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2. Prüfer: Prof. Dr. Ronny Thomale
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1 Introduction

Humanity is currently living in a digital era, in which all aspects of life, ranging from social

interaction to economy and communication all the way to science, are heavily influenced

and driven by microelectronics with continuously growing computational capabilities that

support a rapidly evolving digital infrastructure. Today’s big trends, such as Industry 4.0,

the Internet of Things and autonomous driving, will spread the influence of digitisation

even further across the realms of human life and interaction. One of the key discover-

ies at the base of this enormous progression is the first transistor that was developed

by Shockley, Bardeen and Brattain in 1947 [BB48], who were later awarded the Nobel

Prize for their work. Based on this discovery, Atalla and Kahng invented the metal-oxide-

semiconductor field-effect-transistor (MOSFET) [Kah60] that represents the fundamental

building block of today’s silicon-based integrated circuits. With the following discovery

of the functionality of semiconductor heterostructures, for which Kroemer and Alferov

were awarded the Nobel Prize, the semiconductor success story reached optics, as these

heterostructures represent the foundation for the development of opto-electronic devices

such as light emitting diodes (LEDs), lasers and solar cells.

The driving motivation of the development of semiconductor electronics has long been

to increase computational power by fabricating smaller transistors and increasing the

number of transistors per chip [Moo06]. However, over the last decades, the prevail-

ing challenge has evolved from computational power towards energy efficiency, as on a

small scale the computational speed is limited by heating and on a global scale climate

change has become one of the major challenges of our civilisation [Int14]. Information and

communication technology already accounts for approximately 2 % of the global carbon

emissions and its contribution to the global electricity demand is projected to double by

2030 and reach a daunting 20 % [AE15; Jon18]. To address this challenge, entirely new,

innovative solutions are required. In particular, the concept of topological insulators that

is based on the discovery of the quantum Hall effect by von Klitzing in 1980 [KDP80] has

evolved as a new paradigm to control the flow of electric current. Starting in electronics,

this concept has spread across large parts of solid-state physics and reached photonics as

a new degree of freedom to control the propagation of light. This development is partic-

ularly exciting as photonics has evolved as a key player for the future development of our
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2 1 Introduction

digital infrastructure, where even optical integrated circuits and optical computing are

envisioned.

Already, vertical-cavity surface-emitting lasers (VCSELs) that consist of two distributed

Bragg reflectors (DBRs) surrounding a microcavity that contains quantum wells as a

gain material are widely used in data communication. However, the physics that can be

found in a vertical microcavity resonator goes far beyond photonic lasing, as Weisbuch

and co-workers demonstrated in 1992 [Wei+92] with their first realisation of a regime

of strong coupling between the cavity photons and the quantum well excitons. In this

regime, the emission of a photon during the recombination of a quantum well exciton

becomes reversible, as the photon remains in the cavity for long enough to be reabsorbed

through the formation of an exciton. The system thus forms two new eigenstates that are

part-matter and part-light in nature and are referred to as exciton-polaritons (polaritons).

This unique composition results in an equally unique set of properties, as polaritons in-

herit a very low effective mass from the photonic fraction while still being able to interact

with each other through the excitonic part. Additionally, the mature technological con-

trol over the gallium arsenide material platform, representing the foundation of VCSEL

technology, allows for precise fabrication of polaritonic devices. The real beauty of po-

laritons, however, arises during their decay when a photon leaves the microcavity. This

photon carries the phase, amplitude, momentum and energy information of the polariton

and thus provides direct experimental access to the polaritonic states through photolumi-

nescence (PL) spectroscopy techniques allowing to directly visualise the complex physical

phenomena that can be realised in microcavities.

At the heart of this new field of polariton research was the idea of realising a Bose-

Einstein condensate (BEC), motivated by the very small polariton mass on the order of

10−5 electron masses. The first demonstration of a BEC of polaritons that was reported

by Kasprzak and co-workers in 2006 [Kas+06] was followed by a lively discussion on the

physical nature of this state. In summary, such a BEC of polaritons does not represent a

BEC in a strict sense, as it constitutes a driven-dissipative system that is far from equi-

librium. In fact, the lifetime of the polaritons is on the same order as the relaxation time

of polaritons towards the condensate and the condensate itself only represents a small

portion of the overall polariton density [Dev12]. To address this distinction, the term

polariton condensate is commonly used instead of BEC of polaritons.

Based on this understanding, the field of polaritonics evolved. First of all, experiments

inspired by the research on atomic BECs were performed and effects such as superfluidity

[Amo+09b; Amo+09a; Amo+11], vortices [Lag+08; Lag+09; San+10; Nar+11; Rou+11]

and Josephson oscillations [Lag+10] were observed. Polaritons furthermore carry a spin

that has attracted significant scientific interest [Kav+04; She+09]. Already in 1996,
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Imamoglu and co-workers started the research direction of polariton light sources by sug-

gesting to use the coherence of polariton condensates for the development of thresholdless

lasers [Ima+96]. Of particular importance in the context of polaritons as light sources

are the works on electrically driven polariton condensates [Sch+13; Bha+13] as well as

the search for new active materials that support polariton condensation at room temper-

ature [GB16]. Additionally to research on polariton condensates themselves, polaritons

have evolved as a platform for a broad range of physical effects based, among others, on

advanced potential landscapes serving as lattice simulators [Sch+16], polariton transis-

tors pursuing optical integrated circuits [Bal+13; Zas+19] as well as polaritonic neural

networks [Bal+20; Xu+20]. Additionally, the interplay of polaritons with topologically

non-trivial effects has risen as a new research direction that directly links the field of po-

laritonics to the current challenges in electronics and computing, as polaritons can serve

as a powerful platform to advance the understanding of the interplay of topology and non-

Hermiticity as well as to explore new opportunities for the development of lasers based

on topological protection. The progress of polariton research has been summarised in a

number of excellent reviews of the field [DHY10; Dev12; CC13; BKY14; Kav+17].

The aim of this work is to advance the field of polariton lattice simulators and focusses par-

ticularly on the lasing properties of the latter. It is divided into the following six chapters:

In chapter 2, Fundamentals of polariton lattices, the basic physical concepts of

light and its confinement in microcavities as well as quantum well excitons and the strong

coupling between the two are introduced. Additionally, two-dimensional lattices and their

band structure features are briefly explained, followed by an introduction into the concept

of topological insulators.

In chapter 3, Experimental methods, a brief overview of the III-V semiconductor

material platform as well as the fabrication process of polariton lattices is given. After-

wards, the spectroscopic techniques used to excite polaritons and study various properties

of the photons emitted from these microcavities are introduced.

In chapter 4, Establishing lattice potentials for polaritons, a systematic study

of the fundamental properties of polaritons in lattice potential environments that repre-

sent the foundation for the research presented in the following chapters is provided. In

particular, the evolution from the discrete energy levels of individual polariton traps to

a fully developed band structure of a polariton lattice, in analogy to the formation of

band structures for electrons in crystals, as well as the excitation of polariton condensates

within such a lattice are emphasised.
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In chapter 5, Polaritons in flatbands, polaritonic lattices with geometries that evoke

dispersionless flatbands are investigated. After demonstrating precise technological con-

trol over the remaining dispersiveness of these bands, the controlled excitation of polari-

tons and polariton condensates in flatbands is realised and used for an investigation of the

influence of the unique properties of flatbands on the coherence of polariton condensates.

Finally, the formation of vortex lattices as well as their relation to chiral edge transport

is investigated.

In chapter 6, Topological polaritons and topological lasing, polaritons in topolog-

ically non-trivial lattice potential environments are studied. After the first demonstration

of a two-dimensional polariton topological insulator, the lasing characteristics of a po-

lariton condensate in a topological defect mode of a one-dimensional polariton chain are

studied in detail. Finally, the protection of a propagating topological boundary mode is

used to ensure coherent coupling of an array of VCSELs.

In chapter 7, Engineering of polaritonic band structures, technological efforts

towards modifying polaritonic band structures and creating band gaps in the latter are

summarised. These results represent a promising path for future experiments on po-

laritonic lattices, as they form the foundation for studies on for example the coupling

of flatbands to dispersive bands as well as a topologically protected polariton quantum

valley Hall insulator.



2 Fundamentals of polariton lattices

In this chapter, a summary of the physical background needed to understand this thesis

is given. First, the description of light using electromagnetic waves to describe its prop-

erties, such as amplitude, frequency, wave vector, phase, polarisation and coherence, is

summarised in section 2.1. In section 2.2, the physics of confined light and excitons in

semiconductor microcavities and quantum wells as well as the interaction between the two

are introduced. Subsequently, a summary of lattice potentials and the calculation of their

band structures is provided in section 2.3. Here, two-dimensional lattices are emphasised

and the two distinguished cases of vanishing and infinite effective band masses are pre-

sented. Finally, an introduction into topology as a new degree of freedom in solid-state

systems is given in section 2.4.

2.1 The physics of light

This section is devoted to give a short summary of the aspects of the physical treatment

of light that are relevant for this thesis and is based on the more elaborate descriptions

that can be found in literature [ST91; Gol11; Dem13].

Our current understanding of light as an electromagnetic wave, in the context of classical

physics, dates back to the set of equations published by Maxwell in 1865 [Max65] that

describe the evolution of electric and magnetic field in space and time in vacuum. These

equations can be extended to describe the propagation of light in matter,

∇ ·D =
ρ

ε0
(2.1a)

∇ ·B = 0 (2.1b)

∇×E = −1

c
∂tB (2.1c)

∇×B =
1

ε0c2
∂tJ +

1

c2
∂tD, (2.1d)

where ρ denotes the free electric charge density, ε0 the vacuum permittivity, c the speed

of light in vacuum, J the free current density and B the magnetic field. The electric

5



6 2 Fundamentals of polariton lattices

displacement field is given by

D = ε0E + P = εE, (2.2)

with the electric field E and the dielectric polarisation P . The dielectric constant ε

accounts for the influences of matter on light, such as reflection and absorption, and is

related to the refractive index n through n=
√︁
ε/ε0. In dielectric and semiconductor

materials, as the materials relevant for this work, Maxwell’s equations simplify as ρ= 0

and J = 0 can generally be assumed.

The solution of Maxwell’s equations is given by a linear combination of plane waves

E(r, t) = E0 exp(i(k · r − ωt)), (2.3)

with amplitude E0 and frequency ω. The propagation direction of such a plane wave is

characterised by its wave vector k with an absolute value that is given by k=n ·ω/c. The

direction of the wave vector defines the polarisation of light. A transverse electromagnetic

wave travelling along z-direction can consequently be written as

Ex(z, t) = E0x cos (ωt− kz + δx) (2.4a)

Ey(z, t) = E0y cos (ωt− kz + δy) (2.4b)

with the amplitudes E0x,0y and phases δx,y. Therefore, to fully characterise a beam of

light, one does not only need to consider its propagation direction but also the dynamical

rotation of its electromagnetic field vector. The time-dependent orientation of the wave

vector k is referred to as the spin angular momentum or polarisation, whereas the spatial

distribution of the phase of a wave front is called orbital angular momentum.

The polarisation is determined by the differences in phases δ= δy - δx as well as amplitudes

between the two components and is therefore in general given by an ellipse in the (Ex, Ey)-

plane. With this definition, three sets of distinguished polarisations can be identified. The

horizontal (H ) and vertical (V ) linear polarisations are defined by E0y = 0 and E0x = 0,

respectively. The diagonal (D) and anti-diagonal (A) linear polarisation directions are

characterised by Ey =±Ex with δ= 0, π and right (σ+) and left (σ−) circular polarisations

occur for E0x =E0y with δ= π
2
, 3π

2
. In most realistic scenarios, light is a superposition of

multiple plane waves with partially randomly distributed phases and is thus partially
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V

H
D

A

σ+

σ-

p

Figure 2.1: Schematic of the Poincaré sphere. Any given polarisation is characterised by
a vector p starting from the centre of the sphere and pointing towards the
polarisation direction. The degree of polarisation is encoded in the length of
the vector and scales from p= 0 to p= 1, corresponding to fully unpolarised
and fully polarised light, respectively.

unpolarised. The degree of polarisation is then given by the Stokes vector [Sto52]

S =
1

S0

⎛⎜⎜⎜⎜⎝
S0

S1

S2

S3

⎞⎟⎟⎟⎟⎠ =
1

IH + IV

⎛⎜⎜⎜⎜⎝
IH + IV

IH − IV

ID − IA

Iσ+ − Iσ−

⎞⎟⎟⎟⎟⎠
total light intensity

amount of H-/V -polarisation

amount of D-/A-polarisation

amount of σ+-/σ−-polarisation

(2.5)

with IH, IV, ID, IA, Iσ+ and Iσ− denoting the light intensities with the corresponding polar-

isation. For fully polarised light, the relation S2
0 =S2

1 +S2
2 +S2

3 must be fulfilled whereas

for fully unpolarised light S1 =S2 =S3 = 0 holds true. The total degree of polarisation

can hence be calculated by

p =

√︁
S2
1 + S2

2 + S2
3

S0

. (2.6)

Furthermore, a given polarisation can be visualised as a vector in the Poincaré sphere

that is schematically depicted in Fig. 2.1, where the type of polarisation is encoded in the

orientation of the vector and the degree of polarisation is given by its length, scaling from

p= 0 to p= 1 for fully unpolarised and fully polarised light, respectively.

The orbital angular momentum is commonly characterised by the phase difference ac-

quired on a closed loop around the centre of the beam in a plane perpendicular to the

propagation direction and is given by ϕ=m · 2π with m∈Z. A wavefront with a flat

phase is characterised by m= 0 whereas m ̸= 0 corresponds to a helical wavefront with a

vortex with topological charge m at its core.
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Additionally to the importance of knowing the polarisation and orbital angular momen-

tum of a certain emission, in realistic scenarios the statistics of the light emitters become

significant. The most important quantity is coherence, which is defined as a fixed phase

relation between waves. The most general origin of deviations from a fixed phase relation

is a finite spread in frequency that leads to a range of phase differences. Such a frequency

spread is common in any realistic emitter and occurs for example due to the finite time of

emission that, through the uncertainty principle, directly links to a spread in frequency.

Additional statistics is added to a system if multiple emitters have to be considered. As

information can only be extracted from a signal if a fixed phase relation was maintained,

the degree of coherence is a measure for the ability to gather information from a signal.

Typically, this distance to the source is defined in two domains, space and time, leading

to the definition of spatial and temporal coherence. The degree of coherence can be mea-

sured through interference of a signal with itself at a distance in either space or time, as

only waves with a fixed phase relation will lead to a stationary interference pattern once

the signal is superimposed with itself at an angle. This autocorrelation is used to quantify

the first order degree of temporal coherence as

g(1)(τ, t) =
⟨E∗(t)E(t+ τ)⟩

⟨|E(t)2|⟩
(2.7)

for a time t and a time delay τ and analogously for space and a spatial separation. For a

fully coherent signal, g(1) = 1, and for a fully incoherent signal, g(1) = 0. By Fourier trans-

forming the commonly occurring exponential coherence decay of g(1)(τ)∼ exp(−τ/τcoh)

into the frequency domain, one finds a Lorentzian line shape with a linewidth γ that is

given by γ= h
πτcoh

, known as the Wiener-Khintchine theorem [Wie30; Khi34].

When moving beyond the classical description of light towards a quantum picture that

considers individual photons, higher degrees of coherence become meaningful. Most no-

tably, correlating the detection of a photon at time t with the detection of another photon

at time t+ τ provides crucial information about the emitter. The probability of detecting

this second photon is given by the second order coherence degree [Gla63a; Gla63b; Gla07]

g(2)(t, τ) =
⟨E∗(t)E∗(t+ τ)E(t)E(t+ τ)⟩

⟨E∗(t)E(t)⟩2
. (2.8)

If E(t) and E(t+ τ) are stationary but uncorrelated, g(2)(τ) = 1, implying that the relevant

information is given by g(2)(0). For an emitter with a single mode, g(2)(0) = 2 for a

thermal emitter, referred to as photon bunching, g(2)(0) = 1 for a coherent emitter and

g(2)(0) = 1 - 1/n for a number state consisting of a fixed number of emitters, resulting in

the characteristic anti-bunching behaviour of g(2)(0) = 0 for a single photon source.
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A technological approach to increasing the coherence of an emitter is light amplification by

stimulated emission of radiation, in short LASER. In the most general description, a laser

consists of three components, namely an active medium with at least three energy levels, a

pump and a resonator. When the pump excites the active medium, a population inversion

can be reached. A photon emitted spontaneously will now produce further identical

photons through stimulated emission. This process is enhanced by keeping photons within

the resonator. As multiple emitters now emit identical photons, the emission does not

occur with a finite lifetime but continuously, thus decreasing the spread in frequency and

increasing the degree of coherence. The key identifiers at the threshold from spontaneous

light emission to lasing are therefore a non-linear increase in emission intensity, a decrease

in linewidth and the build-up of coherence.

2.2 Semiconductor microcavities and quantum wells

In this section, the confinement of excitons in quantum wells as well as photons in micro-

cavities are introduced, followed by a description of the interaction between these light

and matter components. Here, a particular emphasis is put towards the regime of strong

light-matter coupling that results in the formation of exciton-polaritons (polaritons). Fi-

nally, the properties of polaritons, such as their pseudospin, angular momentum, the

formation and relaxation processes as well as their ability to form polariton condensates

are elaborated. Further details on the introduction that is given in this section can be

found in textbooks [Kit05; Dev06; YC10; Kli12; TS12; Kav+17] as well as review articles

[Kav10; DHY10; Yu+19] on the topic.

2.2.1 Photonic confinement in microcavities

The key concept of an optical cavity is the confinement of light as a standing wave,

which can most intuitively be achieved by an optical resonator formed by two planar

mirrors, referred to as a Fabry-Pérot resonator [FP97]. In the realms of semiconductor

physics, where a range of designs to realise optical confinement has been established

[Vah03], the size of the optical cavities is commonly reduced to the order of the wavelength

of the confined light, thus justifying the term microcavity. For this work, Fabry-Pérot

microcavities consisting of two distributed Bragg reflectors (DBRs) separated by a cavity

layer were investigated. A DBR consists of a stack of consecutive pairs of two materials

with a difference in refractive index, causing light to reflect at every interface. The

thicknesses d of the layers are determined by n1d1 =n2d2 =λDBR/4, such that they fulfil

the Bragg condition resulting in constructive interference of the reflected light from the
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Figure 2.2: a) Transfer matrix simulation of the reflectivity spectrum of an AlAs cavity
surrounded by Al0.20Ga0.80As/AlAs DBRs showing the characteristic cavity
resonance, highlighted in red, at the centre of the stopband of the DBRs. A
reflectivity spectrum of a single DBR is presented in the inset. b) Refractive
index structure of the microcavity in blue and the corresponding electric field
distribution featuring a maximum at the centre of the cavity in red.

individual interfaces. The reflectivity spectrum thus features a spectral range of high

reflectivity, coined stopband, centred around λDBR. The reflectivity spectrum of a DBR

can be calculated using the transfer matrix method [Hol21; Yu03] and is displayed in the

inset of Fig. 2.2 a).

A Fabry-Pérot resonator can be formed by stacking two DBRs with a spacer layer, referred

to as cavity layer, with an optical thickness of integer multiples of λC/2 in between them.

As depicted in Fig. 2.2 a), the resulting cavity resonance at λC/2 is usually designed to

be located at the centre of the DBR stopbands and therefore at the reflectivity maximum

by obeying the condition λDBR =λC. The quality of such a microcavity is quantified by

the quality factor

Q =
λC
γC

=
ECτC
h

, (2.9)

with γC denoting the linewidth of the cavity resonance. The Q-factor can be understood

as the average number of round trips a photon travels within the cavity before escaping

through one of the mirrors and is therefore directly related to the lifetime τC of a cav-

ity photon through the energy of the cavity resonance EC and the Planck constant h.

Experimentally, quality factors on the order of Q = 10,000, corresponding to lifetimes of

τC≈ 30 ps, are routinely observed in linewidth measurements. Due to confining photons



2.2 Semiconductor microcavities and quantum wells 11

into a two-dimensional plane, here set to be the x -y-plane, their dispersion relation is

drastically changed. When expressing the photonic wave vector as k2 = k2∥ + k2⊥ to re-

flect the symmetries of the system and approximating the component of the wave vector

perpendicular to the cavity k⊥ to be significantly smaller than the in-plane wave vector

k∥ =
√︁
k2x + k2y, the energy dispersion of a cavity photon can be approximated by

EC =
ℏc
nC

√︂
k2⊥ + k2∥ ≈

ℏc
nC

k⊥

(︄
1 +

k2∥
2k2⊥

)︄
= EC(k∥ = 0) +

ℏ2k2∥
2m∗

C

with EC(k∥ = 0) =
hc

λC
(2.10)

where ℏ corresponds to the reduced Planck constant. Strikingly, due to the confinement,

the photonic dispersion changes from a linear to a quadratic dependency on the wave

vector and can be described using an effective mass

m∗
C = EC(k∥ = 0)

n2
C

c2
(2.11)

that, under the consideration of relativistic effects, is even predicted to be an actual

inertial and gravitational mass [Ric19]. As the in-plane wave vector is directly linked to

the emission angle θ by

k∥ = nC
2π

λC
tan

(︃
sin−1

(︃
sin θ

nC

)︃)︃
≈ 2π

λC
θ for k∥ ≪ k⊥, (2.12)

the dispersion can be imaged through angular resolved spectroscopy. It is additionally

important to note that, opposed to metallic mirrors, the electric field penetrates into the

DBRs resulting in an effective cavity length

Leff = LC + LDBR with LDBR ≈ λC
2nC

n1n2

|n1 − n2|
(2.13)

for normal incidence and λC =λDBR, as depicted in Fig. 2.2 b). By mismatching the

stopband centre ωDBR and the cavity resonance ωC, the penetration depth into the DBRs

and therefore also the effective cavity length and thus the energy of the cavity resonance

acquire a dependence on the polarisation, resulting in an energetic splitting between

transverse electric (TE) and transverse magnetic (TM) polarised modes that is only zero

at normal incidence and is given by

ωTM(θ) − ωTE(θ) ≈ LCLDBR

L2
eff

2 cos θeff sin2 θeff
1 − 2 sin2 θeff

(ωs(0) − ωC(0)) (2.14)
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with θeff≈ arcsin
(︂

nDBR

nC
sin θ

)︂
being the effective incidence angle in the cavity region with

a refractive index of the first DBR layer of nDBR [Pan+99]. The importance of this

splitting will become apparent in section 2.2.4, as it can be viewed as an artificial gauge

field comparable to spin-orbit interaction in the context of understanding polarisation as

a pseudospin.

2.2.2 Excitonic confinement in quantum wells

A common approach towards treating excitations within a matter environment is to con-

sider the ground state of this matter as the new quasivacuum to then be able to refer to

the excitations as quasiparticles. One example of such a quasiparticle, named exciton, is

an excited electron that is bound to a hole by Coulomb interaction. The binding energy

and thus also the Bohr radius aB depend on the dielectric screening of the environment,

with strongly bound excitons termed Frenkel excitons [Fre31] and weakly bound excitons

being referred to as Wannier-Mott excitons [Wan37]. While Frenkel excitons featuring

binding energies on the order of 1 eV are commonly observed in organic semiconductors

[Knu03], Wannier-Mott excitons with binding energies on the order of 1 meV are present

inorganic semiconductors such as GaAs [Nam+76]. As excitons represent a dipole, they

can interact with light with an interaction strength

f =
2m∗

Xω

ℏ
⟨uh|er|ue⟩2

V

πa3B
, (2.15)

where m∗
X refers to the effective exciton mass, |ue,h⟩ are the electron and hole Bloch func-

tions, er the dipole operator and V the volume. The exciton pseudospin sX is dictated by

the electron spin se = ±1/2 and the light (heavy) hole pseudospin sh =±1/2, (±3/2), re-

sulting in possible values of sX =±1,±2. As momentum conservation allows only excitons

with a pseudospin of sX =±1 to be directly optically accessed, excitons with a pseudospin

of sX =±1 and sX =±2 are also referred to as bright and dark excitons, respectively.

Excitons can be confined by fabricating their host material as a thin layer of semicon-

ductor with a band gap that is smaller than the band gap of the surrounding material

and lies within the latter. These two-dimensional excitons interact significantly stronger

with light, as only the in-plane wave vector needs to match with the exciting light and

the Bohr radius is decreased, leading to an increase in interaction strength.

For this work, it is furthermore important to note that excitons that are placed in an

external magnetic field B are subject to a diamagnetic shift

∆dia = κXB
2, (2.16)
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given by the effective diamagnetic factor κX [Nas+89], and a Zeeman splitting [Zee97]

∆Z = gX(B)µBB (2.17)

of the exciton pseudospins, with µB denoting the Bohr magneton and gX(B) the effective

exciton g-factor. As the exciton g-factor is influenced both by the electron and the hole,

its dependence on the magnetic field is strongly nonlinear [Kot+01].

2.2.3 Light-matter interaction

A powerful scheme to realise high interaction strengths between light and matter is to

place one or multiple quantum wells hosting excitons inside a microcavity. Here, the

highest interaction is achieved by placing the quantum wells at the position of the anti-

node of the electric field of the cavity resonance, which is usually designed to be at the

centre of the cavity layer as introduced in Fig. 2.2 b). The coupling of excitons and

photons is described by the Hamiltonian

Ĥ =

(︄
EC + iℏγC V

V EX + iℏγX

)︄
, (2.18)

with V denoting the coupling strength between the two oscillators, γC the rate of photons

leaving the cavity and γX the rate of non-radiative exciton decay.

The two eigenvalues

EUP,LP(k∥) =
1

2

(︁
EC(k∥) + EX(k∥) + iℏ(γC + γX)

)︁
± 1

2

√︂
4V 2 +

(︁
EC(k∥) − EX(k∥) + iℏ(γC − γX)

)︁2 (2.19)

of this Hamiltonian are characterised by a vacuum Rabi splitting at a detuning of ∆E =EC -

EX = 0 given by

2ℏΩR = EUP(k∥ = 0) − ELP(k∥ = 0) =

√︂
4V 2 − ℏ2 (γC − γX)2. (2.20)

The term vacuum Rabi splitting indicates the analogy to normal mode coupling between

an atom and a cavity mode that is described by the Jaynes-Cummings model [JC63]

and features an oscillation of the excitation between the atom and the photonic mode

at the Rabi frequency. However, there are several major differences between the two

systems, the most significant of which is the fact that an atom is a quantum mechanical

two level system whereas excitons in a quantum well are most appropriately described as
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Figure 2.3: a) Dispersion relation of the lower and upper polariton branch for an exciton-
photon detuning of ∆E =−10 meV and a Rabi splitting of 2ℏΩR = 10 meV.
The uncoupled excitonic and photonic modes are represented by dashed
lines. b) Hopfield coefficients for the excitonic (|X|2) and photonic (|C|2)
components of the lower polariton. c) Polaritonic eigenenergies at k∥ = 0 as
a function of the detuning visualising the anti-crossing behaviour of the new
eigenmodes.

a harmonic oscillator [SFW98; HR06]. Using equations 2.19 and 2.20, the detuning can

be expressed as

∆E(k) =
4ELP(k∥)

2 − (2ℏΩR)2 − 8ELP(k∥) · EX + 4E2
X

4
(︁
ELP(k∥) − EX

)︁ . (2.21)

For imaginary values of the square root in equation 2.20, the system is referred to as

weakly coupled and excitons and photons remain the eigenmodes. However, for V > ℏ
2
|γC -

γX|, the two oscillators are strongly coupled resulting in new eigenmodes that are a

combination of exciton and photon and are referred to as exciton-polaritons (polaritons).

In this regime, that was first observed experimentally in 1992 by Weisbuch and co-workers

[Wei+92], energy is coherently transferred between exciton and photon. Here, the Rabi

splitting 2ℏΩR corresponds to the experimentally observable energetic splitting between

the two oscillators at a detuning of ∆E = 0. Equation 2.19 describes the dispersions of

the upper and the lower polariton branch, UP and LP, respectively, that are displayed in

Fig. 2.3 a). These polaritons are part-light, part-matter quasiparticles with a composition
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that is given by the Hopfield coefficients [Hop58]

⃓⃓
C(k∥)

⃓⃓2
=

1

2

(︄
1 −

∆E(k∥)√︁
∆2

E(k∥) + (2ℏΩR)2

)︄
and

⃓⃓
X(k∥)

⃓⃓2
=

1

2

(︄
1 +

∆E(k∥)√︁
∆2

E(k∥) + (2ℏΩR)2

)︄ (2.22)

with photonic and excitonic fractions |C|2 and |X|2, respectively, and |C|2 + |X|2 = 1,

as presented in Fig. 2.3 b). The most characteristic feature of such a strongly coupled

system is the anti-crossing behaviour displayed in Fig. 2.3 c) that occurs when one of

the underlying modes, namely the exciton or the photon, is tuned across the energy of

the other mode. The unique composition of polaritons as a combination of excitons and

photons constitutes a distinct set of properties including a very low effective mass, in-

herited from the photonic fraction, on the order of m∗
P≈ 10−5me, with me denoting the

electron mass, and the ability to interact and be susceptible to magnetic fields, inherited

from the excitonic part. Due to the short lifetime of microcavity photons on the order

of 10 ps, compared to excitonic lifetimes on the order of several 100 ps up to 1 ns, the

decay of polaritons is dominated by photons that leave the microcavity. As these photons

carry the phase, amplitude, momentum and energy information of the polariton, they

provide direct experimental access to the polariton states by photoluminescence (PL)

spectroscopy. It is this set of properties that has driven the development of an active field

of research in the pursuit of potential optoelectronic applications, where in particular the

development of platforms such as organic semiconductors [Lid+98; Lid+99], II-VI semi-

conductors [Sab+01] as well as GaN-based microcavities [Taw+04; But+06] that open

the path towards room temperature operation is worth mentioning.

For an even higher interaction strength between excitons and photons, on the order of the

coupling strength of the excitons, a regime of very strong coupling leading to a hybridisa-

tion with higher orbital excitons was predicted [Khu01; CK03] and realised experimentally

[Bro+17].

2.2.4 Properties and excitation of polaritons

Polariton pseudospin and orbital angular momentum

The polariton pseudospin is a powerful concept to describe the interplay of the excitonic

pseudospin and the photonic polarisation as well as their evolution under various con-

ditions [Kav+04; She+09]. The excitonic pseudospin and the photonic polarisation are

intertwined, as light with a circular polarisation of S3 =±1 excites bright excitons with
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a pseudospin of sX =±1, respectively, whereas linearly polarised light excites a linear

combination of the two excitonic pseudospin orientations. Analogously to projecting the

photonic polarisation onto the Poincaré sphere (s. Fig. 2.1), the polariton pseudospin

is mapped onto the Bloch sphere simply by replacing the horizontal and vertical, diago-

nal and anti-diagonal and left and right circular polarisations with the spin components

sx, sy, sz =±1/2. The pseudospin of a polariton therefore becomes apparent in the emis-

sion of polarised light.

Whereas the polariton pseudospin can be experimentally accessed by measuring the Stokes

parameters of the polarised emission, the orbital angular momentum of the polaritonic

state translates into the orbital angular momentum of the light emitted from the cavity.

For a coherent state with a fixed phase relation, the orbital angular momentum therefore

becomes apparent in a spatial phase map which can be measured through interference

techniques.

For a range of phenomena, the coupling of motion and spin of a particle, referred to as

spin-orbit coupling, is of key importance. Such a spin-orbit coupling can be defined for

polaritonic systems as well and is achieved by realising a coupling between the polariton

pseudospin and its orbital angular momentum [Sal+15]. Here, a thorough understanding

of the dynamics of the polariton pseudospin is essential and has thus evolved to be a

complex area of research. The pseudospin can decay through relaxation of the excitonic

pseudospin, which is governed mainly by spin-flip exchange interaction of electrons and

holes [PB71; MAS93; She+09], or a loss of coherence of the photonic component. Fur-

thermore, its interplay with internal and external magnetic fields leads to a rich set of

effects. In particular, the TE-TM splitting of the cavity mode, which was introduced in

section 2.2.1, plays a major role as it lifts the degeneracy of the polarised photonic modes

and can, in the pseudospin picture, be described as an internal magnetic field analogously

to the Rashba field that is used to describe spin-orbit interaction for electronic systems.

A comparison of the two fields

BRashba
eff (k∥) ∼ (ex cos(ϕ) + ey sin(ϕ)) (2.23a)

BTE-TM
eff (k∥) ∼ (ex cos(2ϕ) + ey sin(2ϕ)) (2.23b)

demonstrates the similarity, as the only difference in the dependence on the wave vector

of the two fields is a factor of two in the winding number. This unique dependence on

the wave vector, however, leads to peculiar effects such as the optical spin Hall effect

[KMG05; Ley+07], polarisation-dependent patterns [Lan+07] as well as polarisation and

phase vortices [LKS07]. The polariton pseudospin is furthermore susceptible to external

magnetic fields as they lift the degeneracy of the excitonic pseudospin components through

the Zeeman effect, as will be discussed later on.
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Polariton excitation

This section provides a brief description of the prevailing methods to create a polariton

population from a theoretical viewpoint, whereas a description of the technological as-

pects of realising these excitation schemes can be found in section 3.2. The most common

approach towards creating a polariton population is schematically depicted in Fig. 2.4

and features a non-resonant scheme in which free charge carriers are excited at an energy

above the exciton energy by tuning a laser to a high-energy reflection minimum of the

stopband of the upper DBR, referred to as Bragg minimum EBragg. An electrical injection

of free charge carriers is technologically achievable as well [Tis+05; Tsi+08] and can be

treated analogously. These free charge carriers dissipate energy to the lattice and form

an exciton reservoir. Through spontaneous emission of photons and the coupling process

described in section 2.2.3, polaritons occupying predominantly the lower polariton branch

at high wave vectors and thus with a high excitonic fraction and lifetime are formed. Ef-

ficient scattering with phonons, other excitons and polaritons allows further cooling until

the photonic influence becomes significant, resulting in a steeper dispersion and shorter

lifetime, where scattering with phonons becomes inefficient [Lag+03; Doa+05]. At this

so-called bottleneck, polariton-polariton scattering is the predominant scattering mecha-

nism to create a polariton population at the energy minimum of the dispersion at k∥ = 0

[Das+02; Per+05].

Alternatively to non-resonant excitation schemes, a polariton population at a determinis-
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tic position of the dispersion can be created through resonant excitation by matching the

wave vector and the energy of the desired state with the excitation laser. In particular,

the incidence angle and energy of the excitation laser can be carefully tuned to coincide

with the lower polariton branch such that parametric scattering results in a polariton pop-

ulation in the ground state as well as a population at correspondingly higher energy and

wave vector [Bau+00]. This excitation scheme is consequently referred to as an optical

parametric oscillator. It is important to note that, in contrast to non-resonant excitation,

the phase and polarisation of the excitation laser is imprinted on the resonantly excited

polariton population. Finally, a quasi-resonant excitation by tuning the laser resonantly

to the exciton reservoir is feasible.

Polariton condensation

The phenomenon of spontaneously occurring coherence, known for example from the

laser introduced in section 2.1, has motivated ongoing research for decades. Another

phase that is characterised by a macroscopic coherence forming at a threshold is the

Bose-Einstein condensate (BEC) [PS03]. Based on Bose’s formulation of the statistics for

bosonic particles [Bos24], Einstein developed the idea that a gas of non-interacting bosons

should, at a certain critical density of equivalently at a certain critical temperature, be

able to undergo a phase transition to the macroscopic occupation of a single, coherent

ground state [Ein24], referred to as Bose-Einstein condensate BEC. The criterion to

reach this phase transition can be understood as a density that is high enough for the

wavefunctions to overlap and is given by

nλ3D = 2.62 with λD =

√︄
2πℏ2
mkBT

, (2.24)

for density n, de Broglie wavelength λD, Boltzmann constant kB and temperature T . This

phase transition leads to the appearance of a macroscopic condensate wavefunction ψ(r)

with non-zero mean value

⟨ψ(r)⟩ =
√︁
n(r)eiθ(r), (2.25)

where the real part is given by the square root of the density and the imaginary part

describes the specific phase ϕ that arises at the threshold and represents the appearance

of phase coherence.

As polaritons consist of excitons, which are bosonic as long as their wavefunctions do

not overlap, and photons, which are bosons as well, they follow bosonic statistics at

low densities. Furthermore, their effective mass is very low due to the photonic compo-

nent, rendering them good candidates to achieve Bose-Einstein condensation at elevated
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temperatures. It is thus not surprising that, when increasing the excitation power, the re-

laxation processes described above lead to an increase in occupation of the lowest-energy

state which, as soon as a threshold density is reached, leads to stimulated scattering

into the lowest energy state and the formation of a condensate. However, due to long

wavelength thermal fluctuations, long-range order and thus a BEC should be inhibited in

two-dimensional systems [Hoh67]. This argument can be overcome by limiting the system

to a finite size given by a box with length L, which can reasonably be assumed for any

experimental system, resulting in a criterion for condensation given by

n =
2

λ2D
ln

(︃
L

λD

)︃
. (2.26)

As BECs represent a macroscopically occupied, coherent state, polariton condensates

where soon theoretically considered for lasing applications [Ima+96; Mal+03], as they

would not require the population inversion that is critical for photonic lasers [Den+03].

The following experimental efforts [Ric+05] resulted in the first realisation of a polariton

condensate 2006 by Kasprzak and co-workers [Kas+06]. As the field developed further,

the size of the condensates was increased [Bal+17], the operating temperature of polari-

ton lasers was extended to room temperature [GB16] based on the organic, II-VI and

GaN semiconductor material platforms and even an electrically injected polariton laser

was realised [Sch+13; Bha+13]. As one of the defining characteristics of polariton con-

densation is the build-up of coherence, significant efforts were directed towards the the-

oretical [PT03; WE09] and experimental investigation of the spatial [Den+07; Spa+12]

and temporal [Kas+08; Hau+12; Adi+15] coherence properties of polariton condensates.

Furthermore, the influence of reducing the condensate dimensionality [Zha+14; Fis+14;

Kla+18] as well as the prevailing decoherence mechanisms [Lov+08; Kle+18] were stud-

ied, resulting in the establishment of a coherent polariton laser [Kim+16]. Linked to the

coherence properties of polariton condensates is their well-defined pseudospin which has

motivated work on the control of the pseudospin [Ask+16; Kla+19] as well as the imple-

mentation of a chiral polariton laser [Car+19].

A major difference between polaritons and an ideal gas is the finite lifetime which, to

reach a BEC at thermal equilibrium, needs to be larger than the thermalisation time. In

this ongoing field of research [DHY10; CC13; BKY14], currently the three terms polariton

BEC, polariton laser and photon laser are distinguished. A polariton BEC describes a

condensate in thermodynamic equilibrium, whereas a macroscopic occupation of a single

state without thermalisation is commonly achieved experimentally and is referred to as

a polariton laser. The experimental observables of this condensation are a non-linear

increase in intensity, a drop in linewidth correlated to the build-up of coherence and an
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energetic blueshift due to the increased interaction of polaritons resulting from the higher

densities. Furthermore, the macroscopic occupation of one pseudospin degree of freedom

leads to linearly polarised emission. Owing to its emission characteristic, this type of

driven-dissipative, non-equilibrium condensate is referred to as a polariton laser. Both

the polariton BEC and the polariton laser are covered by the comprehensive term po-

lariton condensate. At an even higher excitation power, the Mott density, given in the

simplest approximation by nM = a−3
X [Kli12] with aX denoting the exciton Bohr radius, is

reached. At this density, the excitons decay into an electron-hole plasma due to overlap

of their wave functions and the microcavity behaves as a photon laser, or more specif-

ically a vertical-cavity surface-emitting laser (VCSEL). The main difference between a

polariton laser and a photon laser is the origin of the coherence. In a polariton laser,

the coherence is generated through stimulated scattering into a single state resulting in

a coherent active medium that emits through spontaneous emission, while a photon laser

emits coherently through stimulated emission from an incoherent active medium. Due to

the strong coupling to excitons, the polariton laser can be distinguished from a photon

laser by the blueshift of the condensate with increasing excitation power and through its

susceptibility to external magnetic fields.

Inspired by the close link between Bose-Einstein condensation and superfluidity, promi-

nently featuring frictionless transport, polariton research has also directed its attention

towards a description of polariton condensates as quantum fluids of light [CC13]. Po-

laritonic superfluids were investigated in experiments [Amo+09a; Ler+17] and theory

[WC10]. Motivated by the vision of answering open questions regarding for example a

Berezinskii-Kosterlitz-Thouless (BKT) transition, votices and vortex pairs in polariton

superfluids have been studied [Lag+08; Nar+11; Rou+11], manifesting the potential of

polaritonic simulators due to the combination of their unique properties with excellent

experimental access.
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2.3 Lattice potentials

The main constituents of this thesis are polaritons confined in lattice potentials. Following

the introduction into polariton physics in the previous section, this section therefore

provides an overview of the formation of band structures in lattice potentials. After

a general introduction of band structure calculation and the concept of an effective mass

in the context of a band structure, the two extreme cases of a vanishing effective mass in

Dirac cones as well as an infinite effective mass in flatbands are highlighted.

2.3.1 Band structure calculation

When trying to understand the formation of a band structure in solid-state physics [Kit05;

AM12], one intuitively starts by describing individual atoms that are characterised by dis-

crete energy levels. By coupling two atoms together, these atomic energy levels split into

molecular orbitals, with each atomic orbital resulting in one molecular orbital. Conse-

quently, when coupling multiple atoms, the energy levels split further and form a band

structure of states that are available for the electrons. The most important characteristic

of these bands is their momentum dependence, given by the dispersion relation E(k).

Analogously to electrons in atoms, polaritons can be confined into micropillars resulting

in discrete energy levels. A detailed introduction on the technological implementation of

creating trapping potentials for polaritons is provided in section 3.1.2. When coupling

these micropillars together by placing them close to each other in a lattice geometry, po-

laritonic band structures that closely resemble the electronic band structures known from

crystalline materials can be formed.

The simplest theoretical description of such a band structure is the tight binding approach

that treats the lattice Hamiltonian

H =
∑︂
i

Hat(r −Ri) + ∆U(r) (2.27)

as a sum of the Hamiltonians Hat of the individual atoms at positions Ri with an energy

deviation ∆U(r) describing the influence of the lattice potential. Due to the translational

symmetry of a lattice, the wave function solving this Hamiltonian needs to satisfy the

Bloch theorem which would intuitively motivate a linear combination of plane waves.

However, such plane waves would neglect the orbital nature of the atomic states, thus

motivating an approach based on Bloch functions, where the Bloch function ϕj(k, r) of a
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sub-band is constructed as a linear combination of atomic orbitals (LCAO) [SDD98]

ϕj(k, r) =
1√
N

N∑︂
R

eikRφj(r −R), (2.28)

where φj denotes the orbital wavefunction of the j th atom of the lattice unit cell and R

corresponds to the lattice vector in a lattice composed of N unit cells. The eigenfunctions

of the lattice are then expressed as linear combinations of these Bloch functions as

ψj(k, r) =
n∑︂

k=1

cjk(k)ϕk(k, r) (2.29)

and the energy eigenvalues are given by

Ej(k) =
⟨ψj|H|ψj⟩
⟨ψj|ψj⟩

. (2.30)

The elements of the Hamiltonian can be calculated by

Hjk(k) = ⟨ϕj|H|ϕk⟩ . (2.31)

Each discrete energy level of a site results in one band with a bandwidth determined by

the coupling strength. Furthermore, as the orbital nature of the underlying states needs

to be considered [Ma+19], its nomenclature, such as S, P and D orbitals, is transferred to

the resulting bands. In analogy to the formation of a band structure for atomic crystals,

this nomenclature is used for bands of artificial lattices as well. Furthermore, as each site

in the unit cell contributes one state per band, the number of sub-bands in a band is given

by the number of sites in the unit cell.

The tight binding method allows to get a quick estimate of the bands, including the

dispersion relations, that are to be expected for a given lattice. However, some deviations

to experimentally determined band structures are expected for polaritonic systems due to

rather shallow confinement potentials, the influence of mode hybridisation and deviations

from the real space mode patterns. A more accurate description can be obtained by an

alternative approach based on calculating the full Bloch modes consisting of excitonic and

photonic components and a realistic real space potential environment, thus representing

the experimental conditions far more accurately [Kle+17].
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2.3.2 Effective mass in band structures

The motion of a particle in a lattice potential environment is significantly altered compared

to the motion in vacuum. This deviation is commonly described by assigning an effective

band mass defined as

m∗
band = ℏ2

(︃
∂2E(k)

∂k2

)︃−1

(2.32)

to particles in a lattice reflecting the influence of the dispersion relation E(k) . In partic-

ular, the two distinct cases of a vanishing effective mass, achieved for linear dispersions

at Dirac points, and the infinitely large effective mass, achieved in flatbands where the

energy is constant independently of k, have attracted significant scientific interest.

In the first case, the vanishing effective mass at linear dispersions results in relativis-

tic transport of particles described by the Dirac equation [Dir28] and has thus provoked

such dispersions to be referred to as Dirac cones. Due to the relativistic transport, these

Dirac cones are ideally suited to study phenomena such as the Klein paradox of perfect

transmission of relativistic particles through a tunnel barrier [Kle29]. Additionally, band

touching points at Dirac points have attracted significant interest in the context of open-

ing topological band gaps [Hal88]. The most prominent example of a two dimensional

lattice hosting Dirac cones is the honeycomb lattice geometry of graphene [Cas+09] that,

next to research on graphene, has spurred the development of numerous platforms for

artificial lattices [Pol+13].

In contrast to Dirac cones, flatbands are characterised by an infinite effective mass cor-

responding to fully localised states with a vanishing group velocity ∇kE(k) that are

referred to as compact localized states (CLSs) [AAM96]. The first predictions of lattices

featuring such a flatband where the dice lattice proposed by Sutherland [Sut86] and the

Lieb lattice [Lie89]. These first discoveries where generalised by Mielke and Tasaki in the

context of flatband ferromagnetism that occurs if the flatband is the lowest energy band

[Mie91; Tas92; Tas08]. Mielke replaced the links of a given lattice with sites, so called line

graphs, to generate lattices that host flatbands, whereas Tasaki fine-tuned the interplay

of nearest and next-nearest neighbour coupling. While finely tuning system parameters

has unveiled a broad range of flatband lattices, a general theory is still lacking. Therefore,

nowadays an approach based on assuming the existence of a CLS and then constructing

compatible Hamiltonians is used not only to generate new geometries that support flat-

bands but also to advance a more general understanding of the latter [Mai+17; LAF18].

Notably, the localisation in flatbands does not arise through a local deformation of the

potential, but rather through a combination of phase frustration and geometric symme-

try considerations. While there has been ongoing theoretical interest in flatband systems

since their first description in the 1980s, experimental studies that use the peculiar nature
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of flatbands to investigate for example the magnetic ordering, the enhanced inter-particle

interaction or the sensitivity to disorder have only recently evolved, in particular in the

context of artificial flatband systems [LF18; LAF18].

2.3.3 Two-dimensional lattices

In two dimensions, there are five Bravais lattices, namely the oblique, square, rectangular,

centred-rectangular and hexagonal lattices. In the following, the square and the hexag-

onal lattices as well as lattices derived from these base lattices will be introduced, since

polaritonic implementations of these lattices are studied within this work.

The square lattice is a valuable model system due to its simple geometry which is dis-

played in Fig. 2.5 b). Its real space geometry defines the high-symmetry points Γ, X and

M of the Brillouin zone that is displayed in Fig. 2.5 a) and results in a square symmetry

of the energy dispersion of the S band, calculated using the tight binding approach and

given by

E(k∥) = 2t (cos(kxa) + cos(kya)) (2.33)

with nearest neighbour coupling t and nearest neighbour distance a that is displayed

in Fig. 2.5 c). An important lattice derived from the square lattice is the Lieb lattice

featuring the square unit cell with three sites that is presented in Fig. 2.5 d). Owing to

its square geometry, it shares the same high-symmetry points of the Brillouin zone. The

energy dispersion of the S band, as given by a tight binding model, can be expressed as

E(k∥) = 0;±2t
√︂

cos2 (kxa) + cos2 (kya) (2.34)

with nearest neighbour coupling t. It features a flatband that intersects with a Dirac

point at the M -point of the Brillouin zone, as can be observed in Fig. 2.5 e).

Similarly to the square lattice, the hexagonal lattice, that is also referred to as triangular

lattice, is a valuable model system and represents the base for interesting derived lattices.

Its Brillouin zone with high-symmetry points Γ, K, K ′ and M and the real space geometry

are presented in Figs. 2.6 a) and b). As the hexagonal lattice features only one site per

unit cell, the K and K ′ points are equivalent. The dispersion relation of its S band,

determined by a tight binding model, is given by

E(k∥) = 2t

(︄
cos (kxa) + 2 cos

(︃
1

2
kxa

)︃
cos

(︄√
3

2
kya

)︄)︄
(2.35)

and is displayed in Fig. 2.6 c). Historically, the most famous, derived lattice of the hexag-

onal lattice is the honeycomb lattice, as it is the lattice geometry of graphene [Cas+09].
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Figure 2.5: a) Brillouin zone of the square and Lieb lattices, characterised by the high-
symmetry points Γ, X and M. b) Real space geometry of the square lattice
and the corresponding dispersion of the S band in c), with aL denoting the
lattice constant. d) Real space geometry of the Lieb lattice with three sites
in the unit cell and its S band dispersion relation featuring a flatband (red)
intersecting with the dispersive bands at the Dirac point at the M point of
the Brillouin zone in e).

Its geometry featuring a hexagonal lattice with two sites in the unit cell is presented in

Fig. 2.6 d). Here, it is important to note that the edge terminations on the top and bot-

tom are referred to as armchair edges, whereas the left and right edges are called zigzag

edges. In artificial honeycomb lattices, a third edge termination featuring an additional

site in front of the outermost sites of the zigzag-edge, referred to as bearded edge, can be

realised. Furthermore, lattices featuring a unit cell with two sites, such as the honeycomb

lattice, are commonly referred to as bipartite lattices. The Brillouin zone of the honey-

comb lattice features the same geometry as the Brillouin zone of the hexagonal lattice

that is depicted in Fig. 2.6 a), with the important difference of the K and K ′ points being

nonequivalent. Whereas at the K point, the valence (conduction) band originates from

atomic orbitals of the A (B) site, the opposite holds true for the K ′ point. The S band

dispersion obtained by tight binding calculation

E(k) = ±t
√︁

3 + f(k) − t′f(k) (2.36a)

with f(k) = 2 cos
(︂√

3kya
)︂

+ 4 cos

(︄√
3

2
kya

)︄
cos

(︃
3

2
kxa

)︃
(2.36b)
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with nearest neighbour coupling t and next-nearest neighbour coupling t′ is displayed in

Fig. 2.6 e). It famously features two Dirac points at the touching points of the two S sub-

bands, located at the K and K ′ points of the Brillouin zone, and was first described by

Wallace in 1947 [Wal47]. Another important derived lattice of the hexagonal geometry is

the Kagome lattice which is named after the woven pattern of a Japanese bamboo basket

[Mek03] that shares the same geometry. The Kagome lattice was introduced to the realms

of physics in the context of magnetism [Syo51] and can be constructed as the line graph

of the honeycomb lattice by building a lattice of sites located at the connections between

adjacent sites of the honeycomb lattice [Mie91; Mie92]. Its geometry, characterised by a

hexagonal lattice with three sites in the unit cell, is displayed in Fig. 2.6 f) and therefore

also shares the Brillouin zone with the high-symmetry points Γ, K, K ′ and M with the

hexagonal lattice. Within the tight binding approximation, the dispersion of the S band

is given by

E(k∥) = 2t;−t± 2t cos
(︂√

3kxa+ 2kya
)︂√︃

3 + 4 cos
(︂√

3kxa
)︂

cos (kya) + 2 cos (2kya).

(2.37)

As can be observed in Fig. 2.6 g), the Kagome lattice inherits the lowest two sub-bands

of the S band from the honeycomb lattice and features and additional flatband on top of

these two sub-bands. It is important to note that, by changing the sign of the hopping

term and thereby switching to an attractive coupling, the flatband becomes the lowest

energy band and thus the ground state of the lattice.
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Figure 2.6: a) Brillouin zone of the hexagonal, honeycomb and Kagome lattices, char-
acterised by the high-symmetry points Γ, K, K’ and M. b), d) and f) Real
space geometries of the hexagonal, honeycomb and Kagome lattices with
one, two and three sites in the unit cell, respectively. c), e) and g) Cor-
responding S band dispersion relations considering only nearest neighbour
coupling, with aL denoting the lattice constant.
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2.4 Topological physics

One of the defining paradigms of solid-state physics of the recent decades has been the

classification of various phases by their topological order. In this section, a short intro-

duction to this concept as well as a description of two particular geometries, namely the

one-dimensional Su-Schrieffer-Heeger chain and the two-dimensional honeycomb lattice,

are given. Extensive summaries of the field can be found in literature [Nak05; DCN10;

HK10; QZ11; BH13; AOP16].

2.4.1 Transferring topology from mathematics to solid-state physics

In mathematics, the term topology refers to the characterisation of surfaces. Here, an

important classification is the Euler characteristic g which is defined by

1

2π

∫︂
S

K dA = 2 (1 − g), (2.38)

where the left side of the equation represents an integration over the curvature K of a

surface S. It is important to note that this curvature is a local property of the surface

which is therefore dependent on the coordinate system and changes for example when

transforming a cube into a sphere by changing from a cartesian to a polar coordinate

system. The Euler characteristic, however, is a global property corresponding to the

number of holes of the surface and thus remains unchanged during modifications of the

coordinate system.

Analogously to the Euler characteristic, in solid-state physics a bulk band structure,

defined by the Hamiltonian of a system, can be viewed as a surface. In the common case

of a Hamiltonian with energy gaps between individual bands, this surface is characterised

by the Berry phase [Ber84]

γ(L) =

∮︂
L

A(k)dk (2.39)

which is defined as an integral over a closed loop L of the Berry connection

A(k) = i ⟨ψ(k)|∇kψ(k)⟩ . (2.40)

The Berry phase is a geometric phase that is accumulated additionally to the phase that

is acquired during the time evolution of a state and depends only on the path of the loop

in reciprocal space. The Berry connection can be understood as the vector potential of a

magnetic field

Ω(k) = ∇k ×A(k) (2.41)
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which is referred to as the Berry curvature of a band structure. Finally, the analogon to

the Euler characteristic of this curvature can be calculated as

C =
1

2π

∫︂
BZ

ω(k)dS (2.42)

by integrating over a band across the entire Brillouin zone. The integer quantity C is a

topological invariant that remains unchanged as long as no band gap is closed or opened

and is referred to as Chern number. For C = 0, an insulator is referred to as trivial,

whereas C ̸= 0 represents an insulator with a non-trivial topology. As the Chern number

can only change when closing a band gap, robust edge states protected by the topology

of the bulk materials appear at the interface of a topologically trivial and a non-trivial

phase [RH02]. The Chern number corresponds to the number of edge states [Tho+82].

This relation of edge states forming as a result of the bulk band structure is summarised

by the term bulk-boundary correspondence.

Historically, what is today a major field of research stretching across numerous fields

of solid-state physics started with the discovery of the quantum Hall effect by von Kl-

itzing [KDP80], where a magnetic field applied to a two-dimensional electron gas re-

sults in a quantised Hall resistance and chiral edge modes. It was this discovery that

led to the introduction of topological order as an entirely new approach of classification

[Tho+82; Wen95]. In the further progress, the quantum Hall effect was demonstrated not

only at cryogenic temperatures but also at room temperature [Nov+07]. Furthermore,

with the quantum anomalous Hall effect, non-trivial topology was predicted and demon-

strated without the presence of an external magnetic field by using ferromagnetic materials

[Yu+10; Che+14a]. These effects can both be characterised by a non-zero Chern number

where broken time reversal symmetry results in chiral edge modes and are summarised as

Z topological insulators. In parallel to advancing the understanding of materials in this

topological class, the concept of topology was extended to a Z2 topological class featuring

the characteristic two counter-propagating edge states of the quantum spin Hall effect

[KM05a; KM05b]. In the Z2 topological class, a magnetic field is not required and time

reversal symmetry remains preserved. The quantum spin Hall effect can be visualised

as two copies of the quantum Hall effect with opposite magnetic field orientations for

the two electron spin components and was first experimentally realised in HgTe quantum

wells [BHZ06; Kön+07]. Above a certain critical thickness, these quantum wells feature

an inverted band gap, as the orbitals at the origin of the valence and conduction band

are inverted with respect to a trivial insulator band gap. As time reversal symmetry is

preserved in the quantum spin Hall effect, a classification using an overall Chern number

is no longer feasible. However, Kane and Mele found that the edge states of the two spin
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sub-systems are still topologically protected and can be classified by topological invariants

that include the two sub-systems [KM05a]. Recently, in the field of topological quantum

chemistry, a bottom up approach towards topologically non-trivial materials was found.

In this approach, all feasible trivial bands are constructed from atomic orbitals in a given

spatial symmetry. A topological phase in this picture is defined as a state that cannot

be written in terms of exponentially localised orbitals that respect the symmetries of the

system [Bra+17]. The major stronghold of this approach lies in the fact that knowledge

of the system Hamiltonian is no longer required allowing to determine the topology purely

from the real space orientation of the involved atomic orbitals.

2.4.2 Su-Schrieffer-Heeger model

The Su-Schrieffer-Heeger (SSH) model [SSH79] is the simplest example of a one-dimensional

topological system that, due to its simple geometry, has evolved to be an ideal starting

point to study topological effects in various experimental platforms. The following short

introduction was adapted from [AOP16]. The SSH model consists of a dimerised linear

chain characterised by two coupling strengths t1 and t2 for the intra- and inter-unit cell

couplings, respectively, as is schematically depicted in Fig. 2.7 a). As the topology is

defined through the bulk band structure, it is worthwhile to start by assuming a chain

with periodic boundary conditions. In this case, the Bloch theorem applies and the tight

binding Hamiltonian in Fourier space reads

H(k) =

(︄
0 t1 + t2e

−ik

t1 + t2e
ik 0

)︄
. (2.43)

The eigenvalues

E(k) = ±
√︂
t21 + t22 + 2t1t2 cos k (2.44)

of this Hamiltonian feature a band gap with a size that is determined by the difference

|t1 - t2| between the two coupling strengths and that is visualised in the spectra plotted

in Figs. 2.7 b)-d) for the three cases t1 = 2.0 t2, t1 = t2 and t1 = 0.5 t2. In analogy to the

definition of the Chern number as an integral over a closed loop of the Berry phase, the

topological invariant

γ =
1

π

π∫︂
−π

i ⟨uk|
∂uk
∂k

⟩ dk =

{︄
0 for t1 > t2

1 for t1 < t2
(2.45)

of a one-dimensional SSH chain is defined as the integral over a closed loop of the Zak

phase [Zak89].
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Figure 2.7: a) Schematic of the one-dimensional SSH model featuring two sites in the
unit cell and intra- and inter-unit cell couplings t1 and t2, respectively. b)-d)
Dispersion relations for t2 = 1.0 and t1 = 2.0, 1.0 and 0.5, respectively. e)-g)
Corresponding plots of the vector d used to express the SSH Hamiltonian
with respect to the Pauli matrices to visualise the topological phase transi-
tion as a change of the winding number. This figure is based on reference
[AOP16].

To visualise this invariant, it is fruitful to express the Hamiltonian with respect to the

Pauli matrices σ0,x,y,z as

H(k) = d0(k)σ̂0+dx(k)σ̂x+dy(k)σ̂y+dz(k)σ̂z with d0(k) = 0, d(k) =

⎛⎜⎝t1 + t2 cos k

t2 sin k

0

⎞⎟⎠ .

(2.46)

On a closed loop from k= 0 to 2π in the Brillouin zone, this vector forms the circles

that are presented in Figs. 2.7 e)-g). The topological invariant can now be understood

as the winding number of this vector, which is 1 if the circle encloses the origin and 0

if it does not. A phase transition is required to change between the topologically trivial

regime of t1>t2 in Figs. 2.7 b) and e) and the topologically non-trivial regime of t1<t2

in Figs. 2.7 d) and g). Therefore, the band gap closes for t1 = t2 in Figs. 2.7 c) and f).

Analogously, the band gap has to close at the interface between a topologically non-trivial

bulk and the topologically trivial vacuum, leading to topologically protected edge states.

To study these edge states, a suitable starting point is the real space Hamiltonian of a
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chain with finite length, such as the exemplary Hamiltonian

Ĥ =

⎛⎜⎜⎜⎜⎝
0 t1 0 0

t1 0 t2 0

0 t2 0 t1

0 0 t1 0

⎞⎟⎟⎟⎟⎠ (2.47)

of a chain with two unit cells. In Fig. 2.8 a), the energy eigenvalues of a chain with ten unit

cells are plotted with respect to the intra-cell coupling t1 while maintaining a constant

inter-cell coupling strength of t2 = 1.0. One can clearly observe that a topological state

centred in the band gap arises for t1<t2. The corresponding probability density of the

eigenvector of this state for t1 = 0.3, as marked by the red dot in Fig. 2.8 a), is presented

in Fig. 2.8 b). For better visibility, the propability density is coloured in green for states

on sub-lattice A and in orange for states on sub-lattice B. One can clearly observe that

localised edge states arise on the outermost sites of the chain. These topological defect

states are exponentially localised and feature a non-zero probability density only on one

of the sub-lattices.
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Figure 2.8: a) Energy eigenvalues of an SSH-chain consisting of ten unit cells with re-

spect to the intra-cell coupling strength t1 for a fixed inter-cell coupling
strength t2 = 1. A topologically protected state at the centre of the band
gap arises for t1<t2. b) The probability density of a topological state at
t1 = 0.3, highlighted by a red dot in a), visualises that the topological states
are exponentially localised to the edges and, at each edge, populate only
sites from one sub-lattice.

2.4.3 Topology of the honeycomb lattice

Throughout the development of research on topology, the honeycomb lattice has played

a crucial role. As introduced in section 2.3.3, a mono-atomic honeycomb lattice is a

semi-metal with two sub-bands in the S band touching in the two Dirac points that are

protected by time reversal symmetry and spatial symmetries. Therefore, models con-

verting a system based on a honeycomb lattice into a topological insulator are based on

breaking one of these two symmetries in a way that opens a topologically non-trivial gap

at the Dirac points.

The most intuitive way to open a band gap at the Dirac points was described by Se-

menoff in 1984 [Sem84] and is based on breaking the inversion symmetry of the lattice

by unbalancing the eigenenergies of the two sites of the unit cell, which in the context of

atomic lattices would imply creating a honeycomb lattice consisting of two types of atoms.

However, the band gap opened by this approach is topologically trivial. The first model

that realises a quantum Hall state in a lattice geometry is the Haldane model [Hal88]

that adds a complex next-nearest neighbour hopping term to Semenoff’s model to break

time reversal symmetry. In this context, Kane and Mele’s model of the quantum spin

Hall effect, that was introduced above and originally considered graphene as an experi-

mental platform [KM05a; KM05b], can be understood as a combination of two copies of

Haldane’s model, one for each spin component.

Another approach towards studying topological effects in a Semenoff lattice focuses on

investigating only a subset of the band structure and harnesses that the K and K’ points
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are not equivalent. While the Chern number of the entire bands are zero, the Chern

number calculated for one half of the Brillouin zone including only one of the valleys at

either the K or K’ point is non-trivial. Therefore, as long as only one of the valleys is

populated, topological propagation is possible. As one can translate the valley index of

a given state into a pseudospin picture, this effect resembles a quantum spin Hall effect.

This propagation is, however, not topologically protected against backscattering as pro-

tection is only present as long as scattering between the valleys is inhibited. This type of

protection is referred to as valley protection, resulting in the related effects being referred

to as quantum valley Hall effects [DYN07].

It is important to note that, even though photons are neutral bosons and can thus not

show a quantum Hall effect in an external magnetic field, they can still exhibit topologi-

cally protected edge modes in lattice based models that do not require external magnetic

fields [HR08]. Based on this realisation, the field of topological photonics has evolved

[RH08], starting, among others, with the realisation of a topological insulator consisting

of photonic waveguides [Rec+13a]. A more elaborate introduction to topological pho-

tonics is given in chapter 6. The higher degree of flexibility over the lattice geometry

that can be achieved using artificial lattices has led to the discovery of a more advanced

approach towards breaking the spatial symmetries of the honeycomb lattice that leads to

a topologically non-trivial band gap and is referred to as crystalline topological insulator

[WH15]. In this model, the unit cell is extended to include the artificial analogon of a

benzene ring that consists of six sites. Next, this benzene ring is either compressed or

stretched within each unit cell, resulting in the real space lattice geometry that is depicted

in Fig. 2.9 d). This lattice is now characterised by the coupling strengths tci and tce as well

as tsi and tse within a unit cell (internal, i) and between adjacent unit cells (external, e) for

the compressed (c) and stretched (s) domains, respectively, and an additional coupling

strength tb at the boundary between the two domains. The band structure calculations

of the two domains as well as the unmodified honeycomb lattice that are presented in

Figs. 2.9 a)-c) were reprinted from reference [WH15] and demonstrate that a band gap

opens at the Dirac points in both the compressed and the stretched domains. Here it

is important to note that, due to the expansion of the unit cell, both the K and K ′

points are projected onto the Γ point. In Figs. 2.9 a)-c), the contributions of the P and

D modes of the benzene rings that constitute the unit cells are highlighted by the colour

scale. It is important to note that, while each band of the compressed lattice is comprised

of the corresponding band of the benzene rings, the bands of the stretched lattice are

inverted at the band gap with respect to the benzene origin. This colour-coding therefore

directly visualises that the compressed lattice features a topologically trivial gap while

the stretched lattice is characterised by a topologically non-trivial gap featuring a band
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Figure 2.9: a)-c) Band structure calculations for the internally compressed, unmodified
and internally stretched honeycomb lattices, respectively. Here, a0 denotes
the lattice constant and and R corresponds to the distance between adja-
cent sites within a unit cell. The colour scale marks the contributions from
the P and D sub-bands of the units cells. a)-c) were reprinted from refer-
ence [WH15]. d) Schematic of the crystalline topological insulator (CTI)
lattice geometry. The interface between a compressed (red background) and
a stretched (blue background) honeycomb lattice is marked in red. As the
stretched lattice features a topologically non-trivial band gap, a topological
boundary mode is expected on the interface sites that are marked in red.
The new unit cells of the modified lattices are marked with dashed lines.

inversion. Consequentially, analogously to the inverted band structure that is used to

realise a quantum spin Hall effect, a topologically protected edge mode is expected at the

interface between the stretched and the compressed domains.

The models introduced so far consider Bloch’s band theory to create topological states.

Another approach towards breaking time reversal or spatial symmetries of the honeycomb

lattice that has proven to be particularly powerful in the field of topological photonics

appears in the context of Floquet theory. Here, contrary to Bloch theory that is based

on spatial periodicity, a Hamiltonian that is periodic in time is considered [LRG11]. Such

systems therefore involve either periodic driving or a projection of time onto a propaga-

tion axis where in the latter time reversal symmetry can be broken by breaking inversion

symmetry in the propagation direction.
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Following the introduction into the theoretical foundation of this thesis, this chapter

focuses on the experimental techniques used to obtain the results that are presented in

the subsequent chapters. The predominant experimental platform used in this work is

based on III-V semiconductor microcavities featuring strong coupling between the cavity

resonance and quantum well excitons to form polaritons. Additionally, a lattice potential

landscape is engineered for these polaritons. In section 3.1, short introductions into

the III-V semiconductor material platform, the microcavity growth by molecular beam

epitaxy as well as the different approaches for implementing a potential landscape are

given, followed by a description of the Fourier photoluminescence spectroscopy techniques

used to study the polariton lattices in section 3.2.

3.1 Polariton lattice fabrication

3.1.1 III-V material system and microcavity growth

The combinations of one of the elements of aluminium (AL), gallium (Ga) or indium (In)

from the third group of the periodic table with either phosphorus (P) or arsenic (As) from

group V result in crystalline semiconductor materials with a variation in refractive indices

and band gaps, while maintaining a similar lattice constant. This allows for homoepitaxial

growth of semiconductors with more than two compounds as well as interfaces of different

material combinations with excellent crystal quality. For this work, in particular the two

semiconductors GaAs and AlAs are of key importance. They both feature a zinc blende

crystal structure with a difference in lattice constant of less than 0.15 % at room temper-

ature [Ada85]. The difference between the band gaps of Eg = 1.519 eV and Eg = 2.249 eV

for GaAs and AlAs at T = 4 K, respectively [Iof20], allows to create electronic confinement

in quantum wells and, as GaAs features a direct band gap at the Γ point of the Brillouin

zone, the electronic transition across the band gap is directly optically accessible. Fur-

thermore, the difference in refractive index in the wavelength range corresponding to the

band gap of GaAs of n = 3.67 and 3.00 for GaAs and AlAs, respectively [Pol17], enables

to fabricate structures for optical confinement. The ternary component AlxGa1-xAs can

37
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be used to realise parameters between pure GaAs and AlAs, whereas adding Indium to

a GaAs quantum well reduces its band gap and, due to the 34 times larger electron g-

factor of InAs compared to GaAs [Wim+94], drastically increases the susceptibility to an

external magnetic field. This set of properties renders the GaAs material platform ideal

to fabricate devices for the investigation of light-matter interaction.

The polariton lattices studied in this work are based on GaAs-based microcavities that

were fabricated using molecular beam epitaxy (MBE). MBE is a powerful technique to

fabricate high quality, crystalline semiconductor materials that was initially developed by

Cho and collaborators [CA75] and has been optimised and extended ever since [HS13].

In particular, MBE allows for fast switching between the materials and thus enables ho-

moepitaxial growth of layered structures of different material composition with precisely

controlled thicknesses and interfaces. First, a cleaned, heated GaAs wafer that serves

as growth substrate is mounted onto a rotating sample holder in the ultra-high vacuum

chamber of the MBE. The group-V element arsenic is provided as a gaseous background

pressure of As4 and the elements from group III of the periodic table are provided by solid

source effusion cells. The flux of these effusion cells is controlled by their temperature and

switched on and off using shutters. This allows epitaxial growth of the desired layers with

precise control over the layer thicknesses. It is additionally important to note, that this

fabrication technique naturally results in a radial thickness gradient as the growth rate

decreases from the centre of the wafer towards the edge. For microcavities, this influences

predominantly the photonic modes and results in a blueshift of the cavity resonance. This

radial energy shift allows to perform experiments at a desired exciton-photon detuning

by selecting the corresponding radial position on the wafer.

To increase the Mott density as well as the Rabi splitting, multiple quantum wells are

included in the anti-nodes of the electric field of the cavity mode at the centre of the

cavity as well as in the first mirror pairs adjacent to the cavity. For experimental studies

requiring the susceptibility to an external magnetic field as well as for experiments using

resonant excitation in transmission geometry, samples with InxGa1-xAs quantum wells are

used. For studies on polariton propagation, GaAs quantum wells have proven to be more

suitable.

3.1.2 Polariton confinement techniques

By the design of the cavity, polaritons are inherently confined into the x-y-plane, per-

pendicular to the growth direction. Additional lateral confinement can be achieved by a

variety of techniques that create potential landscapes for the excitonic component, the

photonic component or a combination of both [Sch+16]. As the band gap of semiconduc-
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tors and therefore also the exciton energy depend on the distance between the atoms, the

exciton can be confined using local, mechanical strain [Bal+07] or surface acoustic waves

[Lim+06; Cer+10], where the latter effects mainly the exciton but also causes a non-

negligible effect on the photonic mode. Another approach towards excitonic confinement

is based on proton implantation that results in intermixing of the quantum well material

with the surrounding barrier [Tan+96]. Furthermore, excitons are susceptible to electric

fields and can thus be influenced by electrostatic potentials [Fis+96; But+02; Ges+14].

A remarkably versatile method that has recently attracted increasing attention is based

on creating local potential barriers through the interaction-induced blueshift that occurs

for high polariton densities. As the polariton occupation can be directly controlled by

shaping the pattern of the excitation laser, this technique provides high flexibility over the

potential landscape [Tos+12b; Tos+12a; Ask+13; Dal+14; Oha+17; Aly+20]. Finally,

the quantum wells themselves can be replaced by a low-dimensional active material such

as quantum dots [Rei+04; Yos+04; Pet+05]. Combined with the technological progress

on site-controlled quantum dot growth [Sch+09] and the quantum nature of the emission

of quantum dots [Hen+07; Pre+07; Far+08], this approach could represent a promising

path to investigate quantum effects in polariton lattices.

In this work, a confinement of the photonic component based on lithography and etching

processes was used. The first micropillars fabricated using such a process were etched

into a planar cavity in 1996 [Gér+96], resulting in discrete polariton modes [Gut+98;

Nar+09]. The first attempts towards a periodic potential landscape were based on metal

stripes placed on top of the cavity [Lai+07; Kim+11]. These stripes result in a local shift

of the potential environment that is, however, limited to the order of µeV. Therefore,

techniques based on the electron beam lithographical definition of lattice structures with

a subsequent etching step were advanced [Jac+14]. A scheme of a fully-etched honey-

comb lattice as well as a corresponding scanning electron microscopy image are presented

in Figs. 3.1 a) and b), respectively. Here, coupling between individual micropillars is en-

sured by an overlap between the pillars. To avoid defects in the cavity and quantum

well layers induced by the etching process, the etch depth can be adjusted such that the

micropillars are etched only into the top DBR, as depicted in Figs. 3.1 c) and d). These

lattices are commonly referred to as half-etched. The advantages of these two techniques

are a large confinement potential for the photonic component as well as the opportunity

to optimise the etching process post growth by iterating on small pieces of a large micro-

cavity wafer. However, the range of coupling strengths between the pillars is limited by

the requirement of overlap between pillars and the confinement potential is not tuneable.

To overcome these limitations, an additional approach based on a locally elongated cav-

ity layer at the position of the lattice sites that results in an energetic redshift of the
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Figure 3.1: a), c) Schematics of a fully-etched and a half-etched polaritonic honeycomb
lattice and corresponding scanning electron microscopy images in b) and
d). e) Schematic of an etch-and-overgrowth (EnO) polaritonic honeycomb
lattice. f) Atomic force microscopy image of the structured surface of the
cavity layer of an EnO honeycomb lattice prior to the growth of the top
DBR.

cavity resonance and a consequent confinement potential was introduced by El Däıf and

co-workers [El +06] and advanced by Winkler and co-workers [Win+15; Win+16]. To

achieve such a local elongation of the cavity layer, the epitaxial growth is interrupted

after the cavity layer is completed. Subsequently, the lattice structure is defined by elec-

tron beam lithography and the areas surrounding the lattice sites are etched to a depth

of approximately 10 nm, resulting in a confinement potential on the order of 10 meV that

can be finely tuned by adjusting the etch depth. After a cleaning procedure, the wafer

is remounted in the MBE growth chamber and the top DBR is grown, motivating the

term etch-and-overgrowth EnO for this confinement technique. A schematic representa-

tion of such an EnO lattice as well as an atomic force microscopy image of the structured

cavity layer are displayed in Figs. 3.1 e) and f), respectively. Using this method not

only provides control over the confinement potential, but also allows to tune the coupling

strength over a larger scale since EnO microtraps couple even if they are designed without

overlap. In contrast to half- or fully-etched lattices, EnO lattices are not susceptible to

deviating etching rates towards the edge of a lattice and thus have a very uniform po-

tential landscape across an entire lattice. Furthermore, there is semiconductor material

in the holes of a lattice that suppresses direct emission from the quantum wells and thus

simplifies spectroscopy close to zero detuning. Additionally, etching holes with a large
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aspect ratio de/dh, with de and dh denoting the etch depth and the hole diameter, respec-

tively, represents a major challenge that has so far inhibited the realisation of for example

Kagome lattices by a half- or fully-etched approach. The EnO technique offers a pathway

to overcome this challenge, as the very shallow etch depth decreases the aspect ratio of

etched holes by approximately three orders of magnitude, from having to etch several

micrometers to an etch depth on the order of 10 nm. Finally, EnO lattices are robust

towards mechanical stress enabling to polish the backside of a wafer to allow excitation in

transmission geometry. However, as the fabrication of EnO lattices involves a high tech-

nological effort, both the fully- and half-etched as well as the EnO approach are valuable

techniques towards defining lattice potential environment for polaritons. A summary of

all relevant parameters characterising the microcavities studied in this work is provided

in Table 3.1. Here, the microcavities were labelled based on the composition of the active

material of either InxGa1-xAs (In) or GaAs (Ga) and the fully-etched (FE), half-etched

(HE) or etch-and-overgrowth (EnO) technique to achieve photonic confinement. Further

details on the characterisation measurements leading to these parameters can be found

in the appendix in section A.1.
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Sample name In-FE1 In-FE2 In-HE1 In-EnO1 Ga-EnO1

Active material QD QD QW QW QW

QW / QD material In0.30Ga0.70As In0.30Ga0.70As In0.04Ga0.96As In0.04Ga0.96As GaAs

QW thickness (nm) - - 16 16 7

Number of QWs - - 3 3 8

EX (eV) 1.3212 1.3218 1.4770 1.4844 1.6106

γX (meV) 34.84 16.75 1.29 0.92 4.77

∆Z at 5 T (µeV) - - 540 355 -

Cavity material GaAs GaAs GaAs GaAs AlAs

Cavity thickness λ λ λ λ λ/2

DBRs (AlxGa1-xAs/AlAs) x= 0.00 x= 0.00 x= 0.10 x= 0.10 x= 0.20

MPs in bottom/top DBRs 33.5/29 33.5/29 35.5/30 33.5/27 37/32

γC (meV) 0.15 0.16 0.10 0.33 0.22

Q 8,500 8,200 14,800 4,500 7,400

max. ∆TE/TM (µeV) - - 600 650 -

2ℏΩR (meV) - - 4.3 4.5 11.4

Confinement technique fully-etched fully-etched half-etched EnO EnO

Confinement potential (meV) - - - 11.5 6.7

Table 3.1: Summary of the basic parameters characterising the samples studied in this work. The exciton depends on the active
material that can be comprised of either quantum dots (QDs) or quantum wells (QWs) and, in the latter case, of the
thickness as well as the number of quantum wells and is characterised by the emission energy EX, the linewidth γX and
the Zeeman splitting ∆Z. The photonic resonance depends on the cavity material and thickness, the DBR composition
as well as the number of mirror pairs (MPs) in each DBR and is characterised by the linewidth γC, the Q factor and
the TE/TM-splitting ∆TE/TM. The polaritons that arise from strong coupling between photons and excitons feature a
Rabi-splitting 2ℏΩR and are confined by either an etching or the EnO approach.
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3.2 Photoluminescence spectroscopy

One of the most valuable physical property of microcavities is the direct link between the

emission angle of photons escaping from the microcavity and the wave vector of the polari-

tonic state they originate from that was introduced in section 2.2.1, as it allows not only

to image the mode distribution in real space but also provides access to the dispersions

across the full Brillouin zone. In this section, the technique of photoluminescence Fourier

spectroscopy used to perform these measurements is introduced, followed by a brief de-

scription of correlation measurements providing access to coherence information. Finally,

the spatial light modulator is introduced as a powerful tool to convert any arbitrary gray

scale image into an excitation laser pattern.

3.2.1 Fourier spectroscopy

A Fourier spectroscopy setup can be deconstructed into three major parts, namely the

cryostat in which the sample is mounted and cooled to cryogenic temperatures, the in-

jection path used to illuminate the sample with a white light source or a laser and the

detection path used to study the reflected light or PL emission from the sample. A

schematic of such a setup is presented in Fig. 3.2.

For the experiments performed in this work, two liquid Helium flow cryostats enabling to

evacuate the sample space to a pressure on the order of p= 1 × 10−6 mbar and operating

at a temperature of T = 4 K were available. Whereas one cryostat, a Janis ST-500, was

operated purely in reflection geometry, the other cryostat, an Oxford Instruments Mi-

crostatMO, provides the additional options of excitation in transmission geometry as well

as applying external magnetic fields of up to B= 5 T in Faraday geometry. To avoid the

distortion of measurements with long integration times due to oscillations and drift, the

position of the Janis ST-500 was actively stabilised. Additionally, both cryostats provide

the ability to heat the sample for measurements at elevated temperatures.

In reflection geometry, the injection and the detection path share the same microscope

objective and are separated by a beam splitter placed in front of the objective. Here, two

infinity-corrected objectives with twentyfold and fiftyfold magnifications and numerical

apertures (NAs) of 0.40 and 0.42, respectively, that were fabricated by Mitutoyo were

used. In transmission geometry, a lens with a focal length of f = 150 mm was used to

focus the laser onto the backside of the sample. Illumination of the sample was provided

through a white light source for reflection measurements and orientation on the sample as

well as two Ti:sapphire lasers, an M Squared SolsTiS tuneable continuous wave (cw) laser

and a Spectra-Physics Tsunami tuneable pulsed laser with a pulse length of 10 ps and a

repetition rate of 82 MHz, used to perform PL spectroscopy. The excitation power was

monitored with a calibrated photodiode power meter. The injection path is furthermore
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Figure 3.2: Schematic of a photoluminescence Fourier spectroscopy setup consisting of
an injection path featuring a laser and a white light source to illuminate the
sample that is mounted in a liquid Helium flow cryostat, either in reflection
or transmission geometry. The PL emission is collected with a microscope
objective and imaged onto a CCD camera as well as the entrance slit of
a spectrometer through three or four lenses for real space or Fourier space
imaging, respectively.

equipped with a chopper wheel to reduce sample heating and a variable optical den-

sity (OD) filter to adjust the laser excitation power. The excitation lasers emit linearly

polarised light with a small elliptical component that can be eliminated by a linear po-

lariser. Subsequently, the polarisation can be fixed to any point on the Pointcaré sphere

with a λ/2 and a λ/4 waveplate. To adjust the angle of these waveplates to realise a

desired polarisation, a polarisation analyser by Schäfter + Kirchhoff was used. When

illuminating the entire back focal plane of the objective and thus using the entire avail-

able NA, the laser is focused to a spot size of approximately d= 2 µm. The spot size

can be increased by reducing the effective NA of the objective, which can be achieved

by either using a lens, commonly called expander lens, that focuses the laser to the back

focal plane of the objective, or by introducing an aperture that reduces the diameter of

the laser beam. The use of an expander lens ensures minimal loss of laser power whereas

an aperture provides a continuously tuneable spot size. The shape of the laser can be

adjusted by replacing the expander lens with a cylindrical lens resulting in a laser spot

that is elongated along one direction or by using a spiral phase plate enabling to create

a ring-shaped spot characterised by a vortex with topological charge m = 2 in the lin-

ear polarisation domain. Full flexibility over the geometry of the laser excitation can be

achieved by using a spatial light modulator (SLM), as described in section 3.2.3.
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Figure 3.3: Schematics of the optical beam paths for real space imaging in a) and Fourier
space imaging in b). Emission from two different positions on the sample
are distinguished by colour, whereas the emission angle is encoded in the
brightness gradient from dark to bright.

The light emitted from the sample is collected using the microscope objective and imaged

using two complementary lens configurations that are schematically presented in Fig. 3.3,

where red and blue beams correspond to two different emission positions and the emission

angle is encoded in the gradient from dark to bright. In Fig. 3.3 a), a real space image

is created using the objective and a single imaging lens. The objective lens furthermore

performs a two-dimensional, spatial Fourier transform of the emitted light into the back

focal plane which motivates the term Fourier spectroscopy [Ric+05; Goo17]. Each point

in this plane corresponds to light emitted from the sample at a certain angle, which is

linked to a certain wave vector of polaritons in the microcavity through equation 2.12.

Therefore, in Fig. 3.3 the beams are sorted by brightness rather than colour in the back

focal plane. By introducing another lens, labelled Fourier lens, the back focal plane can

be imaged.

Both in real and Fourier space imaging configuration, an image is created on a charge

coupled device (CCD) camera, an Andor Clara, that is Peltier-cooled to T =−20 ◦C, as

well as the entrance slit of a Czerny-Turner spectrometer. Here, an Andor Shamrock 750

spectrometer equipped with three gratings with 150, 600 and 1200 lines per millimetre

and a CCD camera (Andor iKon-M) that was Peltier-cooled to T =−70 ◦C were used.

The highest energy resolution achievable with this spectrometer, determined by the size

of the entrance slit, the line spacing on the grating, the length of the spectrometer and



46 3 Experimental methods

the pixel spacing of the camera, is approximately 20µeV at an energy of 1.470 eV. When

imaging either real space or Fourier space onto the entrance slit, one cross section of the

image is selected and an energy-resolved image, either E(x) or E(kx), is obtained along

this direction. The other dimension can be acquired by automated scanning routines that

scan the image across the slit by moving the last imaging lens. From this dataset, the full

information on real space mode distribution E(x, y), referred to as mode tomography, or

dispersion relations across the full Brillouin zone E(kx, ky), termed hyperspectral imaging,

can be reconstructed. As depicted in Fig. 3.2, an additional telescope in the detection

path provides further control over the image magnification as well as image planes of

both real and Fourier space that can be used to block parts of the emission in either of

these planes. Furthermore, the detection path is equipped with optical density filters to

prevent camera saturation as well as polarisation optics, namely a λ/2 and a λ/4 wave-

plate followed by a linear polariser. By rotating the λ/2 waveplate, the degree of linear

polarisation can be measured, whereas evaluating the intensity I in dependence of the

angle of the λ/4 waveplate φ gives access to all Stokes parameters [Kih94] by

I(φ) =
1

2

(︁
S0 + S1 cos2 2φ+ S2 sin 2φ cos 2φ+ S3 sin 2φ

)︁
. (3.1)

For the data analysis of a range of measurements performed for this thesis, such as excita-

tion power, polarisation and detuning series, hyperspectral images including tight binding

fits, mode tomographies as well as the techniques to measure correlation that are described

in the following section, an analysis software package including a graphical user interface

for interactive data analysis was implemented using MathWorks MATLAB.

3.2.2 Interferometry

Next to energy-resolved real and Fourier space information, the knowledge of first order

as well as higher order degrees of coherence can provide valuable insight on the physical

phenomena occuring in a microcavity. Experimentally, the coherence properties of a signal

can be accessed through autocorrelation experiments, in which the signal is superimposed

with itself. In the following, the Michelson and the Mach-Zehnder interferometers used for

measurements of first order coherence as well as the Hanbury Brown-Twiss interferometer

providing access to second order coherence are introduced.

A schematic of the Michelson interferometer, which owes its name to A. A. Michelson who

invented it for the famous Michelson-Morley experiment [MM87], is depicted in Fig. 3.4 a).

It consists of a 50:50 beam splitter dividing the signal into two arms. In both arms, the

signal is reflected back towards the beam splitter, once by a mirror and once by a corner

cube retroreflector that additionally flips the image both in x and y direction. The two
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Figure 3.4: Schematics of a Michelson interferometer in a) and a Mach-Zehnder inter-
ferometer in b), both providing access to first order coherence information
by dividing the signal into two arms and then superimposing the two images
again onto a CCD camera. While the focus of the Michelson interferometer
lies on the spatial and temporal decay of coherence, the Mach-Zehnder in-
terferometer is ideally suited to extract spatial phase maps.

images are then recombined by the beam splitter and imaged using a lens. Introducing an

offset between the two parallel beams causes an angle between the beams behind the lens

and thus enables to tune the fringe periodicity and direction of the interference pattern.

As one of the images is flipped in the retroreflector, the light superimposed on a certain

point of the camera with a distance d to the centre of the image corresponds to light

from two positions on the sample at a distance of 2d. Therefore, evaluating the coherence

across a Michelson interferogram gives access to the spatial decay of first order coherence.

Alternatively to using a retroreflector, a prism can be mounted in one of the arms of

the interferometer to flip the image only along one axis and provide spatial coherence

information with respect to the distance to the mirror axis. Additionally, the temporal

distance τ between the two superimposed images can be tuned by moving one of the

mirrors and thus delaying the image from one of the arms. The degree of first order

temporal coherence g(1)(τ) can be extracted from such a measurement by evaluating the

fringe contrast as a function of delay, given by

I(x, τ) = I1(x) + I2(x) + 2|g(1)(τ)|
√︁
I1(x)I2(x) cos

(︃
2πθ

λ0
x+ φ

)︃
(3.2)

for light with a wavelength λ0, phase difference φ, an angle θ between the two beams and

intensities I1(x) and I2(x) of the two individual images, obtained by blocking the other

arm.
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Another interferometry configuration, the Mach-Zehnder interferometer [Zeh91; Mac92],

is presented in Fig. 3.4 b). Again, the image is divided into two arms using a beam splitter.

However, the two images are not recombined in the same beam splitter, but rather in a

second beam splitter and thus do not pass through the same path twice. This allows to

place a telescope consisting of two lenses within one of the arms. If two lenses with the

same focal length are chosen, the image is flipped in both directions and the first order

spatial coherence can be measured. Additionally, by selecting two lenses with a difference

in focal lengths, the image in one arm can be magnified to superimpose only a small

part of the image with the entire image from the other arm. This small fraction of the

image is used as a constant phase reference and enables to generate a spatial phase map.

Additionally, this technique allows to identify vortices, as a phase vortex superimposed

with a magnified, coherent image as phase reference results in a fork dislocation within

the fringe pattern. For the aim of evaluating the phase of the emitted light, a two-

dimensional Fourier transform is applied to the fringe pattern, the coherent part of the

image is extracted and finally transformed back using the inverse Fourier transform. The

imaginary part of the resulting image represents a spatial phase map.

As described in section 2.1, the second order coherence can provide valuable additional

information to first order coherence measurements due to its dependency on the process of

light generation. Experimentally, the second order coherence function is measured using

a Hanbury Brown-Twiss (HBT) interferometer [HT56] dividing the image into two arms,

both of which are equipped with avalanche photo diodes (APDs) by ID Quantique for

single photon counting. The intensities obtained from the two APDs are subsequently

correlated. A schematic of this interferometer is presented in Fig. 3.5. As imaging is not

required to measure second order coherence, this interferometer is commonly implemented

using fibre optics. For this experiment, the sample is excited with the pulsed laser and thus

emits light in pulses separated by 12 ns. A timer is started once a photon is detected in one

of the arms and stopped as soon as a photon is detected in the other arm. As the signal of

the second arm is delayed by approximately 50 ns and the APDs count photons over a time

interval of 100 ns, the central peak corresponds to photons generated by the same laser

pulse, whereas the photons resulting in all other peaks originate from different laser pulses

and are thus uncorrelated. The correlation is performed by a Becker & Hickl SPC-130

time-correlated single photon counting module. For the analysis, the photons within each

peak are integrated. The degree of second order coherence characterises the mechanism of

light generation within the light source and is given by g2(0) = 1 for uncorrelated photons.

The side peaks are hence used for normalisation. The APDs feature a time resolution of

40 ps that is considerably longer than the laser pulse width of approximately 10 ps and the

characteristic time scales of the polariton dynamics on the order of 10 ps, thus resulting
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Figure 3.5: Schematic of the Hanbury Brown-Twiss interferometer that is used to mea-
sure second order coherence and thus provides valuable information on the
mechanism of light generation in the source. The signal is divided into two
arms that are each equipped with an APD capable of single photon count-
ing. The signal of one of the APDs is delayed by approximately 50 ns on the
way to the computer performing the correlation analysis.

in a measurement of the second order coherence function ḡ(2) averaged over the duration

of the pulse. Furthermore, the HBT interferometer is mounted behind the spectrometer

at the second exit slit, marked on the right side of the spectrometer in Fig. 3.2, allowing

to measure the second order coherence of a single, energetically separated mode.

3.2.3 Spatial light modulator

In section 3.2.1, the general operating scheme of a Fourier spectroscopy setup includ-

ing beam shaping optics such as an expander lens or an elliptical lens was introduced.

However, for a range of experiments, more complex laser patterns are required for the

excitation of the microcavity. For this aim, a SLM represents an ideal solution, as it

offers an extensive degree of flexibility and allows to use almost any grey scale image as

a laser excitation pattern. SLMs are comprised of an array of pixels, each of which mod-

ifies either the amplitude, the phase or both of the incoming laser light. For excitation

schemes in Fourier spectroscopy, phase-only SLMs are preferred as they provide superior

resolution and efficiency over amplitude-modulating SLMs [RL13]. As part of this work,

a HOLOEYE Photonics GAEA-2 phase-only SLM with a resolution of 4160× 2464 pixels

based on liquid crystal display technology [YW15] was added to the spectroscopy setup

and software to generate phase patterns and operate the SLM was implemented using

MathWorks MATLAB.

The operating scheme of an SLM capable of modulating the phase of a laser beam is based

upon the fact that a lens performs a two-dimensional, spatial Fourier transform of the
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Figure 3.6: Schematic of the beam path used to operate a phase-only SLM. Each pixel
of the SLM modulates the phase of the linearly polarised, expanded laser
beam. The desired laser pattern is obtained by Fourier transformation with
the objective lens. A telescope is used to adjust the magnification and
enables to suppress zero order reflections with an aperture.

incoming light field, which is used to transform the phase modulation imprinted by the

SLM into an amplitude modulation of the laser excitation. In Fig. 3.6, a schematic of the

optical path used to operate the SLM is presented. First, the axis of linear polarisation of

the excitation laser needs to be aligned with the SLM, as only one polarisation orientation

is modulated. Next, a telescope consisting of lenses L1 and L2 is used to expand the laser

beam such that is covers the entire SLM display, which acts as a mirror in which each

pixel can imprint a phase shift between 0 and 2π onto the laser light. The objective then

performs a Fourier transform of the phase-modulated laser beam resulting in the desired

amplitude-modulated laser pattern on the sample surface. A second telescope is used to

tune the magnification as well as to suppress zero-order reflections originating from the

inactive area between the pixels of the SLM, residual light in a polarisation that is not

aligned with the SLM display, imperfections in the SLM calibration as well as residual

reflections of the pixels. Using this telescope, the SLM plane is imaged onto the back

focal plane of the objective.

Once installed, the key challenge in operating the SLM lies in the generation of the phase

patterns to imprint on the laser beam to achieve the desired laser patterns on the sample.

For a few tasks, analytically determined phase patterns are available. The most promi-

nent examples are shifts of the laser spot in the sample plane using gratings, shifts along

the optical axis using a lens as well as axicon ring excitations created by a vortex phase

pattern. Of the latter, gratings are particularly valuable, as they can be used to spatially

offset the desired laser pattern from the zero order reflection spot [Zha+09a], which can

subsequently be blocked by the aperture depicted between lenses L3 and L4 in Fig. 3.6.

Alternatively, a strategy based on destructive interference can be used to eliminate this
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Figure 3.7: Schematic of the iterative Fourier algorithm that is used to calculate the
phase patterns to display on the SLM to achieve the desired laser pattern
on the sample surface. The light fields at the SLM and the sample planes
are linked through a two-dimensional fast Fourier transform (FFT). Phase
retrieval algorithms commonly start with an initial phase guess, perform
iterative Fourier transformations and apply constraints to the light field in
the SLM and Fourier planes. Additionally, feedback from a camera image
of the actual laser pattern can be included.

undesired zero order reflection [MEB07; PD07]. However, in general, an analytical solu-

tion for the phase pattern of a desired laser pattern, referred to as phase retrieval problem

[Fie78; Fie82; Els03], does not exist and has to be derived through iterative algorithms.

For this work, iterative Fourier algorithms were used to obtain the phase patterns, also

referred to as kinoforms, that are imprinted onto the laser by the SLM. A schematic of

the operating principle of these algorithms is depicted in Fig. 3.7. The light field

fj(k) = ASLMe
iϕSLM (3.3)

in iteration j of the algorithm with amplitude ASLM and phase ϕSLM in the SLM plane in

Fourier space is linked to the light field

gj(r) = Asamplee
iϕsample (3.4)

in the sample plane in real space by an objective which is represented by a two-dimensional

fast Fourier transform (FFT) and an inverse fast Fourier transform (IFFT). In the SLM

plane, the light field is constrained by the Gaussian intensity distribution Isource =A2
source
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of the excitation laser, resulting in the constrained light field

f ′
j(k) = Asourcee

iϕSLM , (3.5)

whereas the light field in the sample plane is constrained by the desired target intensity

pattern Itar =A2
tar and the light field is described by

g′j(r) = Aconstre
iϕsample . (3.6)

Both in the SLM and the sample plane, further constraints on the phase can be applied.

However, this was not necessary for this work. The iterative algorithm to obtain the

phase pattern that is required to generate the desired target pattern is comprised of the

following steps:

1. Select a target amplitude pattern Atar.

2. Construct an initial light field at the SLM plane consisting of the intensity profile

of the excitation and an initial phase guess ϕ0
SLM.

3. Apply a Fourier transform to the light field at the SLM plane to obtain the light

field at the sample plane.

4. Apply the constraints at the sample plane. Usually, an arbitrary phase is allowed

and only the amplitude is constrained to the desired target distribution.

5. Propagate the constrained light field back to the SLM plane by an inverse Fourier

transform.

6. Apply the constraints in the SLM plane. Again, commonly only the amplitude is

constrained by the intensity distribution of the excitation laser whereas the phase

can be arbitrarily modulated using the SLM.

7. In each iteration, calculate a merit function to quantify the deviation between the

amplitude of the obtained light field and the target distribution. Repeat steps 3 to

6, until the deviation is smaller than a pre-defined threshold value.

The quality of the results of this algorithm depends strongly on the initial phase guess.

Here, the prevailing incentive is to maximise the overlap between the amplitude of the light

field obtained by the first Fourier transformation and the target amplitude distribution

[Lea+06] by selecting a combination of a lens and gratings. However, the largest poten-

tial for optimisation of both quality and efficiency of the algorithm is comprised in the
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application of the constraints to the light field in the sample plane. In the following, the

two algorithms used in this work, namely modified versions of the Gerchberg-Saxton (GS)

[GS72] algorithm and the mixed-region amplitude freedom (MRAF) [PD08] algorithm, are

described. For descriptions of several further algorithms that have been developed for this

purpose the reader is referred to a review in literature [Ket04].

The GS algorithm provides the most straightforward approach towards constraining the

light field in the sample plane, as the amplitude is simply replaced by the target amplitude

distribution to obtain the new light field

g′j+1 = Atare
iϕsample . (3.7)

However, this algorithm tends to stagnate in local minima and is therefore commonly

modified [Fie80; GLS15], such that the new light field

g′j+1 = (1 − β)gj + βAtar

(︁
2eiϕsample − eiϕconstr,j

)︁
(3.8)

contains a contribution from the amplitude obtained by Fourier transformation. The

mixing ratio is given by the factor β.

The MRAF algorithm applies the amplitude constraint only in a signal region SR that

is defined as an area around the target pattern while the amplitude is allowed as an

additional degree of freedom for the algorithm in the surrounding noise region NR. The

new light field

g′j+1 =
(︁
mASR

tar + (1 −m)ANR
sample

)︁
eiϕsample (3.9)

is governed by the mixing parameter m balancing the trade-off between signal quality

(m≪ 1) and efficiency (m≈ 1). Conceptually, the SLM redistributes the intensity of the

laser beam from a Gaussian profile to the desired pattern by balancing out interference

conditions. Due to the boundary conditions of, among others, the finite number of pixels

as well as the finite numerical aperture of the objective, parts of the intensity cannot be

redirected correctly. It is therefore useful to provide a noise region that serves as a dump

for this redundant intensity. Additionally, adding a small offset to the target pattern

[GH12] to avoid pixels with zero intensity significantly reduces the number of vortices in

the calculated phase patterns [SWS05].

Next to a graphical user interface providing interactive control for the definition of

the source and target patterns, the algorithm parameters and analytical phase pat-

terns, the software implemented as part of this work further includes the ability to

stabilise a laser pattern based on feedback from a camera image through a propor-

tional–integral–derivative (PID) controller as well as a tool to calibrate the phase shift of
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Figure 3.8: Exemplary laser patterns generated with an SLM. The hexagon in a) fea-
tures a width of approximately 2.5 µm. The square lattice in b), the square
lattice with an intensity gradient in c) as well as the hexagonal and honey-
comb lattices in d) and e), respectively, consist of laser spots with diameters
of approximately 3.0 µm. The square lattice in f) features laser spots with
diameters of approximately 7.0 µm. The remaining intensity inhomogeneity
is predominantely caused by an inhomogeneous reflectivity of the microcav-
ity surface.

the SLM pixels with respect to the applied voltage [LC19]. A selection of laser patterns

generated with this software are presented in Fig. 3.8, demonstrating the versatility of an

SLM to modulate the laser excitation. The remaining intensity inhomogeneity arises due

to an inhomogeneous reflectivity of the microcavity surface. This inhomogeneity as well

as an additional inhomogeneity caused, among others, by imperfections in the Gaussian

beam profile, the beam alignment as well as the phase calibration of the SLM can be

compensated using feedback from the imaging camera. While these laser patterns fulfil

the requirements of the experiments performed as part of this work, the development of

software for SLMs remains an open field of research including for example evolutionary

strategies to optimise iterative algorithms [Bir+00], advanced strategies towards compen-

sating a variety of imperfections of the SLM display itself [Ket+04; XC04; Pus+20] as

well as improving overall algorithm efficiency [LT02; WCT15; Bow+17].
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polaritons

Solid-state physics has evolved around the description of electrons in crystalline structures

and their dispersion relations. As part of this development, two-dimensional systems, such

as graphene, surface-states or layered structures, have led to a range of key discoveries.

However, electronic systems can be hard to access and their geometries are often limited

to the crystalline structures that occur in nature. Therefore, a range of artificial lattice

platforms, so called quantum simulators [GAN14], have been developed to complement

the research efforts on lattice potential environments and their physical phenomena. Espe-

cially the honeycomb lattice, known from graphene, has proven to be particularly valuable

and has hence been realised in a range of platforms [Pol+13]. Among the most prominent

lattice simulators are ultra-cold gases of atoms trapped in optical lattices [Blo05; WD08;

BDZ08] and photonic lattices [Pel+07; Ang17]. For the latter, various platforms that

commonly consist of either optical cavities, as introduced in section 3.1, or waveguides

[Lon09] and provide control over the coupling strength between individual sites have been

established. These photonic lattice simulators cover a broad range of wavelength regimes,

from microwave to visible light. The interest in such lattices justifies itself in the easy

and controlled initiation of a wave packet in a certain state as well as extensive access

to information on the states through imaging and spectroscopy techniques measuring for

example amplitudes, polarisation, phase and coherence. Furthermore, nonlinearities, gain

and loss can be added and enhance the capabilities of lattice simulation. Through operat-

ing photonic lattices with single photon sources, quantum effects such as boson sampling

were investigated [Bro+13; Spr+13; Til+13], whereas research on lattices using classical

light has, over the recent years, pointed its focus towards topological phases. The research

field of topological photonics is based upon the insight that the topological classification

of Hamiltonians is not limited to fermionic systems but can be transferred to bosonic

systems and even classical waves as well [HR08; RH08]. Based upon this idea, the first

demonstrations of topologically non-trivial phases for photons were realised in magneto-

optic photonic crystals in the microwave regime [Wan+08; Wan+09]. In the following

development of the field, various concepts to circumvent the necessity of magneto-optic

55
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materials and implement non-trivial topology for photons in the infrared and visible spec-

trum were conceived [Haf+11; Rec+13a; Haf+13]. These achievements constitute the

foundation of the diverse range of platforms that represents the field of topological pho-

tonics today [Oza+19]. A more detailed introduction to this research area is provided in

chapter 6.

For this work, photonic lattice potentials were realised in a microcavity platform that

hosts polaritons by using the technological approaches introduced in section 3.1.2. By

adding an excitonic matter component to the eigenstates of the photonic system, such

polaritonic lattice simulators combine the advantages of photonic lattices with the abil-

ity to study lattice Hamiltonians of interacting particles with gain and loss [AB16]. As

introduced in section 3.1.2, the development of polaritonic lattices was driven by the tech-

nological progress in fabricating etched micropillars that feature discrete modes [Gér+96;

Nar+09], based on which coupling between two pillars resulting in a photonic molecule

was achieved by designing the individual pillars with overlap [Bay+98; Mic+11]. Having

established control over the coupling of two micropillars, linear chains of pillars result-

ing in the formation of a one-dimensional band structure were implemented [Bay+99;

Tan+13]. Furthermore, the flexibility in designing the geometry of artificial lattices of

micropillars was demonstrated by fabricating one-dimensional Lieb lattices [Bab+16] as

well as Fibonacci quasicrystals [Bab+17]. One of the milestones in these developments

was the implementation of a two-dimensional honeycomb lattice in which the character-

istic band structure of graphene was reproduced for polaritons [Jac+14]. Complementary

to etched lattices, the maturing technological control over the fabrication of GaAs-based

microcavities enabled the fabrication of one-dimensional chains [Win+16] as well as two-

dimensional square lattices [Win+15] using the EnO approach. Furthermore, research on

polaritonic lattices was extended by optically inducing lattices of polariton condensates

[Oha+16; Oha+17; Ber+17; Oha+18; Pic+20; Töp+21; Pie+21] as well as developing

lattices in new material platforms such as perovskites [Su+20] and organics [Dus+20].

This chapters aims to provide a foundation of the physics of polaritonic lattices, in partic-

ular fabricated using the EnO approach, on which the subsequent chapters are based. At

first, a detailed investigation of the formation of a band structure with a particular focus

on the transition from molecular orbitals to a continuous dispersion relation is given in

section 4.1. In the following section 4.2, polariton condensation in these lattice potentials

is studied. For the understanding of the data presented in this work, it is important to

note that all lattices are characterised by the diameters d of the underlying EnO mi-

crotraps or etched micropillars and the reduced trap or pillar distance v= a/d, with a

denoting the centre-to-centre distance of adjacent lattice sites.
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4.1 Band structure formation

Two-dimensional polaritonic lattices can be used to emulate and simulate a broad range

of physical phenomena. The underlying principle of these simulators is the formation of a

band structure from the discrete energy levels of multiple coupled micropillars or micro-

traps. The concept of a band structure is based on the translational symmetry of a lattice

that allows the description using Bloch states, which are defined for an infinitely large

lattice or, equivalently, under periodic boundary conditions. However, while individual

micropillars and molecules with discrete energy levels as well as one- and two-dimensional

polaritonic lattices with continuous dispersion relations have been demonstrated, the tran-

sition from discrete modes to a fully formed band structure of a lattice with a size large

enough to neglect any remaining discretisation has not been studied in detail. A thorough

understanding of the formation of band structures is, however, indispensable for the in-

vestigation of more advanced phenomena occurring in lattice potential environments. In

particular in the realms of topological photonics and topological lasing, the edges and in-

terfaces of lattice domains have attracted increasing attention. As topological edge modes

are a result of a topologically non-trivial bulk band structure, understanding the lower

size constraints for a lattice domain to form a bulk band structure becomes essential.

Furthermore, ribbons of polariton lattices are predicted to feature fascinating effects such

as antichiral edge states that are not accessible in large lattices [MGL19]. This section

is therefore devoted to investigate the band structure formation of EnO lattices from

single traps over molecules and small lattices of a few unit cells to large lattices with

fully evolved band structures. All structures investigated in this section were processed

on sample Ga-EnO1 and feature traps with diameters of d= 2.0 µm and a reduced trap

distance of v= 1.00, corresponding to touching traps. The excitation was provided by a

non-resonant, continuous wave laser that was tuned to a high-energy Bragg minimum of

the top DBR and expanded to cover multiple unit cells of the investigated lattice.

The foundation of the EnO lattices studied in this work is a single trap. The spectra in

Fourier and real space of such a single trap with a diameter of d = 2 µm that are displayed

in Figs. 4.1 a) and b), respectively, clearly show the expected discrete energy levels of the

S and P modes. While the real space spectrum corresponds to a cross section through

the centre of the trap along the x -axis, the Fourier space spectrum was integrated over ky

to enhance the contrast. Furthermore, the iso-energy cuts obtained from a tomography

of these two modes presented in Figs. 4.1 c)-e) reveal the characteristic real space mode

distribution. The highest intensity of the S mode is located at the centre of the trap

and the mode is rotationally symmetric. As reported in literature [Nar+09], the two-fold

degenerate P mode is highly susceptible to small disorder in the confinement potential
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Figure 4.1: a)-b) Fourier and real space spectra of a polariton trap with a diameter of
d = 2.0 µm, respectively. c)-e) Real space images of the S, Py and Px modes.
f)-m) The Fourier and real space spectra of two touching, coupled traps as
well as real space images of the molecular S and P modes.

due to the lack of rotational symmetry. Thus, the degeneracy is lifted and the two char-

acteristic dumbbell-shaped modes can be observed at a slight energy difference.

The first step in studying the coupling of individual polariton traps is a molecule consist-

ing of two touching traps. The formation of the energy levels of a polaritonic molecule

can be described in analogy to the formation of the orbitals of atomic molecules, where

each energy level of the contributing atoms leads to one molecular orbital. The S mode

therefore splits into two sub-modes that are referred to as bonding (B) and anti-bonding

(AB) modes, as observed in the Fourier and real space spectra presented in Fig. 4.1 f) and

g). Again, the Fourier space spectrum was integrated along ky for better visibility while

the real space spectrum represents a cross section along the x -axis through the centre

of the molecule. The nomenclature of bonding and anti-bonding modes is based on the

high probability density of the lower sub-mode between the sites, motivating the term

bonding, compared to the high probability density localised to the individual sites of the

upper sub-mode that is thus named anti-bonding. Real space images at the energies of

the two S sub-modes are displayed in Fig. 4.1 h) and i). The P band is based upon the

two P modes of each trap and consequently splits into four sub-modes whose real space

mode patterns are presented in Figs. 4.1 j)-m). Analogously to the S -modes, it is worth

noting that the two bonding modes PB1 and PB2 are characterised by a higher probability

density between the sites than the two anti-bonding modes PAB1 and PAB2. Furthermore,
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it is important to note that in particular the higher modes extend significantly into the

surrounding material as well as neighbouring traps, resulting in a larger effective trap

diameter as well as a larger coupling strength between the traps. This larger coupling

strength reveals itself in the larger bandwidth of the P modes compared to the S modes.

Additionally it is important to note that, due to the lack of rotational symmetry of the

characteristic dumbbell shape of P modes, the coupling strength acquires an additional

directional dependence.

To observe the transition from the discrete energy levels of a single trap or a molecule

to the continuous band structure of a lattice, the honeycomb lattice geometry was cho-

sen due to its well-known and characteristic band shape featuring two Dirac cones at

the intersection of the bonding and the anti-bonding S sub-bands. To study the band

structure formation, a series of honeycomb ribbons with varying widths were fabricated.

In Figs. 4.2 a)-e), real space images at the energy of the anti-bonding S sub-band of rib-

bons with a width of N = 1, 2, 3, 6 and 10 unit cells, respectively, are presented. Due

to the anti-bonding nature of this mode, the probability density is localised to the centre

of the individual traps allowing to image the lattice geometry. In Figs. 4.2 f)-j), Fourier

space images, reconstructed from hyperspectral imaging scans by selecting an iso-energy

cross section at the energy at which the Dirac points are expected, are displayed. Fourier

space spectra along kx, thus along the short axis of the ribbons, at ky = 0 as well as at

ky≈ 1 µm−1, cutting through a Dirac cone, are presented in Figs. 4.2 k)-o) and Figs. 4.2 p)-

t), respectively.

The narrowest ribbon of a honeycomb lattice, corresponding to a width of one unit cell, is

a single zigzag chain with angles of φ= 120◦ between adjacent traps. Such a chain features

two sites per unit cell resulting in two S sub-bands along the chain. Due to the width

of only two sites of this chain, a cross section perpendicular to the chain resembles the

spectrum of the polaritonic molecule introduced in Fig. 4.1 f) that is characterised by dis-

crete energy levels. With an increasing width of the ribbons, more energy levels are added

to each sub-band. This effect can be particularly clearly observed in the anti-bonding S

sub-band in a spectrum through the Γ point, corresponding to Figs. 4.2 k)-o), where the

number of energy levels corresponds precisely to the width of the ribbon in numbers of

unit cells. For a width of N = 3 unit cells, the energy splitting between the modes in the

bonding S sub-band is already too small to be resolved with respect to the linewidth, while

the anti-bonding sub-band still consists of clearly separated, discrete modes. For a width

of N = 10 unit cells, the band structure is fully evolved and no remaining discretisation

is observed. Corresponding to the band structure formation at ky = 0, the formation of a

Dirac cone is observed in the spectra at ky≈ 1 µm−1 presented in Figs. 4.2 p)-t). Already

at a ribbon width of N = 6 unit cells, the Dirac cone is fully evolved, corresponding to
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Figure 4.2: a)-e) Real space images at the energy of the anti-bonding S sub-band of
honeycomb ribbons with widths of N = 1, 2, 3, 6 and 10 unit cells, respec-
tively. f)-j) Corresponding Fourier space images at the energy of the Dirac
cones. k)-o) and p)-t) Fourier space spectra along the short axis of the
ribbons through the Γ point as well as through a Dirac point, respectively.
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a degree of translational as well as C3 symmetry that is large enough to simulate the

band structure of graphene. This result is of significant importance for the design of more

advanced lattice geometries containing different domains, as it sets a lower bound on the

size of the individual domains that is required for a lattice to be viewed as a region with a

continuous band structure rather than a molecular structure with discrete energy levels.

Finally, spectroscopic results on a honeycomb lattice with a size of 30× 30 unit cells,

thus considerably larger than the excitation spot, are presented in Fig. 4.3. Here, all

lattice symmetries are fully evolved resulting in a continuous band structure. Selected

cuts along the K -Γ-K’, M -Γ-M and K -K directions of the Brillouin zone are presented

in Figs. 4.3 a)-c) and reveal the well-known band structure of graphene featuring the

two Dirac points at the K and K’ points of the Brillouin zone. An iso-energy Fourier

space image at the energy of the Dirac points that highlights the high-symmetry points

of the Brillouin zone is presented in Fig. 4.3 e). In Figs. 4.3 a) and b), no PL emission

is detected from the anti-bonding S sub-band in the first Brillouin zone. This effect is

commonly observed for a number of bands in polaritonic lattices and is attributed to

destructive interference in the far field [Jac+14]. It is therefore worthwhile to study the

band structure in the reduced zone scheme representation that is depicted in Fig. 4.3 d).

Here, the PL intensity of the dispersions of the first as well as the back-folded bands

from one of the adjacent second Brillouin zones were averaged such that the full S band

dispersion becomes apparent. The intensity maxima extracted from the hyperspectral

imaging scan for each subband at every kx,y value are plotted as blue data points in a

three-dimensional E(kx, ky) graph in Fig. 4.3 f). Furthermore, the band structure is ac-

curately reproduced across the full Brillouin zone by a tight binding model considering

nearest and next-nearest neighbour couplings t and t’, respectively, represented by red

lines in Figs. 4.3 a)-d) and a surface plot in Fig. 4.3 f). This tight binding model allows to

evaluate coupling strengths of t = 356 µeV and t’ = 44 µeV and demonstrates the benefit

of a tight binding model. Despite its simplicity, it is able to reproduce all major features

of the band structure with only two fitting parameters that are directly linked to the over-

lap between adjacent sites and thus allow a direct feedback from the theoretical model to

the technological implementation of new lattices. However, while it provides a fast and

direct opportunity to evaluate the quality of a lattice, the agreement is not perfect. The

remaining deviations between the data and the model arise due to the assumption of the

tight binding model that the modes are highly localised with coupling strengths that are

significantly smaller than the confinement potential. In particular for higher bands, this

assumption is no longer valid. Additionally, the overlap between adjacent traps results

in deviations of the mode shapes from atomic orbitals and thus from the tight binding

assumption. These deviations lead to discrepancies between model and experiment in
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Figure 4.3: a)-c) Fourier space spectra along the K -Γ-K’, M -Γ-M and K -K directions
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louin zone. e) Fourier space image at the energy of the Dirac cones. f)
Reconstruction of the S bands (blue data points) and a tight binding model
(surface). g)-i) Real space images of the bonding and anti-bonding S sub-
bands as well as the lowest P sub-band.

particular for higher bands as these modes extend further beyond the boundaries of the

physical traps [Pan+19]. Finally, for high coupling strengths, the individual bands start

to hybridise. To include these effects in the theoretical description, the tight binding

model was extended to a full Bloch mode description by Dr. Oleg Egorov, the details on

which can be found in references [Kle+17] and [Har+20].

The bonding and anti-bonding nature of the two S sub-bands of the honeycomb lattice

becomes apparent in the real space mode distributions presented in Figs. 4.3 g) and h),

respectively. Additionally, it is interesting to note that the highest probability densities

of the lowest P sub-band, a flatband, are localised between the traps. This sub-band is

presented in Fig. 4.3 i) and thus features the geometry of a Kagome lattice.
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4.2 Polariton condensation in lattice potentials

Research on polaritons is closely intertwined with experiments on polariton condensation,

as introduced in section 2.2.4. In particular, polariton condensates constitute a promising

path towards realising experiments that harness the inherent non-linearity of the system

as the high occupation numbers in condensates enhance the effects of interaction. Fol-

lowing the first experimental realisation of a polariton condensate in a planar microcavity

[Kas+06], polariton condensates were realised in confined structures such as micropil-

lars [Baj+08] and molecules [Gal+12] as well. In the following development, polariton

condensates were realised in one-dimensional [Tan+13; Bab+16; Win+16] as well as two-

dimensional [Win+15; Mil+18] lattices.

As polariton condensation, in particular in EnO lattices, is crucial for this work, this

section is devoted to give a systematic investigation of the latter. Furthermore, a thor-

ough understanding of polariton condensation is indispensable for future developments

towards technological applications based on polariton lasing, in particular when keeping

in mind the recent progress on electrical injection into polariton lattices [Suc+18]. The

experiments in this section were performed on sample Ga-EnO1 under excitation with an

enlarged laser spot with a diameter of approximately 30 µm. Before studying the conden-

sation within a lattice potential environment, the characteristics of polariton condensation

are confirmed on a planar cavity region of the sample at a detuning of ∆E =−4.9 meV

under pulsed laser excitation. In Fig. 4.4 a) and b), exemplary Fourier space spectra be-

low and above the condensation threshold of Pth = 1.2 mW, respectively, are presented.

The input-output characteristic, linewidth and energy shift displayed in Figs. 4.4 c) and
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d) feature clear evidence of polariton condensation, as the non-linear increase in intensity

is accompanied by a drop in linewidth due to the build-up of coherence and an energetic

blueshift induced by the increased interaction between polaritons.

Next, condensation in Lieb lattices with trap diameters of d = 2.0 µm is studied under

both pulsed and cw excitation as well as with respect to the detuning, the reduced trap

distance and the excitation power. In Fig. 4.5 a), a Fourier space spectrum along the

X -Γ-X direction of the Brillouin zone of a Lieb lattice with a reduced trap distance of

v = 1.00, corresponding to touching traps, obtained under cw excitation with an excita-

tion power well below the condensation threshold is presented. The lattice features a

moderately negative exciton-photon energy detuning of ∆E =−5.0 meV evaluated for the

lowest S sub-band of polaritons confined in the lattice potential. With increasing exci-

tation power, the occupation of certain bands increases until polariton condensates form

at a threshold power of Pth = 36.0 mW, resulting in the spectrum displayed in Fig. 4.5 b).

The input-output characteristic, linewidth and energy shift corresponding to the lowest

S sub-band presented in Figs. 4.5 c) and d) feature the characteristics of polariton con-

densation. It is important to note that, analogously to polariton condensation in single

micropillars [Kri+09], condensates can form in multiple bands of a lattice simultaneously.

In Figs. 4.5 e)-h), analogous data obtained on the same lattice under pulsed excitation

are presented. Again, the characteristics of polariton condensation are observed with
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a threshold power of Pth = 1.2 mW. The advantages of a pulsed laser for condensation

experiments are its high peak power as well as the ability to perform time resolved mea-

surements. However, as the system undergoes the entire condensation process from an

occupation of the linear band structure to the formation of a blue-shifted condensate

within each pulse, a broader linewidth is observed. In contrast, a cw laser emits con-

stantly over time and thus enables to measure the very narrow linewidth of a condensate.

Its disadvantages are the considerably lower maximal power that is available as well as

stronger heating effects within the sample as more energy is transferred into the system.

Next, the influence of the detuning on the condensation in an EnO polariton lattice is

studied. In Figs. 4.6 a)-c) and d)-f), Fourier space spectra along the X-Γ-X direction of

two Lieb lattices with reduced trap distances of v = 1.00 at detunings of ∆E =−5.0 meV

and ∆E =−12.0 meV, respectively, at pulsed excitation powers of P = 0.12, 1.20 and

4.80 mW are presented. While both lattices emit in the linear regime for an excitation

power of P = 0.12 mW and condensates have formed in the lowest S band of both lat-

tices at P = 4.80 mW, it becomes apparent that for an excitation power of P = 1.20 mW,

a condensate has already formed in the lowest S band of the lattice at a detuning of

∆E =−5.0 meV, whereas the lowest S band of the lattice at a detuning of ∆E =−12.0 meV
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is still in the linear regime. A more detailed evaluation of this dependence of polariton

condensation on the detuning is presented in Fig. 4.6 g) and clearly reveals a decrease of

the condensation threshold towards zero detuning. Furthermore, power dependent mea-

surements under the same excitation conditions on a planar region of the microcavity as

well as a single polariton trap with a diameter of d = 2.0 µm feature the same dependence.

This decrease of the condensation threshold is commonly attributed to enhanced phonon

scattering and a longer polariton lifetime due to the increasing excitonic contribution

[DHY10]. Additionally, in Fig. 4.6 g) a systematic decrease of the condensation threshold

between a planar microcavity and a single trap due to the increased polariton density

in a confined potential is observed. As expected, the condensation threshold of a lattice

that provides a higher confinement with respect to a planar microcavity, however less

confinement than a single pillar due to the coupling between adjacent sites, is found to

be between these two distinct cases. Additionally, the condensation threshold was stud-

ied for Lieb lattices at a detuning of ∆E ≈−5.0 meV featuring reduced trap distances of

v = 0.80, 0.90, 1.00 and 1.05, as presented in Fig. 4.6 h). In agreement with the compari-

son to a planar microcavity and a single trap, the condensation threshold decreases with

increasing distance and thus reduced coupling between the traps.

Finally, a comparison of the excitation power dependent polariton occupation in the two

lattices presented in Figs. 4.6 a)-c) and d)-f) reveals that varying the combination of detun-

ing and excitation power allows to control into which band condensation occurs preferably.

Here, the definition of an effective detuning is valuable. While the detuning of a lattice

is given by the energy of the lowest S band with respect to the exciton energy through

equation 2.21, the effective detuning is calculated for each band individually using the

PL emission energy of that band. For the lattice corresponding to the spectra presented

in Figs. 4.6 d)-f), the considerably smaller effective negative detuning of the P flatband

of ∆E =−4.7 meV compared to the detuning of ∆E =−12.0 meV of the lowest S band

results in polaritons to condensate into the P flatband first. For higher excitation powers

and thus occupations, the relaxation processes become more efficient and a condensate

forms in the S band.

In summary, this detailed investigation of the polariton condensation behaviour in EnO

lattices allows to adjust the detuning, lattice parameters and excitation conditions ad-

equately to ensure the optimal polariton condensation required for the specific aim of

an experiment, such as the selective condensation into flatbands that is presented in the

following chapter.



5 Polaritons in flatbands

The interest in flatband systems started in theoretical physics and is based on the ini-

tial works by Sutherland [Sut86] and Lieb [Lie89], who discovered that in certain lattice

geometries, dispersionless bands with an energy that is independent of the wave vector

arise. In these bands, the group velocity vanishes, resulting in fully localised states that

are commonly referred to as compact localized states (CLSs) [AAM96].

The starting point of both theoretical and experimental research on flatband systems

was the magnetic ordering in flatband ground states, which is studied predominantly in

electronic systems. The study of the effect of flatbands on magnetism remains an active

area of research [MT93; Ram94; LMM11] that has very recently gained additional pace

through the observation of flatbands in the antiferromagnetic Kagome lattice compound

FeSn [Kan+20; Lin+20; GM20]. Additionally, the research interest was soon extended as

a connection between electronic flatbands and superconductivity was discovered [VMD98;

Igl+14]. One peculiarity in this context are the CuO2 planes in cuprate high tempera-

ture superconductors. These planes are organised in a Lieb lattice structure and the

resulting flatbands are believed to play an important role in explaining the high criti-

cal temperature. Additionally, the recent burst in research on two-dimensional materials

has spurred the discovery of flatbands in multilayer silicene [Li+18b] as well as bilayer

graphene [Mar+18], which are studied in particular in the context of the superconductivity

of graphite and graphene [Esq+14; Vol18] and were motivated further by the observation

of superconductivity in magic-angle graphene [Cao+18a; Cao+18b].

Nowadays, the scientific interest in flatbands has spread across a broad range of fields,

focussing for example on the high sensitivity to disorder that is induced by the lack of dis-

persiveness, as even a weak perturbation can define the dominant energy scale [Bod+14;

BM18]. In experimental systems, however, this sensitivity also results in flatbands not

being perfectly flat along all directions of the Brillouin zone. Therefore, commonly an ex-

tended definition including partially flat bands that are only flat along certain directions

of Fourier space is used. Next to disorder, flatbands are also used to study strongly inter-

acting systems, as the interaction between individual particles is enhanced through the

localisation in flatbands [DRM15]. This research direction has in particular gained theo-

retical interest in the context of interacting topological phases [PRS13; BL13; Ma+20a].

67
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Accompanying the increased theoretical efforts, the development of new experimental

platforms based on artificial lattices further accelerated the research field [LAF18]. Here,

the most prominent, two-dimensional lattices that host flatbands are the Lieb and Kagome

lattices. Even though some of the artificial lattice implementations focus on the magnetic

properties of flatbands in metamaterials [Gar+18], the overwhelming amount of exper-

iments is based on the localisation to CLSs, the sensitivity to disorder, the increased

inter-particle interaction as well as the combination of flatbands and topology. Up to

today, flatbands have been realised using lattices of ultra-cold atoms [She+10; AHM10;

Tai+15; Oza+17; Leu+20], electronic surface states [Slo+17b] as well as plasmonic meta-

materials [Nak+12]. Complementary, progress in realising a Kagome lattice of atoms on

a surface was achieved [Sun+20]. Furthermore, photonic realisations of Lieb [Guz+14;

Muk+15; Vic+15; Xia+16; Die+16; Pol+17] and Kagome [Zon+16] lattices have evolved

to powerful simulators of flatband physics [LF18]. One of the unique features of photonic

implementations is the ability to introduce gain and loss, thus opening up the path to-

wards studying the interplay of flatbands and non-Hermiticity. In particular in the realm

of lasing, it remains an open question how flatbands effect the coherence of both a single

laser as well as long range correlations between lasers [Nix+13; Lon19].

In polaritonic microcavities, the first attempt towards realising a band structure featur-

ing a flatband was a Kagome lattice defined by a lithographically designed metal film on

top of the cavity [Mas+12]. However, due to the very small confinement potential, no

experimental evidence of a flatband was observed. Following the technological develop-

ment of confinement techniques, the following realisations of one-dimensional [Bab+16;

Gob+19] and two-dimensional [Kle+17; Whi+18] Lieb lattices were based on coupled,

etched micropillars. In particular the two-dimensional Lieb lattice implementations were

able to provide valuable insight into the destructive interference mechanism that leads

to the localisation and thus the formation of a flatband. Furthermore, flatbands were

realised in the P band of a honeycomb lattice [Jac+14; Mil+19].

In this chapter, a detailed investigation of flatbands in polaritonic Lieb and Kagome lat-

tices in EnO microcavities is presented. First, in section 5.1, precise control over the

remaining dispersiveness of the flatbands is demonstrated. In particular the realisation

of flatbands in Kagome lattices should be emphasised, as this lattice has not yet been

realised in etched lattices due to the challenges in etching holes with the required large

aspect ratios that were described in section 3.1.2. In section 5.2, the controlled excitation

of polaritons in flatbands as well as selective condensation into CLSs are demonstrated.

Building upon this technological control, the influence of the localisation in flatbands on

the coherence properties of polariton condensates is investigated in section 5.3. Finally,

an investigation of vortex lattices as well as superfluid, chiral edge transport of polariton

condensates in Kagome lattices is presented in section 5.4.
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5.1 Engineering polariton flatbands

Before investigating the characteristics of polariton condensates in flatbands, a thorough

understanding of these flatbands as well as the influence of lattice parameters on their

dispersion is required. Therefore, this section is devoted to a systematic investigation on

the controlled engineering of polariton flatbands by adjusting the lattice design parame-

ters.

Among the first lattices identified to host a flatband is the Lieb lattice [Lie89] hosting an S

flatband which features the additional peculiarity of intersecting with the two dispersive

sub-bands at Dirac cones at the M -points of the Brillouin zone. Fourier space spectra

along the high-symmetry directions X -Γ-X, M -X -M and M -Γ-M of a Lieb lattice on sam-

ple Ga-EnO1 with trap diameters of d = 2.0 µm and a reduced trap distance of v = 1.05

located at a detuning of ∆E =−4.7 meV and excited by an enlarged Gaussian, cw laser

spot with a diameter of approximately 30µm are presented in Figs. 5.1 a)-c). The data

were accurately reproduced by a tight binding model including nearest and next-nearest

neighbour coupling. In the model, the S and P flatbands are highlighted in red. While

the Dirac cones can be best identified in Figs. 5.1 b) and c), the dispersionless nature of

the flatbands is best observed along the M -X -M direction displayed in Fig. 5.1 b). The

lattice geometry as well as the high-symmetry points of the Brillouin zone are visualised

in the Fourier space image at the energy of the S Dirac points presented in Fig. 5.1 f).

As a consequence of a non-zero next-nearest neighbour coupling in polaritonic lattices,

a remaining dispersiveness of the flatbands is observed along the other directions of the

Brillouin zone. Analogously to the experimentally obtained spectra of a honeycomb lat-

tice presented in Fig. 4.3, no emission is observed in the first Brillouin zone from certain

bands due to destructive interference in the farfield [Jac+14]. To overcome this limitation,

emission from an adjacent second Brillouin zone was back-folded and averaged with the

emission from the first Brillouin zone to generate the reduced zone scheme representation

depicted in Fig. 5.1 d). This representation further visualises that the flatbands remain

perfectly dispersionless between the X and M points. A full reconstruction of the S

sub-bands from the hyperspectral imaging scan is plotted as blue dots in Fig. 5.1 e) and

reinforces the good agreement of the tight binding model with the data. To get further

insight on the nature of the bands, it is fruitful to study the real space mode distributions

that were obtained from a mode tomography and are presented in Figs. 5.1 g)-j). As in-

troduced in chapter 4, the lattice geometry can be clearly observed from the anti-bonding

S sub-band. A real space image at the energy of the latter is presented in Fig. 5.1 i). In

contrast, the influence of the square lattice that is the origin of the Lieb lattice dictates

the mode distribution of the bonding S sub-band plotted in Fig. 5.1 g). Of particular
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and M -Γ-M directions as well as in the reduced zone scheme representation,
respectively. The data are reproduced well by a tight binding model that in-
cludes nearest and next-nearest neighbour coupling. The S and P flatbands
are highlighted in red. e) Reconstructed S bands (blue dots) including a
tight binding fit. f) Fourier space image at the energy of the Dirac points
of the S band. g)-j) Real space images at the energies of the bonding S
sub-band, the S flatband, the anti-bonding S sub-band and the P flatband,
respectively.
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Figure 5.2: a)-d) Fourier space spectra of an EnO Kagome lattice with trap diameters of
d= 2.0 µm and a reduced trap distance of v= 1.05 along the K -Γ-K’, M -Γ-M
and K -K directions as well as in the reduced zone scheme representation,
respectively. The data are reproduced well by a tight binding model that
includes nearest and next-nearest neighbour coupling. The S flatband is
highlighted in red. e) Fourier space image at the energy of the Dirac points
of the S band. f) Reconstructed S bands (blue dots) including a tight
binding fit. g)-j) Real space images at the energies of the bonding and anti-
bonding S sub-bands as well as the S flatband, respectively.

interest is the mode pattern of the flatbands in Figs. 5.1 h) and j) featuring emission only

from the B and C sites of the unit cell. This mode pattern is termed Lieb diamond and

reveals the flatband formation due to destructive interference of polaritons on the A sites

that originiated from the B and C sites [Kle+17; Whi+18]. The polariton population

thus localises to the Lieb diamond and forms a CLS.

The second important lattice for flatband studies is the Kagome lattice. Fourier space

spectra along the high-symmetry directions K -Γ-K’, M -Γ-M and K -K of a Kagome lat-

tice on sample Ga-EnO1 with trap diameters of d = 2.0 µm and a reduced trap distance of

v = 1.05 located at a detuning of ∆E =−5.1 meV and excited with a large Gaussian, cw

laser spot are depicted in Figs. 5.2 a)-c). The data are accurately reproduced by a tight

binding model including nearest and next-nearest neighbour coupling. To understand

these spectra it is valuable to remember that the Kagome lattice can be described as the

line graph of the honeycomb lattice. It is therefore not surprising that the lower two S

sub-bands of the Kagome lattice are inherited from the honeycomb lattice. The prevail-
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ing characteristics of these two sub-bands are the two Dirac cones connecting the two

sub-bands at the K and K’ points. The linear dispersion of such a Dirac cone is clearly

visible in Fig. 5.2 c). On top of these two sub-bands, a flatband touching the upper disper-

sive S sub-band at the Γ-points appears and is highlighted in red in Figs. 5.2 a)-d). The

high-symmetry points are visualised in the Fourier space image at the energy of the Dirac

points presented in Fig. 5.2 e). Analogously to the Lieb lattice, a non-zero next-nearest

neighbour coupling results in a remaining dispersiveness of the flatband. Additionally to

the Fourier space spectra along high-symmetry directions, a representation in the reduced

zone scheme, averaged over the first and an adjacent, second Brillouin zone, as well as

a full reconstruction including a tight binding fit reproducing the characteristic shape of

the S band are presented in Figs. 5.2 d) and f), respectively. In particular in the three-

dimensional representation of the S sub-bands across the full Brillouin zone, the striking

resemblance with the honeycomb band structure becomes unequivocal. Furthermore, the

honeycomb origin of the lower two S sub-bands does not only become apparent in Fourier

space spectra but also dictates the mode distribution in real space presented in Figs. 5.2 g)

and h), as the two sub-bands share the identical patterns with the honeycomb lattice in-

troduced in Fig. 4.3. The geometry of the Kagome lattice can clearly be observed in the

mode distribution of the S flatband depicted in Fig. 5.2 i).

In the polaritonic implementations of both Lieb and Kagome lattices introduced above,

the strength of next-nearest neighbour interaction is the key parameter determining the

remaining dispersiveness of the flatbands. Control over this parameter is therefore crucial

to flatten the flatbands and thus increase localisation as far as possible. Additionally,

this control offers the opportunity of studying the effects of transitioning from a disper-

sive band to a flatband. The coupling strength of two traps decreases rapidly as soon

as there is a physical separation between the traps, therefore allowing to decrease next-

nearest neighbour coupling significantly while maintaining a reasonable nearest neighbour

coupling strength to form a band structure. To realise such a separation, characterised

by a reduced trap distance of v > 1, the EnO approach is particularly valuable as an

overlap between traps is not required to ensure coupling. Fourier space spectra of Lieb

lattices with trap diameters of d = 2.0 µm and reduced trap distances of v = 0.80, 0.90

and 1.05 along the high-symmetry directions X -Γ-X, M -Γ-M and M -X -M are displayed

in Figs. 5.3 a)-c), e)-g) and i)-k), respectively. Schematics elucidating the directions in

the Brillouin zone are provided in Figs. 5.3 d), h) and l). As the dispersiveness of the

flatbands is not only limited by a next-nearest neighbour contribution to the coupling but

also through deviations of the mode profiles due to the small confinement potential and

overlap between the modes, more accurate band structure calculations were performed

by Dr. Oleg Egorov using a Bloch mode approach that is described in detail in reference
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the tight binding model. d)-f) Reconstructions of the S flatband from the
hyperspectral imaging scans (blue dots) including tight binding fits.

[Har+20]. The resulting band structures reproduce the experimentally obtained Fourier

spectra perfectly and are plotted in Fig. 5.3 as well, with the flatbands highlighted in

red. Along the M -X -M direction presented in Figs. 5.3 i)-k), the P flatband exhibits the

highest dispersiveness. When increasing the reduced trap distance and thus decreasing

the influences of both next-nearest neighbour coupling as well as deviations of the mode

profile due to overlapping traps, its bandwidth decreases drastically. The S flatband,

however, exhibits the lowest remaining dispersiveness along this direction and thus does

not change significantly with respect to changes of the reduced trap distance. In contrast,

the S flatband shows significant remaining dispersiveness along the X -Γ-X direction.

Analogously to the P flatband, its bandwidth can be reduced significantly by increasing

the reduced trap distance v.

Comparably to the Lieb lattice, a variation of the reduced trap distance was performed

for Kagome lattices with trap diameters of d = 2.0 µm. Fourier space spectra along the K -

Γ-K’ direction of Kagome lattices with reduced trap distances of v = 0.95, 1.00 and 1.05

are displayed in Figs. 5.4 a)-c). The corresponding reconstructions of the S flatband from

the hyperspectral imaging scans, represented by the blue dots, that were reproduced by a

tight binding model are presented in Figs. 5.4 d)-f). Again, the transition from flatbands

with significant remaining dispersiveness to almost perfectly flat flatbands is observed.

An evaluation of the bandwidths of the S and P flatbands of the Lieb lattices including
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to the reduced trap distance v. For the Lieb lattices, the experimental data
were accurately reproduced by a Bloch mode calculation. For comparison,
the polaritonic linewidth of the flatbands is highlighted by the dashed line.

the results obtained from the Bloch mode calculations as well as a bandwidth evaluation

of the S flatband of the Kagome lattices is plotted in Fig. 5.5. Of particular importance

is a comparison between the remaining dispersiveness of the flatbands and the polaritonic

linewidth of the latter. For the S flatband of the Kagome lattice with a reduced trap

distance of v= 1.05, the bandwidth of 160µeV is significantly smaller than the polariton

linewidth of γP≈ 300µeV. In the following experiments, this flatband can thus be treated

as almost perfectly flat. For the S and P flatbands of the Lieb lattice characterised by

a reduced trap distance of v= 1.05, bandwidths of 340 µeV and 620 µeV were achieved.

Again, the bandwidth of the S flatband is on the order of the linewidth, while the P

flatband remains dispersive compared to the linewidth. This effect is expected, as the

P modes extend further beyond the boundaries of the individual traps and thus couple

stronger. However, the overall bandwidth of the band structure is still large enough to

resolve all important features, thus motivating to fabricate lattices with traps that are

located even further apart in future work. The weaker effect of next-nearest neighbour

coupling of the Kagome lattice compared to the Lieb lattice can intuitively be explained

by the larger distance aNN between next-nearest neighbours that is given by aNN =
√

3a

for the Kagome lattice and aNN =
√

2a for the Lieb lattice.

In conclusion, deterministic control over the bandwidths of the flatbands in polaritonic

Lieb and Kagome lattices was demonstrated by adjusting the reduced trap distance. In

particular for the Kagome lattice, a bandwidth well below the polaritonic linewidth was

achieved. Before harnessing this control in experiments on the influence of the disper-

siveness of a flatband on the coherence properties of a polariton condensate, a variety
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of experimental methods for the controlled excitation of flatband states is introduced in

the following section. The systematic evaluation of the dispersiveness of the flatbands in

polaritonic Lieb lattices presented in this section was published in reference [Har+20].

5.2 Controlled excitation of flatband states

In the previous section, the fabrication of polaritonic lattices featuring flatbands that are

nearly perfectly flat across the entire Brillouin zone was demonstrated. To address specific

aspects of these flatbands such as CLSs, disorder effects or non-Hermitian physics exper-

imentally, a controlled excitation of polaritons and polariton condensates in flatbands is

crucial. An overview of the excitation schemes described in this section is presented in

Fig. 5.6.

To harness the increased inter-particle interaction of polaritons in flatbands as well as for

research towards flatband lasers, polariton condensates both stretching across multiple

unit cells as well as in a single CLS are promising platforms. In Fig. 5.6 a), the excitation

of a large condensate with a Gaussian spot that covers multiple unit cells is schematically

depicted. A real space image of the polariton condensate in the S flatband of a Lieb lat-

tice characterised by trap diameters of d = 2.0 µm and a reduced trap distance of v = 1.05

located at a detuning of ∆E =−3.9 meV on sample Ga-EnO1 is presented in Fig. 5.6 b).

The excitation with a cw, Gaussian excitation spot with a diameter of approximately

30µm results in a homogeneous condensate covering multiple unit cells. However, the

real space spectrum presented in Fig. 5.6 c) reveals that further condensates have formed

in other bands. The input-output characteristics as well as Fourier space spectra corre-

sponding to the real space data presented here can be found in Fig. 4.5.

Sun and co-workers proposed to excite a polariton condensate in a single CLS rather than

a large scale condensate by using a Laguerre-Gaussian laser spot with the motivation

that, in future experiments, these localised condensates could form the basis for network

computations [Sun+18]. In Fig. 5.6 d), the excitation with a ring-shaped laser spot cre-

ated using a spiral phase plate is schematically depicted. Using a cw laser shaped to a

ring with a diameter of approximately 4.0 µm that is centred at the Lieb diamond, this

excitation geometry results in a polariton condensate localised to a single Lieb diamond,

thus forming a single CLS, and is presented in Fig. 5.6 e). Additionally, the real space

spectrum presented in Fig. 5.6 f) further reveals that polariton condensation occurred se-

lectively into the S flatband, leaving all other bands below the condensation threshold.

These experiments were, analogously to the excitation of a large condensate, performed

on Lieb lattices with trap diameters of d = 2.0 µm and a reduced trap distance of v = 1.05,

corresponding to the largest available distance between the traps and therefore the flat-
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Figure 5.6: a) Schematic of the non-resonant excitation of the large polariton condensate
in a Lieb lattice in b) as well as a real space spectrum above the condensation
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lattice as presented in h) as well as the corresponding real space spectrum
in i).
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bands with the least remaining dispersiveness. Based on this selective excitation of a

polariton CLS and the capability of a spatial light modulator to create multiple ring-

shaped excitation spots, experiments on networks of CLS condensates can be envisioned.

Next to using flatbands to host polariton condensates, flatbands themselves offer open

research opportunities such as their sensitivity to disorder [LAF18] and the coupling be-

tween flatbands and dispersive bands [GLN18]. Both of the latter are important aspects

when considering flatband states for example for the distortion free storage of informa-

tion in a CLS. To investigate these effects in polaritonic lattices, the need for a controlled

excitation of a polariton population at a well-defined energy and wave vector motivates

the development of resonant excitation techniques. Here, the resonant excitation scheme

in transmission geometry that was introduced in section 3.2 and is schematically de-

picted in Fig. 5.6 g) was used to excite polaritons in the S flatband of a Lieb lattice with

trap diameters of d = 2.0 µm and a reduced trap distance of v = 1.00 at a detuning of

∆E≈−14.5 meV. As described in section 3.2, for experiments in transmission geometry

samples with InxGa1-xAs quantum wells are used as their excitonic resonance lies within

the band gap of the GaAs substrate which is hence transparent for the excitation laser.

Here, a Lieb lattice on sample In-EnO1 with a polished backside was used. Details on the

backside polishing process can be found in the appendix in section A.2. The resulting real

space mode distribution under excitation with a cw laser with a spot diameter of approx-

imately 30µm at a wave vector of k∥ = 0 and an energy of 1.4711 eV, in resonance with

the S -flatband, is displayed in Fig. 5.6 h). Again, the characteristic Lieb diamond pattern

is reproduced. Additionally, an intensity fluctuations arising due to inhomogeneities in

the laser excitation and the transmission properties of the sample are observed. These

intensity fluctuations represent a further manifestation of the flatband properties, as the

localisation of the polaritons in the flatband inhibits propagation that could compensate

the inhomogeneous occupation. The real space spectrum presented in Fig. 5.6 i) fur-

ther visualises the energetic selectivity achieved with a resonant, transmission excitation

scheme.

In summary, three complementary schemes towards exciting polaritons in the S flat-

band of Lieb lattices were demonstrated. The implementation of these schemes allows

to specifically address different aspects of polariton flatbands and design spectroscopic

experiments specifically for the desired investigation. Generally, most experiments on po-

laritonic lattices that were performed so far across the research community have started

at negative detunings with high photonic fractions, since the photonic linewidth is usually

much smaller than the excitonic linewidth. Furthermore, the bandwidth is determined

by the photonic fraction, as the coupling between sites is a predominantly photonic ef-

fect. However, it is the excitonic fraction that provides access to non-linear regimes and
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separates polaritonic from photonic lattices. Transitioning towards excitonic detunings is

thus a major challenge of the entire community. In this context, the excitation schemes

presented in this section represent an important step, as in particular the resonant excita-

tion does not rely on polariton relaxation mechanisms that can prove to be complicated in

particular towards positive detunings. Polariton flatbands thus represent a well-controlled

platform, both from the perspective of lattice design as well as polariton excitation that

is in the following section used to study the influence of the localisation in flatbands on

the coherence properties of polariton condensates.

5.3 Coherence of flatband condensates

Following the results on the controlled engineering and excitation of polaritons in flat-

bands described in the previous sections, the aim of this section is to use this platform

for a detailed investigation of the coherence properties of flatband polariton condensates.

In this respect, both a large condensate as well as a condensate localised to a single CLS

are of interest.

As a starting point and following the demonstration of the controlled excitation of po-

laritonic flatbands in Lieb lattices described in the previous section, the excitation of a

large condensate in the S flatband of a Kagome lattice with trap diameters of d = 2.0 µm

and a reduced trap distance of v = 1.00 with an enlarged, Gaussian, cw laser spot is pre-

sented in Fig. 5.7. In Figs. 5.7 a) and b), exemplary Fourier space spectra at excitation

powers below and above the condensation threshold of Pth = 36.0 mW, respectively, are

presented. Here, selective condensation into the flatband was achieved. The experimen-

tally obtained dispersion relations were reproduced by Dr. Oleg Egorov using a full Bloch

mode calculation. The real space mode distribution of the flatband condensate presented

in Fig. 5.7 c) reveals the expected mode pattern of the Kagome flatband that was intro-

duced in Fig. 5.2. Furthermore, the input-output characteristics presented in Figs. 5.7 d)

and e) confirm the formation of a polariton condensate. Establishing selective excitation

of a large flatband condensate offers the opportunity to study the degree of first order

spatial coherence, g(1)(r), of the latter by autocorrelation measurements.

In section 5.1, control over the remaining dispersiveness of the flatband through a varia-

tion in the reduced trap distance was demonstrated. This control enables to investigate

the degree of spatial coherence along the transition from a dispersive band to a flatband.

In Figs. 5.8 a) to c), Michelson interferograms of polariton condensates, excited by an en-

larged, Gaussian, cw laser spot, in the flatbands of Kagome lattices with trap diameters

of d= 2.0 µm and reduced trap distances of v= 0.95, v= 1.00 and v= 1.05 located at a

detuning of ∆E≈−6 meV on sample Ga-EnO1 are presented. In these interference pat-
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Figure 5.7: a)-b) Fourier space spectra of a Kagome lattice with trap diameters of
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the flatband polariton condensate. d)-e) Input-output characteristics of the
flatband polariton condensate.

terns it is important to note that, to avoid artefacts in the subsequent coherence analysis,

the interferometer was meticulously aligned to ensure consistent fringe periodicity and

orientation across the three measurements. As described in section 3.2.2, one arm of the

Michelson interferometer can be equipped with a retroreflector flipping the image in x - and

y-direction. Consequently, the distance between the emission from traps superimposed

in the interferogram increases twofold when moving radially from the centre towards the

outside of the interferogram. The radial decay of the fringe pattern thus contains informa-

tion on the spatial coherence length of the polariton condensate. To visualise the spatial

coherence, the interferograms are Fourier transformed, the coherent part of the image

is extracted and an inverse Fourier transform is applied. The real part of the resulting

image can be understood as a map of spatial coherence. These spatial coherence maps are

presented in Figs. 5.8 d)-f). In Fig. 5.8 d), one can observe that, for a Kagome lattice with

a reduced trap distance of v= 0.95, the coherence length is considerably longer than the

size of a CLS. However, when increasing the reduced trap distance and thus reducing the

dispersiveness of the flatband, the degree of localisation increases resulting in a condensate

that is only coherent within a single CLS. In Fig. 5.8 f), corresponding to a reduced trap

distance of v= 1.05, only the charactersitic six lobes of a Kagome CLS are observed in

the spatial coherence map, impressively demonstrating the effect of the almost perfectly

flat flatband on the propagation dynamics of the polaritons. Furthermore, the numerical

simulations based on a modified Gross-Pitaevskii model that were provided by Dr. Oleg

Egorov and are presented in Figs. 5.8 g)-i) accurately reproduce the experimental results.

Further details on these theoretical results can be found in reference [Har+21b].
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Figure 5.8: a)-c) Michelson interferograms of polariton condensates in the flatbands of
Kagome lattices with trap diameters of d= 2.0 µm and reduced trap dis-
tances of v= 0.95, v= 1.00 and v= 1.05, respectively. d)-f) Corresponding
spatial coherence maps obtained by two-dimensional Fourier transformation,
selection of the coherent part and inverse Fourier transformation, where d)
includes a schematic of the lattice geometry visualising the localisation to a
CLS. g)-i) Corresponding spatial coherence profiles obtained from numeri-
cal simulations, adapted from reference [Har+21b].
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Figure 5.9: a)-b) Exemplary Fourier space spectra obtained on a Kagome lattice with
trap diameters of d= 2.0 µm and a reduced trap distance of v= 1.05 by excit-
ing with a small laser spot centred on a CLS at excitation powers below and
above the polariton condensation threshold, respectively. c) Corresponding
real space image of the CLS polariton condensate. d)-e) Input-output char-
acteristics of the CLS polariton condensate.

Next, polariton condensation into a single CLS is realised by exciting a Kagome lattice

with trap diameters of d= 2.0 µm and a reduced trap distance of v= 1.05 using a small,

cw laser spot centred between the six lobes of the CLS. In Figs. 5.9 a) and b), Fourier

space spectra below and above the condensation threshold of Pth = 7.0 mW, respectively,

are presented. In these spectra, in particular the very high degree of selectivity of conden-

sation into the flatband should be emphasised. The real space image displayed adjacently

in Fig. 5.9 c) confirms that the condensate features the characteristic mode pattern of

a Kagome CLS. Again, the input-output characteristics plotted in Figs. 5.9 d) and e)

confirm the formation of a polariton condensate, as the non-linear increase in emission

intensity is accompanied by a decrease in linewidth as well as a continuous blueshift of

the emission energy. Most notably, a linewidth of just 37 µeV, limited by the resolution

of the spectrometer, was measured for the CLS polariton condensate.

Based on the excitation of a polariton condensate in a single CLS, the phase as well as the

degree of first order temporal coherence, g(1)(τ), can be investigated. To extract the phase

pattern of the CLS polariton condensate, Mach-Zehnder interferometry in the configura-

tion introduced in section 3.2.2 was performed. The interferometry patterns obtained by

interfering a CLS condensate with a single, magnified lobe of the condensate that is used

as a phase reference is displayed in Fig. 5.10 a). This fringe pattern was analysed using the

same Fourier analysis method introduced above, by applying a two-dimensional Fourier

transformation to the fringe pattern. From the transformed image, the coherent emission

of the condensate is extracted and transformed back using an inverse Fourier transforma-
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Figure 5.10: a) Mach-Zehnder interferogram of a CLS polariton condensate, obtained by
interfering the emission of the CLS polariton condensate with the magnified
image of one of the six lobes. After Fourier transforming, selecting the
coherent part and inverse Fourier transforming, the real part of the image
represents a map of coherence, presented in b), while the imaginary part
represents a phase map, presented in c). d) Calculated spatial phase map,
adapted from reference [Har+21b].

tion. The real part of the resulting image is displayed in Fig. 5.10 b) and represents a real

space image of coherence that again highlights the localised nature of the CLS conden-

sate. The imaginary part of the back-transformed image is presented in Fig. 5.10 c) and

represents a spatial phase map. Here, a π phase shift between adjacent sites of the CLS

condensate is revealed. This phase shift represents the origin of the localisation leading

to the formation of the flatband, as it ensures destructive interference of polaritons on

sites adjacent to the CLS. Again, the experimental result is confirmed by the numerical

simulation presented in Fig. 5.10 d) [Har+21b]. These phase maps thus further highlight

the capabilities of a polariton lattice simulator, as direct access to all quantities required

to understand the physical mechanism occurring in such a lattice is granted.

Finally, the degree of first order temporal coherence, g(1)(τ), is measured by exciting a

CLS polariton condensate and moving the mirror in one arm of the Michelson interferome-

ter to tune the delay between the two images that are superimposed on the camera. From

the interferograms and the two individual images superimposed to generate the inferfero-

gram, the coherence function g(1) can be evaluated from the fringe contrast using equation

3.2. In Fig. 5.11 a), an exemplary image of a Michelson interferogram of a CLS polariton

condensate in a Kagome lattice with a reduced trap distance of v= 1.05 is depicted. A

line spectrum extracted from the area marked by the black box in Fig. 5.11 a) including a

fit of the fringe contrast based on equation 3.2 is presented in Fig. 5.11 b). In Fig. 5.11 c),

the coherence function is plotted as a function of the delay between the two superimposed
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Figure 5.11: a) Exemplary Michelson interferogram of a CLS polariton condensate in a
Kagome lattice with a reduced trap distance of v= 1.05. b) Line spectrum
of the area marked with the black box in a) including a fit of the fringe
contrast based on equation 3.2 and the individual two images that, when
superimposed, create the interference pattern. c) Evaluation of the degree
of first order temporal coherence g(1) as a function of delay, realised by
moving one of the mirrors in a Michelson interferometer and extracting the
fringe contrast from every interferogram.

images for Kagome lattices with trap diameters of d= 2.0 µm and reduced trap distances

of v= 0.95, v= 1.00 and v= 1.05. For all three condensates, the decay of temporal coher-

ence can be described accurately by an exponential function g(1)(τ)∼ exp(τ/τcoh), where

the coherence time is denoted by τcoh. This single-exponential decay is a good indicator

for a single-mode condensate in which the coherence time is limited by intrinsic dephas-

ing [Kim+16]. Most notably, the coherence time increases from τcoh = (68±3) ps for a

reduced trap distance of v= 0.95 to τcoh = (249±18) ps for v= 1.00 and finally reaches

τcoh = (459±30) ps for v= 1.05.

This astonishingly high degree of first order temporal coherence is an important quantity

for the quality of a laser that focusses on the properties of the emitted light. Complemen-

tary to the coherence time, knowledge of the second order temporal coherence function

represents an important aspect focussing predominantly on the characteristics of the light

source. Here, a value of g(2)(τ = 0) = 1 is anticipated for a laser, with any deviations

towards the value of g(2)(0) = 2 that characterises a thermal light source corresponding

to deviations from a single-mode laser. Therefore, to complement the g(1)(τ) measure-

ments, Hanbury Brown-Twiss (HBT) interferometry, using the configuration introduced

in section 3.2.2, was performed on polariton condensates in single CLSs of the same three

Kagome lattices. Exemplary HBT correlation measurements performed on a Kagome



5.3 Coherence of flatband condensates 85

1 2 3 4 5 6

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5  v  =  0 . 9 5 ,   g ( 2 ) ( P > 1 . 5 P t h )  =  1 . 0 6 3
 v  =  1 . 0 0 ,   g ( 2 ) ( P > 1 . 5 P t h )  =  1 . 0 2 1
 v  =  1 . 0 5 ,   g ( 2 ) ( P > 1 . 5 P t h )  =  1 . 0 3 5

g(2)
(τ=

0)
E x c i t a t i o n  p o w e r  ( P / P t h )

c )a )

b )
0 . 0

0 . 5

1 . 0

- 2 0 0 2 00 . 0

0 . 5

1 . 0

Int
en

sity
 (n

orm
aliz

ed
 co

un
ts)

T i m e  �  ( p s )

P  =  5 . 7 P t h

P  =  1 . 3 P t h

Figure 5.12: a)-b) Exemplary second order correlation measurements performed using
a Hanbury Brown-Twiss interferometer at excitation powers of P = 1.3Pth

and P = 5.7Pth, respectively. c) g(2)(τ = 0) evaluated from the correlation
measurements and plotted as a function of the excitation power for CLS
polariton condensates in Kagome lattices with reduced trap distances of
v= 0.95, 1.00 and 1.05.

lattice with a reduced trap distance of v= 1.05 at excitation powers of P = 1.3Pth and

P = 5.7Pth using the pulsed laser are presented in Fig. 5.12 a) and b), respectively. In

these measurements, a timer is started when a first photon is detected in one of detectors

and stopped by the detection of a photon by the second detector. By delaying the signal

obtained by the second detector, the peak corresponding to photons that originate from

the same laser pulse is centred in the detection time interval. Furthermore, photons orig-

inating from different laser pulses are uncorrelated and the corresponding peaks can thus

be used to normalise the correlation measurement. The excitation power dependent sec-

ond order temporal coherence function g(2)(0) that was evaluated from these correlation

measurements is displayed in Fig. 5.12 c), including error bars derived from the standard

deviation of the fluctuation of the peaks corresponding to photons generated during dif-

ferent laser pulses. The Corresponding input-output characteristics used to evaluate the

threshold power Pth can be found in the appendix in Fig. A.7.

Close to the condensation threshold, the coherence time is smaller than the jitter of

the detectors, resulting in a higher value of g(2)(0) that is commonly observed [Jin+94;

Kim+16; Kla+18]. At higher excitation powers, however, the coherence of the polariton

condensate builds up and the coherence function approaches the value of g(2) = 1 expected

for an ideal single-mode laser. By averaging the coherence function for excitation pow-

ers of P > 1.5Pth, values of ḡ(2)(0) = 1.0628± 0.0065, 1.0210± 0.0029 and 1.0354± 0.0042
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were evaluated for Kagome lattices with reduced trap distance of v= 0.95, 1.00 and 1.05,

respectively. Again, the lasing properties of the polariton condensates are improved by

reducing the dispersiveness of the flatbands, as a larger value of ḡ(2)(0) is observed for

a lattice with v= 0.95. For the lattices with v= 1.00 and v= 1.05, the remaining dif-

ferences between the values of ḡ(2)(0) can most likely be attributed to uncertainties of

the measurement. Polariton condensates in single CLSs are highly susceptible to small

deviations of the excitation conditions, in particular to changes in the position of the

excitation laser. Without an active stabilisation of the position of the cryostat, g(2)(0)

measurements of small polaritonic structures are not feasible at all [Adi+17]. However,

even though the position of the cryostat was actively stabilised during the measurements

presented here, the remaining small deviations of the position of the excitation spot can

cause the observed fluctuations of the ḡ(2)(0) value. Nevertheless, the observed values of

ḡ(2)(0) underline the excellent lasing properties of flatband condensates.

In summary, the localisation to a CLS in a Kagome flatband facilitated the observation

of highly coherent polariton lasing with a coherence time of up to τcoh = (459±30) ps.

This coherence time is particularly striking when compared to the values between 50 ps

[Kim+16] and 150 ps [Lov+08] that are typically observed in literature for polaritonic

systems under non-resonant excitation. In these high-quality microcavities, the exciton

reservoir represents the prevailing limitation of the coherence time. Therefore, attempts

on increasing the coherence time have focussed on avoiding an excitonic reservoir by im-

plementing either an optical parametric oscillator configuration, resulting in a coherence

time of approximately 500ps [Kri+06], or a spatial separation between the polariton con-

densate and the exciton reservoir through the use of an annulus pump spot. In the latter,

a coherence time of up to 2.7 ns was achieved [Ask+19]. It is interesting to note that

the configuration of a CLS polariton condensate excited with a small spot can be viewed

as the inverse geometry to an annulus pump, as the highest reservoir density is located

between the six lobes of the CLS condensate. Kagome flatbands thus combine the en-

hancement of the coherence time through the localisation and consequent reduction of the

dispersiveness provided by the flatband with a separation of the exciton reservoir from the

polariton condensate. The results presented in this section were published in reference

[Har+21b].
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5.4 Kagome vortex lattices and superfluid, chiral edge

propagation

In the previous sections, polariton condensates in flatbands were established as a well-

controlled platform that was used for an in-depth investigation of the influence of the

localisation and the consequent vanishing dispersiveness on the lasing properties. In this

section, the formation of vortices in these condensates is emphasised.

The formation of vortices is one of the most distinct properties of superfluids. Further-

more, the orbital angular momentum of light that can feature a vortex phase distribution

is one of the key characteristics of any light emitter. It is therefore not surprising that

research efforts were devoted to investigate the formation of vortices in photonic microcav-

ities as well, in particular in the regime of polariton condensation that features superfluid

properties. These efforts have resulted in the demonstration of chiral lasing emission

[Car+19; Ma+20b] as well as the formation of ordered vortex patterns in lattice potential

environments [Tos+12a; Gao+18] and optically induced potential landscapes [Bou+16;

Pan+21]. In Kagome lattices, the formation of vortex lattices was particularly empha-

sised in theoretical work, where the effect of spontaneous symmetry breaking between two

possible vortex lattice orientations was predicted to lead to superfluid, chiral edge trans-

port [Bar+16; SLL17]. Comparably, a link between an interaction driven, spontaneous

symmetry breaking and a quantum anomalous Hall phase was predicted for electronic

systems [Zhu+16].

The starting point of the investigations presented here is a polariton condensate that was

excited with an enlarged, cw, Gaussian laser spot in the flatband of a Kagome lattice

on sample Ga-EnO1 characterised by trap diameters of d= 2.0 µm and a reduced trap

distance of v= 1.00. In Fig. 5.13 a), a Mach-Zehnder interferogram of such a condensate,

obtained by enlarging one trap in one of the arms of the interferometer to cover the en-

tire condensate when superimposed with the image of the second arm, is presented. In

this configuration, the enlarged image of one trap serves as a constant phase reference,

thus allowing to study the phase profile and in particular the presence of vortices. The

schematic representation of the excitation geometry displayed in Fig. 5.13 b) highlights

that the excitation intensity is reasonably homogeneous across the analysed condensate

area marked by the black box. Kagome lattices feature three sites in the unit cell sur-

rounding a small hole. In Figs. 5.13 c)-h), the phase profiles at the centre of the six

threefold trap groups marked in Fig. 5.13 a) are presented. In each group, a vortex with

a charge of m=±1 is found. The vortex charges alternate between adjacent groups and

compensate each other. Therefore, no vortex is observed in the phase pattern of the cen-

tre of the large hole between the six groups presented in Fig. 5.13 i). This vortex lattice
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Figure 5.13: a) Mach-Zehnder interferogram of a polariton condensate in a Kagome
flatband excited with an enlarged, Gaussian laser spot. b) Schematic visu-
alising the position of the interferogram in a) with respect to the excitation
spot. c)-h) Phase maps evaluated from the interferogram at the centre of
the six unit cells that are marked in a). The yellow and green arrows high-
light the vortex orientations. i) Phase map at the centre of the six unit
cells. j)-r) Corresponding analysis performed at a position with an offset
to the centre of the excitation spot.
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was found to be stable with respect to switching the excitation on and off as well as

changing the excitation power. The observed configuration thus appears to be energeti-

cally favourable compared to the opposite orientation due to small imperfections in the

potential landscape. When exciting a polariton condensate with an enlarged laser spot

covering a CLS and the surrounding sites, the high polariton densities result in outward

radial flow of the polariton superfluid. This flow is guided by the potential landscape of

the Kagome lattice, plausibly resulting in the observed vortex lattices. Furthermore, the

investigation of the phase profile at a position that is offset with respect to the centre

of the excitation spot and thus features a larger intensity gradient revealed an entirely

different vortex lattice. The Mach-Zehnder interferogram that was analysed as well as

a schematic highlighting the location with respect to the excitation spot are presented

in Figs. 5.13 j) and k). Again, an analysis of the vortices in six adjacent trap groups

was performed and six vortices with aligned orientation were found in the phase patterns

presented in Figs. 5.13 l)-q). To ensure that no overall vortex charge remains, an opposite

vortex with a charge of |m|= 2 is expected at the centre between the six unit cells. In-

deed, this vortex can be observed in the phase pattern depicted in Fig. 5.13 r). It should

be mentioned that this phase configuration appears to be considerably less stable, as it

was only observed in a specific excitation configuration. Nevertheless, this vortex lattice

provokes interest for further investigations, as the vortex charges do not compensate each

other at the lattice edge. Sigurdsson and co-workers therefore predicted that spontaneous

symmetry breaking should lead to the manifestation of one of the two orientations of this

vortex configuration, which should result in chiral transport of the polariton superfluid

at the lattice edge [SLL17].

Motivated by this prediction, polariton condensates were excited at the edge of the

Kagome lattice using a small, cw laser spot. In Figs. 5.14 a)-c), real space spectra along

the lattice edge at excitation powers of P ≈ 0.03Pth, P ≈ 1.25Pth and P ≈ 7.50Pth, respec-

tively, are presented. While the spectrum is symmetric below the condensation threshold,

uni-directional propagation is clearly observed at excitation powers above the threshold.

In particular the condensate at the lowest energy, corresponding to the S band of the

lattice, propagates over a distance of nearly 25 µm, as is confirmed by the real space

image at the energy of this condensate that is presented in Fig. 5.14 d), corresponding

to an excitation power of P ≈ 5.00Pth. For this measurement, the excitation laser was

aligned with one site of the lattice edge, as is schematically depicted by the red dot in

Fig. 5.14 e). In Figs. 5.14 f)-i), corresponding measurements under the excitation of the

adjacent trap are presented. Interestingly, uni-directional transport in the opposite di-

rection is observed. To understand this effect, it is important to note that two adjacent

sites at the lattice edge of a Kagome lattice are not equivalent. On the contrary, the
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Figure 5.14: a)-c) Real space spectra along the edge of a Kagome lattice under the ex-
citation with a small spot at excitation powers of P ≈ 0.03Pth, P ≈ 1.25Pth

and P ≈ 7.50Pth, respectively. The position of the excitation spot is marked
by the red dot in e). d) Real space image at the energy of the lowest con-
densate at an excitation power of P ≈ 5.00Pth. The dashed line marks
the lattice edge e) Schematic visualising the excitation configuration. f)-i)
Corresponding dataset obtained by exciting an adjacent lattice site, marked
by the green dot in e).
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Figure 5.15: a) Phase pattern of a unit cell at the lattice edge under the excitation
of the site marked by the red dot in b). The green arrow highlights the
vortex orientation. b) Corresponding Mach-Zehnder interferogram. The
dashed line highlights the lattice edge. c) Phase pattern of the same unit
cell under excitation at the position of the adjacent trap, marked by the
green dot in b).

third site of the unit cell, located one row further towards the bulk of the lattice, provides

an additional propagation option and thus biases the potential environment towards one

direction. One can thus envision that this asymmetry in the potential environment causes

the polariton condensate to propagate in one direction only.

To relate the uni-directional transport observed here to the theoretical work in reference

[SLL17], the phase of the vortex in the unit cell of the site that was excited was measured.

In Fig. 5.15 b), a Mach-Zehnder interferogram of this unit cell under the excitation with

a small laser spot at the position marked by the red dot is presented. In Figs. 5.15 a) and

c), the phase patterns of the unit cell for the excitation of a polariton condensate at the

position of the red and green dots, respectively, are presented. Indeed, the orientation

of the vortex changes with respect to the position of the excitation spot and thus with

the change of the propagation direction of the condensate. In conclusion, the peculiar

phenomenon of uni-directional edge transport that was observed here can most likely

be explained by the influence of the intrinsic asymmetry of the potential landscape of a

Kagome lattice on the superfluid flow. In previous theoretical works such as reference

[SLL17], a large condensate that forms a vortex lattice was investigated and the symme-

try breaking was achieved by a small perturbation of this large condensate. While the

excitation with a small spot that was performed here leads to uni-directional edge trans-

port and a change in the vortex orientation at the edge as well, the connection to these

theoretical results remains to be investigated. These results thus motivate further studies

of polariton condensates in Kagome lattices in particular as well as the propagation of

polariton condensates in lattice potential environments in general. The theoretical expla-

nation of the results presented in this section is part of the ongoing process in preparation

for publication.





6 Topological polaritons and

topological lasing

The discovery of the quantum Hall effect in 1980 [KDP80] started the development of

topology as a new fundamental concept in solid-state physics at the base of the rapidly

evolving research field of topological insulators that was introduced in section 2.4. Another

milestone followed in 2008, when Haldane and Raghu realised that the idea of topological

classification and the associated observable effects are not limited to fermionic electrons

but apply to bosons as well [HR08; RH08]. Based on the ideas of thinking of topology

as a broader concept and using lattice potentials to generate band gaps and edge modes

as observables for topologically non-trivial modes, implementations with ultra-cold atoms

were developed [Ata+13; Jot+14]. A more elaborate review of the following development

of this field that for example found paths towards directly observing the anomalous ve-

locity caused by the Berry phase [Aid+15] can be found in literature [CDS19].

In the further progress of the field, it was realised that one implication of Haldane’s

and Raghu’s work [HR08] is that the concept of topology cannot only be transferred

from electrons to bosons, but that it does not even require the underlying states to

have a quantum nature. On the contrary, a topological classification and the creation

of topologically non-trivial states, including the well-known observables such as robust

edge transport, can be realised based on classical waves and their interference. With

this understanding in mind, topology spread across an even broader range of platforms

and research fields, including mechanical systems [Nas+15; SH15; Hub16], acoustics and

phonons [Yan+15; MKW15; Kha+15], electronic surface states [Dro+17], electric circuit

networks [AGJ15; Nin+15; Lee+18; Imh+18; Hel+19; Hof+19] and even a description

of equatorial waves in the Earth’s atmosphere and oceans [DMV17]. One of the most

important and versatile platforms based on artificial, topologically non-trivial lattices

that has evolved in recent years is photonics. Here, the traditional degrees of freedom

that were available to study light, such as frequency, amplitude, phase, wave vector and

polarisation, were extended by topology as a new pathway towards controlling the prop-

agation of light. Up to now, a significant range of the electromagnetic spectrum, from

radio frequency [Yve+17; Slo+17a] over microwaves [Wan+08; Wan+09] to the infrared

93
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and visible [Haf+11; Rec+13a; Haf+13], was covered and experimental platforms were

developed. The following short overview of topological photonics is based on recent re-

views of the field [LJS14; LJS16; KS17b; MDH18; Oza+19].

Analogously to the development of topological insulators that started with quantum Hall

states based on broken time-reversal symmetry and then evolved to quantum spin Hall

states characterised by time-reversal invariance, photonic topological systems can be clas-

sified into systems with broken and preserved time-reversal symmetry. Intuitively fol-

lowing the mechanism of the quantum Hall effect for electrons, magneto-optic photonic

crystals in which time-reversal symmetry can be broken with an external magnetic field

were considered [RH08] and implemented [Wan+09]. However, while this approach is

well suited for the microwave regime, an extension to optical frequencies was hindered

by the lack of magneto-optic materials in this frequency range. Therefore, time-reversal

preserving approaches based on breaking either a field symmetry for a pseudospin or a

spatial symmetry of a lattice were developed to open topologically non-trivial band gaps

in photonic lattices. It is important to note, however, that in contrast to the spin of

an electron, polarisation is not a protected spin and thus backscattering into a state of

opposite polarisation is possible in the presence of for example TE-TM splitting. There-

fore, systems that introduce a non-trivial topology by inducing a polarisation chirality

are not rigorously topologically protected against backscattering. Nevertheless, topology

was successfully brought to the realms of optics in time-reversal invariant systems based

on silicon photonics operating in the infrared [Haf+11; Haf+13; Mit+14; Mit+16] and

microwave metamaterials [Kha+13; Che+14b].

A complementary approach of combining topology and optics is based on Floquet’s theo-

rem [Flo83], which can be understood as an analogon of Bloch’s theorem for Hamiltonians

that are not periodic in space but in time. Such a Hamiltonian is consequently not char-

acterised by a periodic band structure in momentum but rather by a periodic energy

structure. Common approaches towards experimentally realising Floquet Hamiltonians

involve either a periodic excitation or a projection of time onto a propagation axis with

a periodic design. In particular in the latter, it is important to notice that breaking time

reversal symmetry is translated into breaking inversion symmetry of the propagation axes

and can thus be achieved without external magnetic fields. Photonic implementations of

Floquet physics are based on coupled waveguides [Sza+06; Del+07; SN10] and topologi-

cally non-trivial structures were proposed [OA09; LRG11; FYF12; Rud+13] and realised

experimentally [Rec+13a; Plo+14; Mac+17; Muk+17] by several groups. Recently, this

approach even facilitated the implementation of a photonic topological insulator in the

Z2 class [Mac+20a]. Building on the success of photonic Floquet systems, similar Hamil-

tonians were implemented for ultra-cold atoms [Flä+16] and acoustics [FKA16] as well.
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In section 2.4.3, the particular importance of the honeycomb lattice in the development

of topological physics was highlighted and several approaches to open topologically non-

trivial band gaps at the Dirac points were introduced. As these approaches do not rely

on electrons subject to the Kramers degeneracy as the underlying eigenstates, photonic

topological honeycomb lattice implementations creating a topological band gap were de-

veloped as well. Over the past years, several approaches such as a valley Hall effect [MS16;

Don+17; Noh+18a; Sha+19] based on different eigenenergies of the two sites of the lattice

unit cell, a spin Hall effect [Kha+13] based on different effective fields for pseudospin com-

ponents and band gaps based on breaking spatial symmetries [WH15; Yve+17; Noh+18a;

Bar+18; Gor+18] have been implemented.

One of the key motivations driving the development of topological photonics is the vision

of ground-breaking technological applications such as optical delay lines, light propagation

in waveguides that are topologically protected against backscattering and non-reciprocal

devices. Another potential application that is particularly relevant to this work is topo-

logical lasing [Bah+17; Ban+18; Har+18], which could provide an entirely new approach

towards improving the lasing characteristics of an individual laser as well as coupling

multiple individual lasers to one coherent and single-mode laser based on the propagation

of a topologically protected mode. Furthermore, over the recent years the inherent ability

to add gain, loss and non-linear effects to artificial lattice simulators has evolved to a ma-

jor stronghold of the field providing access to non-Hermitian and non-linear topological

physics [Ota+20; Smi+20; Hel+20; Mac+20b].

The work presented in this chapter is focussed on the combination of polaritonics and

topological physics. The motivation for this combination is twofold: Firstly, the inherent

gain and loss in combination with the ability of polaritons to interact with each other

opens up a path towards studying non-Hermitian and non-linear topological effects in a

lattice simulator environment from a fundamental perspective. Secondly, the individual

pillars forming a polariton lattice can be understood as vertically emitting lasers, thus rep-

resenting an array of coupled VCSELs in which the influence of topology on the coupling

of these lasers can be studied. Despite the mature technological control, coherent coupling

of extended arrays of VCSELs remains a major contemporary challenge. In section 6.1,

the first demonstration of a two-dimensional, polariton topological insulator is presented.

In the following section 6.2, the convincingly simple and well understood one-dimensional

SSH model is implemented in a chain of polariton microtraps to study the lasing proper-

ties of a topological mode in detail. Finally, in section 6.3, the first implementation of a

two-dimensional topological insulator array of VCSELs, in which non-trivial topology is

achieved through geometric symmetry breaking rather than a magnetic field, is presented.
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6.1 Exciton-polariton topological insulator

The recent development of photonics has been inspired by the concept of topology that

provides an entirely new degree of freedom to control the propagation of light. Here,

polaritonics offers the potential of taking topological photonics beyond the linear regime

by strongly coupling photons to excitons and thus implementing inter-particle interac-

tion. The first demonstration of a polaritonic system with non-trivial topology was a

one-dimensional SSH chain of coupled micropillars that features a zero-dimensional, topo-

logical defect and was realised by St-Jean and co-workers in 2017 [St-+17]. However, such

an inherently localised defect cannot propagate, thus motivating the implementation of

a two-dimensional, topological lattice simulator with one-dimensional edge modes. The

intuitive starting point for the development of such a simulator is the honeycomb lattice,

as it is well established for polaritons [Jac+14; Mil+15; Mil+17] and, as introduced in

section 2.4.3, offers multiple approaches towards opening a topologically non-trivial band

gap. Based on these general ideas, specific proposals for a polariton topological insulator

were developed [Kar+15; Bar+15; NSM15].

To understand the idea of these proposals, it is worthwhile to remember that polaritons

consist of two components, namely excitons and photons. Therefore, to open a topologi-

cally non-trivial band gap, symmetries need to be broken for both components. For the

photonic component that forms the honeycomb band structure, the proposals follow the

ideas of Kane and Mele [KM05a; KM05b] on the quantum spin Hall effect emerging due to

spin-orbit interaction in graphene. In microcavities, a splitting between the polarisations

and thus the pseudospin components can be obtained by an energetic offset between the

cavity resonance and the stopband centre of the DBRs that results in TE-TM splitting.

This splitting leads to an optical spin Hall effect [KMG05] and can be described by an

artificial gauge field resembling the Rashba field used to describe spin-orbit interaction in

electronic systems [Nal+15; Sal+15]. Whereas in atomic graphene, the topological gap

is limited to approximately 10 µeV as it is induced by the effect of the spin-orbit interac-

tion of carbon of approximately 4 meV on the coupling between next-nearest rather than

nearest neighbours [Min+06; Yao+07], polaritonic graphene is artificially engineered and

the energetic splitting is tuneable by adjusting the TE-TM splitting. For the excitonic

component of the polaritonic eigenstates, time reversal symmetry is broken by an external

magnetic field resulting in a Zeeman splitting of the quantum well resonance [Kot+01;

Rah+11]. The overall polaritonic honeycomb lattice with TE-TM and Zeeman splitting

thus features a broken time reversal symmetry placing it in the Z topological insulator

class that features chiral edge modes. It should additionally be noted that the combination

of TE-TM and Zeeman splitting on its own renders any polaritonic band, including in par-
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Figure 6.1: Band structure calculation for a polariton honeycomb lattice with TE-TM
splitting and an external magnetic field of B= 0 T in a) and B= 5 T in
b). The edge states that appear in the topological band gap are marked
in red and blue, corresponding to the front and rear edges of the lattice.
The propagation dynamics of these edge modes at B=−5 T and B= 5 T
are presented in c)-e) and f)-h), respectively. This figure was adapted from
reference [Kle+18].

ticular a planar cavity dispersion, topologically non-trivial [Ble+18; Gia+20]. However,

a honeycomb lattice potential provides easier access to observables, such as a topological

band gap and edge states, and potentially allows to control polariton propagation within

such an edge mode. The work presented here closely follows the proposal by Nalitov and

co-workers [NSM15], was started during my Master’s project and finalised during the PhD

project.

In Figs. 6.1 a) and b), calculated dispersion relations of a polariton honeycomb lattice

along the K -Γ-K’ direction at external magnetic fields of B= 0 T and B= 5 T, respec-

tively, and including TE-TM splitting are presented. Introducing TE-TM splitting to the

honeycomb lattice results in a non-zero effective mass at the Dirac points, but only in the

presence of an additional external magnetic field, a topological band gap opens. Within

the gap, edge states marked in red and blue, corresponding to the front and rear side of

the lattice, arise. In Figs. 6.1 c)-e) and f)-h), numerical simulations of the dynamics of

a polariton wave package that is injected into one of these edge states at B=−5 T and

B= 5 T, respectively, are presented. Here, the chirality of the topological mode becomes

unambiguous. Furthermore, the propagation direction is flipped under the inversion of

the magnetic field. The topological nature of this mode becomes apparent in its protec-

tion against scattering at defects or at the corners of the lattice. Further details on the

theoretical modelling that was performed by Dr. Oleg Egorov can be found in reference

[Kle+18].

The key parameter for the sample optimisation towards a polariton topological insula-

tor is the size of the expected band gap with respect to the linewidth of the polaritonic
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Figure 6.2: Summary of the key parameter optimisations of sample In-HE1. a) Zeeman
splitting including an extrapolated, second order polynomial fit. b) Diamag-
netic shift including a fit based on equation 2.16. c) TE-TM splitting for
various exciton-photon detunings including fits based on equation 2.14 mul-
tiplied with the Hopfield coefficients. d) Expected polariton linewidths as
well as Zeeman and TE-TM splitting as functions of the detuning, estimated
using the data presented in a) and c) as well as the Hopfield coefficients.

eigenmodes. To increase this parameter, several optimisations in the fabrication of the

underlying polaritonic microcavities were performed. A summary of the relevant param-

eters of sample In-HE1, which was selected for the experiments presented in this section,

is presented in Fig. 6.2. Firstly, for the quantum wells, a large Zeeman splitting in combi-

nation with a narrow linewidth is desirable. To increase the Zeeman splitting, indium is

introduced into the quantum wells to increase the effective exciton g-factor. In previous

works in the research group, an optimal Zeeman splitting to linewidth ratio was deter-

mined for quantum wells with In0.04Ga0.96As composition. It is furthermore important

to note that, due to different g-factors and magnetic field dependencies of the electron

and the hole that constitute an exciton, the Zeeman splitting does not scale linearly with

increasing magnetic field and can even return to zero when the g-factors of electron and

hole compensate each other. The Zeeman-splitting obtained for the excitons in sample

In-HE1, including an extrapolated second order polynomial fit visualising the non-linear

dependency on the magnetic field, is presented in Fig. 6.2 a). Secondly, the TE-TM split-

ting is increased by increasing the offset between the cavity resonance and the stopband

centre of the DBRs. However, the reflectivity of the DBRs decreases towards the edge of

the stopband, thus reducing the quality factor of the cavity resonance and increasing its

linewidth. Additionally, the TE-TM splitting increases with higher emission angles and

therefore for polariton states with higher wave vectors. Hence, the use of lattices with
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smaller lattice constants, achieved by using smaller micropillars with large overlaps, in

which the Dirac points are located at higher wave vectors, is preferable. Based on this

consideration, honeycomb lattices with pillar diameters of d = 2.0 µm and a reduced trap

distance of v = 0.85 were processed using the half-etching technique that was introduced

in section 3.1.2. The experimentally obtained TE-TM splittings for a range of detunings

that are presented in Fig. 6.2 are well described by equation 2.14, multiplied with the

photonic Hopfield coefficients. In a realistic scenario, the TE-TM splitting is larger than

the Zeeman splitting, leaving the Zeeman splitting as the limiting factor for the size of

the expected band gap. Lastly, both the Zeeman and the TE-TM splitting can, in a first

approximation, be scaled by the Hopfield coefficient for the excitonic and photonic compo-

nents, respectively, for a given polaritonic state, resulting in the estimated splittings and

linewidths that are presented in Fig. 6.2 d). In this graph it becomes apparent that, while

the Zeeman splitting can be increased by selecting a device at a more excitonic detuning,

the linewidth increases as well due to the larger linewidth of the exciton compared to the

photon. As the linewidth scales with the excitonic Hopfield coefficient as well, the ratio

between the expected Zeeman splitting and the polaritonic linewidth does not improve.

Therefore, a lattice at a moderately negative detuning of ∆E =−11.5 meV, corresponding

to Hopfield coefficients of |C|2 = 0.96 and |X|2 = 0.04, where the band structure is clearly

observable, was selected for the following experiments.

Ideally, to investigate the transition from a gapless graphene band structure without an

external magnetic field to a gapped, topologically non-trivial band structure under the

influence of a magnetic field, one would like to observe the opening of a band gap in

Fourier space. In Figs. 6.3 a)-c), Fourier space spectra along the high-symmetry direction

K -Γ-K’ at low excitation powers and external magnetic fields of B=−5 T, 0 T and 5 T,

respectively, of the selected lattice are presented. While a band gap is predicted to open

in the theoretical calculation, provided by Dr. Oleg Egorov, that is based on the actual

sample parameters and is plotted as dashed lines in Figs. 6.3 a)-c), no clear evidence of a

topological gap is observed. However, this predicted band gap is small compared to the

polariton linewidth. Furthermore, based on the TE-TM splitting of ∆TE-TM = 400 µeV

of the planar cavity at a wave vector corresponding to the Dirac cones of the lattice, a

TE-TM splitting of ∆P
TE-TM≈ 384µeV is expected for polaritons at the wave vector and

energy of the Dirac cones. Analogously, the Zeeman splitting of the quantum wells of

∆Z = 540 µeV translates into a Zeeman-splitting of ∆P
Z ≈22 µeV for the polaritons at the

Dirac point. It is therefore not surprising that, even though the spectra reveal some in-

dication of a changes to the band structure at the Dirac cones, a band gap cannot be

observed unambiguously in the linear regime in Fourier space. Additionally, as a large

area of the lattice was illuminated, fluctuations of the potential environment across the
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space spectra for excitation powers above the condensation threshold. g)
Energetic position of the PL intensity maximum at the Dirac point with
respect to the circular polarisation.

lattice further decrease the visibility of a band gap. However, as the states below and

above the gap feature opposite circular polarisations, tracking the energetic position of the

intensity maximum at the Dirac point with respect to the angle of a λ/4 waveplate in the

detection path, as is depicted in Fig. 6.3 g), allows to estimate a gap of Eg≈ 108±32µeV.

Motivated by the decrease in linewidth at the threshold of polariton condensation, fur-

ther measurements of Fourier space dispersions were obtained above the condensation

threshold. The resulting dispersion relations are presented in Figs. 6.3 d)-f). While the

linewidth has narrowed, a clear observation of a gap mode is hindered by a combination

of the remaining linewidth and a non-vanishing spatial inhomogeneity across the lattice.

However, a clearly observable band gap is not the only characteristic observable of a topo-

logically non-trivial state, as the most prominent feature are protected edge states. There-

fore, real space tomographies were obtained above the polariton condensation threshold.

A microscope image of the lattice area that was excited using a Gaussian, pulsed laser

spot with a diameter of approximately 40µm is presented in Fig. 6.4 g). In Figs. 6.4 a)-

c), real space spectra perpendicular to the lattice edge that were recorded for external

magnetic fields of B= 0 T, −5 T and 5 T, respectively, are presented. In all three spectra,

a polariton condensate in the bulk S band is observed. The real space images at the
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energy of these bulk condensates that are displayed in Figs. 6.4 d)-f) further visualise,

that the condensates stretch over a large bulk lattice area. Additionally to the bulk con-

densates, in the spectra in Figs. 6.4 b) and c) corresponding to measurements at magnetic

fields, an additional mode that is localised to the lattice edge is observed above the bulk

condensates. The real space images at the energy of this mode presented in Figs. 6.4 h)

and i) confirm the localisation to the lattice edge. Furthermore, the energy of this mode

coincides perfectly with the energetic position of the expected topological band gap, ren-

dering this mode an ideal candidate for a topological edge mode. At this point it is worth

confirming that the observed PL emission actually originates from polariton condensates

by studying the input-output characteristic depicted in Figs. 6.4 j) and k). As the com-

bination of a non-linear increase in intensity, a decrease in polariton linewidth and an

energetic blueshift is observed both for the bulk as well as the edge mode, polariton con-

densation can be confirmed. It is worth noting that the edge mode cannot be identified

below the condensation threshold, whereas due to the drastic decrease of the linewidth

at the condensation threshold, the modes are separated in energy once the condensates

have formed.

Now that a candidate for the topological edge mode has been identified, the topological

nature of this mode needs to be investigated. Firstly, while there are trivial edge modes at

the zigzag edge of a honeycomb lattice [YYN09; Mil+15; Mil+17], no trivial edge modes

exist at the armchair edge [Fuj+96]. A real space image at the energy of the edge mode

that was extracted from a mode tomography obtained at the armchair edge of the lattice

at a magnetic field of B=−5 T is presented in Fig. 6.5 a). The area of the mode tomog-

raphy is visualised by the microscope image presented in Fig. 6.5 d). The edge mode is

again unambiguously observed, thus confirming that it is indeed the expected topological

edge mode. Next, the robustness against backscattering of this topological edge mode is

studied by investigating the behaviour of the mode at a corner of the lattice, presented

in Fig. 6.5 b), as well as at an artificial defect generated by leaving out one pillar at the

edge of the lattice, displayed in Fig. 6.5 c). Microscope images corresponding to these

lattice areas are presented in Figs. 6.5 e) and f). Both at the lattice corner as well as at

the artificial defect, no scattering into the bulk is observed, providing further evidence for

the topological nature of the edge mode.

Finally, the chirality of this topological edge mode is investigated. Ideally, one would like

to locally excite a polariton condensate in the edge mode and observe its propagation

in one direction, with the propagation direction being determined by the polarity of the

external magnetic field. However, due to the small band gap, this experiment has not

been possible so far. Therefore, the chirality of the mode is studied in Fourier space. As

the edge mode condensate cannot be separated from the bulk condensate in Fourier space,
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Figure 6.5: Real space images of polariton condensates at magnetic fields of B=−5 T
in the topological edge mode revealing its existence at the armchair edge of
the lattice in a) as well as its protection against scattering into bulk modes
at a lattice corner in b) and at an artificial defect in c). d)-f) Microscope
images corresponding to the areas of the lattice that are depicted in a)-c).

the intensity is integrated over both condensates, resulting in the Fourier space images

presented in Figs. 6.6 a)-c). An intensity imbalance between the condensates at the K and

K’ points can be observed in these images and even more clearly in the evaluation of the

intensity ratio between the K and K’ points that is plotted in Fig. 6.6 d). The change of

this imbalance between the hyperspectral imaging scans at B=−5 T and B= 5 T serves

as an indication for a change in propagation direction and thus for a chirality of the topo-

logical edge mode.

In summary, the combination of evidence for a gap in Fourier space, a clear demonstration

of an edge mode that exists at the zigzag and the armchair edge of the lattice and does not

scatter at defects or the lattice corner and an indication of chirality observed in Fourier

space constitutes a proof for the first realisation of a two-dimensional exciton-polariton

topological insulator. The results presented in this section were published in reference

[Kle+18].

This first implementation opens the path towards a range of proposed experiments that

extend the polariton topological insulator to the honeycomb P band [ZWZ19] as well

as other two-dimensional lattices such as the Lieb [Li+18a] and Kagome [Gul+16] lat-

tices. Furthermore, harnessing the inherent non-linearity of polariton condensates which
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Figure 6.6: a)-c) Fourier space images integrated over the entire S band condensates at
external magnetic fields of B=−5 T, 0 T and 5 T, respectively. d) Intensity
ratios of the intensity maxima at the K and K’ points in a)-c).

should manifest itself for example in solitons in topological insulators [Lum+13; KS16]

as well as bistabilities [KS17a] and should have a signifcant influence on the topology

itself [BSM16] offers the potential to study the interplay of topology and non-linearity

[Rac18]. In this context it is important to note that the exciton-polariton topological

insulator demonstrated represents a truly polaritonic effect, as it relies not only on influ-

encing the photonic band structure but also requires a Zeeman splitting of the excitonic

component. Additionally and comparably to the evolution of electronic topological in-

sulators, extending the polaritonic topological insulator to approaches that do not rely

on external magnetic field, such as a Z2 topological insulator [BMS18] or a symmetry-

protected topological mode [WH15] would be particularly valuable on the way towards

technological applications. Potential applications include for example optical isolators

[SBM18] and topological lasers [Bah+17; Ban+18; Har+18; KS19]. In this work, the

starting point for studies towards a topological laser based on polaritonic microcavities is

the systematic investigation of the lasing properties of the topological defect that occurs

in a one-dimensional SSH chain which follows in the next section.

6.2 Polariton lasing from Su-Schrieffer-Heeger defect

states

One of the key motivations of the field of topological photonics is the study of the interplay

of topological physics and lasing [Bah+17; Ban+18; Har+18]. With future technologi-

cal applications in mind, a vertically emitting system would be particularly favourable to

enable compact devices as well as convenient collection of the emission. As polaritonic mi-

crotraps emit vertically and, as soon as a polariton condensate has formed, coherently as

well, they represent an ideal platform for the study of topological lasing. In the previous
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Figure 6.7: a) Schematics of the linear and the orbital SSH models, described by the
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an orbital SSH chain with trap diameters of d = 3.5 µm and a reduced trap
distance of v= 0.80. d) Real space images at the energies of the topological
SSH edge mode (top) as well as the anti-bonding S sub-band (bottom).

chapter, the first demonstration of a two-dimensional, polaritonic topological insulator

was presented. However, due to the small band gap and the necessity of an external

magnetic field, this system is not ideally suited for an investigation that focusses on the

lasing properties of the topological mode. Therefore, the SSH model introduced in section

2.4.2 was selected to achieve the latter. The SSH model serves as an ideal model system

due to its convincingly simple geometry in combination with the comparably large achiev-

able band gaps that have allowed precise experimental control in numerous experimental

platforms, such as cold atoms [Ata+13], photonic waveguides [Bla+16] and plasmonics

[Sin+15; Fed+19], as well as a detailed theoretical description. In photonics as well as

electric circuit networks, the availability of gain and loss has led to a thorough investi-

gation of non-Hermitian topology, both from a theoretical [RL09; Sch13; HKA16; Lie18;

Lan+18] as well as an experimental perspective [Zeu+15; Wei+17; Kru+19; Ste+21].

Furthermore, lasing from the topological defect of the SSH model [Par+18; Ota+18] as

well as gap solitons [Per+21] were realised. Very recently, these efforts were complemented

by the implementation of an optically induced polaritonic SSH chain [Pie+21].

As introduced in section 2.4.2 and displayed in Fig. 6.7 a), the SSH model consists of a

linear chain with two sites in the unit cell and is characterised by two coupling strengths

t1 and t2. The size of the band gap is determined by the difference between these two

coupling strengths. In a polaritonic system, this model can be implemented by a linear

chain of micropillars, in which the two coupling strengths are realised by two different

pillar overlaps. While this approach opens band gaps in all bands of the linear chain, the
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band gaps remain comparably small due to the boundary conditions that pillars should be

close enough to not decouple them entirely and should not overlap as much that they form

a single, elliptical pillar. To overcome this limitation, a more elegant approach referred

to as orbital SSH model was developed by Solnyshkov and co-workers [SNM16].

In Fig. 6.7 b), a real space spectrum as well as images at the energies of the S and P

modes of a single polariton microtrap with a diameter of d= 3.5 µm on sample In-EnO1

are displayed. While the S mode is rotationally symmetric, the P mode is composed

of two sub-modes, referred to as Px and Py, that are highly asymmetric. In the orbital

SSH model, the microtraps are arranged in a zigzag chain with 90◦ angles between the

connecting lines of neighbouring sites rather than a linear chain. The distances between

the microtraps are identical for all sites. Due to the asymmetry of the P mode, this

chain represents a twofold implementation of the SSH model, one for each sub-mode. In

Fig. 6.7 a), these two implementations are schematically presented, with the orientation

of the P sub-modes marked by the black arrows. If two arrows point towards each other,

the mode overlap between the two sites and thus the coupling is large, while two parallel

arrows results in a small mode overlap and a weak coupling. It is important to note that

the last site of such a chain is therefore always strongly bound in one of the SSH model

implementations and weakly bound in the other implementation. A topological edge de-

fect mode is thus always expected for one of the P sub-modes.

The first experimental realisation of the polaritonic, orbital SSH model was achieved by St-

Jean and co-workers [St-+17] who focussed on the topological nature of the mode. Lasing

was achieved as well but not characterised in detail. Another realisation by Whittaker

and co-workers [Whi+19] focused on the influence of spin-orbit interaction, engineered

through TE-TM splitting, on the topological defect mode. In the work presented here,

the lasing properties, in particular the coherence, of the topological edge mode are em-

phasised. Additionally, this work represents the first implementation of the orbital SSH

model using the etch-and-overgrowth platform.

The data presented in this section was obtained on a variation of zigzag chains on sam-

ple In-EnO1 with trap diameters of either d= 2.0 µm or d= 3.5 µm and varying lengths.

The chains are characterised by a moderately negative detuning of ∆E≈−12 meV and

were excited by a pulsed laser with an elliptical spot of approximately 30× 3 µm2. In

Fig. 6.7 c), a real space spectrum along a zigzag chain with trap diameters of d= 3.5 µm,

a reduced trap distance of v= 0.80 and a length of N = 45 traps that was obtained under

low excitation power is presented. In the P band, a band gap hosting the topological SSH

edge mode can be observed as expected. The real space image at the energy of this edge

mode presented in the top panel of Fig. 6.7 d) confirms the localisation of this mode to

the last trap of the chain as well as the expected orientation of the Py sub-mode. The
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Figure 6.8: Real space spectra along zigzag chains with trap diameters of d= 3.5 µm
and a reduced trap distance of v= 0.80 in a) as well as trap diameters of
d= 2.0 µm and reduced trap distances of v= 0.80 in b), v= 0.90 in c) and
v= 1.00 in d). The gap in the P band is visualised by the white dashed
lines. e) Evaluation of the energetic position of the topological edge mode
with respect to the band gap with 0.5 corresponding to the centre of the
gap.

image at the energy of the anti-bonding S sub-mode that is presented below visualises

the geometry of the chain as well as the size of the pump spot.

At first, the influence of a variation of the trap overlap, given by the reduced trap distance,

on the topological edge mode is investigated. In Figs. 6.8 a)-d), real space spectra along

zigzag chains with trap diameters of d= 3.5 µm and a reduced trap distance of v= 0.80 as

well as trap diameters of d= 2.0 µm and reduced trap distances of v= 0.80, v= 0.90 and

v= 1.00, respectively, are presented. From these spectra it becomes apparent that the

energetic position of the topological mode within the gap can be controlled by changing

the overlap between adjacent traps. The evaluation of the mode position with respect

to the gap presented in Fig. 6.8 e), where 0.0 and 1.0 correspond to the lower and upper

limits of the band gap and the centre of the gap is denoted by 0.5, confirms this obser-

vation. Indeed, the topological mode can be shifted across the band gap systematically

by changing the trap overlap. For chains with either trap diameters of d= 3.5 µm and

a reduced trap distance of v= 0.80 or trap diameters of d= 2.0 µm and a reduced trap

distance of v= 0.90, the topological edge mode is perfectly centred in the gap. Therefore,

the following experiments were performed on zigzag chains characterised by these sets of

parameters.
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Figure 6.9: a) Fourier space spectrum of a polariton zigzag chain generated by a modi-
fied Gross-Pitaevskii model, including the result of a Bloch mode calculation
(dashed lines). The P band is highlighted in orange. A Fourier space dis-
persion in b) and a real space image in c) reveal that at high polariton
densities, a polariton condensate forms in the topological edge mode. Figs.
a)-c) were adapted from reference [Har+21a]. d) Real space image at the
energy of a polariton condensate in the topological edge mode of a chain
with trap diameters of d= 2.0 µm, a reduced trap distance of v= 0.90 and a
length of N = 45 traps. e)-f) Input-output characteristic of the topological
edge mode presented in d). g)-j) Real space images at the energies of the
polariton condensates in zigzag chains with lengths of N = 11, 10, 6 and 5
traps.

Next, polariton lasing from the topological edge mode is investigated in detail. In order to

obtain a thorough understanding of the system, a theoretical description using a modified

version of the generalised Gross-Pitaevskii model was established. The resulting band

structure in Fourier space is presented in Fig. 6.9 a), including a Bloch mode calculation

based on the actual sample parameters that is plotted in dashed lines. The two mod-

els agree perfectly and reveal a band gap in the P band, marked in orange, including

a topological mode at its centre. The modified Gross-Pitaevskii model is then used to

investigate polariton condensation within the zigzag chain. In the Fourier space spectrum

at high polariton densities that is presented in Fig. 6.9 b), a robust polariton condensate

in the topological gap mode is observed. The real space image of this mode is displayed

in Fig. 6.9 c) and confirms the localisation to the last site of the chain. A chain of mi-

crotraps hosting polaritons therefore represents an ideal candidate for an investigation of

the properties of a topological lasing mode. A detailed description of this model that was

developed by Dr. Oleg Egorov can be found in reference [Har+21a].
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These theoretical findings are in excellent agreement with the experimental results, as

indeed a polariton condensate forms in the topological edge mode under high excitation

powers. A real space image of the condensate in a zigzag chain with trap diameters of

d= 2.0 µm, a reduced trap distance of v= 0.90 and a length of N = 45 traps is displayed

in Fig. 6.9 d). Again, the characteristic mode pattern of the topological edge mode of

the orbital SSH model is observed. The input-output characteristic of this mode that is

presented in Figs. 6.9 e) and f) confirms the formation of a polariton condensate, as the

non-linear increase in emission intensity is accompanied not only by a distinct drop in

linewidth but also by a continuous blueshift of the emission energy.

One of the most important concepts of topological physics if the bulk-boundary corre-

spondence, as it manifests that topological edge modes do not arise due to the specific

properties of the edge but rather due to the topologically non-trivial nature of the bulk.

Furthermore, when envisioning technological applications of topological lasers, a large

boundary-to-bulk ratio would be favourable. It is therefore an interesting question, how

large the bulk has to be to support lasing from topological edge modes. In Figs. 6.9 g)-j),

real space images at the energies of the polariton condensates in zigzag chains with trap

diameters of d= 2.0 µm, reduced trap distances of v= 0.90 and lengths of N = 11, 10, 6

and 5, respectively, are depicted. Remarkably, even a bulk of merely three sites is suffi-

cient to ensure polariton lasing from a topological edge mode.

As a bulk of three sites is sufficient to ensure polariton condensation in the topological

edge mode, the following detailed study of the lasing properties was performed on a zigzag

chain with trap diameters of d= 3.5 µm, a reduced trap distance of v= 0.80 and a length

of N = 5 traps. A real space image of the lasing emission from the topological edge mode

is presented in the inset of Fig. 6.10 a). First, it is confirmed that the observed laser-like

emission originates from a polariton condensate rather than a photon laser. While the

lasing mode of a photon laser does not react to an external magnetic field, an energetic

splitting between the circularly polarised components of the emission of a polariton con-

densate is induced by the Zeeman splitting of the excitonic component. This splitting

should, in a first approximation, be determined by the Zeeman splitting of the uncoupled

excitons, which was determined at ∆Z = 355 µeV for sample In-EnO1, multiplied by the

excitonic fraction of the polariton, which is given by the Hopfield coefficient of |X|2 = 0.06

for the topological edge mode. Therefore, at a magnetic field of B= 5 T, a Zeeman split-

ting of the polariton condensate emission on the order of 22 µeV is expected. Importantly,

an external magnetic field does not change the topological properties of the SSH mode

and, in this section, serves exclusively to distinguish polariton condensation from photon

lasing. In Fig. 6.10 a), the Zeeman splitting with respect to the applied magnetic field,

obtained from rotating a λ/4 waveplate in the detection path, is plotted. The Zeeman
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Figure 6.10: a) Zeeman splitting of the topological edge mode as a function of the
applied magnetic field, obtained on the edge mode marked by the black box
in the real space image in the inset. b)-d) Input-output characteristics of
the topological edge mode for magnetic fields between B= 0 T and B= 5 T.

splitting of approximately ∆P
Z ≈ 19.6 µeV at B= 5 T that was extracted from the linear fit

agrees well with the estimated splitting, thus confirming that the emission indeed origi-

nates from a polariton condensate. Additionally, a decrease of the condensation threshold

with increasing magnetic field strength is observed in the linewidth decrease at the con-

densation threshold presented in Fig. 6.10 b). The same systematic trend is observed in

the corresponding input-output characteristics as well as energetic blueshift presented in

Figs. 6.10 c) and d). This effect is commonly attributed to a combination of a favourable

change in detuning, an enhanced relaxation due to stronger exciton-exciton scattering as

well as an increased excitonic oscillator strength [Rou+17; Kla+19] and further substan-

tiates that the laser-like emission originates from a polariton condensate.

Finally, the temporal coherence of the condensate emission is investigated because, as in-

troduced in section 2.1, coherence is the defining characteristic of a laser [Gla63a; Gla63b].

In particular, for coherent laser emission, the second order temporal coherence degree is

given by g(2)(τ = 0) = 1. To measure g(2)(τ = 0), correlation measurements were performed

as a function of the excitation power using a Hanbury Brown-Twiss interferometer. Ex-

emplary correlation measurements at excitation powers of P = 3.0 mW and P = 0.7 mW,

corresponding to P ≈ 4.3Pth and P ≈Pth, are presented in Figs. 6.11 a) and b), respec-

tively. From these correlation measurements, g(2)(τ = 0) can be evaluated by integrating

over all detected photons at τ = 0 and subsequent normalisation using the side peaks that

correspond to photons originating from different laser pulses and are thus uncorrelated.

The result of this evaluation is presented in Fig. 6.11 c), including error bars derived from

the fluctuation between the side peaks. In the grey area, corresponding to excitation
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(red) was calculated in the Lindblad master equation framework.

powers below the condensation threshold, the coherence time is smaller than the jitter of

the detectors, resulting in a commonly observed overshoot of the experimentally deter-

mined value of g(2)(τ = 0) [Jin+94; Kim+16; Kla+18]. For higher excitation powers, the

coherence function approaches g(2)(τ = 0) = 1. For the topological edge mode investigated

here, a value of g(2)(τ = 0)≈ 1.07 is reached for an excitation power of P ≈ 4.3Pth. This

value is most likely limited from reaching g(2)(τ = 0) = 1 by scattering processes such as

polariton-polariton interaction [Den+02; Kim+16]. However, when compared to litera-

ture [Kla+18], a value of g(2)(τ = 0)≈ 1.07 is an excellent result for a microlaser with a

diameter of only d = 3.5 µm. Fig. 6.11 c) furthermore includes a theoretical model that

is based on the Lindblad master equation framework [BP09] and reproduces the exper-

imental results well for excitation powers above the condensation threshold. A detailed

explanation of this model that was implemented by Meng Sun and Prof. Ivan Savenko can

be found in reference [Har+21a], where the work presented in this section was published.

In summary, a polariton condensate emitting highly coherent, laser-like light was excited

in the topological edge mode of an orbital SSH chain. Markedly, a chain length of merely

five sites proved to be sufficient to host polariton condensates in SSH defects. The abil-

ity to vary the chain length and therefore the distance between the SSH defects at the

two ends of a chain allows to envision further experiments on the interaction of the two

polariton condensates, for example in the context of weak lasing [AAR12]. Furthermore,

the relative simplicity of the SSH model allowed a detailed investigation of this laser-like
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emission, both experimentally as well as theoretically. This result therefore represents a

valuable step towards a better understanding of the interplay of topological insulators and

lasers. Based on these findings, a more complicated system hosting a one-dimensional,

propagating topological boundary mode rather than a localised, zero-dimensional topo-

logical defect mode is studied in the following section.

6.3 Topological insulator vertically-emitting laser array

A potential application of topological photonics involving a strong non-linearity unfolds

itself in the coupling of multiple lasers through a propagating, topologically protected

mode. Generally, the process of coupling two oscillators to one frequency with a fixed

phase relation is referred to as injection locking, where the frequency of one oscillator is

imprinted on a neighbouring oscillator. Realising injection locking for a large array of

lasers remains an ongoing challenge of significant importance, as it could combine the ex-

cellent emission characteristics, compact size and convenient geometry for light collection

of individual VCSELs with the capability of coherent emission with high powers. Here, a

topological mode provides several advantages. Firstly, its non-local nature dictates that

it has to propagate and therefore favours injection locking over localised lasing domains.

Furthermore, the protection resulting from the non-trivial topological has been predicted

to suppress the influence of disorder and defects on both the slope efficiency [Har+18]

as well as the coherence [AC20]. Additionally to potential technological applications, the

combination of topology with an inherently non-linear regime is interesting from a fun-

damental perspective [BS18]. In a non-linear system, such as a laser, that is governed by

loss, gain and gain saturation, quantities such as the energy are not conserved. Therefore

the fundamental principles of defining topological invariants based on the Hamiltonian

and observing phase transitions through the opening and closing of band gaps can no

longer be applied and even the bulk boundary correspondence can break down [Wei+20].

In such a system, topological protection represents an important observable.

First demonstrations of two-dimensional, topological lasers were achieved by Bahari and

co-workers, based on breaking time reversal symmetry by applying a magnetic field to

gyromagnetic materials [Bah+17], as well as Bandres and co-workers, based on ring res-

onators with spatially offset links that induce phase shifts [Ban+18; Har+18]. Based

on these impressive achievements, one can think further towards a technological applica-

tion of topological lasers. Here, a system of coupled VCSELs with a topological mode

arising without an external magnetic field would be preferable, as VCSELs represent a

mature technology that is already widely used in commercial products [Yu03]. To avoid

the necessity of an external magnetic field, approaches inspired by the quantum spin Hall
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Figure 6.12: a)-c) Exemplary dispersion relations along the K-Γ-K ′ direction for a com-
pressed crystalline topological insulator (CTI) lattice, an unmodified hon-
eycomb lattice and a stretched CTI lattice, respectively. d) Density of
states with respect to the ratio between the coupling strengths ti within
a unit cell and te between sites of adjacent unit cells. The band gap that
opens at the Dirac points is highlighted in red and the three distinct cases of
an array of uncoupled benzene rings, an unmodified honeycomb lattice and
an array of uncoupled molecules are visualised by the schematics above.

effect are commonly used. These approaches are based on systems that are time rever-

sal invariant but consist of two spin sub-systems each featuring non-trivial topology. In

artificial lattices, instead of considering the spin of an electron, a system parameter is

mapped to the two orientations of a pseudospin. In the quantum valley Hall effect, for

example, the two valley degrees of freedom at the K and K ′ points serve as pseudospins.

Here, a more sophisticated approach based on a recent proposal by Wu and Hu [WH15]

that has proven to be working well for photonic crystals [Bar+20] and was introduced

in section 2.4.3 is used. This approach is referred to as crystalline topological insulator

(CTI) and is based on extending the unit cell of a honeycomb lattice to include six sites

that form the artificial analogon of a benzene ring. In each unit cell, this benzene ring

is then either stretched or compressed, with both of these modifications resulting in a

band gap opening up at the Dirac points. To get a better understanding of the band

structures that are to be expected in CTI lattices, a tight binding model based on near-

est neighbour coupling was implemented. In Figs. 6.12 a)-c), three exemplary dispersion

relations for a compressed CTI lattice, an unmodified honeycomb lattice and a stretched

CTI lattice are depicted. It is important to note that, by extending the unit cell, the

K and K ′ points of the honeycomb lattice are projected onto the Γ point of the new

Brillouin zone. For clarity, the notation of the high-symmetry points of the honeycomb

lattice that represents the foundation of the deformed lattices is used in the following.

In the dispersion relations, the band gap that opens at the Dirac point can be clearly
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Figure 6.13: a) Schematic of the CTI lattice geometry featuring a domain wall (red)
between the compressed (top) and stretched (bottom) domains. A topo-
logical boundary mode is expected on the interface sites marked in red.
b) Microscope image of a CTI lattice consisting of a hexagonal, stretched
domain that is surrounded by a compressed domain. Fourier space spectra
along the K-Γ-K ′ and M -Γ-M directions of the compressed and stretched
domains in c)-d) and e)-f), respectively, including tight binding fits. g)-h)
Corresponding Fourier space spectra of an unmodified honeycomb lattice.

observed. A systematic variation of the ratio between the two coupling strengths ti and

te, corresponding to coupling between sites within one unit cell (internal, i) and of adja-

cent unit cells (external, e), respectively, is presented in Fig. 6.12 d). Additionally, the

three distinct cases of uncoupled benzene rings, characterised by te = 0, an unmodified

honeycomb lattice featuring ti = te and uncoupled molecules, characterised by ti = 0, are

schematically visualised. In the illustration of the density of states, the evolution of the

band structure from the four discrete energy levels of a benzene ring over the gapless band

structure of the honeycomb lattice to the two discrete energy levels of a molecule can be

observed. The band gaps opening at the Dirac points in the compressed and stretched

domains are highlighted in red. As introduced in section 2.4.3 and analogously to the

quantum spin Hall effect in HgTe quantum wells, these band gaps can be distinguished

by an inversion of the band gap in the stretched domain with respect to the compressed

domain. For the CTI lattice geometry, this band inversion is defined by the contribution

of the bands of the benzene-like unit cells to the overall lattice band structure, rendering

the stretched domain topologically non-trivial.

The geometry of a CTI lattice is depicted in Fig. 6.13 a), where the interface between the
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compressed domain in the top and the stretched domain in the bottom is highlighted in

red. Due to the topologically non-trivial band gap in the stretched domain, a topologi-

cally protected gap mode is expected on the interface sites marked in red. In Fig. 6.13 b),

a microscope image of a CTI lattice that was fabricated on sample In-FE1 and features a

hexagonally shaped, stretched domain surrounded by a compressed domain is presented.

The interface sites are highlighted in red. Instead of quantum wells, the active material of

sample In-FE1 is comprised of an ensemble of quantum dots. This sample was selected as

the quantum dot ensemble does not couple strongly to the photonic mode and therefore,

instead of reaching the more complex regime of polariton lasing, features pure photonic

lasing above the threshold excitation power.

Each lattice is characterised by two reduced pillar distances, the internal reduced pillar

distance vi for the distances within each benzene ring and the external reduced pillar

distance ve for the distance between pillars of adjacent unit cells. In Figs. 6.13 c) and

d), Fourier space spectra along the K-Γ-K ′ and M -Γ-M directions, respectively, of a

compressed CTI lattice with pillar diameters of d= 2.5 µm and reduced pillar distances

of vci = 0.78 and vce = 0.98 are presented. The corresponding Fourier space spectra of a

stretched CTI lattice with reduced pillar distances of vsi = 0.91 and vse = 0.72 are depicted

in Figs. 6.13 e) and f). For comparison, Fourier space spectra of an unmodified honey-

comb lattice with pillar diameters of d= 2.5 µm and a reduced pillar distance of v= 0.90

that was fabricated on the same sample are provided in Figs. 6.13 g) and h). All Fourier

space spectra include tight binding models that agree well with the data. In both the

compressed and the stretched CTI lattices, band gaps opening at the Dirac points are

clearly observed.

Before advancing towards an investigation of the lasing properties of CTI interface modes,

a systematic study and optimisation of the lattice design parameters was performed. For

this aim, three lattice variations, named L1, L2 and L3, of reduced pillar distances vi and

ve were designed such that the overall difference ∆v = |vi − ve| increases from variation

L1 to variation L3. As the coupling strength between adjacent pillars is directly linked to

the pillar overlap, the difference in reduced pillar distances represents the key parameter

in opening a band gap in CTI lattices. A summary of the design parameters of these

three lattice variations is provided in Fig. 6.14 b). The band gaps of the compressed and

stretched domains of CTI lattices with pillar diameters of d= 2.0 µm, 2.5 µm and 3.0 µm,

each fabricated in all three lattice variations, are presented in Fig. 6.14 a). Details on the

band gap evaluation can be found in the appendix in section A.4. First of all, a systematic

increase of the band gap with decreasing pillar diameter is observed. This effect can be

attributed to a higher mode overlap between adjacent pillars that results in overall higher

coupling strengths. For lattices with pillar diameters of d= 2.5 µm and d= 3.0 µm, the
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respectively.

expected systematic increase of the band gap with respect to the difference in reduced

pillar distances ∆v is observed. For lattices with pillar diameters of d= 2.0 µm, however,

lattice variation L3 appears to be too extreme, as a decrease in the quality of the etch

process that is observed for this set of parameters manifests itself in a decrease of the

band gap compared to lattice variation L2.

From the tight binding model that was introduced above, the bandwidth Eb of the S sub-

band below the band gap and the size of the band gap Eg can be related to the internal

and external coupling strengths ti and te, within a unit cell and between adjacent unit

cells, respectively, through

Eg = 2 · |ti − te| and

Eb = 2ti + te −
Eg

2
.

(6.1)
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Using these relations, the coupling strengths that are plotted in Fig. 6.14 c), including lin-

ear fits, were evaluated. Particularly for lattices with pillar diameters of d= 2.5 µm and

d= 3.0 µm, a linear decrease of the coupling strengths between reduced pillar distances

of v= 0.72 and v= 1.02 is observed. This clear dependency thus represents a calibration

enabling to deterministically design the coupling strengths and thus band gaps of CTI

lattices. For lattices with pillar diameters of d= 2.0 µm, the fluctuations are consider-

ably higher. Again, the deviations observed for pillar diameters of d= 2.0 µm can be

explained by a decrease in the structural quality of these lattices arising due to difficul-

ties with the etching process for these very small pillar sizes. This decrease in lattice

quality is also reflected in the increase in linewidth depicted in Fig. 6.14 d) as well as

the decrease in signal-to-noise ratio presented in Fig. 6.14 e). In conclusion, a trade-off

between the size of the band gap and the lattice quality was found in the systematic band

gap evaluation. Furthermore and analogously to the band gap considerations regarding

the exciton-polariton topological insulator that were described in section 6.1, the most

important figure of merit is the visibility of a topological mode within the band gap that

is determined by the size of the band gap with respect to the linewidth. As a result, a

CTI lattice with the parameters of lattice variation L3 and pillar diameters of d= 2.5 µm

was selected for the lasing experiments that are presented in the following.

Conceptually, to evoke lasing from the topological interface mode, the sites that com-

prise the interface need to be excited such that lasing occurs selectively from the desired

mode. As the topological boundary mode is by definition not localised but propagates,

it should then ensure coherent coupling between the individual VCSELs that should be

enhanced further as the interface was as a closed loop forming a ring cavity. The pulsed

excitation laser was thus shaped into a hexagon, depicted in Fig. 6.15 a), using the SLM

and precisely aligned and matched with the interface. From the cross section through the

excitation hexagon, a width of approximately 2.9 µm can be determined. Even though

the SLM enables to create a laser hexagon with high quality, a finely tuned combination

of lattice parameters, the size and width of the hexagon as well as the alignment between

the excitation laser and the lattice interface is crucial, as is exemplified in the real space

spectra and corresponding images of the lasing modes in Figs. 6.15 c)-e) and f)-h), respec-

tively. Minor deviations from ideal excitation conditions can cause multi-mode lasing,

presented in Figs. 6.15 c) and f), non-homogeneous lasing from parts of the topological

mode, depicted in Figs. 6.15 d) and g) or lasing from non-topological modes, displayed in

Figs. 6.15 e) and h).

However, after careful optimisation of the excitation conditions, single-mode lasing from

the topological boundary mode consisting of 54 VCSELs was achieved. In Fig. 6.16 a), a

real space spectrum at an excitation power of P = 0.03Pth, well below the lasing threshold
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Figure 6.15: a) Hexagonal excitation laser shaped using an SLM. b) Cross section
through the laser hexagon revealing a witdth of approximately 2.9 µm. c)-
e) Real space spectra cutting through the hexagonal interface obtained
above the lasing threshold to demonstrate that small deviations from ideal
excitation conditions result in multi-mode lasing, inhomogeneous intensity
distributions or lasing from bulk modes. f)-h) Corresponding real space
images of the lasing modes that are marked by red lines in c)-e).

of Pth = 35.0 mW, is presented. In the real space image at the energy of the bulk band

gap depicted in Fig. 6.16 b), the topological boundary mode that arises at the interface

between the stretched and the compressed domains is clearly observed. It should be noted

that the slight distortion of this image can be attributed to a spatial drift of the sample

during the mode tomography. The intensity that is observed towards the edge of the

lattice arises due to deviations in the potential environment caused by an increased etch

depth towards the lattice edge. Nevertheless, the real space spectrum as well as the real

space image of the topological lasing mode at an excitation power of P = 2.14Pth displayed

in Figs. 6.16 c) and d) confirm single-mode and homogeneously distributed lasing from

the hexagonal interface. The input-output characteristics presented in Figs. 6.16 e) and f)

confirm the lasing threshold, as a non-linear increase in emission intensity combined with

a decrease in linewidth due to the build-up of coherence is observed. As the topological

interface mode cannot be separated unambiguously from the bulk modes below threshold,

the intensity of a bulk mode was evaluated below the lasing threshold. Furthermore, the

integrated emission spectrum across the entire area presented in Fig. 6.16 d) reveals that

no emission from bulk modes occurs. In Fig. 6.16 h), emission spectra at the twelve posi-
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Figure 6.16: a)-b) Real space spectra of the CTI interface under excitation with a laser
hexagon at excitation powers of P = 0.03Pth and P = 2.14Pth, respectively.
c)-d) Corresponding real space images of the topological boundary mode.
e)-f) Input-output characteristic of the lasing threshold of the topological
boundary mode. g) Emission spectrum of the topological lasing mode,
integrated over the entire area of the image in d). h) Individual emission
spectra at the twelve positions marked in d). The central energy of the
integrated emission spectrum is marked by the black line.

tions marked in Fig. 6.16 d) are presented. Here, small deviations of the emission energy

that are on the order of the linewidth are observed.

The topological protection of the lasing mode as well as the fact that it is a propagating

mode are predicted to enhance coherent coupling between the lasers constituting the in-

terface. Therefore, the coherence of the topological lasing mode is investigated. However,

the configuration of the Michelson interferometer used in the previous chapter, where one

arm is equipped with a retroreflector, is unsuitable here, as only VCSELs with maximal

distance in the interface would be superimposed. Therefore, the retroreflector was ex-

changed by a prism flipping the image only along one axis, as introduced in section 3.2.2.

In this configuration, an emitter located on the mirror axis is superimposed with itself,

while the distance between two emitters superimposed at a distance s to the mirror axis

of the interferogram is given by 2s. In Figs. 6.17 a) and b), Michelson interferograms

obtained by flipping the image in one arm along the mirror axis marked in red are pre-

sented. In Fig. 6.17 a), the distance between superimposed VCSELs increases starting

from the centre of an edge of the hexagon, whereas in Fig. 6.17 b) a corner of the hexagon

is located at the mirror axis. To elucidate the interferometry configuration, two the dis-
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Figure 6.17: a)-b) Interferograms obtained for two orientations of the hexagonal CTI
interface using a Michelson interferometer equipped with a prism in one
arm that flips the image along the mirror axis marked in red. A VCSEL at
position (1) is superimposed with itself, while the emission superimposed in
position (2) originates from two VCSELs on opposite sides of the interface.
c)-d) Corresponding spatial coherence maps.

tinct positions (1) and (2) were highlighted in the interferograms. At position (1), the

emission originating from one VCSEL is superimposed with itself, while the superimposed

emission at position (2) originates from two VCSELs on opposite sides of the interface.

In Figs. 6.17 c) and d), the corresponding spatial coherence maps are presented. In the

interferogram centred at an edge and presented in Figs. 6.17 a) and c), coherent emission

from all ten lasers of one edge is revealed. Furthermore, the interferogram that is centred

at a corner and is displayed in Figs. 6.17 b) and d) confirms that coherence is maintained

around a corner of interface. However, coherent coupling along the entire interface was

not achieved, as disorder across the lattice results in localisation of the lasing modes. Fur-

thermore, the coherence length is limited by the propagation length within the interface

mode.

Following these promising first results, sample In-FE2 was processed on a wafer with a

microcavity that is nominally identical to the wafer used to process sample In-FE1. One

conclusion obtained from the systematic investigation of the influence of lattice param-

eters on the topological band gaps presented in Fig. 6.14 is that the further increase of

the coupling difference between lattice variations L2 and L3 did not result in a significant

increase in the band gap for lattices with diameters of d= 2.5 µm. However, the larger
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difference in overlaps and the consequently larger difference in hole sizes causes more de-

fects during the etching process. Therefore, lattices with pillar diameters of d= 2.5 µm

and reduced pillar distances of vci = 0.80, vce = 0.98, vsi = 0.92 and vse = 0.74, corresponding

to parameters between lattice variations L2 and L3 of sample In-FE1, were processed.

The size of the interface was decreased from 54 to 30 sites to reduce the influence of

fluctuations of the lattice potential across the wafer. Furthermore, the length of an in-

terface with 30 sites is closer to the propagation length within the topological mode and

therefore enhances the possibility of the formation of a closed ring cavity which should

enhance the lasing properties. It is important to note that for an interface with 30 sites,

the bulk of the stretched lattice domain surrounded by this interface still consists of 84

sites. A comparison to the investigation of the band structure formation in honeycomb

ribbons presented in Fig. 4.2 confirms that the bulk is still sufficiently large to support

a fully evolved band structure. In Figs. 6.18 a) and c), Fourier space spectra along the

K-Γ-K ′ direction of the compressed and stretched domains, respectively, are presented.

The data are reproduced with tight binding models and topological band gaps of 553 µeV

and 565 µeV, respectively, were evaluated. In Fig. 6.18 b), a Fourier space spectrum ob-

tained on the interface between the two domains is presented. Here, the topological mode

that stretched across the band gap is highlighted by a red ellipse. The dashed lines cor-

respond to the tight binding model used to reproduce the spectrum that was obtained

on the stretched domain. Optical and electron microscopy images visualising the lattice

geometry can be found in the appendix in Fig. A.9.

The first step towards the investigation of the lasing properties of this topological mode is a

measurement of the lasing threshold. The input-output characteristic as well as linewidth

of the topological interface mode presented in Fig. 6.18 d) confirm that the lasing thresh-

old was reached at an excitation power of Pth≈ 17.5 mW. For these experiments, the

SLM was operated using the modified MRAF algorithm that was introduced in section

3.2.3 and resulted in the hexagonal shape presented in the inset of Fig. 6.18 d). As this

algorithm directs some of the laser intensity into a noise region and the photodiode used

to measure the laser excitation power cannot distinguish between the signal and noise

regions, the threshold power obtained from the input-output measurement should only be

understood as an estimate. Nevertheless, a lasing threshold was observed unambiguously.

The 30 VCSELs constituting this topological laser can be seen in the real space images

at the energy of the topological mode depicted in Figs. 6.18 e) and f), corresponding to

excitation powers below and above the lasing threshold, respectively.

While the image below the lasing threshold was obtained under excitation with a large,

Gaussian spot, the excitation laser was shaped into a hexagon using an SLM and metic-

ulously aligned with the topological mode for the measurement of the input-output char-
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Figure 6.18: a)-c) Fourier space spectra obtained on the compressed domain, the in-
terface as well as the stretched domain. The topological interface mode
is marked by a red ellipse. d) Input-output characteristics of the lasing
threshold of the interface mode. An image of the excitation laser is pro-
vided in the inset. e)-f) Real space images at the energy of the interface
mode obtained for excitation powers below and above the lasing threshold,
respectively. g) Energy spectra of the emission of a single VCSEL below
and above the threshold as well as the integrated emission spectrum of the
full interface. h) Spectral analysis of the lasing mode along the interface
at the positions marked in f).
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Figure 6.19: a)-c) Michelson interferograms of the topological lasing mode at excitation
powers of P ≈ 1.6Pth, P ≈ 2.0Pth and P ≈ 3.2Pth, respectively. The mirror
axis along which the image is flipped in one of the arms of the interferometer
is highlighted in red. d)-f) Corresponding spatial coherence maps.

acteristics as well as the real space image above the lasing threshold. In Fig. 6.18 g), the

emission spectra of a single VCSEL at excitation powers below and above the excitation

threshold as well as an integrated spectrum of the entire interface of 30 VCSELs are pre-

sented. From these spectra, one can clearly observe that the lasing emission originates

exclusively from the topological interface mode. Furthermore, at an excitation power of

P ≈Pth, the linewidth of 249µeV of the integrated spectrum is on the same order of mag-

nitude as the linewidth of 171 µeV of an individual VCSEL. Furthermore, this linewidth is

smaller than the topological band gap, ensuring topological protection against scattering

into bulk modes. Indeed, the emission observed in the real space image of the lasing mode

that is displayed in Fig. 6.18 f) originates almost exclusively from the sites comprising the

interface between the compressed and stretched domains of the lattice. The spectra ex-

tracted from the positions marked in Fig. 6.18 f) and presented in Fig. 6.18 h) further

visualise that the variation between the emission of the individual lasers in on the order

of the linewidth. This result is particularly important, as lasing with only small variations

in energy between the individual emitters is the defining observable for injection locking

and is a crucial prerequisite for coherent coupling.

The definitive property of a laser is the coherence of its emission. Therefore, Michelson

interferometry with a prism in one arm of the interferometer, as introduced above, was

performed. In Figs. 6.19 a)-c), Michelson interferograms recorded at excitation powers

of P ≈ 1.6Pth, P ≈ 2.0Pth and P ≈ 3.2Pth, respectively, are presented. For these measure-
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ments, the sample was oriented such that the mirror axis is located at two corners of

the hexagonal interface mode. With increasing distance to the mirror axis, the sepa-

ration between superimposed lasers increases. Again, positions (1) and (2) correspond

to superimposed emission from one VCSEL with itself and two VCSELs from opposite

sides of the interface, respectively. The corresponding spatial coherence maps presented

in Figs. 6.19 d)-f) reveal that interference fringes originating from the coherence of the

lasing emission were observed along the entire interface of 30 lasers for excitation powers

up to P ≈ 2.0Pth. Even lasers on opposite sides of the interface emit with a fixed phase

relation. Furthermore, the coherence length is considerably larger as compared to the

previously studied sample presented in Fig. 6.16. This increase can be attributed to a

combination of higher quality of the etching process, decreased spatial fluctuations of the

potential environment due to the smaller interface size as well as enhanced coupling due

to coherence along the entire closed loop of the interface. For even higher excitation pow-

ers, the lasing threshold for additional bulk modes is reached and the observed coherence

length is reduced due to the multi-mode lasing emission.

Advancing from the demonstration of coherent emission along the entire interface of 30

VCSELs, the influence of topological protection on the lasing emission is elaborated. Fol-

lowing this objective, a CTI lattice with a weaker parameter variation, given by vci = 0.85,

vce = 1.00, vsi = 0.95 and vse = 0.80, and an unmodified honeycomb lattice on sample In-

FE2 were investigated. Due to the weaker parameter variation, the CTI lattice features

smaller band gaps of 350µeV and 420 µeV in the compressed and stretched domains, re-

spectively, and thus provides less protection for the topological interface mode. For the

honeycomb lattice, the lasing emission originates from topologically trivial bulk modes.

In Figs. 6.20 a) and b), Michelson interferograms of the lasing emission from the CTI

lattice with a weaker parameter variation as well as the unmodified honeycomb lattice,

respectively, both excited with a hexagonal laser spot, are presented. The corresponding

spatial coherence maps are depicted in Figs. 6.20 c) and d). In Fig. 6.20 e), an evalua-

tion of the coherence length along the interface, starting at the mirror axis in points (1)

and ending at points (2) where the emission from two VCSELs from opposite sides of

the interface is superimposed, is presented. The coherence was averaged over the four

available paths. While the coherence of the CTI lattice with the stronger parameter vari-

ation, introduced in Figs. 6.18 and 6.19, remains approximately constant along the entire

interface, a fast decay of the coherence is observed for the bulk-mode lasing from the

unmodified honeycomb lattice. As expected, the coherence length of the CTI lattice with

a weaker parameter variation can be found in between. As a guide to the eye, a constant

fit was added to the data corresponding to the CTI lattice with a stronger variation. The

decay of coherence observed for the CTI lattice with the weaker variation as well as the
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Figure 6.20: a)-b) Michelson interferograms of the lasing emission from a CTI lattice
with a weaker parameter variation, given by vci = 0.85, vce = 1.00, vsi = 0.95
and vse = 0.80, and an unmodified honeycomb lattice, respectively. c)-d)
Corresponding spatial coherence maps. e)-f) Comparison of the coherence
lengths and emission spectra, respectively, of two CTI lattices with dif-
ferent parameter variations as well as an unmodified honeycomb lattice,
highlighting the influence of the topological protection on the lasing prop-
erties.

unmodified honeycomb lattice was reproduced by exponential fits with decay constants of

11.9 µm and 1.8 µm, respectively. To understand this result, an evaluation of the spectral

composition of the lasing emission from the three lattices is presented in Fig. 6.20 f). Real

space spectra and images extracted from the mode tomographies analysed to obtain this

spectral comparison can be found in the appendix in Fig. A.10. While the CTI lattice

features single-mode emission from the topological interface mode, the lasing emission

transitions to multi-mode emission originating predominantly from P bulk modes for the

CTI lattice with a weaker modulation and the unmodified honeycomb lattice.

The aim of the investigations presented in this section was to evaluate the suitability of

using a propagating topological mode to couple individual lasers such that they emit as

one coherent laser. These experiments were performed using VCSELs, as these lasers

represent a mature technological platform commonly used in commercial products. Af-

ter a systematic investigation and optimisation of the topological band gaps that were

achieved in CTI lattices of VCSELs, selective lasing from the topological interface mode

was realised and the coherence properties were demonstrated. Here, it is particularly

important to note that a high degree of coherence along an interface mode with 30 sites
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Figure 6.21: Measurements at an elevated temperature of T = 200 K. a) Real space
image at the energy of the topological lasing mode. b) Michelson interfer-
ogram of the topological laser mode. c) Corresponding spatial coherence
map. d) Input-output characteristic as well as linewidth. e) Emission
spectra of a single VCSEL below and above the lasing threshold as well as
the integrated spectrum of the full lasing interface. f) Spectral analysis of
the spatial fluctuations. The positions at which the spectra were extracted
are marked in a).

was achieved and the idea of using a propagating, topologically protected mode to ensure

injection locking of an array of VCSELs was experimentally verified. Furthermore, the

superior performance of this topologically protected mode with respect to bulk modes in

an unmodified honeycobm lattice was demonstrated. This result therefore represents the

first demonstration of a vertically emitting topological insulator laser array. A key ad-

vantage of this configuration compared to previously reported topological lasers [Bah+17;

Ban+18] is the separation of the emission direction from the topologically protected prop-

agation. This separation not only allows efficient and convenient collection of the lasing

emission, but also overcomes the requirement of a precisely fixed emission wavelength. In

contrast to previous realisations, the underlying mechanism evoking the topological pro-

tection does not rely on precisely matched phase differences and is therefore considerably

less dependent on the emission wavelength.

To substantiate this aspect, the Michelson interferometry was repeated at an elevated tem-

perature of 200 K, resulting in a shift of the emission energy by approximately 10 meV.
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The resulting real space image, interference pattern as well as the spatial coherence map,

input-output characteristic and spectral analysis are presented in Fig. 6.21. Again, single-

mode lasing of the topological mode as well as interference fringes along the entire interface

were observed. The fluctuations in intensity along the interface as well as the increased

noise level in the spatial coherence map can, in part, be explained by a considerably lower

stability of the sample position within the cryostat at this elevated temperature. It is,

however, important to note that the linewidth of 247 µeV of the integrated spectrum along

the full interface has not changed with respect to the measurements at a temperature of

T = 4 K. As expected, the separation of the topological propagation from the emission

direction and the use of a topologically non-trivial mode not relying on phase differences

drastically reduced the dependence of the topological protection on the emission wave-

length. Additionally, the coherence observed at an elevated temperature of T = 200 K is

very promising, as the samples investigated here were not optimised for room temper-

ature operation, in particular under the consideration that VCSELs operating at room

temperature are already commercially available. Furthermore, electrical injection of a mi-

cropillar lattice has already been demonstrated [Suc+18], allowing to envision commercial

applications of topological insulator VCSELs arrays. The results presented in this section

were published in reference [Dik+21] and were filed as patent application [Seg+21].





7 Engineering of polaritonic band

structures

The band structure of a polariton lattice is determined by the geometry in which the pil-

lars are arranged. To design a band structure with certain features it is therefore fruitful

to think about possible lattice geometries. As introduced in section 2.3.3, there are five

two-dimensional Bravais lattices, namely the oblique, square, rectangular, centred rect-

angular and hexagonal lattices. Starting from these lattices, further lattices were derived

by increasing the number of sites within a unit cell, resulting for example in the Lieb,

Honeycomb and Kagome lattices. These lattices already feature significantly more inter-

esting band structures hosting Dirac cones and flatbands.

Additionally to Bravais lattices and their derived lattices, quasicrystals representing an

ordered arrangement of sites without translational symmetry, such as the penrose tiling,

offer the opportunity towards an entirely different approach of thinking about band struc-

tures. Research on quasicrystals started in the context of research on materials and their

properties [She+84]. From there, the research field advanced towards artificial lattices

where photonic, quasicrystalline structures were implemented [SS07] and connections be-

tween quasicrystals and topological physics were discovered [Kra+12; BRS16]. With the

investigation of a one-dimensional Fibonacci chain, quasicrystals reached the field of po-

laritonics [Bab+17].

Next to designing entirely new lattice geometries, existing lattices can be modified through

strain. At the centre of this development is strained graphene, where strain induced gauge

fields act as magnetic fields for wave packets close to the Dirac points. Due to these gauge

fields, the band structure is altered from the well-known graphene band structure to the

characteristic Landau levels of the quantum Hall effect without the need for an actual

magnetic field [PCP09; Lev+10; GKG10; Yan+12]. Starting from strained graphene, the

concept of strain-induced gauge fields reached photonics, where actual physical strain is

replaced by designing the lattice of waveguides or microresonators that constitute the

lattice such that is represents a certain strain geometry [SH13; Rec+13b; Rec+13c].

Finally, the derived lattices introduced above offer another degree of freedom towards

modifying the band structure, as the sites within each unit cell can be unbalanced by

129
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equipping them with different eigenenergies. For the honeycomb lattice, this idea was

first described by Semenoff in 1984 [Sem84]. As a band gap is opened at the Dirac points

of an unbalanced honeycomb lattices, this research direction is closely related to the quan-

tum valley Hall effect and was transferred to artificial lattices such as photonic lattices

as well [Col+16]. In this chapter, the idea of unbalancing the sites within a unit cell is

applied to polaritonic EnO lattices in the Lieb geometry in section 7.1 and honeycomb

lattices in section 7.2.

7.1 Band gaps in unbalanced Lieb lattices

The aim of this section is to implement Lieb lattices with unbalanced eigenenergies of

the sites within the unit cell as an additional degree of freedom to engineer the band

structure. As the eigenenergies of the microtraps constituting a polariton lattice depend

on the diameter of the traps, studying individual traps represents an ideal starting point

towards an unbalanced Lieb lattice. In Figs. 7.1 a) and b), exemplary real space spectra

of individual traps on sample Ga-EnO1 with diameters of d= 2.0 µm and d= 6.0 µm that

were excited with a small, cw laser spot are presented. By comparing these two spectra

one can clearly observe that the modes of the smaller trap are blue-shifted with respect

to the larger trap. Furthermore, the energetic separation between the individual modes

increases as expected from a potential well with a smaller size. The evaluation of the S

mode position with respect to the diameter of the traps presented in Fig. 7.1 c) reveals

that a significant variation of the energetic position of the S mode is achievable for traps

with a diameter smaller than d= 4.0 µm. Even though the traps that were investigated

for this evaluation were located in close proximity on the wafer, the data was corrected for

the MBE growth induced detuning gradient arising due to the radial shift of the photonic

mode across the wafer. In a linear approximation, the energy of the S mode is shifted by

1.7 meV per micrometer for traps smaller than d= 4.0 µm.

Based on this insight, unbalanced Lieb lattices on sample Ga-EnO1 located at a detuning

of ∆E≈−7.6 meV were investigated. In Figs. 7.2 a)-c), Fourier space spectra of Lieb

lattices comprised of B and C sites with diameters of dB = dC = 2.0 µm and A sites with

diameters of dA = 2.0 µm, 2.2 µm and 2.4 µm, respectively, along the X-Γ-X direction are

presented. The centre-to-centre distances between adjacent sites are a= 2.00 µm, 1.98 µm

and 2.16 µm, respectively. In Figs. 7.2 d)-f), corresponding Fourier space spectra along the

M -X-M direction, cutting through the intersection of the flatband with the dispersive

bands at the Dirac point, are displayed. In these spectra a significant change of the

band structure due to the unbalancing of the sites in the unit cell is observed, as band

gaps of Eg = 476 µeV and Eg = 636 µeV open at the Dirac points of the lattices with A
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Figure 7.1: Real space spectra of individual EnO microtraps with diameters of
d= 2.0 µm in a) and d= 6.0 µm in b). c) Evaluation of the energetic position
of the S mode of individual microtraps with respect to their diameter. The
energies were corrected for the spatial detuning gradient due to the radial
shift of the photonic mode across the wafer.

site diameters of dA = 2.2 µm and dA = 2.4 µm, respectively. The size of these band gaps

was determined analogously to the evaluation of the band gaps of crystalline topological

insulator lattices that is described in the appendix in section A.4. In these unbalanced Lieb

lattices, the coupling of the flatband to the dispersive bands is thus drastically changed,

as it touches the anti-bonding S sub-band that hosts polaritons with a finite mass at a

potential minimum instead of crossing a Dirac point hosting massless polaritons. The

three-dimensional reconstructions depicted in Figs. 7.2 g)-i) further visualise the changes

to the band structure. The data presented in Fig. 7.2 were reproduced by tight binding

models including nearest and next-nearest neighbour coupling as well as the unbalanced

eigenenergies in the unit cell. While the bonding S sub-band as well as the S flatband are

accurately reproduced, deviations are observed for the anti-bonding S sub-band. These

deviations demonstrate that the modal shape as well as the hybridisation with the P

band cannot be fully accounted for with a tight binding model and motivate the future

development of a Bloch mode description of unbalanced Lieb lattices.

In conclusion, a band gap as well as a drastic change of the coupling environment of the

flatband was realised in EnO Lieb lattices by unbalancing the eigenenergies of the sites

within the unit cell. These results represent the foundation for detailed future experiments

on the coupling between flatbands and dispersive bands that is of crucial importance when

envisioning to use flatbands for the distortion-free storage of information [GLN18]. Here,

the EnO microcavity polariton platform is particularly suitable as it not only allows the

precise engineering of the band structures but also the controlled excitation both in real

and Fourier space based on the resonant excitation techniques presented in section 5.2.
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Figure 7.2: a)-c) Fourier space spectra along the X-Γ-X direction of Lieb lattices with
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dA = 2.0 µm, 2.2 µm and 2.4 µm, respectively. The data are reproduced by a
tight binding model with the flatband highlighted in red. d)-f) Correspond-
ing Fourier space spectra along the M -X-M direction, cutting through the
intersection of the flatband at the Dirac cones in the M points. g)-i) Full
band structure reconstruction from the hyperspectral imaging scan (blue
data points) including a tight binding fit (surface plot) with the flatband
highlighted in red.
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7.2 Polariton quantum valley Hall effect

Analogously to the band gap that opens at the Dirac points of an unbalanced Lieb lattice

and was demonstrated in the previous section, a band gap can be opened at the Dirac

points of a honeycomb lattice by unbalancing the eigenenergies of the two sites of the

unit cell. This effect is particularly interesting in the context of the quantum valley Hall

effect that is based on describing the two valleys at the K and K ′ points as pseudospins.

While the K and K ′ points are already inequivalent in a balanced honeycomb lattice,

the band gap opened in an unbalanced honeycomb lattice is non-trivial when considering

only one of the valleys and thus supports topological transport at domain interfaces.

The quantum valley Hall effect was first studied for graphene [RTB07; DYN07; YDN08],

where a band gap can be opened by stacking multiple layers of graphene on top of each

other [Zha+09b; Liu+19]. In complementary approaches, silicene [Tah+13; Kim+14] as

well as transition metal dichalcogenide (TMD) [Mak+14; Lun+19] monolayers have been

considered for realisations of quantum valley Hall physics. It is important to note that the

quantum valley Hall effect does not result in topological edge modes at the lattice edges,

as valleys and valley pseudospins do not exist in vacuum. At a zigzag interface between

two domains with permuted sites in the interface, however, a topological boundary exists

[YYN09]. But, while lattices with different eigenenergies of the two sites of the unit cells

can be realised with TMDs, an interface between two inverted lattices is not possible with

these atomic lattices and thus motivates the development of artificial lattice simulators

[BSM17; MXS19].

Building upon this background, polaritonic honeycomb lattices with trap diameters of

dA = 2.0 µm and dB = 2.4 µm of the A and B sites of the unit cell were fabricated on sample

Ga-EnO1 and excited with a large Gaussian, cw laser spot. The centre-to-centre distance

of adjacent sites is a= 2.0 µm and the investigated lattice is located at a detuning of

∆E =−3.5 meV. Additionally, the lattice features a boundary to a domain with permuted

sites in the unit cell, characterised by dA = 2.4 µm and dB = 2.0 µm. Based on the results

presented in the previous section, an easily observable band gap would be expected.

However, for the given parameters, the band gap is too small to be observed in the

Fourier spectrum along the K-Γ-K ′ direction presented in Fig. 7.3 a). This reduction of

the effect of unbalancing the eigenenergies is most likely induced by a deformation of the

modes due to the overlap between adjacent sites that compensates the difference in trap

diameter and confinement of the individual traps. Even though the band gap appears to

be smaller than the linewidth, it is worthwhile to study the real space spectrum across

the boundary between the two domains of the lattice that is presented in Fig. 7.3 b). In

this spectrum, a gap between the bonding and anti-bonding S sub-bands can be observed.
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Figure 7.3: a) Fourier space spectrum along the K-Γ-K ′ direction of an unbalanced
honeycomb lattice with trap diameters of dA = 2.0 µm (red) and dB = 2.4 µm
(white). b) Real space spectrum perpendicular to the zigzag domain wall
between two unbalanced honeycomb lattices with permuted sites in the unit
cells. c)-d) Real space images of the anti-bonding S sub-band and the
quantum valley Hall gap mode, respectively.

The size of this gap does not represent the size of the band gap. It is considerably larger,

as the real space emission is convoluted with the polariton density distribution. As the

highest occupation occurs at an energetic distance to the Dirac points, the gap is enhanced

in a real space spectrum. Within this gap, a boundary mode at the interface of the two

domains arises due to the quantum valley Hall mechanism. This observation is confirmed

by the real space image of this gap mode presented in Fig. 7.3 d). The geometry of the

lattice can be seen in the real space image of the anti-bonding S sub-band presented in

Fig. 7.3 c), where additionally the interface between the two domains is highlighted by the

lattice schematic consisting of red and white rings corresponding to traps with diameters

of d= 2.0 µm and d= 2.4 µm, respectively.

In summary, the quantum valley Hall boundary mode arising at the interface between two

unbalanced honeycomb lattices with permuted sites of the unit cell was demonstrated.

Even though the band gap induced by the unbalancing is still smaller than the polaritonic

linewidth, this result opens the path towards future experiments on the polariton quantum

valley Hall effect, as the gap size can be increased by increasing the distance between

adjacent sites and increasing the size difference between the sites of the unit cell. The

starting point presented here is particularly valuable in the context of a recent theoretical

proposal by Bleu and co-workers [BMS18] who suggest to lock the winding of a propagating

vortex to the valley index to realise true topological protection of the valley pseudospin.
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The fascination of microcavity exciton-polaritons (polaritons) rests upon the combination

of advanced technological control over both the III-V semiconductor material platform

as well as the precise spectroscopic access to polaritonic states, which provide access to

the investigation of open questions and complex phenomena due to the inherent non-

linearity and direct spectroscopic observables such as energy-resolved real and Fourier

space information, pseudospin and coherence. The focus of this work was to advance the

research area of polariton lattice simulators with a particular emphasis on their lasing

properties. Following the brief introduction into the fundamental physics of polariton

lattices in chapter 2, important aspects of the sample fabrication as well as the Fourier

spectroscopy techniques used to investigate various features of these lattices were sum-

marised in chapter 3. Here, the implementation of a spatial light modulator for advanced

excitation schemes was presented.

At the foundation of this work is the capability to confine polaritons into micropillars

or microtraps resulting in discrete energy levels. By arranging these pillars or traps into

various lattice geometries and ensuring coupling between neighbouring sites, polaritonic

band structures were engineered. In chapter 4, the formation of a band structure was

visualised in detail by investigating ribbons of honeycomb lattices. Here, the transition

of the discrete energy levels of a single chain of microtraps to the fully developed band

structure of a honeycomb lattice was observed. This study allows to design the size of

individual domains in more complicated lattice geometries such that a description using

band structures becomes feasible, as it revealed that a width of just six unit cells is suf-

ficient to reproduce all characteristic features of the S band of a honeycomb lattice. In

particular in the context of potential technological applications in the realms of lasing, the

laser-like, coherent emission from polariton microcavities that can be achieved through

the excitation of polariton condensates is intriguing. The condensation process is signifi-

cantly altered in a lattice potential environment when compared to a planar microcavity.

Therefore, an investigation of the polariton condensation process in a lattice with respect

to the characteristics of the excitation laser, the exciton-photon detuning as well as the

reduced trap distance that represents a key design parameter for polaritonic lattices was

performed. Based on the demonstration of polariton condensation into multiple bands,

135
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the preferred condensation into a desired band was achieved by selecting the appropriate

detuning. Additionally, a decreased condensation threshold in confined systems compared

to a planar microcavity was revealed.

In chapter 5, the influence of the peculiar feature of flatbands arising in certain lattice

geometries, such as the Lieb and Kagome lattices, on polaritons and polariton conden-

sates was investigated. Deviations from a lattice simulator described by a tight binding

model that is solely based on nearest neighbour coupling cause a remaining dispersive-

ness of the flatbands along certain directions of the Brillouin zone. Therefore, the influ-

ence of the reduced trap distance on the dispersiveness of the flatbands was investigated

and precise technological control over the flatbands was demonstrated. As next-nearest

neighbour coupling is reduced drastically by increasing the distance between the corre-

sponding traps, increasing the reduced trap distance enables to tune the S flatbands of

both Lieb and Kagome lattices from dispersive bands to flatbands with a bandwidth

on the order of the polariton linewidth. Additionally to technological control over the

band structures, the controlled excitation of large condensates, single compact localized

state (CLS) condensates as well as the resonant excitation of polaritons in a Lieb flat-

band were demonstrated. Furthermore, selective condensation into flatbands was realised.

This combination of technological and spectroscopic control illustrates the capabilities of

polariton lattice simulators and was used to study the coherence of flatband polariton

condensates. Here, the ability to tune the dispersiveness from a dispersive band to an

almost perfect flatband in combination with the selectivity of the excitation is particularly

valuable. By exciting large flatband condensates, the increasing degree of localisation to

a CLS with decreasing dispersiveness was demonstrated by measurements of first order

spatial coherence. Furthermore, the first order temporal coherence of CLS condensates

was increased from τcoh = 68 ps for a dispersive flatband, a value typically achieved in

high-quality microcavity samples, to a remarkable τcoh = 459 ps in a flatband with a dis-

persiveness below the polarion linewidth. Corresponding to this drastic increase of the

first order coherence time, a decrease of the second order temporal coherence function

from g(2)(τ = 0) = 1.062 to g(2)(0) = 1.035 was observed. Next to laser-like, coherent emis-

sion, polariton condensates can form vortex lattices. In this work, two distinct vortex

lattices that can form in polariton condensates in Kagome flatbands were revealed. Fur-

thermore, chiral, superfluid edge transport was realised by breaking the spatial symmetry

through a localised excitation spot. This chirality was related to a change in the vortex

orientation at the edge of the lattice and thus opens the path towards further investiga-

tions of symmetry breaking and chiral superfluid transport in Kagome lattices.

Arguably the most influential concept in solid-state physics of the recent decades is the

idea of topological order that has also provided a new degree of freedom to control the
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propagation of light. Therefore, in chapter 6, the interplay of topologically non-trivial

band structures with polaritons, polariton condensates and lasing was emphasised. Firstly,

a two-dimensional exciton-polariton topological insulator based on a honeycomb lattice

was realised. Here, a topologically non-trivial band gap was opened at the Dirac points

through a combination of TE-TM splitting of the photonic mode and Zeeman splitting of

the excitonic mode. While the band gap is too small compared to the linewidth to be ob-

served in the linear regime, the excitation of polariton condensates allowed to observe the

characteristic, topologically protected, chiral edge modes that are robust against scatter-

ing at defects as well as lattice corners. This result represents a valuable step towards the

investigation of non-linear and non-Hermitian topological physics, based on the inherent

gain and loss of microcavities as well as the ability of polaritons to interact with each

other. Apart from fundamental interest, the field of topological photonics is driven by

the search of potential technological applications, where one direction is to advance the

development of lasers. In this work, the starting point towards studying topological lasing

was the Su-Schrieffer-Heeger (SSH) model, since it combines a simple and well-understood

geometry with a large topological gap. The coherence properties of the topological edge

defect of an SSH chain was studied in detail, revealing a promising degree of second order

temporal coherence of g(2)(0) = 1.07 for a microlaser with a diameter of only d= 3.5 µm.

In the context of topological lasing, the idea of using a propagating, topologically pro-

tected mode to ensure coherent coupling of laser arrays is particularly promising. Here,

a topologically non-trivial interface mode between the two distinct domains of the crys-

talline topological insulator (CTI) was realised. After establishing selective lasing from

this mode, the coherence properties were studied and coherence of a full, hexagonal inter-

face comprised of 30 vertical-cavity surface-emitting lasers (VCSELs) was demonstrated.

This result thus represents the first demonstration of a topological insulator VCSEL array,

combining the compact size and convenient light collection of vertically emitting lasers

with an in-plane topological protection.

Finally, in chapter 7, an approach towards engineering the band structures of Lieb and

honeycomb lattices by unbalancing the eigenenergies of the sites within each unit cell was

presented. For Lieb lattices, this technique opens up a path towards controlling the cou-

pling of a flatband to dispersive bands and could enable a detailed study of the influence

of this coupling on the polariton flatband states. In an unbalanced honeycomb lattice,

a quantum valley Hall boundary mode between two distinct, unbalanced honeycomb do-

mains with permuted sites in the unit cells was demonstrated. This boundary mode could

serve as the foundation for the realisation of a polariton quantum valley Hall effect with

a truly topologically protected spin based on vortex charges. Modifying polariton lattices

by unbalancing the eigenenergies of the sites that comprise a unit cell was thus identified

as an additional, promising path for the future development of polariton lattice simulators.
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In conclusion, the unique combination of an inherent non-linearity, extensive spectroscopic

access and advanced fabrication techniques was used to advance microcavity polaritons

as lattice simulators that combine technological applicability with access to open physical

questions of fundamental interest. One of the most convincing directions towards techno-

logical applications is the development of new types of lasers based on the potentially low

threshold of polariton lasers [Ima+96; Sch+13] or the coherent coupling of lasers based

on topologically protected modes [Bah+17; Ban+18; Har+18]. While topological lasers

are already highly exciting as photonic laser arrays based on coupled VCSELs, the recent

progess in the development of polaritonic lattices based on new material platforms, such

as perovskites and organics, may even bring room temperature, topological polariton las-

ing into consideration [Su+20; Dus+20; Pol+20].

From a fundamental perspective, lattice simulators provide access to a broad range of

open questions. First of all, the research on flatbands offers exciting perspectives for sub-

sequent studies of the coupling of flatbands to dispersive bands [GLN18], based on the

controlled excitation of polariton wave packets at certain points in either the real or the

Fourier spectrum. Furthermore, the interaction between multiple CLS condensates offers

interesting open questions [Lon19].

For topologically non-trivial lattices, the realisation of a topologically protected quan-

tum valley Hall state [BMS18], applying the concepts of Floquet theory to the polariton

platform [GBL18] or investigating the topology of quasicrystals [BRS16] are just some

examples of exciting ideas. When thinking even further ahead, it is worth remembering

that the concept of topology is influencing large parts of solid-state physics that offer

inspiration for future experiments based on the polariton platform. One example is the

extension of topological classification from two to three dimensions. Here, the simplest,

topologically non-trivial state is the Weyl point, which can be understood as an analogon

of the Dirac point that arises in two-dimensional systems. The observation of Weyl points

in electronic systems [Lv+15; Xu+15] inspired the development of photonic systems and

resulted in the realisation of microwave [Lu+15] and photonic [Noh+17] implementations.

Additionally to building three-dimensional structures, the concept of synthetic dimen-

sions provides a path towards accessing the physics of three and even higher dimensions

in lattices with two spatial dimensions. This approach is inspired by the ultra-cold atom

community, where Thouless pump schemes [Tho83; Loh+18] as well as a spin modal space

[Man+15; Stu+15] have been used, and was successfully transferred to coupled photonic

waveguides [Zil+18; Lus+19]. This direction of research is particularly interesting as it

provides access to higher dimensional effect beyond the three spatial dimensions and could

provide inspiration for the development of experiments based on polariton lattices.
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Another direction to advance research on topological insulators is based on the perspec-

tive that the Berry phase is a formalism describing the electric polarisation in crystals

based on electric dipole moments, thus motivating a multipole expansion that results in

higher order topological insulators [BBH17]. The topological edge and boundary modes

in first order topological insulators are reduced by one dimension with respect to the

lattice bulk, resulting for example in the one-dimensional edge states that are observed

in two-dimensional lattices. Consequently, a second order, two-dimensional topological

insulator features zero-dimensional corner modes which have already been realised in pho-

tonics [Noh+18b; Mit+19; Li+20]. In this context, polariton lattices could provide new

insight for example on the coupling between corner modes through edge states [BML20].

Covering all of these future directions is the notion that the polariton lattice simulator

platform features inherent non-linearities that are induced by inter-particle interactions

as well as gain and loss. The latter is particularly interesting in the context of parity-time

(PT )-symmetric Hamiltonians. Generally, it was assumed that only hermitian Hamilto-

nians have real eigenvalues. However, Bender and Boettcher found that the same holds

true for Hamiltonians that are PT -symmetric [BB98]. Photonics is particularly suited

for experimental realisations of such Hamiltonians, as parity and time symmetry trans-

late into symmetries of the real and imaginary parts of the complex refractive index

[Özd+19]. While PT -symmetric Hamiltonians offer interesting open research questions

in themselves, the combination with other phenomena, such as topological physics, en-

hances the impact even further [Wei+17].

When thinking even further ahead and following the ultra-cold atom community, bring-

ing polariton lattice simulators to the realms of quantum mechanics represents a very

promising path towards unexplored phenomena. Here, the on-chip nature of the polari-

ton platform represents an important advantage. As a first step, a polariton blockade in

a single micropillar has recently been demonstrated [VCC06; Del+19; Muñ+19]. While

the reported degree of anti-bunching is still modest, further technological optimisation

can be performed based on this first demonstration, until eventually quantum computing

operations [GL20] or a lattice of coupled polariton micropillars each showing a polariton

blockade could be envisioned. Another technological approach towards bringing polari-

ton lattice simulators into the realms of quantum mechanics could rely on site-controlled

quantum dots arranged such that there is one quantum dot in each site of the lattice

[Sch+09]. Alternatively, an approach of realising a polariton qubit based on ring cur-

rents [Luk+18; Xue+21] could be implemented. Again, the combination with topological

physics could help to protect quantum states as single photons could be transported in

topologically protected modes [Bar+18; Bla+18; MGH18].

All of these ideas profit from the technological progress in both the fabrication of po-
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lariton lattices as well as the spectroscopical access. Here, in particular the use of EnO

lattices under resonant excitation in transmission geometry appears particularly promis-

ing. Throughout the development of the research field of polaritonics, experiments were

performed at negative detunings with a large photonic fraction, as the smaller photonic

linewidth in combination with the larger coupling and efficient relaxation processes sim-

plify spectroscopic experiments. However, it is the excitonic component that differentiates

polaritonics from photonics. Therefore, experiments under resonant excitation that do not

depend on relaxation mechanisms but allow the precise excitation of wave packets at a

certain position in the dispersion relation represents a powerful technique for future exper-

iments. Furthermore, the active modulation of a lattice potential environment by exciting

for example only one sublattice, which becomes feasible based on the implementation of

an SLM, motivates to envision new research directions.

To conclude, the results presented in this work combined with the broad range of ideas

for the future development of polariton lattice simulators leave little doubt that the capa-

bility of the polariton platform to provide extensive access to visualise complex physical

phenomena will continue to draw fascination.



9 Zusammenfassung

Die Faszination von Exziton-Polaritonen (Polaritonen) basiert auf der einzigartigen Kom-

bination aus technologischer Kontrolle über die III-V Halbleiterplattform und umfassen-

dem spektroskopischen Zugang zu polaritonischen Zuständen, die aufgrund ihrer inhären-

ten Nichtlinearität und vielfältigen Observablen, wie zum Beispiel Real- und Fourierraum-

spektren, Pseudospin und Kohärenz, Zugang zu diversen offenen Fragen und komplexen

physikalischen Phänomenen bieten. Im Fokus dieser Arbeit lag die Weiterentwicklung

von Polaritongittern als Simulatoren für diverse physikalische Phänomene. Dabei wurde

insbesondere die das kohärente, Laser-artige Licht, das von Polaritonkondensaten aus-

gesendet wird, untersucht. Die Arbeit beginnt mit einer kurzen Zusammenfassung der

für das Verständnis relevanten physikalischen Grundlagen in Kapitel 2, gefolgt von einer

Beschreibung der Probenherstellung sowie der spektroskopischen Methoden, die für die

Untersuchung der polaritonischen Gitter verwendet wurden, in Kapitel 3. Hier wurde

insbesondere die Implementierung eines Spatial Light Modulators1 für die Erzeugung be-

liebig definierbarer Anregunsmuster präsentiert.

Diese Arbeit basiert auf der Fähigkeit, Einschlusspotentiale in Form von Mikrotürm-

chen oder Mikrofallen für Polaritonen zu erzeugen, die zu einem diskretisierten Moden-

spektrum führen. Wird nun ein Gitter aus solchen Türmchen oder Fallen hergestellt,

führt die Kopplung zwischen benachbarten Gitterpositionen zur Ausbildung von Band-

strukturen. Die Ausbildung einer solchen Bandstruktur wurde in Kapitel 4 anhand

von Streifen eines Honigwabengitters veranschaulicht. Dabei konnte der Übergang vom

diskreten Energiespektrum einer eindimensionalen Kette bishin zur vollständig ausge-

bildeten Bandstruktur eines Honigwabengitters dargestellt werden. Diese systematische

Untersuchung ermöglicht das gezielte Design neuer, komplizierterer Gittergeometrien, die

aus verschiedenen Domänen bestehen, da gezeigt werden konnte, dass eine Domänengröße

von sechs Einheitszellen ausreicht, um eine Bandstruktur zu erzeugen. Neben der Aus-

bildung von Bandstrukturen in Gittern ist das Phänomen der Polaritonkondensation, das

zur Emission von kohärenter Strahlung führt, besonders spannend, da es in direktem

Bezug zu möglichen technologischen Anwendungen als Laser steht. Da sich der Konden-

sationsprozess in einem Gitter grundsätzlich vom Kondensationsprozess in einer planaren

1engl.: Gerät zur räumlichen Modulation von Licht
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Kavität unterscheidet, wurde dieser detailliert untersucht. Hierbei wurde insbesondere

der Einfluss des Anregungslasers, der Verstimmung zwischen Exziton und Photon, sowie

des reduzierten Fallenabstandes, der einen wichtigen Parameter im Design neuer Gitter

darstellt, untersucht. Im Rahmen dieser Untersuchung konnte die Polaritonkondensation

in mehrere Bänder nachgewiesen werden. Außerdem wurde selektive Kondensation in ein

gewünschtes Band durch die Wahl einer geeigneten Verstimmung zwischen Exziton und

Photon erreicht. Abschließend konnte eine Verringerung der Kondensationsschwelle in

einem Gitter gegenüber einer planaren Kavität nachgewiesen werden.

Ein bemerkenswertes Phänomen, das zum Beispiel in den Bandstrukturen von Lieb- und

Kagomegittern auftritt, sind Flachbänder, deren Einfluss auf Polaritonen und Polari-

tonkondensate, insbesondere in Bezug zu ihren Kohärenzeigenschaften, in Kapitel 5 un-

tersucht wurde. Abweichungen von einem Gittersimulator, der sich mit einem Tight Bind-

ing2 Modell, das nur Kopplung zwischen nächsten Nachbarn berücksichtigt, beschreiben

lässt, führen dazu, dass Flachbänder entlang bestimmter Richtungen in der Brillouinzone

dispersiv werden. Mit einer Untersuchung des Einflusses des reduzierten Fallenabstandes

auf Flachbänder konnte technologische Kontrolle über diese Dispersivität gezeigt wer-

den. Da die Kopplung zwischen übernächsten Nachbarn mit steigendem Abstand zwis-

chen den Fallen stark abnimmt, lassen sich die Flachbänder in den S Bändern von Lieb-

und Kagomegittern von dispersiven in nahezu perfekte Flachbänder, deren Bandbreite

in der Größenordnung der polaritonischen Linienbreite liegt, überführen, indem der re-

duzierte Fallenabstand vergrößert wird. Zusätzlich zur technologischen Kontrolle über

die Dispersivität der Flachbänder wurde die kontrollierte Anregung von großen Flach-

bandkondensaten, Kondensaten in einzelnen Compact Localised States (CLS)3, sowie die

resonante Anregung von Polaritonen in einem Lieb Flachband demonstriert. Insbeson-

dere für das Flachband des Kagomegitters konnte selektive Kondensation realisiert wer-

den. Diese Kombination aus technologischer und spektroskopischer Kontrolle verdeutlicht

das Potential polaritonischer Gittersimulatoren. Aufbauend auf der Kontrolle über po-

laritonische Flachbänder wurde die Kohärenz von Flachbandkondensaten untersucht. In

diesem Zusammenhang erwies sich die Kombination aus der Möglichkeit, die Dispersivität

des Flachbandes zu beeinflussen, und der selektiven Kondensation als besonders wertvoll.

Durch interferometrische Messungen an großen Flachbandkondensaten konnte gezeigt wer-

den, dass sich die Kohärenz mit abnehmender Dispersivität des Flachbandes auf einen

CLS lokalisiert. Außerdem konnte eine Steigerung der Kohärenzzeit von τcoh = 68 ps,

einem für hochwertige Mikrokavitäten typischen Wert, in einem dispersiven Flachband

2engl.: enge Bindung; Methode zur Berechnung von Bandstrukturen basierend auf stark gebundenen
Zuständen

3engl.: kompakter, lokalisierter Zustand
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zu beeindruckenden τcoh = 459 ps in einem Flachband, dessen Dispersivität kleiner als die

polaritonische Linienbreite ist, gezeigt werden. Passend zu dieser deutlichen Steigerung

der Kohärenzzeit erster Ordnung konnte eine Abnahmde der Kohärenzfunktion zweiter

Ordnung von g(2)(τ = 0) = 1.062 zu g(2)(0) = 1.035 beobachtet werden. Neben den mit

einem Laser vergleichbaren Emissionseigenschaften können Polaritonkondensate Gitter

aus Vortices ausbilden. Im Rahmen dieser Arbeit wurden zwei verschiedene Vortexgit-

ter nachgewiesen. Außerdem konnte durch Symmetriebrechung mittels eines lokalisierten

Anregungslasers chiraler, superfluider Randtransport realisiert werden. Diese Chiralität

konnte mit einer Änderung der Vortexausrichtung am Rand des Gitters in Verbindung

gebracht werden und motiviert daher weitere Untersuchungen zu Symmetriebrechung und

chiralem, superfluidem Transport in Kagomegittern.

Das vermutlich einflussreichste Konzept in der Festkörperphysik der letzten Jahrzehnte

ist die Idee einer topologischen Ordnung, die auch einen neuen Freiheitsgrad zur Kon-

trolle der Propagation von Licht bietet. Daher wurde in Kapitel 6 das Zusammenspiel

aus topologisch nicht-trivialen Bandstrukturen und Polaritonen, Polarionkondensaten und

Lasern untersucht. Zuerst wurde ein zweidimensionaler, polaritonischer, topologischer Iso-

lator, der auf einem Honigwabengitter basiert, realisiert. Die topologisch nicht-triviale

Bandlücke wurde durch eine Kombination aus einer Modenaufspaltung zwischen der

transversal-elektrischen und der transversal-magnetischen Komponente der photonischen

Mode sowie einer Zeeman-Aufspaltung der exzitonischen Mode geöffnet. Da die Bandlücke

zu klein gegenüber der Linienbreite war, um sie im linearen Regime nachweisen zu können,

wurden Polaritonkondensate angeregt. Mithilfe dieser Kondensate war es möglich, die

charakteristischen, topologisch geschützten, chiralen Randmoden, die robust gegenüber

Rückstreuung und Streuung an Defekten sowie den Ecken des Gitters sind, nachzuweisen.

Dieses Ergebnis stellt einen wichtigen Schritt in der Untersuchung nicht-linearer und nicht-

hermitischer, topologischer Systeme dar, da Mikrokavitäten eine intrinsische Nichtlin-

earität aufweisen und Polaritonen untereinander wechselwirken können. Neben dem fun-

damentalen Interesse wird das Feld der topologischen Photonik vor allem durch die Suche

nach neuen technologischen Anwendungen vorangetrieben. Eine wichtige Forschungsrich-

tung ist dabei die Entwicklung neuer Laser. In dieser Arbeit war der Ausgangspunkt für

die Untersuchung topologischer Laser das Su-Schrieffer-Heeger (SSH) Modell, da es eine

einfache, gut verstandene Geometrie und eine große topologische Bandlücke bietet. Die

Kohärenzeigenschaften des topologischen Randdefekts in SSH Ketten wurden detailliert

untersucht und ein Grad zeitlicher Kohärenz zweiter Ordnung von g(2)(0) = 1.07 erreicht.

Für einen Mikrolaser mit einem Durchmesser von nur d= 3.5 µm ist dies ein sehr gutes

Ergebnis. Besonders vielversprechend in der Entwicklung topologischer Laser ist allerd-

ings vor allem die kohärente Kopplung vieler Laser mithilfe einer propagierenden, topolo-
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gisch geschützten Mode. Um diese Kopplung zu untersuchen wurde eine topologisch nicht-

triviale Mode an der Domänengrenze zwischen zwei kristallinen, topologischen Isolatoren

implementiert. Nachdem selektive Laseremission aus dieser Mode erreicht wurde, wurden

insbesondere die Kohärenzeigenschaften untersucht. Dabei konnte gezeigt werden, dass

30 vertikal emittierende Laser, die eine geschlossene, hexagonale Domänengrenze bilden,

kohärent gekoppelt werden können. Dieser erste Nachweis eines topologisch geschützten

Gitters aus gekoppelten, vertikal emittieren Lasern überzeugt vor allem durch die Kom-

bination der kompakten Bauform und einfachen Bündelung der Laseremission vertikal

emittierenden Laser mit dem topologischem Schutz der zwischen den Lasern propagieren-

den Mode.

Zuletzt wurde in Kapitel 7 untersucht, wie die Bandstrukturen von Lieb- und Honig-

wabengittern durch die Einführung eines Energieunterschiedes zwischen den Untergittern

gezielt verändert werden können. In Liebgittern bietet diese Technologie einen Weg, die

Kopplungsumgebung des Flachbandes drastisch zu ändern, da das Flachband nun nicht

mehr einen Dirac-Punkt mit linearer Dispersion schneidet, sondern ein dispersives Band

an einem Potentialminimum berührt. In Honigwabengittern konnte eine Quantum Val-

ley Hall4 Mode an der Grenzfläche zwischen zwei Domänen mit invertiertem Untergitter

gezeigt werden. Diese Mode könnte die Basis für die Entwicklung eines Quantum Valley

Hall Zustandes mit echtem topologischem Schutz auf der Basis von Vortizes bilden. Eine

Variation der Eigenenergien der Untergitter stellt also einen vielversprechenden, weiteren

Weg für zukünftige Experimente mit polaritonischen Gittersimulatoren dar.

4engl.: Effekt aus der Familie der Quantenhalleffekte, der auf dem Unterschied der K und K ′ Punkte
des Honigwabengitters beruht
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[FP97] C. Fabry and A. Pérot. Sur les franges des lames minces argentées et leur
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A Appendix

A.1 Microcavity basic characterisation

In Figs. A.1, A.2, A.3, A.4 and A.5, the measurements performed to evaluate the basic

parameters of the microcavities presented in table 3.1 are displayed.

1 . 2 5 1 . 3 0 1 . 3 5
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

Ex
cito

n P
L i

nte
ns

ity 
(no

rm
.)

E n e r g y  ( e V )

 Q u a n t u m  d o t  P L
 L o r e n t z i a n  f i t ,  w  =  3 4 . 8 4 3 m e V

a ) b )

1 . 2 8 0 1 . 2 8 1 1 . 2 8 2 1 . 2 8 3 1 . 2 8 4
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2  P l a n a r  m i c r o c a v i t y

 L o r e n t z i a n  f i t ,  w  =  0 . 1 5 1 m e V

Ca
vity

 PL
 in

ten
sity

 (n
orm

.)

E n e r g y  ( e V )

Figure A.1: Characterisation measurements for sample In-FE1. a) Photoluminescence
spectrum of the quantum dot ensemble. b) Photoluminescence spectrum
of the photonic cavity mode obtained to evaluate the Q factor.
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Figure A.2: Characterisation measurements for sample In-FE2. a) Photoluminescence
spectrum of the quantum dot ensemble. b) Photoluminescence spectrum
of the photonic cavity mode obtained to evaluate the Q factor.
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Figure A.3: Characterisation measurements for sample In-HE1. a) Photoluminescence
spectrum of the bare quantum wells. To obtain this spectrum, all but two
mirror pairs were removed from a piece of microcavity by etching. b) Zee-
man splitting of the bare quantum wells. c) Photoluminescence spectrum
of a far negatively detuned, single polariton micropillar with a diameter
of d = 3.0 µm obtained to evaluate the Q factor. d) TE-TM splitting of
the planar cavity resonance, evaluated for a range of detunings. e) White
light reflection measurements for a range of detunings visualising the anti-
crossing behaviour due to strong coupling between exciton and photon. For
better visibility, approximately 20 mirror pairs were removed from the top
distributed Bragg reflector (DBR) by etching. f) Evaluation of the reflec-
tivity minima of the measurements in e) highlighting the strong coupling.
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Figure A.4: Characterisation measurements for sample In-EnO1. a) Photolumines-
cence spectrum of the bare quantum wells. To obtain this spectrum, all but
two mirror pairs were removed from a piece of microcavity by etching. b)
Zeeman splitting of the bare quantum wells. c) Photoluminescence spec-
trum of a far negatively detuned, single polariton microtrap with a diameter
of d = 8.0 µm obtained to evaluate the Q factor. d) TE-TM splitting of the
planar cavity resonance, evaluated for two detunings. e) White light re-
flection measurements for a range of detunings visualising the anti-crossing
behaviour due to strong coupling between exciton and photon. For better
visibility, approximately 20 mirror pairs were removed from the top DBR
by etching. f) Evaluation of the reflectivity minima of the measurements
in e) highlighting the strong coupling.
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Figure A.5: Characterisation measurements for sample Ga-EnO1. a) Photolumines-
cence spectrum of the bare quantum wells. To obtain this spectrum, all but
two mirror pairs were removed from a piece of microcavity by etching. b)
Photoluminescence spectrum of a far negatively detuned, single polariton
microtrap with a diameter of d = 6.0 µm obtained to evaluate the Q factor.
c) White light reflection measurements for a range of detunings visualis-
ing the anti-crossing behaviour due to strong coupling between exciton and
photon. For better visibility, approximately 20 mirror pairs were removed
from the top DBR by etching. f) Evaluation of the reflectivity minima of
the measurements in e) highlighting the strong coupling.
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A.2 Back side polishing process

To prepare a sample for excitation in transmission geometry, the back side needs to

be polished. A schematic of this process is depicted in Fig. A.6. First, the sample is

cleaned using acetone and isopropyl alcohol. To be able to mount the sample without

damaging the surface, a layer of poly(methyl methacrylate) (PMMA) is spin coated onto

the top of the sample and hardened by heating the sample to 165 ◦C. Next, the sample is

glued upside-down to a disc using wax and mounted to the vacuum holder of the lapping

machine. The polishing process is performed using a lapping plate with an abrasive

consisting of aluminium oxide powder with a grain size of 1µm in a sodium hypochloride

solution. Finally, the wax and the PMMA are removed using Ecoclear-OCON 178 and

isopropyl alcohol, respectively.

(1) Spin coating (2) Heating (3) Wax on disc

(4) Sample on disc(5) Polishing(6) Measuring thickness

Figure A.6: Schematic of the back side polishing process used to prepare samples for
resonant excitation in transmission geometry.
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A.3 Polariton condensation threshold in Kagome

flatbands

In Fig. A.7, the pulsed laser, excitation power dependent measurements performed to de-

termine the threshold of polariton condensation in single, compact localised states (CLSs)

of Kagome lattices with reduced trap distances of v= 0.95, 1.00 and 1.05 are presented.

These measurements correspond to the second order temporal correlation measurements

that are presented in Fig. 5.12.
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Figure A.7: a)-c) Input-output characteristics, linewidth and energetic blueshift, re-
spectively, of polariton condensation in a single compact localised state
(CLS) in Kagome lattices with reduced trap distances of v= 0.95, 1.00 and
1.05.
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A.4 Band gap evaluation

In this section, the method used to evaluate the band gaps of crystalline topological in-

sulator (CTI) lattices is elaborated using a stretched CTI lattice with pillar diameters of

d= 2.5 µm that are arranged in lattice variation L3. First, the Fourier space image at

the energy of the Dirac points of the underlying honeycomb lattice that is depicted in

Fig. A.8 a) is obtained from a hyperspectral imaging scan. Using this scan, the Fourier

space spectrum that represents a cross section along the K-Γ-K ′ direction and is displayed

in Fig. A.8 b) is selected. From this spectrum, line spectra within wave vector intervals

that correspond to the band gaps at the K and K ′ points are extracted and fitted with

Lorentzian peak profiles. An exemplary line spectrum including the fit is presented in

Fig. A.8 c). The peak positions of these fits represent a reconstruction of the band struc-

ture at the Dirac points and can be approximated by a parabolic fit, as is depicted in

Fig. A.8 d). Finally, the size of the band gap is evaluated from the two parabolas. One

prevailing contribution to the error of this analysis is the choice of the correct cross sec-

tion that is limited by the scan resolution. Additionally, imperfections in the lattice itself

and uncertainties of the band gap evaluation add to the error and can be estimated by

considering the difference between the band gaps that are obtained for the K and K ′

points.
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Figure A.8: a) Fourier space image at the energy of the Dirac points of a stretched CTI
lattice with pillar diameters of d= 2.5 µm, arranged in lattice variation L3.
b) Corresponding Fourier space spectrum along the K-Γ-K ′ direction. c)
Exemplary line spectrum through the band gap with a double Lorentzian
fit. d) Band reconstruction obtained from Lorentzian fits of multiple line
spectra around the K ′ point including parabolic fits.
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A.5 Optical and scanning electron microscopy images of

a crystalline topological insulator interface

In this section, optical as well as electron microscopy images that visualise the lattice ge-

ometry of the topological interface comprised of 30 VCSELs that is introduced in Fig. 6.18

are presented.
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Figure A.9: Optical microscopy image in a) as well as scanning electron microscopy
image in b) of a topological interface, highlighted in red, between a stretched
and a compressed domain of a CTI.
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A.6 Spectral comparison of the crystalline topological

insulator lasing mode

In this section, mode tomographies above the lasing threshold of a CTI lattice with a

weaker parameter variation and an unmodified honeycomb lattice, corresponding to the

comparison of the coherence properties as well as emission spectra presented in Fig. 6.20,

are depicted.
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Figure A.10: a) Real space spectrum obtained on the CTI lattice with a weaker param-
eter variation, corresponding to Fig. 6.20. b)-c) Real space images of the
topological interface lasing mode as well as the lasing emission from a P
bulk mode. d)-f) Analogous mode tomography obtained on an unmodi-
fied honeycomb lattice featuring lasing emission from bulk modes in the S
and P bands.





B Abbreviations

APD avalanche photo diode

BEC Bose-Einstein condensate

BKT Berezinskii-Kosterlitz-Thouless

CCD charge coupled device

CLS compact localized state

cw continuous wave

DBR distributed Bragg reflector

EnO etch-and-overgrowth

FFT fast Fourier transform

GS Gerchberg-Saxton

HBT Hanbury Brown-Twiss

IFFT inverse fast Fourier transform

LCAO linear combination of atomic orbitals

LED light emitting diode

LP lower polariton branch

MBE molecular beam epitaxy

MOSFET metal-oxide-semiconductor field-effect-transistor

MP mirror pair

MRAF mixed-region amplitude freedom

NA numerical aperture
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190 B Abbreviations

OD optical density

PID proportional–integral–derivative

PL photoluminescence

PMMA poly(methyl methacrylate)

polariton exciton-polariton

QD quantum dot

QW quantum well

SLM spatial light modulator

SSH Su-Schrieffer-Heeger

CTI crystalline topological insulator

TE transverse electric

TM transverse magnetic

TMD transition metal dichalcogenide

UP upper polariton branch

VCSEL vertical-cavity surface-emitting laser
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C. Schneider. Bosonic condensation of exciton–polaritons in an atomically thin crystal.

Nature Materials 20 (1), 1233-1239 (2021).

J. Beierlein, O. A. Egorov, T. H. Harder, P. Gagel, M. Emmerling, C. Schneider, S.
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Emmerling, C. Schneider and S. Höfling. Polariton condensation in S- and P-flatbands in

a two-dimensional Lieb lattice. Applied Physics Letters 111 (23), 231102 (2017).

M. Fraund, D. Q. Pham, D. Bonanno, T. H. Harder, B. Wang, J. Brito, S. S. de Sá,
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