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Chapter 1 Introduction 

One of the foundations of our world is the search for an optimal state. Since human 

beings exist, we exert for improvement. We have a strong wish to reach the maximum success 

with minimal efforts. Therefore, optimization is one of the oldest skills which even extends 

into daily life1 and many problems in science, engineering, business and economics, such as 

acoustics equipment design, cancer therapy planning, chemical process modelling, data 

analysis, classification and visualization, economic and financial forecasting, environmental 

risk assessment and management, industrial product design, laser equipment design, model 

fitting to data, optimization in numerical mathematics, optimal operation of “closed” 

engineering or other systems, packing and other object arrangement problems, portfolio 

management, potential energy models in computational physics and chemistry, process 

control, robot design and manipulations, systems of nonlinear equations and inequalities, and 

waste water treatment systems management, travelling salesman problems (TSP)2, the global 

optimization of Artificial Neural Networks (ANNs)3 and telecommunication networks4 and 

some applications appeared also in questions of the chemical industry5,6, can be formulated as 

computing globally optimal solutions7,8,9,10,11. In the case of a complex nonlinear system the 

associated decision model will in general have an enormous amount of local optima whose 

number is normally unknown. Typically, most of the local solutions are also unacceptable as 

compared with the global one. Therefore, general local optimization strategies are not 

applicable to the problems.  Instead, a global search approach is required and one needs 

appropriate global optimization (GO) ideas and techniques.  

 The objective of GO is to find the best solution of a created mathematical model which 

corresponds to the global minimum (or maximum) of a suitable objective function within a 

given collection of feasible constraints. The objective function is a characteristic property of 

the system, such as profit, utility, damage, risk or error. Constrains may be given by existence 

conditions of the physical, technical, economic or some other system.  

Due to the complexity of many optimization problems, particularly of high dimensional 

ones encountered in most practical settings, exact algorithms generally perform very poorly. 

Actually, metaheuristics9,12,13,14,15 is conspicuously preferable in practical applications and it 
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was shown to obtain highly accurate solutions in many cases.  The power of metaheuristics is 

robustness and success for a wide range of problems. It is generally the method of choice if:  

• Calculation of the objective function is very expensive or time consuming. 

• The exact gradient of the objective function cannot be computed, or its numerical 

approximation is very expensive or time consuming. 

• The values of the objective function may contain noise. 

• The search space is very large. 

If obtaining any feasible solution is not sufficient and the quality of solutions is critical, it is 

very important to investigate effective procedures to obtain the best possible solutions within 

a given time. In this thesis recent developments of intelligent search methods like Tabu 

Search and its application to problems arising in the chemical area are discussed and a new 

approach applicable to chemical problem is developed. 

The purpose of this chapter is to introduce basic heuristic concepts of approaches that 

generate feasible solutions and to show how they can be applied to combinatorial 

optimization problems. In Chapter 2 new nonlinear global optimization routines based on the 

Tabu Search strategy are described. They try to determine the global minimum of a function 

by the steepest descent - mildest ascent strategy. The new algorithms are explained and their 

efficiencies are compared with other approaches by determining the global minima of several 

well-known test functions with varying dimensionality. This includes an investigation about 

the influence of user-defined parameters. The efficiency of the new approaches is also studied 

by comparisons with other approaches for the test cases. In Chapter 3 one of our methods is 

adapted to conformational search problems. It is tested by locating the global minimum 

energy conformation of amino acids, two angiotensin converting enzyme (ACE) inhibitors16, 

2-acetoxy-N,N,N-trimethylethanaminium, and HIV-1 protease inhibitor17.  The last chapter 

summarized this work. 

1.1 Global Optimization (GO) Problem 

GO aims to find optimal configurations for a given problem. Thus, it is first necessary 

to define what an optimum is18. In the case of an objective function F, an optimum is either a 

maximum or a minimum. To formulate the problem of the global optimization it is required 

that  F is a function of the variable vector xi, the component-wise bounds xl and xr related to 

the decision variable vector xi are finite, and the feasible set D is nonempty. If this is fulfilled, 

the extreme value theorem19 guarantees that the global optimization model is a well-posed 

problem. Formally, a general optimization problem can be written as 
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Dx  to  subject
)F(x max  or  )F(x min

i

ii

∈
 (1) 

where F(xi) is the continuous objective function with D ={xi : lower bound ≤ xi ≤  upper 

bound}. Depending on the problem xi are binary, integer, or continuous variables. A well-

known example from computational chemistry is the conformational search for a large and 

very flexible molecule. This task comprises all typical ingredients of an optimization problem. 

It possesses a large number of possible solutions with similar quality and the handling of the 

problem necessitates the scan over a large space. Finally, as in many optimization problems of 

econometrics, it remains uncertain if the optimal solution was really found. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1. Three-dimensional and contour plot of the Schwefel function. 

 

Figure 1-1 shows the Schwefel function defined over a two-dimensional search space 
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εε <−∈∀≤>∃ ∗∗∗
liiill xx  Dx  xFxF    x )()(:0:  

Global maximum definition: A global maximum of an objective function F(xi) is a 

solution with  

Dxl ∈∗

Dx  xFxF iil ∈∀≥∗ )()( .

Global minimum definition: A global minimum of an objective function F(xi) is a 

solution with . 

Dxl ∈∗

Dx  xFxF iil ∈∀≤∗ )()(

Depending on the context the term optimum can replace either one of the terms maximum or 

minimum. Some optimization problems search for a global maximum value while others 

search for a global minimum value. To find the global optimum and not just a local one, it is 

necessary to search globally in the search space. But many nonlinear optimization problems 

are non-convex and are likely to have many local optima. If traditional local search methods 

are used to solve such a problem, the outcome depends on the starting point of the search, i.e. 

as a rule only the next local optimal solution is found which can be of rather bad quality. In 

order to find the global optimum, a global search strategy is needed. The most important 

global optimization heuristic strategies are described below, together with short descriptions 

and references. Most global optimization software implementations are based on one of these 

approaches, possibly combining ideas from several strategies.  

1.2 Heuristics 

The word heuristic stems from Latin heuristicus or Greek heuriskein that means "to 

find, to discover". In computer science, a heuristic is a technique designed to solve a problem. 

The technique usually produces a good solution and helps to solve a simpler problem that 

contains or is in close agreement with the solution of the more complex problem. Heuristics 

increases computational performance or simplicity, at the expense of precision. There are a 

great variety of definitions in the literature21,22,23,24. Heuristics is particularly used to find a 

solution that is usually reasonably close to the best possible answer. More accurate methods, 

especially when they are applied to complex problems, tend to show slow convergence that 

goes along with a high computational cost. The main reason for this slow convergence is that 

these methods explore the global search space by creating random movements without using 

much local information about promising search directions or already visited areas. In contrast, 

local search methods converge much faster as they use local information to determine the 

most promising search direction. However, they are easily entrapped in local optima.  

The basic concept of the heuristic search as a support in solving of problems was 

introduced by Polya25. A classic example of a heuristics is hill climbing. Hill climbing is a 

local search optimization technique. It can be applied to a large variety of optimization 
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problems. The algorithm starts with a random (potentially bad) solution and applies a local 

search to find an improved solution. If such a solution is found, the search moves to it and the 

local search starts again. The method stops when the solution is not improved upon already 

obtained solutions after ordinary local search. Ideally, at that point a solution closed to the 

optimal solution is found, but it is not guaranteed that hill climbing will ever come close to 

the optimal solution. The main disadvantage of a hill-climbing method is its incapacity to 

escape from a local optimum. A way to improve the performance of this simple heuristic 

procedure considerably is metaheuristic. 

1.2.1 Metaheuristic Features 

In the beginning, heuristics was typically applied to the solution of complex 

combinatorial optimization problems. The term “metaheuristics” for solving such tasks was 

introduced by Glover26. It has been widely applied in the literature, both in comparative 

studies as well as in research papers. Since the introduction of metaheuristics by Glover a lot 

of books and monographs were published on this subject9,12,14,15,24,27,28,29,30,31,32. 

Metaheuristics includes all heuristic methods which allow finding a good quality solution and 

also local optimization techniques. The picture has changed drastically. Modern powerful 

computers and parallel platforms allow successful applications of metaheuristics to real-time 

problems within acceptable time33,34. However, metaheuristics gives no guarantee of 

obtaining the global solutions either.  

The use of the metaheuristic search strategies makes it possible to escape from a local 

optimum during the iterative procedure. Metaheuristics has been developed to solve complex 

optimization problems in various fields. The efficiency of the procedures is due to the use of 

information about the environment. The method is a result of adjusting metaheuristic 

strategies to specific optimization problems. It is important to note that metaheuristic and 

“local optimality” approaches have essential differences. Typical heuristic concepts are "rules 

of thumb", educated guesses, intuitive opinions or simply common sense. They ignore 

whether the solution to the problem can be proven to be correct. Such iterative heuristics 

belong to local search methods such as descent or ascent methods. Therefore, the 

development of methods which allow moving aside from this classical design and broadening 

the application area is of great importance. 

During the last few years, metaheuristics developed substantially. Now it is based on 

“intelligent” search methods that can be classified with respect to the three basic ideas: 

• Use of adaptive memory and responsive exploration 

• Neighbourhood search 
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• Number of current solutions carried from one state to the next. 

These options help to classify metaheuristic methods in the form X/Y/Z, which was proposed 

by Glover and Laguna35. The possible values of X, Y, Z elements are noted below: 

A method employs adaptive memoryX M method is “memoryless” 
 

N method uses some systematic neighbourhood search Y S method relies on random sampling 
 

I method with point-to-point strategyZ P population-based approach 
 
This simple classification scheme gives us a possibility to categorize various metaheuristics 

methods. Such a classification must stay ambiguous because of large quantity of method 

modifications; some of them are closed to “standard concepts”, others are more or less 

expanded developments of them. A metaheuristic method may be classified in two or more 

X/Y/Z forms. Examples are shown Table 1

Table 1.  Metaheuristics classification. 

.  

Metaheuristic method Classification 1 Classification 2 
Genetic algorithms M/S/P M/N/P 

Simulated annealing M/S/I M/N/I 
Tabu Search A/N/I A/N/P 

Scatter search M/N/P A/N/P 
 

Surely, metaheuristics can include other strategies to find the global optimum. A 

metaheuristic method may modify the search strategy on the basis of the change of the 

objective function value during the search procedure. The same modification may be carried 

out during a neighbourhood search by excluding some members and introducing others. It can 

be illustrated at the example of the strategic oscillation approach of the Tabu Search. The 

scope of activity of the standard neighbourhood strategy that includes moves only among 

feasible solutions is extended in order to involve unfeasible solutions as well. Accordingly, 

the search overcomes the feasibility boundary in order to proceed into the unfeasible region. 

Another classification of the metaheuristics, which differentiates between population-

based strategies and single-solution metaheuristics, is also often found in the literature. In the 

latter methods, a search step requires only the information of a single preceding solution 

which the next iteration starts. On the other hand, population-based strategies invoke a 

collection of solutions at each stage. Such procedures are usually characterized by the class of 

evolutionary methods. Well-known examples are genetic algorithms, the scatter search, and 

the path relinking method35 (a useful combination of intensification and diversification 
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strategies) based on strategies for “combining” solutions. It is also a conspicuous subclass of 

the metaheuristic methods which use multiple heuristics to generate new population members 

instead of relying on a single rule.  

It is also possible to classify metaheuristic methods based on the use of adaptive 

memory. Patterns, whose present state depends on the sequence of previously visited 

solutions, and therefore includes a covert form using “memory” term, reside in practically all 

heuristics except those that use complete randomization. All previous choices are 

“remembered” and are inherited by the current one. The term “memory” has represented 

primarily by Tabu Search and its variations are sometimes called the “adaptive memory 

programming”36, but a number of other metaheuristics use mechanisms that can also be 

considered as memories. In recent years, other approaches have made attempts to unify 

various aspects of such memory structures and strategies, however, typically in only rather 

simple form. Developments, which produce hybrids of the tabu search with other approaches 

at a more advanced level, have become an important way to embed an adaptive memory into 

other methods, and have established an active area of research.  In genetic algorithms and the 

scatter search the memory is employed to store a population of the solutions, where the mode 

of combination more clearly lends itself to transmit features of selected past solutions to 

current solutions. However, such an implicit memory is not an intelligent memory 

construction. It lacks any mechanism to save the solutions prior to the last ones as well as 

methods to compare and improve the current solutions with the preceding generations.  

Neural network approaches introduce another memory based distinction. Artificial 

neural networks have roots in our understanding of the human brain. Initial concepts were 

based on attempts to mimic the brain's way of processing information. Subsequent efforts 

gave rise to various models of the biological neural network structures and learning 

algorithms.  Such methods accentuate an associative form of memory. Neural network 

approaches implicitly involve a form of optimization, and they have been applied to several 

optimization problems in recent years. In spite of a variable success of the performance, 

neural networks are often regarded as being appropriate to be included within the 

metaheuristic classification. Many research problems have been solved using neural network 

techniques (in particular the Hopfield network37) including graph partitioning38,39, 

knapsack40, and constraint satisfaction problems41 as well as linear and nonlinear42 

programming. Looi43 mentioned that “although there is a large collection of operations 

research based approach and other methods for solving all of these problems, comparisons 

between neural network methods with existing methods have been lacking". Some researchers 
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made up these deficiencies by successfully combining neural networks with Simulated 

Annealing, Genetic Algorithms, and most recently Tabu Search.  

Metaheuristics is often considered to be a set of intelligent components, but it is 

important to note that the intelligence depends more on the underlying design than the 

particular  property (or behaviour) of the method itself. For this reason, it is not necessary for 

a procedure to qualify as intelligent in a rigorous sense in order to grant its membership in the 

category of metaheuristics. Figure 1-2

Figure 1-2. Metaheuristic methods. 

 shows a graphical representation of various 

metaheuristics whose principles are presented below. 
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was inspired by the behaviour of ants and has many successful applications in discrete 

optimization problems. The particle swarm concept originates from a simulation of simplified 

social systems and can be used as an optimizer. 

1.2.2.1.1 Ant Colony Optimization (ACO) 

The ACO algorithm introduced by Marco Dorigo in his PhD thesis44 and originally 

developed by him, Maniezzo and Colorni in the early 1990s45,46, is a probabilistic technique 

for solving combinatorial optimization problems that can be realized by finding good paths 

through graphs. The behaviour of ants47 in finding paths from the colony to food sources gave 

rise to this idea. Even if a single ant has only restricted abilities, the behaviour of a whole ant 

colony is highly structured as the consequence of coordinated interactions. The way of ant’s 

communication is a chemical compound, known as pheromone. A moving ant lays various 

quantities of these compounds on the ground, thus it marks the path its moves with a 

pheromone trace. Usually a single ant begins to move randomly, but by detecting a 

pheromone trail, the ant will follow it with higher probability intensifying it with its own 

pheromone. Hence the probability that ants will follow a path correlates with the number of 

ants that did so before. This is a form of autocatalytic behaviour — or allelomimesis. 

Pheromones also vanish with time if they are not refreshed.  If all of the food is taken away 

from a particular place, ants will stop putting pheromones onto the respective track since they 

cannot find any food at this location anymore. The process is thus characterized by a positive 

feedback loop. 

 In Figure 1-3, an example is presented that this mechanism can lead to the shortest 

paths (as the pheromone tends to accumulate faster on these paths). It starts with a given path 

from the ant hill to food source. If this path is cut off by an obstacle, the ants have to pass the 

obstacle along the right or left path. Each ant makes a choice on the basis of some heuristic 

evaluations and the intensity of the pheromone trails left by previous ants. The path with a 

good heuristic evaluation and a high level of pheromone is more likely to be selected, so it 

gives the following ant a stronger stimulus and thus a higher probability to turn right. The first 

ant forced to decide which path must to be taken has the same possibility to turn right or left 

(since there is no pheromone trail on the alternative paths). If the right path is shorter than left 

one, the ant that took it will be faster than the ant following the left (long) path. Due to the 

shorter distance they can move more often. The next ants will find a stronger trail on the right 

path and it will become preferred (in probability) to the left path. The probability with which 

an ant decides to move along the path to follow is more and more prejudiced towards the 

shorter one because the intensity of pheromones increases faster on the shorter path. The final 
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result is that all ants will quick-witted in choosing of the shorter right path. However, it is 

significant that the decision is never deterministic, thus there remains always a possibility to 

explore alternative routes.  

Computational models have been developed, to simulate this mechanism48,49: the 

problems are visualized as (directed) graphs containing various junctions. In a preparation 

step, a few ant individuals perform randomized walks through the graphs. Pheromones are 

laid out in accordance with solution profit, so the probabilities to walk along given paths 

increase. In the following steps, the ants move again through the graph. They cannot only 

move along the already visited paths, but also can choose other routes, because randomization 

is used to allow the construction of a variety of different solutions. Again pheromones are laid 

out in accordance with solution profit. When all ants have constructed a complete solution, 

the procedure is restarted with the updated pheromone level. This is repeated for the number 

of allowed iterations or until the solution does not improve after a number of iterations. Thus, 

a minimal level of individual complexity can explain a complex collective behaviour. With a 

more complex prescription for the single steps it is possible to change the algorithm such that 

it escapes from local optima and copes better with environmental changes. However, a lowest 

limit is required to establish the desired behaviour.  

ACO is now developed to a powerful, many-sided optimization tool with a lot of 

publications and numerous applications in diverse areas of operations research, management 

science and technology. A number of refinements have been integrated into this general 

iterative scheme.  The approach of Dorigo and Di Caro29 is an alternative to the Tabu Search, 

Genetic and Evolutionary Algorithms, Simulated Annealing, the Iterated Local Search, the 

Variable Neighbourhood Search, and some other search methods. Dorigo and Di Caro 

reviewed successful implementations of the ACO method which are applied to a number of 

important and difficult combinatorial optimization problems, such as: 

• Quadratic assignment32,50,51  

• Travelling salesman52,53,54,55,56,57 

• Scheduling58 

• Connection-oriented network routing59,60,61 

• Connection-less network routing62,63,64 

• Vehicle routing29,32,65,66 

• Sequential ordering67 

• Graph colouring68 

• Shortest common supersequence69 

• Conformational analysis of flexible drug-like molecules70. 
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Figure 1-3. Allelomimesis example. 
1 2 3 

1) Some ants are walking on a path from the ant hill to food source 

2) An obstacle suddenly appears and the ants must get around it 

3) At steady-state the ants choose the shorter path 

A large amount of experimental work on ACO was carried out in the last years. In their recent 

survey Dorigo and Blum used the ACO theory71. Meanwhile, the results of different ACO 

implementations have converged if applied to standard optimization problems72,73,74,75,76, and 

also first investigations modelling the dynamics and the finite-time dynamics of ant colony 

optimization are carried out77,78. Gutjahr reported an article79 that addresses the important 

question how the (expected) runtime needed to obtain a solution of a given quality scales with 

the size of the problem. The first results with increased complexity of the iteration steps were 

given for two ACO algorithms. One of them is GBAS with lower pheromone bounds 

(GBAS/lb) which also forms the backbone of the Simulation based Ant Colony Optimization 

(S-ACO) algorithm80,81  for stochastic combinatorial optimization, which has already proven 

successful in applications82,83.  

Besides ant activity ACO can include pheromone trail evaporation and daemon 

procedures. These techniques are useful to avoid a too strong convergence of the algorithm 

towards a sub-optimal region. Pheromone trail evaporation decreases automatically the 

pheromone intensity as a function of time. Useful form of forgetting is implemented in order 

to favour exploration of new areas of the search space. Individual daemon actions are used to 
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centralize actions, which can be performed by single ants. Examples of such actions are local 

procedures or the collections of global information that can be used to analyse the usefulness 

of laying additional pheromone to bias the search process from non-local perspective. The 

daemon can monitor the path which was found by each ant and add extra pheromone to the 

shortest path. Such pheromone updates are called offline pheromone updates. 

Korošec and Šilc84 introduced that even real vector optimizations can be treated as 

graph problems. As shown by the simulation results, the approach can be extended to a 

broader class of problems. The general idea of this model is that of an autocatalytic process 

pressed by a "greedy force". The greedy force alone is incapable to find anything but a 

suboptimal tour. The autocatalytic process alone leads to convergence to a suboptimal path 

with exponential speed. In their combination greedy force steers the autocatalytic processes 

towards the best available local optimum and lets it converge quickly to very good, often 

optimal solutions.  

1.2.2.1.2 Particle Swarm Optimization (PSO) 

PSO is a stochastic, population-based evolutionary optimization algorithm. It was 

developed in 1995 by Kennedy and Eberhart85,86. It uses the so called swarm intelligence that 

is based on social-psychological principles and comprehension biological social system. By 

analogy with a swarm, each swarm member (particle) takes advantage of own memory and 

has a degree of freedom, or randomness, in its movement as well as knowledge gained by the 

whole swarm to find the best available food source87,88,89,90. After the first algorithm 

introduction, it has been studied by a number of different authors91,92,93,94 who mostly 

concentrated on multimodal mathematics.  

A problem of a food search can be solved by optimizing a fitness function.  The 

definition of the communication structure (social network) is realized by assigning the 

neighbours for each swarm. Each single solution is a "swarm member" called particle in the 

search space.  All particles have fitness values which are evaluated by the fitness function to 

be optimized, and have velocities which direct their motion in the multidimensional search 

space. Any single particle iteratively evaluates the fitness of the solutions it meets and keeps 

track of the coordinates in the search space associated with the best solution (fitness) it has 

achieved so far as well as the fitness values. Each particle remembers the information about 

its best solution, its position in the search space and both are available to its neighbours. Thus, 

there is a local best solution given by the best solution of all particles in the neighbourhood. 

When all particles in the swarm are considered as neighbours, this best solution is the 

optimum presently available.  
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 The swarm is typically simulated by particles in multidimensional space that have a 

position nXx(p) ℜ⊆∈ ~  and a velocity v(p)  The position x(p) of a particle p indicates a 

possible solution for the problem whereas its velocity v(p) determines the direction of the 

subsequent search. Both the position and the velocity are real vectors. This ensured that PSO 

is especially suitable for a numerical optimization. The particles move through the solution 

vector hyperspace (i.e.

nℜ⊆ .

nℜ ) and know:  

• their own best solution   

• the presently best available solution,  

where "best" simply means the solution with the optimal fitness function value. In the 

beginning, the positions and velocities of all individuals are randomly initialized. The swarm 

members swap for information about good positions with neighbours and update first their 

own velocity and then the position based on this information. In order to carry out 

appropriate changes of its position and velocity, each particle p has a memory holding the 

following information: 

• best(p) – “Particle best” position which is the best solution the particle has seen 

itself 

• best(N(p)) – “Local (neighbourhood) best” position that the particle obtains by 

communicating with a subset of the swarm 

• best(Xpop) – The optimal (“global best”) position ever obtained by any 

individual in the population that is known to all and immediately updated 

when a new best position is found by any particle in the swarm. 

In the original PSO two different kinds of neighbourhoods were defined. To adjust the 

velocity of the particle p the PSO algorithm use either the best(N(p)) or  the best(Xpop) 

positions.  

• In the “global best” swarm, all the particles are neighbours of each other; thus, the 

position of the best overall particle in the swarm is used in the social term of the 

velocity update equation. Exploitation only the “global best” position leads to rapid 

convergence of the algorithm as all the particles are attracted simultaneously to the 

best part of the search space but decreases the probability to find the global optimum 

when the global optimum is not close to the “particle best”. It may even become 

impossible for the swarm to explore other areas. It means that the swarm is trapped in 

local optima. 
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• In the “local best” swarm, only a certain number of particles can affect the velocity of 

a given particle. With recourse of neighbourhood information the global optimum is 

found more likely for the prize of slower convergence.  

The ith particle velocity update equations for the cases of global and local PSO are given by 
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))()((()()(

iipopni

iiniii
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In both cases the ith particle positions are updated by 

(3) 

iii pvpxx(p) )()( +=  (4) 

 

The learning rate vectors c and d have further influence of the convergence speed and the 

ability of the swarm to find the optimum. Moreover, the values of all dimensions of x(p) are 

normally kept within the bounds of the search space. If the inertial coefficient of the velocity 

is small, all particles could slow down until they approach zero velocity at the “global best”. 

The fitness of the “global best” solution improves with each swarm iteration. It could also 

happen that all particles, which are to be influenced by the “global best” swarm, move in 

close proximity to the “global best” in the search space without exploring the rest of search 

space. In this case the fitness never improves in spite of number of made PSO iterations. The 

way to avoid this situation is to reinitialize the particle positions at a certain interval or after 

the detection convergence. Algorithm illustrated the native form of the Particle Swarm 

Optimization can easily be generalized for multi-objective optimization and for returning sets 

of optimal solutions.  

 Both “global best” and “local best” can be seen as "social" neighbourhoods, as the 

relations among particles does not depend on their positions in the search space, but on 

"external" relationships that are not dependent on the problem that is being solved. Kennedy 

and Mendes95,96
 investigated the alternative "social" neighbourhood topologies. The 

following additional neighbourhood topologies were tested: 

• Random 

• “von Neumann”, a two dimensional grid with neighbours to the north, east, west, and 

south 

• Pyramid, a three-dimensional triangular grid 

• Star, all the particles connected to a central particle 

-16- 



                                                                                                                                                                              

• Heterogeneous, particles are grouped in several cliques 

• Hypercube 

• Ring  

Illustrations of some of the topologies are presented on Figure 1-4

Figure 1-4. Neighbourhood topologies. 
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There are two factors offered by Watts97,98, which can be used to characterize the different 

neighbourhoods: 

• The degree of connectivity that measures the number of neighbours of a particle 

• The amount of clustering that measures the number of neighbours of a particle that are 

also neighbours of each other 

Despite the fact that the results depend on the selected variable, the “von Neumann” and 

Pyramid neighbourhoods prove to be the best while the star and “global best” are the worst. 

The concept of a "dynamic" neighbourhood was also explored99. In the work of Li100, a 

dynamic neighbourhood topology was used for a multimodal function optimization. 

Recently, PSO has been successfully applied in many areas. Few applications of the 

algorithm to structural and multidisciplinary optimization are known. Fourie and Groenwold 

suggested exploitation of particle swarm in size and shape optimization101 and an application 

to topology optimization102. Some example areas of application of particle swarm 

optimization are: 

• training of artificial neural networks86,103 

• training of hidden Markov models104 
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• global optimization of mathematical functions86,105 

• in antenna or filter design106  

• water resource and quality management107  

• quantitative structure-activity relationship (QSAR) modelling in chemistry108,109 

The PSO algorithm was successfully applied to a continuous and integer/discrete 

structural optimization problem. It is inherently a continuous algorithm although it requires 

much higher computational cost than gradient-based optimization methods. The results show 

that the PSO algorithm is more suited for integer/discrete and discontinuous problems where 

use of a gradient-based optimizer may not be appropriate. PSO has many similarities with 

evolutionary computation techniques such as Genetic Algorithms (GAs). Both algorithms 

start a population of random solutions and search for optima by updating generations and 

using random techniques. They don’t give guaranteed success. However, unlike GA, PSO has 

no genetic operators like crossover and mutation. The advantages are that PSO is easy to 

implement and possessing only a few fitting parameters.  

1.2.2.2   Genetic Algorithms (GAs) 

The idea of applying computer-aided simulations of biological principle of natural 

evolution to study artificial systems was first introduced in the 1950s by biologists like 

Barricelli. Some pioneering works, which traced back to the 1960s made by Bremermann110 

and Bledsoe111,112, use evolutionary approaches based on binary genomes to function 

optimization and balance weights for neural networks. Later on, Bagley113, Cavicchio114, and 

Frantz115 made a further important research on these genomes that crowns with the main 

presentation of the GAs of Holland in 1975116. Works related to the subject are from De 

Jong117, Baker118, Goldberg27, Mühlenbein and Schlierkamp-Voosen119, Chipperfield et 

al.120, Reeves24, Michalewicz30, and Berthiau and Siarry121.  

GAs, evolution strategies, evolutionary programming, and genetic programming are 

grouped under the term evolutionary algorithms or evolutionary computation. They have been 

successfully applied to numerous problems from different domains, including optimization, 

automatic programming, machine learning, economics, ecology, and population genetics, 

studies of evolution and learning, and social systems.  Although GA is a subclass of 

evolutionary algorithms, it was restrictedly applied until multipurpose presentation of 

Goldberg27 in search, optimization, design, and machine learning areas. Nowadays, GAs are 

considered to be the most widely known and applicable type of metaheuristics30,122,123,124 with 

many applications of genetic algorithms in science, economy, research, and development125. 
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A GA is a search technique to find exact or approximate solutions of various 

combinatorial optimization problems. GAs use techniques inspired by natural processes based 

on the Darwinian principle of natural selection such as “mutation”, “selection”, and 

“crossover” (also called recombination). Through the “selection” process, only the best 

solutions are allowed to become “parents” and to generate “offspring”. This probabilistically 

biases the algorithm towards the best elements in the population. “Crossover” is the mating 

process. With a given probability, it takes two selected individuals, called “parents” and  

combines their most desirable features by exchanging parts of their genomes solutions to 

create one or two new individuals, called “offspring”. In the simplest form, substrings are 

exchanged after a randomly selected “crossover” point. This operator tends to enable the 

evolutionary process to move toward “promising” regions of the search space. “Mutation” is 

performed for a few offspring: for such offspring, one variable is altered by a small 

perturbation, for instance the change of one bit in the binary coding case. It is introduced to 

prevent premature convergence to local optima by randomly sampling new points in the 

search space. “Mutation” entails flipping bits at random, with some small probability.  

GAs are implemented as computer simulation of an optimization problem with a 

population of abstract representations, called chromosomes, genotypes or genomes, and of 

candidate solutions, called individuals, creatures, or phenotypes.  For the definition of a 

typical genetic algorithm, one needs the followings: 

1. genetic representation of the solution space 

2. fitness function to evaluate the solution space. 

Bit arrays are a standard solution representation, but also arrays of other types enabling the 

crossover operation can be used. A fitness function is a particular type of objective function 

defined over the genetic representation. It quantifies the optimality of a solution so that a 

particular solution may be ranked against all the other ones. The fitness function is always 

problem dependent. Optimal solutions or at least more promising solutions are allowed to 

breed and to mix for producing a new generation that will hopefully be even better.  

The standard GA starts with an initial population that is randomly generated. Every 

evolutionary step is called a generation. The predefined quality criterion, the fitness or fitness 

function is then evaluated for each individual. To create a new population (the next 

generation), individuals are selected according to their fitness. Many selection procedures are 

currently in use, one of the simplest being Holland's original fitness-proportionate selection, 

where individuals are selected proportional to their relative fitness. This ensures that the 

expected number of times an individual is chosen is approximately proportional to its relative 

performance in the population. Thus, high-fitness individuals possess a better chance of 
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“reproducing”, while low-fitness ones are more likely to disappear.  Parents are combined, by 

means of the recombination operator, to produce offspring.  Before replacing the old 

population, the members of the new population receive the small random perturbations by 

means of the mutation operator.  The offsprings mute with a given probability, and the fitness 

and the objective function value of the resulting offspring are computed. Then the next 

generation is created. The cycle is iterated until some optimization criteria are reached or 

when a maximum number of generations has been produced. Figure 1-5

Figure 1-5. Simple genetic algorithm. 
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introduction of two concepts also widely used in Tabu Search: diversification and 

intensification. In the diversification phase, CGA starts with a large population, and a high 

mutation probability, to cover the whole search space homogeneously, and detect a promising 

area. The intensification phase is then performed inside a promising area, after having 

reduced the search domain, the population size and the mutation probability. The “selection”, 

the “crossover”, and the “mutation” are performed using the decimal code. There are also 

combinations between GAs and derivative based methods127 like the quasi-Newton method to 

solve difficult unconstrained optimization problems. 

Genetic algorithms find application in bioinformatics, phylogenetics, computer 

science, engineering, economics, chemistry, manufacturing, mathematics, physics, and other 

fields. Some example areas of application of genetic algorithms are: 

• scheduling applications, including job-shop scheduling128,129,130,131 

• chemistry and chemical manufacturing132,133,134 

• medicine135,136,137,138 

• data mining and data analysis139,140,141,142,143 

 • geometry144,145,146,147,148

• finance and trade149 

• optimizing distributed protocols150,151 

• building phylogenetic trees152 

• chemical kinetics (gas and solid phases) 

• design of water distribution systems 

• distributed computer network topologies 

• game theory equilibrium resolution 

• gene expression profiling analysis153 

• linguistic analysis154 

• marketing mix analysis 

• mobile communications infrastructure optimization 

• molecular structure optimization155,156 

• multiple sequence alignment157 

• operon prediction158 

• protein folding and protein/ligand docking159 

• RNA structure prediction160 

• timetabling problems161 

• training artificial neural networks  
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• finding hardware bugs.162,163 

Genetic algorithms are a very effective way of quickly finding a reasonable solution to 

a complex problem. They don’t give instantaneous and exact effects, but do an excellent job 

of searching through a large and complex search space. GAs are most effective in the search 

space with little knowledge about a problem to be solved, but can also produce solutions that 

only work within the test environment. 

1.2.2.3   Scatter Search (SS) 

Scatter search164,165,166,167 is a population-based metaheuristic that constructs new 

solutions by intelligently combining and improving previous solutions, called reference set. 

The update is made with regard to the results of the improvements. The methodology is very 

flexible, since each of the scatter search elements can be implemented in a variety of ways 

and degrees of sophistication. 

SS algorithms apply “crossover” or combination mechanisms that allow the sharing of 

information between solutions to create new solutions168 similar to the GAs. The main idea is 

a combination of the characteristics of two parent vectors to create several offspring, with the 

assumption that good solutions may generate better ones. The main search operator of the 

GA169,170 and SS171 approaches is handling of available information to influence future 

searches. Unlike the large population in GAs, the reference set of solutions in SS is rather 

small. In SS, the selection of the parents is not random as in traditional GAs, but the two or 

more elements of the reference set are chosen in systematic way. Due to this selection process 

that considers at least all pairs of solutions in the reference set, the reference set can be kept 

small. The methods applied in the SS to improve the solutions range from simple local 

searches to very specialized searches. For example, simple local searches are based on the 

selection of the most improving move or of the first improving move during the selection. 

Tabu Search35, a Variable Neighbourhood Search172 or various sophisticated hybrid heuristic 

searches15 are also applied as variable neighbourhoods, intermediate memory, or hashing 

scanning methods of the neighbourhood. From this standpoint, SS procedures can be 

considered as memetic algorithms (MAs)29,173, which combine local search heuristics with 

crossover operators.  

From the implementation standpoint the SS method can be divided into the following 

subroutines based on the well-known templates165,174: 

• The Diversification Generation Method is used to generate a collection of diverse trial 

solutions from one or more arbitrary seed solutions as an input. 
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• The Improvement Method transforms a trial solution into one or more enhanced 

solutions. Neither the input nor the output solutions are required to be feasible, though 

the output solutions will usually be expected to be so. If no improvement occurs for 

the given trial solution, the resulting solution is considered to be the same as the one 

submitted for improvement.  

• The Reference Set Update Method creates and maintains a set of reference solutions 

consisting of the best solutions found according to the criteria of providing efficient 

accessing by other parts of the method. The goal is to ensure diversity while keeping 

high-quality solutions.  

• The Subset Generation Method generates subsets of the reference set as a basis for 

creating combined solutions.  

• The Solution Combination Method uses weighted structured combinations to 

transform each subset of solutions produced by the Subset Generation Method into 

one or more combined solutions  

The reference set is a collection of high quality solutions and diverse solutions. Both 

are required by the Solution Combination Method. Its goal is to produce weighted centres of 

selected subregions and to project these centres into regions of the solution space. This space 

shall be explored by auxiliary heuristic procedures. The reference set is generated from 

diverse solutions that improves during the search and will provide the information for the 

search process. The reference set update is based on comparisons between new and already 

visited solutions. To build the large set of diverse solutions the Diversification Generation 

Method is used. The size of the set of diverse solutions is typically smaller than the size of the 

reference set. The initial reference set is built according to the Reference Set Update Method.  

The following simple mechanism demonstrates the initialization of the reference set 

and its updating procedure during the optimization search. The initialization of the reference 

set starts with the selection of the best solutions from the set of diverse solutions built by 

Diversification Generation Method. These best solutions are added to the reference set and 

deleted from the set of diverse solutions. For each improved solution of the updated diverse 

set the minimum of the Euclidean distances to the solutions of the reference set is computed 

and the solution with the maximum of these distances is added to the reference set. The 

process is repeated until the set of the diverse solution becomes empty. Solutions in the 

reference set are ordered according to their quality. The best solution is the first one in the list.  

The simple Subset Generation Method creates all pairs of reference set solutions and 

puts them in a list to apply the Solution Combination Method. This method tries to combine 

good characteristics of the selected solutions intelligently to get new high quality solutions 
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after the improvement. At each iteration the number of subsets is generated depends on the 

number of new added solutions of the reference set. These trial solutions are subjected to the 

Improvement Method. The Improvement Method is the range of approaches from the simplest 

local searches to very specialized procedures. The reference set is updated according to the 

quality and the dispersion of the improved found solutions. The process is iterated with the 

new reference set until a stop condition is met. Finally, the set of disperse and high quality 

solutions in the reference set is provided by the method. A general template for the SS 

algorithm can be organized in two phases outlined as follows on Figure 1-6

Figure 1-6. Scatter Search algorithm. 
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space of randomization. Additional advantages of this approach are provided by 

intensification and diversification mechanisms. It uses adaptive memory elements that link SS 

to Tabu Search.  The success of SS and related strategies such as continuous version of SS175, 

which works directly with vectors of real components, is applied in a variety of application 

areas, such as: 

• dense wavelength division multiplexing176 

• graph colouring177 

• data mining178 

• linear ordering problem29 

• network design problem179 

• history-matching problem180 

• chemical and bio-process optimization181 

• 3D image registration problem182 

• neural network training183 

• multi-objective routing problem184 

• commercial implementation185 

• classical vehicle routing186 

SS is an evolutionary metaheuristic usually presented as a non-nature inspired one. However, 

most of the implementation that can be found in the literature sources have nature-inspired 

elements187 in its components or are very similar to those used in standard nature-inspired 

metaheuristics. 

1.2.3 Simulated Annealing (SA) 

Simulated annealing (SA) is a generic probabilistic technique for locating good 

approximations to the global optimum in a large search space. It is based on the principles of 

thermodynamics. Name and idea of the method come from the annealing process in 

metallurgy, a technique involving heating, maintaining a suitable temperature and controlled 

cooling of a material. The goal is to induce softness, to relieve internal stresses, and to refine 

the structure so that the working properties of the material are improved. Annealing induces 

the diffusion of atoms within a solid material, so that the material progresses towards its 

equilibrium state. Heat increases the rate of diffusion by providing the energy needed to break 

bonds so that the atoms can move from their initial positions (a local minimum of the internal 

energy) and can wander randomly through states of higher energy. The slow cooling opens 

the chances to arrive at some more stable (global or local minimal potential energy) 

equilibrium. This general principle is applicable to both discrete and continuous global 
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optimization problems under mild structural requirements14,28,188.  It forms the basis of an 

optimization technique for combinatorial and other problems.  

The original ideas of SA come from a paper published by Metropolis et al. in 1953189 

that introduced an efficient algorithm to simulate the equilibrium of a collection of atoms at a 

given temperature. The algorithm simulates the cooling process by gradually lowering the 

temperature of the system until it converges to a steady, “frozen” state. The adaptation of the 

Metropolis-Hastings algorithm in optimization as Simulated Annealing was first proposed by 

Kirkpatrick, Gelatt and Vecchi (1983)190, and by Cerny (1985)191.  

By analogy with this physical process, in a combinatorial optimization context a 

solution corresponds to a state of the physical system and the solution value corresponds to 

the energy of the system.  At each iteration the current solution is replaced by a randomly 

selected trial solution. The probability to take the new or the old solution depends on the 

difference between the corresponding function values and on a main control parameter in the 

cooling schedule called temperature T. This means that the new solution is accepted according 

to the so-called Metropolis criterion. The difference between the function value of the 

resulting solution  and the function value of the current solution  is defined 

as: 

)( 1+iposF )( iposF

)()( 1 ii posFposFF −=Δ +  (5) 

If ∆F is negative (i.e. the function value of the resulting solution is better than the function 

value of the current solution), resulting solution is accepted and becomes the new solution in 

the chain. If this difference is positive (i.e. the old solution is better than the new one), the 

resulting solution is only accepted on the basis of a comparison of some probability BF (Eq. 

6) with a random generated number (RGN) between 0 and 1. BF is related to the magnitude of 

the cost increase and a parameter T. If BF ≥ RGN, this new conformation is accepted; 

otherwise, it is rejected. 
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⎛ Δ
−=

kT
FBF exp  (6) 

where ∆F is the increase in F and T is the main control parameter.  

The main control parameter T is progressively lowered during the cooling process 

according to the given schedule and a certain number of iterations is performed at each 

temperature level. In general, a move is the most probable to be accepted if the temperature is 

high and the cost increase is low. The dependency is such that the current solution changes 

almost randomly when T is large. If T goes to zero only improving moves are accepted, 
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“downhill”, and the method stops at a local optimum, The allowance for "uphill" moves, 

which avoids to become trapped in local minima, is the major advantage over other methods, 

such as Tabu Search, Simulated Annealing. The illustration of the main principle of SA is 

represented in Figure 1-7

Figure 1-7. Selection of new states in simulated annealing. 
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The implementation of the basic SA algorithm is straightforward. The following 

Figure 1-8 shows its structure. It has been proved that with proper cooling schedule, SA 

asymptotically converges to a global optimum. However, this requires infinite number of 
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Ten Eikelder9; Henderson, Jacobson, and Johnson15 and have been focused on the following 

topics: 

• convergence based on more general forms of acceptance rule than the Metropolis one 

• deterministic variants194,195,196 
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• parallel annealing199,200,201,202  

• thermostatistical persistency203 

• hybridizations with other metaheuristics204,205,206,207. 
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Figure 1-8. The flowchart of the SA algorithm. 
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• job shop scheduling problem (JSS)213 

• travelling salesman problem (TSP)214,215,216 
• vehicle routing problems196 

• global minimization of the Lennard-Jones energy function217,218 

• molecular conformation problem for peptide219 

• determination of silicon clusters220 

• prediction of crystal structures221,222 

• design of the composite structures for aircraft223 

• plastic design of circular steel plates224 

• water distribution in irrigation canals225  

• path planning216,226,227  

• paper cutting waste optimization228 

• seismic waveform inversion229 and etc. 

The ability of easily escaping of stagnations in local minima by accepting "uphill" 

moves through a probabilistic procedure especially in the earlier stages of the search is one of 

the most powerful features of SA. It is a robust and general technique and its main advantages 

are its flexibility and its ability to approach global optimality. It is able to handle more classes 

of constraints, highly nonlinear models, and chaotic or noisy data. This makes it, as neural 

nets and GAs, highly promising for portfolio optimization and asset allocation problems. 

However, it appears less appropriate for modelling financial time series. Due to the fact that 

the algorithm does not rely on any restrictive properties of the model, it is quite versatile. The 

possibility of “tuning” SA methods is also very significant, especially for any reasonably 

difficult nonlinear or stochastic system. This optimization algorithm can be tuned to enhance 

the performance. The ability to tune SA for more than one problem should be considered as 

an important feature of an algorithm. 

A disadvantage is that the SA methods are computation-intensive. Since SA is 

metaheuristic, rather delicate work is needed to account for different classes of constraints and 

to fine-tune the parameters of the algorithm to adjust them to the actual problem. There is a 

clear tradeoff between the quality of the solutions and the time required to compute them. The 

precision of the numbers used in the implementation of SA have also a strong influence on the 

result quality. The main disadvantages that have been noticed on SA are its general slow 

convergence and its wandering around the optimal solution in the case where high accuracy is 

needed. 
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For some problems211,212, SA algorithm performs better, e.g. more reliably in finding 

more optima, than other numerical techniques such as GAs. The technique appears well suited 

to asset allocation problems with constraints. It is often used when the search space is 

discrete. SA does not use gradient information and makes relatively few assumptions about 

the problem being solved.  

1.2.4 Variable Neighbourhood Search (VNS) 

VNS is relatively recent metaheuristic designed for solving optimization problems. It 

was proposed by Mladenović and Hansen9,15,230 and is based on the principle to explore 

neighbourhoods of growing size iteratively.  

VNS is based on the following three rules: 

1. The global optimum solution is a local optimum in all possible neighbourhood 

structures. 

2. The local optimum solution with respect to a single neighbourhood structure does not 

imply that it is a local optimum in any other neighbourhood structure. 

3. For many problems local optima of one or more neighbourhood structures are 

relatively close to each other. 

The last item is an empirical observation. It suggests that a local optimum often provides 

information about the global one. Therefore an intensive study of the neighbourhood of this 

local optimum enables the finding of a better. 

To describe the VNS algorithm a set of neighbourhood structures is denoted by Ni 

with i = 1,…, imax and the set of solutions in the ith neighbourhood of the solution x is denoted 

by Ni(x) (see Figure 1-9

Figure 1-9. Set of neighbourhood structures. 
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Neighbourhoods Nk may be determined by one or more metric (or quasimetric) functions that 

define a distance between the elements of a set in the solution space. In order to solve general 

optimization problem (Eq. 1) using several neighbourhoods, facts 1 to 3 can be implemented 

in the following ways:  

a) deterministic approach 

b) stochastic approach 

c) combination of deterministic and stochastic approaches. 

(a) Variable Neighbourhood Descent (VND) is a popular deterministic approach 

where the best neighbour of the current solution automatically becomes the new current 

solution if an improvement is obtained. The search is then restarted from this point. If the 

current solution is better than all its neighbours the next neighbourhood is considered. The 

search stops when all neighbourhoods are visited and no improvement is possible which 

means that the solution is a local optimum for all neighbourhood structures. The steps of the 

resulting basic VND scheme are given below: 

Initialization: 

Select the set of neighbourhood structures Ni , for i =1, . . . , imax, that shall be used 

in the descent; 

Find an initial solution x; 

WHILE (no improvement is obtained){ 

Set i=1; 

WHILE (i<imax ){ 

Exploration of neighbourhood: Find the best neighbour x' of x   ( (x)Nx '
i

' ∈ ); 

Moving: IF (F(x') is better than F(x)){ 

Set x = x' and i = 1; 

   }ELSE Set i = i + 1; 

} 

} 

Most local search heuristics use in their descents strategies imax ≤ 2 neighbourhoods. Since the 

final solution should be a optimum with respect to all imax neighbourhoods, the opportunities 

to reach a global optimum are larger than by using a single neighbourhood. A VND heuristic 

can easily be constructed for a given problem by combining it with available heuristics from 

the literature. The order of its applying and its ranking by non-decreasing size of the 

neighbourhoods has a significant influence.  In addition to the sequential order of 

neighbourhood structures in VND above, one can go further and split neighbourhoods used in 

-31- 



                                                                                                                                                                              

a heuristic into a set of nested ones of increasing size (nested strategy). Such an approach is 

applied in Ref. 231, 232, 233.  

To increase the efficiency of this scheme, one should consider the complexity of the 

different moves, the order of their application, the sufficiency of the considered moves to 

ensure a thorough exploration of the region containing x, and desired solution precision. As a 

consequence, if selecting and ranking moves involve a lot of elementary changes, the 

resulting heuristic may be very slow and often take more time than the exact algorithm on 

small or medium size problems. A frequent implementation involves ranking moves in the 

order of the complexity of their application and a return to the easiest type each time a new 

descent is found and explored. If some neighbourhoods are much easier to explore than 

others, the algorithm returns to the first neighbourhood as soon as an improved local optimum 

is found, instead of repeating all steps in sequence. The sufficiency of the considered moves is 

a crucial question: for some problems elementary moves are not sufficient to leave a narrow 

valley. Hence such heuristics can achieve poor results since they become trapped in local 

minima. In the beginning, one will strive to obtain the best possible solution within the 

allocated computing time by the exploitation of only the VND method. Afterwards, it is 

preferred to get good solutions fairly quickly by the VND and to improve it later by the faster 

stochastic search in VNS. 

(b) Local optima of many combinatorial and global optimization problems tend to be 

close with each other and situated in one or sometimes several parts of D. Reached local 

optimum contains implicit information in its neighbourhood about better ones and even 

perhaps global optimum. Hence it is reasonable to explore the vicinity of the discovered 

optima.  

The Reduced Variable Neighbourhood Search (RVNS)234 is the method of choice for 

these aims. The random solutions are selected from Ni(x) without being followed by the 

search for the best neighbour. The neighbourhoods Ni(x) with i = 1,…, imax are nested in most 

cases, i.e. each neighbour contains information about the previous one. It was observed that 

imax = 2 is the best value. A solution is randomly chosen in the neighbourhood. If this solution 

is better than the previous one (i.e., if F(x') < F(x) for minimization), the search is transferred 

to the new position (x = x'). Otherwise, the search is proceeded in the next neighbourhood. 

After visiting of all neighbourhoods the search continues again in the first one, until a 

stopping condition is met. Usually, a maximum number of iterations or a maximal computing 

time between two improvements is set as stopping criteria. Owing to the nested form the size 

of successive neighbourhoods increases. Therefore, close neighbourhoods of x are explored 
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more thoroughly than farther ones, even if no further improvements were observed within the 

first.  The steps of RVNS are following: 

Initialization: 

Select the set of neighbourhood structures Ni, for i =1, . . . , imax, that will be used in 

the search; 

Find an initial solution x; 

Choose a stopping condition; 

WHILE (stopping condition is not met){ 

Set i = 1; 

WHILE (i<imax){ 

Shaking: Generate a random point x' from the ith neighbourhood of x 

( ); )(xNx i∈′

Moving: IF (F(x’) is better than F(x)){ 

  Move to x' (x=x'): 

Continue the search with N1 (i =1): 

  } ELSE Set i =i + 1. 

} 

} 

RVNS is useful for cases where the local search is expensive. It is akin to a Monte-Carlo 

method, but more systematic.  

 (c) In the previous two ways, directions, which use variable neighbourhoods to reach 

a local optimum and to find promising regions for near-optimal solutions, were examined. 

Combination of the tools for both tasks leads to the General Variable Neighbourhood Search 

(GVNS) scheme.   

Merging the local search with systematic changes of the neighbourhoods around the 

current local optimum leads to the Basic VNS method230. It is based on the idea to change the 

neighbourhood structure systematically within a local search heuristics, rather than staying in 

a single neighbourhood structure. In this basic scheme, a set of neighbourhood structures are 

selected. They are often nested, i.e. they define the neighbourhoods around the current 

solution of the solution space. A solution x' is randomly generated in the first 

neighbourhood of the current solution. A local search is performed yielding the local optimum 

x" of this neighbourhood. If x" is worse or equal to the best previous solution, the procedure is 

iterated using the next neighbourhood. The search is recentered around x" and restarted using 

this neighbourhood as the first one. If no better solution has been found or if every 

neighbourhood structure has been explored the search begins again at the first neighbourhood 

Dx ∈
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N1(x) until a stopping condition is met. The stopping criteria may be the allowed maximum 

CPU time, maximum number of iterations, or maximum number of iterations between two 

improvements.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-10. Variable neighbourhood search for minimization. 

Figure 1-10

 

The illustration of the basic VNS is presented in . The steps of this 

approach are following: 

Initialization: 

Select the set of neighbourhood structures Ni, for i =1, . . . , imax, that will be used in 

the search; 

Find an initial solution x; 

Choose a stopping condition; 

WHILE (stopping condition is met){ 

Set i=1; 

WHILE ( i< imax) { 

 Shaking: Generate a random point x' from the ith neighbourhood of x 

( ); )(xNx i∈′

Local search: Apply some local search method with x' as initial solution; 

denote with x" the so obtained local optimum; 

Moving: IF (this local optimum is better than the incumbent){  

Move there (x=x"); 

Continue the search with N1 (i=1); 

F(x") ≥ F( x) F(x")< F(x)

Ni(x") 

x 

N1(x) 

x' x" 

x 

N1(x)

x' x" 

x 

N1(x)

N2(x)
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}ELSE Set i=i+1 

 } 

} 

 

The GVNS scheme is obtained if the VND is used for the local search of x" and if the 

initial solution is improved by RVNS. This scheme has the following steps: 

 Initialization: 

Select the set of neighbourhood structures Ni, with i = 1, . . . ,imax, that will be used in 

the shaking phase, and the set of neighbourhood structures Nl with l = 1, . . . , lmax that 

will be used in the local search;  

Find an initial solution x and improve it by using RVNS;  

Choose a stopping condition; 

WHILE (stopping condition is not met){ 

Set i=1; 

WHILE ( i< imax){ 

Shaking: Generate a point x' at random from the ith neighbourhood Ni(x) of x; 

Local search by VND: 

 Set l=1; 

WHILE (l =lmax ){ 

Exploration of neighbourhood: Find the best neighbour 

x" of x' in Nl(x'); 

Moving: IF (F(x") better than F(x')){ 

Set x'= x" and l=1;  

}ELSE Set l=l+1; 

    } 

 Moving: IF (this local optimum is better than the incumbent){ 

Move there( x=x"); 

Continue the search with N1 (i=1);  

}ELSE Set i=i+1; 

} 

} 

The VNS heuristic is able to find the best valleys rather quickly. To avoid trapping in 

a valley, the set of the neighbourhoods around all feasible solutions x should contain the 

whole feasible set D: 

DxxNxNxND ii ∈∀∪∪∪⊆ ),(...)()( max2 . 
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These neighbourhood sets may cover D without its partitioning. It is easy to implement, e.g. 

by nested neighbourhoods (i.e., each one contains the previous): 

Dx   (x),ND   (x),N...(x)N(x)N maximaxi21 ∈∀⊂⊂⊂⊂ . 
It is also possible to explore D completely by investigating the small neighbourhoods around 

solution along some path, but such approach is not guaranteed for more efficient search. 

Nested neighbourhoods are easily obtained for many combinatorial problems. For this 

purpose it is necessary to define a first neighbourhood N1(x) by a type of move and then to 

iterate it i times to get neighbourhoods Ni(x) for i = 2, . . . , imax. The sizes of the subsequent 

neighbourhoods increase. Since the investigation of the whole search space one goes many 

times through the whole sequence of neighbourhoods. In this case the first neighbourhoods 

will be explored more thoroughly than the last ones. This meets the requirements of third rule, 

i.e. local optima with respect to one or more neighbourhood structures are relatively close to 

each other. Moves to the feasible set D may be constrained, particularly if this set is 

disconnected. Introducing some or all constraints in the objective function with Lagrangian 

multipliers allows moving to infeasible solutions235.  

Three improvements of the basic VNS for solving large instances are now considered:  

• the Variable Neighbourhood Decomposition Search (VNDS) method234 extends the 

basic VNS into a two-level VNS scheme based upon decomposition of the problem;  

• the Skewed Variable Neighbourhood Search (SVNS) method236 addresses the problem 

of exploring valleys far from the previously found best solution;  

• the Parallel Variable Neighbourhood Search (PVNS) method15,237,238 is a way for 

parallelizing VNS 

As the change of the neighbourhood during the search for good solutions to (Eq. 1) is a simple 

but very powerful tool, several authors have added such a feature to other metaheuristics 

rather than VNS: 

• Tabu search 239,240,241,242 

• GRASP243,244,245 

• Constraint programming246,247. 

VNS has been successfully applied in many areas; some of them are listed below: 

• Vehicle routing problem242 

• Arc routing problem248 

• Travelling salesman problem249 

• Linear ordering problem250 

• Graph coloring251 

• Protein side chain placement problem252 
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• Molecular Distance Geometry Problem253 

• Fuzzy clustering problem254,255 

• Finding the three-dimensional structure of a molecule256 

• p-Median problem257 

• Simple plant location problem258 

• One- and multi-dimensional knapsack problem259,260 

• Oil pipeline design problem261 

• Maximum clique problem262 

• Degree-constrained minimum spanning tree problem263 

• Max-cut problem264 

• Cable layout problem265 

• k-Cardinality tree problem266,267 

• Generalized minimum spanning trees  problem268 

• Nurse rostering problems269 

• Resource-constrained scheduling problem270 

• Generalized minimum edge biconnected network problem271,272 

• Pooling problem273 . 

VNS metaheuristic is based on a simple and clear principle, which is easy to 

understand, and most important, easy to use. This approach provides optimal or near-optimal 

solutions for solving the problems of several benchmarks within reasonable computing times.  

Furthermore, the performance of the VNS appears to be robust. It has a few parameters or 

sometimes none. Using VNS one could obtain good or better results than most other 

metaheuristics on many problems. In view of the aforesaid VNS fulfils the requirements of 

desirable properties of metaheuristics and may play an important role in the design of new 

heuristics for new types of applications.  

1.2.5 Tabu Search (TS) 

Let’s dwell up on a description of the TS method that forms the basis of our new 

approaches and which developed to one of the most powerful methods for solving 

combinatorial optimization problems.  

TS is a metaheuristic algorithm that belongs to the class of local search techniques 

with the possibility to accept worse-cost local solution in order to escape from local optimum. 

It was first proposed in its present form by Glover in 1986274. Seminal related ideas were also 

developed by Hansen275 which he called steepest ascent/mildest descent method.  It is 

significant that in Glovers view TS was a metaheuristic, i.e., a general strategy for guiding 
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and controlling interior heuristics specifically adjusted to the problems. Additional efforts of 

formalization and further developments for combinatorial optimization problems were 

reported later35,276,277,278. A didactic presentation of TS and some of its applications have been 

collected in a book of Glover, Taillard, Laguna, and de Werra279.  

The basic principle of TS is to guide a local heuristic search procedure for exploration 

of the solution space beyond local optimality. TS works on a single solution candidate. The 

local search procedure uses an operation called move to create a neighbouring individual of 

this candidate. The definition of the moves is highly problem-specific. The combination of the 

current solution with the possible moves defines the neighbourhood of the current solution. Its 

size simpliciter depends on the number and the kinds of defined moves. Consequently, if 

every neighbour has to be evaluated at each iteration, the algorithm may become quite slow. 

Therefore, usually only a subset of the neighbourhood is considered. Random selection of a 

fixed number of neighbours for consideration is a commonly employed method.  

 

It seems to be familiar.

 

 

 

 

 

 

 

 

 

 

 

Figure 1-11. Adaptive memory and responsive exploration. 

Figure 1-11

 
The main feature of TS is its use of an adaptive memory, which creates a more flexible 

search behaviour, and responsive exploration. Mountain climbing can be used as an 

illustrative example of both features. An adaptive memory term can be explained by the 

example of an alpinist who selectively remembers the path elements during the climb of the 

mountain in memory. Using this knowledge to make a strategic choice along the way 

represents the responsive exploration. It is illustrated in . The adaptive memory 

feature of TS allows the implementation of procedures that are capable of searching the 

solution space more economically and effectively. Using the mountaineer analogy, one must 
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analyze current alternatives using previously obtained attainments during ascents in similar 

regions. The responsive exploration in TS, whether in a deterministic or probabilistic 

implementation, rests on the assumption that a bad strategic choice yields more information 

than a good random choice. It integrates the basic principle of intelligent search i.e., using 

features of previous good solutions to explore new promising regions.  

Simple TS combines a local search procedure with anti-cycling memory-based rules to 

prevent the search from getting trapped in local minima, so that a global optimization can be 

conducted. It restricts the return to recently visited solutions by constructing a list of them 

called Tabu List (TL). The last visited solution is placed on a TL, and the reverse move is 

forbidden during a certain number of iterations. Certainly, after a local optimum is found, the 

next neighbour is reached by an uphill move. In most cases, during the next iterations, the 

search will try to go downhill again, but this reverse of an already accepted move is tabu, so 

that the algorithm has to continue to go uphill along the modest ascent direction, i.e. it will 

leave the local optimum. An important parameter is the TL size, which determinates the 

number of moves that are forbidden, i.e. how long the visited solution will remain prohibited. 

TL is usually managed with respect to FIFO (First In First Out) principle. The longer TL is, 

the smaller the chances that the algorithm gets back to already visited solutions are, i.e. the 

smaller the chance that it is trapped in local minima is. But with the increasing size of TL the 

search gets more and more limited since feasible solutions could be missed because the moves 

leading to them are tabu for a too long time.  

Specific properties of TL or attributes of the tabu solutions can be made more effective 

for some application domains. However, it can also put new problems and can lead to the 

complication of the algorithms, because it may prohibit a new promising solution even when 

there is no danger of cycling or may lead to an overall stagnation of the searching process. 

Therefore, to avoid such problems aspiration criteria can be defined which revoke TL, so that 

otherwise excluded solutions are included in the allowed set. The simplest and most 

commonly used aspiration criterion includes solutions, if their objective values are better than 

the current best-known solution.  More complicated and therefore rarely used aspiration 

criteria are the neglect of all tabus if cycling cannot occur. So, the update of the memory-

based TL can be modified and controlled by the following concepts:  

• Tabu tenure: the length of time during which a certain move is classified as tabu. It 

can be kept constant or varied dynamically throughout the search. 

• Aspiration criteria: to accept improving solution the existing tabu rules can be 

overridden. 
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In each iteration TS generates the neighbourhood of the current solution. After that the 

selection of the subset is carried out by the remove of the tabu solutions from the 

neighbourhood. Each solution in this new neighbourhood subset is evaluated with regards to 

the objective function. Certainly, a generation process that avoids generating a trial solution 

that is already recently visited is preferred. The best solution in the neighbourhood of the 

current solution is selected as the new current solution and becomes the “initial” solution for 

the next iteration. This will also include uphill movements which are necessary to escape 

local minimum and to avoid getting trapped in an optimum. Such uphill movement go along 

the modest ascent direction. In Figure 1-12 an algorithm scheme of a TS algorithm is defined.  
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Figure 1-12. Flowchart of Tabu Search. 
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Two very important components of TS are intensification and diversification 

strategies. The basic purpose of the diversification search is to explore unvisited regions of 

the search space that have not been investigated previously, whereas intensification search 

intensifies the search within a limited space, e.g. the promising region. This main difference 

between intensification and diversification is illustrated in Figure 1-13

Figure 1-13. Intensification and diversification. 

.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Typically, TS stops after a fixed number of iterations or a maximum number of 

consecutive iterations without any improvement of the incumbent solution. During these 

iterations TS keeps sufficient information about the search in memory. Such a simple TS 

structure is called short-term memory TS. The short-term memory used in the search 

intensification holds only the recent history of all moves or subset of them. Its basic idea is to 

determine the attributes of performed moves. This information is used to encourage move 

combinations and solution features, which were found good in previous stages of the search. 

It is also possible to return to previous promising regions to search them more thoroughly. 

The intensification search focuses on investigation of the neighbourhood of the best solutions 

found during the search which are called elite solutions. In intensification stage the term 

neighbour has a broader meaning as in the usual context of neighbourhood search. During the 

intensification search neighbours are also produced by the combination of the components of 
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good solutions or by modified evaluation strategies that favour the introduction of such 

components into a current solution. 

Long-term memory has been suggested to achieve a better performance and to keep a 

more important search information such as the recency, the quality, and the frequency9. 

Specifically, long-term memory in high-level TS saves attributes of special characters like 

elite and frequently visited solutions. Accordingly, the second highly important component of 

the TS, the diversification strategy, may be based on some long term memory, such as 

frequency-based memory. This frequency-based memory keeps the total number of iterations 

that various “solution components” have been presented in the current solution or have been 

involved in the selected moves. By means of this algorithmic mechanism, one makes the 

attempt of forcing the search into previously unexplored areas of the search space and 

generates solutions that differ in various significant ways from those seen before.  

There are some major diversification strategies. The simplest form of diversification is 

certainly the classical random restart diversification, in which the search is periodically 

stopped (according to some predetermined criterion) and then restarted from a randomly 

generated solution. More interesting but also more complicated approaches select restart 

solutions by using historical information collected in a long-term memory. Examples may be 

rarely used components in the current solution or the incumbent solution.  Such information 

can be used in different ways, for instance, to avoid highly frequent moves or, conversely, to 

encourage the use of moves having very low frequencies and finally to design restart 

mechanisms within TS. This principle can also be exploited in a continuous diversification 

which integrates diversification considerations directly into the regular searching process. 

This avoids interruptions and the loss of information accompanied with the restart scheme. 

This is achieved by the modified evaluation of the possible moves which added a small term 

related to the component frequencies280 to the objective function. In this way, neighbourhood 

search can be directed into yet unexplored regions where TL operation is restarted.  

The TS ideas of intensification and diversification are beginning to find their way into 

other metaheuristics. Since the appearance of the simple TS scheme described above, many 

new developments and refinements have been proposed over the last few years. They are 

briefly mentioned in the followings: 

• intensification and diversification techniques: In addition to previously described methods 

the following forms of long-term memories35,280 are often implemented:  

– adaptive memory procedure referred to as ‘‘probabilistic diversification and 

intensification”, which was first proposed by Rochat and Taillard281 for the vehicle 

routing problem. Adaptive memory involves an attribute-based focus which depends 
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intimately on the elements of recency, frequency, influence, and logic. Its main idea 

is that attributes of high quality solutions are used to construct other high quality 

solutions, as it was done in GAs. The method therefore stores a continually updated 

pool of previously generated elite solutions, which can be extracted from the pool 

and used to restart the search. The part of the pool that represents better solutions 

has a larger probability of being selected. Usually, different fragments of elite 

solutions are taken and combined to generate a new starting solution. If the 

components are taken from elite solutions, which are situated in a common area of 

the search space, this is the case of intensification, otherwise it is a question of 

diversification. Adaptive memories provide a generic paradigm for guiding local 

searches and can be coupled with different types of metaheuristics.  

– strategic oscillation or tabu tunneling35 is the method to achieve an effective 

cooperation between intensification and diversification. It manages moves in 

relation to a critical level called the oscillation boundary which often represents a 

point where the manner would normally stop. The boundary is identified at various 

stage of the construction or it represents a chosen interval of functional values. The 

search is allowed to go for a specified depth beyond the boundary before turning 

around. When the boundary is crossed again from the opposite direction, the search 

goes beyond it for a predefined depth and after that turning around again. The 

process of repeatedly approaching and crossing the critical level from different 

directions creates an oscillatory behaviour. It is possible to control this behaviour by 

varying the amplitude of the oscillation, by generating modified evaluations and 

rules of movement to explore a region of the search space depending on the type of 

the region and the search direction.  

– path relinking35,282 generates new solutions by exploring connecting trajectories of 

elite solutions. It starts from one of these solutions, called initiating solution, and 

generates a path in the neighbourhood space leading to another solution, called the 

guiding solution. This can be done by selecting moves that introduce attributes 

contained in the guiding solution. This technique can be used in both diversification 

and intensification strategies, depending on the path generation mechanism and the 

choice of the initiating and guiding solutions.  

• reactive TS283: (Battiti and Tecchiolli) It provides a technique which dynamically fits the 

search parameters based on the search history. The continuous reactive TS is a 

generalization of the reactive TS developed by the same authors. The continuous reactive 
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TS method tries to locate most promising boxes. In a second step, refined solutions are 

generated within these boxes.  

• hybrid TS: It was developed by Al-Sultan and Al-Fawzan284. It represents a hybrid 

method that combines TS with the local search method of Hooke and Jeeves285. 

• probabilistic TS35: It provides a selection scheme of the moves which is based on elite 

solution recovery. It also introduces randomization into the search method. This can be 

attained by converting the evaluation and the references to tabu status into probabilities of 

selection, strongly made over to favour higher evaluations. Such randomization can also 

be implemented in the design of a candidate list strategy. It only considers a subset of 

neighbourhood solutions, because a complete neighbourhood evaluation is often too 

expensive. 

• directed TS286: It uses direct-search-based strategies. These strategies are based on the 

well-known Nelder-Mead method287 and a new pattern search procedure called adaptive 

pattern search. The role of direct search methods is to make the search robust especially in 

the neighbourhood of a local optimum. Instead of using completely blind random searches 

for the generation of the neighbourhood, appropriate direct search strategies are exploited. 

Moreover, a TL conception with new anticycling rules called tabu regions (TR) and semi-

TR were introduced.   

•  unified TS288: It aims  to produce simpler and more flexible TS codes. The major benefits 

of the approach are its speed, its simplicity, and flexibility coupled with a dynamic 

adjustment of only a few parameters. A similar approach is the granular TS289, which is 

based on the use of drastically restricted neighbourhoods. They exclude moves with 

elements that are not likely to belong to good feasible solutions. Such restricted 

neighbourhoods are called granular, and may be seen as an efficient implementation of 

candidate-list strategies proposed for TS algorithms. 

• TS for continuous multiminima problems290: Cvijovic and Klinowski291,292  generalized 

TS to functions with continuous variables but this approach also allows the optimization 

of integer values. Franzé and Speciale293 introduced an algorithm which explores a grid of 

points with a dynamically defined distance. Chelouah and Siarry294 presented a new 

algorithm called enhanced continuous TS. It results from an adaptation of combinatorial 

TS, which aims to follow Glover’s basic approach as close as possible. To cover a wide 

domain of possible solutions, this algorithm firstly performs the diversification. It locates 

the most promising areas, by fitting the size of the neighbourhood structure to the 

objective function and its definition domain. When the most promising areas are located, 
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the algorithm continues the search by intensification within one promising area of the 

solution space.  

There are some examples of TS application areas: 

• general manufacturing problems295 

• travelling salesman problem (TSP)296,297 

• quadratic assignment problem298 

• general combinatorial problems24,299 

• optimization of artificial neural networks300 

• resonance assignment in NMR (Nuclear Magnetic Resonance) spectroscopy301 

• test design in education302 

• vehicle routing problems303 

• chemical process optimization304 

• identification of the good variable subsets within the framework of QSAR 

techniques305. 

The above examples have shown that TS is a powerful algorithmic approach. It has 

been applied with great success to many difficult problems and has now become an 

established optimization technique which can compete with almost all known techniques. It 

can even exceed many classical procedures due to its flexibility. A great advantage of TS is 

that, as in the case of all approaches based on a Local Search, it can quite easily deal with 

really complicated constraints that are typical for real-life problems. Local search algorithms 

move from solution to solution in the search space until a solution considered as optimal is 

found or a time bound is elapsed. This ensured that it is a really expedient, but not a universal 

approach. Significant problem knowledge is absolutely required to perform the most basic 

steps of the development of any TS procedure, viz. the choice of the search space of an 

effective neighbourhood structure and the moves between the solutions. The fine tuning of an 

apparently large collection of parameters is also a problem. Consequently, this choice must be 

sufficient. To be successful, all metaheuristics need to explore the search space “in depth” and 

“in width”. Depth is usually not a problem for TS, which commonly achieves sufficiently 

acceptable good solutions in an early stage of the search. In this respect TS is quite aggressive 

and effective, but width can be a hard problem.  This disadvantage can only be removed by an 

effective diversification scheme. 

1.3 Conclusions 

The optimization aim is to find a discrete mathematical object that maximizes or 

minimizes an objective function specified by the user of the metaheuristic. Such discrete 
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mathematical objects called states and the search space are problem-specific. User usually 

provides the function to be optimized, called objective function, as a procedure that evaluates 

the function on a given state.  

Many computer scientists point out that no metaheuristic is better than another when 

its performance is averaged over all possible discrete functions (No-free-lunch theorem306). 

Therefore, at best, a specific metaheuristic can be highly efficient only for classes of objective 

functions. However, all these imperfections are characteristic also for other methods of the 

global optimization as well. 

Metaheuristics are best and generally used for non-differentiable objective function 

where one has no possibility to exploit analytical tools as Hessians and derivatives, or if the 

objective function has no analytically closed form (for instance, if it is only the output data of 

another algorithm process). But even for all other cases metaheuristics achieve very fast and 

very accurate solutions if techniques from classical optimization such as local search and 

gradients are implemented in the metaheuristic approaches. 

Although many criticisms exist, metaheuristics are powerful algorithmic approaches 

which have been applied with great success to many difficult combinatorial optimization 

problems. As previously observed, many well-known metaheuristics seem to converge 

towards a combined structure. New opportunities for combining the merits of these methods 

appear in this unifying process leading to even more powerful search approaches for difficult 

combinatorial optimization problems. 

Based on an analysis of foregoing metaheuristic algorithms which evaluated their 

strengths, their weaknesses, and their appropriateness for the solving of set of tasks the TS 

method was chosen to create improved approaches. It forces also the fact that in contrast to 

most of all metaheuristic optimization techniques TS are extremely effective for the standards 

of continuous nonlinear optimization that confirms by last method developments. Detailed 

descriptions of the new approaches are introduced in the next chapters. 
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Chapter 2 TS based methods 

2.1 Gradient Tabu Search 

In this work a modification of the TS method was developed, which for clarity will be 

called Gradient Tabu Search (GTS). Its main goal is to enhance the efficiency of the TS by 

adapting strategies developed to find minimum energy paths of the potential energy surfaces. 

It exploits the analytical first and second derivatives. The GTS uses gradients for a fast 

location of the next local minimum while second derivatives are used in the mildest ascent 

part. For an efficient implementation novel concepts had to be introduced for storage of 

previous moves. The GTS can be classified as a multi-start method. In contrast to least square 

fit procedures, which are widely used for such problems, the GTS allows to find solutions 

which do not represent the next local minimum.  

2.1.1 Algorithm description 

Three basic search procedures are used in the GTS method: the Local, the Modest 

Ascent, and the Diversification searches. In the first search procedure one of the Local Search 

methods or combinations of them are used to find the nearest local minimum. After 

determining a local minimum, the Modest Ascent Strategy is employed to escape from this 

local minimum and to move to the next one along the shortest way. Moreover, Tabu List, 

Tabu Region, and Tabu Direction restriction rules are applied to avoid return to recently 

visited solutions or to get caught in a local optimum. The Diversification Search (DS) is 

needed in order to jump to other areas of the solution space that may be more promising for 

the seeking global minimum.  

Figure 2-1 shows the flowchart of the GTS. After the initialization one starts with a 

search for improved minima. This part consists of local searches for the next minimum using 

gradients and mildest ascent searches to escape to the next valley. Weighted Hessians are 

used for the mildest ascent search. In between an update of the solution vector and the TL is 

performed. If the solution does not improve after a number of iterations or if all 

neighbourhood solutions are already set tabu, the search for improved minima is aborted and 

the DS is performed to obtain new starting points. A pseudo-code of the GTS algorithm is 

given in Figure 2-2. 
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Figure 2-1. Flowchart of the new Tabu Search methods. 
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LLooccaattee++SSttoorree    
 //Find next local minimum 
 Steepest Descent and/or Quasi-Newton 

/or Powell’s methods 
 Add minimum solution to the Tabu List 
 Testing lower and upper bounds 
IF (variables out of range) { 
 Diversification search 
 GOTO Locate+Store 
}ELSE{ Store minimum in the Result List} 
IF (solution does not improve  

after a number of iterations){ 
 Diversification search 
 GOTO Locate+Store } 
IF (we obtained the same best results){ 
 Diversification search 
 GOTO Locate+Store } 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2. Pseudo-code of the Gradient Tabu Search algorithm. 

2.1.1.1   Modest Ascent and Local Search Strategy 

In the GTS, the definition of the neighbourhood is crucial. For a point 

the neighbourhood is often defined by those points for which all xi are 

increased by a given ∆xi. From this neighbourhood, the GTS either selects the move that leads 

to the largest decrease in F(xi) or accepts the one that leads to the mildest increase in F(xi). A 

reduction of the number of steps is obviously obtained if within one step all xi’s are 

appropriately modified and if computations of the sizes of the ∆xi’s take into account the 

shape of F(x1 . . . xi . . . xN). Both improvements can be achieved if gradients and/or second 

derivatives are employed.  
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Figure 2-3. Schematic search strategy illustration. 

Figure 2-3

 

The rough search scheme is presented on . Moves from the solution 1 to 2 

and 3 to 4 are carried out by Local Search methods, which are listed above, whereas 

displacement 2 to 3 is realized with the Modest Ascent strategy. 

The Steepest Descent and the Quasi-Newton method are known to be very efficient for 

local optimization problems. Details of the both methods are described in Ref. 22-25. Steepest 

Descent is an algorithm for finding the nearest local minimum of a function which 

presupposes that the gradient of the function can be computed. This method also called the 

Gradient Descent method, starts at a point xo and, as many times as needed, moves from xi to 

xi+1 by minimizing along the line extending from xi in the direction of )F(xi∇− , the local 

downhill gradient. The problem with the Steepest Descent method is that it performs many 

extremely small steps in going down a long, narrow valley. Quasi-Newton method uses the 

Quasi-Newton Broyden Fletcher Goldfarb and Shanno (BFGS) approximation to built up the 

Hessian updates based on past steps. There are many variants of Quasi-Newton methods. All 

of them approximate the Hessian matrix from the function and gradient values of some or all 

of the steps previously taken. In the present work the BFGS method was used, in which the 

model is not stored explicitly, but is calculated by gradients and step directions stored from 

the past steps. The Quasi-Newton method was chosen because it converges typically quite fast 

and does not require computation of the Hessian matrix, which can be quite expensive both, 

in terms of the symbolic computation and numeric evaluation. The disadvantage of the 

method is that it may diverge away from the minimum  

2 – local minimum 
 
3 – neighborhood search solution 
 
4 – next local  minimum     
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To reinforce the advantages and minimize the disadvantages a combination of both 

methods was implemented in the GTS to locate the next local minimum. The search starts 

with the Steepest Descent approach. When the gradient value becomes small enough the 

program switches to the Quasi-Newton method. Using gradients reduces the number of steps 

necessary to locate the next local minimum. Another advantage is that many terms which 

need to be computed can be reused for the calculation of the gradients and Hessians. This 

accelerates the computation in comparison to approaches which solely depend on function 

evaluations. 

It is well known that leaving the valley of the already found local minimum or the 

determination of a transition state is considerably more difficult than finding the next local 

minimum307. In so called eigenvector-following techniques308 eigenvalues and associated 

eigenvectors of the Hessian are employed to solve this problem. This method evaluates the 

mildest ascent exactly by computation and by diagonalization of the complete Hessian. The 

necessary effort to compute the Hessian increases roughly with NDIM∗(NDIM+1)/2 (NDIM 

being the dimensionality of the problem) and additionally a NDIM∗NDIM matrix has to be 

diagonalized. Therefore, such vector-following techniques could become more demanding 

than strategies which are based on less expensive function evaluations. In order to reduce the 

costs our approach only uses the diagonal elements of the Hessian to determine the direction 

of the mildest ascent.  

Figure 2-4 illustrates the connection between the objective function, its gradient and 

second derivative in a local optima. The value of a second derivative gives the convexity or 

concavity of the function on the given interval. At a local minimum the first derivative is 

equal to zero, while the second derivative is positive, since the function is convex at this 

point. The diagonal part of the Hessian provides information along which coordinate the 

function is less convex. To determine the direction the functional values of each coordinate 

around the local minimum were computed at the beginning of the modest ascent strategy. 
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Figure 2-4. Connection between objective function Sin(x), gradient and second derivative. 

 
Figure 2-5 illustrates an example of the direction choice. The local minimum is at the solution 

(3.14; 4.438). The partial second derivative of F with respect to y with value 0.5005 is less 

than the partial second derivative of F with respect to x which equals 1.005. It means that the 

function is less convex along the y-coordinate so the modest ascent should go either in the 

positive or in the negative direction along this coordinate according to the calculated function 

values.  

 

 

 

 

 

 

Figure 2-5. Griewangk function. Modest ascent strategy illustration,  

where local minimum  -(x;y)=(3.14; 4.438),  
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Thus, in order to escape from local minima via the modest ascent it is necessary to determine 

a new solution along a direction of the smallest function value with respect to information 

about partial second derivative. A schematic illustration of the idea used to determine the 
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direction of the modest ascent from the diagonal part of the Hessian is presented on Figure 

2-6

Figure 2-6. Griewangk function. Schematic illustration of moving from one local minimum to another, 

. 

 

 

 

 

 

 

 

 

 

 

 

 

where 1 – start solution, 2 – local minimum, 3- neighbourhood solution, 4 – next local minimum  

and Ø - schematic movement direction. 
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The value for  is user defined and can be tuned for the problem under 

consideration. The actual step size is determined from  and ranki, which is computed 

from rankmin and rankmax. Variable with smallest partial second derivative value has the 

largest step size while step sizes for all others variables are calculated with respect to partial 

second derivative value ranks. The second derivative values are indexed before ranking 

giving the minimal element the index 0 and the maximal one the index (NDIM-1), where 

NDIM is the dimension of the problem. A linear ranking procedure gives the minimal list 

element the maximum ranked value rankmax and the maximal list element the minimum 

ranked value rankmin. The parameters rankmin and rankmax could also be used as fine tuning 

parameters but considering their definitions the most meaningful value for rankmax is 1. Using 

rankmin = 0, the direction possessing the smallest second derivative would not contribute to 
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the overall direction of the next step. Therefore rankmin = 0.1 is used. 2
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x
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∂
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x
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represent the highest and lowest second derivative at the point under consideration.  

If the differences between the second derivatives become very small, this ranking 

scheme leads to values too small for the higher second derivatives. Therefore, in cases with 
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This modest ascent strategy is followed until a positive second derivative indicates that the 

barrier to the next valley is crossed. From this point, the next local minimum is located using 

the minimization strategy explained earlier. 

This approach lies in between the eigenvector-following techniques and the so-called 

low mode search (LMOD)309. The latter is often used for conformational analysis. In this 

approach, eigenvalues and eigenvectors of the Hessian are computed at the minimum. To find 

a new minimum, the LMOD-procedure follows the eigenvector of one of the low-lying 

frequency modes until the increase in functional value exceeds a user-defined threshold. 

During this following, the Hessian is not updated. A minimization starting from this point 

leads to new minima in most cases. The gradient-only algorithm310, which was developed to 

find saddle points, was also tested. This procedure uses the gradients to follow the weakest 

ascent along a valley to the next saddle point. The procedure was successful in some test 

cases but turned out to be extremely dependent on the chosen parameters. Therefore, it was 

not adopted. 

2.1.1.2   Diversification Strategy 

The last element of the GTS represents the diversification search (DS), which is used 

to select new starting points in the solution space. A DS becomes necessary if the solution 

does not improve after a number of iterations that means that neighbours at hand are worse 

than the current solution or if all neighbourhood solutions are already set tabu. One way to 

enhance the convergence is to ensure that the search switches to regions that were not already 

investigated. To explore the whole search domain, and localize promising areas several 

strategies can be chosen.  

The standard algorithm starts from the N initial solutions (N being the number of 

parameters) which are randomly generated and uniformly distributed in the solution space. To 
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avoid returning to already visited areas and to force the search towards solutions sufficiently 

far away from previous ones all solutions are excluded which already belong to Tabu Regions 

(TRs). The objective function to be minimized is evaluated for each accepted solution, and the 

best of them (with the lowest F(xi) value) becomes the new start solution, even if it is worse 

than the previous solution.  

In a second variant 3N solutions are randomly generated. 2N solutions are 

concentrated in two user-defined subspaces of the whole search domain (e.g. positive and 

negative areas if possible) and additional N points are randomly generated without any 

restrictions. The solutions are excluded which already belong to TRs as in the previous 

standard scheme. If a new promising solution with the smallest objective function value is 

accepted the exploration process starts inside this newly detected area of the promising 

solution. Depending on the problem Simulated Annealing methods may also be successful 

variants of the diversification search. However, for the present problems they turned out to be 

less efficient than the previously mentioned approaches. 

2.1.2 TS Memory Elements 

The basic idea of the approach is to keep sufficient information of the search within 

some memory.  In the Tabu List (TL) either complete moves or single attributes are set tabu 

as soon as their complements have been part of selected moves. The moves or attributes stay 

tabu for a distinct time, i.e. for a number of iterations, until the probability that a solution is 

revisited is small. The efficiency of the algorithm depends on the choice of the tabu status 

duration. Using an effective memory conception GTS behaves as an intelligent search 

technique35. Optimization search methods are divided into two categories of optimization 

search methods: point-to-point methods and population-based methods. GTS belongs to the 

first category.  

Despite its efficiency at times, the TL seems to be rather limited approach. The 

standard TL can’t avoid the zigzagging move situation near local optima during the descent 

method since the visited solutions in the TL don’t show exact tabu direction. This is no longer 

sufficient since moves into already visited regions become allowed. To avoid such problems 

for the new approach new techniques as: Tabu Region (TR) and Tabu Direction (TD) were 

developed. These techniques enables a more efficient memory use then the standard TL, i.e. 

with equal memory volume more previous solutions can be set tabu and not only single 

visited solutions are set tabu but also areas around them and a complete visited route. 

Reverse moves and cycles are avoided by the use of a Tabu List (TL), where the 

moves previously done are memorized.  If a new current solution can be found, it is added to 
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the end of the list until it is full. Thereafter, the added solutions must replace an existing 

solution in the TL. The TL is managed with the First In First Out (FIFO) principle. The 

elements in TL are ranked in ascending order according to their recency. The most ancient 

element in the TL has index equal to 1, the most recent element has index equal to N, where N 

is the number of TL elements. If the TL is full, the newest solution replaces the tabu solution 

which has a smallest recency index that satisfies the requirements of the FIFO principle. 

Experiments with Multi-Ranked Tabu List286 and with modification of Multi-Ranked Tabu 

List, where also frequency ranking was added, were also carried out, but they offered no 

particular advantage over the traditional FIFO updating method. For approaches which move 

in small steps through the function F(xi) a simple storing of all visited points is sufficient to 

block already visited regions effectively. In the present approach this is no longer sufficient 

since the number of steps decreases while the step sizes increase. The specific property of the 

TL that is implemented in the GTS approach is that not all previously visited solutions are 

kept in memory but only the local minima solutions and start solutions from which they were 

found.  

To overcome the resulting problems Tabu Regions (TR) and Tabu Directions (TD) are 

introduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7. Tabu List solutions and Tabu Regions on the example of surface contour of the Griewangk function. 

 
The conception of TD is closely connected with the Tabu Direction Vector (TDV) and New 
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optimization from which the respective minimum was found ( ).  To ensure that the 

search for the transition state starting from the current minimum  does not move back, not 

only the already visited points but the whole direction is set tabu. The TDV and the NMDV 

are used for this purpose. The first vector, the TDV, is direction from the already visited local 

minimum solution to the start solution  from which this local minimum was reached. 

The second vector, the NMDV, is the vector 

startb

mina

mina startb

newmina c ,  which connects  with the next trial 

point . 

mina

newc Figure 2-8 illustrates TDV startminba  and NMDV newminca on the surface of the 

Rastrigin function.  

 
1 – start solution 
2 – local minimum  
3 – new solution 
Ø - direction vector 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8. Surface of the Rastrigin function.  Tabu Direction Vector 21  from the local minimum to the start 

solution and New Move Direction Vector 23  from the local minimum to the new solution. 

 

To decide of the move to  both vectors (TDV and NMDV) are computed and normalized. 

If for the scalar product of both normalized vectors the equation 

newc

( ) 0)(    withcaba newminstartmin >⋅<− αα1  (9) 

holds the new direction is tabu. Depending on α, which is given as input for fine tuning, the 

region which is set tabu varies. Visualization is given in Figure 2-9.  
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Figure 2-9. 3D geometrical interpretation of TD. For α=0.29 the shaded part is tabu. 

For α=0 it is only forbidden to move exactly in the direction of startminba . With increasing α, a 

cone is becoming tabu. In Figure 2-9, α was set equal to 0.29 . Here the solution  is tabu, 

since the vector 

1c

1camin  lies in the cone while solution  is allowed.  2c

Since only a few points are visited on the way from   to  it is also necessary to 

define Tabu Regions (TR) around those points for the diversification strategy. 

startb mina

Figure 2-7 

provides some examples of TL solutions and TRs. For this instance, a radius RTR is defined 

for each point in the TL. The radii RTR are computed according to 

coeff
RR

R lowup
TR

)( −
=  (10) 

Rup and Rlow define the range in which a parameter is allowed to vary. coeff is a user 

defined variable which accounts for the range in which F(xi) is defined and the density of 

local minima. The actual numbers employed for the test cases are given in Appendix A 

together with the test cases. Please note that the TR’s are only needed for the diversification 

strategy. 

2.1.3 Implementation and Experiments 

The efficiency of the present implementation was investigated with the help of various 

test functions286,291,292,311,312,313,314,315,316,317,318. The tests comprise the Ackley (AKn), the 

Branin (BR), the Goldstein-Price (GP), the Griewangk (Gn), the Rastrigin (Rn), the Hansen 

(H), and the Levy (Ln) functions. The corresponding expressions are given in appendix A, 

which also reports the known global minima and the search ranges for each of the functions. 

A characterization of the computational efforts, which were necessary to determine the global 
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minima, can be seen in Table 2

Table 2. Characterization of the computational effort necessary to determine the absolute minima of the various 
test functions. All values are averages over 100 trial runs. For more information see text. 

. As mentioned earlier, the GTS algorithm in its present 

implementation contains parameters. For a solid assessment of the success of the new 

algorithm their influence on the efficiency of the search has to be investigated. 

Test function NDIM Number of 
steps 

Number of 
function 

evaluations 

Number 
of first 

derivative 
calculations 

Number 
of second 
derivative 

calculations
2 41.35 42.07 6.88 2.76 

10 191.64 143.95 29.98 61.09 

20 273.38 220.40 33.30 67.72 

30 347.59 293.36 34.23 69.15 

Rastrigin (Rn) 

50 530.28 470.43 38.17 76.06 

2 155.81 138.4 63.54 24.71 

10 527.29 499.05 185.12 38.58 

20 839.96 793.17 214.9 62.14 

30 1009.73 949.12 227.52 80.74 

Ackley (AKn) 

50 1522.36 1335.84 228.74 114.19 

2 1446.92 269.32 132.49 1236.36 

10 1490.95 944.21 669.85 568.78 Griewangk (Gn) 

20 1978.73 1062.07 207.7 942.18 

4 5917.58 7166.64 4586.28 868.9 
Levy (Ln) 

7 5740.58 5716.27 4931.76 711.74 

Branin (BR) 2 34 26.83 11.67 9.4 

Goldstein-Price (GP) 2 56.38 49.27 16.13 10.08 

Hansen (H) 2 563.86 387.52 117.46 211.17 
 

2.1.3.1   Parameters 

The parameters are summarized in the Table 3 together with brief explanations. 

Parameters as the dimension of the problem (NDIM), or the upper and low bounds of the 

search space (Rup, Rlow) are determined by the concrete task. Taken the example given in the 

introduction (conformational search for large molecules) NDIM would be the number of 

freely rotatable bonds and Rup and Rlow would be the physically meaningful range in which 

they can be rotated. The parameters rankmax and rankmin are ranking parameters from the 
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linear ranking procedure [Eqs. 9 and 10]. They were set to 0.1 and 1.0 respectively, as 

discussed earlier. The parameters Itermain, Iterworst, Iterloc, and IterMAS are loop termination 

numbers. They restrict the number of allowed iterations but do not influence the convergence 

of the new algorithm. The number of elements in the TL (LSIZE) should not be set too small 

to avoid that the search spins around but with LSIZE= 10*NDIM  no problems were found.  

Table 3. Description of the parameters of the approaches. 

Parameter Purpose Recommended 
values 

Parameters determined by the problem 

NDIM dimension 
Rup upper bound for each variable (see appendix A) 
Rlow lower bound for each variable (see appendix A) 

Itermain 

Iterworst 

Iterloc 

IterMAS 

loop termination numbers 

determined by the 

problem 

Parameters with negligible influence 

LSIZE number of elements in tabu list 10*NDIM 

rankmax maximum recency ranked value 1.0 

rankmin minimum recency ranked value 0.1 

Ntrial number of trial points at the diversification search 3*NDIM 

Parameters with strong influencea
 

coeff coefficient used to compute the radius RTR (Eq. 7) 
calculates with 

respect to RTR=0.1

alam first step size at the line search 1.0 

Δxi step size at the mildest ascent strategy 0.1 

α TD coefficient, used in formula (Eq. 8) 0.4 

 

The parameters Ntrial and coeff are only connected with the diversification search. In 

our test cases, Ntrial was always set to three times of the dimensionality of the problem 

(3*NDIM), but not larger than 250. The parameter RTR, which is computed with the help of 

coeff, Rup, and Rlow (Eq. 7), controls the size of the TR within diversification runs. If RTR is too 

large, the TR become so large that minima lying close by already visited points are 

overlooked since they lie in a TR. Naturally, this happens most frequently for problems with 

                                                 
a investigated in  (for GTS) and  , ,  (for GOTS and TSPA) Table 4 Table 8 Figure 2-15 Figure 2-16
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many close lying minima. Since some information about the overall shape of the surface can 

easily be seen in a first scan, RTR can be adjusted quite easily to the problem at hand. To 

ensure that no important minima are overlooked, one could make a test run with a quit small 

value of RTR starting the search from the lowest minima found in previous runs. For the 

Rastrigin and the Ackley functions, the influence of RTR is depicted in Table 4

Table 4. Influence of the user-defined parameters for thirty dimensional functions observed during 10 trial runs. 

. It is seen that 

RTR influences the convergence to some extent. It is also seen that if RTR becomes too large, 

the absolute minimum is missed. Therefore, a smaller value for RTR should be chosen. For the 

present cases, RTR =0.1 was always chosen.  

Rastrigin Ackley 

Parameter Value Number of 
function 

evaluations 
Success 

Number of 
function  

evaluations 
Success 

1.0 412 100% 1479 50% 

0.2 478 100% 1269 100% RTR 

0.1 293 100% 949 100% 

2 277 100% 984 100% 

1 293 100% 949 100% alam 

0.2 302 100% 1330 100% 

0.5 - 0% 1570 80% 

0.2 281 100% 1384 100% Δxi 

0.1 293 100% 949 100% 

0.8 671 100% 1095 100% 

0.4 293 100% 949 100% α 

0.1 218 100% 1011 100% 

 
The influence of the fine tuning parameters alam, ∆xi, and α, which directly influences 

the search part, is also depicted in Table 4 using the Rastrigin and the Ackley function (each 

with a dimension of 30) as examples. The parameter alam represents the first step size in the 

line search performed in the Steepest Descent and Quasi-Newton part. For small values, the 

local minimum search becomes more accurate, but more steps are necessary. Additionally, for 

a larger step size narrower and shallower minima are missed. This is no disadvantage, since 

the deeper minima is of main interest. Decreasing alam from 2 to 0.2 the absolute minima are 
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always found but the necessary number of function evaluations increases (8% for Rastrigin, 

35% for Ackley). As expected, the correlation between the number of steps and the value of 

alam is very similar for all cases. Although not optimal for all test computations discussed 

alam = 1.0 (full Newton step) was used for all of them. The parameter ∆xi gives the step size 

during the mildest ascent search. Its influence is not surprising, since the search for a saddle 

point is a quite delicate task. One would expect that the number of steps necessary to reach 

the global minimum increase if a smaller step size, ∆xi, is chosen. But this is only found for 

the Rastrigin function. Additionally, while for increasing alam the global minimum was 

always found, this is not the case for ∆xi. Therefore, ∆xi should not be set too large, since the 

next saddle point could be missed. For the following test cases ∆xi was always set to 0.1. 

The parameter α (0.0 < α ≤ 1.0) determines the size of the cone of the TD (Eq. 8, 

Figure 2-9). One would expect that the number of steps decreases if a wider cone is set tabu; 

however, the opposite is found. This unexpected behaviour results since large cones restrict 

the flexibility of the search, i.e. the search must take detours to the global minimum since 

more direct ways are set tabu by accident. This is in line with the finding that for quite large 

cones, the minimum is not found anymore. For all test cases discussed later, α was set equal 

to 0.4. Again, this value was not optimized by preliminary test runs. 

In summary, Table 4 indicates that the new approach is quite stable with respect to the 

actual values of the fine tuning parameters. In a wide range, it finds the global minimum also 

for nonoptimal fine tuning parameters; only (for some functions) the number of necessary 

steps increases. 

2.1.3.2   Numerical Results 

Table 2

Table 2

 summarizes the computational efforts, which were necessary to determine the 

global minima of the various test functions. In most real life applications of optimization 

routines, it remains unclear if the global minimum is actually found. Therefore, most 

optimization routines possess stop criterions, which control when a diversification is made 

and when the program stops. In the present implementation, the program performs a 

diversification run if after three new local minima no better solution was found. The program 

finally stops after Itermain runs were performed. For the test cases for which the global minima 

are well known,  lists the number of steps that were made until the global minimum 

was reached for the first time. This number was determined by an analysis of the run. For the 

computation double precision variables were used. The global minima were always reached 

within numerical accuracy. 
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Table 5. Comparisons with the literature for the Rastrigin function. The column “Evaluations” gives the function 
evaluations. For the present work it also comprises the sum of function, gradient and Hessian computations as 
second number. 

NDIM Algorithm Evaluations Source 
Pure random search 5964 315 

Fast annealing evolutionary algorithm 544 314 

 

 

 

 

 

 

 

 

Random tunneling algorithm 383 314

TRUST 59 314

Tabu Search 540 291

Differential evolution 489 324

Random search 610 324

Simulated Annealing 260 324

2 

Gradient Tabu Search 42/61 333

Tabu Search-MS 400 11624 316

Tabu Search-REM 1981 316 

 

 

 

Genetic Algorithm 4488 319
10 

Gradient Tabu Search 143/1053 333

Genetic Algorithm >100000 321

Cooperative Coevolutionary GA 20000 321 

 

 

 

 

 

 

 

Tabu Search-MS 200 60446 316

Tabu Search-REM 7961 316

Parallel Genetic Algorithm 9900 322

EASY Genetic Algorithm 6098 323

Breeder Genetic Algorithm 3608 323

20 
 

Gradient Tabu Search 220/2240 333

30 Gradient Tabu Search 293/3394 333

50 Gradient Tabu Search 470/6181 333 

 

The number of variables of the various functions was varied to study the behaviour of 

the new approach with respect to the dimensionality of the problem. In each case, the present 

approach found the absolute minimum. Naturally, the number of steps needed to determine 

the absolute minimum depends on the starting value. To obtain statistical results, for each 

case (function and dimension of the problem), 100 independent trials were carried out. Each 

trial corresponds to a new starting solution, chosen randomly within the search space.  
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For the Rastrigin function with two variables, the present approach needs about 42 

steps to find the global minimum. Within the search, about 42 function evaluations and seven 

first derivative evaluations are performed. The Hessians are computed about 3 times. Please 

note that in each first and second derivative evaluation, a vector of the dimension of the 

problem has to be computed. As expected, the number of steps increases with the dimension 

of the problem; however, the increase is considerably less than linear. If the dimension is 

increased by a factor of 25, the number of steps increases only by a factor of about 13. If the 

number of variables is below 30, the wall clock times needed to determine the global 

minimum are well below 1 s. For 30 and 50 variables, 1–2 s were needed.  

Table 6. Comparison with the literature for the Ackley function. The column “Evaluations” gives the function 
evaluations. For the present work it also comprises the sum of function, gradient and Hessian computations as 
second number. 

NDIM Algorithm Evaluations Source Wall clock 
time [sec] 

Random search 1257 324 3.3 
Differential evolution 311 324 

 

 

0.4 2 
Gradient Tabu Search 138/315 333 <<0.1 

Differential evolution 4214 324 14.8 
10 Gradient Tabu Search 499/2736 333 

 

<<0.1 

Differential evolution 9957 324 80 
20 Gradient Tabu Search 793/6334 333 

 

<<0.1 

Genetic Algorithm >100000 321  
Cooperative Coevolutionary GA 50000 321 

 

 

 

 

 

 

 

 
Breeder Genetic Algorithm 19420 323  

Easy Genetic Algorithm 13997 323  
Tabu Search-MS 100 22842 316  

Tabu Search-REM 17941 316  
Differential evolution 14957 324 222.7 

30 

Gradient Tabu Search 949/10197 333 ≈ 1 

Differential evolution 22557 324 888.9 
50 Gradient Tabu Search 1336/18482 333 ≈ 2 

 

For the Ackley function, the new approach needs more steps to find the global 

minimum but the increase of the number of steps with respect to the dimensions is again 

considerably lower than linear. It is important to note that the number of first and second 

derivate computations even increases less than the number of function evaluations. The Levy 

function seems to be the most complicated case. To determine the global minimum for four 

variables, the present approach needs already about 5917 steps. This is considerably more 
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than it needed for all other test cases. For the Branin, the Goldstein-Price, and the Hansen 

functions, a similar behaviour as for the Ackley and Rastrigin function is obtained. For the 

Griewangk function, the number of second derivative calculations decreases considerably if 

one goes from 2 to 10 dimensions. Additionally, the number of steps increases quite slowly. 

This happens since during the gradient optimization, the search jumps over various local 

minima. It seems that these local minima are surrounded by quite narrow valleys. 

Nevertheless, the global minimum was found in each run.  

Table 5

Table 5

 - Table 7

Table 7

 summarize comparisons with other optimization routines. An 

objective comparison of the computational efforts needed to find the global minima is only 

given by wall clock times taken on the same machine since the computational overhead for 

the steps varies from method to method. Since this is nearly impracticable, the number of 

function evaluation is normally taken for comparison. These are summarized in the column 

Evaluations of the tables. The data obtained within the present study were averaged over 100 

trial runs, but the numbers are rounded to integer. To estimate the effort for the present 

approach it has to be considered that a gradient or Hessian evaluation comprises the 

computation of a vector with the size of the dimension of the problem. Therefore, for the 

present approach, this column also gives the sum of all computed elements (=number of 

function evaluations + gradient evaluations * dimension + Hessian evaluations * dimension) 

to get a better insight into the computational effort. This is upper limit for the effort since 

various terms already computed for the function evaluation can be reused for the analytical 

gradients and Hessians. Additionally to the numbers given in  -  the 

convergence of the present approach is also compared with convergence of the differential 

evolution algorithm (Figure 2-10

Figure 2-10

, Figure 2-11).  

The Rastrigin function was often employed to test the efficiency of optimization 

routines291,292,314,315,316,319,320,321,322,323. On the basis of the number of function evaluations, the 

present implementation represents the most efficient algorithm if a Rastrigin function with 

two variables is used. Even if the number of evaluations used in the present approach includes 

gradient and Hessian computations only the Terminal repeller unconstrained subenergy 

transformation algorithm used by Jiang et al.314 needs fewer evaluations.  

compares the convergences of the GTS and of the Differential evolution algorithm for the two 

dimensional Rastrigin function. The Differential evolution algorithm runs were performed 

with the Mathematica324. It clearly demonstrates the excellent convergence of the GTS, which 

shows hardly any oscillation. The objective function of Differential evolution algorithm 

decreases much slower. Additional quite a few oscillations can be seen.  
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Table 7. Comparison with the literature for the Branin, the Goldstein-Price, and the Hansen functions. The 
column “Evaluations” gives the function evaluations. For the present work it also comprises the sum of function, 
gradient and Hessian computations as second number. 

Function Algorithm Evaluations Source 
Tabu Search-CJ 492 291 

Pure random search 4850 
Simulated Annealing 1 2700 

Multi-start 1600 
Simulated Annealing 2 505 

Tabu Search 492 
Paper work 144 

317 

 

TRUST 55 318 

 

 

 

 

Tabu Search-REM 192 
Tabu Search-MS20 333 

316

Mod. Annealing 144 317
Simulated Annealing 324 

Random search 15 
Differential evolution 10 

324

BR 

Gradient Tabu Search 27/69 333

Simulated Annealing 1 5439 
Pure random search 5125 

317 

 

 

 

 

 

 

 

 

 

 

 

Multi-start 4400 318
Tabu Search-REM 894 316

Simulated Annealing 2 563 
Tabu Search 486 

Mod. Annealing 486 

318

Enhanced Continuous Tabu Search 231 290
Directed Tabu Search 230 286
Tabu Search-MS 500 195 316

Paper work 112 317
Tabu Search-CJ 112 291

TRUST 103 318

GP 

Gradient Tabu Search 49/102 333

Random search 420 324
Simulated Annealing 412 324 

 

 

Differential evolution 291 324H 

Gradient Tabu Search 217/425 333
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The test runs made for a 10 and 20 dimensional Rastrigin function allow a comparison 

with previous modifications of the TS291,316 and various genetic algorithms319,321,322,323. The 

so-called Tabu Search-REM method316 is much better than the TS-MS 400 approach316; 

however, the number of evaluations needed by the present approach is about a factor of 2–3 

less. The present method also outperforms the genetic algorithms. For even higher 

dimensional Rastrigin functions, no other results could be found.  

 

 

 

 

sionalities.  

 

 

 

 

 

 

 

Figure 2-10. Comparison of the convergence of the algorithms for two dimensional Rastrigin function. The stars 
indicate the values of the objective function for the local minima which were found during the GTS. 

 

The thirty dimensional Ackley function was used as test case for some genetic 

algorithms321,323 and improved TS approaches316. To get more information, test runs were also 

performed with some algorithms implemented into the Mathematica 5.1 program package. 

These tests were performed with the Random search7,325,326,327 and the Differential 

evolution328,329,330, 331,332 approaches. While the former were only used for the two 

dimensional case, the latter were employed for all dimen

As already discussed the Ackley function seems to be a more difficult test case for the 

present approach since it needs considerably more steps to determine the global minimum of 

the Ackley function than for the Rastrigin function. Indeed, while for the Rastrigin function, 

the present approach outperformed nearly all methods if the number evaluations were 

compared, for the Ackley function it is still better than most other approaches but the 

differences are smaller. For thirty dimensions, the Differential evolution approach 

implemented in the Mathematica 5.1 needs 14957 function evaluations to find the global 

minimum. For the easy genetic algorithm proposed by Voigt323 13997 function evaluations 

were necessary. With 10197 evaluations (number of function evaluations + gradient 
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evaluations * dimension + Hessian evaluations * dimension), the present approach needs only 

a slightly smaller number. Please note that the number of function evaluation (949) and also 

the approximated number of steps (1010) are much smaller. The graphical plot given in 

 compares the number of evaluation and function evaluation of the GTS with the 

number of function evaluations used by the Differential evolution algorithm. Again, the 

convergence of the GTS is better even if the number of all evaluation of the GTS is compared 

with the number of the function evaluations of the Differential evolution algorithm.  

       - Differential  
            evolution  
         

 - GTS (func. eval.) 
    
         - GTS (eval.) 

2000 4000 6000 8000 10000 12000 14000
Number of evaluations
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evitcejbO
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Figure 2-11

Figure 2-11. Comparison of the convergence of the algorithms for thirty dimensional Ackley function. The stars 
indicate the values of the objective function for the local minima which were found during the GTS. 

 

 

 

 

 

 

 

 

 

 

 

 
While the present approach and the differential evolution ansatz taken from the 

Mathematica324 program package seem to be similarly efficient on the basis of the number of 

evaluations, if real wall clock times are compared, our approach seems to be much faster (1s 

in comparison to 222 s). This difference may result since for the present approach, the number 

of additional operations (beside the evaluations themselves) is quite small. Furthermore, it 

may result since many terms which appear in a function evaluation also occur in the gradients, 

i.e. they have to be computed only once. However, possible overhead within the Mathematica 

program, which represents a more general code for all kinds of computations, may also 

contribute. The present approach also seems to be more stable with respect to the parameters 

than the differential evolution ansatz. With the differential evolution ansatz sometimes the 

global minimum could not be reached at all. For some problems, this already happened with 

the standard parameters included in the Mathematica. In contrast, the present algorithm finds 

the global minimum also for nonoptimal fine tuning parameters. 

For the Hansen (H) and the Goldstein-Price (GP) functions, which are also often used 

as test cases286,291,311,312,314,315,316,317,318, a comparison between the various methods leads to 
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similar results as found for Rastrigin and Ackley functions. For the Branin (BR) function, the 

random search and the differential evolution show faster convergence than the GTS approach. 

2.1.4 Conclusions 

The GTS represents a metaheuristic, which tries to determine a global minimum of a 

function by the steepest descent—mildest ascent strategy. It combines algorithms developed 

to locate stationary points on quantum chemical hypersurfaces with the strategy of the TS. It 

uses a combination of the Steepest Descent and Quasi-Newton approach for a fast 

minimization to the next local minimum. To escape local minima via the mildest ascent, the 

diagonal elements of the Hessian are employed. For the steepest descent and the mildest 

ascent in each step, all variables of the function F(xi) are varied simultaneously. The actual 

direction is determined by a weighting procedure, which exploits the gradient vector elements 

and the diagonal elements of the Hessian. To ensure an efficient blocking of already visited 

regions despite the lower number of steps the GTS introduces Tabu Regions and Tabu 

Directions as elements for the Tabu List.  

Test computations with the Ackley, the Branin, the Goldstein- Price, the Griewangk, 

the Rastrigin, the Hansen, and the Levy functions in up to 50 dimensions show that the new 

approach outperforms most previous approaches on the basis of the number of function 

evaluations. Comparison with the differential evolution ansatz proves the efficiency of the 

present approach on the basis of wall clock timings. For these tests, the differential evolution 

implementation of the Mathematica324 program package was used.  

The present approach uses analytical first and second derivations. Consequently, its 

area of application is restricted to differentiable functions. Possible applications could lie for 

example in minimization routines for force field parameters or conformational searches with 

force fields.  

2.2 TSPA and GOTS 

In a preceding chapter the Gradient Tabu Search (GTS)333was introduced. It uses 

analytical gradients for a fast minimization to the next local minimum and the diagonal 

elements of the analytical Hessian to escape local minima. For the minimization a 

combination of the Steepest Descent and the Quasi-Newton methods is used334,335,336,337. To 

follow the modest ascent only the diagonal elements of the Hessian are employed but to 

determine the direction they are weighted by a linear ranking procedure. Moreover, novel 

concepts for the Tabu Directions (TD) were introduced to ensure an efficient blocking of 

already visited regions. The GTS can be classified as a multi-start method. Test computations 
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for well known functions showed that this new approach  converges much faster than other 

methods taken from the literature. However, while the exploitation of gradients and Hessians 

speed up the convergence of the TS considerably especially the Hessian and in some cases 

also the gradients may be difficult to compute or are even not available. This can be tackled 

by the two new approaches which are given in the present chapter. The GOTS (Gradient Only 

Tabu Search)338 still uses the gradients to achieve a fast convergence to the next local minima 

but instead of the Hessian the approach uses a grid of function evaluations to follow the 

modest ascent. In the TSPA (Tabu Search with Powell’s Algorithm)338 also the gradients are 

replaced by a grid of function evaluation. 

These two new nonlinear global optimization routines are also based on the Tabu 

Search strategy which tries to determine the global minimum of a function by the steepest 

descent - mildest ascent strategy. The new algorithms are explained and their efficiency is 

again compared with other approaches by determining the global minima of various well-

known test functions with varying dimensionality. These tests show in most cases that the 

GOTS possesses a much faster convergence than global optimizers taken from the literature. 

The efficiency of the TSPA method is comparable to that of genetic algorithms. 

2.2.1 Description of algorithms 

The search is started from a current solution F(x1, x2,…, xNDIM), where NDIM 

represents the dimensionality of the problem. A set of neighbours is generated by applying 

“moves” according to a GTS scheme. Combinations of the Steepest Descent and the Quasi-

Newton methods335 which are known to be very efficient for locating the next local minimum 

were already successfully applied in the GTS approach and were consequently also adopted in 

the GOTS. As the GTS, the GOTS starts with the Steepest Descent approach and switches to 

the Quasi-Newton method if the gradient value becomes small enough. Since gradient may 

sometimes not be available an approach solely based on function evaluation was also 

developed. In the present implementation the Direction Set Method with Powell’s 

Algorithm337 was used, whose choice of successive directions does not involve explicit 

computations of the function’s gradient. The main idea of all Direction Set methods is using 

the some instructions for updating the set of directions as the method proceeds. This set either 

includes some very good directions that leads far along narrow valleys, or includes some 

number of “non-interfering” directions with the special feature (more conventionally called 

conjugate directions) that minimization along one direction is not “damaged” by subsequent 

minimization along another one. In the case of a set of linearly independent, mutually 

conjugate directions a boundless cycling through the set of directions can be avoided. Then, 
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one pass of line minimizations will put it exactly at the minimum of a quadratic form 

function. For functions that are not exactly of quadratic form, it does not exactly lead to the 

minimum; but repeated cycles of line minimizations in due course converge quadratically to 

the minimum. 

 To reduce the costs the previously developed GTS only exploits the diagonal 

elements of the Hessian to estimate step size and direction according to a linear ranking 

procedure. In the GOTS and TSPA only function evaluations are used to estimate step size 

and directions to reduce expenses concerned with necessity of Hessian calculation. For the 

first step of the modest ascent all functional values and  are computed to determine 

the general direction of the following moves. They are obtained by varying each dimension 

by a user defined step size : 
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The most advantageous direction for each variable is then determined according to: 
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Please note that the Di’s are only needed for the first step of the modest ascent part since the 

general direction is clear afterwards. Figure 2-12 illustrates the choice process of the most 

promising direction for each variable and moving with the ranked steps that gives the 

possibility to discard the unpromising solutions and decreases the number of function 

evaluations needed to escape the optimality valley.  
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Figure 2-12. Modest ascent strategy of GOTS and TSPA on contour plot of the Schwefel function. a) the search 
path: start solution 1 → local minimum 2 →neighbourhood solution 3→next local minimum 4; b) computation 
of the functional values around the local minimum at the beginning of the modest ascent strategy; c) moving 
with the ranked steps within the promising area. 

 
In Eq. 14 rankmax and rankmin can be user defined parameters but are normally set to 

0.1 and 1. Fzmax and Fzmin are the maximal and minimal Fzi values, respectively. If the 

differences between maximal and minimal function values become too small this ranking 

scheme leads to too small values for the larger factors ranki. Therefore, in cases with  

Fzmin-Fzmax < NDIM, rankmin is redefined as  

⎟
⎠
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⎜
⎝
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−=
NDIM

FzFzrankrank maxmin
maxmin  (15) 

This strategy is followed until the new calculated function value is smaller than the 

previous one which indicates that the barrier to the next valley is crossed. From this point the 

next local minimum is located using the minimization strategy explained above.  

To avoid reverse moves and cycles within the search the TL, the TR, and the TD as it 

shows Figure 2-13 are used which were already successfully employed in the GTS method333 

and which related to ideas introduced by F. Glover339.  The TR and the TD are defined as in 

the GTS method (Eqs.7, 8).  
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Figure 2-13. TL, TD, TR. 

The last element of the GOTS and the TSPA represents the DS for the detection of 

promising areas to select new starting points in the solution space. For GOTS and TSPA 

diversification is performed in the same way as in GTS.  
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LLooccaattee++SSttoorree    
 //Find next local minimum 
 Steepest Descent and/or Quasi-Newton 

/or Powell’s methods 
 Add minimum solution to the Tabu List 
 Testing lower and upper bounds 
IF (variables out of range) { 
 Diversification search 
 GOTO Locate+Store 
}ELSE{ Store minimum in the Result List} 
IF (solution does not improve  

after a number of iterations){ 
 Diversification search 
 GOTO Locate+Store } 
IF (we obtained the same best results){ 
 Diversification search 
 GOTO Locate+Store } 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-14. Pseudo-code of GOTS and TSPA. 

Figure 2-14

The flowchart of both methods is given in Figure 2-1. Sometimes it is efficient to use 

DS as an initialization unit for reasons given above. After the initialization one starts with the 

search for improved minima. This part consists of local searches that are applied to obtain the 

nearest local minima and the modest ascent searches used to escape to the next valley. For the 

modest ascent search weighted function values can be used. In between the solution vector 

and the Tabu List are updated. If the solution does not improve after a given number of 

iterations or if all neighbourhood solutions are already set tabu the search for improved 

minima is aborted and the diversification search is performed to obtain new starting points. A 

pseudo-code of the GOTS and the TSPA algorithms is presented in . 

2.2.2 Investigation of the efficiency of the new approaches  

Various well known multi-minima functions were 

used285,291,292,311,312,313,314,315,316,317,318,340 to prove the efficiency of the GOTS and the TSPA  

approaches. It also allows comparing their abilities with already known methods. In addition 

to test functions which were used for the investigation of the GTS method the Rosenbrock 
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(Rbn), the DeJoung (DJ), the Zakharov (Zn), and the Trid (Trn) functions were tested. 

Additionally, a functional form which was introduced to mimic conformational searches341 

was used to test the efficiency of the GOTS method for such problems. The corresponding 

expressions are given in Appendix A where the global minima of the functions are also given. 

One measure for the efficiency of a global optimization routine is the number of steps 

(operations) being necessary to reach the global minimum of the above mentioned functions. 

For the present study such numbers were obtained by running the simulations over a specific 

period and determining afterwards how many steps were made until the global minimum was 

passed for the first time. For the computation double precision variables were used and the 

global minima were always reached within numerical accuracy. The convergence of the 

optimization routines which is another measure for the efficiency of the algorithm was also 

tested. 

2.2.2.1   Parameters 

 The proposed algorithms have several parameters and for a solid assessment of the 

success of the new algorithms their influence on the convergence of the optimization routine 

has to be tested. The parameters are reported in Table 3

Table 3

. The description of parameters and 

their influence on the problem are already given in the preceding chapter on the GTS 

approach. The test results for the GOTS and the TSPA are given below.  

The parameters rankmax and rankmin are ranking parameters from linear ranking 

procedure (Eqs. 14, 15). They were always set to 0.1 and 1.0. A noticeable influence on the 

convergence was only found for parameters RTR, alam, Δxi, and α. Their effects are studied in 

Table 8 and illustrated in Figure 2-15 - Figure 2-18 using the Rastrigin and the Ackley 

function as examples. The values for the GTS which were taken from the previous chapter333 

are given for an easier comparison. To estimate the influence on the convergence the tables 

show how often the function, its gradient, and the diagonal elements of its Hessian had to be 

computed until the global minimum was reached. The numbers are averaged over 10 test runs. 

The way of the calculation or choice of the parameter RTR is identical to the manner in the 

GTS approach.  Due to these reasons a value of RTR = 0.1 seems again to be a good choice for 

a large variety of different problems in the cases of the GOTS and TSPA methods. 

A similar behaviour is found for the parameter α (0.0 < α ≤ 1.0) which determines the 

size of the cone of the tabu directions333. Similar to large tabu regions too large cones restrict 

the flexibility of the search. The search must take detours to the global minimum since more 

direct ways are set tabu by accident. This is in line with the finding that for quite large cones 

the minimum is not found anymore (not shown in ). Within our tests α =0.4 was found 
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to be a good choice. This value was used for all test cases for GOTS and TSPA discussed 

below. 

The value of the first step size in the line search performed in the Steepest Descent and 

the Quasi-Newton part is defined by the parameter alam. It therefore influences only the GTS 

and the GOTS. For small values the local minimum search becomes more accurate, but more 

steps are necessary. Increasing alam from 0.2 to 2.0 the necessary number of function and 

gradient evaluations decreases considerably while the absolute minimum of both functions are 

still always found. The speed up may result since for a larger step size narrower and shallower 

minima are missed. Since deeper minima are of main interest this is no disadvantage. With a 

value of alam = 1.0 (full Newton step) one is on the safe side for all problems tested so far 

without a tremendous loss of efficiency. 
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Rastrigin function 
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Figure 2-15. Influence of Δxi and α parameters on the sum of evaluations for the thirty dimensional Rastrigin 
function. 
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Figure 2-16. Influence of Δxi and α parameters on the sum of evaluations for the thirty dimensional Ackley 
function.
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Table 8. Influence of user-defined parameters for the thirty dimensional functions. 

TSPA GOTS GTS Function Parameter Value 
Function Function Gradients Function Gradients Hessian 

1.0 20095 1398 39 863 73 49 

0.2 15977 1386 40 366 34 42 RTR 

0.1 16128 1295 40 293 34 69 

2 1423 48 388 38 62 

1 1295 40 293 34 69 

Rastrigin 

alam 

0.2 

- 

1362 74 387 56 62 

1.0 15974 1509 233 1596(60%) 277 60 

0.2 13769 1211 188 1173 219 108 RTR 

0.1 13033 3230 317 949 228 81 

2 1273 206 1095 271 58 

1 1189 186 949 228 81 

Ackley 

alam 

0.2 

- 

1789 464 1177 406 114 
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The dependency of the total number of calculations (number of function evaluations + 

number of gradient evaluations) on Δxi is shown in Figure 2-15

Figure 2-15

 and Figure 2-16

Figure 2-16

. The 

parameter Δxi gives the step size during the modest ascent search. With a larger step size 

fewer steps are necessary to leave a local minimum; however, the number of steps needed to 

reach the global minimum could rise anyway since the search for the lowest transition state to 

the next local minimum becomes less accurate. This is seen if the GOTS is used to find the 

global minimum of the thirty-dimensional Rastrigin function. For Δxi= 0.1 1295 function 

evaluations and 40 gradient evaluations are necessary to reach the global minimum. For Δxi= 

0.3 only 647 function evaluations and 33 gradient evaluations are necessary but for Δxi= 0.5 

the effort again increases to 1396 and 79. The influence of Δxi on the speed and the cost of the 

optimum reaching is large; the global minimum can even be missed as seen for the GTS 

method. The value Δxi= 0.1 is recommended as a standard value.  

For the Ackley function similar trends are found for all discussed parameters. In 

summary, Table 8

Table 8

,  and  indicate that the previous GTS and the new 

approaches GOTS and TSPA seem to be quite stable with respect to the actual values of the 

fine tuning parameters. Only the number of necessary steps varies, but the global minimum is 

always found. 

2.2.2.2   Tests of the efficiency 

Table 9

Table 9

Table 9

 allows a comparison of the three different Tabu Search algorithms the TSPA, 

the GOTS, and the GTS. The values for the GTS333 are given for an easier comparison. As 

test cases different functions often applied for such purposes were used and the 

dimensionality of the functions was varied. As ,  gives how often the function, 

its gradient, or the diagonal elements of its Hessian had to be computed until the global 

minimum was reached. The computation of the gradient or the diagonal elements of the 

Hessian represents a calculation of a vector of the dimension NDIM. To take this effort into 

account  also contains the columns “Sum” which give the sum of all necessary 

evaluations. For the GOTS “Sum” is given as the number of function evaluation plus the 

number of gradient evaluation times NDIM. For the GTS “Sum” additionally includes the 

number of Hessian evaluations times NDIM. To perform the tests on an equal footing the 

same parameter set were used for all approaches (α=0.4, Δxi=0.1, RTR=0.1, alam = 1.0). For 

each case (function and dimension of the problem) 100 independent trials were carried out 

and averaged to obtain statistical results. Each trial corresponds to a new starting solution, 

chosen randomly in the search space.    
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Table 9. Comparison of the three different Tabu-Search algorithms. All values are averaged over 100 trial runs. Percentages in brackets indicate the probability to find the 
global minimum. 

TSPA GOTS GTS Test function NDIM 
Function Function Gradient Sum Function Gradient Hessian Sum 

2 230.4 46.18 10.95 68 42.07 6.88 2.76 61 

10 3765.24 304.07 28.21 586 143.95 29.98 61.09 245 

20 9084.35 820.17 33.92 1498 220.40 33.30 67.72 2241 

30 16128.21 1295.08 40.36 2506 293.36 34.23 69.15 3394 
Rastrigin (Rn) 

50 29604.20 2412.14 50.08 4916 470.43 38.17 76.06 6182 

2 265.33 214.45 78.50 372 138.40 63.54 24.71 315 

10 3366.52 826.98 196.91 2796 499.05 185.12 38.58 2736 

20 9100.18 1662.23 253.16 6725 793.17 214.90 62.14 6333 

30 13033.77 3230.11 317.05 12742 949.12 227.52 80.74 10197 
Ackley (AKn) 

50 20764.25 3808.75 225.42 15080 1335.84 228.74 114.19 18482 

2 2364.70 1310.44 165.67 1641 269.32 132.49 1236.36 3007 

10 48960.60 1831.97 200.35 3835 944.21 669.85 568.78 13330 Griewangk (Gn) 
20 61902.11 540.60 13.60 812.6 1062.07 207.7 942.18 24060 

4 21994.00 (5%) 11611.08 (75%) 5817.01 34879.1 7166.64 4586.28 868.90 28987 
Levy (Ln) 7 37778.22 (9%) 15000.81 (54%) 10064.83 85454.6 5716.27 4931.76 711.74 45221 

Branin (BR) 2 294.45 284.03 23.65 331 26.83 11.67 9.40 69 

Goldstein-Price (GP) 2 3833.19 79.87 20.15 120 49.27 16.13 10.08 102 

Hansen (H) 2 2872.55 614.14 154.31 923 387.52 117.46 211.17 1046 
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Overall Table 9 shows that the GTS and the GOTS are considerably more efficient 

than the TSPA. This could be expected since gradient-based approaches are known to be 

much more efficient for minimization problems. The difference between both the GOTS and 

the GTS depends on the function and its dimensionality (NDIM). Generally, the GTS seems to 

be more efficient for small NDIM but for larger NDIM the GOTS becomes the most efficient 

approach. The differences between the numbers of gradient evaluations indicate that both 

approaches take different ways to the global minimum (see below).  
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Figure 2-17. Dependency of sum of evaluations on the dimension of the Rastrigin function. 

Figure 2-17

For the Rastrigin function the GTS requires a lower number of evaluations than the 

GOTS for NDIM=2 and 10 but for the higher dimensionalities the GOTS becomes more 

effective. In all cases the dependency of the sum over all evaluations (column “Sum”) on 

NDIM is about linear but with varying prefactors. For the Rastrigin function ( ) the 

sum of all evaluations needed by the GOTS increases by a factor of about 8 if the dimension 

increases from 2 to 10. Going from NDIM=10 to 50 the sum of all evaluations increases from 

586 to 4916, i.e. again by a factor of about 8. The GTS approach behaves very similar. For the 

TSPA algorithm the dependency is much stronger. Going from 2 to 10 dimensions the sum of 

evaluations increases by a factor of 16, i.e. the increase is nearly quadratic. However, going 

from 10 to 50 dimensions the sum of evaluations increases only by a factor of 8.  
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Figure 2-18. Dependency of sum of evaluations on the dimension of the Ackley function. 

Figure 2-18
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Figure 2-19. Comparison of the convergence of the algorithms for thirty dimensional Ackley function. The 
symbols indicate the values of the objective function at the local minima which were found during the GOTS. 

 

For the Ackley function similar trends are found but the slope of the dependency on 

the dimensionality ( ) is considerably steeper indicating that this function 
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represents a more complicated problem. This is also seen from the absolute numbers given in 

Table 9

Table 9

. An insight into the convergence of the various approaches is also given in Figure 

2-19

Figure 2-19

Figure 

2-19

. It sketches the computed function values of the Ackley function along a given search. 

All approaches start from the same point. Of course the taken routes to the global minimum 

depend on the starting points but  gives a representative example. It is directly 

seen that although starting from the same starting point GTS, GOTS, and TSPA take quite 

different routes. The route taken from the GOTS converges most rapidly and already after 

about 3000 evaluations the functional values decreases to about 1. For the GTS about 3500 

evaluations are needed and for the TSPA more than 6000 evaluations are necessary. 

 also proves that all approaches are capable to escape low lying regions quite efficiently 

and shows that they converge more rapidly than the differential evolution 

algorithm328,329,330,331,332 implemented in the Mathematica324 (see below).  

 shows that the Griewangk function seems to be ideally suited for the GOTS. It 

finds the global minimum very efficiently. Going from 10 to 20 dimensions the number of 

necessary evaluations even decreases. This happens since the search jumps over various local 

minima which are very narrow. This does not represent a disadvantage since only the global 

minimum, which was found in each run, is be of interest. For the Griewangk function the 

GTS and the TSPA need considerably more evaluations than for the Rastrigin or the Ackley 

functions. This again shows that the three approaches take completely different routes 

although similar strategies are used. 

The Levy function seems to be a difficult case for all approaches. However, while the 

GTS still finds the global minimum in all cases for NDIM=4 the TSPA finds the minimum 

only in 5 % of all test runs. For NDIM=7 it finds the global minimum only in 9 % of the 

cases. The GOTS finds the minimum in only 75 % (NDIM=4) and 54 % (NDIM=7). If 

Δxi=1.0 instead of 0.1 is used the GOTS and the TSPA also always find the global minimum. 

In this case for NDIM=4 the GOTS needs 3403 evaluations to reach the global minimum 

while 10584 are needed for NDIM=7. The TSPA needs 18507 and 38930 evaluations, 

respectively.  

For the Branin function the outcomes are very similar to those for the Rastrigin 

function. The Goldstein-Price function seems again to be more difficult for the TSPA. The 

numbers indicate that the Hansen function is a difficult test function for all approaches. For 

the two latter functions the influence of the step size is quite strong for the TSPA approach. 

Increasing Δxi to about 1.0 the number of function evaluations drops to about 335 and 533, 

respectively. GOTS tests for the DeJoung, the Rosenbrock, the Zakharov, and the Trid 

functions also underline the efficiency of this approach (Table 13). 
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Table 10 - Table 13 summarize comparisons with optimization routines taken from the 

literature. An objective comparison of the computational effort needed to find the global 

minima is only given by wall clock times taken on the same machine since the computational 

overhead for the steps varies from method to method. Since this is nearly impracticable the 

number of function evaluations is normally taken for comparison. They are summarized in the 

column Evaluations of the tables. For GOTS and GTS the tables also give the sum over all 

necessary evaluations (see Table 9). The data obtained within the present study were averaged 

over 100 trial runs and the numbers are rounded to integer. A comparison of the convergences 

of the GTS, the GOTS, the TSPA, and the differential evolution algorithm as implemented in 

the Mathematica program324 were already given in Figure 2-19.  
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Table 10. Comparisons with the literature for the Rastrigin function. All values are averaged over 100 trial runs. 
The column “Evaluations” gives the function evaluations. For the GTS it comprises the sum of function, gradient 
and Hessian computations as second number. For the GOTS it also comprises the sum of function and gradient 
computations as second number. 

NDIM Algorithm Evaluations Source 
Pure random search 5964 315 

Fast annealing evolutionary algorithm 544 314 

 

 

 

 

 

Random tunneling algorithm 383 
TRUST 59 

318

Tabu Search 540 291
Differential evolution 489 

Random search 610 
Simulated Annealing 260 

324

GTS 42/61 333
GOTS 45/66 

2 

TSPA 230 
338

Tabu Search-MS 400 11624 
Tabu Search-REM 1981 
Genetic Algorithm 4488 

316 

 

 

 

 

 

Differential Evolution 14017 331
Differential Evolution – Quasi Newton 13955 344

GTS 143/1053 333
GOTS 276/656 

10 

TSPA 3765 
338

Genetic Algorithm >100000 321
Cooperative Coevolutionary Genetic Algorithm 20000 322 

 

 

 

 

 

 

 

 

Tabu Search-MS 200 60446 
Tabu Search-REM 7961 

316

Parallel Genetic Algorithm 9900 322
EASY Genetic Algorithm 6098 

Breeder Genetic Algorithm 3608 
323

Differential Evolution 23870 331
Differential Evolution – Quasi Newton 15200 344

GTS 220/2240 333
GOTS 553/1387 

20 
 

TSPA 9084 
338

GTS 293/3394 333
GOTS 1397/3776 30 
TSPA 16128 

338 

 GTS 470/6181 333
GOTS 1876/5079 50 
TSPA 29604 

338 

 

-86- 



                                                                                                                                                                              
Table 11. Comparisons with the literature for the Ackley function. All values are averaged over 100 trial runs. 
All tests were carried out on the same computer. The column “Evaluations” gives the function evaluations. For 
the GTS it comprises the sum of function, gradient and Hessian computations as second number. For the GOTS 
it also comprises the sum of function and gradient computations as second number. 

NDIM Algorithm Evaluations Source Wall clock 
time [sec] 

Random search 1257 3243.3 
Differential evolution 311 

324 

 

 

 

0.4 
GTS 138/315 333 <<0.1 

GOTS 164/300 <<0.1 
2 

TSPA 265 
338

<<0.1 
Differential evolution 4214 324 14.8 

GTS 499/2736 333 

 

 

<<0.1 
GOTS 649/2536 <<0.1 

10 

TSPA 3367 
338

<<0.1 
Differential evolution 9957 324 80 

GTS 793/6333 333 

 

 

<<0.1 
GOTS 968/5187 <1 

20 

TSPA 9100 
338

<1 
Genetic Algorithm >100000 321  

Cooperative Coevolutionary GA 50000 322 

 

 

 

 

 

 

 
Breeder Genetic Algorithm 19420  

Easy Genetic Algorithm 13997 
323

 
Tabu Search-MS 100 22842  

Tabu Search-REM 17941 
316

 
Differential evolution 14957 324 222.7 

GTS 949/10197 333 ≈ 1 
GOTS 1189/6768 ≈ 1 

30 

TSPA 13034 
338

≈ 1 
Differential evolution 22557 324 888.9 

GTS 1336/18482 333 

 

≈ 2 
GOTS 1792/11785 ≈ 1 

50 

TSPA 20764 
338

≈ 3 
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Table 12. Comparisons with the literature for the Branin and the Goldstein-Price functions. All values are 
averaged over 100 trial runs. The column “Evaluations” gives the function evaluations. For the GTS it comprises 
the sum of function, gradient and Hessian computations as second number. For the GOTS it also comprises the 
sum of function and gradient computations as second number. 

Function Algorithm Evaluations Source 
Tabu Search-CJ 492 291 

Pure random search 4850 
Simulated Annealing 1 2700 

Multi-start 1600 
Simulated Annealing 2 505 

Tabu Search 492 
Paper work 144 

317 

 

 

 

 

 

 

TRUST 55 318
Tabu Search-REM 192 
Tabu Search-MS20 333 

316

Mod. Annealing 144 317
Simulated Annealing 324 

Random search 15 
Differential evolution 10 

324

GTS 32/69 333
GOTS 44/65 

BR 

TSPA 203 
338

Simulated Annealing 1 5439 
Pure random search 5125 

Multi-start 4400 
317 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tabu Search-REM 894 316
Simulated Annealing 2 563 

Tabu Search 486 
Mod. Annealing 486 

317

Enhanced Continuous Tabu Search 231 290
Differential Evolution 18123 331

Differential Evolution-Quasi Newton 14781 344
Simulated Annealing 563 320
Directed Tabu Search 230 286
Tabu Search-MS 500 195 316

Paper work 112 317
TRUST 103 318

GTS 49/102 333
GOTS 52/73 
TSPA 336 

338

C-RTS-min 171 283
ECTS 231 
DOPE 248 
ESA 783 

290

CTSSmultiple 119 312

GP 

CHA 259 342
 

-88- 



                                                                                                                                                                              

The Rastrigin function was often employed to test the efficiency of optimization 

routines291,292,314,315,316,319,321,322,323. According to the number of function evaluations or also to 

the number of total evaluations GTS and GOTS performs much better than the approaches 

taken from the literature (Table 10). The Terminal Repeller Unconstrained Subenergy 

Transformation algorithm318 includes gradient computations as GTS or GOTS but still needs 

20 % more function evaluations. The number of total evaluations was not given in the 

literature. The TSPA needs more evaluations but is still considerably faster than e.g. the Fast 

annealing evolutionary algorithm or the original Tabu Search implementation291. The test runs 

made for the 10- and 20-dimensional Rastrigin function allow a comparison with several 

previous modifications of the Tabu Search291,316 and various genetic algorithms319,321,322,323. 

The so called Tabu Search-REM method316 is much better than all previous Tabu Search 

approaches316. Nevertheless, the GTS and the GOTS are still considerably faster. The TSPA 

approach needs more function evaluations than the Tabu Search-REM. GOTS and GTS also 

outperform the genetic algorithms. For even higher dimensional Rastrigin functions no other 

tests could be found.  

The thirty dimensional Ackley function (Table 11) was also used as test case for 

genetic algorithms321,323 and improved Tabu search approaches316. Please note, that the GOTS 

results were obtained with xi=0.5 while xi=0.1 was used for GTS and TSPA. All other settings 

are equal to those employed in Table 9. To get more information the Random search7,325,326,327 

and the Differential evolution328,329,330,331,332 approach implemented in the Mathematica 5.1 

program package were also used. While the former were only used for the two dimensional 

case the latter were employed for all dimensionalities. The differences between the various 

approaches are similar to those found for the 20-dimensional Rastrigin function. For all 

approaches the Ackley function seems to be a more difficult problem than the Rastrigin 

function.  
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Table 13. Comparisons with the literature for the Hansen, the DeJoung, the Rosenbrock and the Zakharov 
functions. All values are averaged over 100 trial runs. The column “Evaluations” gives the function evaluations. 
For the GTS it comprises the sum of function, gradient and Hessian computations as second number. For the 
GOTS it also comprises the sum of function and gradient computations as second number. 

Function NDIM Algorithm Evaluations Source 
Random search 420 

Simulated Annealing 412 
Differential evolution 291 

324 

 

 

 

GTS 217/425 333
GOTS 321/496 

H 2 

TSPA 534 
338

ECTS 338 311
DOPE 131 294 

 

 

 

 

CTSSmultiple 155 312
CHA 371 342

DJ 3 

GOTS 23/62 338
ECTS 15720 (85%) 311
DOPE 8695 294 

 

 

 

 

 

 

 

ESA 12403 290
DTSAPS 9037 (85%) 286

Differential Evolution 67310 331
Differential Evolution-QN 16349 344

Simulated Annealing 12403 320
CGA 21563 (80%) 343

Rbn 10 

GOTS 379/1629 338
ECTS 4630 311
DOPE 5133 294 

 

 

 

 

 

Differential Evolution 10088 331
Differential Evolution-QN 10013 344

Simulated Annealing 15820 320
CGA 6991 343

Zn 10 

GOTS 61/161 338
GOTS 38/93 338

5 
EM without LOCAL procedure 968 345

GOTS 125/745 338 

 

 

Trn 

20 
EM without LOCAL procedure 43354 345

Deterministic algorithm 168 341
7 

GOTS 131/271 338 

 

 

 

 

Deterministic algorithm 497 341
10 

GOTS 192/412 338
Deterministic algorithm 174857 341

Test function for 
conformational 

search 

20 
GOTS 2038/5378 338
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On the basis of the number of evaluations GTS and TSPA seem to be similar in efficiency to 

the differential evolution ansatz taken from the Mathematica 5.1 program package. However, 

if real wall clock times are compared our approaches needs considerably less time (1 second 

in comparison to 222 seconds). This difference may arise since for the present approaches the 

number of additional operations (beside the evaluations themselves) is quit small, but it may 

also result from the implementation and the employed computer. Another advantage of our 

approaches is their stability with respect to the fine tuning parameters. They find the global 

minimum also for nonoptimal fine tuning parameters. In contrast the differential evolution 

ansatz sometimes misses the global minimum if the default parameters implemented in the 

Mathematica 5.1 are used. The differences in the convergence were already discussed in the 

context of Figure 2-19. 

The investigations performed with the Branin, the Hansen, the Goldstein-Price, the 

Trid, the Rosenbrock, the DeJoung, and the Zakharov functions lead to results similar to those 

found for Rastrigin and Ackley function (Table 12-Table 13

Table 13

). For the Branin, the Hansen and 

the Goldstein-Price functions was employed Δxi= 1.0 as more efficient for GOTS and TSPA.   

The GOTS method was additionally applied to a functional form which was 

introduced to mimic conformational searches341. The results are convincing ( ). The 

global minimum is always found quite effectively. The larger numbers for NDIM=20 result 

since the number of computations vary considerably. They range from about 900 to about 

8000 within the 100 trial runs.  

2.2.3 Conclusions  

Two new global optimization routines; the Gradient only Tabu Search (GOTS) and the 

Tabu Search with Powell’s Algorithm (TSPA) are described in this chapter. They are based 

on the Tabu Search strategy which tries to determine a global minimum of a function by the 

steepest descent - mildest ascent strategy. In this strategy the steepest descent is followed to 

find the next local minimum. To escape the local minimum the mildest ascent is used. 

Already visited regions are set tabu using a Tabu List which memorizes the already visited 

regions. The GOTS uses a combination of the Steepest Descent and the Quasi-Newton 

method to find the next local minimum. A step-wise approach is employed to realize the 

modest ascent strategy. The TSPA uses the same implementation for the modest ascent 

strategy but Powell’s algorithm for the steepest descent part, i.e. the TSPA only needs 

function evaluations but no gradients. The algorithms are explained and their efficiency is 

compared to other approaches by determining the global minima of various well-known test 

functions. These tests show that the GOTS is more efficient than previous global optimizers. 
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For functions with higher dimensionality it is even more efficient than the previously 

developed GTS which uses the diagonal elements of the Hessian to escape from a local 

minimum via the modest ascent. The efficiency of the TSPA is comparable to Genetic 

Algorithms. Test computations also indicate that the GOTS is an efficient approach for 

conformational searches.  

2.3 Conclusions 

This chapter shows that the new approaches: GTS, GOTS, and TSPA can be 

efficiently applied to the optimization of continuous multiminima functions. These techniques 

can be useful for engineers or scientists, who are interested in the global solution but also 

nearby local optima. Efficient results were obtained within a reasonable amount of 

computational time. The proposed approaches are flexible and easy to use. Moreover, the 

proposed approaches could be enhanced even further if more sophisticated descent method 

and diversification strategies are applied instead.  

Figure 2-20

Figure 2-20. Graphical illustration of convergence of the algorithms. 

The  gives the graphical illustration of convergence of the all new 

approaches described above in comparison with Differential Evolution, Linear and Quadratic 

convergences. The dependency of sum of evaluations on the dimension of the Ackley 

function for GOTS it is close to linear. It is obvious that the GOTS method achieves better 

solutions than already known pure and hybrid global methods, as well as GTS and TSPA 

methods.  
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In order to test the appropriateness of the GOTS method for molecular geometry 

problems, the optimization of a function with a functional form similar to general potential 

energy functions and whose global minimum is known was carried out. The number of its 

local minima increases exponentially with the size of the problem, which characterizes the 

principal complexity of the minimization of the molecular potential energy functions. The 

utilization of a GOTS guarantees the global optimality and shows the difficulty in obtaining 

the global minimum of such function. It was successfully applied to the n-chain problem (n = 

7, … , 20) with decided superiority over Deterministic algorithm that uses the Branch and 

Bound scheme with techniques of interval analysis to provide the lower bounds. In all the 

cases the global minimum was obtained and the amount of function evaluations required 

determining the global minima increases by a factor of about 11 if the dimension increases 

from 10 to 20 whereas this factor for Deterministic algorithm is 352.  

The examples show that the GOTS is able to provide solutions to difficult global 

optimization problems with minimal computational effort. The algorithm can be suitably 

modified to incorporate more rigorous mechanisms to handle very large-scale problems. 

Because of problem-specific knowledge GOTS deals with variables and constraints 

effectively. However, the trade-off between effectiveness and generality requires careful 

consideration, and the junction with other techniques is necessary in order to built general 

methodology. The recommended default parameters were given as appropriate for several test 

cases. Large-scale test cases show that the initial parameter settings for GOTS may be 

overcautious; however, in any case, they locate the global optima quite rapidly and with high 

probability. The variable choice and parameter settings of GOTS is always problem 

dependent. The optimal parameter values may require some adjustment to starting values 

indicated in this chapter. As is obvious from the preceding discussion, GOTS determines the 

best energy minimum of the molecular geometry problems efficiently. The next chapter 

presents details for applying GOTS to chemical optimization problems on potential 

hypersurfaces and provides a systematic approach to variables choice and setting the 

adjustable parameters. 
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Chapter 3 Application and Discussion 

3.1 Introduction 

An efficient search for the global minimum of a highly dimensional function with 

many local minima is central for the solution of many problems in computational chemistry. 

Well known examples for such global optimization problems10 are the conformational search 

for molecules with a high number of freely rotatable bonds346,347, the optimization of the 

parameters of a force field or the determination of all possible reaction paths between 

reactants and products348,349,350. Conformational analysis is the study of molecule 

conformations and their influence on molecular properties.  Fundamental for all 

conformational analysis is the search for the most important conformers of the molecule. This 

requires the location of the corresponding energy minima309,351 on the potential energy 

surface (PES)352. In most cases the energetically lowest lying conformers are the most 

important ones, since they are populated at e.g. room temperature and, hence determine most 

of the properties of the molecule353,354.  

Search for the energetically lowest lying conformer means to find the global energy 

minimum of the energy hypersurface of the molecule. Hence it is a global optimization 

problem in which the potential energy function is the objective function and the coordinates, 

that are used to represent the conformation of the molecule, are the variables. For larger 

molecules with many freely rotatable single bonds the number of minima may be so large that 

it is nearly impossible to find all of them. In order to locate the global energy minimum or to 

locate the lowest minima, a large number of starting conformations that are equally 

distributed on the energy surface is generated. Each of them is minimized using local 

optimization techniques355 to the nearest local minima, and then all duplicated structures are 

rejected.  Even for small molecules the disclosure of the global energy minimum or all low 

energy conformations in a multi-dimensional PES is a problem that requires considerable 

computational effort. A complete search is unrealizable since the search space increases 

exponentially with the number of degrees of freedom (e.g. torsion angle), which is typically 

proportional to the size of the molecule. It can be referred to nondeterministic polynomial-

time hard problems356, where the total number of possible conformations increases 

exponential with the total number degrees of freedom. The time required to solve it increases 
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exponentially with the size of the molecule. This is known as combinatorial explosion357. 

Therefore, to explore the complete conformational space and to obtain all the low energy 

conformations at tractable computational cost some specialized conformational search 

algorithms are needed. Over the past several years, a multitude of conformational search 

techniques have been developed for this purpose358,359,360,361,362,363,364,365. A brief review of 

some of the methods is given below. 

3.1.1 Conformational search techniques 

Conformational search methods can be roughly divided into stochastic and 

deterministic techniques. Stochastic methods are optimization algorithms which incorporate 

probabilistic (random) elements to locate the global minimum either in the problem data or in 

the algorithm itself, or in both. Hence there is no natural endpoint of the procedure. In the 

deterministic approach the values of the objective function are assumed to be exact, and the 

computation is completely determined by the values sampled so far.  

• Systematic (or grid or exhaustive) search methods366,367 posses as first step the generation 

of a large number of starting geometries using combinations of selected values of variable 

internal coordinates. In most cases only the torsion angles, which describe the rotation 

around the single bonds are used. Each torsion angle is systematically incremented by a 

fixed amount until all possible combinations of torsion angles for the chosen increment 

have been generated.  Then each structure is subjected to an energy minimization to yield 

the corresponding low energy final conformations. The total number of search steps of 

such searches must be predefined at the beginning of the search when the starting 

geometries are generated. Except for simple molecules, the number of steps that are 

necessary to find all conformations is unknown at the outset and may be so large that the 

energy minimization stage of the search becomes prohibitive. The necessity of using 

many values for each torsion angle reinforces the problem since low energy 

conformations of flexible molecules commonly incorporate relatively high-energy 

torsional arrays. Thus, the method is limited to very small molecules or molecule 

segments. 

• Build-up procedures368 are based on the assumption that the conformations of different 

fragments of the molecule are independent of the other ones. Comprehensive energy 

minimizations are carried out for all fragments, and only those local minima whose 

energies lie within an appropriately chosen upper bound of the lowest minimum are 

retained. To obtain starting points for the energy minimization of larger fragments the 

restricted set of local minima of one fragment is combined with the set from another 
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fragment. If the assumption holds the global minimum of the whole chain can be built up 

from its components by subsequent processes without the need to explore more than a 

small part of the conformational space of the whole molecule. However, in the realization, 

the build-up procedure has some difficulties. The main one is the exponential increase of 

the number of minima which have to be retained at each step to obtain an acceptable value 

for the cut-off energy. Additionally, two atoms can come too close if the fragments are 

combined in an arbitrary manner. A final difficulty concerns the correct value for the cut-

off energy. 

• Monte Carlo methods (the Metropolis algorithm)369,370,371,372,373 are stochastic techniques 

that are able to generate a random sample of low-energy conformations for molecules that 

are too large and flexible to be explored systematically. In these methods the energy E0 is 

calculated first for an arbitrary conformation. In each step of the algorithm, several torsion 

angles (coordinates in Cartesian space) are randomly varied leading to a new 

conformation with energy E. This new conformation is accepted as new starting point or 

rejected depending on the rules described in the first chapter (Chapter 1 - Eq. 6). For 

macrocyclic molecules, random variations of torsional angles often result in 

conformations for which the ring-closure constraints are violated. Such structures cannot 

be used for minimization and are rejected. The Monte Carlo step has to be repeated until a 

set of low energy conformers has been generated. Several modified Monte Carlo methods 

have been applied for peptides and proteins374. 

• The Simulated annealing method219,375,376 is based on a connection between statistical 

mechanics and the crystallization process. The main principles of this technique were 

described in the first chapter. By analogy with this physical process, in a combinatorial 

optimization context, a solution corresponds to a state of the physical system and the 

solution cost to the energy of the system. At each iteration the current conformation is 

replaced by a randomly selected trial conformation accepted according to the so-called 

Metropolis criterion. The series of accepted steps is an “energy directed random walk” 

which explores the conformational space. The simulated annealing technique exploits 

both the energy and temperature dependency of the Boltzmann distribution. At a given 

temperature, the Metropolis algorithm is used to imitate the conformational equilibrium 

using the energy dependency of the Boltzmann distribution. Then at progressively 

lowered temperature during the process according to some set cooling schedule is used to 

profit by the temperature dependency of the Boltzmann distribution. The method is widely 

used for the conformational search problems of molecules219,376.  
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• Internal coordinate tree search377 is the more systematic version of an internal coordinate 

Monte Carlo search and a rapid method for generating molecular geometries which 

approximate the low-lying conformers of small to medium-sized organic molecules. It 

generates starting conformations for subsequent minimizations by varying the torsion 

angles of the rotatable bonds in series of possible values (e.g., 0°, 60°, 120°, 180°, . . .). 

Bond lengths and angles are kept fixed. In the case of N rotatable bonds and d possible 

values of each torsion angle up to dN conformations may be generated and minimized. In 

worst case, every combination of all torsion angle values must be investigated. A torsion 

angle ordering allows the complete conformer generation process to be graphed as a tree 

structure. At the lowest level of the tree, the leaves stand for the resulting conformations 

of the generation process. Each edge stands for the rotation of one torsional angle. 

Intermediate nodes in the tree represent partially completed structures. For cyclic 

molecules the conformations which violate the ring-closure constraint have to be 

excluded. This method can be quite expensive for macrocyclic molecules but can lead to 

the disclosure of previously non-described low-energy conformers. The internal 

coordinate conformer generator has a number of advantages: 

1. It is quite fast because it demands no energy gradient evaluations and no solution of 

matrix of distance equations that are required e.g. for the distance geometry methods 

(see below). That increases the speed of conformer generation which ranges from 10- 

to 100-fold over molecular dynamics or distance geometry methods 

2. Internal coordinates handling assures the sampling over all accessible regions of 

conformational space 

3. It is easily applied as a tree search, which enable analysis of acyclic and cyclic 

molecules.   

However, since this method is a probabilistic one it gives no guarantee that all low-energy 

minima have been found. 

• Genetic algorithms378,379,380 follow standard procedures that are derived from the 

principles of natural evolution. The main principles of the algorithms were already 

described in the first part of the work. Here the explanation of the implementation 

specificity of such methods for the conformation search is given. An initial (parent) 

population is built by assigning each main-chain torsion angle to a value randomly chosen 

from allowed ones.  The fitness of each conformation is then calculated using the energy 

of the minimized structure, i.e. each of the initial conformations is minimized using the 

local minimization procedure. The optimized conformations form the first parent 

generation as well as a pool of random conformations. New child conformations are 
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produced from the parent population using standard genetic algorithm operations. The 

probability that a parent conformation is selected for the next generation is proportional to 

the Boltzmann factor of its energy so that low-energy conformations are more likely to be 

selected than high-energy conformations. Each parent conformation is selected only once. 

To keep up the diversity, before each crossover operation, one of the two selected parent 

conformations can be replaced by a conformation, which has a small probability, 

randomly chosen from the pool of random conformations. The parents selection and 

crossover process is repeated until all conformations of the parent generation are selected. 

The reason combining the parents and newly generated child conformations, which were 

already sampled in the previous populations, with each other is the attempt to obtain 

promising structures. This shall assure that the fitness of the new generation is not worse 

than that of the parents. Then a “cleaning” process is preformed that consist in rejecting 

conformations with a higher energy from any pair of structures which is similar to each 

other. The next process iteration uses the new generation as parents. The cycle is repeated 

until convergence. The best fit population is finally obtained or a maximum number of 

iterations has been reached. The application of the genetic algorithm in peptides and 

protein structure prediction was reviewed by Le Grand and Merz379, and Schulze-

Kremer380. 

• Distance geometry methods381,382,383,384,385 represent molecules as distance matrixes 

containing lower and upper bounds of the distances between every pair of atoms. These 

distance bounds consist of bonded constraints, such as bond lengths and angles, as well as 

nonbonded constraints, such as van der Waals radii. It is significant that the distance 

information alone is unable to differentiate between a structure and its mirror image. 

Hence, chirality constraints are included to eliminate this disadvantage. The constraints 

are given beforehand on the basis of the known stereochemistry of the chiral centres. The 

distance geometry representation can be applied to cyclic molecules as well as to acyclic 

molecules. At the first stage a distance matrix, which describes the structure of the 

molecule, is created whose elements dij are the distances between atoms i and j. Then a 

matrix with upper and lower bounds for each interatomic distance is determined. New 

conformations are typically generated by assigning new interatomic distances which lie 

between the upper and lower bounds. Then those conformations are generated that best 

approximate these distances. The resulting conformations are finally energy-minimized. 

Taylor and Aszodi381 applied this method to polypeptides.  

• Smoothing/deformation methods rely on the assumption that the position of the global 

minimum of a deformed energy hyper surface can be related to the position of the global 
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minimum of the original function. The algorithm is based on the deformation of the 

original potential energy hypersurface in such a way that the number of the local minima 

is reduced. Only the deepest one is retained, which, in most cases, is related to the global 

one. A local minimization procedure applied to the modified energy function leads from 

any starting point to this single minimum instead of ending up in some higher-energy 

local minimum. The hypersurface of a molecule is deformed (or smoothed) by applying 

certain mathematical operators (e.g. diffusion equation) with the original form of the 

hypersurface having the meaning of the initial concentration (or temperature) distribution. 

However, the position of the minimum in this deformed function may have changed 

during deformation and is usually different from that of the global minimum in the 

original function, therefore a reversing deformation procedure is used to trace back from 

the found minimum in the final deformed function to the related minimum in the original 

function which is in most cases the true global minimum. An extremely important 

characteristic of this method is the abilities of the deformation of the hypersurface without 

investigation of large quantity of local minima or any information about their positions 

beforehand. A number of smoothing procedures have been developed and applied to 

peptides and proteins386. 

• Molecular dynamics387,388,389 is a stochastic method that simulates the physical behaviour 

of molecules in a thermal bath. Molecular dynamic procedures search the conformational 

superlattice of energy minima using an MD-like sampling strategy. It exploits the 

additional information about the conformational space using the MD velocities. They 

reflect, to varying degrees, all components of the system together that increases the 

efficiency of conformational sampling in more complicated systems. Molecular dynamics 

investigate the conformational surface incrementally in three-dimensional space. 

Multidimensional conformational space is described in terms of a reduced representation 

of conformational states. The algorithm initiates its move from a conformation state that is 

a local minimum-energy configuration by stepping along the MD velocities. The atoms in 

the molecule are usually constrained using a force field defined as a function of atom type, 

bond type, torsion type and interatomic distance. Typically for this technique is the 

application of Newton’s second law of movement to all atomic degrees of freedom under 

which the new positions and velocities of the atoms are calculated. The atoms are moved 

to these new positions and the cycle is repeated. Thus, the dynamic behaviour of the 

molecule at the desired temperature can be reproduced by performing this process for 

some time space. Conformations are selected from the trajectory and minimized at each 

time step. An elevated temperature is used in order to overcome potential energy barriers 
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and to reach new regions of the PES that may contain better lower-energy minima 

conformers than the current region. Since the Molecular dynamics require a time step of 

the order of 1 fs, it is computationally expensive and is often limited to 

peptides358,360,361,362,363,364,365,357,390.  

• Corner flapping391 produces a new conformation that is then subjected to energy 

minimization. It is an intuitional flap movement of ring atoms of a cyclic molecule 

relative to the average ring plane, ring atoms occupying the "corners" of the bonds. It is 

preferable to define a local plane based on several ring atoms near the corner and to move 

the corner atom vertically to the mirrored position on the other side of the plane (Figure 

3-1). The new conformation is optimized and compared with the saved conformers relying 

on usual criteria such as symmetry considerations, dihedral angle pattern, and steric 

energy. Only new conformers are saved while repeated conformers are rejected. When all 

corners have been flapped, this molecular structure is marked as “investigated”. After that, 

the most stable of the “uninvestigated” saved conformers take part in the subsequent 

flapping/minimization process. Since only local deformation of the cyclic molecule takes 

place the subsequent energy minimization process is rapid. It is significant that in contrast 

to other systematic algorithms this approach does not produce a tree structure, since every 

branch is instantly pruned to retain the new conformer only. The search terminates when 

all the saved conformers are “investigated”. Corner flapping sometimes leads to 

excessively strained structure when the flap movement shifts the corner atom into the ring. 

These weaknesses result since the environment of the corners being flipped are not into 

account. 

 

 

 

 

 

 

Figure 3-1. Illustration of the a) Corner flapping, b) and c) Edge flipping. 

 
• Edge flipping392 is a modification of Corner flapping (Figure 3-1). This new local 

perturbation mode flaps a pair of neighbouring corners together in opposite directions so 

that the bond between the two corners changes its rotation. There are six change 

possibilities, which are illustrated below:  

 

a b c 

guache → anti guache → -gauche 
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The gauche bond (G) changes its sign (G/) or becomes anti (A), while an anti bond (A) 

transforms into the gauche bond with both signs (G and G/). In action, to prevent the 

forming of too highly strained structures the movements of corner atoms in a ring 

structure are carried out according to the rotation patterns of the two neighbouring bonds.  

• Torsion flexing393is a term of a new stochastic (Monte Carlo) procedure that has been 

developed for the conformational search of cyclic molecules. It produces a local distortion 

of a ring bond in a cyclic molecule. Due to the fact that this approach does not evoke large 

atomic movements, following energy minimization processes are usually carried out 

rapidly even in cases where several bonds are distorted at the same time. The torsional 

flexing method is able to overcome potential energy barriers so that the subsequent energy 

minimization often yields another conformer of the cyclic molecule. It is significant that 

such structural perturbations are in most cases not arduous that avoids rapid minimization 

process. Figure 3-2 illustrates one example for torsional flexing. It is a local torsional 

rotation about one ring bond which does not change the atomic position of most of the 

ring atoms. To describe torsional flexing a torsion angle in a ring  X−A-B-C-D−Y are 

considered in which the ring bond X−A, as well as D−Y are imagined to have been 

cleaved, resulting in two fragments. Both rotations are carried out by random angles. If 

the B-C bond is a fusion bond between fused rings both rings and sets of atoms participate 

in rotation process then a rotation around the B-C bond is performed. A (and its 

substituents) and B (and its substituents) are rotated clockwise while C (and its 

substituents) and D (and its substituents) are rotated anticlockwise. 

G G/

 

 

 

 

 

 

 

 

Figure 3-2. Torsional flexing, where the arrows show the direction of torsional rotation. Note that the right side 

of the resulting molecule structure is remained without changes after the torsional flexing procedure. 
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The structure is generated by reclosure of the ring. The resulting structure undergoes an 

energy minimization. During the single torsional flexing operation seven torsion angles 

are changed and the related bond lengths and bond angles are also modified.  The number 

of torsion angles of torsional flexing operation is increased in the case of fused rings. 

Since bond length and angles may change during the energy minimization the torsional 

flexing is not completely a torsional coordinate method. However, the dominant structural 

modifications of a molecule take place in the torsional space. This approach is an efficient 

procedure for locating most of the low-energy conformers of a variety of cyclic 

molecules. Moreover, it is easy to implement and can easily be combined with existing 

molecular mechanics programs. Using of more than one conformational search procedure 

increases the guarantee of a complete search of the conformational space available to 

cyclic molecules. Nevertheless, torsional flexing is a method of choice for conformational 

search for cyclic molecules.  

• Low-Mode (LMOD) methods309,394,395 are based on the eigenvector-following techniques, 

which were developed for locating saddle points on molecular potential energy surfaces. 

The saddle point search is initiated at or near a local minimum. The eigenvalues and the 

associated eigenvectors called the “normal modes” of the vibrations are determined by the 

diagonalization of the Hessian matrix. At the minimum the eigenvectors with the smallest 

eigenvalues point into directions of the potential energy surface with the modest ascent. 

Assuming that the lowest transition state lies in these directions the basic eigenvector-

following (mode-following) idea is to select one or multiple low modes of the starting 

structure and follow the corresponding Hessian eigenvectors uphill till the energy barrier 

is crossed. The crossing point is reached if the next step is slightly lower in energy than 

the preceding one. A subsequent energy minimization will usually lead to the bottom of 

the neighbouring minimum-energy well. The LMOD procedure starts with an initial 

molecular model, which is energy minimized. The minimized structure is then subjected 

to normal mode analysis described above, and a user-specified number of low-frequency 

modes are stored. LMOD moves in both directions of the Hessian eigenvectors 

corresponding to the stored low-frequency modes until the algorithm finds a barrier 

crossing defined by the following criteria:  

1. the end-structure of the trajectory is lower than the energy of the starting structure, 

or 

2. the structure is at least lower than it was in the previous iteration step and the 

molecule has also moved further away from the starting structure.  
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The resulting perturbed initial structure is minimized afterwards. Naturally, it is possible 

to reach the minimum that is not connected to the initial minimum of the mode-following 

procedure as a result of energy minimization as well, but substantially, LMOD 

concentrates the search to the local neighbourhood of a minimum on the potential energy 

surface. Due to the fact that LMOD always follows the direction computed at the 

minimum, no re-evaluation of the Hessian has to be performed. A set of conformers, 

which are used as starting structures for structural perturbation along their low-frequency 

modes, is accumulated during the search process. In spite of the fact that the new minima 

found during an LMOD search allow to explore the complete potential energy surface 

(with the exception of the case of the high-energy conformers search that necessitates the 

higher frequency modes) LMOD is a systematic search procedure. But it is confined by 

the number of low-frequency modes considered. LMOD must be switched to a stochastic 

or Monte Carlo procedure when all possible systematic search directions are already 

explored for a particular minimum. LMOD was developed originally for macromolecules 

but it can be also successfully applied to flexible docking and to any kind of molecular 

systems including complexes. It carries out the search in conformation space of cyclic and 

acyclic molecules equally efficient. This approach runs neither in the torsion nor in the 

Cartesian space, nor in any other user-defined search space since it generates its own 

search low-dimensional search space, which is spanned by the low-frequency mode 

eigenvectors of the Hessian matrix. Moreover, there is no need for special handling of 

rings. The advantage of conformational searches performed with LMOD is that it 

generates structures automatically. Only the user-defined threshold for the low-frequency 

modes and the energy threshold for energy minimization have to be provided.  

• MOLS conformational search technique396 is based on the technique of using Mutually 

Orthogonal Latin Squares (MOLS) to perform enhanced sampling of the conformational 

space. The main idea of this conformational search technique consists of putting all 

conformational variables of the molecule to a specific set of values and calculating the 

potential energy. Obtained values of the potential energy correspond to conformations 

systematically chosen to sample the entire conformational space. The torsion angles are 

usually chosen as conformational variables, but other variables are also possible. Each 

variable in the molecule is capable of taking up some different values in a range. Although 

this range could be restricted by various factors, in the case of torsion angle space it is 

taken to be 0–360°. Each cycle of the MOLS procedure consists of four steps as it is 

shown in Figure 3-3.  The set of all possible values of the conformational variables define 

the complete conformational space of the molecule. All combinations of these values take 
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part in the sampling, each combination specifying one conformation of the molecule. 

MOLS is used to pick up such combinations. Each torsion angle is set to correspond to 

one Latin square to identify the conformations at which the potential energy calculations 

are to be carried out. It means that a set of MOLS forms by arrangement of the possible 

values of each torsion angle in the form of a Latin square. The energy hypersurface at 

these locations in torsion angle space is sampled on the second step. This is achieved by 

calculating the potential energy at each of the points. Calculation of average potential 

energy of the each value of the each parameter made on the third step is to recover the 

energy map of the conformational space. For this purposes one-dimensional 

representations of the variation of the potential along each of the torsion angles are 

produced. To estimate the efficacy of setting a particular torsion to a specific value, 

irrelative of the values of the other torsion angles, the average of potential over points in 

the MOLS is calculated, where a Boltzmann weighting function is used to identify the 

optimum value for each variable, and arrive directly at the best structure. The final fourth 

step is an examination of each one-dimensional representation. Boltzmann weighted 

averages of different sets of variables are taken to identify the optimum value for each 

parameter corresponding to the optimal conformation. This completes one cycle of 

calculations during which one low energy structure is identified. The structure obtained in 

one cycle of MOLS is either the global minimum energy structure, or one of the various 

low energy structures of the molecule. To locate another low energy structure the 

procedure is repeated using a different set of MOLS, however, it is not improbable that 

the search repeatedly achieves the previously obtained low energy structures. If the 

solution structure does not improve after a number of iterations it supposes that all the low 

energy structures of the molecule are identified. The MOLS method outlined above is thus 

a systematic sampling of the variable space to identify a library of low-energy three-

dimensional structures. The search is unconstrained and easily parallelized. This method 

can be successfully applied to search low energy structures for a variety of small peptides 

at negligible computational time.  
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Figure 3-3. Flowchart of the MOLS procedure. 

 

• Ant Algorithm70 The original ant system, which was already described in the first part of 

the work, was developed for optimization in the continuous search space of 

conformational analysis. The conformational analysis problem is formulated as a 

multimodal function minimization problem in n dimensions, where n is the number of 

rotatable bonds in the flexible molecule. The aim is to find the global minimum of the 

function e=f(θ1,θ2,…, θn), where e is the energy of the molecule and θ1,θ2,…, θn are the 

torsion angles of the rotatable bonds. A roulette wheel selection algorithm is used to 

generate the torsion angles. The name of this selection method arises since a roulette 

wheel with slots sized according to the value of the probability function p(θi,t)=(1-

Selection of the optimum 
value for each parameter 

identifying the set of 
values corresponding to the 

optimal conformation 

Another low energy 
conformation is 

obtained? 

Exit 
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ß)τ(θi,t)+ßη(θi) is used. p(θi,t) is associated with each torsion angle interval that gives the 

probability that an ant will choose the value for the ith torsion angle in iteration t of the 

algorithm. ß is a parameter between 0 and 1. τ(θi,t) corresponds to the pheromone trail and 

is updated in each iteration of the algorithm. η(θi) corresponds to the visibility and keeps 

constant. Artificial ants move at n intervals between 0° and 360°, and the path each ant 

follows in one iteration of the algorithm determines the configuration of the molecule. The 

pheromone trail is updated in each iteration of the algorithm. At each iteration all ants 

provide data about conformations of the molecule, and for each ant the corresponding 

strain energy is calculated using the molecular mechanics. It was tuned and tested for the 

conformational analysis of flexible drug-like molecules, with the objective of obtaining an 

accurate estimate of the lowest possible conformational energy. 

3.2 GOTS application 

 On the basis of our tests the GOTS turned out to be the most efficient of the 

developed algorithms. Hence, it was adapted for conformation searches. For this purpose 

some modifications of the algorithm and a smart definition of the variables used for the 

GOTS were necessary. These adaptations and first applications are described in the following. 

3.2.1 Variable choice and numbering rules 

The choice of the coordinates used to describe a molecule is critical for the efficiency 

of the optimization. Since gradients and Hessians are usually calculated in Cartesian space, 

Cartesian coordinates would be the most straightforward choice. But without the initial 

curvature information, optimization in Cartesian coordinates is extremely inefficient, 

especially for large systems397. Additionally, many studies have shown that Cartesian 

coordinates are generally outperformed by a well-chosen set of so-called “natural internal” 

coordinates398 - consisting of bond lengths, bond angles, and torsions. Internal coordinate 

systems can be classified as redundant or nonredundant. In a nonredundant internal 

coordinates system, the number of coordinates is equal to the number of internal degrees of 

freedom 3N-6 (where N is the number of atoms in the system); in a redundant set the number 

of coordinates exceeds the number of internal degrees of freedom. So internal coordinates are 

frequently used to represent conformations of molecules. These coordinates, first introduced 

into geometry optimization by Pulay et al.399, involve the use of individual bond 

displacements as stretching coordinates and linear combinations of bond angles and torsions 

as deformational coordinates.  
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The Z-matrix coordinates are a typical example of nonredundant internal 

coordinates400. They describe the molecular geometry in terms of individual distances, angles, 

and torsions. Each line of a Z-matrix gives the internal coordinates for one of the atoms 

within the molecule. The Z-matrix format used in the Gaussian program package uses the 

following syntax: Element label, atom 1, bond length, atom 2, bond angle, atom 3, and 

dihedral angle. As an example the Z-matrix of n-Butanol is shown in Table 14. It provides a 

description of each atom in a molecule in terms of its atomic number, bond length, bond 

angle, and dihedral angle.  

Table 14.  A part of the internal coordinates in Z-matrix form of the n-Butanol molecule. 

Element 

label 
Atom 1 

Bond 

length 
Atom 2 

Bond 

angle 
Atom 3 

Dihedral 

angle 

c       

… … …     

c 3 cc4 2 ccc4 1 dih4 

… … … … … … … 

h 2 hc9 3 hcc9 4 dih9 

h 2 hc10 3 hcc10 4 dih10 

… … … … … … … 

The illustration of the n-Butanol molecule is presented on Figure 3-4.  

 
 
 
 
 
 
 
 
 

 

Figure 3-4. Atom numeration of the n-Butanol molecule. 

 
In difference to other Z-matrix-like coordinates normally used in the 

literature401,402,403,404,405, instead of altering of a bond length, a bond angle, and a dihedral 

angle of each atom, only dihedral angles are used in the present work since the bond length 

and angles of different conformers vary relatively little. Thus, they are defined to be stiff. If 

Z-matrix coordinates are used for optimizations, in particular for ring systems, it is difficult to 

find which an appropriate set of internal coordinates for the optimization process. Problems 
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occurs that various dihedral angles have to be changed together to perform reasonable 

rotation. To rotate the terminal methyl group consisting of atoms C1H6H7H8 around the C1C2 

axis it is necessary to modify three dihedral angles (C3C2C1H6, C3C2C1H7, C3C2C1H8) 

although there is only one rotation. A crucial point is that these torsion angles must not be 

varied independently of each other. To demonstrate it on the example lets take a typical 

conformation of the molecule and attempt to move only one of dihedral angles at a time while 

keeping the rest of the variables constant. Moving C3C2C1H6 only while keeping C3C2C1H7, 

C3C2C1H8 constant distorts the internal structure of the methyl group. It is necessary to move 

various dihedral angles synchronously to achieve proper rotations around a freely rotatable 

single bond. The approximate separation of hard and soft movements of the system allows to 

create the structure of the molecule by setting the hard coordinate to constant or to particular 

dependence on the soft coordinates406,407,408. For this one partition the angles in hard and soft 

dihedral angles is carried out. The soft ones are varied while the hard ones are changed 

accordingly or keep constant. The problem was recognized and the concept of “related 

dihedrals” was introduced by G. A. Chass409. 

In this work the rules proposed by Echenique and Alonso410 are used to account for 

this problem. To perform a rotation around a given bond only the “main torsions” are 

independently varied. The variations of the “dependent torsions” are not free but make sure 

that proper rotations take place. In Table 15

Table 15.  Information from Z-matrix of the n-Butanol molecule. 

 the Z-matrix from Table 14 is reorganized 

relative to the angle (4,3,2,1). This angle is a “main torsion” while the other two are 

“dependent torsions”. 

Atom number Atom name Bond length Bond angle Dihedral angle 

… … … … … 

4 C (4,3) (4,3,2) (4,3,2,1) 

… … … … … 

9 H (9,2) (9,2,3) (9,2,3,4) 

10 H (10,2) (10,2,3) (10,2,3,4) 

… … … … … 

 

To ensure a proper behavior the following scheme is used:  

1. Write all dihedral angles of the Z-matrix into the list called “torsions”. Empty the lists: 

“main torsions” and “dependent torsions”. 

2. The first dihedral angle of the Z-matrix is chosen and written in the list “main torsions”. 

3.  Take the next dihedral angle from the “torsions” list. 
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4. Compare it with all previously found “main torsions”. If the second and third atoms of the 

dihedral angle under consideration agree to those of a “main torsions” it is a “dependent 

torsion”. It is related to the “main torsion”. If no agreement exists, it is a next “main 

torsion”, and is written to the main torsions list.  

5. If the “torsions” list is empty, the selection is finished. Otherwise, the process go back to 

step 3.  

It is significant that the vector direction does not count in this case (see Figure 3-5

Figure 3-5. 1, 2 and 3 are related dihedral angles defined by three bond vectors connecting four atoms. 

). 

 

 

 

 

 

 

If the scheme is applied to the n- Butanol molecule (Table 14) Table 16

Table 16. “Main torsions” and “dependent torsions” of the n-Butanol molecule. 

 is obtained. 

“Main torsions” “Dependent torsions” 

(4,3,2,1) (9,2,3,4) 

(10,2,3,4) 

(11,3,2,1) 

(12,3,2,1) 

(5,4,3,2) (13,4,3,2) 

(14,4,3,2) 

(6,1,2,3) (7,1,2,3) 

(8,1,2,3) 

(15,5,4,3) - 

 

Since only the “main torsions” are varied independently the number of degrees of freedom 

decreases.  

3.2.2 Adaptation of the GOTS to the conformational search 

To adopt the GOTS approach for the conformation search some modification were 

implemented. Its starts with the local minimization approach which is carried out as geometry 

optimization of the computational chemistry environment ChemShell using the Universal 

Force Field (UFF)411. To solve conformation search problems the variable choice is carried 

1 

b1 

b2 b3 c3

3 2 

d1

b2

d3 2b
b c1 
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out as indicated above. For the GOTS338 only function evaluations should be used to estimate 

step size and directions. For the first step of the modest ascent all functional values and 

 (Chapter 2 - Eq. 11) are computed using ChemShell single-point calculations to 

determine the general direction of the following moves. They are obtained by varying each 

dimension by a user defined step size . Step size and direction are estimated according to 

Chapter 2 - Eq. 14.  

+
iFz

−
iFz

0
ixΔ

As described in the second chapter a ranking procedure of the internal degrees of 

freedom is used to find the optimal direction for the modest ascent. Applying this ranking 

procedure to the conformational search it turned out that the computed energy differences are 

too small.  To obtain a reasonable differentiation between the various degrees, dynamical 

calculations of the ranking coefficients rankmax and rankmin are necessary. It means that 

rankmax and rankmin are not set to 0 and 1 but calculated for each case separately using the 

following approach (Eq. 16-19): 

100
100

min

max

min
−

⋅
=

Fz
Fz

tcoefficien  (16) 

 

100
100

min
tcoefficienrank −

=                              , if 1000
min

<< tcoefficien  

rankmin = 0.1 (or 0.0 - depends on problem)    , otherwise 
(17) 

      

 

  

 

 

 

rankmin ≠ 0.1, value difference is small, we directly use the formula (Chapter 2 - Eq. 14) to     

calculate ranki 

rankmin = 0.1, value difference is large, therefore we have to redefine rankmax and after that 

we use the formula (Chapter 2 - Eq. 14) to calculate ranki 

To calculate rankmax the same percentage analysis as for rankmin is made but for each value: 

100
100

minmax
−

⋅
=

Fz
Fz

tcoefficien i  (18) 

100
100

max
tcoefficienrank −

=                     , if 1000
max

<< tcoefficien  

rankmax= 1.0                                            , otherwise  
(19) 

     

The resulting modest ascent is followed until the next calculated function value is smaller 

than the previous one. This indicates that the barrier to the next valley is crossed. From this 

point the next local minimum is located using local minimization. 
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Other neighborhood strategies were also implemented and tested. In the first variant 

(see Chapter 2 - Eqs. 11-13) not only the preferential direction determined at the minimum is 

tested but at each step of this neighbourhood search all functional values and  are 

computed to determine the direction of the next move (Chapter 2 - Eq. 11, 

+
iFz −

iFz

Figure 3-6). This is 

different to the standard approach in which the main promising moving area is determined at 

the local optimum and kept fixed during the modest ascent strategy. The moves are carried 

out with the step sizes for each variable that are estimated according to the linear ranking 

procedure. It turned out that the selected moves now often lead to areas close to already 

visited solutions. In consequence, the search starts to cycle and needs a considerable higher 

number of function evaluations to come to the next valley. Such ideas were rejected since this 

increases the computational costs without having many advantages.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6. Illustration of neighbourhood strategy with testing all direction at each step. 

 

Ranking and the neighbourhood strategies were also considered. In one version the ranking 

procedure was skipped, i.e. the move is carried out along the coordinate with the best function 

value (see Figure 3-7

Figure 3-7

b). However, also in this case more steps are needed to escape from a 

valley. In another approach ( ) a number of steps are tested for the selection of the 

most promising move. This included steps with ranking and steps without ranking. 

Furthermore, also small additional steps in positive and negative direction were performed 

after the step without ranking. Comparing the functional values of all these steps, the one 

from the step without ranking was often the best one. This means that the outcome of this 

version is closed to the previous one. Based on test results the original neighbourhood 

strategy turned out to possess the best cost-benefit ratio. 
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Figure 3-7. Illustration of the neighbourhood search with various kinds of steps. 

 
The TS is a mathematical optimization method, which belongs to the class of local 

search techniques. To include more probability aspects, ideas from the Simulated Annealing 

(SA) method have been implemented. It shall help to focus on promising areas and to locate a 

good approximation to the global optimum of a given function in a large search space. In our 

approach, the SA ideas are exploited to determine if a new minimum is taken or not. If the 

new minimum is lower in energy it is always taken. If it is higher than the previous one the 

criteria used in the SA (Chapter 1 – Eq. 6) are taken to decide if it is taken as the new starting 

point or not. If the new minimum is not accepted the algorithm returns to the previous 

minimum and continues the search along the next modest ascent direction.  
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Local search for next 
minimum  

 

Figure 3-8. Flowchart of GOTS with SA elements. 

 

To avoid reverse moves and cycles within the Tabu Search strategy a Tabu List (TL) 

is built up which memorizes the moves previously made. The elements of the TL are ordered 

according to the chronology of their appearance. If the TL is full the newest solution replaces 

the oldest one employing the FIFO principle. For approaches which move in small steps 

through the function F(xi) a simple storing of all visited points is sufficient to block already 

visited regions effectively. To overcome the problems resulting from making large steps Tabu 

Regions (TR) are used which were already successfully employed in the GTS and TSPA 

methods and which are related to ideas introduced by F. Glover. Tabu Direction (TD)338 

turned out to be less efficient for the conformational search as a result of the circular motion 

of the the torsion angles from 0° to 360°.  Examples of this are presented in Figure 3-9.  The 

start point is 135°. The step size is 90°. The first movements are shown in part a) at the Figure 

3-9.  After these two steps the TL values are 135°, 225°, 315°.  Vectors 1,2  and 2,3  are TDs. 

However, the next steps are already problematic if the TD approach is used. It is illustrated 

with the parts b) and c). In the case of selecting 360 as the number of degrees the next 

solution is 45° (see example b)). This unvisited solution is set “tabu” through the TD because 

the motion vector 4,3  coincides with the TD vector 23, .  Such approach leads to exclusion of 

Modest Ascent Search to 
escape local minima 

Diversification Search to 
obtain new starting point 

Solution Update 

Simulated Annealing testing

accepted not accepted 

Restore the previous found 
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some unvisited solutions from the search. In the case of the unbounded number of degrees 

(see example c)) all subsequent solutions (405°, 495°, 585°, 675°, and etc.) are allowed 

because there are no such values in the TL. It results in cycling of the search process to the 

rotation of a single torsion angle.  So, the solution is “tabu” if all of the variables are in the 

TR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9.  Rotation of the torsion angle. 

 
The last element of the TS represents the diversification search (DS) which is used to 

select new starting points in the solution space. A DS becomes necessary if the solution does 

not improve after a number of iterations or if all neighborhood solutions are already set tabu. 

One way to enhance the convergence is to ensure that the search switches to regions that were 

not already investigated. In the present approach the following strategy is used. There are N-3 

(where N is the number of atoms in the system) “main and dependent torsions”. “Dependent 

torsions” have to be changed together with the “main torsions”.  To find a new starting point 

the “main torsions” are changed with steps of 30°, 60° or 120°. The rest of the variables are 

kept constant. To obtain reasonable geometries all “dependent torsions” are moved 
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accordingly. All points are excluded which already belong to Tabu Regions and the new 

search starts from the point with the lowest F(xi) value.  

Figure 3-8 gives the flowchart of the GOTS method with SA elements. At first a start 

molecule structure in Z-matrix form is initialized. After that one starts with the search for 

improved minima. This part consists of local optimizations that are applied to obtain nearest 

local minima and the modest ascent searches used to escape to the next valley. The simulated 

annealing criterion is used to confirm or reject a new local minimum as the new starting point. 

In the case of rejection of a current minimum one returns to the previously found minimum 

solution and starts the search along the second promising direction based on the already 

calculated ranking coefficients. For the modest ascent search weighted function values can be 

used. In between an update of the solution vector and the Tabu List is performed. If the 

solution does not improve after a given number of iterations or if all neighborhood solutions 

are already set tabu the search for improved minima is aborted and the diversification search 

is performed to obtain new starting points. 

3.2.3 Comparing the influence of different parameters 

 The proposed algorithm has several parameters. Some of them were already discussed 

in chapter 2. For the application of the method to conformational searches some of them are 

especially important for the fast convergence and efficiency of the optimization. The standard 

values have also to be adapted to the conformational search. The most important parameters 

are reported in Table 17

 Table 17. Description of the parameters of the approaches. 

. 

Parameter Purpose Recommended values 
Δxi step size at the mildest ascent strategy 45° 

BADMAX 
number of not improved minima  

after which a DS is performed 
5 

Ntrial 
number of trial solutions for the diversification 

search 

depend on number of  

“main torsions” 

Diversification 

step 
step size used during the diversification strategy frequency 60° 

rankmax default maximum recency ranked value 1.0 

rankmin default minimum recency ranked value 0 

TR ½ of the Tabu Region diameter 10° 

T control parameter (analog of temperature) 
>> ∆E normally 

encountered 
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The parameter Δxi gives the step size during the mildest ascent search. One could 

assume that a small step size increases the accuracy, but this is misleading. For small step 

sizes a wrong mildest ascent direction is taken. This is due to the fact that the energy 

differences between the directions are so small that the ranking procedure does not work 

anymore.  Based on our experiences Δxi= 45° is recommended as a standard value. If even 

larger step sizes are used fewer steps are necessary to leave a local minimum, but sometimes 

minima are missed. 

The BADMAX value was set to 5. This parameter also plays an important role during 

the optimization process. Together with the Simulated Annealing approach the parameter 

BADMAX controls when the search switches to the diversification search, i.e. it aborts the 

search in the current region. If the solution does not improve after BADMAX local minima a 

diversification search is started to select new starting points in the solution space.  

The global time-varying parameter T, with which a higher lying minimum is taken as 

the new starting point, influences the probability (see Eq. 5-6). T, called the temperature, is 

gradually decreased during the optimization process. To determine this parameter 

experimentation is required. The starting T value is set considerably larger than the largest ∆E 

normally encountered and decreased by 10 percent with each new found minimum. The 

dependency is such that a new local minimum solution is practically always accepted when T 

is large even if it is quite high with respect to the last one. If T goes to zero the probability that 

higher lying minima are accepted as new starting point decreases considerably.  

During the diversification search steps equal to 60° were used. It means that a new 

start solution is obtained by changing all “main torsions” by 60°, 120°, 180°, 240° or 300° in 

random consecution. The “dependent torsions” are changed accordingly. The parameter Ntrial 

is also connected with the diversification search. In our test cases Ntrial was set to the number 

of “main torsions”. 

The parameters rankmax and rankmin are ranking parameters from the linear ranking 

procedure (Eqs. 14-19). They are calculated dynamically in the range from 0.0 to 1.0 that 

means separately for each case.  

The parameter TR controls the size of the tabu regions within the whole optimization 

process. One would expect that small TR do not efficiently block already visited regions so 

that the effort decreases with increasing TR. However, in most cases the effort increases for 

larger TR. This counter-intuitive behaviour may result because the tabu regions become so 

large that minima lying close by already visited points are overlooked or because the optimal 

path to the global minimum is blocked. A value of TR = 10°, however, seems to be a good 

-116- 



                                                                                                                                                                              

choice for a large variety of different problems. So, if the new solution variables differ from 

the variables of the already visited solution within ±10° it consider as a tabu solution. 

3.3 Experimental results 

The developed GOTS was applied to detailed conformational studies of Lysine (LYS), 

Valine (VAL), Arginine (ARG), 2-acetoxy-N,N,N-trimethylethanaminium (Acetylcholine). In 

addition two ACE inhibitors and a HIV-1 protease inhibitor were included. All these 

molecules are presented in Table 18. LYS has 21 dihedral angles, ARG - 23, VAL – 16, 

Acetylcholine – 23, the first ACE inhibitor - 43, the second ACE inhibitor called Fosinopril - 

82 and HIV-1 protease inhibitor – 82.  According to our definition of “main torsions” and 

“dependent torsions” the number of variables decreases and there are only 8 “main torsions”  

in the case of LYS molecule, 11 for ARG, 6 for VAL, 8 for Acetylcholine, 17 for the first 

ACE inhibitor, 34 for Fosinopril and 41 for HIV-1 protease inhibitor to optimize.  

As noted above, the program employs the computational chemistry environment 

ChemShell under Linux for the local geometry optimization. To determine function values the 

single-point calculations were carried out. The Universal Force Field (UFF)411, a molecular 

mechanics force field, was used in the GOTS procedure. The parameters used to generate the 

UFF include a set of hybridization dependent atomic bond radii, a set of hybridization angles, 

van der Waals parameters, torsional and inversion barriers, and a set of effective nuclear 

charges. The ability of UFF to correctly reproduce the experimental rotational barriers and 

conformational energies of a variety of organic molecules was investigated by Casewit, 

Colwell, and Rappé412. Good agreement with experiment was observed when UFF was 

applied to the conformational equilibrium of compounds for which charge evidently does not 

play an important role.  
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Table 18. List of the test molecules. 

Lysine (LYS) 

 

Valine (VAL) 

 
 

Arginine (ARG) 

 

Acetylcholine 
 

Peptidomimetic HIV-1 
protease inhibitor 

 

Inhibitor of angiotensin 
converting enzyme (ACE) 

 
 
 

Fosinopril 

 

The atomic numberings used in our test runs are shown in Figure 3-10. 
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Fosinopril 

Peptidomimetic HIV-I protease inhibitor 

Figure 3-10. Used numbering systems. 
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3.3.1 Conformational studies of amino acids 

 In the structure shown in the Figure 3-11

Figure 3-11.  The general structure of a α-amino acid, with the amino group on the left and the carboxyl group 
on the right. 

, R represents a side chain specific to each 

amino acid. The central carbon atom is a chiral carbon atom (except for glycine) to which the 

two termini and the R-group are attached.  

 

 

 

 

 

 
 
 
 
 
 
 

 
Peptides, and their building blocks, the amino acids, possess many conformers each of them 

differs in the location and type of bend in the backbone, and in the conformational variability 

space in the side chains. The similarity of all amino acids, they differ only in the R-group, can 

be used to simplify the conformational search for these molecules. This can be realized by the 

division of the molecule structures into parts.  One of the parts is common for all amino acids 

while another one includes the rest R. The divisions for molecules LYS, ARG, and VAL are 

indicated in Figure 3-12

Figure 3-12. Division used in the conformational search of amino acids. 

. 

 

 

 

 

 

 

 
VAL 

LYS ARG  
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The conformational search is started for the common part. The  best solution of this is 

kept constant within the modest ascent part of the search. During the local search for the next 

minimum all variables take part, i.e. local optimizations are carried out without any 

restriction. Variable dihedral angles for the first and second part of the whole optimization 

process and for the optimization without parting are demonstrated with the example of LYS 

(see Figure 3-13

Figure 3-13. Variable torsions a) of the first part b) of the second part c) employed in local search. 

, where all unmarked torsions keep constant during modest ascent search). 

 

To proof the stability and efficiency of the GOTS method for conformational search tasks, 

test runs were made from four different starting structures (with the exception of VAL 

because of its size). Dihedral angles were modified to obtain the various start structures of the 

molecules. The results are given in Table 19. It convincingly demonstrates that partings of 

amino acids increase the efficiency of the optimization search. Additionally, better optimal 

structures are obtained since less number of variables participates in modest ascent strategy.  

Table 19. Test results for LYS, ARG, and VAL. 

Molecule 
Start 

structure 

First minimum 

(Hartree) 

Best minimum 

(Hartree) 

Best minimum 

without 

constants 

(Hartree) 

1 0.0170 0.0120 0.0121 

2 0.0170 0.0120 0.0123 

3 0.0148 0.0120 0.0120 
LYS 

4 0.0151 0.0120 0.0120 

1 0.0391 0.0168 0.0179 

2 0.0353 0.0170 0.0192 

3 0.0336 0.0168 0.0189 
ARG 

4 0.0355 0.0175 0.0203 
VAL 1 0.0153 0.0130 0.0131 

b c a 
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Figure 3-14 - Figure 3-16 superimpose the first, best, and worst found energy minimum 

structures for the LYS, the ARG, and the VAL. 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3-14. First, best, and worst minimum structures of the LYS. 

 

To demonstrate the behaviour of the search optimization process Figure 3-17 monitors the 

local minima found along the search starting from the first test structure. The minimum 

ordinal number is given on the abscissa while the corresponding energy value is given on the 

ordinate.  
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Figure 3-15. First, best, and worst minimum structures of the ARG. 
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Worst minimum First minimum  
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Figure 3-16. First, best, and worst minimum structures of the VAL. 

 

Obviously the course of the search depends strongly on the molecule under 

consideration. For example, in the case of the VAL molecule, there are only two “main 

torsions”  in the second part of the optimization process. Hence, one frequently returns to 

conformations with the similar energy values. However, it is important to note that equal 

energy values can characterize different molecule structures. In such cases a comparison of all 

optimized structures is necessary to decide if a new structure is found. The course found for 

Valine nicely shows how our procedure can move to a complete different region (steps 27-35) 

but returns to the most favourable one. The most simple case is the LYS molecule. However, 

the curve for the ARG molecule structure  shows that to reach the best minimum the DS and 

SA were successfully applied to improve the search outcome.  
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Figure 3-17. Illustration of the optimization process for LYS, ARG, and VAL molecules. 

 

3.3.2 Conformational studies of acetylcholine 

The Acetylcholine molecule was treated analogous to the amino acids. The molecule 

was optimized with and without a division of the molecule.  The small part was optimized 

first and again kept constant during the following modest ascent searches. The partitioning 

used for the latter and the dihedral angles of both parts of Acetylcholine molecule are 

presented on the Figure 3-18. 
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 c a b 

Figure 3-18. Variable torsions a) of the first part b) of the second part c) employed in local search. 

 

 Table 20. Test results for Acetylcholine. 

Molecule Start 
structure 

First minimum 
(Hartree) 

Best minimum 
(Hartree) 

Best minimum 
without 

constants 
(Hartree) 

1 0.0478 0.0387 0.0387 

2 0.0459 0.0387 0.0387 Acetylcholine 

3 0.0460 0.0387 0.0387 
 
 
Three different start structures were created to test the abilities of the method. In all cases, our 

method converged to the same minimum. It is depicted in the  

Figure 3-19 together with the first and worst found minima. The energies are collected at the 

Table 20. 

As for the LYS, ARG, and VAL molecules the curve on the Figure 3-20 shows the 

behaviour of the search optimization with the minimum ordinal number on the absciss and 

corresponding energy value on the ordinate. In the case of Acetylcholine molecule, the larger 

part possesses six “main torsions” ( total number of “main torsions” is eight). The best 

minimum value was found already during the first few iterations, but DS and SA strategies 

were often applied to try to explore other areas of the search space.  
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Figure 3-19. Start structure, first, best, and worst minimum structures of Acethylcholine. 

Figure 3-20. Illustration of the optimization process for Acetylcholine molecule. 

 

3.3.3 Conformational studies of ACE and HIV-1 protease inhibitors. 

To test our approach for the optimizations of larger molecules conformational 

searches were carried out for two angiotensin converting enzyme (ACE) inhibitors and HIV-1 
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protease inhibitor.  ACE inhibitors are used primarily in treatment of congestive heart failure 

and hypertension whereas protease inhibitors are applied to treat or prevent infection by 

viruses, including HIV and Hepatitis C.  
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Figure 3-21. Variable torsions. a)ACE inhibitor b) Fosinopril c) HIV-1 protease inhibitor. 
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Figure 3-22. Illustration of the optimization process for ACE inhibitor molecule. 
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For these molecules the parting approach was not employed. The Figure 3-21 

illustrates the dihedral angles that are varied during the optimization process. The behaviour 

of the optimization process for the ACE inhibitor is given in Figure 3-22. During this process 

only the indicated dihedral angles were varied. The ordinal number of the minima is on the 

abscissa and the corresponding energy value is on the ordinate. The results, collected in Table 

21, show that the new approach can achieve low lying conformers. Figure 3-23 - Figure 3-25 

show the first, best and worst found energy minimum structures for ACE and HIV-1 protease 

inhibitors. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-23. Start structure, first, best, and worst minimum structures of ACE inhibitor. 

Table 21. Test results for ACE and HIV-1 protease inhibitors. 

Molecule 
First minimum 

(kcal/mol) 

Best minimum 

without constants 

(kcal/mol) 

Peptidomimetic HIV-1 protease inhibitor 0.757 0.729 

Inhibitor of ACE 0.124 0.113 

Fosinopril 0.201 0.183 

Start structure 

First minimum 

Worst minimum 

Best minimum 

-130- 



                                                                                                                                                                                                                                 

-131- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-24. Start structure, first, best, and worst minimum structures of Fosinopril.
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Figure 3-25. Start structure, first, best, and worst minimum structures of HIV-1 protease inhibitor. 
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3.4 Conclusions 

In this chapter the global optimization routine Gradient only Tabu-Search (GOTS) was 

adapted and applied to conformational search problems. It provides the same global minimum 

in the tested molecules independently which starting structure was taken. Finally, the method 

is quite general and can work with more sophisticated geometry optimization and single-point 

calculation methods of ChemShell. The Z-matrix form is used for the definition of a 

molecular structure and to manipulate the chemical structures. Implementation of Simulated 

Annealing ideas gives a possibility to delocalize the search, to investigate more promising 

areas and to locate a good approximation to the global optimum of a given function within a 

large search space. 

The GOTS algorithm was tested for several molecular structures. It can be also applied 

to cyclic molecules under condition that some of torsions are kept constant to save a ring 

structures. The test calculations indicate that the GOTS method is an efficient approach for 

conformational searches. 



                                                                                                                                                                              

Chapter 4 Summary 

The optimization is a part of mathematics. The optimization aim is to find a discrete 

mathematical object that maximizes or minimizes an objective arbitrary function specified by 

the user. The nature of such mathematical objects and the search space are usually problem-

specific. The optimized system is typically only optimal in one application. Many activities 

can be formulated as optimization problems. Because of the computational complexity of 

these problems, exact optimization techniques of operations research like linear programming 

or dynamic programming are for the most part unfeasible for large-scale problems. Therefore, 

researchers, engineers, and scientists have used metaheuristic search techniques to find near 

optimal, good-enough optimal or even the global solutions. Of course, the ultimate aim is to 

apply metaheuristic search techniques like GAs, SA, and TS to solve real-world problems. 

This work encompasses three parts. The first part provides a concise review of the 

most prominent metaheuristic concepts currently available and gives essential preliminaries 

together with definition of the combinatorial optimization problems. It substantiates the 

choice of the investigation direction and basis idea of the developed methods.  

In the second part the new nonlinear global optimization routines based on the TS 

strategy are described. The new approaches are the Gradient Tabu Search (GTS), the Gradient 

Only Tabu Search (GOTS), and the Tabu Search with Powell’s Algorithm (TSPA). All try to 

determine the global minimum of a function by the steepest descent - mildest ascent strategy. 

The steepest descent is followed to find the next local minimum. To escape a local minimum 

the algorithm moves along the modest ascent till a next valley is reached. Then again the 

steepest ascent strategy is used to determine the minimum of this valley and so on. GTS and 

GOTS use the combination of the Steepest Descent and the Quasi-Newton methods for the 

steepest descent part. To realize the modest ascent strategy the GTS evaluate the diagonal 

elements of the Hessian while the GOTS scans the neighbourhood by function evaluations. 

Also the TSPA uses the latter method for the modest ascent strategy. For the steepest descent 

part, however, the Direction Set Method with Powell’s Algorithm is employed. To ensure an 

efficient blocking of already visited regions despite the lower number of steps these 

approaches introduce Tabu Regions and Tabu Directions as new elements for the Tabu List. 

The new algorithms are compared with other approaches using various well-known test 
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functions with varying dimensionality. These test computations with up to 50 variables show 

that the new approaches outperform most previous approaches on the basis of the number of 

function evaluations. The surfaces of the test function are shown on the Figure 4-1. 

Comparison with the differential evolution ansatz proves the efficiency of the present 

approaches on the basis of wall clock timings especially for a high number of variables. The 

influence of user-defined parameters on the efficiency of the new approaches is also 

investigated. Moreover, the proposed approaches could be enhanced even further if more 

sophisticated descent method and diversification strategies are applied instead.  

Ackley function Rastrigin function Griewangk function 
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Rosenbrock function Zakharov function Goldstein-Price function 
 
 

 

 

 

 

 

 

Figure 4-1. Test function. 

 
In order to test the appropriateness of the GOTS method for molecular geometry 

problems, the optimization of a function with a functional form similar to general potential 

energy functions (see Eq. 20) was carried out.  
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Illustration of the surface of this function is presented on the 
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Figure 4-2. Surface of the function with functional form similar to general PES function. 

. It is significant that 

the global minimum of the function is known. The number of its local minima increases 

exponentially with the size of the problem, which characterizes the principal complexity of 

the minimization of the molecular potential energy functions.  

 

 

 
The GOTS was successfully applied to this the n-chain problem (n = 7, … , 20), i.e. the global 

minimum was always found. It was much efficient than the Deterministic algorithm that uses 

Branch and Bound scheme with techniques of interval analysis to provide the lower bounds. 

Figure 4-3 demonstrates the efficiency of the GOTS method in comparison to the 

Deterministic algorithm on the basis of number of function evaluation that introduced in the 

diagram form for function of 7, 10, and 20 variables. The amount of function evaluations 

required determining the global minima increases by a factor of about 11 if the dimension 

increases from 10 to 20 whereas this factor for Deterministic algorithm is 352.  
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Figure 4-3. Diagrams for function of 7, 10, and 20 variables. 

 
GOTS provides excellent solutions for hard problems with minimal computational 

effort. The algorithm can be suitably modified to incorporate more rigorous mechanisms to 

handle very large-scale problems. Because of problem-specific knowledge GOTS deals with 

variables and constraints effectively. However, the trade-off between effectiveness and 

generality requires careful consideration, and the junction with other techniques is necessary 

in order to built even more general methodology. In this connection the recommended default 

parameters were given at this work to be destined with several test cases. The large-scale test 

cases show that the initial parameter settings for the GOTS may be overly cautious; however, 

in most cases, the global minimum is found independently which parameter values are used. 

Nevertheless, these calculations also show that parameters settings are problem dependent. 

The optimal parameter values may require some adjustment to starting values indicated in this 

work. Strategies to estimate optimal parameter values are discussed. 

An efficient search for the global minimum of a highly dimensional function with 

many local minima is central for the solution of many problems in computational chemistry. 

Well known examples for such global optimization problems are the conformational search 

for molecules with a high number of freely rotatable bonds or the optimization of parameters 

of a force field. Conformational analysis is the study of a molecule conformations and the 

influence of them on the molecule properties.  The basis of a conformational analysis is the 

conformational search which has the goal to identify the energetically lowest lying 

conformers of the molecule. This usually requires the location of the global energy minimum 

of the PES. These structures are very important because they determine most of the properties 

of the molecule. Over the past several years, a multitude of conformational search techniques 

have been developed for this purpose.  
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In the last part of the work the GOTS is applied for such chemical optimization 

problems. The chapter provides a systematic approach how the variables are chosen and the 

adjustable parameters are set. As test cases the global minimum energy conformation of some 

amino acids, of two angiotensin converting enzyme (ACE) inhibitors, of 2-acetoxy-N,N,N-

trimethylethanaminium, and of a HIV-1 protease inhibitor is determined.  

The major advantages of the exploitation of GOTS method are that it provides the 

achievement of the global minimum without depending on the starting structure. The concept 

of main and dependent torsions was used to allow easy implementation of the internal 

rotations. It decreases the number of the variables of the optimization process and gives the 

possibility to speed up the optimization. The mildest ascent strategy does not require the 

computation of gradients, thereby leading to an additional saving in computational time. 

Finally, the method is quite general and can work with more sophisticated geometry 

optimization and single-point calculation methods of ChemShell. Some alterations were made 

at the original version of the method. The diversification strategy was modified. In the 

original GOTS the diversification strategy becomes necessary if the solution does not improve 

after a number of iterations that means that three found local minima at hand are worse than 

the current solution or if all neighbourhood solutions are already set tabu.  Implementation of 

Simulated Annealing ideas concerning found local minima gives a possibility to delocalize 

the search, to investigate more promising areas, and to locate a good approximation to the 

global optimum of a given function in a large search space. If the new minimum is not 

accepted according to the so-called Metropolis criterion the algorithm returns to the previous 

minimum and continues the search along the next modest ascent direction. This increases the 

efficiency of the GOTS method. 

The GOTS algorithm can be applied to cyclic molecules under condition that some of 

torsions keep constant to save a wholeness of a structure. So, the test calculations indicate that 

the GOTS is an efficient approach for conformational searches but also provides widespread 

fields of action. 

 

-138- 



                                                                                                                                                                              

Chapter 5 Zusammenfassung 

Die Optimierung  ist ein Teilgebiet der Mathematik. Das Optimierungsziel ist das 

globale Maximum oder Minimum einer vom Benutzer bestimmte Zielfunktion. Der Suchraum 

und die Natur solcher Objekte sind problemspezifisch und die mathematische Behandlung 

meist recht kompliziert. In der Regel sind zur Lösung entwickelte methematische Modelle 

zudem nur begrenzt verwendbar, d.h. schon kleine Veränderungen in den realen 

Fragestellungen erfordern recht unterschiedliche Modelle. Viele Fragestellungen können als 

Optimierungsprobleme formuliert werden. Wegen des hohen Rechenaufwandes sind die 

genauen Optimierungsmethoden der Operationsforschung, wie z. B. lineare oder dynamische 

Programmierung, zum größten Teil jedoch undurchführbar. Deshalb wurden Metaheuristik-

Suchmethoden entwickelt, um möglichst gute Näherungslösungen zu finden. Die 

Metaheuristik-Suchmethoden wie genetische Algorithmen, das Simulated Annealing oder die 

Tabu-Suche haben sich zu wichtigen Hilfsmitteln in den Naturwissenschaften und der 

Wirtschafsmathematik entwickelt. 

Die Arbeit umfasst drei Kapitel. Das erste Kapitel stellt eine kurze Zusammenfassung 

über die bekanntesten, zurzeit verwendeten Metaheuristischen-Konzepte dar und gibt 

notwendige Einleitungen zusammen mit der Definition der kombinatorischen 

Optimierungsprobleme. Das Kapitel begründet die Wahl des Tabu-Ansatzes und diskutiert die 

Basisideen der entwickelten Methoden. 

Im zweiten Kapitel werden die neuen entwickelten, nichtlinearen 

Optimierungsroutinen beschrieben, die auf Tabu-Suchstrategien beruhen. Die neuen 

Algorithmen sind Gradient Tabu Search (GTS), Gradient Only Tabu Search (GOTS) und 

Tabu Search with Powell’s Algorithm (TSPA). Bei diesen Methoden wird das globale 

Minimum einer Funktion durch die „steilsten Abstieg - schwächste Aufstieg“ - Strategie 

bestimmt. Dem steilste Abstieg folgt man, um den nächsten lokalen Minimum zu finden. Um 

von einem lokalen Minimum zum nächsten zu kommen bewegt sich der Algorithmus entlang 

der geringsten Aufstiegs bis das nächste Tal erreicht ist. Dann wird wieder die steilste Abstieg 

Strategie verwendet, um das Minimum dieses Tales zu finden und so weiter. GTS und GOTS 

verwenden der Kombination die Steepest-Descent- und die Quasi-Newton-Methoden für den 

steilste-Abstieg-Bereich. Der GTS wertet die diagonalen Elemente des Hessians zur 
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Realisierung der schwächste-Aufstieg-Strategie aus während die GOTS Methode die 

Nachbarschaft mit Funktionswertberechnungen abscannt. Auch der TSPA Ansatz verwendet 

die letztere Methode für die schwächste Aufstieg Strategie. Für den steilsten Abstieg wird aber 

die Direction Set Method with Powell’s Algorithm verwendet. Um eine effiziente Sperrung 

der bereits besuchten Regionen trotz der geringeren Anzahl von Schritte zu erreichen, führen 

alle Konzepte Tabu-Regionen und Tabu-Richtungen als Elemente der Tabu-Liste ein. Sie 

blockieren bereits besuchte Regionen sehr effizient und sind flexibel und leicht zu verwenden. 

Anschließend folgt eine Diskussion über Effizienz der Algorithmen. Hierbei werden die 

Ergebnisse mit anderen Ansätzen verglichen. Der Vergleich wird an Hand gut bekannten 

Testfunktionen mit unterschiedlichen Dimensionalität durchgeführt. Untersucht werden 

hierzu Funktionen, die von 2, 10, 30 oder 50 Variablen abhängen. Berechnungen mit häufig 

verwendeten Test-Funktionen (Abbildung 5-1) zeigen, dass die neuen Methoden effizienter 

sind als bisherige Ansätze. Insbesondere bei hochdimensionalen Problemen ergeben sich 

erhebliche Vorteile. Ein Vergleich mit dem Differential-Evolution-Ansatz beweist ebenfalls 

die Effizienz der neuen Methoden auf der Basis von „wall clock timings“. Ferner beinhaltet 

das Kapitel eine Untersuchung des Einflusses benutzerdefinierter Parameter auf die Effizienz 

der neuen Ansätze. Weiterentwicklung wären durch anspruchsvollere Methode für das 

„steilsten Abstieg“ - Verfahren oder Diversifikationsstrategien möglich.  
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Abbildung 5-1. Test Funktionen. 

 
Um die Eignung der GOTS-Methode für Problemen der Moleküloptimierung zu 

prüfen, wurde auch die Optimierung einer Funktion durchgeführt, die den in der Chemie 

auftretenden Potentialhyperflächen ähnelt (siehe Gl. 20). 

∑
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           n+3 die Zahl von Atomen oder Teilchen im gegebenen System ist. 

(20) 

 

Abbildung 5-2 illustriert den Funktionsgraphen des Funktion von 2 Variablen. Die Zahl ihrer 

lokalen Minima nimmt exponential mit der Größe des Problems zu, was der Komplexität der 

Funktionen der molekularen potentiellen Energie entspricht. 
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Abbildung 5-2.  Oberfläche der Funktion mit funktionalen Form ähnlich allgemeinen potentielle Energie 
Oberfläche Funktion. 

 
In den Tests für dieses so genannte n-Kette-Problemen (n = 7,…, 20) findet die GOTS 

Methode immer das globale Minimum, allerdings treten auch die Probleme, die bei der Suche 

des globalen Minimums solcher Funktionen entstehen, klar hervor. Ein Vergleich mit dem 

Deterministischen Algorithmus der die „Branch-and-Bound“-Schema mit „Intervall-

Analyse“-Methoden verwendet, um die niedrigsten Grenzen zu erreichen zeigt, dass die 

GOTS Methode auch für diese Anwendung sehr effizient ist. Abbildung 5-3 vergleicht den 

für beide Methoden notwendigen Aufwand auf Basis der zur Bestimmung des globalen 

Minimums erforderliche Funktionswertberechnungen. Untersucht wurden Funktionen, die 

von 7, 10 und 20 Variablen abhängen. In allen Fällen wurde das benannte globale Minimum 

gefunden. Dabei steigt die Zahl der notwendigen Funktionswertberechnungen bei der GOTS 

Methode um einen Faktor von etwa 11, wenn die Dimension von 10 auf 20 vergrößern wird. 

Für den Deterministischen Algorithmus beträgt der Faktor 352. 
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Abbildung 5-3. Anzahl der Funktionswertberechnungen, die zur Bestimmung des globalen Minimums der in Gl. 

20 definierten Funktion notwendig waren. 

 
Alle unsere Untersuchungen zeigen, dass der GOTS die Minima komplexer Probleme 

sehr effizient findet. Allerdings wird die Effizienz  von dem Parameter des Algorithmus  

beeinflusst. Aufbauend auf unseren Tests werden daher Werte für diese Parameter 

vorgeschlagen. Unabhängig von der Wahl der Parameter  werden die globalen Optima aber in 

den weitaus meisten Fällen gefunden.  Die Tests zeigen, dass die optimalen Großen der 

Parameter problemabhängig sind. Daher werden ebenfalls Wege diskutiert, wie man optimale 

Werte abschätzen kann.  

Eine effiziente Suche nach dem globalen Minimum einer hochdimensionalen Funktion 

mit mehreren lokalen Minima ist auch von zentraler Bedeutung für viele Probleme der 

Computerchemie. Bekannte Beispiele für solche globalen Optimierungsprobleme sind die 

Konformationsanalyse bei Molekülen mit einer hohen Zahl frei drehbarer Bindungen oder die 

Optimierung der Parameter eines Kraftfeldes. Die Grundlage einer Konformationsanalyse ist 

die Suche nach dem energetisch tiefstliegenden Konformer des Moleküls. Mathematisch ist 

die gleich bedeutend mit der Suche des globalen Energieminimums der Energiehyperfläche 

des Moleküles. Diese Konformeren sind sehr wichtig, da sie die Eigenschaften des Moleküls 

bestimmen. In den letzten Jahren ist eine Vielzahl von konformativen Suchmethoden 

entwickelt worden. 

Das letzte Kapitel der Arbeit beschreibt die Anwendung der GOTS Methode auf 

dieses Problem. Diskutiert werden die Auswahl der Variablen und die Einstellung der 

justierbaren Parameter. Die Effizienz der GOTS Methode wird an Hand einiger Aminosäuren, 
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zwei Angiotensin-Derivaten (ACE-Hemmer), des Acetylcholin und eines HIV-1-Protease-

Hemmstoff gezeigt. 

Die wichtigsten Vorteile der Verwendung der GOTS Methode bestehen darin, dass das 

Erreichen des globalen Minimums nicht von der Ausgangsstruktur abhängt. Das Konzept, von 

Haupt- und abhängigen Torsionen wurde verwendet, um interne Rotation um 

Einfachbindungen zu ermöglichen. Hierdurch wird ebenfalls die Anzahl Variablen reduziert, 

was die Optimierung effizienter macht. Die „mildeste Aufstieg“-Strategie verlangt keine 

Berechnung der Gradienten, was ebenfalls Zeit spart. Der neue Ansatz  wurde mit dem 

ChemShell-Programmpaket verknüpft. Zur Anpassung an die neue Aufgabe waren einige 

Modifizierungen notwendig. Insbesondere die Diversifikationsstrategie wurde angepasst. Im 

ursprünglichen GOTS wurde nach einem neuem Startpunkt gesucht (Diversifikation), wenn 

nacheinander drei höher liegende lokale Minima gefunden wurden. Zur 

Konformationsanalyse wurde eingebaut, dass man mit einer gewissen Wahrscheinlichkeit 

zum tiefer liegenden Minimum zurückgeht, um dort die Suche nach neuen Minima 

fortzuführen. Gesucht wird dann in die Richtung, die den zweitniedrigsten Anstieg besitzt.  

Dies vergrößert die Effizienz der GOTS Methode, da vielversprechende Bereiche intensiver 

untersucht werden. 

Die beschriebene Methode kann auch für zyklische Moleküle verwenden werden. 

Allerdings müssen einige der Torsionswinkel konstant gehalten werden, damit die 

Ringstrukturen nicht aufgebrochen werden. Die Testberechnungen deuten darauf hin, dass der 

GOTS nicht nur ein effizientes Konzept für Konformationsanalyse ist, sondern weit 

verbreitete Anwendungsbereiche finden kann. 
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Appendix A  Unconstrained Test Problems 

A.1 Branin function (BR) 

 Definition: 2
12

2
122 ))2sin(

2
1())4sin(

20
12()( xxxxxxBR ππ −+−+= . 

Feasible search space: 0.100.10 ≤≤− ix , 2,1=i . 

Global minimum: ; . )0,0(* =x 0)( * =xBR

 

A.2 Goldstein and Price function (GP) 

 Definition: . 
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Feasible search space: 0.20.2 ≤≤− ix , 2,1=i . 

Global minimum: ; x*=(0,-1); GP(x*)=3. )1,0(* −=x 3)( * =xGP

 

A.3 Hansen function (H) 

 Definition: . ∑ ∑
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Feasible search space: 0.100.10 ≤≤− ix , ni ,...,1= . 
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A.4  Ackley function (AKn) 

 Definition: ∑−
∑

−+= ==
− n

i i
n

i i x
n

x
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n eeexAK 11
2 )2cos(11

5
1

2020)(
π
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Feasible search space: 0.300.30 ≤≤− ix , ni ,...,1= . 

Global minimum: ; . )0,...,0(* =x 0)( * =xAKn

 

A.5 Rastrigin function (Rn) 

 Definition: . ∑
=

−+=
n

i
iin xxnR

1

2 ))2cos(10(10 π

Feasible search space: 12.512.5 ≤≤− ix , ni ,...,1= . 

Global minimum: ; . )0,...,0(* =x 0)( * =xRn

 

A.6 Griewangk function (Gn) 

 Definition: 1)cos(
4000
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11

2

+−= ∏∑
==

n

i

i
n

i

i
n i

xx
xG . 

Feasible search space: 0.6000.600 ≤≤− ix , ni ,...,1= . 

Global minimum: ; . )0,...,0(* =x 0)( * =xGn

 

A.7 Levy function (Ln) 

Definition: . ))2(sin1)(1())3(sin1()1()3(sin)( 2
1

1
1

22
1

2
nn

n

i
iin xxxxxxL πππ +−++−+= ∑
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Feasible search space: 0.100.10 ≤≤− ix , 4,...,1=i , 

            0.50.5 ≤≤− ix , 7,...,1=i . 

Global minimum: for i=4  ; ; )752.9,1,1,1(* −=x 502.21)( * −=xLn

                                         for i=7  ; . )754.4,1,...,1(* −=x 504.11)( * −=xLn

 

A.8 Rosenbrock function (Rbn) 

 Definition:  ∑
=
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 Feasible search space: 0.100.10 ≤≤− ix , ni ,...,1=  

 Global minimum: ;  )1,...,1(* =x 0)( * =xRbn
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A.9 Zakharov function (Zn) 

 Definition:  4
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 Feasible search space: 0.100.5 ≤≤− ix , ni ,...,1=  

 Global minimum: ;  )0,...,0(* =x 0)( * =xZ n

 

A.10 DeJoung function (DJ) 

 Definition:  2
3

2
2

2
1)( xxxxDJ ++=

 Feasible search space: 12.556.2 ≤≤− ix , 3,2,1=i  

 Global minimum: ;  )0,...,0(* =x 0)( * =xDJ

 

A.11 Trid function (Trn) 

 Definition: ∑∑
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 Feasible search space: , 22 nxn i ≤≤− ni ,...,1=  

 Global minimum: for i=5  30)( * −=xTrn
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Appendix B Notation 

TSP  travelling salesman problem 

GO  global optimization 

ACE  angiotensin converting enzyme 

F(xi)  continuous objective function 

xi  decision variable vector 

xl  lower bound 

xr  upper bound 

D  feasible set 

ACO  Ant colony optimization 

PSO  Particle swarm optimization 

GBAS  Graph-based Ant System 

S-ACO  Simulation based Ant Colony Optimization 
nℜ   multidimensional space 

x(p)  particle position in multidimensional space  

)( pν   velocity of the particle in multidimensional space 

best(p)  “particle best” particle position 

best(N(p))  “local (neighbourhood) best” particle position 

best(Xpop)  “global best” particle position 

QSAR  quantitative structure-activity relationship 

GA  Genetic Algorithm 

CGA  Continuous Genetic Algorithm 

RNA  Ribonucleic Acid 

SS  Scatter Search 

MA  Memetic Algorithm 

SA  Simulated Annealing 

T  main control parameter in the cooling schedule (temperature) 

∆F  function difference  

)( 1+iposF   function value of the resulting solution 
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)( iposF   function value of the current solution 

ρ   probability 

JSS  job shop scheduling problem 

VNS  Variable Neighbourhood Search 

Ni  set of neighbourhood structures 

Ni(x)  set of solutions in the ith neighbourhood of solution x 

VND  Variable Neighbourhood Descent 

RVNS  Reduced Variable Neighbourhood Search 

CPU  Central Processing Unit 

VNDS  Variable Neighbourhood Decomposition Search 

SVNS  Skewed Variable Neighbourhood Search 

PVNS  Parallel Variable Neighbourhood Search 

GVNS  General Variable Neighbourhood Search 

GRASP  Greedy Randomized Adaptive Search Procedure 

TS  Tabu Search 

TL  Tabu List 

FIFO  First In First Out 

GTS  Gradient Tabu Search 

TD  Tabu Direction 

TR  Tabu Region 

TDV  Tabu Direction Vector 

NMDV  New Move Direction Vector 

RTR  Radius of the Tabu Region 

Rup  upper bound for each variable 

Rlow  lower bound for each variable 

coeff  coefficient used to compute the radius RTR 

Δxi  step size at the mildest ascent strategy 

α  Tabu Direction coefficient 

alam  first step size at the line search 

Ntrial  number of trial points at the diversification search 

LSIZE  number of elements in tabu list 

ranki  recency ranked value 

rankmax  maximum recency ranked value 

rankmin  minimum recency ranked value 
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NDIM  dimension 

Itermain 

Iterworst 

Iterloc 

IterMAS 

 

loop termination numbers 

i
mina   visited minima 

i
startb   starting points of the optimization from which the respective minimum 

i
newc   next trial point 

BFGS  Broyden Fletcher Goldfarb and Shanno 

LMOD  Low Mode search 

DS  Diversification Search 

AKn  n-dimensional Ackley function 

BR  Branin function 

GP  Goldstein-Price function 

Gn  n-dimensional Griewangk function 

Rn  n-dimensional Rastrigin function 

H  Hansen function 

Ln  n-dimensional Levy function 

Rbn  n-dimensional Rosenbrock function 

DJ  DeJoung function 

Zn  n-dimensional Zakharov function 

Trn  n-dimensional Trid function 

TRUST  Terminal Repeller Unconstrained Subenergy Tunneling 

GOTS  Gradient Only Tabu Search 

TSPA  Tabu Search with Powell’s Algorithm 
+
iFz   function value of the position with increasing 

−
iFz   function value of the position with decreasing 

Di  direction for each variable 

Fzi  functional value needed for the linear ranking procedure 

Fzmax  maximal Fzi value 

Fzmin  minimal Fzi value 

N  number of parameters 

ECTS  Enhanced Continuous Tabu Search 
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ESA  Extended Simulated Annealing 

CHA  Correlation Height Analysis 

CTSS  Continuous Tabu Simplex Search 

PES  Potential Energy Surface 

BF  Boltzmann Factor 

E  Energy 

RGN  Random Generated Number 

d  number of possible values of each torsion angle 

dN  number of conformations to be generated and minimized 

MOLS  Mutually Orthogonal Latin Squares 

ANN  Artificial Neural Networks 

UFF  Universal Force Field 

min
tcoefficien   minimal function values percentage 

max
tcoefficien   maximal function values percentage 

LYS  Lysine 

VAL  Valine 

ARG  Arginine 

ACE  Angiotensin Converting Enzyme 

TR  ½ of the Tabu Region diameter 

BADMAX  number of local minima which did not improved the solution 

iω   torsion angle  
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