] ,

which is analytic on the strip −β < =(z) < 0, as already discussed in sec-
tion 2.1.3. The behaviour at the lower boundary of this strip is given by

lim
s↗β

G(x− is) = Tr[eµNψ(0)e(−ix−β)Hψ∗(0)eixH ]
Tr[e−βH+µN ]

= Tr[eµNe(−ix−β)Hψ∗(0)eixHeµNψ(0)e−µN ]
Tr[e−βH−µN ]

= Tr[ρψ∗(−x)eµNψ(0)e−µN ], x ∈ R.
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Now, since

eµNψ(0)e−µN = ψ(0) + [N,ψ(0)] + . . . = ψ(0)− µψ(x) + . . . = e−µψ(0),

you see that
lim
s↗β

G(x− is) = e−µ
(
δ(x)−G(x)), x ∈ R,

where the Dirac delta appears because of the anti-commutation relations (2.40)
and is (anti-)periodic on the circle. As a result, G has an analytic continuation
satisfying

G(z + 1) = ±G(z), G(z + iβ) = −eµG(z), z ∈ C \ (Z + iβZ). (2.93)

In the same spirit as before, we can use this quasi-periodicity to pin down the
analytic form of

GP/A(z) = η3(iβ)
iϑ1(z|iβ)

ϑ2/3(z + iµ/2π|iβ)
ϑ2/3(iµ/2π|iβ) . (2.94)

As you can easily verify from eq. (2.82), this satisfies the modified KMS condi-
tion (2.93) and has the correct pole ∼ 1/2πiz as z → 0. You could also verify
that its Fourier series is given by eq. (2.92) in the same way as before, but I
will omit this computation here.

2.3.4 The case of boundaries

To finish this section, I would like to discuss how to treat spacetimes with
boundaries. The arguments presented here present the starting point of a
work in progress with Ignacio Reyes,45 devoted to the study of entanglement in
boundary CFT124–126 with free fermion methods. The first important question
that has to be answered is how boundaries can be implemented in a QFT at
all. This can be answered easily in the case of a free scalar field φ, where
the equations of motion are second order and one can simply require Dirichlet
or Neumann boundary conditions (φ(x) = 0 or φ′(x) = 0 along the boundary,
respectively). For the free fermion, however, the equations of motion (2.65) are
first order and would trivialise under such conditions. Instead, we go along a
more abstract route and implement the boundary at the level of symmetries126
to ultimately derive compatible boundary conditions.
To this end, we start with the Dirac action (2.62) in Minkowski space without

a boundary. This action is invariant with respect to the Poincaré group P up
to boundary terms. In particular, this means that translations in xµ-direction
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leave the Lagrangian L invariant up to a total divergence

δµL = ∂νΛµν .

As a result, the associated Noether current

T µν = Λµν − ∂L
∂(∂νψ) δ

µψ − (δµψ̄) ∂L
∂(∂νψ̄)

, (2.95)

also known as the energy-momentum tensor, is conserved, in the sense that

∂νT
µν = 0 (2.96)

along solutions of the equations of motion. This means that we can define the
generator of translations (i.e., momentum) by integrating

Pµ :=
∫
C

dnν Tµν (2.97)

along any spacelike surface C that extends to infinity with positively timelike
normal vector nµ. Due to Gauss’ law, eq. (2.96) guarantees that this definition
will not depend on the specific choice of C, as sketched in fig. 2.10.

Figure 2.10: Argument for conservation of momentum (2.97): Pµ is given as
the integral of Tµν over a Cauchy slice C or C̃ (dashed black).
Due to Gauss’ law, it is independent of the choice of C vs. C̃.

More explicitly, for the action (2.62), a translation in xµ-direction changes
the fields as

δµψ = −∂µψ, and δµψ̄ = −∂µψ̄,

hence, δµL = −∂µL, such that

Λµν = −ηµνL.
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The energy-momentum tensor takes the form

T µν = −ηµνL+ iψ̄γν∂µψ = iψ̄[γν∂µ − ηµνγκ∂κ]ψ,

or, in components,

T 00 = iψ∗σz∂1ψ, T 01 = −iψ∗σz∂0ψ, T 10 = −iψ∗∂1ψ, T 11 = iψ∗∂0ψ,

where I inserted the Dirac matrices (2.63). In lightray coordinates x± = x0±x1,
this is

T++ = 4iψ∗−∂−ψ−, T−− = 4iψ∗+∂+ψ+.

T+− = −4iψ∗−∂+ψ−, T−+ = −4iψ∗+∂−ψ+

where the off-diagonal terms in the second line vanish due to the equations of
motion. As a result, the energy-momentum tensor is symmetric with118

T±± = iψ∗±∂±ψ± and T±∓ = 0, (2.98)

which is obviously conserved.
We are now in the position to state what happens when we introduce a

boundary: At the very least, the Poincaré symmetry P has to be broken
down to the subgroup of P preserving the boundary. In particular, this in-
cludes translations parallel to the boundary, hence momenta P‖ parallel to the
boundary still need to be conserved. These take the form

P‖ :=
∫
C

dnµ T‖µ

for some spacelike surface C, which either extends to infinity or ends at the
boundary. If this definition is to be independent of the specific choice of C, you
can use eq. (2.96) and Gauss’ law to see that the parallel-perpendicular com-
ponent T‖⊥ of the energy-momentum tensor has to vanish along the boundary,
as sketched in fig. 2.11. The requirement

T‖⊥ = 0 along the boundary, (2.99)

also known as the conformal boundary condition,126,127 is what we will use to
derive sensible conditions of the fields.
The conformal boundary condition (2.99) can be interpreted in two different

ways: On one hand, you could say that the theory with boundary effectively
only consists of one chirality and the other one is just an alias for the first one.
This interpretation, suggested by Longo and Rehren,125,128 takes eq. (2.99) to
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Figure 2.11: Argument leading to the conformal boundary condition (2.99):
The generator of translations along the boundary (solid blue) is
given as the integral of T‖µ over a Cauchy slice C or C̃ (dashed
black). Due to Gauss’ law, it is independent of the choice of C
vs. C̃ if T ‖µ = 0 along the boundary.

be a statement of operators and makes it easy to deal with timelike boundaries.

On the other hand, you could say that the chiralities are still independent
as operators, but eq. (2.99) only holds on a subspace of the theory without
boundary – the space of so-called boundary states.126 This interpretation is
well suited for the treatment of spacelike boundaries127,129,130 and allows for
one key observation: The actions of the energy-momentum tensors T±±(z)
are related with one another on boundary states, hence boundary states show
entanglement between the two chiralities! In section 2.4.7, we will verify this
statement quantitatively.

While the full discussion is still in preparation,45 I will explicitly work out
the example of a free fermion on the right half plane x1 > 0, i.e., x+ > x−, in
this thesis. The conformal boundary condition (2.99) then states that

0 = T01 = T++(x+)− T−−(x−) along x+ = x−,

hence, T++(z) = T−−(z) for all z ∈ R. Working in the interpretation that this
is a statement of operators and recalling eq. (2.98), the obvious solutions to
this condition are

ψ+(z) = ηψ−(z), η = ±1 for any z ∈ R (2.100)

with a nice physical interpretation: Left moving modes ψ− are reflected off the
boundary to become outgoing modes ψ+, maybe undergoing a sign change.

Next, to uphold the spectrum condition (1.12), we have to require that the
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Hamiltonian

H =
∫ ∞

0
dx1 T00(x0 = 0, x1) =

∫ ∞
0

dz [T++(z) + T−−(−z)]

is a positive operator. Luckily, since T−−(z) = T++(z) for any z ∈ R, this
Hamiltonian can be rewritten as

H =
∫
R

dz T++(z) =
∫
R

dz T−−(z),

which is exactly the Hamiltonian of a single chirality, hence, positive on the
Fock space of a single chirality.

To compute the propagator G, first note that the chiralities no longer being
independent implies that G is a matrix of the form

G(x, y) = 〈Ω0|

ψ+(x+)

ψ−(x−)


ψ+(y+)

ψ−(y−)


∗

Ω0〉

=

〈Ω0|ψ+(x+)ψ∗+(y+)Ω0〉 〈Ω0|ψ+(x+)ψ∗−(y−)Ω0〉

〈Ω0|ψ−(x−)ψ∗+(y+)Ω0〉 〈Ω0|ψ−(x−)ψ∗−(y−)Ω0〉


for x1, y1 > 0. As always, we work on the time slice x0 = y0 = 0, such that
x± = ±x1 and y± = ±y1. Because of eq. (2.65), the equal-time propagator
then takes the form

G(x1, y1) =

 〈Ω0|ψ+(x1)ψ∗+(y1)Ω0〉 〈Ω0|ψ+(x1)ψ∗−(−y1)Ω0〉

〈Ω0|ψ−(−x1)ψ∗+(y1)Ω0〉 〈Ω0|ψ−(−x1)ψ∗−(−y1)Ω0〉


Dropping the 1-superscript and imposing eq. (2.100), we find

G(x, y) =

 〈Ω0|ψ+(x)ψ∗+(y)Ω0〉 η〈Ω0|ψ+(x)ψ∗+(−y)Ω0〉

η〈Ω0|ψ+(−x)ψ∗+(y)Ω0〉 〈Ω0|ψ+(−x)ψ∗+(−y)Ω0〉


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or, more concisely,

G(x, y) =

 Gw/o bdy(x, y) ηGw/o bdy(x,−y)

ηGw/o bdy(−x, y) Gw/o bdy(−x,−y)


with Gw/o bdy being the propagator of the corresponding state in the single-
chirality-theory without boundary. As you can see, the diagonal entries of G
coincide with those from the theory without a boundary but there are non-
vanishing off-diagonal entries implying correlations between the two chiralities
– a clear sign of entanglement! In particular, you could choose the vacuum
propagator on the line (2.70) to find the vacuum propagator on the half line

G(x, y) = 1
2πi

 1/(x− y) η1/(x+ y)

η1/(−x− y) 1/(−x+ y)

 , (2.101)

which shows diminishing correlations between the chiralities with increasing
distance from the boundary.
Finally, I would like to say word about the algebraic properties of boundary

states: You might be worried that the requirement (2.100) could break the
separating property of local algebras, since ψ+(z)−ηψ−(z) annihilates bound-
ary states. Fortunately, this is not the case,125 as shown in fig. 2.12. To see
this, consider an open double cone O that has a finite distance d > 0 from the
boundary x1 = 0. This means that every point point x ∈ O satisfies x+ ≥ d
and x− ≤ −d, so that

x+ − y− ≥ 2d

for any two points x, y ∈ O. Since ψ± depends on x± only, terms like
ψ+(z)−ηψ−(z′) can only be contained in the local algebra A(O) if z−z′ ≥ 2d.
Operators of this form, however, only annihilate boundary states for z = z′, as
argued above. This can be traced back to the fact that the conformal bound-
ary condition (2.99) only holds exactly at the boundary, such that no smearing
of T‖⊥ with finite support ever annihilates boundary states.
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Figure 2.12: Double coneO (shaded) at a finite distance d from the boundary
at x1 = 0. Its projections onto the boundary (solid blue) always
have a finite distance 2d from one another, so that O can not
contain operators that annihilate boundary states.

2.4 Results
Now that we have covered all prerequisites that are needed in order to under-
stand what we are doing, we can dive into the world of entanglement of the free
fermion CFT (2.62): In section 2.3, I already presented how to derive modular
data of a gaussian state from the corresponding propagator G. These formulae,
summarised in table 2.1, require the computation of functional dependencies
of the (restricted) propagators G|V . While this is generally a hard task, it can
be overcome by the introduction of a spectral calculus, as done in eqs. (2.56)
to (2.59). This basically reduces all computations to the determination of the
resolvent [λ−G|V ]−1 and subsequently performing some complex integrals in
order to evaluate table 2.1 for all propagators in table 2.2.
In its complete form, this procedure was first worked out by our group,41–43

although many crucial bits and pieces already existed in the literature before-
hand107–111 and other groups contributed greatly to the completion of this task
with similar113,114 and completely different112 methods.

2.4.1 Solving the singular integral equation
Let us now turn to the integral equation (2.61) and how to solve it. For the
time being, we will only consider the propagators from table 2.2, which belong
to a single chirality of the two dimensional free fermion CFT (2.62). Since
the equations of motion imply that the fields ψ± only depend on one lightray
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coordinate x± = x0±x1 each, we are effectively dealing with a one-dimensional
problem (per chirality). Because of this and translational invariance (2.69), the
integral equation takes the form

−G(x− y) +Fλ(x, y)− 1
λ

∫
V

dz G(x− z)Fλ(z, y) = 0 for x, y ∈ V, (2.102)

where V denotes the projection of the considered spacetime region onto the
corresponding lightray coordinate axis, as sketched in figure fig. 2.13. The
region of spacetime under consideration shall be a (finite) union of spacelike
separated double cones, so that

V =
⋃
n

[an, bn], a1 < b1 < a2 < . . . (2.103)

is a union of disjoint intervals on the line.

Figure 2.13: A region R comprised two double cones (shaded) on a Cauchy
slice (dotted black), along with its projections (solid dark blue)
onto the lightray coordinate axes. This figure shows the con-
ventions on the order of boundary points an, bn of the projection
V .

At this point, I would like to say one word of caution about G and Fλ:
As stated before, G and Fλ are distributional kernels, i.e., expressions such
as G(z) have no meaning pointwise. They only make sense when integrated
against some suitable test function, similar to how the Dirac delta δ(z) can
not be treated like a function. This comes about simply from the definition
of G as an expectation value of field operators ψ(x), which themselves are
operator valued distributions.64 Furthermore, since G(z) has a singularity for
z → 0, the corresponding integrals have to be regulated in some sense and, as
a distribution, this regulation is part of the definition of G. In our case, the
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integrals may be regulated by replacing

G(z)→ G(z − iε)

for some small ε > 0 inside the integral and performing the limit limε↘0 af-
ter the integration. This scheme is valid because we know that G(z) has to
have an analytical continuation to the lower half plane because of the KMS
condition (2.24) and, indeed, we already imposed it in the proof of eqs. (2.76)
and (2.77). More mathematically, the act of performing the limit ε ↘ 0 only
after integration can be described as the distributional kernel G being a weak
limit

G(x− y) := w-lim
ε↘0

G(x− y − iε) for x− y ∈ R. (2.104)

As we will see soon, the solution Fλ of eq. (2.102) needs to be regulated in the
same way by setting

Fλ(x, y) := w-lim
ε↘0

Fλ(x, y + iε) for x, y ∈ V. (2.105)

Similarly to eq. (2.104), the functions Fλ on both sides have different meanings
and can be distinguished by their arguments: The distributional kernel Fλ on
the left hand side can only take real valued arguments x, y ∈ V ⊂ R, suppos-
edly having singularities at specific values of x, y. The complex function Fλ on
the right hand side, however, is not necessarily defined for x, y ∈ V but rather
in a complex neighbourhood of V , in order to get around the aforementioned
singularities. In this sense, we are looking for a solution of

G(x− y)− Fλ(x, y)

+ w-lim
ε↘0

w-lim
ε′↘0

1
λ

∫
V

dz G(x− z − iε)Fλ(z, y + iε′) = 0. (2.106)

So how do we solve eq. (2.102) or, rather, eq. (2.106)? Historically, this was
first achieved for the case of the vacuum state on the line (2.70), where the
propagator is just 1/2πiz. This case is actually a standard problem from the
theory of singular integral equations117 and was rediscovered in this physical
context by Casini and Huerta.107 After that, further progress108,109 was basi-
cally limited to rank-one perturbations of the propagator (2.70) and its con-
formally compactified cousin (2.77). In the following, I would like to present a
method,41 based on previous ideas of Arias, Casini, and Huerta,111 which gen-
eralises to a much more general class of propagators, namely to which behave
asymptotically like ∼ 1/2πiz as z → 0. The key idea is to rephrase eq. (2.106)
as a statement about contour integrals, since the simple pole of G allows to
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evaluate such integrals elegantly. More precisely, I will first list some analytic
properties that Fλ will have to satisfy such that eq. (2.106) will be solved by
a simple application of the residue theorem. Subsequently, I will present a
systematic way for constructing an Fλ that satisfies all these properties.
As a first step, let us require that Fλ is such that∮

γ
dz G(x− z − iε)Fλ(z, y + iε′) = 0 for x, y ∈ V, (2.107)

for some contour γ encircling V within a finite distance, as sketched in fig. 2.14.

Figure 2.14: Sketch for the general method of solution of the singular inte-
gral equation (2.106): The contour γ (dashed black) encircles
V (solid blue) with a finite distance.

The other assumptions will be chosen such that we can deform the left hand
side of eq. (2.107) to the left hand side of eq. (2.106): First, we would like
Fλ(z, z′) to be analytic in z (except at z ∈ V and z = z′), such that we can
deform the contour γ freely. This allows to contract γ to be snug along V ,
crossing the first order pole of G at x − z − iε as we do so. By the residue
theorem, this creates a contribution of

Resz=x−iεG(x− z − iε)Fλ(z, y + iε′) = −Fλ(x− iε, y + iε′),

which already looks much like the Fλ outside of the integral in eq. (2.106).
To recover it from the weak limit, you need to require continuity in the first
argument from the lower half plane, i.e,

lim
ε↘0

Fλ(x− iε, z) = Fλ(x, z), x ∈ V.

You can recover theG in the same way if Fλ(z, z′) has a simple pole∼ 1/2πi(z−
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z′) at z → z′. In order to keep track of further non-analyticities, let us write

Fλ(z, z′) = Hλ(z − z′)
Sλ(z)
Sλ(z′)

(2.108)

with Hλ(z − z′) analytic everywhere except for a simple pole

Hλ(z − z′) ∼
1

2πi(z − z′) at z → z′ (2.109)

and Sλ analytic up to a possible discontinuity along V . The above continuity
requirement translates to

lim
ε↘0

Sλ(x− iε) = Sλ(x) along V. (2.110)

As a result,

Resz=y+iε′ G(x− z − iε)Fλ(z, y + iε′)

= Resz=y+iε′ G(x− z − iε)Hλ(z − y − iε′) Sλ(z)
Sλ(y + iε′)

= G
(
x− y − i(ε+ ε′)

)
,

which indeed recovers the G outside of the integral in eq. (2.106) as the weak
limit is performed. Note that in all of the above, the sign of ε′ is crucial, as a
term like ε− ε′ would lead to a dependence on the order of limits. This is the
reason for the sign choices in eq. (2.105).
To sum up everything so far, we have deformed eq. (2.107) to

G(x− y)− Fλ(x, y)

+ w-lim
ε↘0

w-lim
ε′↘0

∮
V 	

dz G(x− z − iε)Hλ(z − y − iε′) Sλ(z)
Sλ(y + iε′) = 0,

where V 	 denotes a contour that wraps tightly around V . In particular, the
poles of the integrand lie outside the contour of integration. This already looks
strikingly similar to the integral equation (2.106), but we still have to turn the
contour integral around V into an ordinary integral along V . To this end,
note that each component [an, bn] of V 	 can be deformed to a “bone”-like,
consisting of four pieces, as sketched in fig. 2.15: One contribution going to
the right just below [an, bn], one going to the left just above [an, bn], and two
circular contributions around the endpoints an, bn.
Let us assume that Sλ(z) does not diverge too quickly near these endpoints,
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Figure 2.15: Another sketch for the solution of the singular integral equa-
tion (2.106): The contour V 	 (dashed black) snugly wraps
around V (solid blue), excluding the poles (black dots) of the
integrand at x− iε and y + iε′.

such that the circular contributions vanish. Mathematically, this is guaranteed
if

lim
z→an

(z − an)Sλ(z) = 0 = lim
z→bn

(z − bn)Sλ(z). (2.111)

We then have∮
V 	

dz G(x− z − iε)Hλ(z − y − iε′) Sλ(z)
Sλ(y + iε′)

=
∫
V
dz G(x− z − iε)Hλ(z − y − iε′) lim

ε′′↘0

Sλ(z − iε′′)− Sλ(z + iε′′)
Sλ(y + iε′) ,

which is equal to the

1
λ

∫
V

dz G(x− z − iε)Fλ(z, y + iε′)

from eq. (2.106) if

1
λ
Sλ(z) = lim

ε′′↘0

[
Sλ(z − iε′′)− Sλ(z + iε′′)

]
along V.

Combined with the continuity condition (2.110), this is equivalent to

lim
ε′′↘0

Sλ(x+ iε′′)
Sλ(x− iε′′) = −1− λ

λ
along V, (2.112)

i.e., Sλ has to have a multiplicative branch cut along V . Combined with
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eq. (2.109), this also implies that Fλ takes the form

Fλ(x, y) = − λ

1− λ w-lim
ε↘0

Hλ(x− y − iε)× Sλ(x)
Sλ(y) ,

which concludes our derivation of Fλ. Finally, note that we can generally solve
the multiplicative branch cut (2.112) by setting

Sλ(z) :=
[
− 1− λ

λ

]iZ(z)
(2.113)

for some function Z which is continuous from the lower half plane

lim
ε↘0

Z(x− iε) = Z(x) along V (2.114)

and has an additive branch cut

lim
ε↘0

[
Z(x− iε)− Z(x+ iε)

]
= i along V. (2.115)

We have thus established that

Fλ(x, y) = − λ

1− λ w-lim
ε↘0

Hλ(x− y − iε)×
[
− 1− λ

λ

]i[Z(x)−Z(y)]
(2.116)

solves the integral equation (2.102) if the requirements from eqs. (2.107),
(2.109), (2.111), (2.114) and (2.115) are fulfilled.

2.4.2 Solutions for different propagators

We can now turn to the explicit construction of an Fλ that satisfies all these
requirements for each of the propagators in table 2.2. We begin with the
vacuum on line, given by eq. (2.70), i.e,

G(z) = 1
2πiz .

Let us try to take the γ in eq. (2.107) to be a circle of infinite radius. Then
eq. (2.107), as well as eq. (2.109), can be fulfilled by setting

Hλ(z) := G(z) = 1
2πiz , (2.117)
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as long as S(z) satisfies the growth condition

lim
|z|→∞

z−1S(z) = 0, (2.118)

since then

lim
R→∞

∣∣∣∣ ∮
|z|=R

dz G(x− z)Fλ(z, y)
∣∣∣∣ ≤ lim

R→∞

2πR
(2πR)2 sup

|z|=R
|S(z)| = 0.

The branch cut (2.115) can be realised by a natural logarithm, via

Z(z) := 1
2π log

∏
n

z − an
z − bn

for z ∈ C \ V.

Here, we take the branch cut of the natural logarithm to be along the negative
axis. To verify eq. (2.115), first note that the argument of the logarithm in
Z(x) is negative for all x ∈ V . Furthermore, it is also strictly decreasing

0 > d
dx
∏
n

x− an
x− bn

along V

and meromorphic, so that we can employ the Cauchy-Riemann differential
equations to find

0 > lim
ε↘0

∂

∂x
<
[∏
n

x+ iε− an
x+ iε− bn

]
= lim

ε↘0

∂

∂ε
=
[∏
n

x+ iε− an
x+ iε− bn

]
along V,

so that
=
[∏
n

x± iε− an
x± iε− bn

]
≶ 0 along V

for sufficiently small ε > 0. As a result,

lim
ε↘0

Z(x± iε) = 1
2π log

∏
n

x− an
bn − x

∓ i
2 along V,

so that eq. (2.115) is indeed satisfied and we can take eq. (2.114) as the defi-
nition of

Z(x) = 1
2π log

[
−
∏
n

x− an
x− bn

]
+ const. along V, (2.119)

where the specific value i/2 of the additive constant is irrelevant since it cancels
in eq. (2.116). This concludes the derivation of Hλ and Z. As a final step,
we still have to verify the growth conditions (2.111) and (2.118). This was
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already done by Arias, Casini, and Huerta,111 but I would like to include the
argument here for the sake of completeness. First, note that

|S(z)| = ei[ξZ(z)−ξZ(z)]/2 = e−=[ξZ(z)]

with ξ := log(1 − λ−1). Recall now from eq. (2.42) that the spectrum of G|V
is contained in [0, 1], so that the resolvent (hence, Fλ) exists for λ ∈ C \ [0, 1].
This means that ξ covers the open strip −π < =(ξ) < π. As a result

|S(z)| = e−<(ξ)=[Z(z)]e−=(ξ)<[Z(z)],

where the first factor
e−<(ξ)=[Z(z)] < e|<(ξ)|/2

is bounded for fixed ξ. The second factor satisfies

e−=(ξ)<[Z(z)] ≤ exp
[
π × 1

2π log
∏
n

∣∣∣∣z − anz − bn

∣∣∣∣] =
√∏

n

∣∣∣∣z − anz − bn

∣∣∣∣,
so that

lim sup
|z|→∞

|S(z)| ≤ e|<(ξ)|/2 and lim
z→an

|S(z)| = 0 = lim
z→bn
|z − bn||S(z)|

in accordance with eqs. (2.111) and (2.118).
Now that we are done with the vacuum on the line, let us proceed to the

thermal state on the line. The corresponding propagator

G(z) = 1
2iβ sinh πz/β

was already derived in eq. (2.71). As stated before, G satisfies the KMS condi-
tion (2.72), which will help greatly in solving the requirement (2.107): Let us
assume that Fλ also satisfies the KMS condition (2.72) in its first argument,
so that

G(x− z − iβ)Fλ(z + iβ, y) = G(x− z)Fλ(z, y),

i.e., the integrand in eq. (2.107) is periodic in imaginary direction. It then
makes sense to choose a rectangular

γ : (−R− iβ/2)→ (R− iβ/2)→ (R + iβ/2)→ (−R + iβ/2),

with R→∞, as sketched in fig. 2.16.
This has the advantage that the upper and lower contributions to the in-
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Figure 2.16: Solving eq. (2.106) for the thermal sate on the line: The contour
γ (dashed black) is chosen to run along the lines =(z) = ±iβ/2
in order to make use of the imaginary periodicity of the prop-
agator. The left and right vertical contributions are sent to
infinity. Periodic copies of the region V (solid dark blue) are
shown in transparent blue.

tegral (2.107) cancel because of symmetry. To ensure that the left and right
contributions also vanish, we will again need some growth condition on Fλ. A
good candidate for Hλ is again

Hλ(z) = G(z) = 1
2iβ sinh πz/β , (2.120)

because it has the correct pole and the resulting Fλ will satisfy eq. (2.72), as
long as

Sλ(z + iβ) = Sλ(z)

is periodic in imaginary direction. For eq. (2.107) to hold, Sλ should satisfy
the growth condition

lim
R→±∞

e−2πR/βSλ(R + is) = 0 for |s| ≤ β

2 ,

which is very weak indeed! Similar to the vacuum case, we can choose

Z(z) := 1
2π log

∏
n

sinh π(z − an)/β
sinh π(z − bn)/β

for z ∈ C \ (V + iβZ). All arguments from the vacuum go through unchanged
and I will not repeat them here – this was the reason for being so general in
the first place. This function Z is indeed periodic in imaginary direction, has
the correct branch cut (2.115) and satisfies all necessary growth conditions.
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From eq. (2.114), you again find

Z(x) = 1
2π log

[
−
∏
n

sinh π(x− an)/β
sinh π(x− bn)/β

]
+ const. along V, (2.121)

which already concludes the derivation for the thermal state on the line.

Next, let us turn to the vacuum state on the circle. Depending on the
boundary conditions, the propagators are given by eqs. (2.76) and (2.77). Let
us start with the anti-periodic case

G(z) = 1
2i csc πz.

Here, we can repeat the argument from the thermal state on the line, albeit
with all periodicities in real direction. The rectangular contour is now

γ : (−1/2− iR)→ (1/2− iR)→ (1/2 + iR)→ (−1/2 + iR)

and we can choose
Hλ(z) := G(z) = 1

2i csc πz (2.122)

as well as
Z(z) := 1

2π log
∏
n

sin π(z − an)
sin π(z − bn)

for z ∈ C \ (V + Z), which yields

Z(z) = 1
2π log

[
−
∏
n

sin π(x− an)
sin π(x− bn)

]
along V. (2.123)

The growth condition for Sλ is

lim
R→±∞

e−2πRSλ(s+ iR) = 0 for |s| ≤ 1
2 ,

which is obviously satisfied.

The first propagator where things get tricky is the periodic one

G(z) = 1
2i cotπz.

It is tempting to again just try Fλ ?= G, together with Z(z) as above, but it
will not work this time: The periodic propagator does not vanish for large =(z)
because of the constant zero-mode contribution in eq. (2.75). This implies that
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the growth condition on Sλ would have to be

lim
R→±∞

Sλ(s+ iR) = 0 for |s| ≤ 1
2 ,

but that would imply ∮
γ

dz Sλ(z) = 0,

which is in conflict with the requirements (2.111) and (2.112). The actual
solution to this problem was first found by Klich, Vaman, and Wong109 using
rank-one perturbation theory. Here, I will show a more direct approach within
the scope of the methods discussed so far. The idea is to modify Hλ slightly, so
that eq. (2.107) is satisfied for our above choice of Z. Since the whole trouble
originates from a constant term in G we will make the ansatz

Hλ(z) = 1
2i cotπz + Cλ

2 ,

where Cλ is a constant that we wish to determine. Again, we choose γ as above.
Since the imaginary-direction contributions cancel by symmetry, eq. (2.107)
reads

lim
R→∞

[ ∫ 1/2−iR

−1/2−iR
dz G(x− z)G(z − y)

[
− 1− λ

λ

]iZ(z)

−
∫ 1/2+iR

−1/2+iR
dz dz G(x− z)G(z − y)

[
− 1− λ

λ

]iZ(z)]
= 0.

We can now just compute this integral in the limit R→ 0, in order to fix Cλ.
To do this, change variables to u = e2πix, v = e2πiy, and w = e2πiz, such that

lim
ρ→∞

( ∮
|w|=ρ

dw
w

u+ w

u− w

[
w + v

w − v
+ Cλ

][
− 1− λ

λ

]iZ̃(w)

−
∮
|w|=ρ−1

dw
w

u+ w

u− w

[
w + v

w − v
+ Cλ

][
− 1− λ

λ

]iZ̃(w))
= 0,

with
Z̃(w) = 1

2π log
∏
n

eiπ(bn−an) e2πian − w
e2πibn − w

.

You can now easily verify that

lim
|w|→∞

Z̃(w) = i
2 |V | and lim

|w|→0
Z̃(w) = − i

2 |V |,
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where
|V | :=

∑
n

(bn − an) (2.124)

denotes the total size of the entangling region. Our requirement thus reduces
to

lim
ρ→∞

( ∮
|w|=ρ

dw
w

u+ w

u− w

[
w + v

w − v
+ Cλ

]

−
[
− 1− λ

λ

]|V | ∮
|w|=ρ−1

dw
w

u+ w

u− w

[
w + v

w − v
+ Cλ

])
= 0,

The rest is a simple application of the residue theorem. You find

−1− Cλ +
[
− 1− λ

λ

]|V |
(1− Cλ) = 0

and therefore

Cλ = tanh ξλ|V |2 with ξλ = log
[
− 1− λ

λ

]
.

The correct Hλ thus takes the form

Hλ(z) = 1
2i cot πz + 1

2 tanh ξλ|V |2 , ξλ = log
[
− 1− λ

λ

]
. (2.125)

Note that this is the first time that Hλ actually depends on λ. This λ-
dependence will be important soon, when we compute entanglement properties.
There, it will be the source of non-trivial and non-local behaviour.

We will now proceed to the thermal state on the circle, which was the most
recent to be solved.41,113 The propagator from eq. (2.87) is

G(z) = η3(iβ)
iϑ1(z|iβ)

ϑν(z|iβ)
ϑν(0|iβ) ,

where ν = 2 for periodic and ν = 3 for anti-periodic boundary conditions. As
we seen above, it makes sense to choose γ in a way that is compatible with the
(anti-)periodicities. As explained in eq. (2.84), we have

G(z + 1) = ±G(z) and G(z + iβ) = −G(z)

as a result of the KMS condition (2.72), hence we should γ to enclose one
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fundamental region, i.e.,

γ : (−1/2− iβ/2)→ (1/2− iβ/2)→ (1/2 + iβ/2)→ (−1/2 + iβ/2),

as sketched in fig. 2.17.

Figure 2.17: Solving eq. (2.106) for the thermal sate on the circle: The con-
tour γ (dashed black) is chosen to run along one fundamental
region of the two periodicities z ∼ z+iβ ∼ z+1. Periodic copies
of the region V (solid dark blue) are shown in transparent blue.

The fact, that there are now two independent periods, is of great use to
us: If we manage to find an Fλ which satisfies the same (anti-)periodicities as
G in its first argument, then the integral in eq. (2.107) vanishes trivially, as
opposite contributions cancel! Finding such a function, however, is a daunting
task. It does not make sense to try Hλ

?= G, since that would imply that Sλ
needs to be doubly periodic

Sλ(z + 1) = Sλ(z) = Sλ(z + iβ)

and thus ∮
γ

dz Sλ(z) = 0,

which is in conflict with the requirements (2.111) and (2.112), similarly to the
problem that we encountered for the periodic vacuum. This means that we
again have to choose Z and then find an appropriate modification for Hλ. An
educated guess for Z is

Z(z) := 1
2π log

∏
n

ϑ1(z − an|iβ)
ϑ1(z − bn|iβ) (2.126)
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for all z ∈ C \ (V + Z + iβZ). Again, since

∏
n

ϑ1(x− an|iβ)
ϑ1(x− bn|iβ)

is negative and strictly decreasing along V (you can show this directly from
the series representation (2.78)), Z has the correct branch cut (2.115). Also,
as shown in the derivation of eq. (2.87), we have

ϑ1(z|iβ) ∼ 2πη3(iβ)z as z → 0,

which implies that the previous argument for the asymptotic behaviour of Z(z)
near an, bn goes through unchanged. As a result, eq. (2.111) is also satisfied,
hence, we only have to find the correct Hλ. To this end, note first that, while
it is impossible for Z to be doubly periodic, it is almost doubly periodic in the
sense that Z(z + 1) = Z(z) and

Z(z + iβ) = 1
2π log

∏
n

ϑ1(z + iβ − an|iβ)
ϑ1(z + iβ − bn|iβ)

= 1
2π log

∏
n

eπβe−2πi(z−an)ϑ1(z − an|iβ)
eπβe−2πi(z−bn)ϑ1(z − bn|iβ)

= Z(z)− i|V |. (2.127)

This means that

Sλ(z + 1) = Sλ(z) and Sλ(z + iβ) =
[
− 1− λ

λ

]|V |
Sλ(z),

hence we require that

Hλ(z + 1) = ±Hλ(z) and Hλ(z + iβ) = −
[
− 1− λ

λ

]−|V |
Hλ(z)

so that Fλ has the correct (anti-)periodicities for eq. (2.107) to be fulfilled.
This, however, coincides exactly with the conditions (2.93) for the propagator
of a thermal state on the circle with chemical potential

µ = −|V | log
[
− 1− λ

λ

]
,
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so that we can simply choose

Hλ(z) = η3(iβ)
iϑ1(z|iβ)

ϑν(z − iξλ|V |/2π|iβ)
ϑν(−iξλ|V |/2π|iβ) , ξλ = log

[
− 1− λ

λ

]
. (2.128)

Together with eq. (2.126), this satisfies all requirements that we need and we
can again use eq. (2.114) to find

Z(x) = 1
2π log

[
−
∏
n

ϑ1(z − an|iβ)
ϑ1(z − bn|iβ)

]
along V, (2.129)

which concludes the derivation of Fλ in this last case.
We could now go through all of the above again in order to solve eq. (2.102)

again for a thermal state on the circle with added chemical potential. How-
ever, this will not introduce anything new – since we only slightly change the
periodicities from eq. (2.84) to eq. (2.93), the result is given by keeping Z as
in eq. (2.129) and modifying42

Hλ(z)→ η3(iβ)
iϑ1(z|iβ)

ϑν(z + i(µ− ξλ|V |)/2π|iβ)
ϑν(i(µ− ξλ|V |)/2π|iβ) , ξλ = log

[
− 1− λ

λ

]
.

As already stated, this does not produce any qualitative change in any of the
computations that follow, so I will not use this solution for the rest of this
thesis. It is only included for the sake of completeness.
Finally, I would like to show how the vacuum result can be recovered from

the above: The computation that lead us to the series expansions eqs. (2.89)
and (2.90) for the thermal state on the circle without chemical potential can
of course be repeated to find

η3(iβ)
iϑ1(z|iβ)

ϑ3(z + iµ/2π|iβ)
ϑ3(iµ/2π|iβ) = 1

2i csc πz

+
∞∑
k=0

e−(2k+1)πβ
[ e(2k+1)iπz

eµ + e−(2k+1)πβ −
e−(2k+1)iπz

e−µ + e−(2k+1)πβ

]
(2.130)

and

η3(iβ)
iϑ1(z|iβ)

ϑ2(z + iµ/2π|iβ)
ϑ2(iµ/2π|iβ) = 1

2i cotπz − 1
2 tanh µ2

+
∞∑
k=1

e−2πkβ
[ e2πikz

eµ + e−2πkβ −
e−2πikz

e−µ + e−2πkβ

]
(2.131)

Now, in the limit of low temperatures β →∞, you see that e−2πβ → 0, so that
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(2.128) yields

Hλ(z)→


1
2i csc πz (anti-periodic)
1
2i cotπz + 1

2 tanh ξλ|V |
2 (periodic)

in accordance with eqs. (2.122) and (2.125). Note that, while we did not need
any special treatment for the derivation of eq. (2.128) for periodic boundary
conditions, we are able to easily recover the zero-mode contribution in the
vacuum, which was hard to find directly.
Again, you can find summary of all solutions to eq. (2.102) in table 2.3.
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Table 2.3: Solutions to the integral equation (2.102) for the propagators in
table 2.2. Every solution Fλ is a regulated distributional ker-
nel (2.105), which can be written in terms of two functions Hλ

and Z, as shown in eq. (2.116). Presented are the functions Hλ

and Z, along with their locations in the main text to find their
derivation.

Geometry/State Formulae Location

line/vacuum Hλ(z) = 1/2πiz (2.117)

Z(x) = 1/2π × log
[
−∏n

x−an
x−bn

]
(2.119)

line/thermal H(z) = 1/[2iβ sinh(πz/β)] (2.120)

Z(x) = 1/2π × log
[
−∏n

sinhπ(x−an)/β
sinhπ(x−bn)β

]
(2.121)

circle/vacuum H
(P)
λ (z) = 1/2i× cot πz (2.125)

H
(A)
λ (z) = 1/2i× csc πz + 1/2× tanh(ξλ|V |/2) (2.122)

Z(x) = 1/2π × log
[
−∏n

sinπ(x−an)
sinπ(x−bn)

]
(2.123)

|V | = ∑
n(bn − an) (2.124)

ξλ = log(1− λ−1) (2.125)

circle/thermal H
(P/A)
λ (z) = η3(iβ)

iϑ1(z|iβ)
ϑ2/3(z − iξλ|V |/2π|iβ)
ϑ2/3(−iξλ|V |/2π|iβ) (2.128)

Z(x) = 1/2π × log
[
−∏n

ϑ1(x−an|iβ)
ϑ1(x−bn|iβ)

]
(2.129)
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2.4.3 Modular flow of operators

Now that we solved the singular integral equation (2.102), we can use the
solutions to compute various quantities associated with entanglement. Let us
begin with the modular flow, defined in eq. (2.19). In the present case of free
fermions, we already established in eq. (2.47) that

σt(ψ∗(x)) =
∫
V

dy ψ∗(y)Σt(y, x), with Σt =
[1−G|V

G|V

]it
.

To evaluate this, we shall use the spectral calculus from eqs. (2.56) and (2.57),
i.e., we have

Σt =
∫ 1

0
dλ dEλ

dλ

[1− λ
λ

]it

with
dEλ
dλ = 1

2πi

[ 1
λ− i0−G|V

− 1
λ+ i0−G|V

]
.

According to eq. (2.60), the resolvent takes the form

1
λ−G|V

= 1
λ

+ Fλ
λ2

so that the spectral measure is determined by the branch cut of Fλ, i.e.,

dEλ
dλ = 1

2πi
Fλ−i0 − Fλ+i0

λ2 .

Inserting Fλ from eq. (2.116) you find

Fλ
λ2 = − 1

(1− λ)λHλ

[
− 1− λ

λ

]i∆Z

where I suppressed the weak limit for the sake of brevity and used the short-
hand notation

∆Z(x, y) := Z(x)− Z(y). (2.132)

It is now clear that the branch cut of Fλ is better expresses in terms of the
variable ζ = (1− λ)/λ, where we have

Fλ±i0

λ2 = dζ
dλ

1
ζ
H1/(1+ζ∓i0)[−ζ ± i0]i∆Z ,
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so that
Σt =

∫ ∞
0

dζ dEζ
dζ ζ

it (2.133)

with

dEζ
dζ = − 1

2πi

[
eπ∆ZH1/(1+ζ+i0) − e−π∆ZH1/(1+ζ−i0)

]
ζ i∆Z−1, (2.134)

where the negative sign at the beginning comes a change in orientation due to
the change of variables. We are now in the position to evaluate eqs. (2.133)
and (2.134) for the various solutions in table 2.3.

As a warm-up, let us again begin with the vacuum state on the line

G(z) = 1
2πiz ,

where the solution is

Hλ(z) = G(z) and Z(x) = 1
2π log

[
−
∏
n

x− an
x− bn

]
.

Since Hλ does not depend on λ, eq. (2.134) simplifies to

dEζ
dζ = i

π
sinh(π∆Z)Gζ i∆Z−1, (2.135)

hence

Σt = i
π

sinh(π∆Z)G
∫ ∞

0

dζ
ζ
ζ i(t+∆Z)

= i
π

sinh(π∆Z)G
∫
R
ds eis(t+∆Z)

= −2i sinh(πt)G× δ(t+ ∆Z).

We have thus established that the kernel associated to the action of modular
flow for the vacuum state on the line is43

Σt(x, y) = −2i sinh(πt)G(x− y)δ(t+ Z(x)− Z(y)), (2.136)

the support of which is located on solutions of the equation

t+ Z(x)− Z(y) = 0. (2.137)

This equation is of fundamental importance for the free fermion CFT,112,131 as
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it shows that modular flow is multi-local. To see what this means, recall from
our previous derivations that the function Z(x) is strictly increasing in each
interval [an, bn] with Z(an) = −∞ and Z(bn) = ∞, as illustrated in fig. 2.18.
This implies that, for fixed y and t, there is one solution of eq. (2.137) per
interval!

Figure 2.18: Sketch of the structure of solutions to eq. (2.137): For any given
value of Z(y) − t (dotted black), eq. (2.137) has two solutions
xn(t, y), one per interval (solid dark blue). The graph of the
function Z(x) is given in solid red.

Defining xn(t, y) as the solution in the n-th interval, i.e.,

t+ Z(xn(t, y))− Z(y) = 0, xn(t, y) ∈ [an, bn],

you can see from eq. (2.136) that

σt(ψ∗(y)) = −2i sinh(πt)
∑
n

G(xn(t, y)− y)
Z ′(xn) ψ∗(xn(t, y)) (2.138)

is a superposition of one localised field operator per interval for any t 6= 0. In
particular, consider the case of just a single interval [a, b], such that

Z(x) = 1
2π log x− a

b− x
, Z ′(x) = 1

2π
b− a

(x− a)(b− x) .

We can then solve eq. (2.137) explicitly: It takes the form

(x− a)(b− y)
(b− x)(y − a) = e−2πt,

yielding
x(t, y) = e2πta(b− y) + b(y − a)

e2πt(b− y) + (y − a)
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and (after some algebra)

−2i sinh(πt)G(x(t, y)− y)
Z ′(x) = b− a

eπt(b− y) + e−πt(y − a) ,

so that we recover the Hislop-Longo result (2.35) with h = 1/2.

For two intervals, eq. (2.137) is quadratic and still analytically solvable.
The general structure of the solutions was already presented by Casini and
Huerta107 and subsequently formally analysed by Rehren and Tedesco.131 Here,
I will not cover them quantitatively, since for larger numbers of intervals,
eq. (2.137) becomes analytically intractable anyway. Nevertheless, the key
observation is always the same: There is one solution per interval, so that
σt(ψ∗(y)) is multi-local with one localised field operator ψ∗(xn(t, y)) per inter-
val. Each of these localised operators comes with prefactor of

−2i sinh(πt)G(xn(t, y)− y)
Z ′(xn(t, y)) ,

which, due to the appearance of Z ′, looks like some multi-local version of the
action of the conformal group from eq. (2.33). Recalls also that eq. (2.138) is
just the result for the one-dimensional problem associated to one chirality. The
actual two-dimensional result can be retrieved by changing back from lightray
coordinates x± to the original x0, x1, as discussed at the end of section 2.2.2.
In this, however, we will have to be careful: The location of the Dirac fermion
field

ψ(x0, x1) =

ψ+(x+)

ψ−(x−)


can only be restored given a pair of chiral fermions ψ±. The question is then,
how do we group a multi-local expression, such asc1ψ+(x+

1 ) + c2ψ+(x+
2 )

c̃1ψ−(x−1 ) + c̃2ψ−(x−2 )

 , x±n ∈ [a±n , b±n ]

into pairs of chiral fermions? For general multi-local expressions, there is no
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unique answer to this problem and, e.g.,c1ψ+(x+
1 )

c̃2ψ−(x−2 )

+

ccψ+(x+
c )

c̃1ψ−(x−1 )


would qualify as a valid split. However, the resulting Dirac fermion fields would
be located outside of the double cones corresponding to the intervals [a±n , b±n ],
so Tomita’s theorem would not apply. Indeed, there is only one unique way of
pairing the fields correctly and that is to take

ψ(x0
n, x

1
n) =

cnψ+(x+
n )

c̃nψ−(x−n )

 , x±n ∈ [a±n , b±n ]. (2.139)

We can now repeat the analysis for the thermal state on the line, given by
solutions (2.120) and (2.121). Again, Hλ does not depend on λ, so the previous
derivation goes through without a single change and eqs. (2.136) and (2.138)
are still valid, albeit with G and Z given by eqs. (2.71) and (2.121). Modular
flow is again multi-local with support at the solutions of eq. (2.137). The only
effect of finite temperature is that these solutions are shifted away from their
vacuum positions. For low temperatures (β →∞), you see that

sinh π(x− a)/β
sinh π(b− x)/β ∼

x− a
b− x

,

which recovers the vacuum results. For high temperatures (β → 0) on the
other hand, assume that x ∈ [am, bm] for some m. We then have

Z(x) ∼ 1
β

[
x− am + bm

2 −
∑
n>m

bn − an
2 +

∑
n<m

bn − an
2

]

and if you insert this in eq. (2.137), you quickly see that it yields x = y− βt if
x, y are in the same interval, i.e., we verified that modular flow coincides with
time evolution in this limit. The multi-local solutions (those where x, y are in
different intervals) also show linear transport of the form x = yβt+const. but
their amplitude in eq. (2.138) scales asymptotically ∝ 1/β. The case of finite
β is an interpolation between these cases: As β gets smaller, for fixed t, the
multi-local solutions are pushed towards the boundary and their amplitude
gets smaller. In the context of AdS/CFT, this can be given the interpretation



2.4 Results 85

of a red-shift of entanglement near boundaries/horizons.41,43

Next on the list is the vacuum state on the circle, given by eqs. (2.122),
(2.123) and (2.125). Again, Hλ is independent of λ for anti-periodic boundary
conditions, so that the previous analysis applies. Obviously, the key equa-
tion (2.137) is now periodic, so that its solutions shift as the intervals are moved
around the circle. The interesting case is that of periodic boundary conditions,
where there is an additional contribution to the spectral measure (2.134), orig-
inating in the zero-mode contribution

δH1/(1+ζ) = 1
2 tanh |V | log(−ζ)

2 = 1
2

(−ζ)|V | − 1
(−ζ)|V | + 1 .

The extra term of the spectral measure thus takes the form

δ
[dEζ

dζ

]
= − 1

4πi

[
eπ∆Z e−iπ|V |ζ |V | − 1

e−iπ|V |ζ |V | + 1 − e−π∆Z eiπ|V |ζ |V | − 1
eiπ|V |ζ |V | + 1

]
ζ i∆Z−1

= − 1
2πi sinh(π∆Z)ζ i∆Z−1 (2.140)

+ 1
2πi

[ eπ∆Z

e−iπ|V |ζ |V | + 1 −
e−π∆Z

eiπ|V |ζ |V | + 1

]
ζ i∆Z−1.

(2.141)

While the first of these terms can be evaluated easily in eq. (2.133), the second
one looks scary. Fortunately, we can use the relation112

1
1 + y

= i
2

∫
R
ds yis

sinh πs+ i0 , y ∈ C \ R−, (2.142)

which can be derived from complex integral along the Hankel contour. Insert-
ing y = e±iπ|V |ζ |V |, you obtain

δ
[dEζ

dζ

]
= − 1

2πi sinh(π∆Z)ζ i∆Z−1

+ 1
2π

∫
R
ds sinh π(∆Z + s|V |)

sinh πs+ i0 ζ i(s|V |+∆Z)−1, (2.143)
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such that eq. (2.133) yields

δΣt = − 1
2πi sinh(π∆Z)

∫ ∞
0

dζ ζ i(t+∆Z)−1

+ 1
2π

∫
R
ds sinh π(∆Z + s|V |)

sinh πs+ i0

∫ ∞
0

dζ ζ i(t+s|V |+∆Z)−1

= i sinh(π∆Z)δ(t+ ∆Z)

+
∫
R
ds sinh π(∆Z + s|V |)

sinh πs+ i0 δ(t+ s|V |+ ∆Z)

= −i sinh(πt)δ(t+ ∆Z) + 1
|V |

sinh πt
sinh π(t+ ∆Z)/|V | − i0 ,

where the −i0 in the denominator is still present to regularise σt as a distribu-
tion. To obtain a more compact result, we shall use a different regularisation,
namely the Cauchy principal value116 P , which is related to our previous reg-
ularisation by the Kramers-Kronig relation116

1
z ± i0 = w-lim

ε↘0

z ∓ iε
z2 + ε2

= P 1
z
∓ iπδ(z). (2.144)

Combining this with the above, you see that the Dirac delta distributions
cancel, hence,43

δΣt(x, y) = 1
|V |
P sinh πt

sinh π[t+ Z(x)− Z(y)]/|V | (2.145)

and correspondingly

δσt(ψ∗(y)) = 1
|V |
P
∫
V

dx sinh πt
sinh π[t+ Z(x)− Z(y)]/|V |ψ

∗(x). (2.146)

As you see, the zero-mode contribution to the modular flow is completely non-
local, i.e., δσt(ψ∗(y)) is smeared our everywhere in the entangling region V ,
presenting a complete breakdown of the Hislop-Longo result (2.35). However,
similar to the derivation of the resolvent, we can recover the behaviour from a
slightly better behaved situation, namely the one of finite temperature on the
circle.
To treat the case of finite temperature, we insert the solutions (2.128)

and (2.129) in eq. (2.134). Here, the branch cut of Hλ is completely non-
trivial. In order to handle it, we use the series representation

H1/(1+ζ)(x− y) =
∑
k

e−2πik(x−y)

1 + e−2πβk+µ , µ = −|V | log(−ζ)
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from eq. (2.92), where the summation is over k ∈ Z for periodic and k ∈ Z+1/2
for anti-periodic boundary conditions. This allows to write

H1/(1+ζ±i0)(x− y) =
∑
k

e−2πik(x−y)

1 + e−2πβke±iπ|V |ζ−|V |

= i
2
∑
k

e−2πik(x−y)
∫
R
ds e−2πiβkse∓πs|V |

sinh πs+ i0 ζ−is|V |,

where I used eq. (2.142) with y = e−2πβke±iπ|V |ζ−|V |. Plugging this into
eq. (2.134), you find

dEζ
dζ = − 1

2π
∑
k

∫
R
ds e−2πik(x−y+βs) sinh π(∆Z − s|V |)

sinh πs+ i0 ζ i(∆Z−s|V |)−1, (2.147)

so that eq. (2.133) evaluates to

Σt(x, y) = − 1
2π

∑
k

∫
R
ds e−2πik(x−y+βs)

× sinh π(∆Z(x, y)− s|V |)
sinh πs+ i0

∫ ∞
0

dζ ζ i(t+∆Z(x,y)−s|V |)−1

= −
∑
k

∫
R
ds e−2πik(x−y+βs)

× sinh π[∆Z(x, y)− s|V |]
sinh πs+ i0 δ(t+ ∆Z(x, y)− s|V |)

= 1
|V |

sinh πt
sinh π[t+ ∆Z(x, y)]/|V |

∑
k

e−2πik(x−y+β[t+∆Z(x,y)]/|V |).

The remaining series yields an (anti-)periodic Dirac delta, depending on whether
the summation is performed over integers or half-integers. As a result, you ob-
tain43

Σt(x, y) = 1
|V |

sinh πt
sinh π[t+ Z(x)− Z(y)]/|V |
×
∑
k∈Z

(±1)kδ(x− y + β[t+ Z(x)− Z(y)]/|V |+ k), (2.148)

which has support on solutions of

x− y + β

|V |
[t+ Z(x)− Z(y)] + k = 0, k ∈ Z. (2.149)

In contrast to the solutions that we had so far, for fixed y, t, this equation
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has one solution per interval for each value of k ∈ Z, hence, modular flow is
“infinitely” multi-local even for a single interval, as sketched in fig. 2.19.

Figure 2.19: Sketch of the structure of solutions to eq. (2.149): For any given
value of y+β[Z(y)− t]/|V |−k with k ∈ Z—here, k = 0 (dotted
black) and k = ±1 (dotted grey)—, eq. (2.149) has a unique
solution xk(t, y) in the interval (solid dark blue), culminating in
infinite multi-locality, even for a single interval.

Denoting the solution for fixed k in the n-th interval by xnk(t, y), the above
can be rewritten as

Σt(x, y) =
∑
nk

(±1)k sinh πt
sinh π[t+ Z(xnk(t, y))− Z(y)]/|V |

δ(x− xnk(t, y))
|V |+ βZ ′(xnk(t, y)) ,

so that

σt(ψ∗(y)) =
∑
nk

(±1)k sinh πt
sinh π[t+ Z(xnk(t, y))− Z(y)]/|V |

× ψ∗(xnk(t, y))
|V |+ βZ ′(xnk(t, y)) . (2.150)

To finish this derivation, let us discuss the behaviour of eq. (2.148) as we vary
the temperature: For large temperatures (β → 0), similarly to our observations
for the thermal state on the line, eq. (2.149) has a localised solution x =
y − βt/|V |, as well as infinitely many solutions near the boundaries of the
entangling region, whose amplitudes in eq. (2.148) are at least exponentially
suppressed because of the sinh in the denominator. This behaviour indicates
that the thermal state of small inverse temperature β ≈ 0 “looks like” a state
of inverse temperature β/|V | if you only have access to a region of size |V |.132
This is because heat capacity can be defined on a system of finite size, such as
a circle, and is of course extensive. The limit of low temperatures (β →∞) is
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interesting as well since, in this limit, eq. (2.149) becomes

t+ Z(x)− Z(y) + k
|V |
β

= 0, k ∈ Z,

whose solutions are spread densely in all intervals. Indeed, in the periodic
variant of eq. (2.148), we could treat ω := k/β as a continuous variable so that
the summation over k actually becomes a Riemann integral

σt(ψ∗(y)) ∼
∑
n

∫
R

dω sinh πt
sinh π[t+ Z(xnω(t, y))− Z(y)]/|V |

ψ∗(xnω(t, y))
Z ′(xnω(t, y))

with xnω(t, y) the solutions to

t+ Z(x)− Z(y) + ω|V | = 0.

This integral can be brought to a familiar form by changing variables to xn =
xnω(t, y). Since ω takes on every value on the real axis, xn covers all of [an, bn].
Furthermore, we have

dω
dxn

= −Z
′(xn)
|V |

, hence, dω
Z ′(xn) = −dxn

|V |
,

so that you finally obtain

σt(ψ∗(y)) ∼ 1
|V |

∫
V

dx sinh πt
sinh π[t+ Z(x)− Z(y)]/|V |ψ

∗(x),

which is exactly the zero-mode contribution from eq. (2.146). Finally, the
multi-local contributions can be recovered from the solutions with k = 0.
This, however, requires a much more subtle analysis of the limit β → ∞ and
I will omit it here. Again, finite temperature interpolates between the above
extreme cases. As the temperature increases from absolute zero, the non-
local zero-mode contribution breaks apart into a discrete infinity of multi-local
contributions, which are then pushed towards the boundary of V , where their
amplitude is damped. For anti-periodic boundary conditions, there is no-zero
mode contribution – nevertheless the infinity of multi-local contributions at
finite temperature remains.

2.4.4 Modular correlation function
Now that we computed the action of modular flow on free fermionic fields
σt(ψ∗(y)), let us study it in more detail and derive the modular correlation
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function
Gt(x, y) = Tr

[
ρV ψ(x)σt

(
ψ∗(y)

)]
.

We could try to do this by substituting the results from eqs. (2.138), (2.146)
and (2.150) and directly compute, e.g.,

Gt(x, y) = −2i sinh(πt)
∑
n

G(xn(t, y)− y)
Z ′(xn) Tr

[
ρV ψ(x)ψ∗(xn(t, y))

]
= −2i sinh(πt)

∑
n

G(xn(t, y)− y)
Z ′(xn) G(x− xn(t, y))

for the vacuum state on the line with xn(t, y) the solution of eq. (2.137) in
the interval [an, bn]. While this might actually work in the cases of up to four
intervals, where eq. (2.137) can be solved analytically, the general case of an
arbitrary number of intervals seems elusive. In particular, the corresponding
problem (2.149) on the circle at finite temperature is a transcendental equation
with no hope for a closed solution. Fortunately, we can just as well compute the
modular correlation function from eq. (2.49) via the derived spectral calculus
and, as it turns out, obtain a closed form result for an arbitrary number of
intervals.

Let us again start with the solution on the real line, where the spectral
measure of the restricted propagator is given by

dEζ
dζ = i

π
sinh(π∆Z)Gζ i∆Z−1, λ = 1

1 + ζ
∈ spec(G|V ) = (0, 1),

as derived in eq. (2.135). The function Z and propagator G are again given by
eq. (2.119) and eq. (2.70), respectively. From eqs. (2.49) and (2.56), you find

Gt =
∫ ∞

0
dζ dEζ

dζ
ζ it

1 + ζ

= i
π

sinh(π∆Z)G
∫ ∞

0

dζ
ζ(1 + ζ)ζ

i(t+∆Z).

This integral can be readily evaluated by the same trick that we used before
in the derivation of eq. (2.71): Consider the integral∮

Γ

dζ
ζ(1 + ζ)(−ζ)i(t+∆Z)

along the Hankel contour Γ from fig. 2.9. The circular contributions to this
integral vanish as long as the modular parameter t lies inside the strip −1 <
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=(t) < 0, that we already know from the KMS condition (2.24). Therefore,∮
Γ

dζ
ζ(1 + ζ)(−ζ)i(t+∆Z) =

∫ ∞
0

dζ
ζ(1 + ζ)

[
(−ζ + i0)i(t+∆Z) − (−ζ − i0)i(t+∆Z)

]
= −2 sinh π(t+ ∆Z)×

∫ ∞
0

dζ
ζ(1 + ζ

ζ i(t+∆Z),

so that
Gt = sinh π∆Z

sinh π(t+ ∆Z)G×
1

2πi

∮
Γ

dζ
ζ(1 + ζ)(−ζ)i(t+∆Z).

To evaluate the contour integral, note that the only pole inside the Hankel
contour lies at ζ = −1 and is encircled clockwise, hence, as independently
derived by Hollands,112

Gt(x, y) = sinh π[Z(x)− Z(y)]
sinh π[t+ Z(x)− Z(y)]− i0G(x− y), (2.151)

where the regulator −i0 is present in the denominator because the previous
derivation only holds on the strip −1 < =(t) < 0. To see how useful this
equation is, let us verify eq. (2.51) by explicitly computing the branch cut
behaviour

Gt−i0(x, y)−Gt+i0(x, y)

because sinh is strictly increasing along the real axis and satisfies the Cauchy-
Riemann differential equations, we have

sinh π[t± i0 + Z(x)− Z(y)] = sinh π[t+ Z(x)− Z(y)]± i0,

so that you can use the Kramers-Kronig relation (2.144) to derive

1
sinh π(x− i0) −

1
sinh π(x+ i0) = 2iδ(x).

This implies

Gt−i0(x, y)−Gt+i0(x, y) = −2i sinh(πt)G(x− y)δ(t+ Z(x)− Z(y)),

indeed reproducing eq. (2.136).

By the same reasoning as before, the result (2.151) continues to hold for the
thermal state on the line, with Z and G given by eq. (2.121) and eq. (2.71),
respectively. Again, the poles of Gt are precisely at the solutions of eq. (2.137)
and we can use eq. (2.51) to provide an independent derivation of Σt. Further-
more, since the state under consideration is thermal, the same arguments that
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led to eq. (2.51) can be used to derive a second KMS condition, with respect
to translations in time / along the real axis: It takes the form

Tr[ρ{ψ(x)σt(ψ∗(y))}]
= Tr[ρψ(x)σt(ψ∗(y))] + Tr[ρσt(ψ∗(y))ψ(x)]
= Tr[ρψ(x− i0)σt(ψ∗(y))] + Tr[ρψ(x− iβ + i0)σt(ψ∗(y))]
= Gt(x− i0, y) +Gt(x− iβ + i0, y),

where I used eq. (2.24) in the second equality. While the left hand side again
equals Σt(x, y), we can plug the result (2.151) into the right hand side to obtain

Σt(x, y) = sinh π[Z(x)− Z(y)]
sinh π[t+ Z(x)− Z(y)]− i0G(x− y − i0)

− sinh π[Z(x)− Z(y)]
sinh π[t+ Z(x)− Z(y)] + i0G(x− y + i0).

Using the Kramers-Kronig relation eq. (2.144) again, this yields (for t 6= 0)

Σt(x, y) = −2i sinh(πt)G(x− y)δ(t+ Z(x)− Z(y)),

providing yet another independent derivation of eq. (2.136) on the line at finite
temperature.

The result (2.151) also holds for the vacuum state on the circle with anti-
periodic boundary conditions, with Z from eq. (2.123) and G from eq. (2.77).
For periodic boundary conditions, the zero-mode causes a non-trivial correction
to the spectral measure of the form

δ
[dEζ

dζ

]
= − 1

2πi sinh(π∆Z)ζ i∆Z−1

+ 1
2π

∫
R
ds sinh π(∆Z + s|V |)

sinh πs+ i0 ζ i(s|V |+∆Z)−1,

as derived in eq. (2.143). The corresponding correction to the modular corre-
lation function is

δGt = − 1
2πi sinh(π∆Z)

∫ ∞
0

dζ
z(1 + ζ)ζ

i(t+∆Z)

+ 1
2π

∫
R
ds sinh π(∆Z + s|V |)

sinh πs+ i0

∫ ∞
0

dζ
z(1 + ζ)ζ

i(t+s|V |+∆Z)



2.4 Results 93

and can be partly evaluated to

δGt = 1
2

sinh π∆Z
sinh π(t+ ∆Z)

+ 1
2i

∫
R

ds
sinh πs+ i0

sinh π(∆Z + s|V |)
sinh π(t+ s|V |+ ∆Z)− i0 (2.152)

by the same methods as before. Note that I included a regulating −i0 in the
denominator of the last fraction, coming from the fact that δGt is analytic on
the strip −1 < =(t) < 0. Sadly, the integral over s can not be done analytically
for a general choice of V , but only for rational entangling region size |V |. To
see how this works, first change variables to w = eπs, dw/w = πds so that the
remaining integral becomes

e−πt
iπ

∫ ∞
0

dw
w2 − 1 + i0

w2|V | − e−2π∆Z

w2|V | − e−2π(t+∆Z) − i0 .

Assume now a |V | = p/q with gcd(p, q) = 1. You can then change variables
once more to v = w1/q, dw = qvq−1 to obtain

qe−πt
iπ

∫ ∞
0

dv vq−1

v2q − 1 + i0
v2p − e−2π∆Z

v2p − e−2π(t+∆Z) − i0 . (2.153)

For odd q, the integrand is even, so that the integral may be rewritten as

qe−πt
2πi

∫
R

dv vq−1

v2q − 1 + i0
v2p − e−2π∆Z

v2p − e−2π(t+∆Z) − i0

and since the integrand scales like ∼ v−q−1 for large |v|, you may even close
the range along a semi-circle of infinite radius. Choosing to close the contour
in the positive half plane, you can compute the integral via residues. Let us
start with the poles at v = eiπk/q with k = 0, . . . q − 1, whose contributions to
the integral are

qe−πt Resv=eiπk/q
1

2πi
vq−1

v2q − 1 + i0
v2p − e−2π∆Z

v2p − e−2π(t+∆Z) − i0

=qe−πt lim
v→eiπk/q

vq−1(v − eiπk/q)
v2q − 1 + i0

v2p − e−2π∆Z

v2p − e−2π(t+∆Z) − i0

=qe−πt(−1)ke−iπk/q e2πik|V | − e−2π∆Z

e2πik|V | − e−2π(t+∆Z) − i0

[d(v2q − 1)
dv

∣∣∣∣
v=eiπk/q

]−1

=1
2(−1)k sinh π(ik|V |+ ∆Z)

π(t+ ik|V |+ ∆Z)− i0 .
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Similarly, the poles at v = e−π(t+∆Z)/peiπk/p with k = 0, . . . p − 1 yield the
contributions

qe−πt Resv=e−π(t+∆Z−ik)/p
1

2πi
vq−1

v2q − 1 + i0
v2p − e−2π∆Z

v2p − e−2π(t+∆Z) − i0

=qe−πt lim
v→e−π(t+∆Z−ik)/p

vq−1(v2p − e−2π∆Z)
v2q − 1 + i0

v − eiπk/q

v2p − e−2π(t+∆Z) − i0

= 1
2|V |e

−πt e−π(t+∆Z−ik)(q−1)/p(e−2π(t+∆Z) − e−2π∆Z)
e−2π(t+∆Z−ik)/|V | − 1 + i0 eπ(t+∆Z−ik)(2p−1)/p

= 1
2|V |

sinh πt
sinh π(t+ ∆Z − ik)/|V | − i0 .

Finally, there is a pole at v = −1 + i0, which yields a contribution of

qe−πt Resv=−1+i0
1

2πi
vq−1

v2q − 1 + i0
v2p − e−2π∆Z

v2p − e−2π(t+∆Z) − i0

=− 1
2

sinh π∆Z
sinh π(t+ ∆Z)− i0 ,

which exactly cancels the first term in δGt that we already computed. As a
result, we obtain

δGt(x, y) = 1
2

q−1∑
k=0

(−1)k sinh π[ik|V |+ Z(x)− z(y)]
π[t+ ik|V |+ Z(x)− Z(y)]− i0

+ 1
2|V |

p−1∑
k=0

sinh πt
sinh π[t+ Z(x)− Z(y)− ik]/|V | − i0 (2.154)

for rational |V | = p/q, gcd(p, q) = 1 with odd q.

For even denominator q, the evaluation of eq. (2.153) can be done by partial
fractions. This is even more tedious than the previous analysis and I will leave
it as an exercise. The result for |V | = 1/2 is43

δGt = sinh πt
sinh 2π[t+ Z(x)− Z(y)]− i0

(
1− 2i[t+ Z(x)− Z(y)]

)
, (2.155)

which is the first time that the function Z appears outside of an exponential.
Note that this implies that δGt now has a branch cut along V since Z has one
there. This makes it particularly interesting to check the validity of eq. (2.51),
i.e., we would like to compute

δGt−i0(x, y)− δGt+i0(x, y)
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and check if it matches the non-local contribution eq. (2.145). To do this,
we first have to find the correct analytic continuation of Gt to the upper half
plane, since eq. (2.155) is only valid on the strip −1 < =(t) < 0. By the very
definition (2.50) of Gt and the KMS condition (2.24), we know

δGt+i0(x, y) = −δGt−i+i0(x, y),

so that

δGt−i0(x, y)− δGt+i0(x, y) = δGt−i0(x, y) + δGt−i+i0(x, y)

= 2P sinh πt
sinh 2π[t+ Z(x)− Z(y)] ,

where I used the Kramers-Kronig relation (2.144) on the pole of the sinh.
This exactly reproduces the term eq. (2.145). While this was of course to be
expected, I would like to stress that, to the best of my knowledge, our work43
was the first time that the branch cut behaviour of a modular correlation
function was ever analysed analytically in a non-trivial case.

Finally, let us consider the thermal state on the circle. Here the spectral
measure is given by

dEζ
dζ = − 1

2πζ
∑
k

∫
R
ds e−2πik(x−y+βs) sinh π(∆Z(x, y)− s|V |)

sinh πs+ i0 ζ i(∆Z(x,y)−s|V |)

as already derived in eq. (2.147). The same steps that led to eq. (2.151) then
yield

Gt =
∫ ∞

0
dζ dEζ

dζ
ζ it

1 + ζ

= − 1
2π

∑
k

∫
R
ds e−2πik(x−y+βs) sinh π(∆Z − s|V |)

sinh πs+ i0

∫ ∞
0

dζ ζ
i(t+∆Z−s|V |)

ζ(1 + ζ)

= i
2
∑
k

∫
R
ds e−2πik(x−y+βs)

sinh π(t+ ∆Z − s|V |)− i0
sinh π(∆Z − s|V |)

sinh πs+ i0

= i
2
∑
k

∫
R
(±1)kds δ(x− y + βs+ k)

sinh π(t+ ∆Z − s|V |)− i0
sinh π(∆Z − s|V |)

sinh πs+ i0 .

Performing the summation over k yields an (anti-)periodic Dirac delta, so that
the integral over s can be evaluated as well. When the dust settles, you are
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left with43

Gt(x, y) = 1
2iβ

∑
k∈Z

(±1)k
sinh π(x− y + k)/β − i0

× sinh π[Z(x)− Z(y) + (x− y + k)|V |/β]
sinh π[t+ Z(x)− Z(y) + (x− y + k)|V |/β]− i0 . (2.156)

Note that this again satisfies two KMS conditions, with respect to x and t
and you can recover eq. (2.148) from either of them. For the KMS condition
with respect to x, this is achieved by the extra factor of |V |/β in the second
fraction, which cancels the quasi-periodicity (2.127) of Z.

Again, it is instructive so see what happens for low temperatures (β → 0)
and periodic boundary conditions: In this limit, the summation over k turns
into an integral over s = k/β, so that

Gt ∼
1
2i

∫
R

ds
sinh πs− i0

sinh π(∆Z + s|V |)
sinh π(t+ ∆Z + s|V |)− i0 ,

which is exactly the non-local term in eq. (2.152). Again, the multi-local terms
require a more careful analysis of the limit and I will not discuss them here.

2.4.5 Modular Hamiltonian

Next, let us compute the kernel of the modular Hamiltonian

k = − log
[1−G|V

G|V

]

from eq. (2.46). Of course, we could do this in a similar fashion as before, by
evaluating via the derived spectral calculus. However, since we already derived
the kernel Σt of the action of modular flow, it is much easier to just compute

k = i d
dtΣt

∣∣∣∣
t=0
,

as shown in eq. (2.48).

For the result (2.136), which is valid on the line in the vacuum and ther-
mal state, as well as the circle with anti-periodic boundary conditions in the
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vacuum state, this yields

k = d
dt2 sinh(πt)G(x− y)δ(t+ Z(x)− Z(y))

∣∣∣∣
t=0

= 2πG(x− y)δ(Z(x)− Z(y))

= 2π
∑
n

1
Z ′(xn(y))G(xn(y)− y)δ(x− xn(y)),

where xn(y) ∈ [an, bn] is the solution of the equation

Z(x)− Z(y) = 0 (2.157)

in the n-th interval, as you could have already expected from eq. (2.137).
The solutions with x, y in different intervals of this equation yield multi-local
contributions to k, while the solution x = y needs further discussion. Since
G(z) ∼ 1/2πi(x− y), this solution has the structure

δ(x− y)
x− y

,

which is ill defined as it stands. We can however use the following trick107 to
regularise it: From the distributional properties of δ, we see that δ(x−y)/(x−y)
has to vanish for x 6= y, while it also needs to satisfy∫

dy δ(x− y)
x− y

(x− y)f(y) = f(x)

for any suitably regular test function f(x). Now, since

−
∫

dy δ′(x− y)(x− y)f(y) =
∫

dy δ(x− y)[f(y)− (x− y)f ′(y)] = f(x),

via integration by parts, we see that the sought after regularisation needs to
be of the form

δ(x− y)
x− y

= −δ′(x− y) + r(x)δ(x− y),

fore some r(x) that can be fixed by requiring hermiticity of k. In the above
case, this amounts to

1
iZ ′(x)

δ(x− y)
x− y

= 1
iZ ′(x)

[
− δ′(x− y) + r(x)δ(x− y)

]
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being hermitian. Since∫
dx dy f(x) 1

Z ′(x)
[
− δ′(x− y) + r(x)δ(x− y)

]
g(y)

=
∫

dx f(x)
[
− Z ′′(x)

[Z ′(x)]2 + r(x)
Z ′(x)

]
g(x) +

∫
dx 1
Z ′(x)f

′(x)g(x),

for arbitrary test functions f, g, we thus have to require∫
dx f(x)

[
− Z ′′(x)

[Z ′(x)]2 + r(x)
Z ′(x)

]
g(x) +

∫
dx 1
Z ′(x)f

′(x)g(x)

= −
∫

dx g(x)
[
− Z ′′(x)

[Z ′(x)]2 + r(x)
Z ′(x)

]
f(x)−

∫
dx 1
Z ′(x)g

′(x)f(x).

You can now integrate the second integral on the right hand side by parts to
find

r(x) = 1
2
Z ′′(x)
Z ′(x) .

Putting everything together, you obtain107

k(x, y) = 1
iZ ′(x)

[
− δ′(x− y) + 1

2
Z ′′(x)
Z ′(x) δ(x− y)

]
+ 2π

∑
xn(y)6=y

1
Z ′(xn(y))G(xn(y)− y)δ(x− xn(y)). (2.158)

Note that, in the regularisation of G(x−y)δ(x−y), we only used the asymptotic
behaviour of G(z) as z →∞. This means that eq. (2.158) is also valid at finite
temperature and so on. We already discussed the properties of the multi-local
couplings before, so I would only like to talk about the local piece

1
iZ ′(x)

[
− δ′(x− y) + 1

2
Z ′′(x)
Z ′(x) δ(x− y)

]

here: Because of eq. (2.45), the corresponding piece of the modular Hamilto-
nian is given by

Kloc = i
∫
V

dx dy 1
Z ′(x)ψ

∗(x)δ′(x− y)ψ(y) + . . . ,

where the ellipses correspond to the r-dependent term, i.e., an anti-self-adjoint
operator that is added to ensure self-adjointness. Performing another integra-
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tion by parts, this yields

Kloc =
∫
V

dx 1
Z ′(x)T00(x) + . . . , (2.159)

where T00 is the energy-momentum tensor from eq. (2.98). This shows thatKloc
is related to a symmetry transformation. Furthermore, writing the reduced
density matrix as ρ = e−K , you see that Z ′(x) takes the rôle of a “local
temperature”, which is why its inverse is also called the inverse entanglement
temperature132

β(x) = 1
Z ′(x) . (2.160)

This gives a physical interpretation to the fact that Z diverges at the boundary
of the entangling region: The divergence of entanglement temperature implies
that the state locally “looks” like a very hot thermal state, originating in strong
fluctuations that are caused by entanglement with the exterior of the region.

Let us now proceed to see the effect of the zero-mode of the periodic circle
in the vacuum state. From the extra contribution (2.145), we obtain

δk(x, y) = i
|V |
P d

dt
sinh πt

sinh π[t+ Z(x)− Z(y)]/|V |

∣∣∣∣
t=0

= iπ
|V |
P 1

sinh π[Z(x)− Z(y)]/|V | , (2.161)

as independently derived by Klich, Vaman, and Wong.109 This non-local term
is present even if V = [a, b] is just a single interval. It yields a long ranged
coupling in the modular Hamiltonian that behaves like

δk(x, y) ∼ P i
Z(x)− Z(y)

close to solutions of eq. (2.157).
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in the thermal state on the circle, we can use eq. (2.148) to obtain

k(x, y) = i d
dt

1
|V |

sinh πt
sinh π[t+ Z(x)− Z(y)]/|V |

×
∑
k∈Z

(±1)kδ(x− y + β[t+ Z(x)− Z(y)]/|V |+ k)
∣∣∣∣
t=0

= iπ
|V |

1
sinh π[Z(x)− Z(y)]/|V |

×
∑
k∈Z

(±1)kδ(x− y + β[Z(x)− Z(y)]/|V |+ k).

Again, denoting by xnk(y) the solution of

x− y + β[Z(x)− Z(y)]/|V |+ k = 0, k ∈ Z

in the n-th interval, the above can be rewritten as

k(x, y) = −iπ
∑
nk

(±1)k
|V |+ βZ ′(xnk)

δ(x− xnk(y))
sinh π(xnk(y)− y + k)/β .

Similarly to the vacuum case, there is a local contribution coming from the
solution xn0 = y, taking the form

− iπ
|V |+ βZ ′(x)

δ(x− y)
sinh π(x− y)/β

= − iβ
|V |+ βZ ′(x)

[
− δ′(x− y) + 1

2
βZ ′′(x)

|V |+ βZ ′(x)δ(x− y)
]
.

The kernel of the modular Hamiltonian is therefore41,113

k(x, y) = − iβ
|V |+ βZ ′(x)

[
− δ′(x− y) + 1

2
βZ ′′(x)

|V |+ βZ ′(x)δ(x− y)
]

+ π

iβ
∑
xnk 6=y

(±1)k
Z ′(xnk)

δ(x− xnk(y))
sinh π(xnk(y)− y + k)/β . (2.162)

Again, the local term is proportional to the energy-momentum tensor, with
inverse entanglement temperature

β(x) = β

|V |+ βZ ′(x) .

Let us once more discuss the high and low temperature limits of this result:
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For low temperatures (β →∞), we have

β(x) ∼ 1
Z ′(x) ,

which recovers the vacuum result (2.160). For high temperatures (β ≈ 0), the
inverse entanglement temperature asymptotically behaves like

β(x) ∼ β

|V |
,

which is constant with respect to x and confirms our observation from the
discussion of eq. (2.150), that the reduced density matrix of a thermal state at
high temperature “looks like” a thermal state at inverse temperature β/|V |.

2.4.6 Entanglement entropy

Now that we computed the modular data of free fermions, i.e., the dynamical
structure of entanglement, let us proceed to the study of the static quantities
characterising entanglement, i.e, the entanglement Rényi entropies (1.19) and
their limits (1.20). To do this, we will evaluate the relation

Sα = 1
1− α Tr log

[
G|αV + (1−G|V )α

]
form eq. (2.52) via the formula

Tr[f(G|V )] =
∫ 1

0
dλ Tr

[dEλ
dλ

]
f(λ)

that we derived in eq. (2.58), during our study of the spectral calculus as-
sociated to the restricted propagator. Combining the above equations, you
find

Sα = 1
1− α

∫ 1

0
dλ Tr

[dEλ
dλ

][
log

(
1 +

[1− λ
λ

]α)
+ α log λ

]
, (2.163)

where the spectral measure Eλ was already derived before.
Beginning again with the vacuum state on the real line, we know from

eq. (2.135) that the spectral measure takes a particularly nice form when ex-
pressed in terms of the variable ζ = (1−λ)/λ. To evaluate the above integral,
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it makes sense to first compute the trace

Tr
[dEζ

dζ

]
= i
πζ

∫
V

dx lim
y→x

sinh π[Z(x)− Z(y)]G(x− y)ζ i[Z(x)−Z(y)]

= 1
2πζ

∫
V

dx lim
y→x

Z(x)− Z(y)
x− y

= 1
2πζ

∫
V

dxZ ′(x).

Obviously, since Z diverges at the boundary of V , this trace is divergent. On
the other hand, this was to expected from the very beginning, since we are
trying to compute an entanglement measure in QFT, where we know that
every region shares an infinite amount of entanglement with its complement
due to the Reeh-Schlieder theorem. This goes back all the way to the discussion
in section 2.1.1 where we found that the Hilbert space in QFT does not simply
factorise

H 6= HV ⊗HV ′

into factor spaces associated to V and its complement V ′, since the algebra
of observables A(V ) is a so-called von-Neumann factor of type III.46,72 In
particular, the non-existence of such a factorisation means that the concept of
a reduced density matrix to V is nonsensical.
Fortunately, there is a way around this issue if we make a mild assumption

on the algebraic structure of the Haag-Kastler net: Pick a slightly larger region
Ṽ that encloses V with a finite distance, as pictured in fig. 2.20. Our aim is
to use Ṽ as a “cushion” to shield V from correlations with the exterior Ṽ ′.

Figure 2.20: Sketch of the spacetime regions involved in a split inclu-
sion (2.164): The region R̃ (shaded grey) acts as a “cushion” for
the considered region R (shaded light grey), shielding it from
short-range correlations withR′ (shaded light blue). Pulling ev-
erything back to a Cauchy slice (dotted black), the same holds
for the slices Ṽ and V (solid dark blue).
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To this end, we invoke the assumption that the inclusion A(V ) ⊂ A(V ′) is
split,64,133,134 meaning that we assume the existence of an intermediate von-
Neumann factor F of type I

A(V ) ⊂ F ⊂ A(Ṽ ). (2.164)

A von-Neumann factor of type I is a von-Neumann algebra naturally isomor-
phic to the set of bounded operators. This means that there is a unitary map
H U−→ K⊗K′ for some K,K′ with

UFU∗ = B(K)⊗ 1K′ . (2.165)

While the assumption of split inclusions might seem rather technical, it can
actually be deduced from very physical assumptions about the thermodynami-
cal behaviour of the algebras, including the existence of bounds on the number
of localised degrees of freedom.135–137 To see how the split property helps in
defining a reduced density matrix, note that eq. (2.164) implies69

UA(V )U∗ ⊂ B(K)⊗ 1K′ , UA(Ṽ )′U∗ ⊂ 1K ⊗B(K′). (2.166)

Furthermore, for every density matrix ρ on H, we find a density matrix

ρ(U) := UρU∗ (2.167)

on K ⊗K′ and the partial traces

ρ
(U)
A(V ) := TrK′ [UρU∗], ρ

(U)
A(Ṽ )′ := TrK[UρU∗] (2.168)

are well defined. Unfortunately, the intermediate type I factor F is far from
unique, since we could chose any other cushioning region between V , Ṽ and
the split property would still hold. This means that, if we wish to define
entanglement (Rényi) entropies via ρ(U)

A(V ), we will have to either minimise the
result over all possible choices for F or find a canonical such choice. While both
of these possibilities have been studied by Longo and Xu for free theories138
and were found to yield finite results, I do not want to dive too deep into
the details. Rather, I would like to emphasise the central message of this
approach: A reduced density matrix can be defined by providing a cushioning
region around V , placing a cutoff on short range entanglement.

This implies that, in order to obtain a workable result for the trace of the
spectral measure, we can use the function Z̃ of a region Ṽ which is slightly
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than V , while still integrating only over V . As a result,

Tr
[dEζ

dζ

]
= 1

2πζ
∑
n

[Z̃(bn)− Z̃(an)] =: 1
2π2ζ

log `V , (2.169)

where Z̃ takes the form

Z̃(x) = 1
2π log

[
−
∏
n

x− an + ε

x− bn − ε

]

and I defined the shorthand notation `V . Note that, for a single interval,

`[a,b] = b− a
ε

,

which is the reason for the choice of prefactors in eq. (2.169). More generally,
`V is a dimensionless quantity that summarises the geometry of V . As a result
of the above, we have

Sα = 1
1− α

∫ ∞
0

dζ Tr
[dEζ

dζ

]
[log(1 + ζα)− α log(1 + ζ)]

= log `V ×
1

1− α
1

2π2

∫ ∞
0

dζ
ζ

[
log(1 + ζα)− α log(1 + ζ)

]
which simplifies to

Sα = log `V ×
1

1− α
1
π2

∫ 1

0

dζ
ζ

[
log(1 + ζα)− α log(1 + ζ)

]
,

since the integrand is invariant under exchanging ζ ↔ 1/ζ. To evaluate this
integral, note that |ζα| < 1 on the range of integration, as long as <(α) > 0.
We can thus insert the power series expansion

log(1 + ζα) =
∞∑
k=1

(−1)k−1 ζ
αk

k
(2.170)

to find

Sα = log `V ×
1

1− α
1
π2

∞∑
k=1

(−1)k−1

k

∫ 1

0
dζ[ζ(αk−1 − αζk−1]

= log `V ×
1 + α

α

1
π2

∞∑
k=1

(−1)k−1

k2 .
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Finally, you can use the relation
∞∑
k=1

(−1)k−1

k2 =
∞∑
k=1

1
k2 − 2

∞∑
k=1

1
(2k)2 = 1

2

∞∑
k=1

1
k2 = π2

12

to obtain the entanglement Rényi entropy

Sα = 1
12

1 + α

α
log `V . (2.171)

The limit α→ 1 yields the entanglement (von-Neumann) entropy

S = 1
6 log `V , (2.172)

as independently derived by Casini and Huerta,107 recovering the celebrated
single-interval result

S = c

3 log b− a
ε

by Calabrese and Cardy139 for central charge c = 1/2. On the other hand, the
limit α → 0 of eq. (2.171) is divergent, which was to be expected in the first
place since the Schmidt rank only counts the number of entangled degrees of
freedom (of which there are infinitely many in a QFT), no matter how small
the amount of entanglement may be.

Before proceeding to the computation of the Rényi entropies for other states
and geometries, let us derive a few more quantities from the result eq. (2.171).
To be more specific, we will derive the notion of relative entropy in this frame-
work: Recall from section 2.1.2, that we defined the Tomita operator via

SAΩ := A∗Ω, A ∈ A

for some choice of state von-Neumann algebra A and cyclic separating vector
Ω. Now, note that if we have another cyclic separating vector Ω̃, we can define
the relative Tomita operator SΩ‖Ω̃ via46,140

SΩ‖Ω̃AΩ := A∗Ω̃, A ∈ A. (2.173)

Again, SΩ‖Ω̃ is closable and has a unique polar decomposition

SΩ‖Ω̃ = JΩ‖Ω̃∆1/2
Ω‖Ω̃ (2.174)

with anti-unitary JΩ‖Ω̃ and positive ∆1/2
Ω‖Ω̃. We can use this to define the Connes
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Radón-Nikodym cocycle141,142[dΩ
dΩ̃

]
it

:= ∆it
Ω‖Ω̃∆−it

Ω (2.175)

where ∆ω is the modular operator associated to A and the vector Ω. As shown
by Connes,141 this one-parameter family of unitaries is always an element of A
(in contrast to the modular flow ∆it

Ω itself) and intertwines the modular flows
σt, σ̃t associated to Ω, Ω̃, in the sense that[dΩ

dΩ̃

]
it
σt(A) = σ̃t(A)

[dΩ
dΩ̃

]
it
, A ∈ A. (2.176)

Furthermore, the Connes cocycle satisfies a chain rule
[dΩ
dΩ̃

]
it

[dΩ̃
dΩ̂

]
it

=
[dΩ
dΩ̂

]
it
,

which is the reason for the above choice of notation. Finally, note that defini-
tion (2.175) implies the cocycle condition[dΩ

dΩ̃

]
i(t+s)

=
[dΩ
dΩ̃

]
it
σt

([dΩ
dΩ̃

]
is

)
.

Now that we have defined [dΩ/dΩ̃]it ∈ A, we can use it to define the relative
entropy of Ω̃ with respect to Ω by

S(Ω‖Ω̃) := i d
dt 〈Ω|

[dΩ
dΩ̃

]
it
Ω〉
∣∣∣∣
t=0
. (2.177)

While this is very abstract, we can get a better glimpse of what is going on in
the finite dimensional case: There, the modular operator takes the form

∆Ω = ρ1 ⊗ ρ−1
2

in terms of the reduced density matrices

ρ1 = Tr2[Ω⊗ Ω∗], ρ2 = Tr1[Ω⊗ Ω∗],

as already demonstrated eq. (2.16). In an entirely analogous way, you can
show that the relative modular operator is given by46

∆Ω‖Ω̃ = ρ̃1 ⊗ ρ−1
2 ,
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with ρ̃1 the reduced density matrix of the vector Ω̃. As a result, the Connes
cocycle is [dΩ

dΩ̃

]
it

= ρ̃it
1ρ
−it
1 ⊗ 1 ∈ A

and the definition (2.177) of relative entropy evaluates to the more standard
formula8

S(Ω‖Ω̃) = Tr[ρ1 log ρ1]− Tr[ρ1 log ρ̃1]. (2.178)

The first term in this expression is precisely entanglement entropy (1.17)
and we already derived its value in QFT in eq. (2.172), using split inclusions
to give a somewhat rigorous meaning to the result. The second term, however,
seems hopeless to we will resort to a standard trick again, by rewriting23,25

S(Ω‖Ω̃) = Tr[ρ1 log ρ1]− Tr[ρ̃1 log ρ̃1]
+ Tr[ρ̃1 log ρ̃1]− Tr[ρ1 log ρ̃1]

= ∆〈K̃〉 −∆S, (2.179)

where
∆S := S(ρ1)− S(ρ̃1) = Tr[ρ1 log ρ1]− Tr[ρ̃1 log ρ̃1]

is the difference in entanglement entropies and

∆〈K̃〉 = Tr[ρ1(− log ρ̃1)]− Tr[ρ̃1(− log ρ̃1)]

is the difference in expectation values of the modular Hamiltonian

K̃ = − log ρ̃1 + const.

Finally, we can use eq. (2.179) to compute the relative entropy S(β‖β̃) be-
tween thermal states of different temperatures β, β̃ on the real line. To simplify
notation, I will restrict to a single interval V = [−a, a]. From eq. (2.172), we
directly obtain

∆S = 1
6 log `V˜̀

V

= 1
6 log β sinh 2πa/β

β̃ sinh 2πa/β̃
. (2.180)

because

`V = 1
2 log sinh π(x+ a+ ε)/β

sinh π(a+ ε− x)/β

∣∣∣∣x=a

x=−a
= log β

πε
sinh 2πa

β
.

Note that ∆S is finite as long as β/β̃ is finite. The arguably more difficult
computation is that of ∆〈K̃〉. First, recall from eq. (2.159), that K̃ is given
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by
K̃ =

∫ a

−a
dx β̃(x)T̃00(x)

with the regularised energy momentum tensor

T00(x) = i[ψ∗(x)ψ′(x)− r̃(x)ψ∗(x)ψ(x)]

and inverse entanglement temperature

β̃(x) = 1
Z̃ ′(x)

= β̃
[

coth 2πa
β̃
− cosh 2πx/β̃

sinh 2πa/β̃

]
.

As stated before, the term involving r̃(x) is regulation dependent and present
to make K̃ self-adjoint. Since T00 involves products of fields at the same point,
we have to regularise, e.g., by setting

T00(x) = lim
y→x

i
[ d
dy − r̃(x)

]
: ψ∗(x)ψ(y) :,

where the normal ordering : : means that we subtract the expectation value
EV(x, y) of this expression in some fixed state. We can now compute

Tr[ρT00(x)] = lim
y→x

i
[ d
dy − r̃(x)

]
Tr[ρ : ψ∗(x)ψ(y) :]

= − lim
y→x

i
[ d
dy − r̃(x)

](
Tr[ρψ(y)ψ∗(x)]− EV(x, y)

)
= − lim

y→x
i
[ d
dy − r̃(x)

]
[G(y, x)− EV(x, y)],

where
G(y, x) = G(y − x) = 1

2iβ
1

sinh π(y − x)β
is the thermal propagator from eq. (2.71). Since we will perform a limit y → x,
we are only interested in the leading terms in the UV-expansion

G(z) = 1
2πiz + iπ

12β2 z +O(z3).

As a result, we obtain

Tr[ρT̃00(x)] = π

12β2 + . . . ,
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where the ellipses denote terms that do not depend on β. In particular, this
is independent of x, so that

∆〈K̃〉 =
(

Tr[ρT̃00(x)]− Tr[ρ̃T̃00(x)]
)
×
∫ a

−a
dx β̃(x)

= 1
12

[(
β̃

β

)2
− 1

][2πa
β̃

coth 2πa
β̃
− 1

]
, (2.181)

hence, relative entropy is given by42

S(T‖T̃ ) = 1
12

[(
T

T̃

)2
− 1

][
T̃ coth T̃ − 1

]
− 1

6 log T̃ sinhT
T sinh T̃

(2.182)

in terms of the dimensionless temperatures

T := 2πa
β

and T̃ := 2πa
β̃
. (2.183)

Note that S(T‖T̃ ) vanishes if and only if T = T̃ and you can easily verify
that its gradient vanishes there as well. Finally, you can compute the Hessian

∂2S(T‖T̃ )
∂T 2

∣∣∣∣
T=T̃

= 1
6

[(T cothT − 1)(T cothT + 2)
T 2 − 1

]
, (2.184)

also known as Fisher information.8 As you can see, eq. (2.184) is always
positive, hence T = T̃ is a global minimum of S(β‖β̃), which is one of the
key characteristics of relative entropy.46,140 You can find plots of the relative
entropy (2.182) and Fisher information (2.184) in figs. 2.21 and 2.22.

Another related quantity that we can compute is that of mutual informa-
tion.8 To define it in QFT, recall that the split property (2.164) implies the ex-
istence of reduced density matrices ρ(U)

A(V ) and ρ
(U)
A(Ṽ )′ on some auxiliary Hilbert

spaces K and K′, as defined in eq. (2.168). This however means that we can
define the density matrix

ρ̃ := U∗ρ
(U)
A(V ) ⊗ ρ

(U)
A(Ṽ )′U, (2.185)

on H, which is a product state in the sense of eq. (1.16) with respect to the
commuting algebras A(V ) and A(Ṽ )′! To verify this, let A ∈ A(V ) and
A′ ∈ A(Ṽ )′. Then

Tr[ρ̃AA′] = Tr[ρ(U)
A(V ) ⊗ ρ

(U)
A(Ṽ )′UAU

∗UA′U∗]
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Figure 2.21: Relative entropy (solid red) between thermal states on the line of
different reduced temperatures T , T̃ , as given by eq. (2.182). As
expected, it is always positive and vanishes if and only if T = T̃ .
Distinguishability is generally larger at higher temperatures and
the relative entropy between thermal states and the vacuum
(T = 0) is always finite.

and since UAU∗ ∈ B(K)⊗ 1 and UA′U∗ ∈ 1⊗B(K′) we find

Tr[ρ̃AA′] = Tr[ρ(U)UAU∗] Tr[ρ(U)UA′U∗] = Tr[ρ̃A] Tr[ρ̃A′].

The density matrix ρ̃ is thus indistinguishable from ρ by algebra elements
within either A(V ) or A(Ṽ )′, while all correlations between the two are re-
moved. We can now choose any region V̂ ⊂ Ṽ ′ in the complement of Ṽ , so
that A(V̂ ) ⊂ A(Ṽ )′ because of the isotony axiom (1.1), and compute the rela-
tive entropy between the states ρ and ρ̃ with respect to the algebra A(V ∪ V̂ ).
Since ρ̃ is a product state, the result will quantify the amount of correlations
between the two regions present in ρ. To compute S(ρ‖ρ̃), we will use the
finite dimensional result eq. (2.178) again. Now, since ρ̃ is actually a product
state and entropy is additive on product states, we find

S(ρ‖ρ̃) = S(ρV ) + S(ρV̂ )− S(ρV ∪V̂ ) =: I(V : V̂ ), (2.186)

which is the more standard definition of mutual information.8 At last, eq. (2.172)
allows to obtain

I(V : V̂ ) = 1
6 log `V `V̂

`V ∪V̂
(2.187)

and it is again instructive to evaluate this for V, V̂ given by single intervals of
size l with distance d from one another. In the vacuum state on the line, you
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Figure 2.22: Fischer information (solid red) for thermal states on the line,
again expressed in terms of the reduced temperature T =
2πa/β, as in eq. (2.184).

then find

I(V : V̂ ) = 1
6 log (1 + l/d)2

1 + 2l/d ∼
1
6 ×

log l/d for d� l

(l/d)2 for d� l,
(2.188)

hence, correlations decay quadratically at large distances and diverge logarith-
mically at short distances. Note that the former could already be expected
from twist-field computations in CFT,143 which suggest an asymptotic decay
of

I(V : V̂ ) ∼ (l/d)4c for d� l,

where c is the conformal charge.

To finish this subsection, let us discuss the computation of entanglement
Rényi entropy on the circle with a zero-mode contribution and at finite tem-
perature. Beginning with the former, recall that we already derived the addi-
tional term to the spectral measure in eq. (2.141). Its trace can be trivially
computed as

δTr
[dEζ

dζ

]
=
∫
V

dx lim
y→x

δTr
[dEζ

dζ (x, y)
]

= |V |
2πiζ

[ 1
e−iπ|V |ζ |V | + 1 −

1
eiπ|V |ζ |V | + 1

]
,
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so that eq. (2.163) with λ = 1/(1 + ζ) yields

δSα = 1
1− α

|V |
2πi

∫ ∞
0

dζ
ζ

[ 1
e−iπ|V |ζ |V | + 1 −

1
eiπ|V |ζ |V | + 1

]
×
[

log(1 + ζα)− α log(1 + ζ)
]
.

Again, you can change variables ζ → 1/ζ for ζ ∈ [1,∞] in order to find

δSα = 1
1− α

|V |
iπ

∫ 1

0

dζ
ζ

[ 1
e−iπ|V |ζ |V | + 1 −

1
eiπ|V |ζ |V | + 1

]
×
[

log(1 + ζα)− α log(1 + ζ)
]
, (2.189)

which can again only be evaluated analytically for rational entangling region
size |V |. To do this, you can insert the Taylor series (2.170) of the logarithm
and then use partial fractions to evaluate the integral. I will not include this
computation here, since it provides no new insight. Nevertheless, eq. (2.189)
shows that δSα is finite for every α and that it only depends on the size |V |
of the entangling region. Somewhat surprisingly you can obtain a closed form
solution for α = 2, 3, . . . in the following way: Note that you can rewrite
eq. (2.189) as

δSα = − 1
1− α

|V |
2πi

∮
Γ

dζ
ζ

1
1 + (−ζ)|V |

[
log(1 + ζα)− α log(1 + ζ)

]
,

where Γ is again the Hankel contour from fig. 2.9. This is possible because the
circular contributions of Γ again vanish for <(α), |V | > 0. You can now con-
tract the outer circular contribution of Γ towards the inner one, leaving behind
trails along the branch cuts of log(1 + ζα) and log(1 + z). The corresponding
branch points (of the first term) are located at solutions of 1 + ζα = 0, i.e,

ζm = −e2πim/α, m = −α− 1
2 ,−α− 1

2 + 1, . . . , α− 1
2

and we can choose the cuts to extend linearly to infinity. The difference be-
tween the values of log(1+ζα) directly left and right of the cuts is given by−2πi,
and a similar argument can be made for the branch cut of log(1 + ζ) (whose
branch point is ζ0). Parameterising the cuts by ζ = ζmes/|V |, dζ/ζ = ds/|V |,
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you thus find

δSα = 1
1− α

∫ ∞
0

ds
(α−1)/2∑

m=−(α−1)/2

[ 1
1 + e2πi|V |m/αes −

1
1 + es

]

= 1
1− α log

[ (α−1)/2∏
m=−(α−1)/2

1 + e−s
1 + e−2πi|V |m/αe−s

]∣∣∣∣s=∞
s=0

= 1
1− α log

[ (α−1)/2∏
m=−(α−1)/2

1 + e−2πi|V |m/α

2

]

= 1
1− α log

[ (α−1)/2∏
m=−(α−1)/2

cos π|V |m
α

]
, (2.190)

which is the low temperature limit of a previously known result due to Herzog
and Nishioka,144 who derived it via twist-field methods.

Returning to eq. (2.189), the zero-mode contribution to entanglement von-
Neumann entropy can be derived as the limit α→ 1, with the result109

δS = |V |iπ

∫ 1

0

dζ
ζ(1 + ζ)

[ 1
e−iπ|V |ζ |V | + 1 −

1
eiπ|V |ζ |V | + 1

]
× [(1 + ζ) log(1 + ζ)− ζ log ζ], (2.191)

yet another finite integral that we can only evaluate analytically for rational
|V |. Again, the limit α → 0 makes no sense due to discrete nature of the
Schmidt rank.

Finally, for the thermal state on the circle, the spectral measure is given in
eq. (2.147). Taking its trace however is difficult, since the summation over k
does not converge for x→ y. To resolve this issue perform the summation first
to obtain an (anti-)periodic Dirac delta and find

dEζ
dζ = 1

2πβζ
∑
k

(±1)k sinh π[Z(x)− Z(y) + (x− y + k)|V |/β]
sinh π(x− y + k)/β

× ζ i[Z(x)−Z(y)+(x−y+k)|V |/β].

Now, the limit y → x is easy for all terms with k 6= 0, since the denominator
may not diverge there. For k = 0, you have

lim
y→x

sinh π[Z(x)− Z(y) + (x− y)|V |/β]
sinh π(x− y)/β = βZ ′(x) + |V |,
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so that the trace of the spectral measure is given by

Tr
[dEζ

dζ

]
= 1

2π2ζ
log `V + |V |

2πβζ

[
|V |+

∑
k 6=0

(±1)k sinh πk|V |/β
sinh πk/β ζ ik|V |/β

]

with `V as defined in eq. (2.169), albeit with Z from eq. (2.129). Plugging this
into eq. (2.163) with λ = 1/(1 + ζ), you find that

Sα = S(0)
α + S(1)

α , (2.192)

where S(0)
α is given by eq. (2.171) and

S(1)
α = 1

12
1 + α

α

π|V |2

β

+ 1
1− α

|V |
πβ

∞∑
k=1

(±1)k sinh πk|V |/β
sinh πk/β

×
∫ 1

0

dζ
ζ

[ζ ik|V |/β + ζ−ik|V |/β][log(1 + ζα)− α log(1 + ζ)] (2.193)

is again finite, yet can no be evaluated analytically in general. Note that the
series converges exponentially fast, as long as <(α) > 0, since the coefficient
scales as ∼ e−πk(1−|V |)/β for large k, so numerical evaluation can be done effi-
ciently, in particular for <(α) > 1, where the integrand is bounded on [0, 1].
Furthermore we can take the limit α→ 1 of the new piece (2.193) to find the
extra contribution to entanglement von-Neumann entropy as

S(1) = 1
6
π|V |2

β

+ |V |
πβ

∞∑
k=1

(±1)k sinh πk|V |/β
sinh πk/β

×
∫ 1

0

dζ
ζ(1 + ζ) [ζ ik|V |/β + ζ−ik|V |/β][(1 + ζ) log(1 + ζ)− ζ log ζ]. (2.194)

We could now repeat the discussion of relative entropy and mutual infor-
mation for the results (2.191) and (2.194). However, this discussion would not
lead to much new insight, as all integrals can only be evaluated numerically.
Rather, I would like to note that eq. (2.194) presents a high temperature ex-
pansion of entanglement entropy, since a smaller β leads to faster convergence
of the series. We could also have arrived at a low temperature expansion by
inserting the low temperature expansions of the propagator (2.130) and (2.131)
in the definition of the spectral measure, as we did in our original paper.42 The
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resulting expansion for entanglement (Rényi) entropy would then also yield a
term-by-term finite result, which too can be evaluated analytically for ratio-
nal |V | only. To show its general form, let me sketch what happens in the
anti-periodic case in detail: From eqs. (2.128) and (2.130), we have

Hλ(z) = 1
2i csc πz +

∞∑
k=0

e−(2k+1)πβ

×
[ e(2k+1)iπz

(−ζ)−|V | + e−(2k+1)πβ −
e−(2k+1)iπz

(−ζ)|V | + e−(2k+1)πβ

]
,

again with λ = 1/(1 + ζ). Combined with eq. (2.129), this can be inserted in
eq. (2.134) to yield the low temperature expansion

Tr
[dEζ

dζ

]
= 1

2π2ζ
log `V −

|V |
2πiζ

∞∑
k=0

e−(2k+1)πβ

×
[ 1
eiπ|V |ζ−|V | + e−(2k+1)πβ −

1
e−iπ|V |ζ−|V | + e−(2k+1)πβ

− 1
e−iπ|V |ζ−|V | + e−(2k+1)πβ + 1

eiπ|V |ζ |V | + e−(2k+1)πβ

]
.

Insert this into eq. (2.163) to obtain again the decomposition eq. (2.192), where
the correction term S(1)

α is given by42

S(1)
α = − 1

1− α
|V |
2πi

∞∑
k=0

e−(2k+1)πβ
∫ ∞

0

dζ
ζ

[log(1 + ζα)− α log(1 + ζ)]

×
[ 1
eiπ|V |ζ−|V | + e−(2k+1)πβ −

1
e−iπ|V |ζ−|V | + e−(2k+1)πβ

− 1
e−iπ|V |ζ |V | + e−(2k+1)πβ + 1

eiπ|V |ζ |V | + e−(2k+1)πβ

]
.

Similar to the zero-mode correction (2.189), this can be evaluated analytically
for α = 2, 3, . . . by rewriting it as a contour integral

S(1)
α = 1

1− α
|V |
2πi

∞∑
k=0

e−(2k+1)πβ
∮

Γ

dζ
ζ

[log(1 + ζα)− α log(1 + ζ)]

×
[ 1
(−ζ)−|V | + e−(2k+1)πβ −

1
(−ζ)|V | + e−(2k+1)πβ

]

along the Hankel contour from fig. 2.9. Contracting the Hankel contour in
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complete analogy to the evaluation of eq. (2.189) then yields

S(1)
α = − 1

1− α

∞∑
k=0

e−(2k+1)πβ
∫ ∞

0
ds

(α−1)/2∑
m=−(α−1)/2[ 1

e−2πi|V |m/αe−s + e−(2k+1)πβ −
1

e2πi|V |m/αes + e−(2k+1)πβ

− 1
e−s + e−(2k+1)πβ + 1

es + e−(2k+1)πβ

]
.

Again, integration can be done elementarily with the result

S(1)
α = 1

1− α

∞∑
k=0

log
[ (α−1)/2∏
m=−(α−1)/2

1 + e−(2k+1)πβes
e−2πi|V |m/α + e−(2k+1)πβes

× 1 + e−(2k+1)πβe−s
e2πi|V |m/α + e−(2k+1)πβe−s

]∣∣∣∣s=∞
s=0

= 1
1− α log

[ (α−1)/2∏
m=−(α−1)/2

e−2πi|V |m/α

×
∞∏
k=0

(1 + e2πi|V |m/αe−(2k+1)πβ)(1 + e−2πi|V |m/αe−(2k+1)πβ)
(1 + e−(2k+1)πβ)2

]
.

Finally, note that

log
(α−1)/2∏

m=−(α−1)/2
e−2πi|V |m/α = −2πi|V |

α

(α−1)/2∑
m=−(α−1)/2

m

vanishes due to symmetry, while the remaining infinite product is exactly
∞∏
k=0

(1 + e2πi|V |m/αe−(2k+1)πβ)(1 + e−2πi|V |m/αe−(2k+1)πβ)
(1 + e−(2k+1)πβ)2 = ϑ3(|V |m/α|iβ)

ϑ3(0|iβ)

by means of the Jacobi triple product (2.85). As a result, you find

S(1)
α = 1

1− α log
[ (α−1)/2∏
m=−(α−1)/2

ϑ3(|V |m/α|iβ)
ϑ3(0|iβ)

]
, (2.195)

which recovers exactly the result of Herzog and Nishioka,144 albeit derived from
a formula that is valid for any α with positive real part. The corresponding
computation for periodic boundary conditions is identical, with ϑ3 replaced by
ϑ2 in the final result.
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2.4.7 The case of boundaries

This subsection introduces a work in progress together with Ignacio Reyes,45
dealing with the computation of entanglement in the free fermion boundary
CFT. In everything that we have done so far, the two chiralities of the free
fermion CFT have been completely independent, so that we could limit discus-
sions to one chirality at a time. This is no longer possible in the presence of a
boundary, since we found in section 2.3.4 that the conformal boundary condi-
tion (2.99) implies an equivalence between the chiralities through eq. (2.100).
As a result, e.g., the vacuum propagator on the line takes the form

G(x, y) = 1
2πi

 1/(x− y) ±1/(x+ y)

±1/(−x− y) 1/(−x+ y)


with η ∈ {0, 1} as shown in eq. (2.101). Since this example illustrates all major
points about entanglement in the presence of a boundary, I will stick with it
for the rest of this subsection.

Please note that x, y here are actually spacial coordinates x1, y1 of two points
on the standard time slice x0 = y0 = 0. This is in strong contrast to all
previous computations, where we were dealing with one-dimensional problems
on a lightray. Nevertheless, the formulae in table 2.1 and the discussion from
section 2.3.1 remain valid, as they do not make any assumptions about the
number of dimensions. In particular, we can still define the resolvent via
eq. (2.60) in terms of a solution Fλ of the integral equation (2.61). This time,
however, since G is a matrix, so are Fλ and the resolvent 1/(λ−G|V ). Denoting
the components of G by

G(x, y) =

G
0

0(x, y) G0
1(x, y)

G1
0(x, y) G1

1(x, y)

 (2.196)

and similarly for Fλ, eq. (2.61) then takes the form

−Ga
b(x, y) + (Fλ)ab(x, y)− 1

λ

1∑
c=0

∫
V

dz Ga
c(x, z)(Fλ)cb(z, y) = 0. (2.197)

for x, y ∈ V ⊂ R+ and a, b ∈ {0, 1}. Solving this equation might seem hard
indeed but luckily there is a trick that significantly simplifies the problem: As
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we derived in section 2.3.4, the components of the propagator have the form

Ga
b(x, y) = ηa+bĜ((−1)ax, (−1)by),

where
Ĝ(x, y) = Ĝ(x− y) = 1

2πi(x− y)
is the vacuum propagator of a single chirality on the lightray. This suggests
making the ansatz

(Fλ)ab(x, y) = ηa+bF̂λ((−1)ax, (−1)by) (2.198)

for some yet to determine scalar kernel F̂λ that is defined on V ∪−V . Inserting
this into eq. (2.197), you obtain

−Ĝ(x, y) + F̂λ(x, y)− 1
λ

∫
V̂

dz Ĝ(x, z)F̂λ(z, y) = 0 with V̂ = V ∪ −V,

which is exactly eq. (2.102), i.e., the corresponding integral equation on the
lightray, albeit with mirror-symmetric entangling region V̂ . Since we already
solved this equation for arbitrary regions, we also solved eq. (2.197).
To explain the implications of this, I will discuss the example of a single

interval V = [a, b], 0 < a < b at a finite distance from the boundary. We can
directly look up the solution for F̂λ from table 2.3 – it is given by eq. (2.116)
with Ĥλ(z) = 1/2πiz and

Ẑ(x) = 1
2π log (x− a)(b+ x)

(b− x)(x+ a) ,

where the second factors in the fraction appear because of the mirrored interval
−V = [−b,−a]. The resolvent is

[ 1
λ−G|V

]a
b(x, y) = δab δ(x− y)

λ
+ ηa+bF̂λ((−1)ax, (−1)by)

λ2

and could, in principle, redo all computations from before.
However, there is an even easier route: Note that the above assignment

Aab(x, y) := ηa+bÂ((−1)ax, (−1)by) (2.199)

defines an isomorphism between the algebra of 2× 2-matrix-valued kernels on
V on the one side and the algebra of scalar kernels on V̂ on the other side.
This amounts to the fact it is well behaved with respect to products, i.e., we
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have

(AB)ab(x, y) =
∑
c

∫
R+

dz Aac(x, z)Bc
b(z, y)

=
∑
c

∫
R+

dz ηa+cÂac((−1)ax, (−1)cz)ηc+bB̂c
b((−1)cz, (−1)by)

= ηa+b
∫
V̂

dz Â((−1)ax, z)B̂(z, (−1)by)

= ηa+b(ÂB̂)((−1)ax, (−1)by).

This implies that it also extends to arbitrary functions of these kernels (by
expanding them as power series), which is the reason why eq. (2.197) works.
It also implies that we can apply the assignment (2.199) to every result on the
lightray that we derived so far, to immediately obtain the corresponding result
on the standard time slice of right half plane.

As an example, consider the modular flow of operators with respect to the
algebra of the interval V = [a, b]. The corresponding result on the lightray is

σt(ψ∗(y)) =
∫
V̂

dxψ∗(x)Σ̂t(x, y)

with
Σ̂t(x, y) = − sinh(πt)

π(x− y)δ(t+ Ẑ(x)− Ẑ(y)),

as shown in eq. (2.136). This means that the result with a boundary has to be

σt


 ψ+(y)

ψ−(−y)


∗ =

∫
V

dx

 ψ+(x)

ψ−(−x)


∗

Σt(x, y) (2.200)

with
(Σt)ab(x, y) = ηa+bΣ̂t((−1)ax, (−1)by).

As Ẑ(−x) = −Ẑ(x), this implies

Σt(x, y) = − 1
π

sinh(πt)


δ(t+Ẑ(x)−Ẑ(y))

x−y η δ(t+Ẑ(x)+Ẑ(y))
x+y

η δ(t−Ẑ(x)−Ẑ(y))
−x−y

δ(t−Ẑ(x)+Ẑ(y))
−x+y

 , (2.201)
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hence,

σt(ψ∗+(y)) = − 1
π

sinh(πt)
∫
V ∪−V

dxψ∗+(x)δ(t+ Ẑ(x)− Ẑ(y))
x− y

,

where I used (2.100). For a single interval V = [a, b] this will yield a bi-local
result, with one contribution for x ∈ V and one contribution for x ∈ −V .
So far, this latter contribution is not in conflict with our restriction to the
right half plane, as ψ∗+(x) = ψ∗+(x+) is actually defined on a light ray, so
even a negative argument might belong to a point in our domain of interest.
However, as shown in eq. (2.139), this contribution will have to be paired with
a chiral fermion of opposite chirality in order to yield a localised Dirac fermion.
This Dirac fermion will then be localised inside the double cone spanned by
−V in the left half plane, so we have to discard it by hand. To do so, we can
discard the −V -part of the above integral, yielding

σt(ψ∗+(y)) = −sinh(πt)
π

1
Ẑ ′(x(t, y))

1
x(t, y)− yψ

∗
+(x(t, y)), (2.202)

where x(t, y) is the unique positive root of the quadratic equation

(x− a)(b+ x)
(b− x)(x+ a) = e−2πt (y − a)(b+ y)

(b− y)(y + a) . (2.203)

Note that this recovers the Hislop-Longo result (2.35) in the limit of large
(b+ a)/(b− a), i.e., when V is small or far away from the boundary. Note also
that eq. (2.203) explicitly breaks translational invariance due to the presence
of the mirrored interval −V , while it is still invariant under scale transforma-
tions. Similarly, you can obtain expressions for the modular Hamiltonian and
correlator in the boundary system from their mirror symmetric counterparts
on the lightray, which will be invariant under scale transformations but not
translations.

Proceeding to the discussion of entropy, recall from eq. (2.52) that you can
compute Sα from the trace of the spectral measure. Since this is again a kernel
that can be expressed in terms of the propagator, we can apply eq. (2.199) to
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obtain

Tr
[dEλ

dλ

]
=
∫
V

dx lim
y→x

∑
a

[dEλ
dλ

]a
a(x, y)

=
∫
V ∪−V

dx lim
y→x

[dÊλ
dλ

]
(x, y)

= Tr
[dÊλ

dλ

]
,

hence,
Sα = Ŝα and S = Ŝ. (2.204)

This allows for a key observation in boundary CFT: Assume again that we are
dealing with the double cone generated by a single interval V = [a, b] on the
x1-axis. Its projections onto the lightray axes x± are given by ±V . Therefore,
the corresponding algebra of observables is generated by ψ±(x) with support
in ±V . Because of eq. (2.100), the fields ψ±(x) are equivalent, hence, we can
equivalently with the algebra generated by ψ+(x) with support in V̂ = V ∪−V .
In the vacuum state, we will generally find entanglement between V and −V ,
which causes the off-diagonal terms in the propagator (2.101). On the other
hand, we already discussed that the split property of QFT allows to construct a
product state (2.185), which is indistinguishable from the vacuum state within
V± on their own, but has all correlations removed – this product state ρ̃ gen-
erates, by construction, the same expectation values as the vacuum state of
the theory without boundary! In this sense, the theory without boundary is
included in the theory with boundary by means of the split property.128 In
particular, this allows to compare the vacua of the theories with and without
boundary. The relative entropy between them is precisely the mutual infor-
mation between V and −V in the vacuum state of the boundary CFT and
coincides with that of the vacuum state of a single chirality on the lightray
because of eq. (2.204).
As a result, the relative entropy between the vacua is given by eq. (2.188)

with l = b − a and d = 2a, i.e., denoting the vacuum of the boundary theory
with ρ and its split product state by ρ̃,

S(ρ‖ρ̃) = S(ρ̃)− S(ρ) = 1
6 log 1

4

[
2 + a

b
+ b

a

]
, (2.205)

which is always positive, as relative entropy should be. The fact that entan-
glement entropy is smaller in the theory with boundary has a nice physical
interpretation: Since both chiralities are entangled with each other inside V ,
they can not be entangled with the complement V ′ as much as they could if
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they were independent. This is known as monogamy of entanglement.8 In
fact, since the different chiralities ψ± are in ±V , eq. (2.205) also gives the mu-
tual information between both chiralities, quantifying how much entanglement
there actually is between them.

2.5 Entanglement and superselection
In this section, I would like to present another work in progress together with
Ignacio Reyes,44 that aims at a symmetry-aware generalisation of relative en-
tropy and its operational interpretation in terms of distinguishability of states.
Before we study entropy, let me first clarify what I mean by symmetry-

aware. Often in QFT, we find ourselves in a situation where our global algebra
A of observables has a central element Q, you could call it charge. Since Q is
central, it commutes with all algebra elements, i.e., it is conserved algebraically.
In the QFT literature, the existence of such central elements is denoted as
a superselection rule.64,145,146 This is in contrast to a selection rule, which
would state that Q is conserved dynamically, i.e., commutes with the unitary
implementers of other symmetries as discussed in section 1.2.1. Equivalently,
you could say that the GNS representation of A is reducible – its Hilbert space
decomposes as a direct sum

H =
⊕
q

Hq, (2.206)

where each superselection sector Hq is invariant under A. As an example of
such a decomposition recall the definition of the Fermi net from eq. (2.43) on
a lightray. It contains smeared field operators of the form∫

dx f(x)ψ(x)

as well as sums, products, adjoints, and weak limits of them. The GNS repre-
sentation of the corresponding global algebra is the usual fermionic Fock space
with creation and annihilation operators and, as a result, irreducible. While
this is great for doing computations, it does not really reflect physical reality:
Physically reasonable operators have to be contained in the sub-net147

Aphys(V ) := {
∫
V

dx dy ψ∗(x)f(x, y)ψ(y) : f test kernel V }′′ (2.207)

which means that the normal ordered operator

Q :=
∫
R

dx : ψ∗(x)ψ(x) : (2.208)



2.5 Entanglement and superselection 123

is central in the global physical algebra Aphys. Now, let ω ∈ A∗phys be the
vacuum state on this algebra. The corresponding GNS representation will
take the form (2.206) with a cyclic separating vector

Ω =
∑
q

cqΩq, Ωq ∈ Hq. (2.209)

Here, Ωq is cyclic separating in cHq for Aphys/Q and it is also an eigenvector
of Q with

QΩq = qΩq.

In our above example, Q measures the number of fermions in the system and
we usually only work in the sector H0 with Ω0 the Fock vacuum. However,
we could of course also consider the space Hn containing n Fermions, or H−m
containing m positrons. Let us pick any one of these spaces, i.e., we assume
that all coefficients but one vanish in eq. (2.209). Then, of course, the associ-
ated density matrix ρ of the GNS vector Ω commutes with Q. Furthermore,
this also holds for partial traces of ρ if the total Hibert space splits into lo-
cal subspaces as guaranteed by the split property (2.166): Since Q is locally
defined, we have

Q = QV ⊗ 1 + 1⊗QV ′ , QV (′) :=
∫
V (′)

dx : ψ∗(x)ψ(x) :,

so that

[QV , ρV ] = TrV ′
(
[QV ⊗ 1, ρ]

)
= TrV ′

(
[QV ⊗ 1, ρ]

)
+ TrV ′

(
(1 +QV ′)ρ− (1 +QV ′)ρ

)
= TrV ′

(
[QV ⊗ 1, ρ]

)
+ TrV ′

(
1 +QV ′ , ρ]

)
= TrV ′

(
[Q, ρ]

)
= 0,

where the first equality comes from the definition of the partial trace and the
third one is due to the cyclicity of the trace. As a result, reduced density
matrices are block diagonal in the presence of superselection rules and it is
interesting to see what this means on an information theoretical level. In the
following, I will drop all subscripts from reduced density matrices, since we
will always be working in a fixed subregion V .
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2.5.1 Symmetry resolved relative entropy

In section 2.4.6, we discussed relative entropy and its definition in the context
of QFT. As I argued, relative entropy allows to compare different states ρ, ρ̃
– it supposedly is a measure of “how similar” they are. However, there is one
caveat to this distinguishability, if relative entropy is defined by

S(ρ‖ρ̃) = Tr[ρ log ρ]− Tr[ρ log ρ̃],

as done in eq. (2.178). Here and for the rest of this subsection, I use the finite
dimensional version of relative entropy opposed to its definition in terms of the
Connes cocyle, in order to keep this discussion as clear as possible. As already
stated, this S(ρ‖ρ̃) vanishes if and only if ρ and ρ̃ are indistinguishable by
measurements of all operators B(H) on the Hilbert space that they are defined
on.

From an experimental perspective, the assumption that we could implement
every operator as a measurement is of course optimistic at best – even if we had
a perfect array of measurement devices, we just saw above the superselection
rules prohibit the measurement of amplitudes between different charge sectors
Hq, Hp 6=q, as there are no physical operators that cause transitions between
them. This implies that eq. (2.178) overestimates the operational distinguisha-
bility of ρ and ρ̃! Indeed, as Q is central, we can only compare states within
one sector at a time, so it makes more sense to consider the charge resolved
relative entropy44

Sq(ρ‖ρ̃) := S(ρq‖ρ̃q). (2.210)

Here, ρq and ρ̃q are the resulting states after performing a projective measure-
ment of Q with result q,

ρq := ΠqρΠq

P(q) (2.211)

with
P(q) := Tr[Πqρ] (2.212)

the probability of obtaining the result q from a projective measurement of Q
in the state ρ. The definitions of ρ̃q and P̃(q) are entirely analogous.

Note that in eq. (2.211), we have

ρq = Πqρ

P(q) ,

since Πq = Π2
q commutes with ρ. Inserting eq. (2.178) into definition (2.210),
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we find

Sq(ρ‖ρ̃) = 1
P(q)

(
Tr[Πqρ log ρ]− Tr[Πqρ log ρ̃]

)
− log P(q)

P̃(q)
, (2.213)

resulting in the ensemble average∑
q

Pρ(q)Sq(ρ‖ρ̃) = S(ρ‖ρ̃)−D(P ‖ P̃).

Here, I used the completeness relation (2.206) and recognised the classical
Kullback-Leibler divergence148

D(P ‖ P̃) :=
∑
q

P(q) log P(q)
P̃(q)

,

which is always non-negative and vanishes if and only if P = P̃. This shows,
that eq. (2.178) on average overestimates the distinguishability of ρ and ρ̃ if
and only if ρ, ρ̃ yield different statistics for the measurement of Q.

At this point, the important question is of course if eq. (2.210) makes sense
in the context of quantum field theory and, if so, how you can compute it. To
see how this works, note that the hard part in evaluating eq. (2.213) is the
term

Tr[Πqρ log ρ]− Tr[Πqρ log ρ̃]. (2.214)

To tackle it, we will use methods that were introduced by Goldstein and Sela149
in the study of the non-relative version of eq. (2.210), the charge resolved
entanglement entropy.150–152 For the rest of this subsection, let us assume that
Q has integer spectrum, so that we can make use of the Fourier identity149

Πq = 1
2π

∫ π

−π
dφ eiφ(Q−q). (2.215)

This reduces the computation of eq. (2.214) to that of

Tr[eiφQρ log ρ]− Tr[eiφQρ log ρ̃]. (2.216)

Next, note that in QFT the two terms in eq. (2.216) can be expected to
diverge individually, due to their similarity to entanglement entropy – we can
only expect their difference to be finite. In order to obtain finite intermediate
steps nonetheless, we use a trick akin to the one in eq. (2.179), by rewriting
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eq. (2.216) as

Tr[eiφQρ log ρ]− Tr[eiφQρ]
Tr[eiφQρ̃] Tr[eiφQρ̃ log ρ̃]

− Tr[eiφQρ log ρ̃] + Tr[eiφQρ]
Tr[eiφQρ̃] Tr[eiφQρ̃ log ρ̃]

= Tr[eiφQρ]×
[(

Tr[ρφ log ρ]− Tr[ρ̃φ log ρ̃]
)

+
(

Tr[ρφK̃]− Tr[ρ̃φK̃]
)]

(2.217)

with the grand canonical density matrices

ρφ := eiφQρ

Tr[eiφQρ] , ρ̃φ := eiφQρ̃

Tr[eiφQρ̃]

and K̃ = − log ρ̃+ const. the modular Hamiltonian of ρ̃.

Putting everything together, we thus find that eq. (2.214) can be expressed
as

Tr[Πqρ log ρ]− Tr[Πqρ log ρ̃] = 1
2π

∫ π

−π
dφ Tr[eiφ(Q−q)ρ]Sφ(ρ‖ρ̃), (2.218)

where I introduced the flux resolved relative entropy Sφ(ρ‖ρ̃) as the (generally
finite) quantity44

Sφ(ρ‖ρ̃) :=
(

Tr[ρφK̃]− Tr[ρ̃φK̃]
)
−
(
− Tr[ρφ log ρ] + Tr[ρ̃φ log ρ̃]

)
. (2.219)

The other missing pieces in eq. (2.213) are the probability distributions P and
P̃. Again, you can use eq. (2.215) to find

P(q) = 1
2π

∫ π

−π
dφ Tr[eiφ(Q−q)ρ] (2.220)

and similarly for ρ̃. To conclude the general discussion, note that in eq. (2.219),
the flux resolved entanglement entropy149

Sφ := −Tr[ρφ log ρ]
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can be evaluated via the replica trick as139

− Tr[ρφ log ρ] = −Tr[eiφQρ log ρ]
Tr[eiφQρ] = − d

dα log Tr[eiφQρα]
∣∣∣∣
α=1

. (2.221)

and similarly for ρ̃.

2.5.2 Results for free fermions

Let us now proceed to the evaluation of eq. (2.219) for different states of
free fermions. I will do this explicitly for thermal states of different inverse
temperatures β,β̃ on the lightray, restricted to the region V , in order to obtain
a result that we can compare with eq. (2.182). As stated previously, the
conserved charge Q shall be the number of fermions inside V , i.e.,

Q =
∫
V

dx : ψ∗(x)ψ(x) : .

To get started, note that we can use the methods from section 2.3 to obtain
an expression for Tr[eiφQρ] in terms of the restricted propagator G|V . Since

ρV =
∏
k

[
gkckc

∗
k + (1− gk)c∗kck

]

with gk the eigenvalues of G|V , you see that

log Tr[eiφQρα] =
∑
k

log
[
gαk + eiφ(1− gαk )

]
= Tr log[G|αV + eiφ(1−G|V )α], (2.222)

if we ignore the normal ordering constant that has to be subtracted from Q.
Applying the replica trick (2.221) then yields the first difference in eq. (2.219).
To evaluate eq. (2.222), we can again use the spectral calculus (2.58) with the
spectral measure (2.135) to find

log Tr[eiφQρα] =
∫ 1

0
dλ Tr

[dEλ
dλ

]
log[λα + eiφ(1− λ)α]

=
∫ ∞

0
dζ Tr

[dEζ
dζ

]
[log(1 + eiφζα)− α log(1 + ζ)]

= log `V ×
1

2π2

∫ ∞
0

dζ
ζ

[log(1 + eiφζα)− α log(1 + ζ)].
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This integral is very similar to the one we evaluated to obtain entanglement
Rényi entropy (2.171). Let us use the same trick of changing variables ζ → 1/ζ
on [1,∞]. The result is

log Tr[eiφQρα] = log `V ×
1

2π2

∫ 1

0

dζ
ζ

[
iφ+ log(1 + eiφζα)

+ log(1 + e−iφζα)− 2α log(1 + ζ)
]
.

Note that the contribution coming from the iφ in the integrand is divergent!
This should come at no surprise since it yields exactly the expectation value
of Q via

i Tr[ρQ] = d
dφ log Tr[eiφQρ]

∣∣∣∣
φ=0

= log `V ×
i

2π2

∫ 1

0

dζ
ζ
.

This is exactly the constant which we need to subtract from Q due to its
normal ordered definition. Making this explicit by writing

: Q := Q− Tr[ρQ],

we are thus left with the computation of

log Tr[eiφ:Q:ρα] = log `V ×
1

2π2

∫ 1

0

dζ
ζ

[
log(1 + eiφζα)

+ log(1 + e−iφζα)− 2α log(1 + ζ)
]
.

You can now insert the Taylor expansion (2.170) again, so that the integral
yields

1
2π2α

∞∑
k=1

(−1)k−1 eiφk + e−iφk − 2α2

k2 = −Li2(−eiφ) + Li2(−e−iφ)
2π2α

− α

12 ,

where
Li2(z) :=

∞∑
k=1

zk

k2

is the dilogarithm (Spence’s function).153 Finally, you can use the magical
relation154

Li2(z) + Li2(1/z) = −π
2

6 −
1
2 log2(−z),

to find
log Tr[eiφ:Q:ρα] = 1

α

[1− α2

12 −
(
φ

2π

)2]
log `V . (2.223)
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In particular, we recover the result of Goldstein and Sela149

− Tr[ρφ log ρ] =
[(1

6 −
φ

2π

)2]
log `V , (2.224)

albeit for an arbitrary number of intervals. For the single interval V = [−a, a],
this means that the “entropy” difference in eq. (2.219) is

− Tr[ρφ log ρ] + Tr[ρ̃φ log ρ̃] =
[1
6 −

(
φ

2π

)2]
log β sinh 2πa/β

β̃ sinh 2πa/β̃
. (2.225)

Finally, in order to evaluate eq. (2.219), we need to compute the “modular
Hamiltonian” difference

Tr[ρφK̃]− Tr[ρ̃φK̃].

Again, since K, K̃ are quadratic with kernels k,k̃, this amounts to evaluating
an integral of the form∫

dx dy k̃(x, y)
(

Tr[ρφψ†(x)ψ(y)]− Tr[ρ̃φψ†(x)ψ(y)]
)
,

where the traces are plain propagators. To evaluate them, note that the mod-
ular Hamiltonian of ρφ is K − iφQ, as is obvious from eq. (2.211). This means
that it is again quadratic with kernel k − iφ and of course the same relations
hold for ρ̃, K̃, and k̃. As a result, we can use the formula Gφ = 1/(1 + e−k+iφ)
from eq. (2.42) to obtain

Tr[ρφK̃]− Tr[ρ̃φK̃] = −
∫

dx dy k̃(x, y)

×
[ 1
1 + e−k+iφ (y, x)− 1

1 + e−k̃+iφ
(y, x)

]
, (2.226)

where
1

1 + e−k+iφ =
∫ ∞

0
dζ
[dEζ

dζ

] 1
1 + eiφζ

(2.227)

by the spectral calculus eq. (2.56) with λ = 1/1 + ζ and similarly for 1/(1 +
e−k̃+iφ). Upon insertion of the spectral measure (2.135), the integral (2.227)
turns into

1
1 + e−k+iφ = i

π
sinh(π∆Z)G

∫ ∞
0

dζ
ζ

ζ i∆Z

1 + eiφζ
,

which is exactly the integral representation of a propagator with chemical
potential iφ (hence the name “grand canonical” density matrix). To evaluate,
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consider again the contour integral
∮

Γ

dζ
ζ

(−ζ)i∆Z

1 + eiφζ
,

along the Hankel contour from fig. 2.9. For −1 < =(∆z) < 0, the contributions
at |ζ| → 0,∞ vanish, so that

∮
Γ

dζ
ζ

(−ζ)i∆Z

1 + eiφζ
= −2 sinh(π∆Z)

∫ ∞
0

dζ
ζ

ζ i∆Z

1 + eiφζ

and, hence,

1
1 + e−k+iφ = 1

2πiG
∮

Γ

dζ
ζ

(−ζ)i∆Z

1 + eiφζ
= −Ge−iφ (−ζ)i∆Z

ζ

∣∣∣∣
ζ=−e−iφ

= Geφ∆Z .

We can now evaluate eq. (2.226) for a single interval V = [−a, a]. To this
end, recall from eq. (2.158) that the kernel k̃ of the modular Hamiltonian is

k̃(x, y) = 1
iZ̃ ′(x)

[
− δ′(x− y) + 1

2
Z̃ ′′(x)
Z̃ ′(x)

δ(x− y)
]

with
Z̃(x) = 1

2π log sinh π(a+ x)/β̃
sinh π(a− x)/β̃

.

As a result, we have

Tr[ρφK̃]− Tr[ρ̃φK̃] = i
∫ a

−a
dx 1
Z̃ ′(x)

lim
y→x

[
− d

dy + 1
2
Z̃ ′′(x)
Z̃ ′(x)

]
×
[ 1
1 + e−k+iφ (y, x)− 1

1 + e−k̃+iφ
(y, x)

]
,

so that we again only need the leading terms of the UV-expansion

1
1 + e−k+iφ (x, y) =

[ 1
2πi(x− y) + iπ

12β2 (x− y)
]

×
[
1 + φZ ′(y)(x− y) + 1

2
(
[φZ ′(y)]2 + φZ ′′(y)

)
(x− y)2

]
+O

(
(x− y)2

)
. (2.228)

Inserting this into the above integral, you may drop a lot of terms because
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Z̃(x) is odd. The remaining integrals are

Tr[ρφK̃]− Tr[ρ̃φK̃] = π

12

[ 1
β2 −

1
β̃2

] ∫ a

−a
dx 1
Z̃ ′(x)

− 2π
(
φ

2π

)2 ∫ a

0
dx [Z ′(x)]2 − [Z̃ ′(x)]2

Z̃ ′(x)
.

The first of these integrals coincides with the corresponding term ∆〈K̃〉 from
eq. (2.181), i.e.,

π

12

[ 1
β2 −

1
β̃2

] ∫ a

−a
dx 1
Z̃ ′(x)

= 1
12

[(
T

T̃

)2
− 1

][
T̃ coth T̃ − 1

]
.

with the dimensionless temperatures (2.183). The second integral is new and
can be rewritten as

−T sinhT
(
φ

2π

)2 ∫ 1

0

dX
coshT − coshXT

×
(

1−
[
T̃ sinh T̃
T sinhT ×

coshT − coshXT
cosh T̃ − coshXT̃

]2)
,

which you can easily check to be finite. Unfortunately, this integral seems to
have no analytical solution, so that the final result for flux resolved relative
entropy on the interval V = [−a, a] between thermal states of temperatures
β, β̃ on the lightray is44

Sφ(T‖T̃ ) = S(T‖T̃ ) +
(
φ

2π

)2
S(2)(T‖T̃ ), (2.229)

where the usual relative entropy S(β‖β̃) was already computed in eq. (2.182)
and the coefficient of the flux-dependent quadratic correction is

S(2)(T‖T̃ ) = log T̃ sinhT
T sinh T̃
− T sinhT

∫ 1

0

dX
coshT − coshXT

×
(

1−
[
T̃ sinh T̃
T sinhT ×

coshT − coshXT
cosh T̃ − coshXT̃

]2)
. (2.230)

Note that S(2) also vanishes precisely for T = T̃ , but it is neither strictly
positive nor negative. The physical interpretation of this fact is currently not
clear and it will be discussed in our upcoming work.44
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The big question is now, how do we obtain the charge resolved relative
entropy? Trying to evaluate eq. (2.218), we will get stuck at the term

Tr[eiφ(:Q:−q)ρ] = e−iφq(`[−a,a])−(φ/2π)2
,

which we already derived in eq. (2.223). This is problematic, since

`[−a,a] = β

πε
sinh 2πa

β

diverges when we send the cushioning region distance ε to zero. To see why
this is the case, let us compute another quantity that diverges in the same way,
namely the fluctuations of the number of fermions in [−a, a], given by

Var(Q) = − d2

dφ2 log Tr[eiφ:Q:ρ]
∣∣∣∣
φ=0

= 1
2π2 log `[−a,a].

This allows to rewrite

Tr[eiφ(:Q:−q)ρ] = e−iφq−φ2 Var(Q)/2

and Var(Q) of course diverges for small cushioning due to infinite correlations
near the boundary. This also means that the probability distributions from
eqs. (2.212) and (2.220) are meaningless in QFT: the probability of finding
exactly q fermions in the interval is zero, due to extremely high fluctuations.
Of course, in any physical measurement, we can only probe our system with
finite accuracy ε, which we can then take as our cushioning size. This means,
that charge resolved relative entropy (2.210) will always depend on the spacial
resolution of our measurements, while flux resolved relative entropy (2.219)
can be defined without referencing any scale.

2.5.3 Symmetry resolved mutual information
Similarly to the what we did above, we can define a symmetry-aware version
of mutual information (2.186) as well. To this end, let me introduce Alice and
Bob, who are lab neighbours. One day they are in the lucky but rare situation
that their department has some extra funding for joint projects, hence, they
decide that it is time to collaborate. The aim of their project is to pin down
the amount of entanglement of a quantum field in some quantum wire that
stretches between their labs. As they both enjoyed an excellent education in
QFT, they know that entanglement entropy is universally divergent, hence
will yield larger and larger results at finer and finer scales of measurement.
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In order to avoid this problem, they each mark down a portion of the wire
in their respective labs and measure only the mutual information between the
two. From now on, let us call these portions A and B. Unfortunately, this
exact measurement is impossible – since the total particle number in the wire is
conserved, they can only perform measurements within a single superselection
sector, so they derive the following protocol:

Starting from a single state ρ of the wire, Alice and Bob perform a projective
joint measurement of the particle number in AB. They repeat this procedure,
until they achieve some previously chosen target value q. In the sense of
eq. (2.211), the state after measuring the total fermion number QAB = q is
given by

ρq = Πqρ

Pρ(q)
.

In order to obtain another state ρ̃q to which they might compare ρq, they repeat
this procedure without joint measurements. This means that they measure the
particle numbers in A and B individually, so that Alice only accesses the partial
trace ρA and Bob only accesses ρB. After measuring, they meet in the coffee
room to check if the total number is q again. If this is not the case, they
discard their quantum states and try again. If it is, the resulting state ρ̃q takes
the form

ρ̃q = 1
PρA⊗ρB(q)

∑
q′

Πq′ρA ⊗ Πq−q′ρB = Πq(ρA ⊗ ρB)
PρA⊗ρB(q) = (ρA ⊗ ρB)q.

As soon as this setup is done, they compare the states ρq and ρ̃q, again
with possibly joint measurements, to obtain the charge resolved relative en-
tropy (2.210) in superselection sector q between them. Due to the similarity
to eq. (2.186), we call the result44

Iq(A : B) := Sq(ρAB‖ρA ⊗ ρB). (2.231)

the charge resolved mutual information in sector q.

Of course, by virtue of eq. (2.218), you can express this in terms of the flux
resolved mutual information

Iφ(A : B) := Sφ(ρAB‖ρA ⊗ ρB). (2.232)

Using the same methods as before, you can easily evaluate this for the vacuum
state of a free fermion on the lightray. In order to obtain an analogous result
to eq. (2.187), we choose the regions A, B as single intervals. As a first step,
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note that
(ρA ⊗ ρB)φ = (ρA)φ ⊗ (ρB)φ,

so that eq. (2.219) yields

Iφ(A : B) = Tr[(ρAB)φ(KA ⊗ 1 + 1⊗KB)]

− Tr[(ρA)φKA]− Tr[(ρB)φKB] +
[1
6 −

(
φ

2π

)2]
log `A`B

`AB
.

Note that, in contrast to ordinary mutual information, the “modular Hamil-
tonian” difference does not cancel, since

[(ρAB)φ]n 6= (ρn)φ, i = A,B

due to fluctuations of QA/B. Instead, we can use the above machinery (KA

and KB are local) to find

Tr[(ρAB)φ(KA ⊗ 1 + 1⊗KB)]− Tr[(ρA)φKA]− Tr[(ρB)φKB]

=
∑

n=A,B
i
∫
n
dx 1
Z ′n(x) lim

y→x

[
− d

dy + 1
2
Z ′′n(x)
Z ′n(x)

]

×
[ 1
1 + e−kAB+iφ (y, x)− 1

1 + e−kn+iφ (y, x)
]

with
Z ′n(x) = 1

2π
bn − an

(x− an)(bn − x) , Z ′AB(x) = Z ′A(x) + Z ′B(x).

Inserting the UV-expansion (2.228) (with β →∞), the above integral simpli-
fies to

φ

4π
∑

n=A,B

∫
n
dx 1
Z ′n(x)

[
Z ′′n(x)
Z ′n(x) [Z ′AB(x)− Z ′n(x)]

− [Z ′′AB(x)− Z ′′n(x)]− φ
(
[Z ′AB(x)]2 − [Z ′n(x)]2]

)]
where the first two brackets cancel because

Z ′′n(x)
[Z ′n(x)]2 [Z ′AB(x)− Z ′n(x)]− 1

Z ′n(x) [Z ′′AB(x)− Z ′′n(x)]

= − d
dx

1
Z ′n(x) [Z ′AB(x)− Z ′n(x)]
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is the total derivative of a function that vanishes at the boundaries. As a result

Tr[(ρAB)φ(KA ⊗ 1 + 1⊗KB)]− Tr[(ρA)φKA]− Tr[(ρB)φKB]

= −π
(
φ

2π

)2 ∑
n=A,B

∫
n
dx [Z ′AB(x)]2 − [Z ′n(x)]2

Z ′n(x) ,

which can actually be evaluated analytically. Similar to the computation in
eq. (2.188), let us take A,B with length l each and distance d from one another.
For convenience, assume that they are placed as A = [0, l] and B = [d+l, d+2l].
Then the above evaluates to(

φ

2π

)2(
2−

[
1− 4d

l
− 2

(
d

l

)2]
log d(d+ 2l)

(d+ l)2

)
,

so that44

Iφ(A : B) = I(A : B) +
(
φ

2π

)2
I(2)(A : B) (2.233)

with the regular mutual information I(A : B) from eq. (2.188) and a flux
dependent quadratic correction whose coefficient is given by

I(2)(A : B) = 2
(

1− d

l

[
2 + d

l

]
log (1 + l/d)2

1 + 2l/d

)

∼

2− 4(d/l) log l/d for d� l

(l/d)2 for d� l.
(2.234)

A plot of eq. (2.234) is given in fig. 2.23. Note that this is finite, even in
the limit d/l → 0, where I(A : B) diverges logarithmically. Furthermore,
eq. (2.234) is strictly positive, indicating that adding an Aharonov-Bohm flux
eiφQAB will always increase the amount of correlations between A and B. We
can also apply this line of reasoning to the boundary CFT solution (2.205) to
find that the two chiralities get more entangled when adding a flux eiφ(Q++Q−).
In particular, eq. (2.234) tells us that these additional correlations strictly
decrease with increasing distance from the boundary.
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Figure 2.23: Coefficient of the flux dependent correction (solid red) to the
flux resolved mutual information between two intervals of size l
and distance d, as given by eq. (2.234). Note that it is finite as
d/l→ 0, in contrast to the flux independent piece (2.187).
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3 Conclusion
In this thesis, I studied in details the entanglement properties of free fermions.
As shown, specialising to a well understood theory allows to obtain very strong
results regarding the associated modular data – much stronger in fact than
the Bisognano-Wichmann theorem (2.29) in general QFT or even the Hislop-
Longo theorem (2.35) in CFT, since we can deal with almost arbitrary regions,
thermal states, as well as states containing zero-mode excitations. After the
admittedly computationally heavy main body of this thesis, I would like to
provide a summary and physical interpretation of the derived results and give
an outlook on possible future extensions of the work in the following two final
sections.

3.1 Summary and interpretation
Let me begin by summarising the results from sections 2.4 and 2.5: Using the
mathematical machinery derived in section 2.3, I presented how to obtain the
dynamical description of entanglement, i.e., the modular Hamiltonian, modu-
lar flow, and modular correlation function. Additionally, we also derived the
static description of entanglement in terms of (Rényi) entanglement entropy
and associated quantities such as relative entropy and mutual information.
All of this was done in 1 + 1 dimensions for free massless fermions, either in
the vacuum state or at finite temperature. Since both chiralities decouple—
this can be seen either as a consequence of conformal symmetry,118 or directly
from the Hamiltonian, as derived in eqs. (2.64) and (2.65)—, the discussion
is effectively reduced to a two one dimensional problems, one on the left and
one on the right pointing lightray. Each of the considered states was studied
on both the full and compactified lightray, corresponding in usual coordinates
to a free massless Dirac fermion on the line or the circle, respectively. In
the latter case, there are two possible spin structures (2.73), corresponding
to periodic and anti-periodic boundary conditions in spacial direction. An
addition, in section 2.4.7, I presented the discussion of the vacuum state on
the half plane with a boundary at x1 = 0. In this setting, the chiralities can
no longer be independent, due to the conformal boundary condition (2.99)
with solutions (2.100) which is needed in order for conservation laws to still



138 3 Conclusion

be valid, as was discussed in section 2.3.4. Finally, in section 2.5, I introduced
charge (2.210) and flux resolved relative entropy (2.219) for general quantum
systems and QFTs – an entanglement measure that is adapted for the study of
systems with conserved charges (and associated superselection rules). I then
computed flux resolved relative entropy of a free fermion on the line, between
thermal states of different temperatures.

Many of the results in section 2.4 were previously known in some form.107–110,144
The first achievement of this thesis is putting them in a coherent frame-
work. The second achievement of this thesis is generalising the existent results:
Chronologically, the first new result was the modular Hamiltonian (2.162) at
finite temperature on the circle, as derived by our group41 and others112,113
nearly simultaneously. The other dynamical aspects of entanglement in this
setting (modular flow (2.150) and modular correlation function (2.156)) were
also discovered by our group.43 Furthermore, the formula (2.194) for entangle-
ment entropy in this setting was also achieved in a head-to-head race between
our42 and another group.114 The non-trivial analytic continuations (2.189), (2.192),
and (2.193) of the Rényi entropies on the circle are also novel and first pub-
lished in this thesis, as is the extension to spacetimes with a boundary in
section 2.4.7. Finally, most of the results in section 2.5 are completely new,
albeit inspired by previous works on charge150 and flux resolved (non-relative)
entanglement entropy.149,151,152

Now, let us proceed to stating the core insights of this thesis and their phys-
ical interpretation: Starting with the modular correlation function (2.151),
valid in the vacuum and thermal states on the line, as well as in the non-
degenerate vacuum state on the circle, we found that it has discretely dis-
tributed poles at the solutions of the eq. (2.137),

t+ Z(x)− Z(y) = 0,

where the precise form of the function Z depends on the boundary conditions
but it is always strictly increasing in each component of the entangling region
(in lightray coordinates). This means, that for fixed t, y there is one pole at the
solution x = xn(t, y) in the n-th component, hinting at a multi-local modular
flow along the trajectories t → xn(t, y), which are rooted at xn(0, y) = y for
some n. Indeed, owing to the KMS condition (2.24), it is possible to recover
the modular flow of the field operators from the modular correlation function
via eq. (2.51) and we found in eq. (2.138) that

σt(ψ∗(y)) = −2i sinh(πt)
∑
n

G(xn(t, y)− y)
Z ′(xn) ψ∗(xn(t, y))
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is a multi-local operator for any t 6= 0, in the sense that it is a superposition
of one localised field operator per interval. In parallel to how the universal
results (2.29) and (2.35) recover the fundamental geometric symmetries of QFT
and CFT, respectively, the above implies that the massless Fermi net (2.43)
in two dimensions has an additional symmetry which turns our to be multi-
local. Indeed, this symmetry can be verified explicitly for the net, as was done
by Rehren and Tedesco.131 Furthermore, the above result implies that the
degenerate vacuum state on both the line and circle are invariant with respect
to this symmetry. To be explicit, this means that the algebra of one fermion
in n intervals is isomorphic to the algebra of n fermions in a single interval,
where the isomorphism is multi-local (maps local fields to multi-local fields),
vacuum preserving, and intertwines the corresponding modular flows. Since
the modular flow of a single interval is always geometric due to eq. (2.35),
this is the reason for the “almost-geometric” form of eq. (2.138). As shown, a
variant of this statement also has to hold for the thermal state on the line.

On the other hand, on the circle at finite temperature, we find an entirely
different picture: Here, modular flow couples the field operators at solutions
of eq. (2.149),

x− y + β

|V |
[t+ Z(x)− Z(y)] + k = 0, k ∈ Z,

where β is the inverse temperature and |V | is the total size of the entangling
region. The qualitative difference between this equation and eq. (2.137) is
that there is one solution per interval and value of k ∈ Z, as sketched in
fig. 2.19. In particular, this implies that there is an infinite discrete set of
trajectories per interval, all of which are coupled by modular flow, as sketched
in fig. 3.1. At very high temperatures, all of these trajectories but the local one
are pushed towards the boundary of the entangling region, where their ampli-
tude in eq. (2.150) diminishes exponentially. The resulting flow is local and
linear, indicating that the reduced density matrix of a thermal state at high
temperature “looks like” a thermal state at inverse temperature β/|V |. This
phenomenon is, in fact, universal132 and has a nice physical interpretation:
At high temperatures, thermal fluctuate dominate, hence the effects of en-
tanglement are suppressed. The reduction of effective temperature β → β/|V |
happens because the subregion V has a smaller heat capacity than the full sys-
tem. The limit of low temperatures is particularly interesting. As β →∞, the
solutions of eq. (2.149) “condense” in the entangling region. While they cancel
for anti-periodic boundary conditions due to the alternating sign in eq. (2.150),
they recover a Riemann sum for periodic boundary conditions, resulting in a
continuously non-local contribution (2.146) to the flow, which can be inter-
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preted as arising from the degenerate ground state.109 The question as to why
this infinite multi-locality is there in the first place, is also very interesting:
From a mathematical point of view, one could argue that this is a result of the
analytic structure of the corresponding resolvent – as I argued, the problem
is highly constrained and, in fact, a local solution that has two periodicities
(boundary conditions and KMS condition) can not exist by simple arguments
from complex analysis. From a physical point of view, the multi-locality hints
at yet another hidden symmetry of the Fermi net, which, as far as I know, is
yet to be discovered.

Figure 3.1: Trajectories (solid blue) of the modular flow (2.150) in the ther-
mal state with periodic boundary conditions inside a single dou-
ble cone, for a field initially localised in the centre of the double
cone. The amplitude of the multi-local contributions is visualised
by the opacity of the trajectories. At high temperatures (left) all
trajectories but the local one are pushed towards the boundary,
while at low temperatures (right), they “condense” to a continu-
ous non-locality, smeared everywhere inside the double cone.

Proceeding to the novel solutions (2.189), (2.192), and(2.193) for the Rényi
entanglement entropies for a degenerate ground state and on the circle at
finite temperature, respectively, we see that these formulae present analytic
continuations, valid for general <(α) > 0, of previous results from CFT144 that
were only known for integer values ≥ 2. For these integer values, the Rényi
entanglement entropies were originally derived via twist operator methods, as
is customary in two dimensional CFT,143 in order to then apply the replica
trick139 and obtain the von-Neumann entanglement entropy as the limit α→ 1,
for which the analytic continuation is essential. As far as I know, this was one
of only a few times where the analytic continuation of the Rényi entropies was
not obvious from their integer values. Nevertheless, as shown in section 2.4.6, it
is possible to retrieve closed form expressions for α = 2, 3, . . . from eqs. (2.189)
and (2.193), matching the previously known results.
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The next important result concerns free fermion entanglement in spacetimes
with a boundary in section 2.4.7. Here, I demonstrated in eq. (2.202) that the
modular flow associated to a single double cone is still local, yet it does not
coincide with a conformal transformation. This is because the presence of a
boundary breaks full conformal invariance. The fact that the flow is still local
can be traced back to the aforementioned addition symmetry that is particular
to the free fermion CFT: This multi-local symmetry is actually local in the
boundary theory because both chiralities are identified. As a result, you can
recover full conformal covariance from the modular flow of regions far away
from the boundary, as shown in fig. 3.2. Futhermore, in eq. (2.205), I presented
the mutual information between the two chiralities inside a connected region.
The fact that this scales as an inverse square law at large distance from the
boundary shows quantitatively that entanglement between the two chiralities
is largest close to the boundary. The fact that

I(+ : −) = S(no boundary)− S(boundary) > 0

can also be reinterpreted as a monogamy statement about entanglement: Since
both chiralities are entangled with each other inside the region, they can not be
entangled with the complement as much as they could if they were independent.

Figure 3.2: Trajectories (solid dark blue) of the modular flow (2.202) of free
fermions in the vacuum state with a boundary at x1 = 0. For
regions far away from the boundary (right) modular flow recovers
the Hislop-Longo result (2.35) and, with it, conformal covariance.
For regions very close to the boundary (left) the flow is still local,
albeit distorted.

The final result that I would like to discuss concerns section 2.5, where I
introduced and studied charge and flux resolved relative entropy in a general
context. The aim there was to derive a version of relative entropy that mea-
sures the physical distinguishability of different states in a setting where there
are superselection rules, i.e., where the total Hilbert space of the theory decom-
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poses in such a way that we may not measure transition amplitudes between
different sectors. Physically, this means that we are dealing with a theory
with a charge operator, which is preserved under all physical operations, i.e,
central. Thus, in order to obtain a reasonable result for the distinguishability
between two states, it makes sense to first project them onto a sector where this
charge takes on a fixed value, as done in eq. (2.210). To evaluate the resulting
expression, I then introduced flux resolved relative entropy in eq. (2.219) as
an auxiliary quantity, which basically measures the distinguishability between
“states” that contain an additional Aharonov-Bohm flux (here, I wrote “states”
because the resulting corresponding are not positive definite). These “states”
behave somewhat like a local grand canonical ensemble, in the sense that they
allow to fix the value of the conserved charge. Subsequently, I worked out ex-
act results for free fermions in eqs. (2.229), (2.230), (2.233) and (2.234), which
proved one important point: The flux resolved quantities are actually more
than auxiliary quantities – in fact, they can be defined and computed in the
absence of a cutoff, which is impossible for the corresponding charge resolved
quantities. This is because, without a cutoff, the charge fluctuations diverge
because of infinite entanglement close to the boundary of the entangling region.
As a result, the projection of the state to a sector of constant charge is non-
sensical, while we can still fix the expectation value of the charge operator by
considering the grand canonical ensemble. In addition, I showed in eq. (2.234)
that the inclusion of an Aharonov-Bohm flux in the non-degenerate fermionic
vacuum always increases correlations between disconnected subregions, which
is a structural result about the details of vacuum correlations, as it is a trace
of their uneven distribution over the superselection sectors.

3.2 Outlook
I would like to conclude with an outlook on current work in progress and
possible future works. Currently, I am working on two projects with Ignacio
Reyes, parts of which were already included in this thesis.
In the first of these projects,44 we aim to extend the results from section 2.5

about relative entropy in theories with superselection rules. In particular, we
are trying to extend the results (2.229) and (2.230) for relative entropy be-
tween two thermal states to arbitrary conformal field theories with additional
symmetries. Since the flux resolved entropies were already derived in gen-
eral,151 the computation boils down to computing the expectation value of
the modular Hamiltonian in the thermal state with an inserted flux. Luck-
ily, this should be possible within the framework of two dimensional CFT, as
there the modular Hamiltonian is universally given by the Unruh type expres-
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sion (2.159), due to the work by Hislop and Longo.39 Furthermore, the fact
that flux resolved relative entropy is well defined in the absence of a cutoff,
suggests that it might be possible to rigorously define a flux resolved variant of
the Connes cocycle (2.175), which would allow for the study of entanglement
in the presence of superselection sectors with mathematically sound methods.
The second work in progress45 aims to extend the results of section 2.4.7 on

entanglement in the presence of a boundary. In particular, we would like to
understand the influence of accelerating boundaries on modular flow and mu-
tual information, as these can be viewed as a natural toy model for Hawking
radiation.155 To this end, we first need to solve the conformal boundary con-
dition (2.99) for a moving boundary in order to obtain the correct boundary
conditions of the fields. After that, we will have to solve the integral equa-
tion (2.61) for the resulting “vacuum” propagator, although the term vacuum
is a little bit difficult here because virtual particles are constantly created due
to the accelerating boundary. Additionally, in the final stages of preparing this
thesis, another group published a paper156 discussing modular flow with static
boundaries. I will be extremely interesting to study the connections between
their work and the results in section 2.4.7.
Continuing to possible future directions, the first possibility would be to

extend the results of section 2.4 to excited states in the free fermion CFT,
since the machinery in section 2.3 applies to them as well and the corresponding
resolvents are known.108 From what you have seen in section 2.4, it is to be
expected that you find additional non-local terms there. Similarly, progress
could also be made in higher dimensions or for massive theories, if an analytic
solution of the corresponding integral equation (2.61) can be found. Success
in this direction is possible, as was already proven by Casini and Huerta,107
who obtained perturbative results in the small mass expansion.
Finally, the in my opinion most interesting extension of the present results

would be to consider free theories of higher spin fields, with possible applica-
tions in holography. This might actually be possible because the free higher
spin Haag-Kastler nets embed into the Fermi net.157,158 Thus, to obtain the
correct modular data of these theories, it is sufficient to make this embedding
explicit due to Takesaki’s theorem.61
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