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Abstract: This study compares the performance of three bias correction (BC) techniques in adjusting
simulated precipitation estimates over Germany. The BC techniques are the multivariate quantile
delta mapping (MQDM) where the grids are used as variables to incorporate the spatial dependency
structure of precipitation in the bias correction; empirical quantile mapping (EQM) and, the linear
scaling (LS) approach. Several metrics that include first to fourth moments and extremes characterized
by the frequency of heavy wet days and return periods during boreal summer were applied to score
the performance of the BC techniques. Our results indicate a strong dependency of the relative
performances of the BC techniques on the choice of the regional climate model (RCM), the region, the
season, and the metrics of interest. Hence, each BC technique has relative strengths and weaknesses.
The LS approach performs well in adjusting the first moment but tends to fall short for higher
moments and extreme precipitation during boreal summer. Depending on the season, the region
and the RCM considered, there is a trade-off between the relative performances of the EQM and the
MQDM in adjusting the simulated precipitation biases. However, the MQDM performs well across
all considered metrics. Overall, the MQDM outperforms the EQM in improving the higher moments
and in capturing the observed return level of extreme summer precipitation, averaged over Germany.

Keywords: bias correction; multivariate quantile delta mapping; empirical quantile mapping; linear
scaling; precipitation; Germany

1. Introduction

Despite the higher horizontal resolution of regional climate models (RCMs) compared
to general circulation models (GCMs), simulated precipitation from RCMs exhibits system-
atic biases relative to observations [1]. Since RCMs are tools used to project future climate
change at a regional scale [2,3], the systematic biases can result in unrealistic interpretations
of future climate change signals (e.g., [4]). Thus, there is the need for bias correction (BC) of
the RCMs before their usage in impact modeling and adaptation studies.

Bias correction can be considered as a part of the model evaluation. For post-processing
a climate model, BC uses the relationship between the observed variable and climate model
simulations [5]. Given that the temporal variations between climate simulations and
observations are not in the same phase, e.g., due to initial boundary conditions that are
largely determined by the driving GCM, statistical post-processing with BC is usually
focused on improving the distributional aspects (e.g., moments and quantiles) of the
simulated variable to be closer to the corresponding observed variable. The systematic
biases in model outputs can result from large-scale circulation biases from the GCM that
provides the lateral boundary conditions, for example, a misrepresentation of the frequency
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of weather types and position of the storm tracks, the parameterization of convection,
unresolved sub-grid scale orographic effects, limited model complexity, and uncertain
internal variability (e.g., [6]). Most state-of-the-art BC approaches do not improve the
circulation biases and the biases associated with the uncertainties in internal variability
but can be expected to adjust the biases associated with parameterizations and model
resolution [7].

Several techniques have been developed to overcome some limitations faced by BC
of climate models when used for climate change impact studies [8], e.g., cross-validated
multiple regression models for mean value statistics [9,10]. Studies have also addressed
BC techniques that improve extreme value statistics, using process-based and stochastic
weather generators (e.g., [11]). Specifically, the empirical quantile mapping approach (EQM)
that matches the quantiles of the simulated variable to a reference observed distribution,
has been reported to outperform BC techniques in hydrological studies that focus on
other distributional properties such as mean, median, or variance [12]. Nonetheless, the
performance of BC techniques can be dependent also on the region and variable analyzed
(e.g., [13]). Moreover, the EQM still faces several limitations, such as misrepresentation of
variance of the corrected variable when the projected changes are not within the range of
the historical distribution used as a reference for the bias correction [14]. Consequently, this
can modify the projected trends—mostly trends in extreme quantiles (e.g., [15]). Hence,
improved versions of EQM have been developed, such as parametric quantile mapping [16]
that replaces the empirical distribution with appropriate parametric distribution, and
detrended quantile mapping [17] that incorporates projected changes in the mean of
the bias-corrected variable. Anyway, the parametric quantile mapping still follows the
stationarity assumption (i.e., the transfer function obtained in the historical simulations
is applicable under future climate change), which is questionable given the complexity
and nonlinearity of future climate change. The detrended quantile mapping preserves
the climate change signal only in the mean, ignoring other aspects of the distribution. To
this end, the quantile delta mapping (QDM) [14] represents an efficient alternative to the
univariate EQM since it corrects both the systematic biases and also preserves the projected
future changes in the quantiles. Hence with QDM, the assumption of a stationary transfer
function is no longer necessary.

Within the regional context of Germany, the relative performances of a wide range of
BC techniques have been implemented. For example, over the Bavarian catchments, ref. [18]
evaluated the relative performances of linear scaling (LS) [19], local intensity scaling, and
quantile mapping in improving RCMs for runoff modeling. They found that while the
mean flow is well represented, the extreme flow is poorly reproduced by all the considered
methods; the quantile mapping, however, outperforms the scaling approach. A similar
result was reported by [20], where the performance of simpler methods was limited to
improving the simulated mean values.

Furthermore, univariate BC methods do not consider inter-variable dependency. Ac-
cording to [21], the application of univariate quantile mapping at each grid point in the
study region can alter the spatial variability of the simulated variable, which might modify
the underlying spatial atmospheric modes and physics. In this respect, studies have ex-
amined the added value of multivariate BC techniques. Commonly, a copula theory—i.e.,
the consideration of the joint dependency of variables in the course of the BC [22]—is
used in multivariate bias corrections. Over Germany, ref. [23] found that a stochastic BC
technique, based on the concept of copula theory, performs better than quantile mapping
in adjusting precipitation biases. Similarly, incorporating zero precipitation values, ref. [24]
found that the copula-based scheme performs well in Germany both for mean and extreme
conditions. Moreover, the implementation of multivariate bias corrections commonly relies
on univariate bias correction algorithms to match the simulated multivariate distribu-
tion to the observed multivariate distribution [14]. On this ground, ref. [25] introduced a
multivariate aspect of the QDM (MQDM). The MQDM is designed to transfer the entire
multivariate distribution and the empirical copula. Using the MQDM, ref. [25] included
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neighboring grid points as additional variables to incorporate the spatial dependency
structure of precipitation in the BC. Here we applied the obliquely rotated S-mode (i.e.,
the variable is grid points and observation is time series) principal component analysis
to regionalize precipitation in Germany. Hence in this study, sub-grid points in Germany
that covary over time, with respect to precipitation, are used as the additional variables.
Relative improvements in using the MQDM to correct daily precipitation estimates from
two RCMs over Germany are compared to standard LS and EQM approaches. We score the
performances based on the first to the fourth moments of precipitation distributions and
extreme precipitation characterized by return period analysis.

Data and methods, in particular the compared BC techniques, are described in the
next section. Section 3 is dedicated to the results and discussion, and conclusions are drawn
in Section 4.

2. Data and Methods
2.1. Data

Simulated precipitation data is obtained from two CMIP5 EURO-CORDEX RCMs [26].
The RCMs are CCLM4 and REMO2015, each driven by the ERA-Interim and the MPI-
ESM-LR GCM [27]. The ERA-Interim driven RCMs are used to evaluate the RCMs against
gridded observed precipitation data from E-OBS [28]. The selection of the evaluation period
1989–2008 corresponds to the availability of all datasets. The RCMs driven by the GCM
output under the historical experiment are obtained from 1950 to 2005 because they overlap
with the E-OBS data. The temporal resolution of all data sets is daily. The spatial resolution
of the RCMs is 0.11◦, and 0.1◦ for E-OBS. The RCMs are further interpolated to the 0.1◦

longitude and latitude of the E-OBS data using first-order conservative remapping [29].

2.2. Bias Correction Techniques

We compared the performance of three BC techniques in adjusting the systematic
biases in the precipitation field over Germany. The BC techniques are LS, EQM, and MQDM.
The techniques are applied to the daily precipitation simulated output of the two RCMs
driven by MPI-ESM-LR and ERA-Interim. The BC transfer functions are obtained at a
seasonal time scale (i.e., conditioning the daily precipitation estimates by seasons) for the
four seasons in the study region—i.e., winter (DJF), spring (MAM), summer (JJA), and
autumn (SON). For the two univariate methods (i.e., LS and EQM), the transfer functions are
obtained and applied at each grid point in Germany. For MQDM, the spatial heterogeneity
of the precipitation field was simplified by using rotated S-mode principal component
analysis (PCA) to obtain grid points that covary over time. The leading modes of the PCA,
which reduce the spatial complexity of the precipitation field while retaining most of its
variability, aid in obtaining optimized patterns, which are treated as additional variables
(see Figure A1). Hence, the MQDM is applied to the sub-grids to improve the spatial
dependency structure of the precipitation field in the course of the BC. The rationale behind
using PCA to reduce the spatial complexity of the field is that the consideration of all grid
points over Germany as covariates (rather than sub-grids that covary), implies an immense
dimensionality of the spatiotemporal field and, hence, might lead to overfitting in the
statistical models.

The analysis period, i.e., 1950–2005, is divided into two halves—1950 to 1977 and
1978 to 2005. The first half is the training period for which the BC transfer function is
estimated, and the second half is the validation period. The transfer function is assumed to
be stationary for the LS and EQM methods; but since the MQDM is implemented using
QDM, climate change signals are incorporated in the course of the BC. As a result, the
stationarity assumption is not necessary under the MQDM technique.
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2.2.1. Linear Scaling

The LS approach is among the simplest BC techniques. It adjusts the biases in the
mean based on Equation (1).

x̂m, f (t) = xm, f (t)×
(

xo,h

xm,h

)
(1)

with

xm, f (t) = Raw modeled precipitation estimate, in mm/day, at time t in the validation period;
x̂m, f (t) = Corrected modeled precipitation estimate, in mm/day, at time t in the validation period;
xo,h = Seasonal mean of the observed precipitation estimate, in mm/day, during the
training period;
xm,h = Seasonal mean of the modeled precipitation estimate, in mm/day, during the
training period.

2.2.2. Empirical Quantile Mapping

In the EQM, the transfer function is based on the cumulative distribution function
(CDF). The transfer function is obtained by matching the quantiles of simulated daily
precipitation estimates to that of the observed precipitation estimates during the validation
period, according to Equation (2).

x̂m, f (t) = F−1
o,h

{
Fm,h

[
xm, f (t)

]}
(2)

Fo,h = Observed CDF from the observational data in the training period;
Fm,h = Modeled CDF from the simulated data in the training period.

The major limitation of the EQM is the stationarity assumption of the CDF. Since the
algorithm relies on the historical CDF to correct future projections (Equation (2)), problems
can be encountered when the forecast data is outside the range of the historical values,
which is plausible when there is a strong climate change signal. As a consequence, projected
trends can be affected in an undesirable way.

2.2.3. Quantile Delta Mapping

The QDM is an improved version of the EQM. Instead of the stationarity assump-
tion in the EQM, the QDM is designed to preserve the model’s relative changes in the
quantiles [14]. As outlined in [14], there are two steps followed by the QDM to preserve
the projected changes in the simulated quantiles: (i) before the quantile mapping, model
outputs are detrended by quantile so that simulated historical and projected values take
the characteristics of the historical observations without considering the change signal;
(ii) projected relative changes in the simulated quantiles are super-imposed on the corrected
values. The aim of step (ii) is to incorporate the climate change signal. These steps are
described further in Equations (3)–(5), as implemented in [14] from where the equations
were adapted.

∆(t) =
xm, f (t)

F−1
m,h

[
τm, f (t)

] (3)

with

τm, f (t) = The non-exceedance probability (ranging from 0 to 1) of the projected value at a
given time in the validation/forecast period;
F−1

m,h = Inverse CDF of the simulated value during the historical/training period for the
original values;
∆(t) = Relative change signal in the simulated quantiles.

For a zero-bounded and right-skewed variable such as precipitation, ∆(t) is the ratio
of the raw projected model output (i.e., in the forecast period or validation period), to the



Water 2022, 14, 600 5 of 17

model output in the historical period or training period. The bias-corrected quantile is
given by

x̂o:m, h:p(t) = F−1
o,h

{
τm, f (t)

}
(4)

with x̂o:m, h:p(t) being the corrected quantile in the forecast period using the inverse CDF
of observed values over the historical simulations. The final bias-corrected quantiles with
climate change signal are obtained by

x̂m,p(t) = x̂o:m, h:p(t)∆(t) (5)

2.2.4. Multivariate Quantile Mapping

The MQDM is the multivariate version of the QDM. A detailed explanation of the
algorithm is given by [25] and the equations were adapted from the study. It transfers the
full multivariate distribution and the empirical copula. Here we outline the basic steps:

(1) Apply orthogonal rotation to the 3 precipitation data sets respectively (i.e., the ob-
served and simulated data in the training period, and the simulated precipitation data
in the validation period). The rotation aims to (i) obtain a linear combination of the
covariates and; (ii) obtain a uniform multivariate distribution that allows convergence
between the simulated and observed multivariate distributions. Here the variables
that are rotated to obtain the uniform multivariate distribution are grid points that
covary over time.

(2) Match the simulated multivariate distribution (i.e., from the RCM) to fit the target
multivariate distribution (i.e., from the observed precipitation) using QDM.

(3) Apply inverse rotation to the matched multivariate distribution in step (2).

Iteratively repeat steps (1) to (3) until the multivariate distribution of the simulated
data converges to the multivariate distribution of the observed data.

2.3. Metrics Used to Validate the Bias Correction Techniques

The validation of the performance of the BC is done over the 1978–2005 period. For the
seasonal time series of the corrected model outputs averaged over Germany, we calculated
the first to fourth moments of the bias-corrected precipitation distribution and compared
them with the observed values. The mean absolute error (MAE) was used to evaluate the
performance of the corrected daily values at each grid point, both for spatial means and
spatial variability (i.e., the standard deviation) of precipitation.

To assess the performance of the BC techniques with respect to extreme values, which
is of major importance in modeling hydrological extremes, we calculate return times. First,
during JJA when most parts of Germany receive their highest rainfall amounts and are
prone to floods, the annual maxima of the precipitation data series averaged over Germany
are obtained. Using the maximum likelihood estimation method, the generalized extreme
value (GEV) distribution is fitted to the annual maximum precipitation series. Return time
between 2 and 150 years is calculated and the simulated results from the bias-corrected
output are compared to observed values using MAE. To ensure the robustness of the results
from the annual maxima and GEV distribution, the return time calculations are repeated
using a peak over threshold approach based on the Gumbel distribution.

3. Results and Discussion
3.1. Evaluation of Simulated Precipitation from Uncorrected RCMs

Figure 1a shows the mean annual cycle of precipitation, averaged over Germany, from
the RCMs and E-OBS. The RCMs mainly capture the observed annual cycle. However,
it can be seen that when ERA-Interim is used as driving data for the RCMs, the monthly
precipitation sums are closer to the observed ones. The GCM-RCM model chain induces a
wet bias at most of the grid points, especially in the CCLM4 model.
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Figure 1. Evaluation of the REMO and CCLM4 RCMs against E-OBS for (a) annual cycle and
(b) spatial mean of precipitation (i.e., RCM minus E-OBS) for the 1989–2005 period.

Spatially, the majority of the biases are located over the southern parts of Germany
(Figure 1b). Based on the MAE, Table 1 shows that the precipitation amount is inflated
when the RCMs are driven by MPI-ESM. A similar result, that the MPI-ESM induces further
wet biases in the RCMs, was reported by [30]. This translates to increasing the wet day
biases that become substantially higher when the RCMs are driven by the GCM output
(Table 1). Furthermore, in the southwestern part of Germany, there is a dipole pattern of
precipitation bias with the REMO model, regardless of the driving data. This suggests that
the bias is rather associated with the REMO model. The REMO model shows a dipole-like
pattern of precipitation bias in the southwestern parts of Germany. According to [31], this
bias can be linked to inadequate orographically induced rainfall over the Rhine valley and
Black Forest region.

Table 1. Mean absolute error in the temporal series, spatial series, and annual frequency of wet days
from the REMO and CCLM4 RCMs against E-OBS for the 1989–2005 period.

Data Set MAE (Time)
(mm/day)

MAE (Spatial)
(mm/day)

Wet Day Bias
(day/year)

CCLM4 (ERA-Interim) 1.18 0.26 12

CCLM4 (MPI-ESM) 2.95 0.47 58

REMO (ERA-Interim) 1.40 0.62 18

REMO (MPI-ESM) 2.79 0.81 44
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3.2. Relative Performance of the Bias Correction Techniques

Figures 2 and 3 show the performance of the BC during the evaluation period on
adjusting seasonal mean precipitation at each grid point in Germany, for the CCLM4
and REMO models, respectively. From Table 2, all BC methods added value in adjusting
the biases in the simulated mean precipitation to be closer to observations. The relative
performances of the respective BC techniques indicate dependency on the RCM and season
analyzed. Most remarkable is that the dipole pattern and local biases in the REMO model
were significantly dampened by all the BC methods. Similarly, the localized biases in the
southernmost regions under the CCLM4 model were dampened.
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in the CCLM4 RCM, driven by MPI-ESM, during the 1978–2005 evaluation period.

For the CCLM4 model, the EQM increases the biases at some of the grid points, during
the DJF and JJA seasons. For the REMO model, the LS method performs best for all seasons
in dampening the biases in the simulated mean precipitation at the grid box level. Given
that the LS algorithm focuses on scaling the mean precipitation at each grid box to be
closer to the observed, this result is not surprising. Nonetheless, the distribution-based
methods—i.e., EQM and MQDM—also add value in adjusting the biases in the simulated
mean precipitation at most grid boxes.
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Figures 4 and 5 show the biases in the spatial variability (i.e., standard deviation) of
precipitation at grid points in Germany for the CCLM4 and REMO runs, respectively. As
shown by Table 3, the added value in improving the spatial variability of precipitation
is slim. The LS method indicates the tendency of worsening the spatial variability of
precipitation, depending on the season and RCM. This is more pronounced in the CCLM4
model, where the LS method introduces more biases in the variability of precipitation in
large parts of Germany. During DJF, the MQDM method performs well in dampening the
biases in the standard deviation and did not worsen the mean bias over Germany, for any of
the seasons. Overall, the distribution-based methods perform better in improving the biases
in the spatial variability of precipitation over Germany. However, as earlier stated, the
performances of the BC techniques in dampening the biases depend on the region, season,
and the combination of GCM/RCM. The time (seasonal) dependency of the biases can be
partly due to the transient/non-stationarity of the processes associated with precipitation
in the study region. For example, seasonal variations in advective flow and atmospheric
stability (e.g., [32]). Thus, the associating biases in the simulated precipitation during the
distinct seasons can be expected to differ. On the other hand, the spatial dependency of the
biases can be associated with the spatial heterogeneity of precipitation in the study region.
On the larger scale, the western regions closer to the oceans are wetter, compared to the
eastern regions that are farther away from the oceans.
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Table 2. Mean absolute error (mm/day) in spatial mean series of the precipitation estimates from the
RCMs, driven by MPI-ESM, relative to E-OBS during the 1978–2005 validation period. (*) indicates
the best performing BC method, with the lowest error, for a given season.

RAW LS EQM MQDM

CCLM4
DJF

0.64 0.10 * 0.39 0.10 *
MAM

0.63 0.13 * 0.14 0.14
JJA

1.03 0.24 0.30 0.17 *
SON

0.62 0.19 0.10 * 0.21
REMO

DJF
0.82 0.08 * 0.27 0.14

MAM
0.59 0.08 * 0.20 0.13

JJA
0.70 0.11 * 0.15 0.22

SON
0.51 0.09 * 0.14 0.15
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Figure 5. Performance of the bias correction techniques for the spatial variability of precipitation
(i.e., standard deviation) as simulated in the REMO RCM, driven by MPI-ESM, during the 1978–2005
evaluation period.

Table 3. Mean absolute error in spatial variability series (i.e., the standard deviation in mm/day) of
the precipitation estimates from the RCMs relative to E-OBS during the 1978–2005 validation period.
(*) indicates the best performing method and (**) indicates cases where the error is worsened relative
to the raw estimates.

Raw LS EQM MQDM

CCLM4
DJF

0.41 0.87 ** 0.55 ** 0.25 *
MAM

0.43 0.57 ** 0.41 * 0.42
JJA

0.72 0.73 ** 0.42 * 0.44
SON

0.48 0.49 ** 0.39 * 0.39 *
REMO

DJF
1.04 0.44 0.45 0.32 *

MAM
0.56 0.59 ** 0.55 0.33 *

JJA
0.74 0.80 ** 0.42 * 0.56

SON
0.70 0.39 * 0.40 0.41
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Next, we evaluate the performance of the BC in terms of the first to four moments of the
distribution of daily precipitation time series, averaged over Germany. From the empirical
distribution of daily precipitation values before and after the BC, each method adds value
in minimizing the wet bias associated with the GCM–RCM model chain (Figure A2).
Tables 4 and 5 show the first to fourth moments, as major characteristics of the empirical
distributions. Again, the relative performances of the BC techniques depend on the season
and RCM. However, the distribution-based BC techniques outperform the LS approach
which, in some cases, worsens the third and fourth moments (i.e., skewness and kurtosis).
Overall, the MQDM performs best in correcting the biases in the third and fourth moments,
whereas EQM increases the biases during SON in the REMO model. The good performance
of the LS approach in removing the biases in mean precipitation at the grid point level,
especially in REMO (cf. Figure 3), is also illustrated in Table 5 where, for most seasons, it
outperforms other methods in adjusting the temporal mean value to the observed one. For
the CCLM4 model, the MQDM performs best in improving the first moment. The second-
moment quantity, represented by the standard deviation, obviously poses a challenge to
the BC methods. In most cases, the Raw RCMs capture the temporal variability better than
the corrected precipitation time series. Nonetheless, there are improvements in adjusting
the second moment by the MQDM technique. The relatively better performance of the
MQDM in improving the higher moments can be linked to the change-preserving attribute
of the QDM over the entire distribution, and the incorporation of the spatial dependency of
precipitation in the course of the BC.

Table 4. Errors in the first to fourth moments, in mm/day, of the simulated raw and bias-corrected
precipitation estimates against observed precipitation values, averaged over Germany, from the
CCLM4 model, during the 1978–2005 validation period. Error is calculated as the absolute value of
the observed minus simulated statistic. (*), for the RAW values, indicates when the RAW estimate
outperforms the corrected values. (*) indicates the best performing BC technique, and (**) indicates
third to the fourth moments where the BC technique worsens the statistics.

Statistic RAW LS EQM MQDM

DJF
Mean 0.64 0.08 0.39 0.02 *
SD 0.03 * 0.68 0.56 0.18 *
Skweness 0.42 0.43 ** 0.08 0.05 *
Kurtosis 1.77 1.73 0.85 0.44 *

MAM
Mean 0.63 0.13 0.12 0.10 *
SD 0.17 * 0.37 0.32 0.25 *
Skweness 0.49 0.36 0.10 * 0.22
Kurtosis 2.27 1.50 0.56 * 1.31

JJA
Mean 1.03 0.33 0.23 0.14 *
SD 0.43 0.38 0.02 * 0.06
Skweness 0.43 0.49 ** 0.20 0.07 *
Kurtosis 2.17 2.42 ** 1.43 0.59 *

SON
Mean 0.59 0.18 0.01 * 0.19
SD 0.12 * 0.34 0.23 * 0.37
Skweness 0.48 0.58 ** 0.30 0.08 *
Kurtosis 2.45 3.15 ** 1.88 0.36 *

To examine the performance of the BC techniques in capturing extreme values of
precipitation, we consider return times during boreal summer. First, a GEV distribution
is fitted to the annual maximum JJA values of precipitation during the validation period
(Figure 6). The results are compared to the observed return times from E-OBS. Second, to
assess the sensitivity of the extreme value estimates, we repeat the analysis using the peak-
over-threshold approach that is associated with the Gumbel distribution. This approach
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might help optimize the calculations given that the sample size can be larger compared
to the annual maxima approach. To accommodate more samples, we have used the 90th
percentile precipitation value from E-OBS as the threshold. Observed daily precipitation,
raw, as well as bias corrected, that exceed this threshold, are used for the return time
estimates depicted in Figure 7.

Table 5. Errors in the first to fourth moments, in mm/day, of the simulated raw and bias-corrected
precipitation estimates against observed precipitation values, averaged over Germany, from the
REMO model, during the 1978–2005 validation period. Error is calculated as the absolute value of
the observed minus simulated statistic. (*), for the RAW values, indicates when the RAW estimate
outperforms the corrected values. (*) indicates the best performing BC technique, and (**) indicates
third to the fourth moments where the BC technique worsens the statistics.

Statistic RAW LS EQM MQDM

DJF
Mean 0.58 0.00 * 0.25 0.11
SD 0.07 * 0.44 0.46 0.43 *
Skweness 0.37 0.36 0.19 * 0.22
Kurtosis 1.52 1.92 ** 1.19 0.93 *

MAM
Mean 0.50 0.04 * 0.19 0.04 *
SD 0.05 * 0.46 0.32 0.21 *
Skweness 0.23 0.42 0.27 0.08 *
Kurtosis 1.45 1.86 ** 1.50 ** 1.44 *

JJA
Mean 0.51 0.09 0.00 * 0.30
SD 0.14 0.40 0.13 0.00 *
Skweness 0.46 0.26 0.03 * 0.26
Kurtosis 2.06 0.98 0.23 * 0.98

SON
Mean 0.24 0.04 ** 0.13 0.10
SD 0.06 * 0.33 0.39 0.20 *
Skweness 0.20 0.38 ** 0.38 ** 0.02 *
Kurtosis 0.57 2.08 ** 2.22 ** 0.45 *
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Figure 6 shows that based on the GEV distribution, the observed return times are
best represented by the MQDM approach. Concerning MAE, MQDM outperforms other
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methods by a large margin in both RCMs. For the peak-over-threshold approach, the
results are a bit different compared to the annual maxima approach. Ref. [33] reported that
in terms of extreme events, the peak-over-threshold approach can be relatively more robust.
This is also confirmed in our results based on the Gumbel model fit. Figure 7 shows that
similar to the annual maxima approach, the MQDM output is closest to observations in the
CCLM4 model, whereas in REMO, the EQM outperforms the MQDM with a slim margin
(based on the MAE). In all cases, the LS approach worsens the estimate of return times
by the RCMs. Overall, the MQDM outperforms the other methods in adjusting summer
extreme precipitation characteristics across Germany to the observed values. [14] reported
also that, compared to the EQM, the QDM, which is implemented in the MQDM algorithm,
performs better in correcting precipitation extremes. Since the change signal is incorporated
in the MQDM, it is reasonable that it performs well in capturing precipitation extremes
during JJA in Germany.

4. Conclusions and Outlook

The relative performance of three BC techniques in adjusting the biases in simulated
precipitation from the RCMs, CCLM4 and REMO (driven by MPI-ESM-LR) over Germany
is examined in this work. The BC techniques being considered here are the LS method
that adjusts the biases in the mean, and two distribution-based methods—i.e., the EQM
and MQDM. The MQDM is a multivariate BC technique, implemented with the QDM
that preserves climate change signals in the quantiles. Here we used grids that covary as
variables, in an effort to incorporate the spatial dependency of the precipitation, in the
course of the BC. Our results show that the performance of the methods depends on (i) the
season analyzed; (ii) the choice of the GCM/RCM model chain; (iii) the region; (iv) and
the statistical metrics considered. The LS method performs well in improving the first
moment but shows a tendency in worsening the higher moments and the representation of
precipitation extremes. Overall, the MQDM outperforms the EQM in adjusting the higher
moments and the extremes in precipitation, during summer. Hence, we conclude that
the MQDM has the potential to adjust biases in simulated precipitation over Germany
and might be applied preferably when it comes to providing reliable distributions of
precipitation, e.g., for impact modeling and adaptation studies.

The present study is restricted to only two RCMs out of the EURO-CORDEX ensemble
because the described work has been motivated by the framework of the German RegIKLim
project. In this project, very high-resolution climate change projections will be provided
for seven model regions across Germany where various attempts of impact modeling are
carried out and adaptation strategies to climate change will be elaborated. The project is
based on new RCM versions from the German modeler communities, i.e., REMO, CCLM
and ICON. From a more general climatological perspective, it would also be of interest
to assess to what extent these results might be corroborated by different GCM–RCM
combinations that are available for central Europe—a matter of ongoing research.
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