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3. Prüfer: Prof. Dr. Laurens W. Molenkamp

Tag des Promotionskolloquiums: 01.12.2008

Doktorurkunde ausgehändigt am: ....
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Chapter 1

Introduction

Spin glass science is a relatively mature field of research and much work has been invested to experimentally
investigate, as well as to theoretically model and understand the intriguing properties of this magnetically
(dis)ordered1 phase at low temperatures. However, up to now, many fundamental questions, e.g. what are
the critical dimensions and what happens in finite-dimensional spin glasses, remain unanswered. Already at
the beginning of the theoretical investigations it turned out that even the classical mean-field theory of a spin
glass is technically and conceptually highly nontrivial, and its correct treatment requires a powerful tool,
known as replica symmetry breaking (RSB). While researchers have gained some insight into the physics of
RSB, meanwhile, the question of its relevance in finite-dimensional spin glasses is still hotly debated and no
satisfactory theory which extends the mean-field model to finite dimensionality has been found, yet.

RSB as a fundamental issue in replica theory, however, has proved important in lots of other fields of
physical and even of interdisciplinary research. Thus, it is important to gain a deeper understanding of
RSB, to enlarge the tool kit of treating RSB and to extend the concept of RSB to more advanced situations
beyond the simple model in which it has been discovered. My work focusses on the latter two points: a
new formulation of the low-temperature theory has been developed which, for the first time, allows a T = 0
treatment of the Parisi-RSB2 directly in the physical limit of infinite order of RSB. Further, this theory is
extended from a pure classical Ising theory to general n-component spin systems with the aim of being able
to generalize the concepts, developed in the present work, to quantum spin glasses.

Before going in medias res, however, I want to appropriately introduce the reader to the field of spin glass
physics - the field in which RSB is rooted - beginning with a historical overview which focusses on the starting
time in the 1970’s and on the puzzles, physicists had to deal with during the first decade. After that, as an
example for the interdisciplinary relevance, some applications of spin glass theory to computer sciences are
shortly reviewed. Both the historical and the computer sciences overview are by no means complete - the
sheer amount of work one finds in the literature is overwhelming - but should give the reader a good idea of
what has been going on for the last three decades. Further, the point of ergodicity breaking must be raised
in the introduction because of its importance for understanding the concept of replica theory. Finally, on
the basis of a simple model of an Ising ferromagnet, the concepts and notations used throughout this thesis
are introduced so that also the non-expert reader is able to understand the most important points of the
discussion.

1.1 Historical overview

The year 1972 can be titled the starting year of spin glass research. The kick-off was an experimental
investigation of the magnetic properties of Gold-Iron alloys at low temperatures [CM72]. Although these
alloys were well investigated materials at that time, the sharp cusp in the magnetic susceptibility at low fields,
which we now know is characteristic for spin glasses, has been measured for the first time and suggested the
existence of a novel kind of phase transition. Though the idea of a phase characterized by frozen random
spin configurations raised two years earlier in a seminal theoretical work of the later winner of the Nobel

1Whether the phase is ordered or disordered depends on the point of view: a characteristic autocorrelation time is large,
or even infinite in spin glasses, while the orientations of the magnetic moments are random and thus don’t give rise to a finite
magnetization.

2By transforming to a different gauge, the theory has been treated by Sommers and Dupont at T = 0 directly [SD84].
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2 CHAPTER 1. INTRODUCTION

Prize, Philip W. Anderson [And70], some details of the experiments, e.g. the sharpness of the cusp or
the negative Néel temperature θ, could not be explained within available theories: the concept of a spin
glass at that time rather suggested a distribution of freezing temperatures which contradicted the sharp
cusp in the susceptibility measured in experiment, while, on the other hand, the negative θ contradicted an
antiferromagnetic interpretation of the measurements. On that account, the authors of [CM72] ended up
with the conclusion that they “do not yet have a model which can describe the antiferromagnetic ordering3

with sharp transitions and negative values of θ”.
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Fig. 1.1: Number of publications per year in all APS journals with spin glass in title or abstract from 1972
to 2007 (source: http://prola.aps.org). The most significant events during the first 15 years of
spin glass research have been marked.

Three years later, in 1975, Edwards and Anderson came up with the first theoretical approach, based on
random coupling of classical spins on a lattice [EA75], which could explain the susceptibility cusp in a spin
glass material. From a theorists view, this celebrated Edwards-Anderson (EA) model was the foundation
of the rapidly evolving field of spin glass research (see Fig. 1.1). Within the EA model, the experimentally
observed sharp cusp of the magnetic susceptibility as well as the rounding of this cusp at non-zero external
fields could be explained, and this was strong evidence for the principal validity of the EA spin glass concept.

Only shortly after the EA model has been proposed, David Sherrington and Scott Kirkpatrick (SK)
investigated the mean-field theory of the EA model by explicitly assuming infinite range random interaction
between spins [SK75]. They titled their work Solvable model of a spin glass, assuming that the approximation
of infinite range interactions was sufficient for rendering the theory simple. They pointed out, however, that
their treatment of the model was plagued by a negative entropy in the zero temperature limit, which indicated
that something must be wrong with their type of analysis, based on the replica formalism. In 1977 then, a
work, titled Solution of ’Solvable model of a spin glass’ appeared [TAP77] in which the authors resort to a
diagrammatic analysis of the SK-model and showed how to construct a consistent mean-field theory without
the use of replicas. This theory is now known as TAP theory. The explicit analysis of the TAP equations,
however, was cumbersome and comprised virtually no advantage.

In 1979, an extension to the SK-analysis appeared which allowed a consistent mean-field treatment within
replica theory. Giorgio Parisi postulated a hierarchical scheme for a specific replica matrix [Par79] and
derived an approximate formalism which becomes exact near the spin glass freezing temperature TC . This
hierarchical scheme, known as replica symmetry breaking (RSB) has been extended to T < TC later. The
proper treatment of Parisi RSB at exactly T = 0, however, has not been understood for decades. Parisis
RSB scheme has only been a proposition in 1979 in the sense that he didn’t prove or derive this scheme.
It just turned out that this scheme solves the inconsistencies of the SK-analysis. In fact, it took more
than 25 years to rigorously prove that RSB yields the proper free energy [Tal06]. Nevertheless, though the
form of the solution is well known and understood (it is an order function instead of an order parameter),
numerically4 finding the solution explicitly is still a nontrivial task; one must solve a self-consistency problem

3”Antiferromagnetic ordering” was synonymous for magnetic ordering without finite magnetic moment at that time.
4An approximate analytical solution is only possible for temperatures near the transition temperature.
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which involves either a partial differential equation or many recursion equations. RSB theory, although it is
a mean-field type theory, has been, and still is, a complicated business.

The main problem of RSB at the beginning of the 1980’s was the lack of a proper physical interpretation
of the hierarchical scheme of an infinite number of order parameters, which can be expressed as an order
function q(x). Progress on this issue happened in two different directions. In 1981, an alternative pseudo-
dynamic theory has been developed by Sompolinsky [Som81, SZ81] which leads to the same formalism as
the Parisi RSB, but without using the replica-formalism. Sompolinsky supplied an interpretation of q(x) as
an autocorrelation function parametrized by diverging relaxation times. Another appealing interpretation
has been given three years later by M. Mezard et al. [MPS84]. Stimulated by the discovery of an ultrametric
structure in the space of possible spin configurations, they directly translated the hierarchical structure
of the Parisi Ansatz to a phase space property, namely the tree-like ordering of spin states. Up to today,
ultrametricity is regarded as an important indication of RSB physics which is often used to identify mean-field
like behavior e.g. in numerical simulations of finite range models [CGG07].

RSB is a mean-field theory and as such it is a priori only valid for infinite dimensions or infinite range
interactions. The relevance of RSB in real spin glasses at finite dimensions and with short range interactions,
however, was strongly questioned in 1986 as the so called droplet model was proposed by Fisher and Huse
[FH86]. Since this time the two concepts - RSB with ultrametricity and the droplet picture - have been the
two competing scenarios for real spin glasses. Up to now, none of the two scenarios could be proven true or
false and so the debate about their domains of validity will probably go on for some time.

In the late 1980’s the basic concepts in spin glass theory were settled and sufficiently scrutinized so that
physicists thought about new applications to other fields. Over the years, many interesting topics in which
RSB plays an important role have been investigated. They range from general glassy systems in physics, like
e.g. the Coulomb-glass [MP01] or the structural glass [RV00, Sch03], over biophysical subjects as protein
folding [RS94] to modern applications in computer science. Therefore, even if it turned out that it was
irrelevant in real finite-dimensional spin glasses, there are many other reasons to investigate the beautiful
complexity of replica symmetry breaking.

1.2 Modern applications in computer sciences

In order to further stress the interdisciplinary relevance of this work, I want to mention shortly three specific
topics in computer sciences which are directly connected to models and methods which have their origin in
spin glass theory.

1.2.1 Computational complexity in optimization problems

In computer science, the theory of computational complexity examins the cost (the amount of running time
or memory) for solving a specific problem on a computer. A typical question to be answered in this context
is: Given a problem of size N , how do the resources, required for solving this problem on a deterministic
computer, grow when increasing N? The answers to such questions define several complexity classes; the two
most important will be shortly described here5. The cost can grow polynomially (class P) on a deterministic
computer or the cost can grow polynomially on a non-deterministic computer (class NP). Non-deterministic
computers, however, are not directly available. They can only be simulated by deterministic computers in
exponential time. Thus, in reality, NP means that the cost grows faster than polynomially with N , i.e. it
grows exponentially in the worst case. As a result those problems are hard to treat numerically for large
N , even with the best known algorithms6. Famous NP problems are, e.g., the Traveling Salesman Problem
[GP06] or the Graph Coloring Problem [Wes96]. Interestingly, however, all members of the NP class are
reducible to some specific NP problems, the totality of which defines the NP-complete complexity class - a
subclass of NP. This means that if one finds an efficient algorithm for solving an NP-complete problem, this
algorithm can be applied to all other NP problems, because all NP problems are mapable to an NP-complete
problem in polynomial time.

5An extensive introduction to computational complexity with all complexity classes can be found in [Pap94].
6Though it is a general consensus between computer scientists that there exists no algorithm which solves an NP problem in

polynomial time (this would be regarded as an efficient algorithm), this statement has not been rigorously proven. This proof
(or the opposite) is one of the big tasks of complexity theory and one can earn 106$ when solving it; the Clay Mathematics

Institute stated P
?
= NP as one of the seven millennium problems.
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One of the most famous members of the NP-complete class is the Boolean satisfiability problem (SAT)
[GJ79]. It is especially interesting for theoretical physicists because it exhibits striking similarities to many-
particle systems and even shows a phase transition [FA86, MZK99]. The driving parameter of this transition
is the ratio α = M

N where M is the number of clauses which must be satisfied and N is the number of
variables7. For small α, all clauses can be satisfied (SAT phase) while for α > αc, the UNSAT phase
is entered in which it is not possible to fulfill all clauses. This phase transition has several unexpected
properties; e.g. the entropy (the number of solutions) is finite directly at the transition α = αc so that the
UNSAT phase is not entered due to the successive vanishing of solutions but due to the appearance of a few
unsatisfiable clauses which contradict a frozen ’backbone’ of variables [MZK99].

The mapping of the SAT problem to a spin glass model [MZ96, MZ97, FA86] provided considerable insight
to practical computational complexity in that problems which are computationally hard in the worst case
need not necessarily be hard in the typical cases. Deep in the SAT phase (α ¿ αc), for instance, it is
possible to find one solution of a typical SAT problem in polynomial time, while deep in the UNSAT phase
(α À αc) it is possible to efficiently verify the unsatisfiability. The density of untractable (i.e. inefficiently
tractable) SAT problems is very low in these regions. Near the SAT↔UNSAT phase transition, however,
the untractability density increases and one typically needs exponential time to solve the problem of finding
a solution or of excluding the existence of a solution.

The mappings to statistical physics of the SAT and especially the 3-SAT problem8 have been investigated
by means of the replica formalism [MZ96, MZ97, CLP02] which is also used in the present work. The replica
symmetric treatment of the model leads to a qualitatively proper picture of the important physics, but
predicted the wrong critical number of clauses αc ·N . A replica symmetric treatment is not able to properly
respect the large number of solutions in the SAT phase as well as the large number configurations with an
equal number of unsatisfied clauses in the UNSAT phase. For a proper quantitative description the replica
symmetry must be broken [MPRT04, MPZ02].

1.2.2 Error-correcting codes

Data storage has been important for mankind since the cognitive skills of the first human beings had suf-
ficiently formed so that they were able to transfer information to their fellows. Probably the first forms of
data storage on earth, we know of today, are cave paintings. Though the painters did certainly not care
about reliable data storage over 30000 years ago, they obviously did a remarkably good job in conserving
their creations over time. Today the reliability of stored data is somewhat more complex. If we are talking
about data storage, we typically mean things like hard drives, DVDs or RAM in computers, and certainly,
due to the digital form of the data, it is rather imporant to think about the reliability of those media and
the robustness of our data with respect to perturbations. Also, and maybe this is even more important, in
digital telecommunication one needs effective (and of course also efficient) methods to deal with the pertur-
bations which are imposed on the transfered data by a noisy communication channel. Correcting or even
just identifying errors in a stream of zeros and ones, however, is nearly impossible, because some additional
information about the data would be needed for this task. A simple example for such an additional informa-
tion would be a parity bit9. In general, one must introduce redundancy in the data, stored on a non-reliable
disk or transmitted through some communication channel, in order to be able to restore the original data in
the end. This is done by creating codewords for the data according to some definite rules which are called
error-correcting codes (ECC)10.

Information theory has produced a great variety of such ECC which answer the question: I have received
a codeword with M bits and some of them are maybe wrong11. I know that the size of the original message
is N < M and I know how the sender coded his message into the M bits. What was the original message?
Interestingly, some of the codes say that one must construct a Hamiltonian Hc from the received data. The
ground state of Hc is then the most probable sequence of the original data. The important point for physicists
is that the model defined by Hc is spin-glass-like and so ECC is a topic which is also of interest to the spin

7N also defines the size of the problem, mentioned above.
8K-SAT means that one OR clause contains exactly K literals.
9Say, the data stream is divided in blocks of 8 bits. Then, after each block, the sender can transmit a parity bit which is 1

if there has been an even number of 1’s in the data block and zero otherwise. Thus, the receiver has a simple check whether
the block arrived correctly or not.

10A parity bit, however, is typically not error correcting but only error detecting.
11Of course, the receiver does not know whether a given bit is wrong or not. If he knew it, e.g. by analyzing the medium on

which it was stored, a good choice for an ECC would be a raptor code [Sho06].
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glass community. The analysis of those Hamiltonians with the help of the tools of many-particle theory
provided many interesting insights to information theory. For instance, it has been argued [Sou94, Ruj93]
that it is more effective for decoding to calculate the local magnetization of the spin glass model defined by
Hc at a specific finite temperature instead of evaluating the ground state, because the magnetization at a
site provides one with the most probable bit while the ground state is only the most probable bit sequence.
Recently, spin glasses have also been considered [TSN05] in the context of quantum error correcting codes
which are needed for quantum computing. Since quantum information is not binary, error correction is even
more important than in classical computing. Maybe, spin glass theory is also able to provide essential input
to this rather modern topic.

1.2.3 Neural networks

The third field of computer science, I want to mention here, in which spin glass theory found interesting
applications, are neural networks. The human brain, as a famous example of a neural network, is certainly
one of the most complex and also one of the most fascinating objects we know of. The implications of insight
into the functionality of the brain are unusually widespread, ranging from biology and medicine over physics
and computer science to philosophy and theology. Especially the question whether something like a soul
really exists or if all thoughts and emotions are ’only’ a feature of a complex biological machine touches
not only scientists. The immense complexity of the human brain, however, prevents direct answers to those
fundamental questions. Toy models and thorough investigations of the collaborative effects which emerge
from the interaction of many simple units (neurons) might eventually lead to a full understanding, but we
will probably have to wait a long time until this will happen. Many of those simpler models, however, have
properties which allow for interesting and even non-academic applications. For instance, neural networks
can learn and recognize complex patterns [Zel94] or they can even be trained to play games - actually they
play quite well, compared to the average human player [LS05].

When looking at neural networks, one can distinguish two main types. There is the feedforward network,
which represents the simplest type of neural networks. Its topology is such that there is an input layer,
a specific number of hidden layers and an output layer so that to each input vector, an output vector is
calculated. Such a network is relatively easy to analyze because it is nothing else than a deterministic
function. By properly adjusting the strengths of the synapses, the network can learn a desired function from
a teacher12. The second important class of neural networks are the recurrent networks. Here, the topology
does not allow to define a direction as in the feedforward net. The reason is that there exist feedbacks in
those networks, as they also exist in a real brain. The analysis of those recurrent networks are considerably
more complicated compared to the feedforward networks, but they are also much richer, and this makes
them interesting also for physicists. In general, neural networks may be mapped to Ising spin systems such
that the neurons correspond to the spins and the synapses are represented by the spin-spin interactions.

Already in the beginning of the 1980s J. J. Hopfield investigated a full recurrent neural network [Hop82,
Hop84], consisting of a set of neurons which are completely interconnected by synapses with randomly
chosen weights. He described this net by means of the statistical physics of the SK-model. The idea
of many metastable states lead him to a kind of associative self-correcting memory device. Because of
this construction, replica symmetry breaking clearly exists in the Hopfield net, but it has been shown
that the difference of the solution from the replica symmetry approximation is not that severe [AGS87].
However, interesting exotic RSB properties have been observed in modified models of neural networks [DT92].
Still today, replica theory and the investigation of neural networks are intimately interconnected fields
[HKN02, SY04, HHO06].

1.3 Ergodicity breaking

Phase transitions in statistical mechanics are generally due to a specific spontaneous symmetry breaking
which forbids the access to parts of the phase space by the formation of energy barriers between the different
domains of the phase space. As a result, the system is trapped in one ’valley’ of the free energy landscape.
These valleys are called ergodic components of the system. In the simplest case of a classical Ising ferro-
magnet, one can save oneself by introducing a symmetry breaking field h > 0 and let it go to zero after
the thermodynamic limit has been performed. By this trick, one of the two ergodic components (spin-up or
spin-down) are explicitly chosen.

12The learning procedure is typically implemented as a gradient descent in the space of the weights of all synapses.
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In a spin glass, there is no such obvious symmetry breaking. The spins, though they are frozen at low
temperatures, are randomly aligned. This fact prohibits the introduction of an artificial symmetry breaking
field as for a ferromagnet. As a result, the mean-field theory must appropriately consider the whole phase
space.

1.3.1 Quenched disorder vs. annealed disorder

One of the central questions at the beginning of the theory of disordered systems is how to incorporate
disorder in a thermodynamic formalism. Theoretically, an observable O, which is a function of the statistical
variables, is measured in a system described by a Hamiltonian H by evaluating the trace

〈O〉T =
tr

[
e−βHO

]

tr [e−βH ]
(1.1)

with respect to the statistical degrees of freedom. In a disordered system, however, beside the statistical
degrees of freedom, one has to deal with ’disorder degrees of freedom’ which also need to be averaged
somehow13. The question is now, what quantity should be averaged. If the characteristic time of disorder
fluctuation is much smaller than the observation time, i.e. tobs À τdis, then one can directly average the
density matrix ρ =

〈
e−βH

〉

d
. This type of disorder is called annealed disorder.

In the opposite limit tobs ¿ τdis a different treatment, called quenched disorder, is in order. It turns out,
that in this case one must average the natural logarithm of the partition function instead of the partition
function itself. The crucial point of the argumentation leading to the quenched average [Bro59] is that
in an experiment one measures an observable for one particular disorder realization. Since the sample is
large, however, one effectively performs many measurements over sub-samples and implicitly averages over
all those sub-measurements14. One only must assure that the coupling between the sub-systems is small -
and this is typically justified by a surface to volume argument. Obviously, in such a system, which is called
self-averaging, the observables must be averaged over disorder directly, i.e. the result of the measurement O
of the observable O is given as

O = 〈〈O〉T 〉d (1.2)

where 〈·〉T corresponds to a thermodynamic average and 〈·〉dis corresponds to the disorder average. The
thermodynamic average of an observable is typically proportional to the free energy f , or is a derivative of
f . Since the free energy is proportional to log Z, and a derivation commutes with the disorder average, it is
clear that log Z should be averaged when dealing with the quenched case.

1.3.2 Replica trick

In spin glass theory one is especially interested in the quenched disorder average. It is obtained by averaging
the natural logarithm of the partition function Z = tr e−βH of a system described by the Hamiltonian H.
One method to cope with this kind of disorder average would be to write a theory which depends on a large
set of random variables {Jij}, calculate observables which depend parametrically on {Jij} and perform the
average over the randomness of Jij at the very end. This leads to a diagrammatic expansion of the free
energy which is known as the TAP-theory of spin glasses [TAP77].

Another approach has been proposed by Edwards and Anderson [EA75] which enables the theorist to
integrate the disorder distribution at the beginning of all calculations. The resulting theory does not depend
on the large set of random variables anymore. This so-called replica trick is based on the identity

log Z = lim
l→0

1

l
(Zl − 1). (1.3)

Assume that the Hamiltonian H = H[{Si}, {Jij}] can be written as a function of a set of dynamical variables
{Si} and coupling parameters {Jij}15. The trace operator acts on the dynamical variables only. In the lth

13This statement is not at all obvious and depends on the size of the spin glass system. In the macroscopic regime, where
a spin glass is self-averaging [BY86], the disorder fluctuations indeed vanish. In a mesoscopic regime, however, the situation
might well be different. The present work, however, focuses on large systems in which the thermodynamic limit N → ∞ is
applicable.

14This point is easily understood by considering the measurement of the magnetization in a large sample, consisting of many
sub-samples.

15I start to use the common notation of Jij as a random coupling constant and Si as a dynamical spin-variable already here.
Of course, the replica trick is not restricted to this kind of Hamiltonian. Another example of its application is an elegant proof
of the linked-cluster theorem for Feynman diagrams (see e.g. [NO98]).
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power of Z = tr e−βH , the dynamical variables must be labeled by a second index - the replica index
a = 1, ..., l - which denotes the membership of a specific Sa

i in replica a, because Zl is formally identical to
the partition function Z(l) of an l times replicated system without interactions between the different replicas.
The configuration of the random variables {Jij} is the same in each replica. Thus, the quenched average of
log Z can be written as

〈log Z〉d = lim
l→0

1

l

(

tr

〈

exp

(

−β

l∑

a=1

H [{Sa
i }, {Jij}]

)〉

d

− 1

)

, (1.4)

where tr is meant to act in the whole replicated space of all dynamical variables Sa
i . The disorder average

now acts directly on the density matrix of the replicated system and can be performed by integrating with
respect to Jij with a specific distribution function of the random variables in the integral measure. The price
for this convenience is the appearance of inter-replica couplings of higher order, the decoupling of which
leads to the spin glass order parameter.

In equation (1.4) the conceptual difficulty within the replica trick can be observed: The parameter l which
symbolizes the number of replicas and as such should be integer-valued, is, on the other hand, sent to zero in
the replica limit l → 0 and thus assumed to be a continuous parameter. This formal contradiction is resolved
by explicitly rewriting the l-dependence of the replicated partition function Z(l) in such a way that it can be
regarded as a continuous variable. Some steps in this procedure are by no means mathematically rigorous
and therefore replica theory has earned much criticism over the years. It is only seen a posteriori that the
results are physical16 and so it is assumed that the replica trick appropriately incorporates the important
physics. Nevertheless, it is a very appealing and widely accepted method which is deeply engrained and
indispensable in the theory of glassy systems.

1.4 Mean-field theory: from ferromagnetism to RSB

In this section, I present a qualitative introductory discussion of the concept of replica symmetry breaking
(RSB) in spin glass theory, starting with an application of the replica trick to a simple mean-field model of
ferromagnetism [NO98]. The aim is to fix some notations used later by discussing their analogues in a theory
in which the meaning of several terms is much clearer. Further, a first impression of the replica trick shall
be conveyed to the reader before discussing it in all detail in Chapter 2. It turned out that refering to this
simple model is useful for developing some physical intuition for the replica formalism and the quantities
arising there.

Consider the Hamiltonian H = − J0

2N

∑

i,j SiSj of N Ising spins Si = ±1. Instead of following the usual
steps [NO98], however, I apply the replica trick, as introduced above, by writing

log Z = lim
l→0

1

l

(

tr exp

(

−β

l∑

a=1

H[{Sa
i }]

)

− 1

)

= lim
l→0

1

l



tr exp




βJ0

2N

l∑

a=1

(
∑

i

Sa
i

)2


 − 1



 . (1.5)

The quadratic spin sum can be linearized with the help of a Hubbard-Stratonovich transformation by intro-
ducing an auxiliary field Ma for each replica. The physical meaning of Ma is a magnetization per replica.
This results in the following expression for the replicated partition function:

Z(l) =
∏

a

∫

DMa exp

(

−βJ0N

2

∑

a

M2
a

)

tr exp



β
∑

a,i

J0MaSa
i





︸ ︷︷ ︸

=
Q

a,i 2 cosh(βJ0Ma)

(1.6)

Since the different replicas are completely independent, one can set Ma = M by symmetry. As a result, the
sum and the product over the replica variable a can be replaced by a factor or an exponent l, respectively.
The auxiliary field M is fixed in the thermodynamic limit by a saddle point integration so that the partition
function becomes

Z(l) = exp

(

−Nlβ

(
J0

2
M2 − T log 2 cosh(βJ0M)

))

. (1.7)

16Meanwhile, the correctness of the replica-treatment of the SK-model has been mathematically been proven with great effort
[Tal06].
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Fig. 1.2: Left: From a ferromagnet to a spin glass with replica symmetry breaking at T = 0. In the
ferromagnet one evaluates the trace term at a single h-value while in a RSB spin glass one
averages the RSB-kernel over a definite range in h. Right: The zero temperature limit of Ising
and Heisenberg kernels. The thick black line is the zero temperature limit of integral kernels with
an arbitrary number of components. The red (green) to blue lines are the Ising (Heisenberg)
kernels from high to low temperatures, respectively.

In contrast to equation (1.5), the number l of replicas can be considered as a continuous variable in (1.7)
and thus the replica limit can be performed to obtain the free energy per spin of an Ising ferromagnet (IFM)

f =
J0

2
M2 − T log 2 cosh(βJ0M)

︸ ︷︷ ︸

trace term

T→0−→ J0

2
M2 − |J0M |

︸ ︷︷ ︸

TIF M (J0M)

(1.8)

where the value of M must be found by minimizing f . I call the last term of the expressions trace term
TIFM (J0M), as indicated in the formula, since it originates from the evaluation of the spin trace. The
remaining terms result from the introduction of auxiliary fields in order to reduce the order of the spin-terms
and therefore will be called field terms17.

The trace term is the part of the free energy where, from a conceptual point of view, spin glass physics
and RSB mainly enters. In the following I will discuss this point with the help of Figure 1.2. Since the effect
of RSB is largest at low temperatures, a discussion directly at T = 0 is suggestive. At zero temperature,
the trace term of the IFM is the absolute value of its argument and it must be evaluated exactly at the
magnetization J0M , as indicated by the red vertical line in Figure 1.2.

A first approximation in spin glass theory is the assumption of replica symmetry (RS). Its detailed deriva-
tion for the Ising spin glass considered here can be found in Chapter 2, near equation (2.19). The main effect
of the RS treatment is the substitution of the IFM trace term in (1.8) by a Gaussian average of TIFM

TIFM (J0M) → TRS(J0M) =

∫
dz√
2π

e−
z2

2 TIFM (J0M + J
√

qz), (1.9)

where J is a measure of disorder in the spin glass and q is a spin glass order parameter. Obviously, for a spin
glass, the trace term of the clean IFM system must be averaged over disorder in a first approximation and
the width of the averaging is given by the amount of disorder J and the spin glass order parameter q18. This
situation must be interpreted as follows: In contrast to the IFM case, where only one sharp value J0M of
the internal field exists, one must consider a certain distribution of internal fields in a spin glass. In Figure
1.2 the averaging is symbolized by the blue cloud and the Gaussian curve.

The proper treatment of the Ising spin glass requires the breaking of replica symmetry - a scheme with a
hierarchy of many order parameters. This scheme contains recursion relations which depend on the order
parameters and which successively change the integration kernel TIFM which is averaged in (1.9) to the RSB
kernel KRSB , as indicated by the arrows in Figure 1.2. The recursion relations change the kernel mainly at
small arguments. At large arguments, there is an exponential cutoff of the RSB action. This fact will later

17The identification of the trace and field terms is not always unambiguous. Specific terms can be transformed from the trace
term to the field term and vice versa, depending on convention. This ambiguity is immaterial, however. In the context of RSB,
the important point is the non-triviality of the trace term which, in contrast to the field term, yields not analytically solvable
integrals.

18q is also determined self-consistently by an additional term in f which is not discussed here.
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be described in terms of a function kerC, the kernel correction function19, which describes the difference
between TIFM and KRSB . The RSB trace term then reads

TRSB(J0M) =

∫
dz√
2π

e−
z2

2 KRSB(J0M + J
√

qz). (1.10)

The transition from TIFM to KRSB again is due to a kind of averaging process in κ hierarchical steps. κ is
called the order of RSB and each step i gives rise to two order parameters qi and ai. The proper values of
those order parameters must be determined self-consistently and this is the main objective of replica-based
spin glass theory. Actually, an infinite number of RSB steps is required to obtain the true mean-field solution
of an Ising spin glass. As a result, an infinite number of order parameters is obtained, which have to be
determined self-consistently. In this limit κ → ∞, which is called continuous RSB, the set of order parameters
give rise to an order function in terms of which the theory is formulated. In this case, the recursion relation
passes over to a partial differential equation as discussed in Chapter 5.

In this work, also the extension of low temperature theory of an Ising spin glass to more than one spin
components will be discussed. Already in the ferromagnet, one can see the typical zero temperature sim-
plifications which also appear in replica theory and RSB. The ferromagnetic trace term is always of the
form T log f(h/T ) where f is a function with asymptotically exponential behavior. If, e.g. the Ising case is
considered f(x) ∝ cosh(x), while for the Heisenberg case one finds f(x) ∝ sinh(x)/x. In general, for n spin
components, one can express f(x) in terms of modified Bessel functions. One finds that the zero temperature
limit of the trace term with a general number n of components is independent of n, i.e.

lim
T→0

T log f(h/T ) = |h|. (1.11)

On the right side of Figure 1.2 the T → 0 transition of the Ising (n = 1) and the Heisenberg (n = 3) kernels
are shown. Clearly they become equal at T = 0. At zero temperature, the asymptotic behavior of the
trace terms are the important regime and this statement remains true for spin glasses and replica symmetry
breaking.

19In [SO08] it has been termed exponential correction function kerC, because it formally corrects the argument of an expo-
nential function. The author found the present term more appealing, however.
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Chapter 2

Formalism at finite RSB

After the important points of the RSB formalism used in this thesis have been intuitively outlined in the
introduction, in the present chapter the complete replica formalism, which is needed to properly treat the
classical n-component spin glass with infinite range interactions and quenched disorder at low temperatures1,
will be derived. Let {Sr} denote the totality of N vector-spin variables spanning the configuration space.
The spin glass system under consideration is described by the Hamiltonian

H({Sr}) = −
∑

ν

∑

r<r′

Jν
rr′SrνSr′ν −

∑

ν,r

hνSrν (2.1)

where r is a site label, ν labels the spin component, Jν
rr′ are random coupling constants and hν is a homo-

geneous external field. Throughout this work, a sum or a product over x < x′ (x can be a spatial index,
a replica index, etc.) means that each pair of distinct (x, x′) is considered exactly once. The classical spin
variables Srν obey a normalization constraint S2

r =
∑

ν(Srν)2 = L2
S . The model defined by Hamiltonian

(2.1) is a generalization of the well-known Sherrington-Kirkpatrick (SK) model of spin glasses [SK75] to an
arbitrary number n of spin components. In analogy to the SK model, the probability distribution of the
coupling constants is chosen Gaussian with properly scaled2 mean and standard deviation

P ν(Jν
rr′) =

√

N

2πJ2
ν

exp

(

− N

2J2
ν

(Jν
rr′ − Jν

0 /N)
2

)

. (2.2)

This most general probability distribution function allows for all possible types of anisotropies. However, the
explicit calculations - analytical as well as numerical - become extremely involved for (2.2) in full generality,
so that I will restrict the discussion to less general P ν later. Nevertheless, it is instructive to see where the
problems appear which force the analysis to special cases.

The independence of the probability distribution on the spatial index r reflects the infinite-range nature
of the interaction or, in other words, the infinite dimensionality of this model. The exactness of mean-field
theory for the Hamiltonian (2.1) is a result of this spatial independence of P ν . As discussed above, the
replica trick is convenient for the treatment of quenched disorder, so I introduce a replica label a = 1, ..., l
in the spin variables Sa

rν and translate the disorder averaged3 free energy −T 〈log Z〉d with Z = tr e−βH to
the replica formalism.

In the remainder of the present chapter, I discuss the application of the replica trick to the Hamiltonian
(2.1) in detail and introduce the concept of replica symmetry breaking (RSB). Each section starts with the
most general case. Simplifying restrictions to the special cases of (quasi-)isotropic n-component spin glasses
or Ising spin glasses will also be discussed. In spite of the fact that the important physics of RSB is seen most
clearly in the Ising spin glass, I perform the derivation on a higher level of generality, so that the domain
of applicability of the formalism is more obvious to the reader. At the end of this chapter, the formulas

1The formalism is not restricted to low temperatures, only to temperatures below the spin glass transition temperature
TC . It is, however, especially convenient for T ¿ TC because it allows a smooth transition to T = 0, which is not possible in
traditional formulations.

2The moments of the coupling constant distribution P ν must scale properly with system size in order to obtain a meaningful
thermodynamic limit (N → ∞).

3I will use the d-indexed brackets 〈·〉d to denote disorder average while the thermodynamic average with respect to the spin
variables {Sr} is expressed by the trace operator tr .

11
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of the important observables are translated to the replica formalism and some simplifications due to zero
temperature are discussed.

2.1 The free energy in replica formalism

2.1.1 General formulation

The working plan for this section is to perform the disorder average of the replicated partition function, carry
out a first reduction of the power of the spin variables by introducing matrix and vector valued auxiliary
fields q̃ and M̃, respectively, and finally express the free energy per spin in the thermodynamic limit in terms
of the saddle point values q and M of the auxiliary fields.

Due to the infinite range character of the interaction, the average over disorder in the coupling constants
can be performed exactly in the l times replicated partition function Z(l). The price one has to pay for the
convenience of removing the dependence of the theory on the large set of coupling constants {Jν

rr′} is the
appearance of fourth order spin couplings between different replicas. By carrying out the integrations over
Jν

rr′ one obtains

〈
Z(l)

〉

d
=






∏

r<r′

ν

∫

dJν
rr′P ν(Jν

rr′)




 tr exp







β
∑

ν,r,a

hνSa
rν + β

∑

r<r′

a,ν

Jν
rr′Sa

rνSa
r′ν







= tr exp




β

∑

r,a,ν

hνSa
rν +

∑

r<r′

ν




βJν

0

N

∑

a

Sa
rνSa

r′ν +
β2J2

ν

2N

∑

a,b

Sa
rνSa

r′νSb
rνSb

r′ν








 (2.3)

where tr represents the thermodynamic trace in the nNl-dimensional replicated spin space of Sa
rν which is

also restricted to the constraint (Sa
r)2 = L2

S . The spin sums can be rearranged by collecting powers of sums
over spatial indices r:

∑

r<r′

a

Sa
rνSa

r′ν =
1

2

∑

a

(
∑

r

Sa
rν

)2

− 1

2

∑

a,r

(Sa
rν)2 (2.4)

∑

r<r′

∑

a,b

Sa
rνSa

r′νSb
rνSb

r′ν =
∑

a<b

(
∑

r

Sa
rνSb

rν

)2

− 1

2

∑

a,b,r

(Sa
rν)2(Sb

rν)2 +
1

2

∑

a

(
∑

r

(Sa
rν)2

)2

(2.5)

When performing the replica limit l → 0 and the thermodynamic limit N → ∞, only terms proportional
to lN survive4 in the replicated partition function. With this knowledge, all other terms can be dropped
already at this point. The disorder averaged, replicated partition function then reads

〈
Z(l)

〉

d
= tr exp

{

β
∑

r,a,ν

hνSa
rν+

∑

ν




βJν

0

2N

∑

a





(
∑

r

Sa
rν

)2

+
β2J2

ν

4N

(
∑

r

(Sa
rν)2

)2


 +
β2J2

ν

2N

∑

a<b

(
∑

r

Sa
rνSb

rν

)2









. (2.6)

To be able to perform the spin trace, the quadratic and quartic spin terms must be reduced in order.
This is done by decoupling the variables Sa

rν with Hubbard-Stratonovich transformations, which give rise
to nl(l + 3)/2 auxiliary field variables5 M̃ν

a , q̃ν
ab = q̃ν

ba and q̃ν
aa. These fields will be fixed shortly by means

of a saddle point integration in the thermodynamic limit. The first decoupling step leads to the replicated
partition function of a corresponding (exact) effective single site model. The summation over sites r leads

4The detailed argument for this can be found in Appendix A.1.
5The strict separation of q̃ν

ab for a 6= b and q̃ν
aa is convenient at this stage to prevent double counting. Later, the two

quantities will be merged into a single matrix.
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to a factor N , all site indices can be dropped and one obtains

〈
Z(l)

〉

d
=

∫

DM̃

∫

Dq̃ exp

(

−βN
∑

ν

(
∑

a

Jν
0

2
(M̃ν

a )2 +
∑

a<b

βJ2
ν

2
(q̃ν

ab)
2 +

∑

a

βJ2
ν

4
(q̃ν

aa)2

))

×

tr exp

(

βN
∑

ν

(
∑

a

(hν + Jν
0 M̃ν

a )Sa
ν + βJ2

ν

∑

a<b

q̃ν
abS

a
νSb

ν +
βJ2

ν

2

∑

a

q̃ν
aa(Sa

ν )2

))

, (2.7)

where the short hand notations of integrals with respect to the vectors M̃ = (M̃ν
a )l

a=1 and the matrices
q̃ = (q̃ν

ab)
l
a,b=1 of auxiliary fields

∫

DM̃ :=
∏

νa

√

βJν
0 N

2π

∫

dM̃ν
a ,

∫

Dq̃ :=






∏

a<b
ν

√

β2J2
ν N

2π

∫

dq̃ν
ab




 ×

[
∏

νa

√

N

π

βJν

2

∫

dq̃ν
aa

]

(2.8)

have been introduced.
The next step is to fix the values of the auxiliary fields in the thermodynamic limit by a multi-dimensional

saddle point (SP) integration. In order to clearly point out the relation to the text book version of a SP
integral [Nol04], I rewrite equation (2.7) as

〈
Z(l)

〉

d
=

∫

DM̃

∫

Dq̃ exp
(

−βNg(l, M̃, q̃)
)

(2.9)

with

g(l, M̃, q̃) =
∑

ν

(

Jν
0

2

∑

a

(M̃ν
a )2 +

βJ2
ν

2

∑

a<b

(q̃ν
ab)

2 +
βJ2

ν

4

∑

a

(q̃ν
aa)2

)

− T log tr expL(M̃, q̃) (2.10)

and

L(M̃, q̃) = β
∑

ν

(
∑

a

(hν + Jν
0 M̃ν

a )Sa
ν + βJ2

ν

∑

a<b

q̃ν
abS

a
νSb

ν +
βJ2

ν

2

∑

a

q̃ν
aa(Sa

ν )2

)

. (2.11)

As a function of the fields M̃ and q̃, g(l, M̃, q̃) is bounded from below and is independent of N . Therefore,
the usual SP argument from statistical mechanics is applicable6 and one can replace the fields M̃, q̃ by their
SP values M,q, i.e. the coordinates in (M̃, q̃)-space where g assumes its global minimum. Those coordinates
can be found later in terms of self-consistency equations, obtained from the derivatives of the resulting free
energy. At this point, the separation of trace term and field term discussed in 1.4 can be observed: the field
term depends polynomially on the field variables, while in the trace term T log tr eL the field dependence
remains highly nontrivial.

After the SP integration has been carried out, the replicated partition function becomes, up to an irrelevant
prefactor,

〈
Z(l)

〉

d
= exp (−βNg(l,M,q)) . (2.12)

Now that the partition function is a function of the saddle point values, the next step is the proper replica
limit l → 0. A direct inspection of g as a function of the number of replicas l shows that g(l = 0,M,q) = 0,
because all sums in (2.10) and (2.11) have zero terms. Consequently, the replicated partition function
for zero replicas is

〈
Z(0)

〉

d
= 1. According to standard rules of calculus, the replica limit in the formula

〈log Z〉d = liml→0 l−1(
〈
Z(l)

〉

d
− 1) leads to a differentiation of g with respect to the number of replicas l

which is assumed continuous from now on7:

〈log Z〉d = lim
l→0

∂l

〈
Z(l)

〉

d
= −βN lim

l→0
exp (−Nβg(l,M,q))
︸ ︷︷ ︸

→1

∂lg(l,M,q) (2.13)

6See Appendix A.1 for details.
7The mindful reader might be intrigued somewhat by the ease of handling the replica and the thermodynamic limit, especially

the assumption of their commutativity. With great mathematical effort, it has been strictly proved [Tal06] that this derivation
is indeed valid - at least for the SK-model.
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The derivative of g with respect to l is again rewritten in terms of a limit l → 0 and one obtains for the free
energy per spin f = −T/N 〈log Z〉d in the replica formalism

f = lim
l→0

1

l




∑

ν




Jν

0

2

∑

a

(Mν
a )2 +

βJ2
ν

4

∑

a,b

(qν
ab)

2



 − T log tr exp L



 (2.14)

with

L = β
∑

ν,a

(hν + Jν
0 Mν

a )Sa
ν +

∑

ν

β2J2
ν

2

∑

a,b

qν
abS

a
νSb

ν . (2.15)

The proper parameters qν
ab and Mν

a are obtained by finding the point in the (M̃, q̃)-parameter space where

g(l, M̃, q̃) or equivalently the free energy per spin f is extremal, i.e. where8 ∇g(l, M̃, q̃) = 0. One can see
that for l ≥ 1, the free energy is bounded from below as a function of q and M and therefore, it has to be
minimized in order to obtain the correct saddle point. In the limit l → 0, however, the minimization w.r.t.
the matrix elements of q passes over to a maximization w.r.t. specific subsets of matrix elements. I will
further comment on this issue when discussing the replica symmetric approximation, where this min ↔ max
transition is most obvious.

With the help of the extremization principle, a physical meaning can be assigned to the parameters qν
ab

and Mν
a . Extremization of the free energy with respect to the Mν

a fields results in

∂f

∂Mν
a

= lim
l→0

[

Jν
0

l
Mν

a − 1

βl

tr eL ∂L
∂Mν

a

tr eL

]

!
= 0 (2.16)

⇒ Mν
a =

1

βJν
0

tr eLβJν
0 Sa

ν

tr eL
=

tr eLSa
ν

tr eL
≡ 〈Sa

ν 〉 (2.17)

Apparently, Ma has the meaning of a magnetization per replica. This can easily be understood as the
analogon of the derivative of (1.8) with respect to M which results in the IFM mean-field equations for the
magnetization. Similarly to (2.17) one finds for the spin glass order parameters qν

ab the meaning of a spin
overlap between two replicas a and b:

qν
ab =

tr eLSa
νSb

ν

tr eL
≡

〈
Sa

νSb
ν

〉
. (2.18)

The usefulness of equations (2.17) and (2.18), especially the identities of the order parameters and derivatives
of log tr eL, will be much appreciated in connection with thermodynamical considerations in Section 2.5,
where they considerably simplify the analysis.

Equation (2.14) is the basis of further investigations. However, the conceptual difficulty, mentioned in
Section 1.3.2 can clearly be observed there: l is both, a small continuous parameter which approaches zero
in the replica limit and an integer valued parameter which denotes the number l or l(l− 1)/2 of terms in the
summations

∑

a or
∑

a<b, respectively. Due to the absence of any terms in the summations in the square
brackets for l = 0, there is at least in principle a chance for the limit l → 0 to be finite. The formal way
to resolve this contradictory definition is to cancel the 1/l prefactor in equation (2.14) with the factor l in
the number of terms in the summation over replica indices a, b. This, however, requires further assumptions
about the structure of the replica matrix q or the vectors M. Before discussing possible structures of the
order parameters, it is useful to see how the general formulas are simplified for the special cases of Ising spin
glasses (n = 1) and (quasi-)isotropic spin glasses in which the order parameters M and q do not depend on
the spin component.

2.1.2 Special case: Ising spin glass

For the special case of the classical Ising spin glass which has only one spin component (n = 1) one can
drop the component index ν and finds qaa = L2

S because there is no need to decouple the squared terms

8∇ is defined in the (M̃, q̃)-parameter space.
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SaSa ≡ L2
S which are fixed by the length of the one component spin vector. Setting LS = 1 yields the

SK-model [SK75] and equation (2.14) simplifies to

fIsing = −βJ2

4
+ lim

l→0

1

l

(

J0

2

∑

a

M2
a +

βJ2

2

∑

a<b

q2
ab − T log tr exp(LIsing)

)

(2.19)

with9

LIsing = β

(
∑

a

(h + J0Ma)Sa + βJ2
∑

a<b

qabS
aSb

)

. (2.20)

The Ising spin glass, described by (2.19) and (2.20) is one of the simplest models for studying the physics of
glassy systems. Large parts of this work focus on this model an on its low temperature properties, because
it is easiest to learn the principles of RSB there. Extensions to more than one component mainly complicate
the numerical and analytical treatment without introducing fundamentally new RSB features. The exact
solubility of the so called spherical model [KTJ76] with infinitely many spin components, however, renders
the investigation of beyond-Ising models interesting from a formal point of view. Moreover, it is important
to understand the principles of RSB with many spin components for investigations of quantum spin glass
models where more than one spin component is needed to account for quantum dynamics.

2.1.3 Special case: (Quasi-)isotropic n-component spin glass

A slightly more complicated, but still mathematically and especially numerically feasible model is the
isotropic n-component spin glass, which is obtained by restricting the parameters of the most general model
(2.14) to

Jν
0 = 0, Jν = J, hν = 0 (2.21)

so that the spin system obeys an O(n) symmetry. All spin components, labeled by ν, are equivalent and so
there is no reason why the replica overlap qν

ab should depend on ν. It is further clear from symmetry that
the magnetization of a replica Mν

a = 0: because of Jν
0 = 0 there is no preference of parallel or antiparallel

alignment of a pair of spins, and because of hν = 0 there is no preferred direction in the system. As a result,
the index ν of all quantities except the spin variables can be dropped. The ν-sum in the last term of (2.11)
can be performed and is fixed by the normalization condition (Sa)2 = L2

S , so it can be pulled out of the
trace. Similarly to the Ising model, one obtains a trivial qaa-dependence of the free energy which can be
written, up to qaa-independent terms, as

f =
βJ2

4

∑

a

(n q2
aa − 2L2

S qaa) + ... (2.22)

Extremization of the free energy f with respect to qaa yields qaa = L2
S/n which is exactly what one would

expect from the physical meaning of qaa =
〈
(Sa

ν )2
〉

for O(n) symmetry, namely that the length LS of the
classical spin vector is on average equally distributed over the components. The expression for the free energy
in the isotropic spin glass simplifies to

fIsotropic = −βJ2

4

L4
S

n
+ lim

l→0

1

l

(

βJ2

2
n

∑

a<b

q2
ab − T log tr exp(LIsotropic)

)

(2.23)

with
LIsotropic = β2J2

∑

a<b

qab

∑

ν

Sa
νSb

ν . (2.24)

Apart from a renormalization of some factors, the expression for the free energy of an isotropic n-component
spin glass is very similar to the Ising case. I will show later, that the differences mainly manifest in the
detailed form of an initial condition of recursion- or differential equations for the finite or infinite RSB
formalism, respectively.

A little less restrictive is the assumption that the external parameters are only independent of ν but J0

and h need not necessarily be zero. In this case, O(n) symmetry is broken and Mν
a is not expected to vanish

9LIsing is not the same as L in (2.11) for n = 1. The qaa term has been pulled out of the trace term. This is an example of
the ambiguity in the definition of the trace term mentioned in the introduction.
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in general. The crucial simplification, namely the independence of qν
ab on ν, however, is still applicable,

because again no spin component is preferred by external parameters. This situation restricts the general
case only to the extent that the vectors J0, J and h must point into the same direction. The equality of all
components of these vectors can then be accomplished by means of an ordinary coordinate transformation.
Throughout this work, the such restricted model will be called the quasi-isotropic n-component spin glass.

The advantage of allowing for finite external fields h = |h| lies in thermodynamic considerations. Deriva-
tives of the free energy with respect to h are directly related to magnetization and magnetic susceptibilities
of the system. The generalization of (2.23) to the quasi-isotropic (QI) case is straightforward and reads

fQI = −βJ2

4

L4
S

n
+ lim

l→0

1

l

(

J0

2
n

∑

a

M2
a +

βJ2

2
n

∑

a<b

q2
ab − T log tr exp(LQI)

)

(2.25)

with

LQI = β

(
∑

a

(h + J0Ma)
∑

ν

Sa
ν + βJ2

∑

a<b

qab

∑

ν

Sa
νSb

ν

)

. (2.26)

In the remainder of this work, the length of the spin vector LS will be fixed to L2
S = n, in order to use

the same convention as in the literature [AJK78, KTJ76]. In order to stress the difference of length LS and
number of components n, however, at some points this convention is not made explicit and the quantity LS

is kept.

2.2 The replica symmetric approximation

As mentioned above, assumptions about the structure of q and M are necessary in order to proceed with
the program of decoupling the spin variables so that the spin trace can be calculated. The simplest possible
assumptions10 about q and M are the so called replica symmetric (RS) assumptions. These assumptions
state that all pairs of replicas are equal with respect to their spin overlap qν

ab =
〈
Sa

νSb
ν

〉
. Only the self

overlap qν
aa is allowed to be different from qν

ab, a 6= b. More precisely, one assumes that M and q, chosen
replica symmetric, are saddle points of equation (2.9). In the present section, the RS saddle point, which is
obtained by restricting the replica matrices q and vectors M to the form

qν
ab = qν , ∀a 6= b, qν

aa = dν , Mν
a = Mν , (2.27)

will be investigated. It must be pointed out, however, that this approximation leads to inconsistencies, e.g.
a negative entropy at low temperatures. It has been shown11 by de Almeida and Thouless that this is due
to the instability of the RS saddle point [AT78]. The proper treatment, where a specific kind of breaking of
replica symmetry is allowed, will be discussed in the next section.

Within the RS assumption, the sum of qν
ab in the field term of the free energy can be calculated an gives

1

l

∑

a<b

(qν
ab)

2 =
l − 1

2
q2
ν . (2.28)

The quadratic terms of q are the leading terms in the free energy for large q and from the left hand side of
equation (2.28) one finds that f , as a function of any of the parameters qν

ab, is bounded from below. On the
right hand side, this is still true as long as l ≥ 2. This is the case where the matrix q has off-diagonal terms.
For l = 1, q is a 1 × 1 matrix without off-diagonal terms. For l = 0, however, the quadratic q-term changes
sign. Loosely speaking, a minimization with respect to a negative number of equal parameters results in
a maximization with respect to the value of the parameters. This is typical of how the unusual situation
appears that one must find a maximum of f with respect to the spin glass order parameters q, while it must
be minimized with respect to the magnetization M .

The quadratic spin terms in the trace term (2.11) combined with the assumptions (2.27) can be written as

β2
∑

ν

(

J2
ν

∑

a<b

qν
abS

a
νSb

ν +
J2

ν

2

∑

a

qν
aa(Sa

ν )2

)

=
∑

ν

β2J2
ν

2



qν

(
∑

a

Sa
ν

)2

+ (dν − qν)
∑

a

(Sa
ν )2



 (2.29)

10Indeed, this was historically the first assumption which has been made about q by the inventors of the SK-model [SK75].
11See also appendix A.1.
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and one needs two further decoupling fields z and z̃, which are introduced by Hubbard-Stratonovich trans-
formations. The field z originates from decoupling the SaSb terms and the field z from the (Sa)2 terms.
Then the free energy per spin simplifies to

f =
∑

ν

(
Jν

0

2
M2

ν − βJ2
ν

4
(q2

ν − d2
ν)

)

− T

∫ G

z

log

∫ G

z̃

Cn(β|Heff |) (2.30)

where Gaussian integral operators and an effective field Heff have been introduced as

∫ G

z

=

∫ ∞

−∞

dnz

(2π)n/2
e−

z
2

2 , Heff =
∑

ν

(hν + Jν
0 Mν + Jν(

√
qνzν +

√

dν − qν z̃ν)eν (2.31)

with {eν} a set of orthonormal vectors. The kernel Cn(x) depends on the number of spin components n and
the length of the classical spin vector LS . It is exactly equal to the trace term of a classical n-component
ferromagnet as discussed in the Introduction and is defined by

Cn(|x|) := tr exp(x · S) ∝
∫

dns δ(s2 − L2
S) exp(x · s) (2.32)

In general, the kernel can be expressed in terms of the modified Bessel function Iα(z) [Wat95] for n > 1:

Cn(x) = N
In

2 −1(LSx)

(LSx)
n
2 −1

(2.33)

with N an irrelevant12 normalization factor. Usually, in the literature one finds a normalization of the
kernel such that the trace without a field (x = 0 in equation (2.32)) results in the area of an (n − 1)
dimensional hypersphere with radius LS =

√
n, i.e. Cn(0) = ΩnLn−1

S , where Ωn is the full solid angle in
n-dimensional space. In this case one finds N = (2π)n/2n(n−1)/2. Because of the irrelevance of N , I will use
the normalization which is most convenient in the specific situation, but when the free energy is plotted, it
is always normalized in consistence with the literature [AJK78, BY86]. In the Ising (n = 1) and Heisenberg
(n = 3) cases13 the kernel (2.33) can be expressed in terms of hyperbolic functions

C1(x) = 2 cosh(x) (2.34)

C3(x) = 12π
sinh(

√
3x)√

3x
. (2.35)

For general n, however, the formulation in terms of Iα(x) must be used. In any case the kernel is easily
shown to be an even function of its argument. Further, the asymptotic behavior of Cn(x) is important for
simplifying considerations in context of the numerical analysis as well as in the asymptotic renormalization
group discussed later in this work. For general n it is given by

Cn(x) ∝ e|LSx|

|LSx|(n−1)/2
, |x| À 1. (2.36)

The parameters Mν , qν and dν are defined as the solutions of a set of self-consistence equations, which are
obtained by finding the roots of the gradient of the free energy in the 3n-dimensional (Mν , qν , dν)-space.
These self-consistence equations for the general anisotropic n-component spin glass read

Mν =

∫ G

z

1
∫ G

z̃
Cn(β|Heff |)

∫ G

z̃

C′
n(β|Heff |)

Hν
eff

|Heff |
(2.37)

dν = − T

Jν

√
dν − qν

∫ G

z

1
∫ G

z̃
Cn(β|Heff |)

∫ G

z̃

C′
n(β|Heff |)

z̃ν Hν
eff

|Heff |
(2.38)

qν =
T

Jν

∫ G

z

1
∫ G

z̃
Cn(β|Heff |)

∫ G

z̃

C′
n(β|Heff |)

Hν
eff

|Heff |

(
z̃ν√

dν − qν

− zν√
qν

)

. (2.39)

12Irrelevant means that the parameters qν
ab and mν

a do not depend on the choice of N . The absolute value of free energy
per spin, however, has an additional T logN term. This is shown in Appendix A.3 for general orders κ of RSB, including the
replica symmetric case κ = 0.

13In general, the kernel can be expressed in terms of hyperbolic functions for odd n. The expressions are a bit lengthy for
n ≥ 5, however.
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The irrelevance of the normalization N of the kernel Cn(x) is clear from the form of self-consistence equations
(2.37) - (2.39). This is because the self-consistence equations are obtained from the derivatives of the free
energy with respect to the parameters. A multiplicative change in the normalization N results in an additive
term in the free energy, which is independent of the order parameters, as shown in Appendix A.3. As a
result, this term cancels in the derivative of f .

2.2.1 Special case: Ising spin glass

The replica symmetric Ising spin glass corresponds exactly to the original treatment of the SK-model which
has been proposed and investigated in [SK75]. For completeness and as a basis for generalizations, the results
obtained there are shortly discussed in the present work, too. Because the (Sa)2 terms are trivially fixed
by the normalization constraint, they need not be decoupled and thus only one scalar field z is needed for
decoupling. The SK free energy becomes

f =
J0

2
M2 − βJ2

4
(1 − q)2 − T

∫
dz√
2π

e−
z2

2 log 2 cosh(β(h + J0M + J
√

qz)). (2.40)

The order parameters q and M are given by the self-consistency equations which result from finding the root
of the partial derivatives of f with respect to q,M . The self-consistence equations read

q =

∫
dz√
2π

e−
z2

2 tanh2(β(h + J0M + J
√

qz)) (2.41)

M =

∫
dz√
2π

e−
z2

2 tanh(β(h + J0M + J
√

qz)) (2.42)

and can easily be solved numerically. For J → 0 the infinite range Ising ferromagnet described in the
introduction and in [NO98] is recovered. In this case the spin glass order parameter trivially gets q = M2.
Thus, it is obviously not sufficient to identify a spin glass phase by a non-zero spin glass order parameter
qab =

〈
SaSb

〉
6= 0. One also has to make sure that

〈
SaSb

〉
6= 〈Sa〉

〈
Sb

〉
.

2.2.2 Special case: Quasi-isotropic n-component spin glass

It is convenient to set the length of the classical spin vector of the n-component spin glass to L2
S = n. With

this choice the spin glass order parameter q is - as in the SK-model - mapped to the domain q ∈ [0, 1] because
q is the overlap of one single spin component between different replicas. Within this convention the free
energy in the RS approximation can be obtained directly from equation (2.25) by evaluating the angular
integral, introducing h2 =

√
n(h + J0M) and transforming to the new integration variable h1 =

√
qz.

f =
J0n

2
M2 − βJ2n

4
(1 − q)2 − T

q

∫ ∞

0

dh1h
n
2
1 exp

(

−h2
1 + h2

2

2q

) In
2 −1

(
h1h2

q

)

h
n/2−1
2

log Cn(βh1). (2.43)

As above, Iα(x) is the modified Bessel function. The self-consistency relation for the magnetization M is
obtained as usual by differentiating the free energy with respect to M . For the self-consistence equation of
the spin glass order parameter q, an additional partial integration is needed in the derivation. After some
analysis which involves the exploitation of several identities of Bessel functions [Wat95], one finds

q =

∫ ∞

0

dh1

q
h

n
2
1 exp

(

−h2
1 + h2

2

2q

) In
2 −1

(
h1h2

q

)

h
n/2−1
2

(
In

2
(β

√
nh1)

In
2 −1(β

√
nh1)

)2

(2.44)

and

M =

∫ ∞

0

dh1

q
h

n
2
1 exp

(

−h2
1 + h2

2

2q

) In
2 −1

(
h1h2

q

)

h
n/2−1
2

(
In

2
(β

√
nh1)

In
2 −1(β

√
nh1)

)

. (2.45)

In the literature [BY86, AJK78], one mostly finds the self-consistence equations (2.44) and (2.45) for the
isotropic n-component spin glass. The isotropic equations can be obtained from the more general quasi-
isotropic equations by performing the isotropic limit h2 → 0. The magnetization is exactly zero in this
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Fig. 2.1: The Parisi scheme of the matrix qν for 3rd order of RSB (κ = 3). The blocks with matrix
elements qi are mi−1 × mi−1 sub-matrices. The total size of the matrix is l × l = m4 × m4. The
index ν in the matrix elements and the block sizes have been omitted as well as the sub diagonal
triangle, which is obtained by symmetry qν

ab = qν
ba.

case, because of symmetry arguments. The h−1
2 singularities in (2.44) can be cured by expanding the Bessel

functions for small arguments.
Similarly, the Ising spin glass is obtained in the limit n → 1. The limit n → ∞ yields the so-called spherical

model [KTJ76] for which the RS-approximation is exact in the sense that the saddle point in equation (2.9)
is stable. There are, however, other artefacts in this model as e.g. a logarithmically diverging entropy in the
zero temperature limit14.

2.3 Parisi RSB

As already mentioned, it has been shown in Ref. [AT78] that the assumption of replica symmetric matrices qν

is too restrictive and does not represent the correct saddle point in equation (2.9). Thus, a higher number of
degrees of freedom in the choice of the replica matrix qν is required. In the RS approximation, only diagonal
and off-diagonal elements have been distinguished. However, possibilities for choosing other degrees of
freedom are strongly restricted by the condition that the replica limit l → 0 must remain meaningful on
one hand, and by the requirement that the structure of qν must be sufficiently simple to be mathematically
feasible, on the other hand.

A just tractable scheme for the replica matrix structure has been proposed by Parisi [Par79] and it turned
out only recently [Tal06] that this proposal in fact yields a correct solution15. It amounts to an iterative
replacement of matrix elements in quadratic diagonal blocks of size mν

i in qν , as indicated in Figure 2.1.
More general RSB-schemes than the Parisi scheme are also possible [DGD82], but they are considerably
more complicated and not required in most cases. In this section, the Parisi-scheme for qν will be applied to
the classical n-component spin system. The order of RSB κ is the number of block replacement iterations.
An RSB scheme of κth order is called κ RSB.

The Parisi scheme for q is shown for 3rd order of RSB in Fig. 2.116. In this example, one starts with a
large l × l matrix, filled by matrix elements q4 = qκ+1. Then, blocks of size m3 × m3 on the diagonal of the
matrix are replaced by matrix elements q3. The block sizes m3 are chosen such that an integer number of

14See also Appendix A.6.
15In fact there are many equivalent choices of qν . In the Parisi RSB, however, the replica limit can be directly performed.
16The index ν is irrelevant in this paragraph and thus will be dropped for convenience.
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blocks exactly fit into the l × l matrix, i.e. the quotient l
m3

must be integer valued. Next, matrix elements
on sub-blocks of the m3 blocks with sizes m2 are replaced by q2. Again, the m2 blocks are chosen such that
an integer number of them fit exactly into an m3 block. This scheme is iterated until one arrives at the
diagonal matrix elements (1 × 1 blocks) which are replaced by q0.

The magnetization per replica is assumed replica symmetric, i.e. Mν
a = Mν , as in the RS case discussed

in the preceding section. With the help of this scheme, the free energy per spin can be written in terms of
the block size parameters mν

i , the matrix elements qν
i and the magnetization Mν in such a way that the spin

trace and the replica limit can be performed. This will be discussed in the following for general orders κ of
RSB.

First consider the field term of the free energy per spin in equation (2.14)

lim
l→0

∑

ν




Jν

0

2l

∑

a

(Mν
a )2 +

βJ2
ν

4l

∑

a,b

(qν
ab)

2



 . (2.46)

The sum of Ma
ν is trivial and the sum of qν

ab can be evaluated according to the prescription in Appendix
A.5. Within κ RSB the evaluation of the field term (2.46) results in

∑

ν

[

Jν
0

2
M2

ν +
βJ2

ν

4

κ∑

i=1

mν
i ((qν

i )2 − (qν
i+1)

2) +
βJ2

ν

4
((qν

0 )2 − (qν
1 )2)

]

. (2.47)

More effort is necessary, however, to handle the trace term of the free energy. The idea on which the
treatment is based is similar to the evaluation of the replica sums in the field term, but remember that the
spin trace still needs to be performed. This is the point which complicates the analysis considerably. Again,
the spin terms must be reduced to linear order.

As a first step in the spin decoupling program, one separates the spin-linear part L0 from the spin-quadratic
part L1 in expression (2.15)

L = β
∑

aν

(Jν
0 Mν + hν)Sa

ν

︸ ︷︷ ︸

L0

+
∑

ν

(βJν)2

2

∑

a,b

qν
abS

a
νSb

ν

︸ ︷︷ ︸

L1

. (2.48)

The term L0 may remain as is because the spin variables already are of linear order. In L1, however, some
more work is in order.

Firstly the quadratic spin terms which correspond to the same value of qν
ab must be collected. This can be

done for each term in the ν-sum separately. To properly collect the spin terms Sa
νSb

ν , it is helpfull to imagine
them as being ’projected’ onto the matrix qν by a one-to-one correspondence Sa

νSb
ν ↔ qν

ab. Since qν consists
essentially of quadratic blocks of equal matrix elements17, the spin term can also be expressed as quadratic
spin blocks. I define a short hand expression for such a spin block as the quadratic sum of a specific subset
of the spin variables

Bν(mν
i , j) =





jmν
i∑

a=(j−1)mν
i +1

Sa
ν





2

. (2.49)

Now one must collect the specific combinations of qν
i parameters which correspond to each spin block. If

one considers, for instance, the largest block Bν(l, 1) of all spin variables, the corresponding factor is qν
κ+1.

However, the spin variables Sa
νSb

ν which are projected to one of the largest blocks with matrix elements qν
κ

have been wrongly assigned a factor qν
κ+1 instead of qν

κ. This misassignment must be cured with hindsight
when considering the spin blocks Bν(mν

κ, j) by giving them a prefactor (qν
κ − qν

κ+1). At this stage, all terms
with a prefactor qν

κ+1 are correctly respected. In the next stage, the misassignment of the parameter qν
κ to

blocks of size mν
κ−1 must be cured in the same fashion by assinging prefactors (qν

κ−1 − qν
κ) to the blocks

Bν(mν
κ−1, j). This procedure is iterated until one arrives at the diagonal elements.

According to the above considerations and by introduction of another short hand notation ∆qν
i ≡ qν

i −
qν
i+1, ∆qν

κ+1 ≡ qν
κ+1 for the differences of the q-parameters, the sum over replica indices in L1 can be written

17Smaller quadratic blocks are ’cut out’ of the blocks, as can be seen in Figure 2.1. This results in non-quadratic arrangements
of equal matrix elements. Nevertheless the definition of quadratic spin-blocks is reasonable here, as will be seen shortly.
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as

∑

a,b

qν
abS

a
νSb

ν = ∆qν
κ+1Bν(l, 1)

+∆qν
κ

{

Bν(mν
κ, 1) + Bν(mν

κ, 2) + ... + Bν

(

mν
κ,

l

mν
κ

)}

+... + ∆qν
i

{

Bν(mν
i , 1) + Bν(mν

i , 2) + ... + Bν

(

mν
i ,

l

mν
i

)}

+ ...

+∆qν
0 {Bν(1, 1) + Bν(1, 2) + ... + Bν (1, l)} . (2.50)

Each spin block is a quadratic sum of spin variables and thus can be decoupled by means of Hubbard-
Stratonovich transformations. Again, field variables which must be integrated over are introduced by the
transformations. In this case, however, no saddle point integration can be utilized in order to fix those fields
and get rid of the corresponding integrals. It is this large number of field integrations which makes the
treatment of RSB highly nontrivial.

For each block Bν(mν
i , j) a separate field zν

j,i is needed, where the index j denotes the position of the
corresponding block, the index i denotes the size (mν

i ×mν
i ) of the block and ν stands for the spin component.

The explicit transformation for a particular block reads

exp

(
(βJν)2

2
∆qν

i Bν(mν
i , j)

)

=

∫ G

ν,j,i

exp



βJν

√

∆qν
i zν

j,i

jmν
i∑

a=(j−1)mν
i +1

Sa
ν



 (2.51)

where a short hand notation for the Gaussian integrals has been introduced as

∫ G

ν,j,i

=

∫ ∞

−∞

dzν
j,i√
2π

exp

(

−
(
zν
j,i

)2

2

)

or

∫ G

j,i

=

n∏

ν=1

∫ G

ν,j,i

=

∫ ∞

−∞

dnzj,i

(2π)n/2
exp

(

−|zj,i|2
2

)

. (2.52)

After decoupling all spin blocks in equation (2.50) one is left with only linear spin variables in L1. By
merging together all prefactors of a spin variable Sa

ν in a field-like quantity fν
a one can finally write down an

expression for eL1 in which only linear spin terms appear

exp (L1) =

∫

D(z) exp

(

β
∑

aν

fν
a Sa

ν

)

. (2.53)

The integral measure D(z) means the totality of all integrations over the field variables zν
j,i as defined in

(2.52). Now, the factors fν
a must be written down explicitly in order to be able to further simplify the

expressions in the following. By direct inspection of equation (2.50) in combination with (2.51) and with the
definition of a shifted integer part function ip(x) := 1 + x−mod(x, 1), it can easily be seen that the factors
fν

a are given by

fν
1 = Jν

(√

∆qν
0 zν

1,0 +
√

∆qν
1 zν

1,1 +
√

∆qν
2 zν

1,2 + ... +
√

∆qν
κ+1 zν

1,κ+1

)

...

fν
a = Jν

(√

∆qν
0 zν

a,0 +
√

∆qν
1 zν

ip(a/mν
1 ),1 +

√

∆qν
2 zν

ip(a/mν
2 ),2 + ... +

√

∆qν
κ+1 zν

1,κ+1

)

...

fν
l = Jν

(√

∆qν
0 zν

l,0 +
√

∆qν
1 zν

ip(l/mν
1 ),1 +

√

∆qν
2 zν

ip(l/mν
2 ),2 + ... +

√

∆qν
κ+1 zν

1,κ+1

)

. (2.54)

At this point, the job of decoupling the spin variables by introducing auxiliary fields is finished and one
can perform the spin trace. Before doing this, the linear spin terms from L0 in (2.48) must be included in
expression (2.53) so that all spin variables are respected on equal footing in

eL =

∫

D(z) exp

(

β
∑

a

∑

ν

(hν + Jν
0 Mν + fν

a )Sa
ν

)

=

∫

D(z) exp

(

β
∑

a

Fa · Sa

)

(2.55)
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where a replica dependent vector field Fa with components F ν
a = hν +Jν

0 Mν +fν
a has been defined. Recalling

the definition of the integral kernel Cn(x) in (2.32) one can write down a closed expression for the trace term
by applying the spin trace operator, which, due to the above rearrangements, can be written directly in front
of an exponential function, as usual

tr eL =

∫

D(z)tr exp

(

β
∑

a

Fa · Sa

)

=

∫

D(z)
∏

a

tr exp (βFa · S) =

∫

D(z)
∏

a

Cn(β|Fa|). (2.56)

In order to be able to perform the replica limit l → 0, where the number of factors in (2.56) goes to zero,
one must continue with further grouping the factors Cn(β|Fa|) according to the differences between them.
It turns out that there is a hierarchical system of differences between the single terms.18 Each term is an
individual term, on the lowest level different from all other terms. However, families of mν

1 similar individuals

and super-families with
mν

2

mν
1

similar families, etc. exist.

Exploiting this hierarchy by properly arranging the integral operators
∫ G

ν,j,i
defined in equation (2.51)

together with the individuals, families, ... results in an expression for the trace term in which the replica
limit can be performed. At this point, I restrict the discussion to the special cases of an Ising spin glass and
a quasi-isotropic n-component spin glass. For the general case of anisotropic spin glasses, the analysis gets
extremely involved because of the dependence of the family sizes on the component index ν.

2.3.1 Ising spin glass (n=1) with finite J0 and finite external field

As usual, the component index ν can be dropped in the Ising case and the integral kernel is given by
C1(x) = 2 cosh(x). Further, in the Ising spin glass the diagonal elements q0 of q are unity for the same
reason as in the RS case.

Now one starts at the lowest level in the hierarchy of equation (2.56), i.e. the level of individuals (i = 0). At
this level, there are l integrals with respect to the fields za,0, a = 1, ..., l which can be performed analytically19,

each giving a factor exp((βJ)2∆q0/2). Defining F
(1)
a = Fa|za,0=0 and noting that ∆q0 = 1 − q1, one can

write

tr eL = exp

(
(βJ)2

2
(1 − q1)l

)






κ+1∏

i=1





n
mi∏

j=1

∫ G

mi,j











n∏

a=1

2 cosh(βF (1)
a ). (2.57)

Direct inspection of the effective fields F
(1)
a which are obtained from (2.54) by setting za,0 = 0 shows that

they can be grouped into families of identical individuals with m1 members, each. The differences of the
individuals have been integrated out and are now located in the exponential factor in (2.57).

The most important difference between the families is the different auxiliary field zi,1. When performing
the integration over a specific z1,1, say, the m1 equal individuals of the first family can be treated as the m1th

power of the first individual in the family, i.e.
[

2 cosh(βF
(1)
1 )

]m1

. Analogous to that, the kth family gives

rise to an integral over zk,1 of
[

2 cosh(βF
(1)
1+(k−1)m1

)
]m1

. After the integrals over zk,1 have been performed,

which cannot be done analytically anymore, the index k in zk,1 can be dropped because the integrations in
all different families are formally the same. Now, the level of families is finished and one continues with the
same type of analysis on the level of super-families which consist of m2/m1 families. Iterating this procedure
κ + 1 times leads to

tr eL = exp

(
(βJ)2

2
(1 − q1)l

) ∫ G

κ+1





∫ G

κ

[
∫ G

κ−1

...

∫ G

1

[2 cosh (βHeff)]
m1 ...

]mκ/mκ−1




l/mκ

(2.58)

= exp

(
(βJ)2

2
(1 − q1)l

) ∫ G

κ+1

[
∫ GE

κ

∫ GE

κ−1

...

∫ GE

1

2 cosh (βHeff)

]l/mκ

(2.59)

18A physical meaning can be assigned to this hierarchy. It turns out that the phase space of a spin glass is hierarchically
ordered as an ultrametric tree. More information about ultrametricity can be found e.g. in [MPS84].

19See Appendix A.2.
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where the Gaussian integral operators20

∫ G

i

f(..., zi, ...) =

∫ ∞

−∞

dzi√
2π

e−
z2

i
2 f(..., zi, ...),

∫ GE

i

f(..., zi, ...) =

∫ G

i

[f(..., zi, ...)]
ri−1 (2.60)

have been introduced together with the block size ratios

ri =
mi+1

mi
, r0 =

m1

1
(2.61)

and a final effective field variable

Heff = h + J0M + J

κ+1∑

i=1

zi

√

∆qi. (2.62)

With expression (2.59) for tr eL one is in a position to perform the replica limit l → 0 of the trace term.
Note, however, that with assuming l to be a small continuous variable, one gives up the integer property of
the parameters mi and projects them onto the interval [0, 1]. Performing the replica limit in equation (2.59)
yields

lim
l→0

T

l
log tr eL =

βJ2

2
(1 − q1) +

T

mκ

∫ G

κ+1

log

[
∫ GE

κ

...

∫ GE

2

∫ GE

1

2 cosh (βHeff)

]

. (2.63)

In combination with the field term of the free energy in equation (2.47), specialized to n = 1, and with the
definition of the non-equilibrium susceptibility21 χne = β(1 − q1) one can write the free energy per particle
of an Ising spin glass within κth order of RSB as a function in the (2κ + 2)-dimensional parameter space
{m,q,M}

fIsing[m,q,M ] =
J0

2
M2 − 1

4
TJ2χ2

ne +
1

4
βJ2

κ∑

i=1

mi(q
2
i − q2

i+1) − T (h + J0M) (2.64)

where the trace term is given by

T (h + J0M) =
T

mκ

∫ G

κ+1

log

[
∫ GE

κ

...

∫ GE

1

2 cosh(βHeff))

]

. (2.65)

From expression (2.64) the proper order parameters can be obtained by extremization. For large order
parameters qi and M the field term is dominant because it depends quadratically on them whereas the
dependence in the trace term is linear. With this in mind, it is readily seen that f is bounded from
below with respect to M , so that extremization with respect to M means minimization, as usual. For the
parameters qi, however, the converse is found, i.e. f is bounded from above with respect to qi, because of the
prefactor (mi − mi−1) < 0 of q2

i in the field term (see Appendix C.2). Therefore, extremization of f means
maximization with respect to qi. The hand-waving argument of a negative number of parameters from the
discussion of the replica symmetric approximation can also be applied here.

The large ai behavior is not that easily seen and so it is not a priori clear whether f must be maximized or
minimized with respect to ai. Since one must find a saddle point22, anyway, it is most convenient to calculate
the self-consistent order parameters by means of a root search of the f gradient in the order parameter space.

For convenience in notation, the energy scale of the system is usually defined in units of J . This is done
by the rescaling

βJ → β,
f

J
→ f,

h

J
→ h,

J0

J
→ J0. (2.66)

This is equivalent with setting J = 1 everywhere in the theory. If not explicitly stated elsewise, this
convention is used in the remainder of this thesis.

20See also Appendix C.1.
21The quantity χne will be derived in section 2.5.
22Here, not the complex saddle point is meant, but the saddle point which arises at the minimum/maximum of f with respect

to M and qi, respectively.
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2.3.2 The quasi-isotropic n-component spin glass

An important condition for the tractability of the Ising spin glass is the possibility to define families, super-
families, etc. of individual factors in (2.56). In the n = 1 case, this was possible because at each hierarchy
level i, only one family size mi existed. For n > 1, however, the possibility of different family sizes mν

i 6= mν′

i

for different spin components ν 6= ν′ opens up and this scenario would be much harder to treat. To avoid such
a complication for n > 1, I restrict the further discussion to the treatment of the quasi-isotropic n-component
spin glass, i.e.

qν
ab = qab (2.67)

Mν
a = M (2.68)

Jν
0 = J0 (2.69)

hν = h (2.70)

Jν = J. (2.71)

In this subsection, I directly define J as the energy scale, like in the preceding subsection, by setting J = 1.
Within the quasi-isotropic special case all the replica matrices qν are identical by symmetry so that the
index ν can be dropped. As a result, an analysis similar to the Ising case is applicable. This will not be
repeated here in detail. I will only point out the main differences.

First of all, the number of fields zν
j,i is n times larger than for the Ising case and so one gets n integrals

instead of only one from (2.52) at each level of integration. However, these integrals can be lumped together
in the definition (see Appendix C.1)

∫ G

i

f({zν
j }) =

∫
dnzi

(2π)n/2
exp

(

−|zi|2
2

)

f({zν
j }) (2.72)

where zi =
∑

ν êνzν
i is defined and {êν} is a set of orthonormal vectors. As a result, the form of the trace

term (2.65) remains the same. The exponentiated integral operators
∫ GE

are defined in analogy to (2.60)

but with
∫ G

replaced by the n-component version in (2.72). The hierarchical ordering is done in the same
fashion, but instead of a scalar Heff , one obtains a vector-valued effective field. A preliminary definition
(symbolized by the tilde) corresponding to the situation before the evaluation of the first integral is given by

H̃eff =
∑

ν

êνH̃ν
eff , H̃ν

eff = h + J0M +

κ+1∑

i=0

√

∆qiz
ν
i (2.73)

with which the (preliminary) trace term, which can be written as

T̃ (h + J0M) =
T

mκ

∫ G

κ+1

log

[
∫ GE

κ

...

∫ GE

1

∫ G

0

Cn(β|Heff |)
]

. (2.74)

Following Appendix A.2, the first integral in this sequence is then evaluated and the resulting factor
exp(β2/2∆q1L

2
S) is pulled through the integrals as described in Appendix A.3, giving a term −β

2 (1− q1)L
2
S

in the free energy. By combining this term with the field term (2.47) one obtains the final expressions for
the free energy

f = n

[

J0

2
M2 − β

4
(1 − q1)

2 +
β

4

κ∑

i=1

mi(q
2
i − q2

i+1)

]

− T (h + J0M) (2.75)

with the trace term

T (h + J0M) =
T

mκ

∫ G

κ+1

log

[
∫ GE

κ

...

∫ GE

1

Cn(β|Heff |)
]

(2.76)

where the effective field components are Hν
eff = h + J0M +

∑κ+1
i=1

√
∆qiz

ν
i . Note that the sum runs from

i = 1 to κ + 1 as opposed to (2.73) where the sum starts at i = 0.
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2.3.3 h-field integration

In the formulation of the trace term in the two preceding subsections, κ + 1 integral operators, each n-
dimensional, act on a function of n(κ + 1) field components zν

i . Due to the exponentiation involved in the

Gaussian integral operators
∫ GE

, these operators are non-linear and essentially non-commutative. Therefore
the sequence of integral operators inside of the log in the trace terms (2.65) or (2.76) cannot be transformed
to a n · κ-dimensional Gaussian integral with O(nκ) symmetry, which would simplify the computation
considerably. Thus, one effectively must integrate numerically over a κ ·n-dimensional space, and in principle
the cost of such a task grows exponentially with κ.

Nevertheless, one can gain considerable conceptual and numerical simplification by transforming to a
recursive sequence of κ Gaussian convolutions which obey at least an O(n) symmetry for quasi-isotropic
n-component glasses. The cost of successive numerical application of κ convolution operators only grows
polynomially with κ and thus, the importance of this transformation cannot be overemphasized. This
transformation replaces the integration variables zi by a sequence of h-fields23 defined by

h1 = Heff , hi =
∑

ν

êν(h + J0M) +

κ+1∑

j=i

√

∆qizi ⇒ zi =
hi − hi+1√

∆qi
. (2.77)

Within this formulation, at each level of integration24 i there is a function of one vector valued variable
hi+1, whereas in the original formulation one has to deal with a function of (κ + 1 − i) variables zj at the

ith level. The operators
∫ GE

i
act on functions of a single field variable hi and the result of the application

of this operator is a function of the next field variable in the sequence. Thus the ith level exponentiated
Gaussian operator in h-field formulation is conveniently defined by its action on a general function f(hi) of
the field variable hi

∫ GE

i

f(hi) ≡
∫

dnhi

(2π∆qi)n/2
exp

(

− 1

2∆qi
|hi − hi+1|2

)

[f(hi)]
ri−1 (2.78)

with the usual block-size ratios ri = mi+1

mi
. It is important to note here that, if f(hi) is a function of the

absolute value |hi| only, then the function of hi+1 which results from
∫ GE

i
f(hi) is also independent of the

orientation of hi+1.
It is now convenient, from an analytical point of view as well as from numerical considerations, to formulate

the trace term recursively in terms of a sequence of functions f sub
i (hi+1) which are interconnected by the

recursion relation

f sub
i (hi+1) =

∫ GE

i

f sub
i−1(hi), (2.79)

and an initial condition f sub
0 (h1) = Cn(βh1). Since the kernel Cn in (2.76) is a function of |Heff | = |h1| = h1

only, it is clear by induction that each f sub
i in the sequence is spherically symmetric in hi+1 and the definition

of f sub
i as a function of hi+1 = |hi+1| does not cause a loss of generality.

With this recursive sequence of functions, the trace term (2.76) of the quasi-isotropic spin glass25 can be
written in terms of the last function in the recursion sequence f sub

κ as

T (h + J0M) =
T

mκ

∫ G

κ+1

log f sub
κ (hκ+1) (2.80)

where the dependence on h + J0M is implemented through the remaining integral operator
∫ G

κ+1
by setting

hκ+2 =
√

n(h + J0M). Remarkably, by the transformation to h-field integrals, the explicit dependence on
the external field and the magnetization has been transformed from level 1, i.e. directly from the kernel Cn

to the highest level, even outside of the logarithm. That this is extremely desireable will be seen in Section
2.5 where partial derivatives of f with respect to M or h must be calculated.

At this point, it is obvious that the form of the recursive theory as introduced above is independent of the

number of spin components n. The explicit expressions for Cn(x) and
∫ GE

i
do depend on n, of course. This,

23The h-field transformation is presented here for quasi-isotropic n-component spin systems, in which the fields are initially
vector-valued. The Ising case is easily obtained as the special case n = 1, where h-fields are scalar fields.

24With level, I mean the depth in the integration sequence of the trace term from now on. For instance, Cn(β|Heff |) is the

0th level and after the operator
R GE
1 acts, the level number is 1.

25Of course, the Ising spin glass is included as a special case.
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however, can be regarded as a numerical detail, since solving the recursion relation for finite κ is a task for
a computer program, anyway. The important point is that, from a conceptual point of view, the theory is
formally invariant with respect to a change of n.

The explicit expressions of the initial condition f sub
0 = Cn have been given in Section 2.2. For the explicit

form of the integral operators, one must perform the integration of the angular parts in (2.78). This is
straightforward for general n and leads to

∫ G

i

f(hi) =

∫ ∞

0

dhi

∆qi
h

n
2
i exp

(

−h2
i+1 + h2

i

2∆qi

) In
2 −1

(
hihi+1

∆qi

)

h
n
2 −1
i+1

f(hi), (2.81)

where Iα(x) is the modified Bessel function. Iα(x) has a simple asymptotic form Iα(x) = ex/
√

2πx for
x À 1, so that in the asymptotic regime, equation (2.81) becomes

∫ G

i

f(hi) ≃
∫ ∞

0

dhi√
2π∆qi

(
hi

hi+1

)n−1
2

exp

(

− (hi − hi+1)
2

2∆qi

)

f(hi), for hi+1 → ∞. (2.82)

The asymptotic behavior of the recursion relation is important for numerical simplifications in the Ising spin
glass at low temperatures. For the most interesting cases of n = 1, 2, 3 equation (2.81) simplifies to

• Ising spin glass: n = 1

∫ G

i

f(hi) =

∫ ∞

−∞

dhi√
2π∆qi

exp

(

− (hi+1 − hi)
2

2∆qi

)

f(hi) (2.83)

• XY spin glass: n = 2

∫ G

i

f(|hi|) =

∫ ∞

0

dhi

∆qi
hif(hi) e

− 1
2∆qi

(h2
i +h2

i+1)I0

(
hihi+1

∆qi

)

(2.84)

• Heisenberg spin glass: n = 3

∫ G

i

f(|hi|) =

∫ ∞

−∞

dhi√
2π∆qi

exp

(

− 1

2∆qi
(hi − hi+1)

2

)
hi

hi+1
f(hi) (2.85)

For an odd number of components, the index of the modified Bessel function is half-integer. In those cases it
can be expressed in terms of hyperbolic functions which are numerically less expensive. For even n, however,
one must deal directly with the numerical representation of the Bessel functions.

Remarkably, the Gaussian integral of the Heisenberg spin glass is, similar to the Ising spin glass, equal to
its asymptotic form.

2.4 Low temperature formalism

The above formulation of the theory in terms of block size parameters mi is convenient at temperatures
T between about 0.3 and the freezing temperature TC = 126. In this temperature range, the mi are more
or less uniformly distributed over the interval [0, x̄1], where x̄1 ∈ [0, 1] is the so-called break point27. For
temperatures near T = 0, however, all parameters mi approach zero for finite orders of RSB. At the same
time, the factors β = 1/T diverge as T → 0. In order to be able to formulate a meaningful theory directly
at T = 0, these singularities must be accounted for. In the present section, it will be discussed how this is
accomplished by means of a singular rescaling of the mi parameters.

26Remember that the energy, as well as the temperature scale has been redefined in units of J . Without setting this energy
scale, one obtains TC = J .

27In the temperature regime which is investigated in this work, the break point is approximately 0.5. For more informations,
see chapters 4 and 5.
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2.4.1 Parameter rescaling

The form of the field term in the free energy (2.75), especially the combination in which β and mi appear in
the sum term, is highly suggestive of an absorption of the β divergence into the block size parameters mi.
This is done by a rescaling with temperature and the introduction of rescaled block size parameters28

ai(T ) ≡ βmi(T ). (2.86)

Since the original Parisi block sizes mi vanish linearly with temperature, at T = 0 the ai parameters are
the linear temperature coefficients in a Taylor series of mi(T ). In other words, the block sizes at zero
temperature are trivially zero and thus the leading temperature dependences of the block sizes are the
proper order parameters in this case.

At finite temperatures the a-based formalism is equivalent to the m-based formalism. At very low temper-
atures, however, the quantities which must be handled in the a-formalism remain well behaved29 in contrast
to the m-based quantities. This even allows for calculations at T = 0 directly. The free energy in terms of
the rescaled block size parameters ai reads

f = n

[

J0

2
M2 − β

4
(1 − q1)

2 +
1

4

κ∑

i=1

ai(q
2
i − q2

i+1)

]

− T (J0M + h) (2.87)

with the trace term

T (J0M + h) =
1

aκ

∫ G

κ+1

log

[
∫ GE

κ

...

∫ GE

2

∫ G

1

[Cn (βh1)]
a1T

]

. (2.88)

In the field term, the only explicit temperature dependence is found in the term −β(1 − q1)
2 and this term

is even singular at T = 0. Thus, this term must be handled analytically before the self-consistence equations
are numerically solved.

For q1 6= 1 this term becomes the dominant contribution to the field term at T = 0: the term is −∞ for
any q1 6= 1 in the zero temperature limit. The trace term on the other hand remains finite for any allowed q1

and thus it follows from the maximization principle of the free energy with respect to q1 that limT→0 q1 = 1.
By expanding q1 in a Taylor series near T = 0 it is obvious that the term −β(1−q1)

2 even vanishes at T = 0.

Regarding the trace term T it should be noted that the first Gaussian operator
∫ G

1
is not the exponentiated

version. The exponent has been explicitly assigned to Cn in order to be able to exploit the linear T dependence
of the parameter m1. This is important for rendering the integrand finite at T = 0.

In analogy to equations (2.80) and (2.79), the trace term again can be expressed recursively. The initial
condition in a-formulation, however, must be defined in combination with the temperature exponent as
f sub
0 (h1) = [Cn(βh1)]

T
in order to obtain a meaningful zero temperature limit. Apart from the first ratio r0

which must be adapted to r0 = a1, the definition of the block size ratios ri = mi+1

mi
= ai+1

ai
remains formally

invariant when transforming from mi formulation to ai formulation. As a result, the same recursion relation
(2.79) is valid in m-formulation as well as in a-formulation. With the recursively defined functions f sub in
a-formulation, the trace term of the free energy reads

T (J0M + h) =
1

aκ

∫ G

κ+1

log f sub
κ (hκ+1). (2.89)

Within the a-formulation of RSB, one can directly perform the zero temperature limit of the initial con-
dition of the recursion. If the ai parameters are assumed to remain finite as T → 0 - and it turns out that
this is indeed true for κ < ∞, the only 1/T divergence is located at the argument of the inner integrand
Cn(βh1). However, the integrand is exponentiated by temperature due to the rescaling. Thus one obtains a
simple expression for the zero temperature limit of the initial condition30 by exploiting the asymptotic form
of the modified Bessel functions

lim
T→0

f sub
0 (h1) = lim

T→0
[Cn(βh1)]

a1T
= e

√
na1|h1|. (2.90)

28The implicit temperature dependence of the parameters is made explicit at this point for clarity, only.
29Well behaved means especially that the numbers do not exceed the numerical capacity of standard computer arithmetics.
30At this point one must distinguish between finite a1 and a1 = ∞. The first case always happens at finite order of RSB.

Then the given zero temperature limit is valid. In the limit κ → ∞, however, a1 also approaches infinity. This case will be
discussed in Chapter 5.
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Fig. 2.2: Plots of 1
ai

log f sub
i (h), i = 0, ..., 10 at zero temperature (left) and T = 0.3 (right) for 10 RSB in

case of an Ising spin glass (n = 1). The lowest black curves represent the initial condition of the
recursion scheme in both cases.

Remarkably, the zero temperature limit of the inner integrand of an arbitrary n-component spin glass is
equal to the asymptotic form of the Ising kernel. This is a typical for classical n-component spin systems
and is also encountered in the mean-field theory of n-component models of a ferromagnet, as pointed out
in the introduction. In this case, however, the trivial solutions for the magnetization per spin |M| = 1 of
the equation M = tanh(βJ0M) are obtained. Physically, this is reasonable because at zero temperature
a classical spin in a ferromagnet does not move at all; the system is and remains in its ground state and
all spins point into the same direction, no matter whether different orientations are possible or not. In a
spin glass, however, many ground states exist in which the spins point into all possible directions. Thus,
the number of possible spin directions matters and so the trace term T depends on the number n of spin-
components, though the initial condition does not: the n-dependence of T is incorporated only through the
different Gaussian integral operators for different numbers of spin components.

At this point, it is useful to discuss the recursive formalism in view of the qualitative introduction to spin
glass theory in Section 1.4. The IFM kernel which was discussed there is equal to the initial condition f sub

0 .
On the left side of Figure 2.2 the sequence of functions 1

ai
log f sub

i for zero temperature is shown. Obviously,
the situation is not quite the same as described in Figure 1.2. In the asymptotic regime, there is an upward
shift due to a multiplicative correction to f sub. In the next subsection, it will be seen that this shift is given
by a combination of the ai and qi parameters and can be removed by transforming it to the field term.
However, apart from this shift the situation is as described in the introduction: one starts with the V-like
initial condition which is represented by the black line in Figure 2.2. This is the same as if one would look at
an Ising ferromagnet model at T = 0. Then by successively applying the recursion relation (2.79) the cusp
is rounded and the top blue curve is obtained at the end of the recursion scheme. This is the action of RSB
on the IFM kernel. Then one last Gaussian average must be performed on 1

aκ
log f sub

κ to finally calculate
the trace term.

In a T = 0 calculation within the replica symmetric approximation (i.e. κ = 0) the V-like initial condition
is set directly in (2.89) and the Gaussian average is performed on the IFM-kernel as described in the in-
troduction. For κ > 0, however, the hierarchical averaging described by the recursion relations changes the
IFM kernel to the RSB kernel. The explicit averaging is to be self-consistently determined by extremizing
the free energy with respect to the parameters on which the averaging procedure depends, i.e. qi and ai.

At finite temperatures, the initial condition has no sharp cusp at h = 0 so that the RSB averaging process
only quantitatively changes the degree of rounding. This is shown in the right part of Figure 2.2. Here again,
an upwards shift in the asymptotic regime appears. As in the zero temperature case, it will be transformed
to the field term of the free energy in the next subsection.

The Parisi block sizes mi were restricted to the interval [0, 1]. Due to the rescaling with β, the domain of
the new block size parameters ai is the interval [0, β] which becomes semi-infinite at T = 0. Nevertheless, as
long as a finite number of RSB steps are considered, all ai remain finite even at zero temperature. Sometimes,
however, boundary values of the sequence of numbers ai are needed in certain rearrangements of the sum
terms which appear in the free energy31. This is done by defining aκ+1 = 0 and a0 = β. These boundaries
are fixed and must not be understand as self-consistent order parameters.

31The aim of these rearrangements is mostly, to see the connection to an integral of the form
R β
0 da.
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2.4.2 Asymptotic renormalization group

In general, the recursion relation (2.79) cannot be solved analytically and one has to resort to numerical
techniques. In the asymptotic regime, however, the recursion can be written in form of a renormalization
group and the behavior for hi → ∞ at each level of integration can be calculated analytically.

Since prefactors of the inner integrand are irrelevant (see Appendix A.3), I consider only proportionality up
to an h-independent factor for now. It is found32 for finite temperatures in m and a formulation, respectively,
that f sub can be written asymptotically as

f sub
i (hi+1) ∼

[

exp(βLShi+1)

h
(n−1)/2
i+1

]mi

=
exp(aiLShi+1)

h
n−1

2 aiT
i+1

(2.91)

at each level i. In the limit T → 0, where a formulation in terms of mi becomes invalid, the exponent of the
denominator vanishes, provided that ai is finite. Since this is always the case for κ < ∞, one obtains - in
analogy to the zero temperature initial condition (2.90) - a simple asymptotic form

f sub
i (hi+1) ∼ exp(aiLShi+1). (2.92)

Here again, the asymptotic form of f sub is independent of the number of spin components n in the zero
temperature limit33. The small h regime, however, depends on n and, as it determines the nontrivial spin
glass properties, this is the regime where RSB is important and where it changes the physics.

Apart from the conceptual information that RSB does not act on the asymptotic regime of the kernels in
the trace term, the asymptotic behavior is important for two further reasons. Firstly, analytical knowledge
about the large h regime can be used to fix boundary conditions in a continuous RSB theory34 where the
recursion relation (2.79) passes over to a partial differential equation. Secondly, at finite κ it can be used to
dramatically reduce the numerical cost of computing all the functions f sub

i by the recursion relation35.

To automatically keep track of the asymptotic behavior of f sub, a new set of auxiliary functions - the kernel
correction functions - {kerCi(hi+1)}κ

i=0 is introduced. They describe the evolution of the initial condition
due to the RSB recursion in terms of the deviation of f sub from its asymptotic h-behavior near h = 0. The
kernel correction functions are defined at each recursion level i as

f sub
i (h) = exp



ai




1 − n

2
T log(βLShi+1) +

1

2

i∑

j=1

aj∆qj + |h| + kerCi(h)







 . (2.93)

The recursion relation of the functions f sub
i can be translated to recursion relations for kerCi. The logarithmic

term in (2.93) leads to a singularity at small h. However, the term vanishes for an Ising spin glass (n = 1) or
at zero temperature. This is where the kerC-formalism gets especially convenient. In the T 6= 0 and n 6= 1
cases, the logarithmic divergence of the first term would have to be compensated by the kerC-term. However,
one could save the numerics by introducing an artificial regularization which renders the first term finite at
h = 0, for instance by replacing log(βLShi+1) → log(βLShi+1 + e−λhi+1) with a parameter λ which can be
chosen by numerical convenience.

I will now discuss the most interesting cases of an Ising spin glass at arbitrary temperatures and of an
n-component spin glass at T = 0. The analysis of these special cases in high RSB orders is sufficient to
understand the zero temperature properties of RSB. Of course, calculations of non-Ising spin glasses at non-
zero temperature can also be performed. It is may be more convenient, however, to do this by means of the
f sub-recursion formulation.

32See Appendix A.4
33Within the usual convention that L2

S = n, the form (2.92) does trivially depend on n, of course. This dependence, however,
is not fundamental because it could be removed by an integral transformation dh → d(LSh).

34See chapter 5.
35By implementing the knowledge about asymptotic behavior in the numerics the code got faster by about a factor of 10

while numerical accuracy increased considerably at the same time.
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Fig. 2.3: Plots of kerCi(h), i = 0, ..., 10 at zero temperature (left) and at T = 0.3 (right) for a calculation
within 10 RSB of an Ising spin glass. In the zero temperature plot, the initial condition kerC0(h)
is exactly zero, while for finite temperatures it is represented by the lowest black curve.

2.4.3 The kernel correction function for an Ising spin glass

For one spin component the logarithmic term in equation (2.93) has a zero prefactor and the definition of
the kernel correction function simplifies to

f sub
i (h) = exp



ai




1

2

i∑

j=1

aj∆qj + |h| + kerCi(h)







 . (2.94)

In the last integration of f sub
κ with respect to hκ+1 in the trace term (2.88), one may combine the sum of

ai∆qi with the sum in the field term of the free energy (2.87). Doing so, one obtains an expression of the
free energy per spin of the Ising spin glass at κth order of RSB in terms of the function kerCκ which results
from passing through the whole recursion scheme

f =
J0

2
M2 − β

4
(1 − q1)

2 +
1

4

κ∑

i=1

ai

(
(qi − 1)2 − (qi+1 − 1)2

)
−

∫ G

κ+1

(kerCκ(h) + |h|) , (2.95)

where the last Gaussian integral must be centered at hκ+2 = J0M + h, as usual.
The recursion relation between the kernel correction functions at different levels i can be obtained from

the recursion relation of the functions f sub
i given by equation (2.79). According to the the relation between

f sub and kerC given by (2.94) one finds

kerCi(h) =
1

ai
log

[∫ ∞

−∞

dh′
√

2π∆qi
exp

(

−1

2
a2

i ∆qi + ai(|h′| − |h|) − (h − h′)2

2∆qi

)

exp (aikerCi−1(h
′))

]

. (2.96)

The kernel correction functions have been designed such that the initial condition kerC0 vanishes at zero
temperature. At finite temperatures, the initial condition is given by

kerC0(h) = log
[

(2 cosh(βh))
T
]

− |h| = T log

(

1 + exp

(

−2|h|
T

))

. (2.97)

Already at this point, I want to draw the readers attention to the typical problems that will be encountered
in the ∞RSB limit. At each finite temperature, the slope of the initial condition in (2.97) is −1 at h = 0+. At
zero temperature, however, where kerC0(h) ≡ 0, also the derivative of kerC0(h) is zero, of course, especially
at h = 0+. On the other hand, if one first evaluates the h-derivative at finite temperatures and performs the
zero temperature limit of kerC′

0 afterwards, one finds

kerC′
0(h) = − 2

e2βh + 1
⇒ lim

T→0
kerC′

0(h) =

{
0 for h > 0
−1 for h = 0

. (2.98)

Consequently, if the limits are performed in this order, i.e. calculation of the derivative before zero temper-
ature limit, the second derivative is singular at h = 0 for T → 0.

kerC′′
0(h) =

4β

e2βh + e−2βh + 2
⇒ lim

T→0
kerC′′

0(h) =

{
0 for h > 0
∞ for h = 0

. (2.99)
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The appearance of a non-commutativity of two limits, i.e. in the present case the limit h → 0 and the limit
contained in the definition of derivatives, is typical for replica symmetry breaking, especially in the κ → ∞
limit. Another example of non-commutativity is met in discussion of the question whether in the limit of
zero temperature and infinite order of RSB, all parameters mi become dense or not.

For the finite RSB technique at zero temperature which has been derived in the present chapter, the issue
of the divergency in the second derivative of kerC0 is not a problem because one is only concerned with
integrals of kerCi(h) in which derivatives do not matter. In the limit κ → ∞ which is discussed in Chapter 5,
however, a more careful analysis is in order because the derivatives of kerC directly enter a partial differential
equation (5.10) which describes the a-dependence of kerC.

2.4.4 The kernel correction function at T = 0 for general n

At zero temperature and for general n the logarithmic term in (2.93) vanishes as long as aiT = 0 which is
the case for finite κ. Thus, the definition of the kernel correction function is not very different from the Ising
case in (2.94). The only difference is a prefactor n in front of the sum term

f sub
i (h) = exp



ai




n

2

i∑

j=1

aj∆qj + |h| + kerCi(h)







 . (2.100)

The recursion relation between successive kerCi is different, though. It reads

kerCi(hi+1) =
1

ai
log

∫ ∞

0

dhiKn(hi, hi+1, ∆qi) exp

(

−h2
i + h2

i+1

2∆qi
− n

2
a2

i ∆qi + ai(hi − hi+1 + kerCi−1(hi)

)

,

(2.101)
where an additional convolution function

Kn(hi, hi+1, ∆qi) =
In

2 −1

(
hihi+1

∆qi

)

∆qih
n/2−1
i+1

(2.102)

has been defined. For hi+1 → 0, the convolution function is singular. The singularity can be removed,
though, by expanding the modified Bessel function for small arguments In(x) = xn(c1 + O(x2)).

Kn(hi, hi+1, ∆qi) ∼
hn−1

i

(∆qi)n/2+1
+ O(h2

i+1). (2.103)

Obviously, the n > 1 and T = 0 case can be treated numerically in analogy to the Ising case.

2.5 Observables in the replica formalism

In the preceding sections, a powerful formalism has been derived which extends the traditional formulation
of replica symmetry breaking in the Parisi gauge [Par80, BY86] to low temperatures in the general case of
n-component spin glasses. All the above formulas, however, are only useful for determining the free energy
and with it the spin glass order parameters qi and ai. In the following section, the above formalism will
be connected to the most important observables in context of magnetically ordered systems, namely the
free/internal energy and the entropy, as well as magnetization and magnetic susceptibilities.

2.5.1 Free/internal energy and entropy

Let me start with the internal energy per spin u. It is defined as the thermal expectation value of the
Hamiltonian (2.1). However, since the Hamiltonian depends on the set of random coupling constants {Jrr′},
again some kind of disorder average must be performed. In the introduction it has been argued that the
extensive quantities are the ones which should be directly averaged, and u definitely is an extensive quantity.
Therefore one can write

u =

〈
tr e−βHH

tr e−βH

〉

d

=

〈

− ∂

∂β
log Z

〉

d

=
∂

∂β
〈− log Z〉d . (2.104)
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The disorder average is independent of temperature and so one can pull the derivative with respect to β
out of the average. Obviously, no complication arises from quenched disorder when considering the internal
energy and so it can be obtained by a partial derivative from an expression for the free energy, as usual. A
particularly convenient expression for this purpose can be found in equation (2.14) in which no specific form
of the qν matrices has been assumed. Performing the β-derivative leads to

u =
∂(βf)

∂β
= lim

l→0




∑

ν




Jν

0

2

∑

a

(Mν
a )2 +

βJ2
ν

2

∑

a,b

(qν
ab)

2



 −
tr eL ∂L

∂β

tr eL



 . (2.105)

The derivative of the trace term can be further simplified. A derivative of L with respect to β results in
terms proportional to tr eLSa

ν or tr eLSa
νSb

ν . These can be evaluated by means of equations (2.17) and (2.18)
and one obtains

1

tr eL
tr eL ∂L

∂β
=

∑

ν




∑

a

(hν + Jν
0 Mν

a )Mν
a + βJ2

ν

∑

a,b

(qν
ab)

2



 (2.106)

so that the trace term contribution can be combined with the field term contribution and a simple expression
for the internal energy is obtained

u = lim
l→0

1

l

∑

ν




Jν

0

2

∑

a

(Mν
a )2 −

∑

a

hνMν
a − βJ2

ν

4

∑

a,b

(qν
ab)

2



 (2.107)

which only depends polynomially on the parameters qν
ab and mν

a. These parameters must be calculated
self-consistently for a specific assumption of the structure of qν with the help of the formalism, introduced in
the preceding sections. However, in contrast to all free energy expressions, no complicated trace term is left
in the internal energy. With the help of the formula for replica sums, derived in Appendix A.5, expressions
for the RS and the RSB case are easily obtained.

• The replica symmetric case.

u = −
∑

ν

[
Jν

0

2
M2

ν + hνMν +
βJ2

ν

2
(1 − q2

ν)

]

(2.108)

• The RSB case for a quasi-isotropic spin glass.

u = −n

[

J0

2
M2 + hM +

J2

2

κ∑

i=1

ai(q
2
i − q2

i+1) +
βJ2

2
(1 − q2

1)

]

(2.109)

At zero temperature, the free energy and the internal energy are equal. It must be remarked at this point,
however, that u = f is only true for the self-consistent order parameters qi, ai,M . This means that the
simple expressions (2.108) and (2.109) cannot be used to derive the self-consistency equations for the order
parameters. In any case, the free energy must be used for this task.

The next quantity which is introduced is the entropy per spin s. It is usually defined as the negative slope
of the free energy as a function of temperature. It is more convenient, however, to calculate the entropy at
finite temperatures from

s = β(u − f). (2.110)

The free energy and the internal energy can be calculated with high accuracy by the above method and the
numerical code which has been developed in this work (see Appendix D). As a result, the entropy which
is calculated from (2.110) also has only a small numerical error. The combination of equation (2.87) with
(2.109) or its RS conterparts to a single expression for s is obvious and will not be stated here explicitly.

At zero temperature, equation (2.110) is singular. The knowledge of the numerical values of f and u at
T = 0 alone is not any longer sufficient to determine s. Actually, as expected, it is only found that the two
energies f and u are equal up to numerical errors at T = 0. The straightforward solution to the problem
of finding the entropy at T = 0 would be to extrapolate s(T ) from calculations at finite temperatures to
T = 0. In 2.5.3, however, an advanced approach for obtaining the zero temperature entropy directly at
T = 0 without the need for finite T calculations is derived.
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2.5.2 Magnetic observables

Like in (anti-)ferromagnetic theories, the magnetic properties of spin glasses are extremely important. They
are, however, much less obvious - even in mean-field theory - than the properties of their simpler, disorderless
counterparts. I shall start the discussion with the best-known order parameter which is the central quantity
in a ferromagnet, i.e. the magnetization vector M. According to thermodynamics, it can be calculated from
a partial derivative of the free energy

Mν =
1

N

〈

1

Z
tr e−βH

∑

r

Srν

〉

d

= − ∂

∂hν
f (2.111)

were H is the fundamental Hamiltonian defined in (2.1). Within the replica formalism, one can plug the
free energy given in (2.14) into the right hand side of (2.111) and finds Mν = liml→0

1
l

∑

a Ma
ν . The replica

order parameter Ma
ν , in turn, must be calculated from the minimization36 of the free energy. In the limit

of J0 → 0 which will be mostly assumed in this work, the free energy does not depend on Mν , though.
This is physically reasonable because without a finite mean value of the coupling between spins it makes
no difference whether the spins are aligned to some extent or not. Nevertheless, a closed self-consistence
equation can be given for the magnetization by first differentiating the free energy with respect to Mν , before
the J0 → 0 limit is performed.

This can be done directly at κth order of RSB by using expression (2.87) for the free energy and differenti-
ating it with respect to M . Some care is needed, however, because of the definition of M as one component
of the magnetization vector M. It is best to rewrite terms of the form nMα with α = 1, 2 as the sum over
ν-indices from which they originated. Doing so one finds

∂f

∂Mν
= J0Mν − ∂

∂Mν

1

aκ

∫ G

κ+1

log f sub
κ (hκ+1)

!
= 0. (2.112)

The only dependence of the trace term on Mν is located at the Gaussian integral operator
∫ G

κ+1
through

hν
κ+2 = hν + J0Mν . It is important at this point to not use the simplified formula (2.81) of the Gaus-

sian integral operator in which the angular integrals already have been performed, because an additional
angle appears in the integral which cannot be accounted for with hindsight37. Instead, the n-dimensional
Gaussian integral operator (2.78) must be used. By differentiating the exponential function in its definition
exp

[
−(2qκ+1)

−1
∑

ν(hν + J0Mν + hν
κ+1)

2
]

with respect to Mν one can cancel down the J0 factors and finds

Mν = −hν + J0Mν

qκ+1
T (h+J0M)+

1

aκqκ+1

∫
dnh′

(2πqκ+1)n/2
h′

ν exp

(

−|h + J0M − h′|2
2qκ+1

)

log f sub
κ (|h′|) (2.113)

which is meaningful also in the J0 = 0 case. For h = 0 and J0 = 0, the first term becomes trivially zero. In
the second term, the integrand becomes spherically symmetric up to the linear dependence on h′

ν . It follows
by symmetry in the angular integrations that also the second term vanishes and so, for each order of RSB,
M = 0 for zero external field and zero mean of the spin interaction J0, as expected.

For finite external field and/or J0, equation (2.113) becomes cumbersome because of the existence of two
in general different angles38 in the integration of the second term. In the special case of J0 = 0, where
the free energy does not depend on M, knowledge of the self-consistent magnetization is not needed for
calculating the free energy. Thus, there is no need to cope with (2.113) if one is not explicitly interested in
the magnetization. The accuracy of the whole computation does not depend on the accuracy of M so that
one can resort to less precise methods for determining M: after the free energy f as a function of the external
field h has been calculated, the magnetization can be obtained a posteriori by the (numerical) h-derivative
of f39. This is possible again due to the equality of the fist total and partial derivatives of the self-consistent

36In this case it is really a minimization and not a maximization as for the spin glass order parameters q.
37Actually, there is a trick which still allows using the simplified Gaussian integral expression: one must sum equation (2.113)

over all component indices ν and combine the integrals. By doing this, the two angles which appear under the integral are the
same again. This trick has been utilized in the derivation of equation (2.45), for instance. Here, the described method is easier
in use, however.

38One angle is the angle between h + J0M and h′ and the second angle is the angle between êν and h′.
39The accuracy of M gained by this method, however, is much lower than the accuracy which can be obtained by using

equation (2.113). It strongly depends on the resolution of the numerical data in h-direction. Thus, this simpler method is only
recommended for J0 = 0.
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free energy with respect to the external parameters h and T : the total derivative of the free energy can be
expanded in terms of all partial derivatives

d f

dh
=

∂f

∂h
+

∑

i

∂f

∂qi

dqi

dh
+

∑

i

∂f

∂ai

dai

dh
+

∂f

∂M

dM

dh
︸ ︷︷ ︸

=0

. (2.114)

The self-consistent values of the order parameters ai, qi and M are defined as the point in the order parameter
space in which the gradient of the free energy vanishes. As a result, all terms, but the partial derivative of f
with respect to h on the right hand side of (2.114) vanish and thus the first order partial and total derivative
of f with respect to h is equal. This statement remains true, of course, also for temperature derivatives of
first order.

For more than one spin component, only quasi-isotropic spin glasses, where all components hν and Mν are
equal, are considered. Thus, one must be careful in normalizing the total derivative. If one could change the
components of h separately then, by explicitly writing out the dependence of f on the components of h, the
magnetization component is

Mν = −d f(h1, h2, ..., hn)

dhν
. (2.115)

In the case of the quasi-isotropic n-component spin glass, however, all external field components are varied
at the same time and one must consider instead

− d f(h, h, ..., h)

dh
= −

∑

ν

∂ f

∂hν

dhν

dh
= nM ⇒ M = − 1

n

d f

dh
. (2.116)

In an n-component spin glass, the length LS of a spin vector has been normalized to L2
S = n. Thus

for maximum alignment in one direction40 ν, the magnetization component Mν =
√

n and |M|2 = n. This
situation can be transformed to quasi-isotropy by rotating the magnetization vector such that all components
are equal, i.e. |M|2 =

∑

ν M2
ν = nM2 = n. As a result, the maximum magnetization M = Mν becomes

unity within the conventions used in this thesis.
In the calculation of the magnetization, it was sufficient to consider the total derivative of f instead of its

partial derivative, because all remaining terms in the total derivative of f contain first partial derivatives of f
with respect to an order parameter and those are zero because of the very definition of the order parameter.
For susceptibilities, this simplification is not generally applicable. This is due to the appearance of terms
with higher order derivatives of f with respect to order parameters, which do not vanish per definition as
the first order derivatives do.

A second complication lies in the interpretation of the susceptibility. Ergodicity breaking plays an im-
portant role in the magnetic properties of spin glasses. The question is: how long does the experimentalist
wait after having changed the external field h by a small amount until he starts the measurement of the
resulting change in magnetization. In other words, the relaxation time is important. In this context, the
equilibrium susceptibility χe and the non-equilibrium susceptibility χne must be defined, corresponding to
the long relaxation time and the short relaxation time regime, respectively.

Let me start with the discussion of the equilibrium susceptibility χe. Its physical meaning is the linear
response of the magnetization M to a small change in the external field h. The measurement of M is
performed after an infinitely long time41 in which the system is allowed to relax back to equilibrium. In other
words, the equilibrium susceptibility regards the system as if ergodicity breaking was absent. An analogy
with an Ising ferromagnet again helps to understand this concept. The IFM has two ergodic components in
the ordered phase, i.e. positive or negative magnetization. Say, the system is in the ergodic component with
positive M . Then measuring the magnetization in a ’normal’ experiment would yield a positive M , of course,
because the system is trapped in one ergodic component and can’t escape in a finite time. The experiment
which is related to χe, however, measures infinitely long, so that the system can switch between the ergodic
components and the measurement yields M = 0. In a ferromagnet, considering such a measurement does
not make sense. It is better to identify the ergodic component, the system is trapped in, and restricting the
thermal average to this component.

40This is not the quasi-isotropic case, of course.
41To be very explicit, infinitely long means to let the time τ after which the measurement starts to to infinity before performing

the thermodynamic limit.



2.5. OBSERVABLES IN THE REPLICA FORMALISM 35

In a spin glass, however, the identification of ergodic components is not possible. They are not even related
by a fundamental symmetry of the Hamiltonian. Thus the order parameters qab or qi in a spin glass do not
identify single ergodic components but rather correlations between them42 and so consideration of the whole
configuration space cannot be circumvented. As a result, the magnetization discussed above, which is an
average over all configuration space in the spin glass phase, must be interpreted as equilibrium magnetization:
it can also not be measured in a finite time after the external field has been changed. It is best to imagine
M and χe as ’field cooled’ quantities. Thorough and extensive investigations of these issues can be found
for instance in [BY86, MPS84, MPV87]. I will instead continue the discussion from a formal point of view
rather than by intuitive arguments.

The equilibrium susceptibility χνν
e is a tensor in spin space and its diagonal elements are the interest-

ing quantities for the quasi-isotropic glasses. They are defined by the total derivative of a magnetization
component with respect to the component of the external field in the same direction

χνν
e =

dMν

dhν
= − d

dhν

∂

∂hν
f = −∂2f

∂h2
ν

− ∂2f

∂hν∂qab

dqab

dhν
− ∂2f

∂hν∂Ma

dMa

dhν
. (2.117)

In general, the mixed second order derivatives do not vanish and cause a considerable complication in the
computation of the susceptibility. In Chapter 3 the equilibrium susceptibility is computed by using the
analytical equation (2.117) under the assumption of replica symmetry. It is, however, too complicated for
using it in the RSB treatment. In general, it is better to calculate χe as the numerical second derivative of
f with respect to h. For the special case of zero external field hν = 0 and zero mean interaction J0 = 0,
however, equation (2.117) can be simplified considerably because the terms with mixed partial derivatives
of f vanish.

At h = 0, the spin glass order parameters qab =
〈
Sa

νSb
ν

〉
are even under Sa → −Sa and the Hamiltonian

(2.1) is invariant under time-reversal symmetry43 Sa → −Sa, h → −h. As a result, qab are even functions
of h and thus its hν-derivatives at hν = 0 vanish. Furthermore, at J0 = 0 the free energy does not depend
on the magnetization at all and thus each derivative with respect to M vanishes as well. As a result, for
h = 0 and J0 = 0 the susceptibility is equal to the second partial h-derivative χνν

e = −∂2f/∂h2
ν .

To evaluate the partial derivatives, it is most convenient to use the free energy expression (2.14) before
applying any assumptions on the structure of the replica matrices, even before applying any simplifications
to quasi-isotropic or Ising spin glasses. The field term in (2.14) does not depend on h and the differentiation
of the trace term leads to

χνν
e = lim

l→0

β

l

[∑

a,b tr eLSa
νSb

ν

tr eL
−

(
tr eL

∑

a Sa
ν

tr eL

)2
]

. (2.118)

Exploiting equations (2.17) and (2.18) and performing the replica limit leads to the vanishing of the second
term, since it is of order l2. The first term can be evaluated within the assumption of κth order of RSB
(including the RS case by κ = 0) by the method described in Appendix A.5. One finally obtains a simple
formula for the equilibrium susceptibility χe at h = 0 and J0 = 0 for the quasi-isotropic spin glass

χνν
e = χe = lim

l→0

β

l

∑

a,b

qab = β(1 − q1) +

κ∑

i=1

ai(qi − qi+1). (2.119)

At zero temperature, the first term is singular. The singularity can be removed, however, by considering the
temperature expansion of q1. This is explained in detail in the next subsection.

Let me now turn to the susceptibility which can be measured in an actual experiment with finite observation
time. The argumentation which leads to the proper equations is rather involved and will not be repeated
here in detail44. It uses the definition of the so-called ’Edwards-Anderson’ order parameter qEA[EA75], the
physical content of which is, loosely speaking, the short timescale order of a disordered system. It turns out

42These correlations have an ultrametric topology. Much work has been invested to understand this issue and to develop
an intuitive understanding of the spin glass phase. To some extent this goal has been reached by Mezard et al. in [MPS84].
Compared to ordered magnetic systems, the physics are rather involved, however.

43Here it is assumed that time reversal also affects the external field h. This is rather untypical but can be justified by
regarding h as created by a system which is also subjected to the time-reversal.

44The complete derivation of the non-equilibrium susceptibility requires a dynamical interpretation of the order parameters
q(t). Details can be found in [BY86, p. 854]
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[BY86] that qEA is given in the RSB formalism45 by

qEA = lim
l→0

lim
a→b

qab = q1. (2.120)

The non-equilibrium susceptibility can be written with the help of the Edwards-Anderson order parameter
as

χne = β(1 − qEA) = β(1 − q1). (2.121)

It is also called the single valley susceptibility. This name results from the idea that the system is trapped in
a single valley of the coarse-grained free energy during the measurement. Thus, its physical meaning is the
susceptibility measured in the short observation time limit. This is the susceptibility which can be measured
in a real experiment.

It is important at this point to comment on the connection between a dynamical interpretation of spin
glasses and the RSB formalism. It will turn out later that the qi with the smallest index i have the largest
value. The Edwards Anderson order parameter qEA = q1 is thus equal to the largest order parameter qi

which is obtained at a given temperature. Since qi is a spin overlap between two different replicas, the largest
q corresponds to the overlap between those replicas which have the most similar configurations. By means of
ultrametricity, this is interpreted as the mean overlap of different instances in one single ergodic component.
Overlaps of instances in different components are not considered in q1. In q2, however, the definition of the
ergodic components is changed: each component now consists of several q1-components. Thus the mean
overlap becomes smaller. The characteristic time, one must wait until a real instance of a spin glass averages
over this larger ergodic component which corresponds to q2, is larger than for the q1 component.

This scheme iterated until one arrives at the smallest q, i.e. qκ+1, in which only one ergodic component is
defined and the average of the overlap is taken over the whole configuration space. The characteristic time
which corresponds to this situation is the largest time scale which is important in spin glasses. For zero
external field an J0 = 0, this full Gibbs average should yield a zero mean overlap, i.e. qκ+1 = 0. This is true,
however, only in the limit of κ → ∞. In this way, one can intuitively understand, why one needs an infinite
number of replica symmetry breaking steps in order to respect all important physics, i.e. all important time
scales.

In the limit of infinitely large systems (N → ∞), all those time scales diverge. They, however, can still
be ordered according to their size by considering 1/ai as a pseudo relaxation time of the ergodic component
which corresponds to qi.

2.5.3 Zero temperature and zero external field

In the remainder of this work, the point in parameter space where T = J0 = h = 0 and κ = ∞ will be
of special interest. It turns out that there are certain types of criticalities connected with approaching this
point. In order to be able to investigate this critical point in parameter space directly at zero temperature,
some further considerations, which simplify the analysis, are useful.

I start with showing how the non-equilibrium susceptibility at zero temperature χne(0) can be calculated
easily by exploiting the equality of internal and free energy at T = 0. The zero temperature limit of the
internal energy requires a zero temperature limit of β(1− q2

1). Near equation (2.88) it has been derived that
limT→0 q1 = 1. By assuming46 q1(T ) to be expandable in a Taylor series around T = 0 it is obvious that the
linear temperature coefficient is equal to χne(T = 0). Thus one can write

q1(T ) = 1 − χne(0)T + O(T 2) (2.122)

and finds in the zero temperature limit that limT→0 β(1 − q2
1) = 2χne(0). Further, the zero temperature

limit of the internal energy at κth order of RSB for J0 = h = 0 is obtained as

lim
T→0

u = −n

[

1

2

κ∑

i=1

ai(q
2
i − q2

i+1) + χne(0)

]

(2.123)

and because u = f at T = 0, the non-equilibrium susceptibility can be calculated with the full accuracy of
the free energy and the order parameters by

χne(0) = −1

2

κ∑

i=1

ai(q
2
i − q2

i+1) −
1

n
f. (2.124)

45For replica symmetry, qEA = q.
46Relaxing this assumption to non-integer temperature exponents would lead to inconsistencies.
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χne(0) could also be calculated by differentiating the free energy with respect to q1. From the field term,
only the term β

2 (1 − q1) = 1
2χne survives which, according to the extremization principle, must be equal to

the q1-derivative of the trace term. In the zero temperature limit, one then simply sets q1 = 1 in the trace
term derivative. This method, however, requires the storage of an additional quantity. Therefore, equation
(2.124) is used to calculate χne(0).

Finally, another method is derived for calculating the zero temperature entropy s(T = 0) at any order of
RSB without the need for extrapolations from finite temperature. The idea is to analytically remove the
singularity in (2.110) so that there is no need for finite T calculations. The approach is based on writing the
entropy as the negative total temperature derivative of f . As discussed above, the first total temperature
derivative of f is equal to the partial temperature derivative.

The partial derivative of f , can be performed without severe analytical complications. Here, I shortly
discuss the idea by means of the Ising spin glass. A more detailed analysis for the general n-component spin
glass is given in Appendix A.6.

It is most convenient to use the free energy expression in equation (2.87) with the recursively defined trace
term. The only part of the field term which survives the differentiation with respect to temperature is

∂

∂T

β

4
(1 − q1)

2 = −β2

4
(1 − q1)

2 = −χ2
ne

4
. (2.125)

This term will be seen to be the only term at all in the zero temperature limit of the entropy. I still have
to show, however, that the temperature derivative of the trace term vanishes for T → 0. This is done by
deriving modified recursion relations for the temperature derivatives of the recursion functions ∂T f sub

i (hi+1).
Obviously, the temperature derivative of the trace term can be written as

∂

∂T
T (h + J0M) =

1

aκ

∫ G

κ+1

∂T f sub
κ (hκ+1)

f sub
κ (hκ+1)

(2.126)

where ∂T f sub
κ must be calculated recursively from

∂

∂T
f sub

i (hi+1) =

∫ G

i

[
f sub

i−1(hi)
]ri−1−1

ri−1
∂

∂T
f sub

i−1(hi). (2.127)

Since f sub
i (hi+1) is always finite and positive for i > 0 (see Figure 2.2), a vanishing temperature derivative

anywhere in the recursion sequence leads to a vanishing temperature derivative of the whole trace term. It
turns out that the level at which the vanishing can be directly shown is the lowest one, i.e. directly at the
initial condition. With C1(x) = 2 cosh(x) one finds

∂

∂T
f sub
1 (h2) =

∫ G

1

∂T [C1(βh1)]
a1T

=

∫ G

1

a1 [2 cosh(βh1)]
a1T {log 2 cosh(βh1) − βh1 tanh(βh1)} . (2.128)

The term [2 cosh(βh1)]
a1T

has a finite zero temperature limit, namely ea1|h1| as shown in Section 2.4. It will
be argued now that for h1 6= 0 the term in curly brackets vanishes as T approaches zero.

Because of the h1 → −h1 symmetry, it is sufficient to consider positive h1. As T → 0, the argument of
both terms in the curly brackets become large so that 2 cosh(βh1) ≃ eβh1 and tanh(βh1) ≃ 1. Then the
first term becomes log eβh1 = βh1 and exactly cancels the second term47 at T = 0. For h1 = 0, instead, no
cancellation happens. The first term is log 2 while the second term vanishes. This happens only for h1 = 0,

however. The finite jump in the infinitely small region around h1 = 0 does not affect the integration
∫ G

1

at all. Thus, it is shown that ∂T f sub
1 (h2) ≡ 0 and as a result the temperature derivative of the trace term

vanishes for T → 0.
In the general case of quasi-isotropic n-component spin glasses, the zero temperature limit of the entropy

is plagued by an artificial logarithmic divergence ∼ log T . This divergence is well known for classical n-
component spin systems and can clearly be identified as an artefact of the classical vector spin model. I thus
define the proper zero temperature entropy of models with more than one component as the non-singular
part of the entropy (see Appendix A.6)

s(T = 0) = −n
χ2

ne

4
. (2.129)

47It could lead to problems that the terms which cancel get infinite at T = 0 because ∞ − ∞ is mathematically ill defined.
A more thorough investigation which respects this issue properly can be found in Appendix A.6.
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Note, however, that (2.129) is only for n = 1 consistent with the zero temperature extrapolation of s(T ) =
β(u−f). It is further remarkable that the divergence is not due to differences of f and u at zero temperature.
These would result in a T−1 divergence of the entropy.

Already at this point, one can see that s(0) is either zero or negative, since the non-equilibrium susceptibility
χne is a real, positive quantity. So, for the theory to be meaningful, χne can be expected to vanish in the
limit κ → ∞ and T → 0.



Chapter 3

Analysis of the RS saddle point

The formalism which has been derived in the preceding chapter becomes fairly complicated and numerically
expensive for high orders of RSB. The (2κ + 1)-dimensional space of order parameters ai and qi further
complicates the analysis of the results obtained by the numerical algorithms and one easily looses the
overview. Typically, one then restricts the detailed analysis of replica symmetry breaking to a special choice
of the external parameters of the model, e.g. the external field h or the mean of the random interaction J0.
Such a restricted analysis is sufficient in most cases because one is interested in the region where the effect
of breaking of the replica symmetry is largest.

In the present chapter the model which has been introduced in Chapter 2 will be discussed in full generality
regarding the external parameters, but in the replica symmetric approximation. With the help of the
overview, gained by this analysis, the most interesting regions in the parameter space will be identified
for the RSB analysis in the following chapters. A well-funded understanding of spin glasses in the RS
approximation is indispensable for the considerably more complex analysis of RSB.

3.1 The Ising spin glass

The replica symmetric treatment of the infinite range Ising spin glass represents the easiest possible method of
investigating spin glass behaviour. The self-consistency equations (2.41) and (2.42) can be solved numerically
by a relatively simple Mathematica R© program - numerical performance is not important here. The resulting
order parameters q and M in dependence of external parameters are shown in Figures 3.1 and 3.2.

The plot of q and M in the T − J0 plane with zero external field can be used to identify the various
magnetic phases which are present in the replica-symmetric SK-model. At low temperatures and small mean
interaction J0 the magnetization completely vanishes. This is the spin glass phase. When approaching higher
temperatures, the spin glass order parameter q vanishes at T = TC = 11. Above this critical temperature,
a paramagnetic phase is found in which both order parameters are zero for zero external field. On the
other hand, when increasing the mean interaction J0 one enters a ferromagnetic phase where both order
parameters are non-zero.

In a ferromagnetic Ising model (i.e. no disorder and positive J0), the spin glass order parameter is also
defined. It is, however, simply the square of the magnetization q = M2 in this case because, due to the
absence of inter-replica correlations which arise from the randomness, q = qFM can be written as

qFM =
〈
SaSb

〉
= 〈Sa〉

〈
Sb

〉
= M2. (3.1)

Thus, the criterion for spin glass behaviour is that the difference between q and M2 does not vanish. In
Figure 3.1(c) this difference is plotted in the J0 − T plane. It is clearly non-zero in a large region around
T = 0 and J0 = 0. However, q −M2 does not vanish instantly as the system enters the ferromagnetic phase
at low temperatures and increasing J0. Even in the ferromagnetic phase, one always observes a residual effect
of the randomness in the interaction. This effect, however, becomes less and less important for J0 À J = 1.
At zero temperature and zero mean interaction, spin glass behaviour is most important. Further, inside
the spin glass phase, varying J0 does not change the results considerably so that one can restrict oneself to
J0 = 0 in the RSB analysis.

1The temperature is defined in units of the variance of the coupling constants J .
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Fig. 3.1: Plots of the self-consistent
solutions within the replica-symmetric
SK-model for (a) the spin glass order
parameter q and (b) the magnetization
M at zero external field (h = 0) for
the replica symmetric Ising spin glass in
the T -J0-plane. (c) shows the difference
q−M2 for identifying the regions where
spin glass behaviour is important. The
color coding in each part is such that red
corresponds to 0 and blue corresponds
to 1.

A sharp spin glass to ferromagnet phase boundary can be obtained by defining the spin glass phase as the
region where q 6= 0 and M = 0 for vanishing external field. This definition is consistent with defining the
phase boundary by a diverging M -susceptibility at the onset of ferromagnetism (see Fig. 3.3). Obviously,
at zero temperature, the system is in the spin glass phase for J0 . 1.25. Thus, disorder in the coupling
constants Jij has a similar effect as a finite temperature in that it supresses ferromagnetic ordering of the
spins. Nevertheless, the way in which J enters the self-consistency equations is completely different from the
way the temperature enters them.

As usual, a finite external field h destroys the sharp phase boundaries and smears out the phase transition
FM↔SG. Interestingly, however, it also destroys the sharpness of the PM↔SG transition for J0 = 0 (see
Fig. 3.2). This is somewhat intriguing because h is not the field conjugate to the order parameter q. The
reason for this is again that a finite magnetization due to an external field leads to a finite q - even without
any spin glass features in the model. For large h the spin glass phase is destroyed because the Zeeman term
in (2.1) becomes the dominant contribution and aligns all spins into the same direction.

Again, at T = 0 the magnetization shows a qualitative similarity with a paramagnet at finite temperatures
due to the disorder preventing the system from a ferromagnetic alignment even without thermal fluctuations.
The spin glass order parameter q, on the other hand, is not compatible with paramagnetic behaviour. It
turns out, however, that the connection to paramagnetism must be discussed within full RSB in order to
understand the underlying physical principles. The replica symmetric approximation is simply not capable
of describing the difference between thermal fluctuations and disorder properly. While the many RSB order
parameters clearly distinguish time scales on which only thermal fluctuations are present and time scales on
which also the (effective) disorder fluctuates (and all time scales in between), the single RS order parameter
treats all those time scales on average. In full RSB, the largest time scale of the system is described as the
small x (or small a) limit of the order function. In this limit, full ergodicity is restored in some sense. For
h = 0, one finds q(a = x = 0) = 0 and with increasing h, a plateau of the order function at small arguments
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Fig. 3.2: Plots of the self-consistent order parameters q(T, h) (a) and M(T, h) (b) at zero mean interaction
J0 for the replica symmetric Ising spin glass in the T -h-plane. For negative h, the function q(T, h)
(M(T, h)) has even (odd) parity.

appears, the height of which varies as h2/3. Thus, on the largest time scale, also the spin glass order function
is qualitatively consistent with a paramagnetic picture.

Now, I turn to a short discussion of linear response to the external field. In the RS approximation, this
can be done in full generality, i.e. without restrictions to h = 0 and J0 = 0. For RSB, the general case
becomes very inconvenient so that certain restrictions will be made later. For a discussion of susceptibilities
it is useful to define two different linear response functions, namely the linear response of the magnetization
M to a small change in the external field2

χM
e =

dM

dh
=

1 − q

T − J0(1 − q)
− βχq

e(M − r)

T − J0(1 − q)
(3.2)

and the response of the spin glass order parameter q to an external field

χq
e =

d q

dh
=

2(1 + J0χ
M
e )(M − r)

T − β(1 − 4q + 3s)
. (3.3)

Additional quantities have been introduced3

r =

∫ G

z

tanh3(βHeff), s =

∫ G

z

tanh4(βHeff) (3.4)

for the analysis. Obviously, the formulas are a bit lengthy, even in the RS approximation, and it is obvious
that they will become rather cumbersome in the full RSB treatment where a susceptibility must be considered
for each of the 2κ + 2 order parameters. At zero external field h = 0 and zero mean interaction J0 = 0,
however, things can be simplified considerably by noting that M and r become zero because the integrands
are odd function of z (see eqns. (3.4) and (2.113)). Thus, χq

e = 0 and χM
e = β(1 − q) for h = J0 = 0.

The vanishing of χq
e(h = 0, J0 = 0) could have been anticipated because q must be an even function of h at

J0 = 0 and should be analytical at h = 0. This argument can be extended to the RSB discussion to obtain
the simple formula for the equilibrium susceptibility (2.119) at h = J0 = 0 without using the numerical
total derivative of a free energy. However, for infinite order RSB the spin glass order parameters are not
neccessarily analytical at h = 0, as will be seen in the next chapter. In any case, for h > 0 the equilibrium
susceptibility must be calculated by means of the free energy derivative for any order of RSB κ > 0.

The susceptibility χM
e is plotted in Figure 3.3. One can see how the singularity in χM

e at the SG↔FM
phase boundary is cut of by a finite external field, irrespective of the sign of h. For zero external field,
the position of the singularity defines the phase boundary as shown in the contour plot in Figure 3.3(b).
The SG↔FM phase transition is well understood and will not be examined further here. Also the SG↔PM
transition, occuring when increasing the temperature, has been analyzed thoroughly in the literature. More
details can be found in [BY86].

2Note that in the RS approximation, there is no difference between equilibrium and the nonequilibrium susceptibility.
3For the definition of the Gaussian convolution operators see Appendix C.1.



42 CHAPTER 3. ANALYSIS OF THE RS SADDLE POINT

1
0

0.5

1

0

1

2

-1

-0.5

0

0.5

0.8 0.9 1 1.1 1.2 1.3

0

0.2

0.4

0.6

0.8

1

(a) (b)

h

J0

J0

T

FM - phase

SG - phase

Fig. 3.3: The linear response coefficient χM
e of the magnetization to an external field. Part (a) shows how

the singularity in χM
e for at the FM↔SG phase boundary at h = 0 is cutoff by finite h. The

temperature in (a) is T = 0.5. In part (b), the susceptibility divergence for h = 0 is shown. The
red line marks the position at which χM

e = ∞, or, in other words, the phase boundary.

3.2 Isotropic n-component spin glass

At this point, I want to make only a few comments on the situation in a classical vector spin glass with more
than one component, as described in Chapter 2. These are meant as a starting point for an RSB analysis to
high orders by a future implementation of the kerC-formalism (see Section 2.4.4). I discuss the differences of
the n > 1 and Ising case by means of two examples, the order parameter q and the free energy as functions
of temperature. The equations which describe a general n-component vector spin glass have the same form
as the formulas of the SK-model. Especially in the RS approximation and for isotropic spin glasses, the
differences are marginal4. Similarly to the Ising case, the self-consistency equations can be solved easily with
Mathematica R©or any other computer algebra system.

0 0.2 0.4 0.6 0.8 1

-0.03

-0.02

-0.01

0

T

q
  
 (

T
) 

- 
q
  
 (

T
)

(n
)

(1
)

n = 2

n = 4

n = 20

Fig. 3.4: Spin-glass order parameter q(n)(T ) for
h = 0 and J0 = 0 of the isotropic n-component
spin glass. The difference q(n)(T )−q(1)(T ) is plot-
ted for n = 2, 4, ..., 20 (red to blue). The order pa-
rameter for an odd number of components shows
the same behaviour.

The qualitative behaviour of the replica symmetric spin glass order parameter q(T, h) does not change when
varying the number of spin components n. Only a small quantitative change can be observed. In Figure
3.4, the differences of q(n)(T ) for different number of components are shown. Obviously, the maximum
deviations from the Ising case n = 1 are on the order of 3%. For n → ∞, the spherical model is approached
where q(T ) = 1− T is linear [KTJ76]. Interestingy, though the spherical model is stable with respect to the

breaking of replica symmetry, even the non-singular part of the zero temperature entropy sns(T = 0) = −χ2
ne

4

4In anisotropic spin glasses, one needs more than one spin glass order parameter even in the RS approximation. This fact,
of course, changes things considerably.
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does not approach zero in the limit n → ∞ but rather approaches a finite negative value. In any case, this
non-singular part of the entropy is hidden due to the negative logarithmic singularity (see Fig. 3.5(b)), which
is a general issue in classical vector spin systems and not specific to spin glasses. A full quantum mechanical
treatment would be in order for resolving this problem [Kop94, SRO95].
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near T = 0 for n = 1, ..., 4 (red to blue). Part (b) shows
the entropy as calculated from the derivative of f(T ). The color coding of n is the same.

The most striking difference of multiple component spin glasses, compared to the Ising spin glass is observed
in the temperature dependence of the free energy near T = 0. While the Ising free energy approaches its zero
temperature limit linearly and thus has a finite zero-temperature entropy without a singular part, for n > 1,
there is a T log T -like term in the free energy which leads to the logarithmic divergence of the entropy5. In
Figure 3.5, the free energy and the corresponding entropy are shown near T = 0.

5For a general RSB derivation of this statement, which also includes RS (κ = 0), see Appendix A.6.
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Chapter 4

Results and discussion at finite order
of RSB

In spite of the fact that for the saddle point in equation (2.9) to be stable one needs an infinite number of
replica symmetry breaking steps (κ = ∞), the finite κ regime is extremely important for understanding the
properties of Parisi RSB at low temperatures: first of all, computations can be performed with arbitrarily
high accuracy at finite κ and thus the extracted physical quantities exceed the precision of the literature
values by several orders of magnitude and, moreover, a thorough understanding of the finite κ regime is
inevitable for the construction of a proper continuous theory in the κ → ∞ limit at zero temperature.

For moderate temperatures (about 0.1 . T < 1) there already exists a formalism, known as continuous
RSB, for treating Parisi RSB directly in the limit κ = ∞. In this formalism the recursion relation (2.79) or its
kerC pendant is replaced by partial differential equations [Par80, SD84] which depend on an infinite number
of order parameters, conveniently expressed as an order function q(a) or q(x). Continuous RSB at finite
temperatures has been thoroughly analyzed over the years [CR02, Pan06, Bis90, Nem87]. All investigations
relied on the assumption that the parameters mi (or ai, equivalently) become dense on their domains as
κ → ∞. For T > 0 this assumption indeed seems valid. At zero temperature, however, it fails as I will
show below and thus the traditional formulation of RSB in terms of a differential equation becomes invalid
there. At arbitrary small but non-zero temperatures, the traditional continuous RSB still works. It is only
numerically inconvenient because of various 1/T -divergencies arising in the differential equations and their
initial conditions.

The aim of the present chapter is to analyze the finite κ domain of the spin glass models defined above at
low temperatures and to identify and discuss the specific reasons for the failure of traditional continuous RSB.
This is done by a careful analysis of the numerical results at high RSB orders which have been computed from
the implementation described in the preceding chapter. Because the influence of disorder can be examined
best if the model has no (anti-)ferromagnetic component, the discussion is restricted to the case J0 = 0. It
turned out in the discussion under the assumption of replica symmetry that a non-dominant finite J0 does
not change the important physics, anyway.

4.1 Analysis of thermodynamic observables

An important aspect of RSB is the κ-dependence of observables in the large κ limit1 and the extrapolation
of those quantities to κ = ∞. The finite κ corrections typically decay according to a characteristic power
law so that, in order to obtain a confident extrapolation to infinite order of RSB, the numerical data of the
observable under consideration is fitted to a function of the form b∞ + c(κ+κ0)

−d. The sub-leading κ-terms
are either addressed by additional terms in the fit function or by multi-flow fits.

1The limit κ → ∞ is sometimes called the physical limit, because the observables calculated in ∞ RSB coincide with the
ones measured in numerical simulations.
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Fig. 4.1: Free energy at zero temperature and zero external field for an Ising spin glass. (a) The plot
shows all numerical data in the full range of RSB orders κ = 1, ..., 200, while the inset shows the
digit in which the free energy in finite RSB approximation deviates from its true value f(∞), i.e.
log10[f(∞) − f(κ)]. (b) Plot of f(κ) − f(∞) against κ−4 for κ = 12, ..., 200.

4.1.1 Free energy, internal energy and entropy

The free energy per spin f is the central quantity of statistical mechanics and also plays an important role
in spin glass theory. As discussed above, it must be extremized in the space of 2κ + 1 order parameters2

{qi, ai} which f depends on. In addition to that, the free energy depends on external parameters like the
temperature T or the external field h and on κ, of course. For clarity, those dependences are written out
explicitly only if required.

I start the discussion with an investigation of the simplest case, i.e. f at zero temperature and at zero
external field. The residual κ-dependence of f is shown in Figure 4.1 in the range κ = 1, ..., 200. Apparently,
the convergence of f with respect to κ is extremely fast so that at κ = 200, the finite κ approximation to
the free energy deviates from its physical limit f(∞) only in the eleventh digit (see the inset of Fig. 4.1).
The extrapolation to κ = ∞ is found by means of a fit to the function

f(κ) = f(∞) + A(κ + κ0)
−α (4.1)

where α is a positive exponent and κ0 is a shift which helps to enhance the convergence quality3. It turns
out that α = 4 and κ0 ≃ 1.27. The numerical error for the exponent α in the fit is of order 0.03. The integer
value 4, however, is supported by an analytical analysis near TC [Par79], so that α = 4 can be assumed,
confidently4. Due to the availability of calculations to up to 200 orders of RSB and the arbitrarily high
numerical precision of the results within a given RSB order, the physical free energy f(∞) at T = 0, or, in
other words, the ground state energy, can be given with an extraordinary high accuracy. It is

E0 = f(∞) = −0.763 166 726 566 547 (4.2)

where the numerical error which originates from the fit procedure has been estimated to be of order 10−15.
This extrapolation represents the by far most precise numerical value for the ground state energy of the
SK-model which can be found in the literature and is consistent5 with the confidence intervals given there
[Par80, CR02].

In Figure 4.2 the temperature dependence of f at various orders of RSB is presented. Obviously, the
convergence of f with respect to κ is faster for higher temperatures so that less orders of RSB are needed
at higher temperatures to obtain a confident extrapolation to the physical limit. Near TC , only two RSB
steps are even sufficient to obtain fairly good results. The κ convergence being faster at higher temperatures
is a general phenomenon which is not restricted to the free energy. It results from the correctness of the

2Since J0 = 0 in this chapter, the magnetization M looses some of its importance. It is not a priori needed for finding a
self-consistent free energy, but can be calculated from it with hindsight.

3A shift κ0 does not change the coefficient of the leading term. It is, however, proportional to sub-leading terms with
exponents α + 1, α + 2, .... Allowing for such a shift is a simple way to account for those sub-leading terms on average.

4It has been checked also in the finite temperature results that the leading term of the finite κ corrections to the free energy
is of order κ−4.

5There is a typo in the ground state energy given in [CR02]. The correct value found by the authors is −0.763 19± 0.000 03
(A. Crisanti, priv. commun.).
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RS assumptions above the AT line6 and from the similarities of the RS→RSB transition to a second order
phase transition in that the deviation of the RSB order function from the (constant) RS order function
vanishes smoothly when crossing the AT line. Nevertheless, at finite temperatures the leading term of the
κ-corrections is also of order κ−4 as for T = 0. Only the coefficient of this term becomes smaller for higher
temperatures.

From the T -dependence of f at small κ one can directly see why one needs so many RSB steps at low
temperatures in order to obtain physically sensible results: a fundamental thermodynamic relation states
that the negative slope of f as a function of temperature is equal to the entropy. At low temperatures,
however, the finite κ approximations to f show a positive slope in Figure 4.2 and this results in a negative
entropy. Of course, negative entropies are physically meaningless and thus finite κ approximations seem
unphysical below a specific temperature. The temperature at which s(T ) becomes negative for a given RSB
order κ can be used as a qualitative border T (κ) between validity and invalidity of a κRSB approximation. By
inversion of this function, an order of magnitude for the minimum required RSB order κmin at temperature
T can be obtained. The resulting function κmin(T ) is displayed in the inset of Figure 4.3. It diverges as
κmin(T ) ∼ T−νT where νT ≃ 3

5 near zero temperature. Here one encounters for the first time a kind of
criticality at T = 0 where κmin plays the role of a divergent correlation length on a pseudo-lattice of RSB
orders [OSS07, OS08].

The constant of proportionality A in (4.1) can be given with high accuracy at T = 0 due to the high
orders of RSB calculated numerically. The importance of this constant will become clear in Section 4.1.3
where the connection of finite order RSB with finite system sizes is examined. At zero temperature I find
A = −0.046752 ± 10−6. At finite T , however, the accuracy is lower due to a smaller range of available data
κ = 1, ..., 54. At temperatures above 0.01 the relative error of A(T ) is of order 1%. As the temperature
approaches T = 0, however, the error increases as discussed in Appendix B. This is another manifestation of
the zero temperature criticality of RSB, even though the error bars do not actually diverge at T = 07. It is
also clear that A(T ) should approach zero for increasing temperatures, since the κ-dependence must vanish
at and above T = TC = 1 where the RS (κ = 0) solution is the physical one.

In the context of criticality, it is remarkable that A(T ) cannot be expanded in a Taylor series at T = 0.

The leading term is rather proportional to T
3
5 (see Appendix B)

A(T ) ≃ −0.046752 + 0.131T
3
5 for T ¿ 1. (4.3)

As a result, there exists a term proportional to T
3
5 κ−4 in the free energy. However, it is seen below that the

thermodynamic quantities can be expanded in a Taylor series at T = 0. To be very explicit and in order to
stress the fundamental need for scaling concepts in the analysis of the free energy near zero temperature, I

6See e.g. Appendix A.1 or [AT78].
7Due to calculations of up to 200 orders of RSB at T = 0, the error bars are effectively smaller than for finite temperatures,

in spite of the fact that the error for a fixed maximum order is largest at T = 0.
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formulate this seeming contradiction8 as a paradox before I discuss its resolution, i.e. scaling near T = 0
and κ = ∞:

It has been checked that the free energy can be expanded in a Taylor series in T at T = 0
for all (numerically accessible) fixed κ. On the other hand, the finite κ corrections can

be written as f4(T )κ−4 + f5(T )κ−5 + ... and f4 is of the form a + bT
3
5 + .... Thus, at

finite κ the term κ−4T
3
5 leads to a diverging T derivative of f(T, κ) at T = 0, and this is

in contradiction with the Taylor expansibility of f near T = 0 - especially with the finite
entropy s(T = 0).

This contradiction must be resolved by the introduction of scaling near T = 0 and κ = ∞. There are
two scaling variables T and κ−1 which define the scaling regimes RT

1 = (T ≃ 0, κ−1 > 0) and RT
2 = (T >

0, κ−1 ≃ 0). The two regimes are separated by a crossover line T ∼ κ−νT . If one considers the leading κ
corrections to the free energy at finite temperatures, i.e. A(T > 0), this analysis is naturally restricted to
RT

2 : the fact that the leading κ correction is considered means to analyze the κ → ∞ behavior in RT
2 . One

indeed finds, that the convergence with respect to κ becomes worse for lower temperatures, because one
needs more and more RSB orders to stay away from the crossover line (see Fig. 4.4). This is for instance
reflected by the errors in the determination of A(T ) which grow as the temperature approaches T = 0.

Directly at κ = ∞, the finite κ corrections vanish and with it the non-analytical T -behavior so that the
Taylor expansibility of the physical free energy, i.e. limκ→∞ f(κ, T ), at T = 0 is restored even in RT

2 . If
one wishes to expand the free energy at finite κ in a Taylor series at T = 0, one must rather investigate the
regime RT

1 : for each finite κ, one hits the crossover line T ∼ κ−ν when lowering the temperature, coming

from RT
2 , such that the regime in which e.g. a term κ−4T

3
5 is present is left and the regime in which e.g.

a term κ−10/3T is present is entered. At the critical point T = 0 and κ = ∞ all terms originating from
different scaling regimes are zero. When considering corrections to the critical point, however, the proper
regime RT

1 or RT
2 must be chosen.

The full structure of scaling near T = 0 and κ = ∞ seems to be quite intricate and is still not completely
understood. The further discussion must be delayed to the end of this chapter, when all required analysis is
available. Thus I continue with the analysis of the thermodynamic quantities in RT

1 .
At zero temperature, the internal energy equals the free energy and so it has the same convergence

properties for κ → ∞. At finite temperatures, however, they are different. The temperature dependence of
the two energies can conveniently be compared in Figure 4.2. As expected, the internal energy has no linear
temperature term like the free energy, because from its definition u = f + Ts = f − T df

dT the linear T term

8This is only one example out of many contradictions of a similar sort. Another example would be the κ−10/3 · T term
arising from the negative zero-temperature entropy at finite κ compared to the presence of only integer powers of κ−1 in the
finite κ corrections of the free energy at T = 0 as well as at finite temperatures (see Appendix B).
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of f is exactly canceled out in u. As pointed out above, it has been checked numerically9 that f can be
expanded in a power series near zero temperature in the scaling regime R1

f(κ, T ) = E0(κ) − s(κ, 0)T −
∞∑

k=2

fk(κ)T k. (4.4)

From this series for f it follows for the internal energy u(κ, T ), the entropy s(κ, T ) and the heat capacity
C(κ, T )

u(κ, T ) = E0(κ) +

∞∑

k=2

(k − 1)fk(κ)T k (4.5)

s(κ, T ) = s(κ, 0) +

∞∑

k=2

kfk(κ)T k−1 (4.6)

C(κ, T ) =

∞∑

k=2

k(k − 1)fk(κ)T k−1. (4.7)

From the numerical data one finds that limκ→∞ f2(κ) = 0 and limκ→∞ f3(κ) = 0.24. As opposed to the
free energy, the internal energy u can be calculated as a function of the self-consistently calculated order
parameters10 qi and ai and thus has a different formal character in that no complicated trace term must be
evaluated (see Sec. 2.5). Nevertheless the two energies together with the entropy s are closely related by
thermodynamics, namely by f − u = Ts. At finite temperatures this relation has been used to calculate the
entropy from the internal and free energy. The temperature dependence of s is shown in Figure 4.3. At zero
temperature, where f = u, it has been shown in Section 2.5 that the entropy is given by11

s(κ, 0) = −χne(κ, 0)2

4
(4.8)

where χne(κ, T ) is the non-equilibrium susceptibility, which is investigated in more detail below. Already
at this point it can be concluded that χne will vanish in the limit κ → ∞ since this is the only chance for
the entropy to be non-negative. The black points in Figure 4.3(b) represent s(κ, 0) obtained by equation
(4.8). Obviously, in spite of the different methods for calculating the entropies, the T → 0 limit of s(κ, T ) is
consistent with s(κ, 0). This is only true for the Ising spin glass, however, where the entropy has no singular
part (see Appendix A.6).

In the κ → ∞ limit, the linear temperature terms of the entropy vanish and the leading term is quadratic
in T . This is consistent with predictions of Sommers and Dupont [SD84] and from the calculations I obtain a

9The finiteness of the zero temperature entropy is also strong evidence for the existence of this expansion.
10This is not quite true for T = 0. There one needs to know χne in order to compute u in addition to the order parameters.

However, χne as the linear temperature coefficient of q1 can also be seen as a rescaled order parameter.
11This relation holds only for the case of zero external field.
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coefficient for the T 2 term in the entropy of 0.72. Interestingly, the finite κ-corrections of the quadratic term
in the entropy seem to vanish according to a power law with the exponent − 5

3 while the zero temperature

entropy vanishes as κ−10/3 as seen from the analysis of χne below. Here again, a contradiction seems to
appear: the coefficient of the T -linear term of f(κ, T ) is proportional to κ−10/3 on one hand, but the leading
κ corrections are κ−4. This is again due to the reference of these statements to different scaling regimes,
namely RT

1 and RT
2 , respectively.
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Fig. 4.5: (a) The free energy at T = 0 in dependence of an external field h. The black line represents the
RS calculation (κ = 0) and the colored lines represent RSB results from κ = 1 (red) to κ = 10

(blue). (b) The magnetization Mκ(h) = −
df(κ,h)

dh
at T = 0. In the large plot, the difference of the

result of κ RSB Mκ(h) and the RS result M0(h) is shown. In the inset one can see the absolute
behavior. The different lines for different κ cannot be distinguished. (c) The h-dependence of
χe at T = 0 calculated from numerical f -derivatives. The black line shows the RS result while
the colored lines are RSB results for κ = 1, ..., 20. The black dots represent the results from the
analytical formula for χe.

Finally, the finite h regime at zero temperature has been investigated. The main results can be observed
in Figure 4.5. In addition to the RSB results of the free energy, the simple RS solution has also been plotted.
From the deviations one can again see that especially at T = 0 and h = 0 the breaking of replica symmetry
is very important for obtaining correct results, and that this statement is also true for finite h, though the
convergence with respect to κ again becomes faster with increasing h.

The magnetization Mκ(h) = −d fκ(h)
dh at κ RSB in Figure 4.5 does not depend in such an obvious way

on κ. Therefore, only the difference between the RS and the RSB magnetizations are plotted. The inset
shows the pure RS result, which is reminiscent of typical finite temperature paramagnetic behavior - even
at T = 0. This is due to the disorder which has a similar effect on the system as a finite temperature, i.e.
a certain randomizing tendency. There is, however, an important difference between those two situations:
the paramagnet changes its magnetization instantly when an external field is applied. The magnetization
curve M(h) in the spin glass, instead, must be understood as the magnetization response, measured after
waiting infinitely long, so that the system is in equilibrium again with the altered external field. This is why
the corresponding susceptibility χe, which is plotted in Figure 4.5(c), is called equilibrium susceptibility. In
reality, however, this equilibrium is never reached and the important response function is rather the non-
equilibrium susceptibility, which is discussed in the next section. The magnetization in Figure 4.5 must be
understood as the field-cooled magnetization.
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Next, the expansion of f(h) in powers of h is analyzed in the limit κ = ∞. From symmetry considerations
it is clear that f(h) should not have terms linear in h. The quadratic h term gives rise to the equilibrium
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susceptibility and thus should be equal to − 1
2h2. Within numerical accuracy, this term is found from the

data of the free energy calculations at finite κ. The next h order in the free energy is expected12 to have
an exponent 10

3 [CRT03]. Indeed, one finds a diverging fourth h-derivative from the numerical results at

T = 0 as shown in the inset of Figure 4.6. The coefficient of the h
10
3 term in the free energy can be roughly

estimated from the data and thus one can write

f(h) = f(0) − 1

2
h2 + 0.22h

10
3 + O(h4). (4.9)

Anticipating the results for q̇(a)|a=0 = 0.743368, the coefficient of the anomalous term h10/3 in the free energy

is in agreement with the analytical result in [PR08] 3
20

(
9

4q̇(0)

)1/3

= 0.216979, obtained by extremizing the

free energy functional with respect to the plateau height.
To further ensure internal consistence of the results, several thermodynamic relations between s, f and u,

like e.g. s = − df
dT = f−u

T have been checked. They are all satisfied within numerical accuracy.

4.1.2 Magnetic susceptibilities

Because of its experimental accessibility, the linear response to an external magnetic field is the most im-
portant observable of the spin glass phase. The sharp cusp in its temperature dependence at the freezing
temperature TC was the first experimental hint [CM72] for the existence of a new kind of phase transition.
This cusp is theoretically well established meanwhile - it can be observed even in the simplest treatment of
the SK-model [SK75]. Therefore I will not further go into this ’high temperature’ regime T . TC but rather
discuss linear response at low temperatures.

As explained in Chapter 2, the non-equilibrium (or single-valley) susceptibility χne and the equilibrium
susceptibility χe differ for κ > 0 since replica symmetry breaking more and more respects the broad spectrum
of characteristic time scales as κ is increased. At κ = ∞, the full spectrum is accounted for. Typically,
the effect of finite order of RSB can be seen best at zero temperature and thus I start the discussion of
susceptibilities with an analysis of the T = 0 results.
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Fig. 4.7: The κ-dependence of the zero field susceptibilities χne and χe. (a) The κ → ∞ approach of
χne at zero temperature is shown. The colored lines in the inset show the situation at higher
temperatures, where the top red line represents T = 0.3 and the black points are the T = 0
values. (b) χe in dependence of κ is represented by the black points at zero temperature. The
finite temperature behavior is again symbolized by the colored lines with red corresponding to
T = 0.3.

In the replica symmetric theory the susceptibilities χne and χe are identical because of the absence of the
hierarchical ordering which characterizes the RSB solution. By allowing for a hierarchical structure of the
phase space, one is in a position to distinguish between a susceptibility which is obtained by a measurement
with an observation time, short enough to ensure the system to be restricted to one valley of the coarse

12It is well known that at finite temperatures there exists an expansion of the free energy of the form f(h) ≃ f0 + f1p3 +

f2p5 + f3p6 + O(p7) with p = h
2
3 . Since the h-behavior is represented mainly by the small a regime, where temperature does

not lead to singular effects, it is not expected that h powers will appear in the free energy expansion at T = 0 which have not
been present at finite temperatures.



52 CHAPTER 4. RESULTS AND DISCUSSION AT FINITE ORDER OF RSB

grained free energy landscape and a susceptibility obtained during an extremely long measurement in which
the system moves through the whole phase space. These are the reasons for calling the latter susceptibility
equilibrium susceptibility while the former is named the non-equilibrium or single-valley susceptibility. At
T = 0 and κ = 0 (RS) one finds χne(0, 0) = χe(0, 0) = 2

π . The results for κ > 0 are shown in Figure 4.7. As
remarked above, χne(κ, 0) must vanish for κ → ∞ in order to obtain a non-negative entropy and it indeed
does.

In order to investigate the approach to κ = ∞, the non-equilibrium susceptibility is fitted to the function

χne(κ, 0) = χne(∞, 0) + B(κ − κ0)
−γ (4.10)

where χne(∞, 0) is indeed found to be zero within numerical error bars of order 10−9 and the exponent
is found to be γ = 1.666664 ± 5 · 10−6. This for an exponent unusual high accuracy is due to the exact
knowledge of the ∞RSB extrapolation, i.e. limκ→∞ χne = 0 and to the high accuracy of the numerical
calculations at finite RSB. Thus I can conclude γ = 5/3 and so the zero temperature entropy also vanishes
as s(κ, 0) ∝ −κ−10/3.

For finite temperatures, a linear growth of χne(T ) is found. The interpretation of the vanishing of χne at
zero temperature can be given in terms of ergodicity: consider a spin glass system in one ergodic component
at a given temperature T1. The restriction of the system to one component is due to free energy barriers
which surround the phase space volume corresponding to this component. If the temperature is slightly
increased T1 → T2, but still below the spin glass freezing temperature T2 < TC , the system is able to
transcend some of the free energy barriers. It is, however, not completely free to traverse the whole phase
space, but is restricted to a phase space volume which is larger than it was at the lower temperature T1.
This volume is again surrounded by free energy walls which are higher than the walls of the former ergodic
component of T1. In other words, at a higher temperature T2, subsets of the ergodic components of T1 merge
in order to form the ergodic components of T2. The non-equilibrium susceptibility describes the behavior
of a system which is trapped in one single ergodic component. The size of this component is proportional
to the possible change of system properties (magnetization in the present case) by external forces13. Since
at zero temperature, the system is restricted to one point in the phase, i.e. one of the infinitely many
degenerate ground states, it cannot respond to an infinitesimal external field and thus χne(0) must be zero.
For describing such a situation, however, infinitely many RSB steps are needed. At finitely many RSB
steps the full hierarchy of the states [MPS84] is not properly respected and thus the size of a single ergodic
component at zero temperature is overestimated which also leads to an overestimation of the response of the
system to an external force. This is the reason for the finiteness of χne(0) at κ < ∞.

The equilibrium susceptibility χe is expected to approach unity in the limit κ → ∞, independently of
temperature. From Figure 4.7 this is seen to be true. At finite temperatures, however, the convergence with
κ is faster. Again, this is a consequence of the zero temperature criticality of RSB. The exponent of the power
law decaying finite κ corrections of χe is different from γ. This is due to the existence of two inequivalent
critical points at zero temperature. One is at a = ∞ and corresponds to short time behavior. This critical
point affects short time quantities like the non-equilibrium susceptibility χne or the entropy. The second
critical point at a = 0 corresponds to long time behavior14 and affects the equilibrium susceptibility, which
is a long time quantity.

It is found that the numerical data at T = 0 is well fitted by the power law

χe(κ, 0) = 1 − 0.238

(κ + κ0)2
(4.11)

with κ0 ≃ 1.27 as in the fit of the free energy. At finite temperatures one also finds a power law in κ with
leading exponent −2 but with a different coefficient. It can be concluded from the same arguments as in the
discussion of A(T ) that the coefficient must approach zero for T → TC = 1.

4.1.3 Connection to systems of finite size

In Ref. [ABM07], Aspelmeier et al. found a relation between finite step replica symmetry breaking and finite
size systems. Their argumentation, which works near TC can be extended down to T = 0 by a combination
of the results of this work with numerical simulations of the SK-model with finite numbers of spins N . Such

13A susceptibility always describes the linear response to a small external field. Thus, the escape of the system from its zero
field ergodic component, which would result in a kind of hysteresis, is not described by χne.

14Long time has to be understood as quasi-infinitely long, i.e. far longer than the age of the universe.
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an investigation can be found in [Boe05] where a finite size correction of the ground state energy ∼ N2/3 is
found by extremal optimization.

In this work, it is found that the finite κ corrections to the ground state energy scale as κ−4 and the
corrections are negative, i.e. Eκ − E∞ = −0.0468κ−4. The finite size corrections are positive in sign and
so both corrections compensate. To be specific, in [Boe05] it has been found that EN − E∞ = 0.70N−2/3.
Both corrections cancel each other if the system size scales with RSB order as

κ ≃ 0.51N
1
6 or N ≃ 58κ6. (4.12)

Remarkably, the RSB order grows extremely slow with system size. With 1RSB a system with 58 spins is
sufficiently described while with 2RSB systems with over 3000 spins are feasible. With extremal optimization,
a fairly advanced algorithm, system sizes of up to 1000 spins are possible. From this point of view, mean-field
theory at 200RSB is far beyond the accuracy of numerical simulations.

4.2 The order function

In the description of systems which undergo a critical phase transition of some sort, the concept of order
parameters is a central topic [KGH67]. In spin glass theory, however, each finite number of order parameters
is insufficient for a satisfactory incorporation of the important physics [Par80, Par79, Par83]. The description
only gets formally correct, i.e. the saddle point in equation (2.9) is stable, in the limit of infinitely many
order parameters, i.e. in the κ → ∞ limit [TAK80]. This rather mathematical fact reflects the existence of a
broad spectrum of different time scales instead of only two regimes as, for instance, in a typical ferromagnet.
The importance of all those time scales in spin glasses is due to a complicated type of broken ergodicity
[Pal82] which complicates the analysis of the spin glass phase in that it is not possible to identify one ergodic
component which the analysis can be restricted to. Instead, all components must be respected and this forces
the theorist to investigate the infinite hierarchical ordering between them which is expressed as infinitely
many steps of RSB.

Nevertheless, a finite number of order parameters can be a very good approximation in some situations.
In κ step RSB, the order parameters are the 2κ + 1 variables qi, i = 1, ..., κ + 1 and ai, i = 1, ..., κ. It has
been demonstrated in the preceding Section that, for instance, the free energy in a 200 RSB approximation
with (2 · 200 + 1) order parameters deviates only in the eleventh digit from its true ∞RSB value - and this
is even the worst case scenario for the convergence at T = 0.

The treatment of high orders of RSB is numerically very intricate and the computational cost grows roughly
as κ3/2 as one further increases the number of order parameters. The question is now: How is it possible to
efficiently handle an infinite number of order parameters? The answer can be found by devising a graphical
representation of the set of order parameters at κRSB15. As explained in Section 2.4, the domain of the
parameters ai is given by [aκ+1, a0] where additional numbers aκ+1 = 0 and a0 = β have been introduced16,
so that a function qκ(a) can be defined on this domain which consists of κ + 1 plateaus. The height of the
plateaus is given by the parameters qi and the boundaries of the ith plateau are given by the T -rescaled
block sizes ai and ai−1. In Figure 4.8, such a step-like order function for κ = 6 and T = 0 is shown.

As the order of RSB is increased, the number of plateaus also increases while the widths of most17 plateaus
approach zero. The finite κ step function qκ(a) passes over to a smooth function q∞(a) = q(a) in the
limit κ → ∞ and the theory can be expressed in terms of a partial differential equation which depends
parametrically on q(a). This differential equation results from the κ → ∞ limit of the recursion relations for
f sub or for kerC (see Sections 2.3 and 2.4.3).

At finite κ, the step approximation of the order function can be continued by polynomial interpolation
of the center points 1

2 (ai + ai−1) of the plateaus with height qi. The so obtained continuous functions for
different RSB orders are nearly indistinguishable. There are small systematic deviations of those continuous
finite κ order functions from q∞(a), the implications of which are not clear by now.

15This idea is originally due to G. Parisi [Par80]. He applied it to the finite temperature formalism of RSB, where the block
sizes mi and not ai are the fundamental variables. At low temperatures, however, the formulation in terms of mi gets invalid
and therefore only the ai-formalism is discussed here.

16a0 and aκ+1 must be considered as fixed boundary values for the ai, i = 1, ..., κ parameters. Therefore the free energy
must not be maximized w.r.t. a0 and aκ+1.

17At finite temperatures, only the width of the plateau at x > x̄1 remains finite in the κ → ∞ limit while all other plateau
widths vanish. At T = 0, however, this is not true anymore. There is a subtle discreteness at a = ∞. The implications of those
finite plateau widths at zero temperature will be discussed in Section 4.3. If one focusses on the a < ∞ domain one can still
consider q(a) as a smooth order function even at T = 0.
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At finite temperatures, the abscissa of the order function can also be formulated in terms of the variables
x = Ta, as shown in the inset of Figure 4.8. Obviously there are two different regimes: a plateau regime
where q(x) = q1 = qEA for x > x̄1 and a nontrivial regime for x < x̄1. x̄1 or ā1 = βx̄1 is the so-called
break point which only appears in the finite temperature theory. At T = 0, the plateau regime is somewhat
more complicated and will be discussed in Section 4.3. For a finite external field h a second break point ā0

appears in the small a regime. It is important to note that the plateaus are not due to the equality of several
qi which correspond to this regime, but rather to the total absence of block size parameters ai or mi in the
plateau regions.

The various features of the order function have been thoroughly investigated and the results will be
discussed subsequently, starting with the special case of zero temperature and zero external field.

4.2.1 q(a) at zero temperature and zero field

The zero-temperature order function is defined on the semi-infinite interval [0,∞]18. At finite RSB, the
parameters ai nevertheless remain finite. In Figure 4.12(a) the κ-dependence of all ai of a T = 0 and h = 0
calculation is shown on a log-log scale. Obviously, the largest parameter a1 ∼ κ5/3 diverges according to a
power law as κ → ∞. Furthermore, it seems that there are three different a regimes: one regime where the
block size parameters become dense with increasing κ and two regimes where a finite spacing on a loga scale
survives even at κ = ∞. Those discrete regimes correspond to the two inequivalent critical points a = 0
and a = ∞. They appear only at exactly h = 0 and T = 0. The properties of the zero-temperature order
function q(a) near these points require a careful analysis.

In the present section, only finite κ approximations of the order function are investigated where qκ(a) is a
step function. The continuous function q∞(a) can be obtained by polynomial interpolation between the set
of κ points which have been obtained at finite order of RSB. Doing so, however, it is not clear whether the
resulting function has the same features as the function at infinite order of RSB. It could equally well be
that a given feature is a finite RSB effect. If interpolating functions corresponding to different RSB orders
are compared one finds, for instance, fixed points at which the functions for different κ coincide and regions
where they explicitly deviate from each other.

A better approach to find the proper continuous order function at infinite order of RSB is to plot two
different sets of points {qi, ai} and {qi+1, ai} which serve as upper and lower boundaries for the true ∞ RSB
order function. Such a plot is shown in Figure 4.9. This visualization obviously leads to a confidence channel
in which the ∞ RSB order function is definitely contained19. The width of this channel is smaller than 10−2,

18In spite of the mathematical ill-definedness, the inclusion of ∞ in the interval is not a typo here. From a certain point of
view, the ’point’ ∞ is really part of the domain of q(a). This is discussed more thoroughly in section 4.3

19Strictly speaking this requires the assumption that beyond 200 RSB, nothing happens which leads to a completely different
behavior of the order function for even larger RSB orders. Though this cannot be proven explicitly, the analysis of all data
which has been obtained by the numerical calculations does not suggest the existence of an important scale on the κ axis which
is beyond 200 RSB. Also the ∞RSB analysis leads to the same results.
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the worst accuracy is gained near the maximum curvature of q(a) (see Fig. 4.9). The effective accuracy
of the order function, however, is much higher than suggested by the width of the confidence channel. If,
for instance, the set of points which is used in the interpolation is obtained by a ’vertical average’ (ai, q̃i)
with q̃i = 1

2 (qi+1 + qi) instead of a horizontal average (ãi, qi) with ãi = 1
2 (ai + ai+1), the two interpolating

functions20 deviate from each other only in the 6th digit.
The above discussion always regarded the point sets obtained at a high RSB order - typically 200 RSB

at T = 0 - as a sufficiently accurate interpolation set for the order function q∞(a). This approximation
is obviously not bad, but highly accurate results for q∞(a) at a discrete set of points can be obtained by
extrapolating the lines which appear in the inset of Figure 4.9. For κ → ∞ these point sets approach several
accumulation points in the (a, q(a)) plane which can be found by means of intersections of Padé fits to those
finite κ point sets. The true ∞ RSB order function thus consists of an infinite number of accumulation
points.

I now turn to a discussion of the properties of q(a) near the boundary points a = 0 and a = ∞, starting
with the simpler case a = 0. In spite of the log-discreteness at a = 0 which is observed in Figure 4.12,
the analysis of the small a regime of q(a) is rather simple. An equivalent discreteness in the parameters
qi at small a leads, in contrast to the situtation at large a, to an independence of the derivatives of q(a)
from the indices of the parameters. For instance, it makes no difference whether one uses the discrete
expression limκ→∞ 2 qκ+1

aκ
or limκ→∞ 2 qκ

aκ+aκ−1
for calculating q′(0)21. In general, the finite κ corrections to

the derivatives q(n)(0) decay as polynomials of κ−1 for κ → ∞. From the numerical data within 200 RSB
one can obtain the first three derivatives with considerable accuracy

q′(0) = 0.7433680 ± 10−7, q′′(0) = 0, q′′′(0) = 4.658 ± 2 · 10−3. (4.13)

Similar results - even though they are less accurate - can be found from extrapolations of the numerical
derivatives of the order function interpolation which are plotted as the red lines in Figure 4.11. Obviously,
the order function is well behaved near small a and can be expanded in a Taylor series q(a) ≃ c1a+ c2a

3 + ...
without a quadratic a term. The vanishing of even terms in this expansion cannot be viewed as a general
statement, though, as it has been pointed out by Crisanti and Rizzo who found nonvanishing derivatives
q(2n)(0) for n ≥ 2 in a finite temperature analysis [CR02]. Those non-vanishing even powers of q(a) slightly
complicate the interpretation of q(a) in terms of the rescaled22 overlap probability distribution function
(OPDF) P (q) = da

dq . For zero external field, this function should be an even function of q because of

20The interpolating function is typically constructed by 3rd order polynomials.
21This statement is, for obvious reasons, restricted to the h = 0 case but is valid at finite temperatures.
22The original definition of the OPDF is given in terms of the order function in x-formulation P (q) = dx

dq
.
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symmetry reasons and thus it would be desirable to only have odd powers of a in q(a). The existence of
even powers forces one to define P (−|q|) := P (q) for negative arguments.

Apart from the subtleties in context of the definition of the OPDF, the behavior of q(a) near a = 0 is
quite regular. Instead, the analysis of the large a behavior of q(a) is considerably more complicated. The
parameters ai do not become dense on an a-scale and thus one must deal with essentially discrete derivatives.
In order to clearly identify the fundamental differences between the small a and the large a behavior, it is
useful to perform the analysis in terms of a function Q(z) = q(1/z). The discreteness of the ai parameters is
thus transformed to small z where it vanishes on a z scale in the limit κ → ∞23 in a similar manner as the
small a discreteness which can be observed on a log a scale vanishes on an a-scale. Nevertheless, the behavior
of Q(z) near z = 0 depends, as opposed to q(a) near a = 0, on the indices of the finite RSB parameters
from which the derivatives are calculated. Only for the first derivative it can be concluded independently
of the parameter indices that Q′(0) = 0 within a numerical uncertainty of the order of 10−9. Remarkably,
however, the finite κ corrections decay with powers of κ−5/3 in contrast to the finite κ corrections in the
small a regime which vanish as integer powers of κ−1.
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At this point, let me discuss only the second derivative of Q(z). The derivatives of Q(z) are calculated as

follows: the values of the function Q(z) near z = 0 are given at finite κ on a discrete set of points z
(0)
i

z
(0)
i =

(
ai−1 + ai

2

)−1

⇒ Q
(0)
i = Q(z

(0)
i ) = qi. (4.14)

The first derivative of Q(z) is also given at a discrete set of different points z
(1)
i

z
(1)
i =

z
(0)
i + z

(0)
i+1

2
⇒ Q

(1)
i = Q′(z(1)

i ) =
qi+1 − qi

z
(0)
i+1 − z

(0)
i

(4.15)

Iterating this procedure, i.e. calculating the (n+1)th derivative from a difference quotient of nth derivatives

leads to formulas for arbitrary high derivatives. Since for κ → ∞ all z
(n)
i → 0 for fixed n and i, limκ→∞ Q

(n)
i =

Q(n)(0) would be independent of the parameter index i if the sample points Q
(0)
i were taken from an arbitrary

regular function Q(z), even if z
(0)
i are discrete on a log-scale as described above. This behavior, however, is

not found from the numerical data. In Figure 4.10, the second derivative is plotted. One clearly observes
a dependence of limκ→∞ Q′′

i on i and thus it can be concluded that there is a certain kind of criticality of

23On a log-scale the existence of the discreteness does not depend on whether one considers variables a or z = 1/a. On a
linear scale, however, discreteness arises only at large a or z, respectively.
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the order function near a = ∞, not yet having said, what criticality exactly means. In the inset of Figure
4.10 the discretized second derivative of the function Q(z) is shown for various RSB orders. Obviously, the
calculation of the second derivative from the finite RSB data is plagued by a non-commutativity of limits

lim
κ→∞

lim
z→0

Q′′(z) 6= lim
z→0

lim
κ→∞

Q′′(z). (4.16)

If the κ → ∞ limit is taken before the z → 0 limit, the second derivative converges to the value which is
found from a continuous treatment [Pan06]. These results suggest that there is important information at
the point a = ∞ which is not completely resolved at T = 0 by the a-formulation in a similar manner as the
structure at x = 0 cannot be resolved by the x-formulation24. Obviously, the point a = ∞ is fundamentally
different from the point a = 0 and requires further investigations. Especially for the proper continuous zero
temperature theory which is developed in Chapter 5, one must understand the order function at the point
a = ∞. Because of its importance, a separate Section 4.3 is devoted to this issue.

In [OS05], an analytical model function for q(a) has been proposed which fitted well the available 5 RSB

results at zero temperature. The functional dependence implied an error function
√

π
2

a
ξ erf ξ

a and a single fit

parameter ξ ≃ 1.13. It turned out later [OSS07] that this simple function also fits the results of higher RSB
calculations well, but at small a, where the first derivative of the erf-model is nearly constant (see the blue
line in Fig. 4.11), a ’wiggle’ has been found in the numerical data which could not be represented by the
erf-model. This finding called for a more general fit function. It turned out that a generalization of the
error function to a confluent hypergeometric function 1F1(α, γ, z) yields the desired degree of freedom. The
4-parameter fit-function

q(a) =
a√

a2 + w
1F1

(

α, γ,− ξ2

a2 + w

)

(4.17)

fits well the function q(a) and its first derivative as shown in Figure 4.11. The parameters have been fixed by
requiring q′(0) = 0.743368 and the maximum of the first derivative to be at at a = 0.3445. The remaining
two parameters are fixed by a least squares fit of q(a) to the numerical data. The simpler erf-model is
recovered from (4.17) by setting α = 1

2 and γ = 3
2 .
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Fig. 4.11: Derivatives of the zero temperature order function. The red line represents the exact numerical
results from a 200 RSB computation of the order function. The blue line is the erf-model
with ξ = 1.13. This model cannot account properly for the small a features. The green line
represents the improved order function (4.17) with parameters ξ = 1.186, w = 0.0153, α = 0.530
and γ = 1.73.

Obviously, the improved model function has considerable deviations in the second derivative. Also the
behavior at large a, i.e. the coefficient of the a−2 term in the 1

a expansion of q(a) near a = ∞, cannot be
fitted with arbitrary precision to the numerical data. This can be cured, however, by introducing further fit
parameters by allowing w to be a function of a. For instance a Padé series instead of a constant w can fit the
numerical data arbitrary well, depending on the number of parameters in the series. Also the nonvanishing
derivatives q(2n)(0) for n ≥ 2 can only be accounted for by allowing w to be a-dependent.

24The structure at a = ∞ is, however, much less important than the structure at x = 0 as will be seen later.
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Fig. 4.12: log-log plot of the parameters ai at T = 0 and h = 0 (a), T = 0.03 and h = 0 (b) and T = 0
and h = 0.1 (c). All values ai of an RSB order κ given by the abscissa are plotted as points.
Ordinate as well as abscissa are log scaled. The RSB orders range from 1 to 200 in the T = 0
case and from 1 to 50 for T = 0.03 and h = 0.1.

4.2.2 q(a) at finite temperatures

At finite temperatures, the domain of the rescaled block-size parameters ai is restricted to the finite interval
[0, β]. Actually, they even occupy only a sub-interval [0, ā1], where ā1 = βx̄1 < β is the so-called break point
in a-formulation or x-formulation, respectively (see inset of Fig. 4.8). In contrast to the zero temperature
case, the block size parameters continuously occupy this reduced interval in the limit κ → ∞. As a result, the
break point equals the largest parameter, i.e. a1 or m1, in the limit κ → ∞ and thus a further extrapolation
of m1 to infinite order of RSB must be performed. It is convenient to discuss the break point in x-formulation,
because the temperature dependence of x̄1 is rather weak for low temperatures. Everything said here about
x̄1 can trivially be translated to ā1 = βx̄1, of course.
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Fig. 4.13: Break point extrapolation at finite temperatures. The colored lines represent the Parisi block
size parameter m1 in the temperature range T = 0.004, ..., 0.03 for various RSB orders 35 (red)
up to 53 (blue). The black lines show the extrapolations of m1 to κ = ∞ for different polynomial
orders. The gray area represents the confidence interval of the best estimate 0.548 ± 0.005 for
the break point at zero temperature in the literature [CR02].

In Figure 4.13, the parameters m1 = Ta1 are shown for various orders of RSB in the temperature range T =
0.004, ..., 0.03. For each temperature this parameter must be extrapolated to κ = ∞. This turns out to be not
as simple as for the other quantities which have been discussed above, however. The difficulties in the κ → ∞
extrapolation of m1 are due to the importance of sub-leading terms on one hand and, on the other hand, due
to the ’distance’ between m1(κ) and m1(∞) which must be surmounted in the extrapolation. Obviously, this
distance even grows with lowering the temperature. Again, the zero-temperature criticality strikes in the
present analysis. Compared to the determination of A(T ) at low temperatures (see Appendix B), however,
the effect of criticality is more severe here: while the error bars of A(T ) became larger for lower temperatures
but still remained finite at T = 0, the error bars of the determination of x̄1(T ) = limκ→∞ m1(κ, T ) diverge
for T → 0. The reason for this is that x̄1(T ) is a pure finite temperature quantity in that the break point is



4.2. THE ORDER FUNCTION 59

ill-defined at zero temperature. x̄1(T = 0) can only be obtained by extrapolation from finite T calculations to
T = 025. In contrast, A(T = 0) has a definite meaning and can be obtained directly from the 200 RSB T = 0
data. Therefore, it is inevitable for just obtaining an extrapolation limκ→∞ m1(κ, T ) at a given temperature
T to investigate scaling regime RT

2 .

Now that the requirement of restricting the analysis to RT
2 it is established, it is clear that the κ exponents

of the finite κ corrections of the block size parameters is not the irregular 5
3 which has been found for

ai(κ, T = 0) before. It rather turned out that the best results can be obtained by fitting polynomials in κ−1

of various orders n

m1(κ) = m1(∞) −
n∑

i=1

biκ
−i (4.18)

to the numerical data. In Figure 4.13 those extrapolations with various polynomial orders are shown in-
dependence of the temperature. Obviously, there is a strong dependence of the result on the order n of
extrapolation. Compared to the best estimate of the break point in the literature [CR02], however, the
results of extrapolations of order n ≥ 3 already show a much better convergence26.

The convergence and therewith the accuracy of the estimate of x̄1 from the numerical data can be improved
further by utilizing multi-flow fits, the idea of which is as follows: Multiple fits of the numerical data to (4.18)
are performed with various sub-ranges [κmin, κmax] of the available data, but with fixed polynomial order n
(see Fig. 4.14(a) and (b)). The results of those first extrapolations in dependence of κmax show a flow to a
finite limit for κmax → ∞, but the convergence is considerably faster than the convergence of the original data.
This flow is then again extrapolated from the available range to κmax → ∞ (see Fig. 4.14(c)). This second

extrapolation is performed by fitting to another polynomial m
(2)
1 (κ) = m

(2)
1 (∞) − ∑n2

i=n b(2)κ−i. A further
flow which can be extrapolated to infinity can be produced from the results of the second extrapolation by
again considering sub-ranges of the available data. This procedure may be iterated until numerical errors
become serious. However, a large range of original data is required for many iterations.

In Figure 4.14(c), the result of a two flow fit, i.e. m
(2)
1 (∞), is shown for T = 0.0015. The order n2 = 10

of the second fit is kept fixed while the order of the first fit is varied from n = 4, ..., 9. Obviously, the
deviation is relatively small and the break point at T = 0.0015 can be given with high accuracy x̄1(0.0015) =
0.54683 ± 0.00001.
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Fig. 4.14: Multi-flow fit of the break point. (a,b) The results of the first extrapolation with different κmax

(blue lines represent small κmax and red lines represent large κmax) in the temperature range
T = 0, ..., 0.03 for polynomial orders n = 5, 7. (c) Fits of the second flow at T = 0.0015 for
polynomial orders of the first fit n = 4, ..., 9 and n2 = 10. The black dots are the results from
the first fit. The inset shows a zoom to the large κmax region.

25The determination of x̄1 in [Pan06] implements this extrapolation by means of a rescaling which allows to perform calcu-
lations at T = 0 in a certain limit.

26This statement is true only if one assume the variation of x̄1(T ) for 0 < T < 0.03 to be much smaller than the confidence
interval (±0.005) in the literature. This will be seen to be true subsequently
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The main problem of those multi-flow fits is that the confidence interval of the result cannot be estimated
by standard methods. The best, one can do is to gain an impression of the accuracy of the results by varying
the orders of the extrapolation. From the inset in Figure 4.14 one can estimate the order of magnitude of
the error of the fit procedure. The error seems to be smaller than 10−5.

In Figure 4.15 the results of the break point extrapolations are plotted together with the estimated errors.
One can clearly see the precision loss for low T . From the Figure, the impression can be gained that the
value of the break point decreases at low temperatures. I rather believe that this is an artefact of the fit
procedure and implemented this belief by means of large error bars.
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Fig. 4.15: Break points obtained by two-flow fits with estimated errors in the temperature range T =
0.005, ..., 0.03. The break point at zero temperature is estimated from the flow of the finite
temperature break points to T = 0. The gray area shall serve as a ’guide to the eye’ for the zero
temperature break point estimation.

From the dependence of the break point at temperatures 0.015 ≤ T ≤ 0.03 in Figure 4.15, together with
the assumption that the break point approaches its zero temperature limit in a well-behaved way, one can
obtain a rough estimate of xbp(T = 0) = 0.54686 ± 0.00005. Here, only the results of the break point
extrapolations in the range 0.015 ≤ T ≤ 0.03 have been respected. Nevertheless, the accuracy of this ’rough’
estimate exceeds the best accuracy given in the literature [CR02] by two orders of magnitude.

4.2.3 q(a) at finite external fields

At finite external fields, the lowest a-parameter aκ does not flow to zero any longer for large κ. Instead,
it approaches a finite limit depending on the strength of the field h. The same is true for the lowest
q-parameter qκ+1. Thus, the order function has a plateau at small arguments which is due to finite h in
addition to the plateau at large arguments which has been due to finite temperatures. The h-induced plateau
is also characterized by a break point ā0(h, T ) = βx̄0(h, T ) below which the order function is constant. In
the following, I mainly concentrate on the finite h order function at exactly T = 0, since it is, to my best
knowledge, investigated for the first time in the present thesis. The zero temperature theory of Parisi RSB
has been inaccessible for many years, but with the method derived in Chapter 2 one can investigate this
regime at least at finite κ. The continuous limit κ → ∞ at T = 0 of this method at finite h is also possible
and will be discussed in the next chapter.

Figure 4.16 shows the order functions in the range h = 0, ..., 0.5. Obviously, the main effect of the external
field is that it changes the width and height of the plateau at small a while leaving q(a, h) above ā0 nearly
unchanged. By looking closely to the confidence channels from the step approximation in Figure 4.16(b),
however, a small upward correction of q(a, h) above the break point ā0 is visible for finite h & 0.3. From
this data, it can be conjectured that the PaT projection hypothesis q(a, h) = q(a, 0) for a > ā (see e.g.
[PT80, VTP81] or Section 4.4.1) is not exactly but only approximately satisfied even at zero temperature.

The dependence of the plateau height q̄(κ, h) is shown in Figure 4.17 for various orders of RSB. The κ
convergence of the plateau height appears to be worst at zero external field. Here, another type of criticality
arises which calls for a scaling analysis with variables h and κ−1 - similar to the (T, κ−1)-scaling analysis in
Section 4.1. Again, I motivate the scaling analysis by facing two facts which seem to contradict each other
and resolve this virtual contradiction by assinging each fact to a different scaling regime. Anticipating some
of the results below, one finds:
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Fig. 4.16: The order function at T = 0 and κ = 51 for finite external fields in the range h = 0, ..., 0.5
(red - blue). Part (a) shows the order function obtained from polynomial interpolation. The
interpolation point with the smallest abscissa is approximated by substracting half the spacing
aκ−1 − aκ from aκ. Part (b) shows the step approximation of the order function. From the
height of the steps one can extract roughly the confidence channel.

• The order parameters qi, i = 1, ..., κ + 1 are even functions of h. It is found from the numerical data
of all available finite RSB orders that all those functions are regular at h = 0, i.e. they have a Taylor
expansion at h = 0 with only even terms in h.

• The κ = ∞ extrapolation of the plateau height limκ→∞ q̄(h) at finite h is found to vary as h2/3. The
finite κ corrections decay as polynomials of κ−1.

Since the plateau height at κRSB is equal to the smallest q-parameter, i.e. qκ+1, those two facts seem to
contradict in that a function q̄(κ, h) ≃ c1h

2/3 + c2(h)κ−2 +O(κ−3) is not Taylor expandable at h = 0. From
the first derivative of q̄(κ, h) which is shown in the inset in Figure 4.17 it is obvious that scaling with respect
to the variables h and κ−1 is capable of resolving this contradiction: following the curve d

dh q̄(κ, h) for a

fixed κ coming from large h, a crossover from a diverging behavior (as h−1/3) to a vanishing first derivative
happens at a certain crossover field hco(κ) which depends on κ. This crossover field may be defined27 as the
abscissa of the maximum of d

dh q̄(κ, h) for a given κ. One then finds that hco(κ) ∼ κ−3/2 which defines the
crossover line between the scaling regimes Rh

1 = (h ≃ 0, κ−1 > 0) and Rh
2 = (h > 0, κ−1 ≃ 0).

The scaling picture proposed above is only valid if the maximum of d
dh q̄(κ, h) really diverges as κ → ∞. It

is, however, hard to unambiguously determine from the finite RSB numerical calculations whether or not the
slope of q̄(∞, h) is finite at h = 0. What one can say is that when the maximum of d

dh q̄(κ, h) as a function of
κ is fitted to a function which has a finite κ = ∞ limit, one cannot find optimal fit parameters. With each fit
step the fit parameter for the infinite κ limit of the function becomes larger. Instead, if fitted to a function
which diverges with some power law in the κ = ∞ limit, one can easily obtain a set of best fit parameters.
I believe that this, together with the analysis in Section 4.4.2 and various publications of different authors
[CRT03], is strong evidence for the validity of the scaling picture and for an irregular exponent δ < 1 of
q̄(∞, h) ∝ hδ.

Indeed, a more thorough analysis of the finite h data in which the plateau heights are first extrapolated
to κ = ∞ so that q̄(∞, h) can be analyzed directly shows that the leading h-term in the regime Rh

2 is
proportional to h2/3 and the leading κ-term is proportional to κ−2, while in the regime Rh

1 one finds the
terms h2 and κ−1. As in the analysis of the T = 0 criticality in Section 4.1 the extrapolation to κ = ∞ at
a fixed h becomes harder as h → 0 in that one needs more and more RSB orders for obtaining a reasonable
quality of the extrapolation since any finite RSB order hits the crossover line as h → 0. I found that in Rh

2

the leading terms of the plateau height are

(only Rh
2 ) q̄(κ, h) ≃ 1.037 h

2
3 − 0.2 h2 + 0.3 h− 2

3 κ−2. (4.19)

All the terms with irregular h-exponents are not allowed in Rh
1 and thus must be scaling terms. In scaling

27Other definitions as, e.g., the field where the first derivative becomes larger than 3, say, are also possible and lead to the
same exponent.



62 CHAPTER 4. RESULTS AND DISCUSSION AT FINITE ORDER OF RSB

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

0

q
(к

, 
h
)

q(к, h)
d
dh

h

Fig. 4.17: The plateau height q̄(κ, h) = qκ+1 at zero temperature in dependence of an external field h for
various orders of RSB. The red line corresponds to 1 RSB and the blue line to 60 RSB. The
inset shows the derivative d

dh
q̄(κ, h) near h = 0 for RSB orders κ = 2, 4, ..., 60. The black curve

connects the maxima of d
dh

q̄(κ, h). It indicates the crossover from a diverging small h behavior
above this line to a vanishing small h behavior below this line.

regime Rh
1 the plateau height can be written as

(only Rh
1 ) q̄(κ, h) ≃ 1.03κ−1 − 1.317κ−2 +

1.03

2
h2κ2. (4.20)

In this expansion the terms proportional to κ2 and κ−1 are not allowed in Rh
2 and thus they must be scaling

terms. The (h, κ−1)-scaling picture appears very similar to the (T, κ−1)-scaling picture which is illustrated
in Figure 4.4. The main differences are the exponents of the crossover lines and the quantities in which
scaling has been demonstrated: while (T, κ−1)-scaling was found directly in a thermodynamic quantity, i.e.
the free energy or the internal energy, the (h, κ−1)-scaling has been only discussed by means of a rather
unphysical plateau height in the order function.28 These discussions, however, are only meant to serve as a
demonstration of the fundamental need for scaling concepts in the analysis of RSB near T = h = κ−1 = 0
and to introduce the scaling concept. The detailed analysis of those scaling ideas will be presented at the
end of this chapter.

4.3 Discreteness at zero temperature

From the plot of the T -rescaled block-size parameters ai in Figure 4.12 it can be seen that at zero temperature
and zero external field certain kinds of discreteness appear on a log a scale: the difference between log ai and
log ai−1 does not approach zero in the large a and in the small a regime as κ → ∞. In the intermediate
regime, which will be seen to extend from 0 < a < ∞ at ∞ RSB, these differences vanish and the continuous
distribution of ai parameters gives rise to a smooth order function q(a). From the plots at finite temperatures
or at finite external field it is also clear that the discreteness at large or small a is temperature or field
controlled, in that it is only present at T = 0 or h = 0, respectively.

The field controlled discreteness at small a must disappear whenever a finite field h is present. Each
parameter ai is larger than the lower break point ā0, and ā0 > 0 in case of h > 0. Thus the smallest block
size parameter is finite. If now the log a discreteness at small a was present for ā0 > 0 (i.e. for h > 0) then
the step character of the order function would survive in the ∞ RSB limit and the order function was not a
smooth function. In contrast, the discreteness at log a = −∞ which is encountered at exactly h = 0 does not
translate to a discreteness on an a-scale29 and thus is quite unproblematic as has been discussed in Section

28The height of the plateau q̄(κ, h) is not a quantity which is in principal accessible in experiments. It is a construct, needed
in the mathematical treatment of the SK-model. The difference becomes most obvious when trying to write down the two
quantities in terms of the original variables which define the model in (2.1). The internal energy is simply the statistical
mechanics average of the Hamiltonian, while for q̄(κ, h) one needs the concept of RSB for a proper definition.

29Such a behavior would completely invalidate a formulation of the ∞ RSB theory in terms of partial differential equations
at small a.
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4.2.1. Therefore, this section is devoted to the temperature controlled large a regime of the order function
which yields subtle irregular properties. The aim of the following analysis is to understand how the ∞ RSB
order function must be represented at zero temperature.

4.3.1 Discrete spectra in the block size ratios

A convenient way of describing the subtleties at a = 0 and a = ∞ is in terms of ratios of Parisi block size
parameters ri = mi+1

mi
= ai+1

ai
. These ratios directly enter the recursion relations in the trace term via the

exponentiated Gaussian convolution operator
∫ GE

i
(see Appendix C.1). In Figure 4.18 the ratios are mapped

to the interval [0,1] such that the large (small) a regime is projected to 1 (0). To be explicit, a variable
zl ∈ [0, 1] is defined which corresponds to the ratio r̃l = ri with ’inverted’ index l = κ − i according to

zl =
l

κ
⇔ r̃l = rκ−l. (4.21)

For each RSB order, the set of points (zl, r̃l) is plotted in Figure 4.18. The regions where the ratios approach
1 in the ∞ RSB limit are the regions where the points ai or mi become dense. This is obviously the case
for most of the ratios and thus a partially continuous formulation at zero temperature should be possible.
In the following, the situation at T = 0 and h = 0 (see Fig. 4.18(b)) will be thoroughly investigated. In the
limit κ → ∞ all ratios r̃l corresponding to a zl 6= 0, 1 are unity, whereas at z = 0 and z = 1 Coulomb-like
spectra of ratios which are smaller than 1 appear.
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Fig. 4.18: Plots of block size ratios ri = ai
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at various RSB orders, mapped to the interval [0, 1]. The

ratios corresponding to large ai are near z = 1 while the ratios corresponding to small a are near
z = 0. The part (b) represents the situation at T = 0 and h = 0 for up to 200 RSB. In parts (a)
and (c), results at finite external field h = 0.1 and finite temperature T = 0.03, respectively, are
shown for up to 50 RSB. The colors are chosen such that one cycle red-green-blue-red represents
100 RSB orders in part (b) or 50 RSB orders in parts (a) and (c). In part (d), the mapping
z ↔ a is shown for the T = 0, h = 0 case.

For the further discussion it is important to establish a connection between the position zl of a specific
ratio r̃l and the corresponding a-regime. At ∞ RSB a one-one correspondence between z and a can be given.
This correspondence is shown in Figure 4.18(d). It is obtained by extrapolating30

a(z) = lim
κ→∞

a(z, κ), a(z, κ) = a(1−z)κ. (4.22)

30z must be a rational number with relatively small denominator and numerator here. The results of appropriate neighboring
rational z give rise to a continuous function a(z).
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As expected, the obtained function a(z) which describes the correspondence of block size ratios to different
regions of the order parameter q(a) at ∞ RSB diverges near z = 1. As a result, the top right corner of the
ratio plot at T = 0 and h = 0 corresponds to a = ∞. Similarly, one finds that the top left corner of the ratio
plot corresponds to a = 0. In other words, the z-interval ]0, 1[ is mapped to the a-interval ]0,∞[ and since
the block size ratios which correspond to z ∈ ]0, 1[ approach unity in the ∞ RSB limit31 the regime of finite
a is continuously filled with ai parameters.

The behavior of the order function at a = 0 or z = 0 is well understood and has been discussed above. It
can be incorporated by an order function which is regular in a = 0. The large a regime, however, leads to
irregularities and cannot be sufficiently incorporated by a continuous function which is regular at a = ∞.
A first hint for the existence and importance of this issue has been encountered in Section 4.2.1 where a
dependence of the derivative of q(a) at a = ∞ from the parameter indices has been found. Those issues are
located exactly at the point z = 1 in the ratio plot of Figure 4.18(b) and intimately correlated with scaling
and the zero temperature criticality.

For example, the smallest ratio r1 = r̃κ−1 = a2

a1
, which approaches limκ→∞ r1 ≃ 0.35 for ∞ RSB, assures

that a2 ≃ 0.35a1 or m2 ≃ 0.35m1 for large RSB orders. In the κ = ∞ limit, however, the parameter a1

diverges so that also limκ→∞ a2 = ∞. Thus, the spacing between successive parameters ai (with i finite)
becomes infinite for κ → ∞. The trick is now to characterize all indexed quantities ai, ri, qi by two different
scales a ∈ [0,∞] and x ∈ [0, 1] and map the discrete spectrum at z = 1 to the finite x domain where a = ∞
and the region z < 1 where the corresponding ratios are unity to the finite a domain where x = 0. In
other words, for the discrete region at a = ∞ or z = 1, the m-formulation of the block size parameters
should be used instead of the a-formulation. Doing so one finds, for instance, that32 m2 ≃ 0.19 and thus
m1 − m2 ≃ 0.36.

In the limit κ = ∞ there are infinitely many ratios r1, ..., rκ−1. In contrast to the finite RSB case, however,
there is a sharp separation between three types of ratios: the non-unity ratios at z = 0, the unity ratios at
0 < z < 1 and the non-unity ratios at z = 1. Each subset consists of an infinite number of elements (ratios).
From a superficial glance at the ratio plots at finite κ one could gain the impression that the number of ratios
which become unity is much larger than the non-unity subsets. In the limit κ = ∞, however, all three subsets
have the same cardinality ℵ0, i.e. all of those sets are countably infinitely large33. Cardinality is obviously
not the proper concept to distinguish those regimes. Instead, I will use a combination of z coordinate as
defined in (4.21) and indices i or l: The regime in which the ratios become unity cannot be described by a
discrete index but rather by the continuous variable z ∈ ]0, 1[. The discrete spectra at z = 1, 0, however, are
described by the index i and the inverted index l, respectively, in that ri=1, ri=2, ... are the non-unity ratios
at z = 1 and r̃l=1, r̃l=2, ... are the ones at z = 0.

At finite temperatures, the finite x and the finite a regime can be mapped onto each other by a transfor-
mation x = Ta. Thus one may chose one of the variables x or a at will. At zero temperature, this is not
possible any longer. Instead one must investigate both scales separately.

4.3.2 Two scales for the order function at zero temperature

It is important at T = 0 to resolve the structure of the order function at a = ∞ which corresponds to
the x > 0 regime as well as the structure at x = 0 which corresponds to the a < ∞ regime. By utilizing
this distinction at κ = ∞, the discrete spectrum of the block size ratios at z = 1 (see Fig. 4.18) must be
mapped to the x > 0 regime. In this way the structure at a = ∞ is ’blown up’ in a similar manner as
the structure at x = 0 has been blown up by using the T -rescaled block size parameters ai instead of mi,
though the resolution of a = ∞ is somewhat more subtle because it cannot be directly accessed from finite
orders of RSB. As yet, no necessity - neither from the numerical data, nor from conceptual arguments - for
mapping the discrete region at small a to another scale has been observed. A description as a regular limit
of a continuous function q(a) is sufficient. Here again, the fundamental difference of those two critical points
a = 0 and a = ∞ manifests itself in the different treatments: while a = ∞ must be analyzed by means of an
additional scale x ∈ [0, 1], the point a = 0 can be incorporated as one single value in a function q(0).

The structure of the discrete regime x > 0 must be addressed by investigating extrapolations of several
quantities to κ = ∞ and to T = 0. All those extrapolations have been performed in different contexts above
and shall be combined now. The first required quantity is the value of the break point at T = 0. It has

31This can be shown within numerical errors by extrapolation of r(z, κ) to κ = ∞.
32Here it has been used that the break point x̄1 = m1 ≃ 0.547 is finite at T = 0.
33Figuratively, one could say that the non-unity subsets are only further countably infinite busses which want to check into

Hilbert’s hotel countably infinity[Cas].
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Fig. 4.19: Two regimes of the zero temperature theory at infinite order of RSB. The regime of 0 ≤ a < ∞

on the left hand side gives rise to the continuous part of the order function. On an x-scale this
regime is characterized by x = 0. The regime of 0 < x ≤ 1 which is characterized by a = ∞

does not contain a continuous distribution of block size ratios but rather a discrete set of points
ai at which qi = 1. The red line in the continuous regime is the order function q(a) from a 200
RSB calculation with abscissa transformed to ζ = a

1+a
.

been found in section 4.2.2 that x̄1 is finite in the limit T → 0. It should be noted here that the term ’break
point’ is not completely appropriate in the zero temperature formulation, since there is no kink at x̄1 like in
the finite temperature order function. At T = 0 the break point is rather defined as the largest block size
parameter m1 in the limit κ → ∞. Nevertheless the previous analysis showed that m1(T = 0) = 0.54686.
Thus the zero-temperature break point definitely corresponds to a = ∞ and x > 0.

The second extrapolation which is needed here is the the extrapolation of block size ratios to κ = ∞ (see
Fig. 4.18). At z = 1 this leads to the discrete spectrum, starting at r1 = 0.36, which approaches unity for
large ri. The combination of the ratios and the break point allows a construction of the sequence m1, m2, ...
which is shown in Figure 4.19. Thus it can be concluded that the discrete spectrum at z = 1 corresponds
in the ∞ RSB limit to an infinite sequence of non-zero Parisi block size parameters mi. Finally, from the
formula for the free energy (2.95) it is easily seen that a qi = 1 corresponds to each mi > 0. This constraint
finally fixes the ordinate of the order function in the discrete regime x > 0.

From the need for two different scales, it becomes clear why it is difficult to obtain a proper extrapolation

the derivatives dn

d(1/a)n q(a)
∣
∣
∣
a=∞

= Q(n)(0) from finite RSB data: the discrete derivative Q
(n)
i for i = 1, 2, ...

as discussed near equation (4.15) does not correspond to the point (a, x) = (∞, 0) but rather to the finite x
regime where the order function is discrete. In Figure 4.10 the correspondence of Q′′

1 , Q′′
2 , ... to the discrete

regime is reflected by their deviation from the second derivative at a = ∞ from the purely continuous
treatment which accounts for the distinction of the finite x and the x = 0 regime. In a proper κ = ∞
extrapolation of dn

d(1/a)n q(a)
∣
∣
∣
a=∞

from finite RSB data one must not simply follow the largest a parameters,

because by doing so one would arrive at the discrete spectrum at z = 1 where ri < 1 (see Fig. 4.18). One

rather must extrapolate the derivative dn

d(1/a)n q(a)
∣
∣
∣
a=a(z)

to κ = ∞ for a fixed z and afterwards extrapolate

to z = 1. By this procedure one arrives at (a, x) = (∞, 0), as desired.

The physical interpretation of the appearance of two separate scales in the order function is rather subtle.
First of all, one can assign equilibrium and non-equilibrium properties of the system to the different scales:
non-equilibrium behavior in the sense that the system is trapped in one single ergodic component of the
phase space is described by the finite x regime. This can be seen by considering the non-equilibrium
susceptibility χne at T = 0 which is given by the linear temperature coefficient of q1. Obviously, this non-
equilibrium quantity is given by the x > 0 regime of the order function. This statement also holds for other
non-equilibrium quantities as the susceptibility or the Edwards-Anderson order parameter. On the other
hand, equilibrium quantities as e.g. the ground state energy are determined only by the a < ∞ regime.
The integral (sum) over 1 − q(a)2 (1 − q2

i ) which appears in the formula for the internal energy at infinite
(finite) RSB has only contributions from the finite a regime because q(a = ∞) ≡ 1. Besides, q(a) can be
interpreted as an autocorrelation function in which 1

a parametrizes diverging relaxation times [Som81] and
in this interpretation, a = 0 corresponds to the longest relaxation time which describes the minimum time
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which must be averaged over in a measurement for restoring ergodicity34.

4.3.3 Criticality of the block size ratios

I have mentioned above that at finite temperatures (external fields) the discreteness at z = 1 (z = 0)
vanishes. This effect shall now be discussed by means of the scaling behavior of the discrete spectra of the
block size ratios. In Figure 4.20 the block size ratios from calculations at low temperatures are compared.
At T = 0.0001 the deviations of the ratios from the T = 0 ratios are very small; differences can be seen only
for high RSB orders. The deviations of the T = 0.005 ratios from T = 0, however, can be seen in much lower
RSB orders.
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Fig. 4.20: Scaling behavior of the block size ratios for finite temperatures. The black lines are interpolations
of the zero temperature ratios r1, r2, ... for κ = 2, ..., 200. The colored dots are ratios from
calculations at T = 0.0001 (a) and at T = 0.005 (b) for κ = 2, ..., 50.

In order to quantify this statement, I define the following criterion for a finite T result being different from
the T = 0 result:

The ratios at a given RSB order κ and temperature T are different from the T = 0 ratios if
and only if r1(T, κ)− r1(T = 0, κ) > ε, where ε is a small number of order 10−2 which gives
the maximum deviation of an arbitrary ratio ri(T, κ) from its T = 0 value.

This criterion is then used to construct a function κmin2(T ) (cf. κmin(T ) in Sec. 4.1) which represents the
minimum RSB order needed to resolve finite temperature behavior of the ratio ri(T, κ), i.e. a significant
deviation from ri(T = 0, κ), at a specific temperature T . Remarkably, it turns out that κmin2(T ) ∝ T−5/3

diverges with the same power law as κmin(T ) which is defined as the minimum RSB order required to obtain
a non-negative entropy at a given temperature. The exponent is independent of the choice of ε, as long as
it is small enough. A different ε only results in a different constant of proportionality. As a result, the same
scaling picture which is illustrated in Figure 4.4 is applicable here.

The same analysis has been performed for the h-controlled discreteness in the block size ratios which
correspond to small a (see Fig. 4.18 (a) and (b)). The result is that the corresponding κmin 2(h) diverges for
h → 0 as h−2/3 just like the crossover line between the scaling regimes Rh

1 and Rh
2 .

The power laws which describe the scaling of the RSB order with the temperature and the external field
are strong evidence for the scaling to be universal in the sense that it is not only restricted to one specific
aspect, but rather present in each quantity which is sensitive to changes in the temperature or in the external
field. Indeed, all the above findings can be combined to one universal scaling picture as will be argued in
the following section.

4.4 Scaling analysis

In the preceding analysis, scaling concepts turned out to be extremely important for a proper understanding
of the region in which all parameters κ−1, h, T become small. Several contradictions could only be resolved
by assinging conflictive statements to different scaling regimes. In the present section, the scaling concepts,
introduced above, will be unified as far as possible.

34In this dynamical interpretation which is due to Sompolinsky, all relaxation times τa which are parametrized by 1
a

are
divergent in the thermodynamic limit. However, the ratio τa=0/τa>0 also diverges, which means that a = 0 corresponds to the
largest time scale.
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4.4.1 PaT-scaling

In the beginning of the 1980’s, the detailed form of the self-consistent solution of Parisi RSB was only
poorly understood, because the equations could be solved for arbitrary h and T only with the numerical
methods available to that time. One of the first simplifying approaches to gain control over the order function
q(x, T, h) for arbitrary temperatures and fields by means of a scaling hypothesis has been proposed by Parisi
and Toulouse [PT80, VTP81]. It turned out later [TGL82] that their conjectures lead to a slightly wrong
result. Nevertheless, it is a quite good approximation and allows for a relatively simple calculation of the
order function.

The PaT-conjecture consists of two main assumptions35

1) The projection hypothesis states that the Edwards-Anderson order parameter qEA depends only on
the temperature and not on the external field. qEA is the height of the large-a plateau in the present
formulation. Thus

qEA(T, h) = q(ā1, T, h) = qEA(T ). (4.23)

Further, a finite external field induces a plateau at small a in the interval [0, ā0] but is assumed to not
change the order function for a > ā0.

2) The scaling hypothesis states that between the break points x̄0 < a < x̄1 the order function q(x, T ) is
independent of h and can be expressed in terms of a scaling function f(x/T ). In the present notation
the scaling hypothesis reads

q(a, T ) = q̃(a) for ā0 < a < ā1. (4.24)

With the help of these PaT hypotheses, the scaling function q̃(a) can be calculated as follows: for each
temperature one calculates qEA(T ) at the AT-line36, where the RS-approximation is exact. From the identity

β −
∫ β

0
da q(a) = 137 the upper break point ā1(T ) can be calculated (see below). Further, it is clear that the

scaling function q̃(a) evaluated at the point a = ā1(T ) is equal to the Edwards-Anderson order parameter
for the temperature T which has been calculated at the AT-line. Since the break point ā1(T ) varies between
0 and ∞ as T varies between 1 and 0, respectively, one can construct q̃(a) for all relevant arguments.
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Fig. 4.21: Comparison between PaT scaling prediction (red line) for q(a) at zero temperature and the true
order function from a 200RSB calculation (black dashed line). The inset shows the difference
between the order functions obtained by the different methods.

In Figure 4.21 the scaling function q̃(a), calculated from the PaT-hypotheses, is compared to a 200 RSB
calculation at T = 0, which can be regarded as the exact solution for the accuracy needed here. Obviously
the accordance of the two results is remarkably good, especially if one compares the effort for obtaining
both solutions - the computer time needed to calculate the 200RSB solution is about 5 · 104 larger than the
computation time of the PaT result. There are, however, small but definite deviations of qκ=200(a) from the
scaling form as illustrated by the inset of Figure 4.21: PaT scaling overestimates the curvature at small a.

35The original nomenclature was slightly different. Here the names of the hypotheses are adapted to present needs.
36See Appendix A.1.
37This identity follows from the equilibrium-susceptibility being unity in the ∞ RSB limit.
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In the following I want to discuss PaT-scaling from the T = 0 point of view. The reason for doing this
is that at T = 0 the order function38 covers the whole a-domain [0,∞[. This is also the domain on which
the PaT scaling function is defined. Deviations from PaT-scaling can then be analyzed by means of small
corrections to scaling - mainly near a = ∞ and T = 0. With this type of analysis, exact relations between
several quantities can be derived.

In order to discuss the correction to PaT scaling near T = 0 and at h = 0, the true order function q(a, T )
at ∞ RSB is written as the sum of a scaling contribution q(a, 0) and a correction to scaling q̃(a, T )

q(a, T ) =

{
q(a, 0) + q̃(a, T ) for a < ā1

q(ā1, 0) + q̃(ā1, T ) for a ≥ ā1
(4.25)

From the identity χe = 1 =
∫ β

0
da(1−q(a, T )), the correction to the PaT prediction for the zero temperature

extrapolation of the break point x̄1 can be derived

x̄1(T = 0) =
1

2
− 1

2α
lim
T→0

∫ ā

0

da
d

dT
q̃(a, T ) (4.26)

where α is the quadratic temperature coefficient of the Edwards-Anderson (EA) order parameter qEA(T ) ≃
1 − αT 2. Note that for q̃(a, T ) = 0, equation (4.26) reduces to the PaT prediction x̄1 = 1

2 . Now, if one
assumes that q̃(a, T ) can be expanded in a Taylor-series near (a, T ) = (∞, 0), i.e.

q̃(a, T ) =
∑

i

T i q̃i(a), for T ¿ 1 (4.27)

and
q̃i(a) =

∑

j

bj
ia

−j , for a À 1 (4.28)

one can straightforwardly derive relations between the lowest coefficients of the q̃(a, T ) expansion, the
quadratic temperature coefficient α of the EA order parameter, the break point and the a−2 coefficient
c of the expansion of q(a, 0) at a = ∞ (see Sec. 5.4.3).

b0
1 = b1

1 = 0 (4.29)

α =
c

x̄2
1

− b0
2 (4.30)

∫ ∞

0

da q̃1(a) =
c

x̄2
1

(1 − 2x̄1) − b0
2. (4.31)

The first relation states that q̃1(a) must go to zero faster than a−1 as a → ∞. This also ensures that the
integral on the left hand side of equation (4.31) converges. The parameters c, α, x̄1 are very well known
from the literature and have been obtained from the numerical data of the present work, too. From the
above relation, one can thus extract b0

2 = −0.22035 ± 0.00012 and write the correction to PaT-scaling near
(a, T ) = (∞, 0) as

q(a, T ) = q(a, 0) − 0.22 T 2 + O(T, a−1)3. (4.32)

Relation (4.31) can be used as a test for q̃1(a) extracted from numerics. This, however, should be done
directly at κ = ∞ because the corrections to PaT scaling are on the order of the finite κ corrections.

4.4.2 Scaling in the continuous limit near h = 0, T = 0

In the previous analysis of the results of the finite RSB calculations, exponents of striking similarity have
been found. At several places in the present work and also in the literature [BC03, CRT03] there appeared
exponents which are integer multiples of 1

3 whenever the small a region of the order function and finite exter-
nal fields have been investigated. In the following, these exponents shall be brought together by considering
the h dependence of the ground state energy within PaT approximation.

The ground state energy with finite external field h at T = 0 can be written exactly as

E0(h) = −hM(h) − 1

2

∫ ∞

0

da(1 − q2(a)) (4.33)

38Here, only the continuous part of the order function is considered.
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where M(h) = χeh + γ h7/3 + O(h3) is the magnetization. The exponent of the sub-leading term in the
magnetization has been chosen such that the first derivative of f(h) in equation (4.9) has the same terms
as M(h). The order function for finite external field has a plateau below the lower break point ā0 with the

plateau value q̄(h) = b1h
2
3 + b2h

2. In the present subsection it is assumed that the order function does not
depend on the external field above ā0. Thus

E0(h) − E0(0) = −hM(h) − 1

2

∫ ā0(h)

0

da
[
q2(a, T = 0, h = 0) − q̄2(h)

]
(4.34)

with q(ā0(h), T = 0, h = 0) = q̄(h). The order function at T = 0 and h = 0 may be expanded near a = 0 up
to third order in a (see Sec. 4.2.1)

q(a, 0, 0) = d1a + d2a
3 + O(a4) (4.35)

and the integral in equation (4.34) can be solved up to order h4. Thus, the h dependence of the ground state
energy can be written as

E0(h) − E0(0) =

(
b3
1

3d1
− χ

)

h2 +

(
b2
1b2

d1
− b5

1 d2

5d4
1

− γ

)

h
10
3 + O(h4). (4.36)

From the first term in this expansion and from the fact that, due to χe = − d2

dh2 E0(h), E0(h) = E0(0) −
1
2χeh

2 + O(h3) one finds that

χe

2
=

1

2
=

b3
1

3d1
⇒ b1 =

(
3d1

2

) 1
3

≃ 1.03697, (4.37)

where d1 = 0.743368 from Section 4.2.1 has been used in order to obtain a high accuracy result for b1. The
same type of analysis for the coefficient of the h10/3 term in (4.36), however, leads to an inconsistency with
the results of the above numerical high precision analysis. This is probably due to the only approximation
which has been used here, namely the PaT approximation. A full treatment thus would require to respect
the deviation of q(a, h) from q(a, h = 0) above the break point. Obviously, PaT scaling is violated at order
h10/3 in the free energy.

4.4.3 Unified scaling at finite RSB

At several points in the previous analysis, virtual contradictions have been resolved by the introduction of
scaling with respect to the variables κ−1, h and T . This has mostly been done by simply assigning a given term
to one of the scaling regimes with the argument that it cannot belong to the other regime without violating
well established rules (e.g. Taylor-expansibility of the free energy near T = 0). All those assignments still
must be brought together in order to establish one unified picture and to check for consistency of the former
statements. This is the aim of the following discussion.

Interestingly, it seems that the scaling variables always appear in pairs (T, κ−1) and (h, κ−1) in that one
must consider harmonic functions of a variable T νT /κ−1 or hνh/κ−1. As yet, no need for scaling of T with
respect to h has been found. The values of the critical exponents can be extracted from the analysis of the
criticality of the block size ratios in Section 4.3.3.

νT =
3

5
, νh =

2

3
(4.38)

It turns out that these are really the scaling exponents of all quantities and not only of the block size ratios.
In the following, the quantities in which scaling appears will be discussed. Remarkably, the κ-h scaling and
the κ-T scaling can be connected to limiting regimes of the order function, namely a → 0 and a → ∞,
respectively.

q̄(κ, h) scaling

The plateau height of the order function at small a, given by q̄(κ, h), has been investigated in Section 4.2.3
and expansions around (κ, h) = (∞, 0) have been given in the different scaling regimes (eqns. (4.19) and
(4.20)). All those terms can be explained by the following Ansatz for the plateau height:

q̄(κ, h) = q̄reg(κ, h) + q̄s(κ, h) (4.39)
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where the regular part is given by

q̄reg(κ, h) = −0.2h2 − 1.317κ−2 + O(h3, κ−3) (4.40)

and the scaling part is written in terms of a function of a single variable fq̄(x). With x = h2/3

κ−1 it is clear
that the scaling regime Rh

1 is equivalent to x ¿ 1 while Rh
2 corresponds to x À 1. Thus, the scaling part of

the plateau height reads

q̄s(κ, h) = κ−1fq̄

(
h2/3

κ−1

)

, fq̄(x) =







1.03 + 1.03
2 x3 + O(x4) for x → 0

1.037x + 0.3 1
x + O(x−2) for x → ∞

. (4.41)

Interestingly, the terms of the regular part are partially screened by the scaling terms in the two different
scaling regimes. For instance, in Rh

1 , the regular h2 ·κ0 term is hard to observe in the κ → ∞ limit, because
there is a diverging h2 · κ2 term. Though, careful investigations show that the existence of a h2 · κ0 term in
Rh

1 is absolutely consistent with the numerical data.

ā0(κ, h) scaling

Similarly to the small a plateau height, the plateau width ā0(κ, h) can be considered. The extraction of
the expansions in the different scaling regimes is somewhat more intricate here but is in principle the same.
Instead of considering the parameter qκ+1, the κ and h dependence of aκ is investigated. One finds in analogy
to equations (4.19) and (4.20)

(in Rh
1 ) ā0(κ, h) = 2.77275κ−1 − 3.5435κ−2 − 8.1κ−3 +

1.4

2
h2κ2 + O(κ−4, h2κ, h8/3) (4.42)

(in Rh
2 ) ā0(κ, h) = 1.395h2/3 − 3h2 + 1.35κ−1 + const.κ−2h−2/3 + O(h8/3, κ−1h, κ−2). (4.43)

Again, there are regular contributions and scaling contributions to ā0(κ, h), namely

ā0(κ, h) = āreg(κ, h) + ās(κ, h) (4.44)

with the regular part

āreg(κ, h) = c1κ
−1 − 3 h2. (4.45)

Because the term κ−1 is present in each scaling regime, it is harder to assign it to the scaling terms or to
the regular terms. Thus, this point is left open and a general coefficient c1 is introduced for the κ−1 regular
term. Finally, the scaling contribution may be written as

ās(κ, h) = κ−1fā

(
h2/3

κ−1

)

, fā(x) =







c2 + 1.4
2 x3 + O(x4) for x → 0

1.395x + c3 + const. 1
x for x → ∞

(4.46)

where c1 + c2 = 2.77275 and c1 + c3 = 1.35.

Note that there is always some ambiguity in assinging a term to the scaling part or to the non-scaling part
on the basis of only numerical data. The ultimate criterion for an assignment to the scaling part is that
an assignment to the non-scaling part would lead to contradictions. But also terms which are in principle
allowed to be non-scaling terms could arise from the scaling functions. In any case, it has been shown that
the scaling picture is consistent for the plateau heights and the plateau widths.

It is further remarkable that the h2/3 terms in the plateau region are scaling terms, corresponding to the
regime Rh

2 . This is also the regime which is addressed by the continuous formulation of ∞ RSB [Par79,
CR02, CRT03]. The regime Rh

1 , however, is completely inaccessible by the continuous formulation, because
an arbitrary small, but finite external field is always assumed implicitly in the method when solving the
differential equations numerically39.

39The initial condition of the Lagrange multiplier function P (x, y) at x = 0 (see e.g. Chapter 5) is a delta peak for h = 0.
In a numerical solution, however, one always (even in the pseudo-spectral method [CR02]) assumes a finite width of P (x, y) at
x = 0, which corresponds to a finite external field.
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General small a and small q scaling

The above scaling analysis has been carried out for the smallest a parameter and the smallest q parameter
aκ = ā0(κ, h) and qκ+1 = q̄(κ, h), respectively. The same reasoning is is also applicable for aκ−j or qκ+1−j

with j ¿ κ. From such an analysis, the discrete block size ratios at small a in the scaling regime RT
1 can

be explained. At κ = ∞ and h = 0, though all aκ−j are zero, their ratios are different if the critical point is
approached from different scaling regimes.

Large a scaling

The large a regime of the order function is connected to (κ−1, T ) scaling. In order to support this statement,
I now present some evidence.

1. First of all, the large a regime is only meaningful for T → 0, because q(a) is defined on the interval
[0, β]. For finite κ, however, the large a regime is not ’filled’, even at T = 0, in the sense that no
a-parameters are infinitely large. The way, in which the large a regime is filled depends on the order
of limits T → 0 and κ → ∞: if one performs the T → 0 limit first, the largest a parameter grows with
κ5/3. If, on the other hand, the κ → ∞ limit is performed first, then the largest a parameter grows with
β. Further increasing a large κ at T > 0 leads to only a small grow as a1(κ, T ) ∼ a1(∞, T ) − const.

κ .

2. The discrete block size ratios on the right hand side of Figure 4.18(b) correspond to the large a regime.
The discreteness, however, disappears for T > 0. More precisely, the discreteness can be observed if
one first performs the limit T → 0 and then the limit κ → ∞, but it can not be observed for the
opposite order of limits.

3. The entropy at T = 0 is calculated from the non-equilibrium susceptibility which is given by χne =
β(1−q1). q1, the Edwards-Anderson order parameter, is a short-time quantity and as such corresponds
to the large a regime. Further, the entropy was the first quantity (see Sec. 4.1) in which a kind of
crossover has been observed. The corresponding crossover line was κ ∼ T−νT .

By again writing scaling parts of certain quantities in terms of a function f (x) with x = T 3/5

κ−1 one can see

that a power T 3/5, as for instance in the coefficient A(T ) (see eqn. (4.3)), which is present in scaling regime
RT

2 (x → ∞) translates to a κ−1 term in the scaling regime RT
1 (x → 0). As a further example, let me recall

the κ dependence of the zero-temperature entropy s(κ, 0) ∼ κ−10/3 (see Section 4.1). Obviously, s(κ, 0) is
located in RT

1 . Such an entropy leads to a term T ·κ−10/3 in the free energy. A finite RSB correction κ−10/3,
however, is not allowed in RT

2 . Thus, the linear temperature T → κ−5/3 by scaling arguments which results
in a translation T · κ−10/3 → κ−5 as RT

1 → RT
2 . The term κ−5 in the free energy is in consistence with the

numerical results of RT
2 .

If the large a regime of the order function near (κ, T ) = (∞, 0) is considered directly, the same concepts
are found during the analysis. For instance, since the leading term in the largest a-parameter is a1 ∼ κ5/3

at T = 0 for κ → ∞, one may write

ai(κ, T ) = κ5/3fai

(
T

κ−5/3

)

(4.47)

with fai(0) = f
(0)
ai > 0 and fai(x) ∼ x−1 for x → ∞. As a result, the T−1 divergence of the largest

a-parameter for κ = ∞ with T → 0 on one hand, and the κ5/3 divergence for T = 0 with κ → ∞, on the
other hand, is incorporated on the same footing within the scaling formulation (4.47). Note also that the two
scaling regimes, resulting from equation (4.47), coincide with the scaling regimes RT

1 and RT
2 , resulting from

the scaling analysis of the thermodynamic quantities. Especially, the crossover lines κ ∼ T−νT are equal.
Let me conclude this section by stating that it has been demonstrated in the above discussion that scaling

with respect to the pairs of variables (κ−1, h) and (κ−1, T ) is more than a nice idea, one may think about when
looking at ’strange’ quantities as, e.g., the smallest order parameter40. Scaling is rather an important feature
of replica symmetry breaking itself which can be observed in several quantities (order function/parameters,
entropy, free energy, magnetization, etc.). The striking point is that in all quantities which have been
investigated in the present chapter, the scaling has a universal form, given by the crossover lines κ ∼ h−νh

and κ ∼ T−νT .
40Such an order parameter may be called strange at the first sight because it is not a directly measurable quantity. Further,

it is - from a more external point of view - a non-physical quantity because the formalism is only correct in the limit κ = ∞,
where no finite number of order parameters exist anymore but rather a pure order function.
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Chapter 5

Continuous RSB

Each RSB hierarchy with a finite number κ of steps is unstable against a hierarchy with κ + 1 steps [Par79].
Consequently, infinitely many steps of RSB are needed in order to obtain a stable solution [Tal06]. In this
limit the infinitely many order parameters associated with ∞RSB can be written by means of an order
function as described in Section 4.2. The continuous theory which results from the κ → ∞ limit has a
functional form, i.e. the free energy is a functional of the order function f [q(a)], and this functional must
be maximized in the space of possible order functions q(a). The functional free energy, however, is not as
simple as, for instance, an integral of a specific function of q(a). It will be shown instead that f depends
rather implicitly on q(a) through a partial differential equation, the solution of which directly enters f . As
a result, the maximization process is difficult and some tricks are needed in order to be able to actually
perform the self-consistence calculations.

In the present chapter, I will discuss the κ → ∞ transition of the low temperature formulation of RSB
which has been derived in Chapter 2. The subtleties of this transition at zero temperature will be analyzed
and it is shown how to resolve the issues which made a zero temperature theory directly in the Parisi gauge
impossible over years.

In the end, some preliminary computations are presented which have been performed with the help of
the computer algebra system Mathematica R©. They serve as a demonstration of the feasibility of the pro-
posed formalism. A careful programming of numerical differential equation solvers, optimized to the present
formalism, is beyond the scope of the present work.

5.1 The continuous RSB transition of kerC
The central point in the derivation of the continuous RSB formalism is a partial differential equation which
arises from the recursion relation (2.96) in the κ → ∞ limit. The function which solves this differential
equation is the continuous version of the kernel correction function kerC. For clarity the discussion in the
present section is restricted to the Ising spin-glass with h = J0 = 0. The generalization to the non-Ising
case, to a finite ferromagnetic component J0 and to a finite external field h is straightforward, however.

From the expression (2.95) for the free energy of an Ising spin-glass it is easily seen that, in the limit
κ → ∞, the field term passes over to an integration over the order function q(a). On the other hand, the last
Gaussian integration in the trace term becomes infinitely sharp at hκ+2 = 0 because of limκ→∞ qκ+1 = 0 so
that the free energy can be written as

lim
κ→∞

f = −1

4

∫ β

0

da(1 − q(a))2 − kerC(0, 0) (5.1)

where the continuous version of kerC has been introduced as follows: the ith function kerCi(h) is related to
the ith block size parameter ai in that it is the only a-parameter which appears in the recursion relation
of the ith level. In the continuous limit, the a-parameters become dense on a certain interval [0, ā1] where
ā1 is the break point1 of q(a). The relation of kerC to ai can be exploited to define a continuous function
kerC(a, h) of two variables

kerC(ai, h) = kerCi(h). (5.2)

1For a > ā1 the order function q(a) is constant. From the finite RSB point of view, the break point is the κ → ∞ limit of
the largest block size parameter a1 (see also the discussion in Sec. 4.2.2).
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At finite κ the sequence of functions kerCi is successively calculated from the initial condition kerC0 by a
recursion relation (2.96) which depends on the parameters qi and ai. In the limit κ → ∞ this recursion
relation passes over to a partial differential equation (PDE) in which the order function enters parametrically.
The PDE governs the ’development’ of kerC(a, h) from an initial condition, which is given at2 a = β, down
to a = 0, where it is required in equation (5.1). In the following this PDE will be derived. The idea is to
expand the recursion relation in the differences of successive order parameters ai −ai+1 and qi − qi+1 so that
the integral in the recursion relation (2.96) can be solved exactly.

The differences between two neighboring q and a-parameters are written as3

ai+1 − ai = −da, qi+1 − qi = −dq, with da, dq > 0. (5.3)

In the present section it will be assumed that both, dq and also da vanish in the continuous limit κ → ∞.
While for dq this assumption is always true, for da it is limited to finite temperatures as shown above.
At T = 0 there is a domain where da does not approach zero in the continuous limit but rather diverges.
This, however, happens only at a = ∞ and a further restriction to the finite a domain still leads to a valid
derivation of the PDE even at T = 0. It will be argued below in Section 5.3 that the treatment of the validity
domain of the PDE a ∈ [0,∞[ is sufficient for the calculation of equilibrium quantities, as e.g. the ground
state energy, if one introduces a modified initial condition for the PDE at the upper edge of its validity
domain.

In terms of the continuous infinite RSB function kerC(a, h), the finite RSB recursion relation (2.96) reads

a kerC(a, h) = log

∫
dh′

√
2πdq

exp

(

−1

2
a2dq + a(|h′| − |h|) − (h − h′)2

2dq
+ akerC(a + da, h′)

)

. (5.4)

By a transformation of the integral measure z = dq−1/2(h′−h) and the introduction of an auxiliary function
γ(a, h) = kerC(a, h) + |h| equation (5.4) simplifies to

a γ(a, h) = −1

2
a2dq + log

∫
dz√
2π

exp

(

−z2

2
+ a γ(a + da, h +

√

dq z)

)

. (5.5)

In the continuous limit, dq and da become infinitesimally small and so the Gaussian convolution in equation
(5.5) has no effect when setting da, dq = 0. In this naive κ → ∞ limit, equation (5.5) simply becomes a true
statement. One is, however, interested in a description of the development of kerC with a and thus has to
consider more orders in the small quantities dq and da when performing κ → ∞.

An expansion of γ(a + da, h +
√

dq z) to up to second order in
√

dq on the right hand side of (5.5) leads to
the desired PDE. In the following, I denote a derivative with respect to h by γ′(a, h) and a derivative with
respect to a by γ̇(a, h). The expansion reads

a γ(a, h) = −1

2
a2dq+

log

∫
dz√
2π

exp

(

−z2

2
+ a

[

γ(a + da, h) +
√

dq z γ′(a + da, h) +
dq z2

2
γ′′(a + da, h) + O(dq3/2)

])

. (5.6)

The z-integration on the right hand side can be performed by completing the square. By further identifying
γ(a, h) − γ(a + da, h) = daγ̇(a, h) + O(da2) one can write

− a γ̇(a, h) +
a2

2

dq

da
=

a2dq(γ′(a + da, h))2

2 da(1 − a dq γ′′(a + da, h))
− 1

2 da
log (1 − a dq γ′′(a + da, h)) +

O(dq3/2)

da
+ O(da).

(5.7)
Now, performing the limit da → 0 while keeping q̇(a) = dq

da constant (i.e. setting dq = q̇(a)da) leads to a
non-trivial PDE for γ(a, h)

γ̇(a, h) = − q̇(a)

2

(
γ′′(a, h) + a((γ′(a, h))2 − 1)

)
(5.8)

2The position a = β of the initial condition is the most common one. However, also the initial condition at a = ā1 is used
sometimes. Those formulations are completely equivalent because the PDE wont change kerC beyond the break point ā1.

3The sign convention results from the finite RSB convention that parameters with higher indices are smaller.
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which can be transformed back to a PDE for the continuous kernel correction function kerC(a, h):

˙kerC(a, h) = − q̇(a)

2

[
2δ(h) + kerC′′(a, h) + a((kerC′(a, h))2 + 2a sign(h)kerC′(a, h))

]
(5.9)

The Dirac delta function at h = 0 results from the definition of kerC as the correction to the asymptotic
kernel behavior. Since kerC(a, h) + |h| can be shown to be a smooth function with at least one continuous
derivative at h = 0 it is clear that the first derivative of kerC(a, h) must jump down by 2 when crossing
h = 0 from above. By introducing a boundary condition at h = 0 and using the even parity of kerC(a, h)
with respect to h → −h one can circumvent the direct treatment of h = 0 by restricting oneself to h > 0.
This further simplifies equation (5.9) to

˙kerC(a, h) = − q̇(a)

2

[
kerC′′(a, h) + a((kerC′(a, h))2 + 2a kerC′(a, h))

]
, kerC′(a, 0) = −1. (5.10)

At this point it is obvious that, for T > 0, defining the initial condition at a = β is equivalent to defining it
at a = ā1 because between those two positions, q̇(a) = 0 (the order function has been defined to be constant
above the largest block size parameter) and thus kerC is not changed in this range by (5.10). In this way, the
validity range [0, ā1] of the PDE is artificially extended to [0, β] for finite temperatures. At zero temperature,
things are slightly more complicated since the above derivation is strictly speaking only valid for a < ∞,
where limκ→∞ da = 0 and the initial condition is defined outside of the validity domain.

For finite temperatures, the required initial condition of the PDE can be carried over directly from the
initial condition of the recursion relation at finite κ. It reads

kerC(β, h) = kerC(ā1, h) = T log(1 + e−2βh) (5.11)

and completes the continuous formulation.
Equations (5.1), (5.10) and (5.11) represent the complete continuous RSB formalism from which one can

in principle calculate the free energy functional f [q(a)] from a given order function q(a) for T > 0. Yet, it is
in principle nothing else than the reformulated Parisi equations [Par79]. The great advantage of the present
formulation, however, is the ability to extend it to T = 0. In the limit T → 0 there is still an issue which
prevents a direct numerical solution, namely the singularity in the second derivative of kerC (see Sec. 2.4).
A further rescaling in h resolves this problem.

The rescaling will be seen to still not suffice for constructing a tractable T = 0 theory at ∞ RSB. This is
due to a singular point in the PDE of the rescaled quantity at a = ∞. The analysis of this criticality and
the identification of fixed point behavior, however, helps to circumvent the ill-definedness of the PDE and
to handle kerC by introduction of a new initial condition.

5.2 Continuous RSB at finite temperatures

In order to embed the ideas developed in the present work into the existent formulations which can be
found in the literature, the relation to the well-known continuous Parisi RSB [Par80] is shortly discussed
in the following. A comment on notation is in order at first: in the traditional formulation of ∞ RSB, the
parameters mi = Tai are projected onto the interval [0, 1]. The continuous variable on this domain is called
x. In the low temperature continuous formulation developed here, only the variable a will be used. If it
has an index ai then it is a single, self-consistently calculated order parameter and if it has no index then
a is a continuous variable on the interval [0, β], the argument of the order function q(a). I will most of the
time work with the a-formulation of the order function, i.e. q(a). In the literature, one mostly finds the
x-formulation q̃(x). The two formulations are connected by the transformation q̃(x) = q(βx).

At finite temperatures, the order function q̃(x) has a plateau, i.e. q̃(x) = q̃(x̄1) for x̄1 ≤ x ≤ 1. In this
regime, where no finite RSB parameter mi is located, even in the limit κ → ∞, the derivation of the Parisi
PDE, which is analogous to (5.10) and governs a function G(x, h) instead of kerC(a, h), is a priori not valid. In
the plateau-region, however, where d

dx q̃(x) = 0, the validity domain of the PDE can be extended a posteriori
to the whole domain [0, 1]. This is possible because in the finite κ formalism, kerC(a0, h) = kerC(a1, h) in
the limit κ → ∞ as long as a0, a1 < ∞. This can easily be seen from equation (2.96): in the limit κ → 0,
∆q1 vanishes and the Gaussian integration becomes an integration over a delta peak. Thus the difference
between kerC0 and kerC1 vanishes as long as T > 0.
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At finite temperatures, the differential equation which governs kerC can be translated to the original
formalism of Parisi by the transformation to a function G(x, h)

G(x, h) = β(kerC(βx, h) + |h|) − β2

2

[∫ 1

x

dx′ q̃(x′) + xq̃(x) − q̃(1)

]

. (5.12)

From (5.12), the Parisi PDE is obtained

d

dx
G(x, h) = −

˙̃q(x)

2

[

d2

dh2
G(x, h) + x

(
d

dh
G(x, h)

)2
]

(5.13)

with an initial condition G(1, h) = log 2 cosh(βh). The functional free energy is then given by

f [q̃(x)] = −β

4

(

1 − 2q̃(0) +

∫ 1

0

dx q̃(x)2
)

− TG(0, 0). (5.14)

There are many techniques for maximizing f [q̃(x)] with respect to the order function [Nem87, Bis90,
MPV87, SD84]. The most advanced is probably the approach which uses high order expansions of q̃(x) on
the analytical side and pseudo-spectral codes for a direct numerical solution of differential equations [CR02].
Details about those methods can be found in the references as I don’t want to go into more detail at this
point, but rather continue with investigating the zero temperature limit where the traditional x-formulation
does not work.

5.3 The proper zero temperature continuous theory

The zero temperature limit of the continuous formalism derived in Section 5.1 is somewhat more challenging
than the treatment of zero temperature within a finite number of RSB steps (see Chapters 2 and 4). First
of all, for T → 0, the domain of q(a) extends to the semi-infinite interval [0,∞]. For a < ∞ the PDE (5.10)
is valid because the a-parameters are dense there in the κ → ∞ limit. At a = ∞, however, discreteness in a
must be respected properly.

The position at which the initial condition is defined is limκ→∞ a1 = ā1 = ∞ for T = 0. The next smaller
parameter a2 is infinitely far away from a1. Nevertheless a2 = ∞ at ∞ RSB. It is not surprising that it is
hard to surmount this infinite distance a1 − a2 by means of a differential formulation which assumes this
distance to vanish for κ = ∞. On the other hand, a superficial look to high order RSB data of the discrete
kerCi functions shows that they are nearly the same for i = 0, 1, 2. Thus one might be tempted to conclude
that the arguments for extending the validity domain of the PDE from [0, ā1] to [0, a0] at finite temperatures
would be directly applicable here. This argumentation, however, neglects the singular second derivative of
the initial condition (5.11). The above formulation still hides some important structure at h = 0 in the limit
a → ∞. This will be cured subsequently.

5.3.1 Replacement of the initial condition

First of all one needs to get rid of the divergence in the second derivative of the initial condition (5.11) in
the zero temperature limit. This is easily done by a rescaling in h-direction and the introduction of a new
function4

g(a, y) = (a + 1)kerC
(

a,
y

a + 1

)

. (5.15)

In contrast to kerC(a, h), the function g(a, y) resolves the point h = 0 at a = ∞. The initial condition of
g(a, y) is given at a = β and the zero temperature limit of g(β, y) as well as all its derivatives with respect
to y are well behaved. One finds

g(β, y) = (1 + T ) log

(

1 + exp

(

− 2y

1 + T

))

. (5.16)

4The reason for rescaling with a + 1 instead of a is that one wants a rescaling which is singular at a = ∞ while being
non-singular at a = 0.
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Especially the first and the second derivatives are given by d
dy g(β, y)

∣
∣
∣
y=0

= −1 and d2

dy2 g(β, y)
∣
∣
∣
y=0

= 1
1+T ,

respectively. Further, the boundary condition of kerC(a, h) at h = 0 can be adopted to g′(a, 0) = −1. The
differential equation for the function g(a, y) can also be obtained from the kerC PDE and reads

ġ(a, y) = − q̇(a)

2
(a + 1)

[
(a + 1)g′′(a, y) + 2ag′(a, y) + a(g′(a, y))2

]
+

g(a, y) − yg′(a, y)

a + 1
(5.17)

where again the dot signals a derivative with respect to a and the prime means a derivative with respect to
y. Due to the rescaling a term appeared which is independent of q̇. As a result, g(a, y) is not constant with
respect to a above the break point, in contrast to kerC(a, h). This is due to the definition (5.15) in which
g(a, y) changes with respect to a even in the case of an a-constant kerC.

Obviously, the only point where the temperature enters is at the initial condition and so one is tempted
to formulate the zero temperature limit of continuous RSB by simply taking the well defined T = 0 version
of (5.16) at a = ∞ as an initial condition and using PDE (5.17) to obtain g(0, y) from it. This approach,
however, disregards an important point which has been emphasized in the preceding chapter, namely the
discreteness at a = ∞. To understand this issue, it is favorable to investigate the order function in the
a-formulation as well as in the x-formulation at the same time. In doing so, the analysis and the ideas
introduced in Section 4.3.2 are employed, namely the two different scales of the order function.
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Fig. 5.1: The first 15 functions g(ai, y) = (ai + 1)kerCi(y/(ai + 1)) for i = 1, ..., 15 (red to blue) resulting
from a 200 RSB calculation at zero temperature. The thick, top black line is a graph of the initial
condition g(a0, y) = log

`

1 + e−2y
´

and the bottom black line is the new initial condition g∞(y)
at a = ∞, x = 0 as obtained from the ordinary differential equation (5.20). By further increasing
the order of RSB, the functions do not become dense.

The finite x domain, which corresponds to a = ∞, is the region in which the order function is trivial at
the first sight in that q(a = ∞) = q̃(x > 0) ≡ 1. q̃(x) is, however, not a function of a continuous variable
at zero temperature. Instead, it is given only at discrete points. In this sense, the finite x domain is hardly
trivial because, though ˙̃q(x) = 05 in this region and the PDE seems to predict constant kerC for 0 < x < 1,
something happens there. What exactly happens, is hard to catch at ∞ RSB and T = 0 because it is not
possible to do calculations in this regime for x > 06. The best one can do for now is to investigate the finite
x region at κ = ∞ and T = 0 from two limiting cases in, i.e. finite κ at T = 0 and finite T at κ = ∞ (see
Sect. 4.3.2). Luckily, as will be shown below, the following qualitative description of the x > 0 regime is
sufficient to derive an exact formulation for the zero temperature continuous theory.

In the discrete regime of the order function (see Fig. 4.19), the assumption da → 0 or equivalently dx → 0
needed in the derivation of the PDE which governs kerC(a, h) or g(a, y) is wrong. This means that it is
not a priori clear that the initial condition which is given at x = 1 can propagate to x = 0 by means of a
PDE7. This statement is further supported by an investigation of the first few functions g(ai, y), i = 1, ...
of a calculation within 200 orders of RSB at T = 0. In regions where the ai become dense, the difference

5If calculated from a difference quotient instead of a differential quotient.
6At least not within the formulation used here.
7Nevertheless, it is seems that a PDE description of 0 < x ≤ 1 can be established. Pankov [Pan06] found that it is possible

by a proper rescaling of the differential equations, to do exactly this. The idea behind his treatment, however, is completely
different from the present argumentation.
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between successive function g(ai, y), g(ai−1, y) approaches zero for κ → ∞. The functions corresponding to
the largest ai, however, remain finitely spaced at zero temperature in the large κ limit. This is shown in
Figure 5.1 where the first 15 functions which result from the recursion relation are plotted. As a result,
in this region one must still use the recursion relation and so the initial condition g0(y) = g(a0, y) is not
connected to the validity domain of the PDE 0 ≤ a < ∞. This discreteness is extremely inconvenient for
actual calculations because in principle one must maximize the free energy with respect to the function q(a)
in the finite a domain and, in addition to that, with respect to infinitely many parameters mi which enter
the recursion relation at a = ∞.

There is, however, a simpler and much more convenient approach to circumvent the explicit treatment of
the infinitely large set of mi with 0 < mi ≤ 1. It is well established (see e.g. Chap. 4 or [Pan06]) that, up
to second order in a−1, the order function q(a) can be expanded near a = ∞ as

q(a) = 1 − c a−2 + O(a−3) (5.18)

with c ≃ 0.401. Utilizing this expansion of q(a), the PDE (5.17) can also be expanded near a = ∞. Doing
so, one finds to first order in a−1 (dropping the y- and a-dependence of g(a, y) for notational convenience)

ġ =
1

a

[
g − yg′ − c(g′′ + 2g′ + (g′)2)

]
. (5.19)

Obviously, there is a singularity in the PDE which governs g(a, y) at a = ∞. Typically such an equation
leads to a logarithmic divergence in its solution at a = ∞8. The only way to avoid such a divergence, which
is obviously not allowed in the present case, is that the term in brackets in (5.19) vanishes at least with a−1

for a → ∞. This means, that g(∞, y) = g∞(y) must satisfy the ordinary differential equation

g∞ − yg′∞ − c(g′′∞ + 2g′∞ + (g′∞)2) = 0 (5.20)

for the remaining part of g(a, y) at a < ∞ to be meaningful. Thus, the central claim of the continuous zero
temperature RSB is:

At zero temperature, the initial condition (5.16) can be replaced by the initial condition
g(∞, y) = g∞(y) which is the solution of the ordinary differential equation (5.20).

By this replacement, the detailed analysis of the 0 < x ≤ 1 regime has been circumvented in that one
can be sure that after the finite x recursion starting at x = 1, the function g(x, y) has been driven to
g(x = 0, y) = g∞(y). The further evolution of g(a, y) from a = ∞ to a = 0 can now be performed by means
of the full PDE (5.17).

The new initial condition g∞(y) is plotted in Figure 5.1. Obviously, the recursion relation indeed drives
g(ai, y) to the function g∞(y) which is needed for rendering the remaining part (i.e. 0 ≤ a < ∞) of the
theory meaningful.

In order to gain better overview of the functions q(a) and g(a, y) on their whole domains, it is convenient
to map the a-interval [0,∞] to [0, 1] by means of a transformation to a new variable

a → ζ =
a

1 + a
. (5.21)

In Figure 5.2 the functions g(ζ, y) are shown for three different temperatures. The kink line reflects the
position of the break point at finite temperatures. Above the break point, g(ζ, y) trivially decreases until
the break point is reached. The decrease is termed trivial, because one could get rid of it by transforming
g back to kerC at and only at finite temperatures. In Figure 5.3(a), this triviality at finite temperatures
becomes obvious: there is no data point defined in the trivial-decrease region between the location of the
initial condition ζ = (1 + T )−1 and the location of the first kerC from the recursion relation at ζ = a1

1+a1
.

In this range, the detailed shape of the ζ-dependence of g(ζ, y) is a matter of definition - in Figures 5.2 and
5.3(a) it has been chosen linear. The numerical solution of the finite T differential equations is difficult near
the break point. With some effort, however, a solution with considerable accuracy is possible [CR02]. At
zero temperature, the direct numerical solution is not possible due to the singularity at ζ = 1 which cannot
be represented by one single function g(ζ = 1, y). At T = 0 and κ = ∞, g(ζ = 1, y) is not single-valued9

8Compare to the simple case of an ordinary differential equation of the form ḟ = f/a.
9This is similar to the situation for q(a) at a = ∞, discussed in Section 4.2.1. The second derivative of the order function is

also multiple-valued at a = ∞.
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Fig. 5.2: Plots of the function g(ζ, y) at various temperatures T = 0.3 (a), T = 0.1 (b), T = 0 (c). The
functions have been extracted from a 200RSB calculation in case of the T = 0 plot and from 35
RSB calculations for T = 0.1, 0.3.

as can be seen in Figure 5.3(b). Obviously, the finite spacing between successive iterations for the largest a
parameters does not vanish. However, one may define the function g(ζ, y) single-valued at ζ = 1 by setting
g(1, y) = g∞(y). Doing so and solving the PDE (5.17) numerically, one obtains the red line in Figure 5.3(b).
The convergence of the points from the finite RSB calculation, representing the discrete function g(ai, 0)
to the red line, obtained by solving the ∞ RSB differential equation, strongly supports the validity of the
approach, proposed here.
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Fig. 5.3: (a) Plots of g(ζ, 0) for T = 0, 0.03, 0.1, 0.3. The black dots represent the numerical data of
the large a region as extracted from 200 RSB (T = 0) and 35 RSB (T > 0) calculations. Part
(b) shows more details of the T = 0 situation. The red dots correspond to the finite RSB
versions of g(ζ, 0) of lower RSB orders and the blue dots to higher RSB orders. The total range
is κ = 30, ..., 200. The red line corresponds to a numerical solution of the ∞ RSB differential
equation (5.17).

The differential equation of the function g(ζ, y) is obtained directly from the differential equation (5.17),
governing g(a, y):

ġ(ζ, y) =
g(ζ, y) − y g′(ζ, y)

1 − ζ
− q̇(ζ)

2(1 − ζ)2
[
g′′(ζ, y) + 2ζg′(ζ, y) + ζ(g′(ζ, y))2

]
(5.22)

Now that the singular point at a = ∞ or equivalently at ζ = 1 is identified and a new initial condition has
been given, one must find a way to numerically solve the differential equation (5.22) in the ζ interval [0, 1]
with the initial condition g(1, y) = g∞(y). The straightforward numerical solution is, however, prevented by
the singular point of (5.22) at ζ = 1.

5.3.2 Solving the differential equations

Usually, singular points in differential equations can be managed by expanding around them. This leads
to differential equations with reduced dimensionality - one for each order in the expansion parameter. It is
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interesting to consider the expansions around a = ∞ and around ζ = 1 at the same time, because they seem
to be inequivalent with respect to their convergence properties.

For the 1
a and (1 − ζ) expansions, one can write

g(ζ, y) = g∞(y) + (1 − ζ)g
(ζ)
1 (y) + (1 − ζ)2g

(ζ)
2 (y) + O(1 − ζ)3, (5.23)

g(a, y) = g∞(y) +
1

a
g
(a)
1 (y) +

1

a2
g
(a)
2 (y) + O(a−3) (5.24)

and Q(ζ) = q̇(ζ)(1− ζ)−1 or Q(a) = q̇(a)(1 + a)3, respectively. This expansion leads to ordinary differential

equations in y for the functions g
(ζ)
i (y), g

(a)
i (y), supplemented by the boundary conditions

d

dy
gi(y)

∣
∣
∣
∣
y=0

= 0, gi(∞) = 0. (5.25)

Figures 5.4 and 5.5 show the results of the numerical solutions of the differential equations arising from
the 1

a -expansion and from the (1 − ζ)-expansion, respectively. The underlying10 model function for q(a) is
the erf-model with parameter ξ = 1.13 (see Section 4.2.1). It is not a big surprise that the convergence
regions of the expansions do not extend down to the point ζ = a = 0 at which the function g(ζ, y) enters the
free energy, because the convergence of an expansion of the order function at the critical point also stops
at ζ ≃ 0.3 due to singularities in the complex plane. Near the singular point, however, one can gain an
arbitrary well approximation by the expansion.
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a numerical solution of the full PDE (5.17).
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10q(a) is not self-consistently determined here. The present discussion rather aims at the convergence properties of the
expansions (5.23) and (5.24).
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In parts (b) of Figures 5.4 and 5.5, a numerical solution of the PDEs is plotted together with the expansions.
It has been obtained by using the expansions at a = 10 and ζ = 0.9, respectively, as initial conditions for
the full PDEs11. The solution is consistent with the prediction of the finite RSB treatment (see e.g. Fig.
5.3). Though the 1

a -expansion is equivalent to the (1− ζ) expansion in that they can be translated into each
other, the 1

a -expansion seems, on the first sight, to have better convergence properties for larger expansion
parameters. It turns out, however, that the (1 − ζ) expansion yields better initial conditions for the full
PDE.

With the combination of the expansion near the singular point and the numerical integration in the non-
singular domain, one is in principle able to calculate the free energy f from an arbitrary model order function
at T = 0 and maximize f with respect to the model parameters. It turns out, however, that the free energy
varies only weakly when changing the order function so that, for such a program to work, one would require
rather high precision in the numerics. A more convenient approach for the self-consistence calculations will
be presented in the subsequent section.

5.3.3 The fixed point at a = ∞

In the present subsection the notion of a repulsive fixed point at a = ∞ (or ζ = 1) shall be investigated more
closely on the basis of the a formulation. This idea is guided by the fact that it is impossible to numerically
integrate equation (5.17) ’upwards’. The reason for this is the presence of a diffusion part in equation (5.17).
This diffusion part arises from the successive convolution with a Gaussian (see eqn. (5.4)) in the continuous
limit (da, dq → 0).

Numerically integrating a diffusion equation in the ’wrong’ direction leads to an exponential amplification

of fluctuations on a scale ∆x in a characteristic time (∆x)2

D where D is the diffusion constant. The proper
integration direction can be found from the sign of the prefactor of the second derivative in the corresponding
PDE. In case of equation (5.17) the proper direction is ∞ → 012. Integrating ’upwards’ leads to a result as
shown in Figure 5.6. Here, the seemingly paradoxial situation is encountered in which increasing the accuracy
of the numerical method13 leads to a worse quality in the solution: in Figure 5.6(a), for high accuracy, the
integration starts at a = 10 and the solution is completely wrong after ∆a ≃ 0.01. A further increase of
the integration interval leads to a total failure of the routine. In Figure 5.6(b), for low accuracy, one can
integrate over an interval ∆a ≃ 3 before the method fails. The reason for this curious behavior is that if a
fine grid of points with finite precision14 is used to calculate a derivative, numerical fluctuations may become
important for a sufficiently fine grid, corresponding to high accuracy. For lower accuracy, the numerical
fluctuations do not matter. Instead, the error due to the truncation of the order in the 1

a -expansion, used
for the initial condition, are the dominant fluctuations. The spatial scale of those errors are much larger,
though, and, as a result, they grow less rapidly than the numerical fluctuations.

From this point of view, the integration in negative a direction (also in negative ζ direction) is stable while
integration in the opposite direction is highly unstable against any deviations from an optimal function
which is defined at any a ∈ [0,∞[. This gives rise to a fixed point in the space of functions g(y) defined on
y ∈ [0,∞[ with boundary conditions g′(0) = −1 and g(∞) = 0. This fixed point is given by g∞(y) and the
solution of the PDE (5.17) defines an ’optimal line’ in the space of the functions g(y).

The ultimate consequence of this fixed point and the optimal line approaching it is that it is impossible to
obtain g∞(y) by a numerical integration of (5.17) to a = ∞, starting at finite a15. Since g∞(y) is well known
as the solution of an ordinary differential equation, such an upwards integration is not required. Actually
one is only concerned with an integration in negative a direction. Nevertheless, the existence of this fixed
point is important, as will become clear below.

11The full PDEs have been numerically solved by the NDSolve[] routine of MathematicaR©. It seems that the methods
implemented in NDSolve[] have severe problems near the singular points so that one cannot start slightly below ζ = 1 but must
surmount a considerable interval [0.9, 1] by the expansion. A descent numerical program, designed for treating eqns. (5.22) and
(5.17) is in order here, but this is beyond of the present work’s scope.

12In the large a regime, the diffusion constant varies as a−1 in leading order. As a result, there is a algebraically diverging
term for a → ∞ in the solution of the PDE.

13Increasing the accuracy means that more samples in y direction are used to calculate the derivatives at a given a.
14A double variable in machine precision has about 16 significant digits (base 10).
15This would be convenient for instance if one wants to check the validity of the expansion (5.24).
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5.4 Sommers-Dupont Ansatz

A point which has not been addressed above is the self-consistence of the order function q(a) at T = 0. It
turned out that a direct maximization of the free energy (5.1) in the space of possible order functions would
require an extremely careful programming of the PDE so that the desired precision can be gained. Another
problem of the direct maximization is the actual modeling of the order function - one must assure that the
model function is sufficiently flexible so that the actual solution of the maximization is contained in the
model. All in all, one can say that direct maximization of f [q(a)] is inconvenient and it would be desireable
to circumvent it. In the following, I describe a method which makes this possible. It is analogous to [SD84].

5.4.1 The method of functional Lagrange-multipliers

The trick is to view the free energy optimization problem in a larger space, namely in the space of the functions
{q(a), g(a, y)}. The function g(a, y), however, is constrained to fulfill the partial differential equation (5.22).
This constraint may be incorporated by introducing a functional lagrange multiplier p(a, y) and redefining
the free energy

f̃ = −1

4

∫ ∞

0

da(1 − q(a))2 − g(0, 0) +

∫ ∞

0

da

∫ ∞

0

dy p(a, y) F [g(a, y), q̇(a)] (5.26)

where (see equation (5.22))

F [g(a, y), q̇(a)] =
g − y g′

a + 1
− q̇

2
(a + 1)

[
(a + 1)g′′ + 2ag′ + a(g′)2

]
− ġ. (5.27)

According to the usual Lagrange-multiplier formalism, the functional derivatives of f̃ with respect to
q(a), g(a, y) and p(a, y) must be zero. Complemented by the initial condition for the differential equa-
tion (5.27), one obtains a closed set of equations for g(a, y), p(a, y) and q(a). Rather than rederiving these
self-consistency equations from (5.26), I directly want to use the results from Ref. [SD84] and adopt them
to the present formulation by rescaling them properly. This is quite instructive because it shows the relation
of the present formulation to the traditional formulations which work at finite T only.

5.4.2 The continuous self-consistency equations

In Ref. [SD84], RSB has been investigated by Sommers and Dupont in a generalized gauge [DGD82] at
finite temperatures with the help of functional Lagrange-multipliers, as described above. The resulting self-
consistency equations, derived in this work, shall be used here in the special case of the Parisi gauge, i.e.
the additional Sommers-Dupont gauge order function ∆(x) is related to q̃(x) by ∆̇(x) = −βx ˙̃q(x). The
quantity m(x, h), which is related to G(x, h) in equations (5.12) and (5.13) by βm(x, h) = Ġ(x, h), and
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the quantity P (x, h) which is the functional Lagrange-multiplier are given as the solutions of the partial
differential equations

ṁ(x, h) = −
˙̃q(x)

2
[m′′(x, h) + 2βxm(x, h)m′(x, h)] (5.28)

Ṗ (x, h) =
˙̃q(x)

2
[P ′′(x, h) − 2βx[m(x, h)P (x, h)]′] (5.29)

with initial conditions
P (0, h) = δ(h), m(1, h) = tanh(βh). (5.30)

Once the functions m(x, h) and P (x, h) are known, the order function can be calculated at each x from them
by evaluating the integral

q̃(x) =

∫ ∞

−∞
dh P (x, h)m2(x, h). (5.31)

Equations (5.28)-(5.31) define a complete set of equations from which the order function q̃(x) can be calcu-
lated iteratively (see e.g. [CR02]). These equations are valid for any domain of the order function in which
the block size parameters are continuous. At finite temperature, this is the whole interval [0, x̄1]. At T = 0,
however, the block size parameters are dense only at x = 0. The a-formulation resolves x = 0 and thus is
the formulation of choice for T = 0. To translate the Sommers-Dupont equations to the formulation, used
in the present work, some simple rescalings are in order:

x → a = βx, h → y = h(1 + βx), P → p = (a + 1)P (5.32)

Note that P (x, h) has been normalized
∫ ∞
−∞ dhP (x, h) = 1, ∀x16 while p(a, y) is normalized to

∫ ∞
−∞ dy p(a, y) =

(a + 1)2. After the rescaling one obtains the desired partial differential equations which are valid at T = 0
in the finite a domain.

ṁ(a, y) = − q̇(a)

2
(a + 1) [(a + 1)m′′(a, y) + 2am(a, y)m′(a, y)] − y m′(a, y)

a + 1
(5.33)

ṗ(a, y) =
q̇(a)

2
(a + 1) [(a + 1)p′′(a, y) − 2a[m(a, y)p(a, y)]′] − y p′(a, y) − p(a, y)

a + 1
(5.34)

The form of the corresponding initial conditions requires an analysis similar to the discussion in Section
5.3: the initial condition of P (x, h) is given at x = 0 and since P (x = 0, h) = p(a = 0, y = h) and a = 0
is not a singular point of the differential equations, one can directly adopt p(0, y) = δ(y). For the m(a, y)
initial condition, however, one must respect the singular point at a = ∞ properly. This is done in the next
subsection. The equation for the zero temperature order function now reads

q(a) =
1

(a + 1)2

∫ ∞

−∞
dy p(a, y)m2(a, y). (5.35)

5.4.3 Self-consistence at a = ∞
At a = ∞, equation (5.33) has a singularity of the same type which has been encountered in the discussion
of the differential equation, governing the function g(a, y). Again, this singularity leads to an ordinary
differential equation which determines m(a = ∞, y) = m∞(y). It is derived by expanding equation (5.33) at
a = ∞, as usual (see Sec. 5.3.2). Similarly, a singular point at a = ∞ is found in equation (5.34) and again
an ordinary differential equation can be derived for a function p(a = ∞, y) = p∞(y) by an a−1 expansion.
One obtains

0 = c [m′′
∞(y) + 2m∞(y)m′

∞(y)] + ym′
∞(y) (5.36)

0 = c [p′′∞(y) − 2(p∞(y)m∞(y) + m∞(y)p′∞(y))] − yp′∞(y) + p∞(y) (5.37)

Interestingly, the differential equations obtained in the a-formulation from the expansion at a = ∞ are
completely analogous to equations (5) and (6) in [Pan06] which have been obtained in the x-formulation in
the limit x → 0. Obviously, there is a relation between those formalisms. This relation will be discussed

16This is easily seen by integrating equation (5.29) over y = −∞, ...,∞.
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in Section 5.4.5. As a result of this relation, the equations (5.36) and (5.37) can be solved as described in
[Pan06].

Utilizing the arbitrary precision arithmetics unit of Mathematica R©, one can easily compute the expansion
coefficient c of the a−2 term in the order function with many significant digits. Here, I give the result of a
computation with 18 significant digits

c = 0.410 802 099 693 446 683 (5.38)

in consistence with [Pan06] but extending the accuracy by several orders of magnitude. With a more advanced
programming, 30-60 significant digits of c should be easily achievable.
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Given the solubility of the self-consistency equations at a = ∞ to 0th order in a−1, it is natural to ask
whether it is possible to penetrate the finite a regime by means of self-consistency equations which arise from
the higher order a−1 expansions. If this was possible, one could calculate an expansion of q(a) at a = ∞ to
arbitrary order in a−1 without knowing about the initial condition of p(a, y) at a = 0. This means that an
external field h > 0, which only enters this initial condition, would not affect q(a) wherever the a−1 expansion
of q(a) converges. Moreover, one could use p∞(y) as an alternative initial condition of (5.34) at a = ∞ and
integrate both differential equations (5.33) and (5.34) starting at a = ∞ down to a = 0 without knowing
something about the existence of an external field. As a result, the PaT projection hypothesis would have
to be exact at T = 0. However, it has been seen in Section 4.2.3 that this is not true.

To understand the reason why one cannot simply integrate equations (5.33) and (5.34) down to a = 0
starting at a = ∞ where m(∞, y) = m∞(y) and p(∞, y) = p∞(y) are known, it is helpful to recall the notion
of the fixed point in the PDE, governing g(a, y) (see Sec. 5.3.3). Analyzing the PDEs of m(a, y) and p(a, y)
in the same manner, one also encounters fixed points at a = ∞, but while for m(a, y) the fixed point is
repulsive, the p(a, y) fixed point is attractive. This means that, no matter which initial condition one starts
from at small a, equation (5.34) always drives p(a, y) to p∞(y) as a → ∞. This is obvious from the sign of
the p′′(a, y) term in (5.34). Thus, it cannot be possible to integrate (5.34) downwards in the same sense as
it has not been possible to integrate (5.17) or (5.33) upwards.

A typical objection to the previous argumentation would be: But I actually can expand the PDE (5.34)
around a = ∞ and obtain ordinary differential equations! Indeed, it is not a very striking argument that it
is impossible to numerically integrate a differential integration in a specific a direction because one is not
able to control the numerical fluctuations. If one only was clever enough, one could eventually solve the
PDE analytically, where directions of integrations do not matter17. The ultimate reason which prevents the
solution of p(a, y) near a = ∞ by means of an expansion around a = ∞ is that no expansion in the style of
(5.24) can exist which obeys the normalization condition

∫ ∞
−∞ dy p(a, y) = (a + 1)2 and so the answer to the

objection is: Yes, you can expand (5.34), but the expansion is not element of the space of the allowed (i.e.
properly normalized) functions p(a, y).

Technically, the solutions of the differential equation (5.34) with an initial condition at a = ∞ are
nonunique. Because of the complicated type of the differential equation, however, it is hard to analyze its
existence and uniqueness properties. The Cauchy-Kowalevski theorem [Fol95] gives a hint. The local exis-
tence and uniqueness of a Cauchy initial value problem is only shown for analytical coefficient functions. The
coefficient functions of (5.34), however, are singular at a = ∞ and so, according to the Cauchy-Kowalevski

17Other numerical methods for solving PDEs which reduce the influence of high frequency fluctuations are (pseudo-)spectral
codes. They might also be capable of numerically integrating the PDEs in the wrong direction
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theorem, the solution need not be unique. Thus, the singularity of (5.34) at a = ∞ is responsible for the
violation of the PaT projection hypothesis at T = 0. But the same argumentation would also be applicable
to the m(a, y) differential equation, the solution of which is obviously unique. After all, there is, to my best
knowledge, no theorem in the theory of partial differential equations which allows to proof unambiguously
the uniqueness of the solution of (5.33) and the nonuniqueness of the solution of (5.34) so that this statement
can only be tested numerically.

5.4.4 Self-consistence in the full continuous a interval

For the full solution of the zero temperature continuous RSB one must solve the self-consistence equations
numerically for 0 ≤ a < ∞. The initial condition for m(a, y) can be obtained at finite a by means of
the expansion technique of Section 5.3.2. The initial condition for p(a, y) is a Dirac delta function which
is numerically inconvenient. The dominant part of (5.34) for nearly delta peaked functions, however, is
a diffusion equation which can be solved analytically. Thus one can use a properly rescaled Gaussian
distribution (which is the solution of the diffusion equation with a δ(y) initial condition) at a > 0 as an
initial condition for p(a, y).

The remaining integrations must be performed numerically. This has been done in the present work only
to the extent that the practical solubility can be checked. The differential equations have been integrated by
the NDSolve[] routine of Mathematica R©. It turns out that the differential equations can indeed be solved
numerically with considerable accuracy. However, again a much larger accuracy is needed in order to obtain
a self-consistent order function q(a) at infinite RSB which is comparable in accuracy to the high precision
computations of Chapter 4. One only can say that, within a numerical error of ε ≃ 0.005, the 200 RSB order
function is reproduced by the present infinite RSB method. In Figure 5.8, the numerical solutions of the
functions m(a, y) and p(a, y) are shown.
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Fig. 5.8: Numerical solutions of the partial differential equations (5.33) and (5.34). Part (a) shows the
difference m(0, y)−m(ζ, y) in order to resolve the variations on the ζ or a scale. In Part (b), the
absolute p(a, y) is shown.

Much better accuracy can probably be achieved by utilizing the method of pseudo-spectral codes [For98].
These have been used with great success for the solution of the finite T differential equations [CR02]. The
biggest issue at finite temperatures, i.e. the determination of the location of the break point, is absent at
T = 0 so that it is indeed very likely that such a careful treatment of the PDEs leads to a considerable gain
in precision. This, however, is beyond the scope of the present work.

From Figure 5.8 one can see that the nontrivial y-domain in which p(a, y) is non-zero becomes large for
a > 1, compared to the non-trivial domain of m(a, y) where m(a, y) < 1. As a result, the integration (5.35)
requires the explicit treatment of a large y-region. Using the normalization condition of p(a, y) this problem
can be circumvented and one can write

q(a) = 1 − 1

(a + 1)2

∫ ∞

−∞
dy p(a, y)(1 − m2(a, y)). (5.39)
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The integrand in (5.39) is non-zero only in the restricted nontrivial domain |y| . 5 of m(a, y) and one can
restrict the treatment of the differential equations to this domain.

5.4.5 Relation to Pankov scaling

It has been pointed out above that the a = ∞ expansion of the rescaled Sommers-Dupont partial differential
equations in the a formulation leads to the same ordinary differential equations for 0th order in a−1 as
Pankov obtains for his x-formulation. In the following, I will discuss the relation between those two zero
temperature formulations.

As explained in Section 4.3.2, the finite x scale and the finite a scale are inequivalent at zero temperature,
while at T > 0 there exists a one-one mapping between them. For a complete description of the SK-model
at T = 0, both scales must be considered. However, the scales are strictly separated by the fixed point at
(a, x) = (∞, 0). This separation allows one to look at one of the two scales without considering the other.

0

1

a = 0

x = 0

a = ∞

x = 0

a = ∞

x = 1

quasi-continuous regimefull-continuous regime

Pankov-scalinga-formulation

Fig. 5.9: The regimes of Pankov-scaling [Pan06] and of the a-formulation derived in the present work.
Both regimes are connected at a = ∞ and x = 0.

In each of the two formulations, structure is hidden in (or better beyond) the critical point. While the
a-formulation mainly resolves the equilibrium properties of the SK-model and the nonequilibrium properties
are hidden, it is clear that Pankov-scaling resolves only the nonequilibrium properties and has no access to
the fully continuous part of q(a) at T = 0.

Another interesting fact is that Pankov describes the finite x regime at T = 0 by differential equations.
From the point of view of the above discussion, where x > 0 has been termed the ’discrete regime’, this is
rather intriguing. Nevertheless, the resolution of this discrepancy is quite simple: For all finite temperatures
one may treat x > 0 as a continuous regime. On the other hand, the calculated observables are all continuous
in the zero temperature limit as well as in the κ → ∞ limit. Thus the order of limits makes no difference for
them. For the order function18, however, the limits do not commute as has been seen in the scaling analysis
of Chapter 4. Thus, whether one calls the x > 0 regime discrete or continuous is a matter of the order of
limits.

18Also the finite κ approximation by means of a step function.



Chapter 6

Conclusion and outlook

In this thesis, the low-temperature regime of replica symmetry breaking in the SK-model has been thoroughly
investigated. In order to access this regime and to perform self-consistence calculations with high accuracy
at high orders of replica symmetry breaking, a formalism has been developed which reduces the numerical
effort to the absolute minimum. The central idea of its derivation is the identification of asymptotic regions
in which the recursion relations can be solved analytically. The new object in the numerical treatment is then
the correction to this asymptotic regime, represented by a sequence of so-called kernel correction functions
kerCi(h). This method increased the efficiency of the numerics considerably so that up to 200 orders of RSB
could be calculated at zero temperature and zero external field, and up to 60 (65) orders of RSB for finite
temperature (external field). The remarkable high precision of these calculations allowed the extraction of
several quantities with accuracy exceeding the literature values by several orders of magnitude. For instance,
the ground state energy extracted from the T = 0 and h = 0 calculations

E0 = −0.763 166 726 566 547

exceeds the accuracy of the best literature value [CR02] by 10 orders of magnitude.
The results of the numerical calculations have been analyzed in great detail. Especially the convergence

behavior of various observables and of the order function with respect to the RSB order has been investigated
since the high but finite RSB regime has been addressed in the present work for the first time. Several
unexpected features of finite order replica symmetry breaking have been observed.

• Discrete spectra in the Parisi block size ratios at T = 0 and h = 0 have been found. Normally, it is
expected that all block size ratios ai

ai−1
approach unity in the κ → ∞ limit and at finite temperature

most1 of them indeed follow this expectation. At zero temperature, however, the large a ratios are
smaller than one and thus there is a large spacing between successive block size parameters. The
impact of this fact on the continuous κ = ∞ formulation has been thoroughly investigated and led to
a new continuous formulation of Parisi RSB.

• Scaling in the variables κ−1, T and h turned out as an important concept for resolving virtual con-
tradictions in the data analysis. The scaling variables always appear together in pairs (κ−1, T ) and
(κ−1, h) and give rise to temperature vs. RSB order and external field vs. RSB order scaling, respec-
tively. The universal exponents of the crossover lines κ ∼ T−νT and κ ∼ h−νh have been extracted
and are consistent for all investigated quantities.

• At zero temperature, two different scales of the order function are important. The a < ∞ regime
and the x > 0 regime, which are completely equivalent at finite temperatures, become fundamentally
different at T = 0. While the x > 0 regime is trivial in the sense that the order function q(x > 0) ≡ 1
there, the a < ∞ regime yields nearly all important informations about, e.g., the ground state energy
or the effects of a non-zero external field.

The findings from the finite RSB analysis were used to develop a proper continuous zero temperature
theory for infinite order replica symmetry breaking in the a < ∞ regime. A partial differential equation for
the continuous version of the kernel correction function, analogous to the original Parisi equation, has been

1The h = 0 discreteness which survives at finite temperatures is not as essential as the T = 0 discreteness (see Sec. 4.3).

87



88 CHAPTER 6. CONCLUSION AND OUTLOOK

derived in the κ → ∞ limit. The discreteness at large a invalidates2 the treatment of Parisi RSB in the x > 0
regime in terms of a differential equation directly at T = 0. The initial condition of the a < ∞ differential
equation, however, is defined in this invalidity domain. An analysis of the a → ∞ limit of the continuous
formulation led to the introduction of a new initial condition. It has been argued that in the discrete x > 0
regime, the kernel correction function is driven to this initial condition at the point (a, x) = (∞, 0) by the
discrete recursion sequence. Some preliminary solutions of the proposed zero-temperature continuous RSB
formalism have been given and they are in excellent agreement with the finite order RSB calculations at
T = 0.

Though, many features of the low-temperature regime of Parisi RSB have been identified and analyzed,
according to the well known adage “The more you know, the more you know you don’t know.“ [TOP97], lots
of new questions appeared during this work which have not been answered, yet. One of the most fundamental
questions is whether the zero temperature discreteness in the block size ratios and in the x > 0 regime can
actually be detected within numerical simulations of the ground state of classical spin glass models. Since
the discrete regime corresponds to short time scale behavior, there is at least in principle a chance to observe
such behavior in Monte-Carlo simulations. The lack of a satisfactory interpretation of this discreteness,
however, hampers the design of such an experiment. Thus, translating the formal statements about the
x > 0 regime from the present work as well as from Ref. [Pan06] to ’real space’ would be the first step for
addressing this issue.

Another, maybe more straightforward task is the systematic numerical analysis of the classical n-component
glasses according to the formalism which has been proposed in the present work. Those results for n = 2, 3
are needed for a successfull investigation of dynamics in quantum glasses at low temperatures. This task
turned out to be extremely intricate at low temperatures [Bec04] because in the limit T → 0, the number
of Matsubara frequencies, which must be considered, diverges. At T = 0 and κ = ∞ directly, however,
there could be the hope that at least the equilibrium part (a < ∞) of the problem can be treated with the
continuous formalism which has been proposed in this work.

In any case, the continuous T = 0 formalism, derived in Chapter 5, deserves a thorough investigation with
the help of advanced techniques for solving partial differential equations. The high precision ground state
energy which has been found in this work can serve as a benchmark for such a program. More knowledge
about the singular points in the differential equations at (a, x) = (∞, 0), gained from the further analysis,
would also be extremely useful for the topics pointed out above.

2It seems, however, that a continuous treatment of the x > 0 regime is possible. For a discussion of this issue, see Section
5.4.5.



Zusammenfassung

In der vorliegenden Dissertation wurden die Eigenschaften der Replikasymmetriebrechung (RSB) im Sherrington-
Kirkpatrick-Modell bei tiefen Temperaturen gründlich untersucht. Um entsprechend tiefe Temperaturen
und sogar T = 0 zu erreichen und gleichzeitig die Selbstkonsistenzrechnungen mit hoher numerischer
Genauigkeit und bei hohen RSB Ordnungen durchzuführen, wurde ein Formalismus entwickelt, welcher
den numerischen Aufwand auf ein absolutes Minimum reduziert. Das zentrale Konzept der Ableitung dieser
Formulierung ist die Identifikation asymptotischer Bereiche, in denen die Rekursionsgleichungen der Rep-
likasymmetriebrechung bei endlichen Ordnungen analytisch gelöst werden können. Das neue Objekt, welches
numerisch behandelt werden muss, ist die Korrektur zu diesen asymptotischen Bereichen, welche durch
eine Reihe von Funktionen, den sogenannten kernel correction functions kerCi(h) beschrieben wird. Diese
Methode hat die Effizienz der numerischen Behandlung erheblich verbessert, so dass bis zu 200 RSB Ord-
nungen bei verschwindender Temperatur und bei verschwindendem Magnetfeld und bis zu 60 (65) RSB
Ordnungen bei endlichen Temperaturen (Magnetfeldern) berechnet werden konnten. Die ungewöhnlich hohe
Genauigkeit dieser Rechnungen erlaubte die Bestimmung vieler Observablen mit einer Genauigkeit, die
mehrere Größenordnungen über den Literaturwerten liegt. Zum Beispiel wurde die Energie des Grundzus-
tandes aus den Ergebnissen der RSB Rechnungen bei verschwindender Temperatur und bei verschwindendem
Magnetfeld zu

E0 = −0.763 166 726 566 547

bestimmt. Dieser Wert übertrifft die Genauigkeit des besten Literaturwertes [CR02] um 10 Größenordnungen.
Die Ergebnisse der numerischen Rechnungen wurden im Detail analysiert. Speziell das Konvergenzver-

halten der Ordnungsfunktion und der interessanten Observablen als Funktionen der RSB Ordnung wurde
untersucht. Dieser Bereich hoher, aber endlicher RSB Ordnungen wurde in der vorliegenden Arbeit das erste
mal analysiert und viele unerwartete Eigenschaften wurden gefunden. Die wichtigsten sind:

• Diskrete Spektren in den Parisi Blockgrößenverhältnissen bei verschwindender Temperatur und ver-
schwindendem Magnetfeld wurden beobachtet. Normalerweise würde man erwarten, dass bei unendlich
hoher RSB Ordnung alle Blockgrößenverhältnisse ai

ai−1
= 1 sind. Bei endlichen Temperaturen wird diese

Erwartung auch von den meisten3 Blockgrößenverhältnissen erfüllt. Bei T = 0 sind die Verhältnisse,
welche zu großen a gehören, jedoch kleiner als eins, was zu einem großen Abstand zwischen den Parisi
Blockgrößen führt. Die Konsequenzen dieser Diskretheit wurden ausführlich untersucht. Diese Unter-
suchung führte zu einer neuen kontinuierlichen Formulierung der Parisi Replikasymmetriebrechung.

• Skalenverhalten in den Variablen κ−1, T und h ist ein wichtiges Konzept um scheinbare Widersprüche
in der Analyse der Daten aufzulösen. Die Skalenvariablen treten immer in Paaren (κ−1, T ) und (κ−1, h)
auf und führen zum Skalenverhalten der Temperatur mit der RSB Ordnung, bzw. des Magnetfeldes
mit der RSB Ordnung. Die universellen Exponenten der Übergangslinien κ ∼ T−νT und κ ∼ h−νh

wurden bestimmt und sind konsistent für alle untersuchten Größen.

• Bei verschwindender Temperatur wurden zwei verschiedene relevante Skalen der Ordnungsfunktion
gefunden. Der Bereich a < ∞ und der Bereich x > 0, welche bei endlichen Temperaturen equivalent
sind, sind bei exakt T = 0 grundlegend verschieden. Während der x > 0 Bereich trivial ist, in dem
Sinne, dass die Ordnungsfunktion q(x > 0) ≡ 1 ist, beschreibt der a < ∞ Bereich nahezu alle wichtigen
Eigenschaften des Modells, wie z.B. die Energie des Grundzustandes oder die Wirkung eines endlichen
Magnetfeldes.

3Die durch endliche Magnetfelder kontrollierte Diskretheit, welche auch bei endlichen Temperaturen auftritt ist nicht so
fundamental wie die Diskretheit, welche durch endliche Temperaturen kontrolliert wird.
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Die Resultate der Analyse der endlichen RSB Ordnungen wurden für die Entwicklung einer kontinuier-
lichen T = 0 Theorie bei unendlichen RSB Ordnungen benutzt. Eine partielle Differentialgleichung für
die kontinuierliche Version der kernel correction function wurde, in Analogie zur Parisidifferentialgleichung,
abgeleitet. Die Diskretheit bei großen a führt dazu, dass die Behandlung der Parisi RSB bei T = 0 für x > 0
nicht in Form einer Differentialgleichung möglich ist. Da die Anfangsbedingung der partiellen Differential-
gleichung für die kernel correction function aber im Bereich x > 0 definiert ist, musste diese durch eine An-
fangsbedingung bei (a, x) = (∞, 0) ersetzt werden. Diese wurde durch eine Analyse der a → ∞ Verhaltens
der partiellen Differentialgleichung gefunden. Einige vorläufige numerische Lösungen der vorgeschlagenen
kontinuierlichen T = 0 Theorie der Parisi RSB wurden angegeben, welche mit den Rechnungen bei endlichen
RSB Ordnungen sehr gut übereinstimmen.
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Appendix A

Proofs and derivations

A.1 Steepest descent and replica limit

In Chapter 2 the field variables q̃ and m̃ in equation (2.9) are to be fixed by a saddle point argument. This
shall be discussed in some detail here in connection with the replica limit. The system size N is assumed
to be sufficiently large so that the finite size error vanishes. In order to streamline notation, I define a
d-dimensional vector v of field variables with d = nl l+3

2 . Within this notation, equation (2.9) reads
∫

Dm̃ Dq̃ e−βNg(l,m̃,q̃) = Al

∫

ddve−βNg(v) (A.1)

with

Al =
∏

ν





(
NβJν

0

2π

) l
2

(√

N

2π
βJν

)l l−1
2

(√

N

π

βJν

2

)l


 ∼
√

N
d
. (A.2)

It is assumed that g(v) has a global minimum at v = v0 and that it can be expanded in a Taylor-series near
this point. One can then evaluate the integral to second order in δv = v − v0 and obtains

〈
Z(l)

〉

d
= Ale

−βNg(v0)

∫

dd(δv) exp

(

−βN
(δv)T Hδv

2

)

︸ ︷︷ ︸

=

r

(2π)d

det[βNH]

= Ble
−βNg(v0) (A.3)

where H is the Hessian of g(v) at v0. The N -dependence of the Gaussian integral cancels the N -dependence
of Al. Further, since Bl is of the form [...]l, the replica limit of Bl is liml→0 Bl = 1. The disorder-averaged
free energy per spin is

f = − T

N
lim
l→0

1

l

(〈
Z(l)

〉

d
− 1

)
= − T

N
lim
l→0

d

dl
Ble

−βNg(l,m,q) = lim
l→0

1

l
g(l,m,q) − T d

dlBl

N
︸ ︷︷ ︸

→0

. (A.4)

At this point, one can easily understand why the terms neglected in equation (2.6) are irrelevant. These
terms are of the form

exp




1

N

∑

r

∑

ν

αν

(
∑

a

(Sa
rν)2

)k


 (A.5)

with k = 1, 2 and N -independent αν . Reconsidering those terms in (2.6) results in the replacement

g → g̃ = ... − T log tr eL̃, L̃ = L +
lk

N
a (A.6)

where L2k
S minν αν ≤ a ≤ L2k

S maxν αν
1. Since L is of order 1, the terms vanish in the limit N → ∞ and so

the free energy per spin is

f = lim
l→0

1

l
g(l,m,q). (A.7)

1LS is the length of the classical spin vector.
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Fig. A.1: The AT-line in the T -h
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line it is unstable and breaking of
replica symmetry is required. The
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An extension of the above argument has been used in [AT78] to investigate the domain of validity of the RS
assumption. The authors considered the eigenvalues of the Hessian of g(v) at the replica symmetric saddle
point by expressing them in dependence of the number of replicas l. It has been argued that the saddle
point is only stable if all eigenvalues of H are positive in the limit l → 0. The failure of this requirement
marks the transition from a RS phase to a RSB phase. This phase boundary in the T -h diagram is called
Almeida-Thouless-line (AT-line) and is shown in Figure A.1.

A.2 First integration in the recursion sequence

In the following it is shown that the first integration, i.e. the 0th level of the recursion sequence can be
analytically integrated for the quasi-isotropic case and for a general number of components n. The idea is
to evaluate the integral by exploiting the definition (2.32) of Cn

∫ G

0

Cn(β|H̃eff |) =

∫ G

0

tr exp(β H̃eff · S) = ... (A.8)

and separating the spin components ν

... = tr
∏

ν

∫ ∞

−∞

dzν
0√

2π
exp

(

βH̃ν
effSν

)

= ... (A.9)

The components of H̃eff were given by (see equation (2.73))

H̃ν
eff =

√

∆q0z
ν
0 + h + J0M +

κ+1∑

i=1

√

∆qiz
ν
i

︸ ︷︷ ︸

=Hν
eff

(A.10)

so that the integral can be solved by completing the square

... = tr
∏

ν

exp (βHν
effSν)

∫ ∞

−∞

dzν
0√

2π
exp

(

− (zν
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2
+ β

√

∆q0Sν

)

= tr
∏

ν

exp (βHν
effSν) exp

(
β2

2
∆q0S

2
ν

)

.

(A.11)
The quadratic spin variable can now be expressed by the normalization constraint before performing the spin
trace again and one gets

∫ G

0

Cn(β|H̃eff |) = tr exp (βHeff · S) exp

(

β2

2
∆q0

∑

ν

S2
ν

)

= exp

(
β2

2
∆q0L

2
S

)

Cn(β|Heff |). (A.12)

The crucial condition for being able to perform the first integration analytically is the independence of Jν

and of ∆qν
0 on the spin component label ν. If the model was anisotropic, then the sum of quadratic spin
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components in (A.12) must be replaced by2

J∆q0

∑

ν

S2
ν −→

∑

ν

Jν∆qν
0S2

ν (A.13)

and the normalization constraint S2 = L2
S could not be exploited. As a result, one must also cope with this

first integration numerically.

A.3 Irrelevance of the kernel normalization

The normalization of the kernels (2.32) is shown to be irrelevant in the sense that it only changes the free
energy by an additional constant term. This is done for the most general case of κth order of RSB in the
quasi-isotropic n-component spin glass model. For this argument, the trace term expression in equation
(2.80) is used and all f sub

i (h) are explicitly written out. Renormalizing Cn(βh1) → NCn(βh1) results in

T (h + J0M) =
T

mκ

∫ G

κ+1

log

∫ GE

κ

...

∫ GE

2

∫ G

1

[NCn(βh1)]
m1 . (A.14)

The application of the non-linear Gaussian integral operators
∫ GE

i
imply an exponentiation with ri−1 = mi

mi−1

and so the constant N can be pulled through the integral operators in the fashion

...

∫ GE

3

Nm2

∫ GE

2

∫ G

1

[Cn(βh1)]
m1 = ...

∫ GE

4

Nm3

∫ GE

3

∫ GE

2

∫ G

1

[Cn(βh1)]
m1 = ... (A.15)

Pulling N between the first
∫ GE

operator and the log results in a power mκ of N and this cancels with the
quotient in front of the trace term. As a result, the replacement Cn(βh1) → NCn(βh1) leads to

T (h + J0M) → T (h + J0M) + T logN (A.16)

This only changes the free energy by a temperature dependent term which vanishes in the derivatives with
respect to the order parameters from which the self-consistency equations are obtained.

Also the internal energy u is independent of N . This can be seen from the definition u = f − df
dT T

in which linear temperature terms in the free energy cancel. For the entropy s = − df
dT , however, the

kernel normalization matters. Further, a renormalization of the kernel can be traced back to the original
Hamiltonian. It is equivalent of adding a temperature dependent but otherwise constant term of the form
β logN to the Hamiltonian.

A.4 Asymptotic regime of the recursion relations

In this section, it is assumed that the kernel normalization has been chosen such that the asymptotic form

of Cn(x) is given by eLSx/(LSx)
n−1

2 . In order to further streamline the notation, I define l = βLS . In this
case the recursion starts with the initial condition

f sub
0 (h1) =

√
2π

In
2 −1(lh1)

(lh1)
n
2 −1

h1→∞−→ elh1

(lh1)
n−1

2

. (A.17)

I now show by induction that at finite temperatures T > 0 the functions f sub
i (hi+1) obey an asymptotic

behavior

f sub
i (hi+1)

hi+1→∞−→



f sub
0 (hi+1) exp




1

2

i∑

j=1

l2mj∆qj









mi

. (A.18)

2Here, the constant J has been reintroduced in order to be able to distinguish between different Jν in the anisotropic
spin-glass.
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By assuming that the asymptotic form of f sub
i−1 is given by (A.18) one can evaluate f sub

i (hi+1) in the limit
hi+1 → ∞ by completing the square:

∫
dhi√
2π∆qi

(
hi

hi+1

)n−1
2

exp

(

− (hi+1 − hi)
2

2∆qi

)


exp




mi−1

2

i−1∑

j=1

l2mj∆qj





(

elhi

(LSβhi)
n−1

2

)mi−1




mi
mi−1

=
exp

(

mi

(
1
2

∑i
j=1 l2mj∆qj + lhi+1

))

l
n−1

2 mih
n−1

2
i+1

∫
dhi√
2π∆qi

h
n−1

2 (1−mi)
i exp

(

− (hi+1 − hi + lmi∆qi)
2

2∆qi

)

(A.19)

The remaining Gaussian integral can be evaluated in the limit hi+1 → ∞. Up to terms of order h
n−1

2 mi

i+1 one

finds (hi+1 + lmi∆qi)
n−1

2 (1−mi). Since mi < 1 this term is the only important one. Combined with the hi+1

term in the denominator one indeed finds

f sub
i (hi+1)

hi+1→∞−→
exp

(

mi

(
1
2

∑i
j=1 l2mj∆qj + lhi+1

))

(lhi+1)
n−1

2 mi

. (A.20)

In terms of ai = βmi the asymptotic form reads

exp
(

ai

(
1
2

∑i
j=1 L2

Saj∆qj + LShi+1

))

(βLShi+1)
n−1

2 aiT
(A.21)

and in the T → 0 limit, where ai < ∞ only the numerator survives while the denominator becomes unity.

A.5 Evaluation of replica sums

In replica theory, one often needs to evaluate sums of functions of matrix elements of ultrametric matrices
of the form depicted in Figure 2.1. Typically the sums look like

1

l

∑

a,b

f(qν
ab) or

1

l

∑

a<b

f(qν
ab) (A.22)

where the quotient 1/l originates from the replica identity (1.3). In the following discussion, the index ν is
dropped for convenience, the generalization being straightforward.

With the Parisi scheme for l-dimensional ultrametric matrices where mi are block sizes chosen such that l
mi

is integer valued, the expressions (A.22) can be evaluated by successively adding contributions from smaller
blocks. One starts with the whole matrix which has l2 matrix elements qκ+1 and replaces l

mκ
diagonal blocks

with size mκ × mκ by matrix elements qκ. As a result, there are (l2 − l
mκ

m2
κ) = l(l − mκ) matrix elements

with value qκ+1. In each diagonal mκ × mκ block, smaller diagonal blocks are replaced by matrix elements
qκ−1 with the constraint that the smaller blocks with size mκ−1 × mκ−1 fit exactly in the mκ-blocks, i.e.

mκ

mκ−1
is an integer. After this replacement, one is left with l(mκ − mκ−1) matrix elements with value qκ.

This procedure is iterated κ times for κth order of RSB and one obtains

1

l

∑

a,b

f(qab) = f(qκ+1)(l − mκ) + f(qκ)(mκ − mκ−1) + ...

... + f(qi)(mi − mi+1) + ... + f(q1)(m1 − 1) + f(q0). (A.23)

Remarkably, this expression does not explicitly depend on l apart from the first term. An implicit dependence,
however, is present in form of the assumptions of mi

mi−1
and l

mi
being integer. In the replica limit l → 0,

these assumptions become meaningless, of course, and so they simply are relaxed in favor of the assumptions

1 ≥ m1 ≥ m2 ≥ ... ≥ mκ ≥ 0. (A.24)

This step is definitely not a strict mathematical derivation. One finds, however, that within these assumption,
the free energy has a maximum in the domain of the block size parameters defined by (A.24), as desired.
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In the limit l → 0 the sum can be written by collecting mi terms as

lim
l→0

1

l

∑

a,b

f(qab) =

κ∑

i=1

mi(f(qi) − f(qi+1)) + (f(q0) − f(q1)), (A.25)

or equivalently in terms of a parameters (see Section 2.4)

lim
l→0

β

l

∑

a,b

f(qab) =

κ∑

i=1

ai(f(qi) − f(qi+1)) + β(f(q0) − f(q1)). (A.26)

In the limit of an infinite number of RSB steps (κ → ∞) the parameters mi become dense3 on the interval
[0, 1]. The differences of block size parameters in equation (A.23) then becomes negative4 infinitesimal and
the replica sum can be written in terms of an integral of a function q(x) defined such that q(x) = qi on the
infinitesimal interval [qi+1, qi]. In the traditional m-formulation one finds

lim
κ→∞

lim
l→0

1

l

∑

a,b

f(qab) = −
∫ 1

0

dxf(q(x)) (A.27)

whereas in the low-temperature formalism the spin-sum reads

lim
κ→∞

lim
l→0

β

l

∑

a,b

f(qab) = −
∫ β

0

daf(q(a)) (A.28)

with q(a) defined analogously.

A.6 The trace term in the entropy

For the entropy, one must evaluate the temperature derivative of the trace term in the free energy

T (h + J0M) =
1

aκ

∫ G

κ+1

log f sub
κ (hκ+1). (A.29)

Since the recursion relation and the form of the trace term in a-formulation have no explicit temperature
dependence, ∂TT (h+J0M) can be investigated in terms of the derivative of the initial condition of the f sub

recursion. For generality, an additional normalization factor N ′ is considered. The kernel Cn(βh1) = f sub
0 (h1)

is assumed to be normalized in consistence with the literature as described in section 2.2.

∂

∂T

[
N ′f sub

0 (h1)
]a1T

= [N ′Cn(βh1)]
a1T

a1

[

logN ′Cn(βh1) − βh1
C′

n(βh1)

Cn(βh1)

]

. (A.30)

First, the Ising case n = 1 shall be discussed. Because of the h1 → −h1 symmetry, the discussion is
restricted to h1 ≥ 0. For n = 1, the kernel is C1(βh1) = 2 cosh(βh1) and the term in brackets in (A.30) can
be written as

logN ′ + log(1 + δ) + βh1 − βh1
1 − δ

1 + δ
(A.31)

where δ = e−2βh1 is small for h1 > 0 and unity for h1 = 0 when T ≃ 0. For any finite h1, (A.31) becomes
logN ′ in the zero temperature limit. For h1 = 0, however, the result of T → 0 is logN ′ + log 2. Such a
finite discontinuity with infinitely small width is irrelevant, though, since it vanishes in any integral. Thus,
the zero temperature limit of the temperature derivative if the initial condition is

lim
T→0

∂

∂T

[
N ′f sub

0 (h1)
]a1T

= a1e
a1|h1| logN ′. (A.32)

Obviously, the convention N ′ = 1 leads to the simplification that the entropy s0 at zero temperature only
results from the field term contribution in case of an Ising spin glass, i.e.

s0 = −χ2
ne

4
. (A.33)

3This is at least true for finite temperatures. The situation at T = 0 is more subtle and is discussed in section 4.3.
4Since mi > mi + 1, one obtains limκ→∞(mi − mi+1) = −dm.
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This is the convention which is used throughout this work and in the literature. One could formally cure
the negative entropy by appropriately choosing the additional normalization N ′ ≥ exp(χ2

ne/4).
A considerably more severe problem, namely a logarithmic divergence, arises in the zero temperature

entropy for non-Ising spin systems5. For general n, the asymptotic form6 of Cn, given by equation (2.36) can
be exploited to evaluate the zero temperature limit of equation (A.30). One finds

lim
T→0

∂

∂T

[
N ′f sub

0 (h1)
]a1T

= a1e
a1|h1|

[

logN ′ +
n − 1

2

(

1 + log

(
2πT

√
n

h1

))]

. (A.34)

Apart from the usual normalization dependence, represented by the logN ′ term, there is for n 6= 1 a diver-
gence in the zero temperature limit. Since this divergence is a general artefact of the classical Hamiltonian
(2.1) which is even present in a model without disorder (J = 0), the entropy’s log T divergence can be
ignored and the proper zero temperature limit is defined as the non-singular part of the whole entropy, i.e.

sn(0) = −n
χ2

ne

4
. (A.35)

Note, however, that this entropy is not equal to the negative slope of the free energy anymore if n > 1.

5Indeed, this issue is not restricted to spin-glasses. Also in classical n-component models for, say, a ferromagnet the same
divergence is encountered.

6Again, the kernel normalization is chosen in consistence with literature, as explained in section 2.2.



Appendix B

The temperature dependence of A(T )

In the present chapter, the temperature dependence of the finite κ corrections of the free energy will be
discussed in some detail because the analysis is a bit involved and a naive and superficial treatment easily
leads to wrong results. The subsequent reasoning shall result in understanding the properties of the expansion

f(κ, T ) ≃ f(∞, T ) + A(T )κ−4 + B(T )κ−5 + O(κ−6). (B.1)

It has been checked numerically that, at T = 0 as well as for finite temperatures, the leading κ correction is
indeed the κ−4 term, so that A(T ) is always the coefficient of the leading κ correction term. In the following,
the temperature dependence of A(T ) will be investigated. First of all, however, some notes on scaling regimes
are in order.

0 0.005 0.01 0.015 0.02 0.025 0.03

-0.045

-0.04

-0.035

-0.03

-0.025

T

A(T)

Fig. B.1: The coefficient of the leading κ correction A(T ) for temperatures T = 0, ...0.03. The different
colors correspond to fits to the numerical data in different κ-ranges: the red dots correspond to
fits of data between κ = 40, ..., 56 and the blue dots correspond to a data range κ = 10, ..., 26. In
the fit functions, terms κ−4, ..., κ−7 are respected.

The form of the expansion (B.1) restricts the investigation to the scaling regime RT
2 , because for a fixed

temperature T > 0 an expansion around κ = ∞ is considered (see Fig. 4.4). There is, however, only a finite
data range κ = 1, ..., 60 available for finite temperatures. In Figure B.1 one can see the function A(T ) as
resulting from fits of various κ sub-ranges of the available numerical data to the function b + A(T )κ−4 +
c κ−5 + d κ−6 + e κ−7. Obviously, the dependence of A(T ) on the data cutoff is stronger for smaller T . This
is a result from the scaling terms in the free energy in that the typical RSB orders which are required to
stay in scaling regime RT

2 diverge as T → 0. As a result, only the high T results are really results from
the desired scaling regime, while near T = 0 the regime RT

1 is entered. The crossover takes place where the
dependence on the data cutoff is largest: while at T = 0.03 all investigated data ranges are in RT

2 and at
T = 0 all data ranges are in RT

1 , in the intermediate regime T ≃ 0.005 the regime affiliation of the data
ranges changes with the mean RSB order.
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With every finite RSB order calculation one always enters RT
1 for low temperatures. It is thus quite

problematic to obtain a confident prediction of the properties of the expansion coefficient A(T ) around
κ = ∞ near T = 0. The most straightforward but also most misleading approach might be to fit a function
of the form A(T ) ≃ a+ bT z to the best available data1 in Figure B.1. Doing so, one finds z = 1

2 with a good
fit quality as can be observed by comparing the red curve with the data in Figure B.3(a). The exponent 1

2 ,
however, does not at all fit together with the scaling analysis in Section 4.4. The principal goal is now, to
extract a confident value for the exponent z (and maybe also the exponents of the sub-leading terms) from
the numerical results.
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Fig. B.2: The exponent of the leading T -term in A(T ) obtained from numerics: Slopes of log-log plots of
A(T ) in different scaling regimes RT

1 and RT
2 . The points in Part (a) have been obtained by a

fit of data in the range κ = 40, ..., 56 to a function of the form (B.1). The colored lines are the
estimated T > 0 corrections of this method under the assumptions of different exponents of the
leading term z = 2

3
, 3

5
, 1

2
(see text). Obviously, the 2

3
exponent fits best in the scaling regime

RT
2 . The deviation of the numerical data for lower T signals a crossover from RT

2 to RT
1 . In Part

(b), data in the range κ = 1, ..., 23 has been used at lower temperatures T = 0.0001, ..., 0.003 in
order to restrict the analysis to RT

1 . Obviously, the exponent converges to z = 1 for T → 0.

Typically, log-log plots are the most robust tool for analyzing the exponents of discrete numerical data
which is assumed to originate from a function f(x) ≃ axz. The slope of g(t) = ln f(et) then approaches
z for t → −∞. In Figure B.2 the slopes of the log-log plot of A(T ) − A(0) are plotted as a function of
lnT . Obviously, the simple method z = limt→−∞

d
dt ln(A(et) − A(0)) for obtaining the leading exponent z

is not applicable here. One rather finds that, when considering the region lnT > −5, the exponent seems to
converge to z = 3

5 while for lower T one obtains a larger value for z. The reason for this unusual behavior
again lies in the scaling form of the free energy: as indicated in Figure B.2(a), the investigated data in the
range κ = 40, ..., 56 is completely in scaling regime RT

2 for lnT > −5. The green curve, labeled by the
extrapolated exponent 3

5 , serves as a guide to the eye for an extrapolation of z which yields the leading
exponent z = 3

5 . It perfectly fits the data for lnT > −5.
For lower T , however, one enters the crossover regime where the numerical data deviates considerably

from the green curve. The lowest temperature for which the slope could be obtained for the data range
κ = 40, ..., 56 is T = 0.0005. For this temperature, z ≃ 0.7 is found. Obviously, this value is still located
in the crossover regime, since no convergence for ln T → −∞ can be observed when looking at T ≥ 0.0005.
For a proper analysis of the exponent z in the regime RT

1 in the temperature range T = 0.0001, 0.0002, ...
one must reduce the maximum RSB order. In Figure B.2(b) this has been done by analyzing only the range
κ = 1, ..., 23. Obviously, this data range is appropriate for a RT

1 analysis because the exponent converges
to z = 1 as lnT → −∞. An integer temperature exponent in RT

1 is consistent with the scaling analysis.
Moreover, the integerness of z in RT

1 is absolutely required by the Taylor-expandability of the free energy
near T = 0.

The remainder of this section focuses on the determination of z in RT
2 . From Figure B.2(a) one can gain

evidence that in the limit κ → ∞ and T → 0, the leading T term in A(T ) has indeed a leading T exponent
z = 3

5 . This is seen by comparing the numerical results to the analytical function2 f(x) = axz +bx2z and the

1The best data in this context is the data corresponding to the highest RSB orders.
2The reason why I have restricted the sub-leading exponent to twice the leading exponent is that this is a typical situation

in scaling theories and, moreover, that it turns out that even with relaxing this constraint, the sub-leading exponent is twice
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log-log representation g(t) = ln f(et). The slope of g(t) for large negative t is equal to the leading exponent
z, as expected

d

dt
g(t) ≃ z + 2z

b

a
ezt + O(e2zt). (B.2)

In addition to the limit t → −∞ the finite t corrections are respected in the form (B.2). By assuming a
fixed exponent z one can fit the remaining parameter a

b in (B.2) to the data set by requiring equality of
d
dtg(t)

∣
∣
t=t0

with one of the data points at t0 in the regime RT
2 as shown in Figure B.2(a). Obviously, only

the exponent assumption of z = 3
5 leads to consistent results: for exponents other than 3

5 , the analytical
model only coincides with the data point at t0 but deviates strongly elsewhere.
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Fig. B.3: Fits of functions a+ bT z + cT 2z + ... to the numerical data of A(T ): Part (a) shows the quality of
the fits with different exponents and different numbers of sub-leading terms. Part(b) shows the
error of the best fit (see text) in dependence of the exponent assumption z for different numbers
of sub-leading terms.

In Figure B.3 more evidence for a leading T exponent z = 3
5 in A(T ) is presented. In Part (a) one can

see the good quality of the z = 1
2 fit for only one T -term in the fit function which might lead to the wrong

conclusion of the existence of a
√

T term in the free energy. With only one term, z = 1
2 is indeed the only

exponent which is capable of fitting the data appropriately (see Part (b)). The z = 3
5 fit with one term

rather suggests that this exponent was wrong. However, the z = 3
5 fit with two terms shows a nearly perfect

reproduction of the numerical data - much better than a two term fit with z = 1
2 . Apparently, the high

quality of the z = 1
2 fit is only a coincidence.

In Figure B.3(b) a systematic analysis of the fit errors
∑

i

[
Ai − (a + bT z

i + cT 2z
i + ...)

]2
, where Ai is the

numerical result for A(Ti) from the range κ = 40, ..., 56, is shown. Obviously, the exponent z = 1
2 is only

stable for restricting the fit to the inclusion of only the leading T -term. When relaxing this restriction,
the exponent z ≃ 0.6 becomes stable against adding more sub-leading terms to the fit function. The small
deviation of the minimum of the fit error from z = 0.6 is presumably due to crossover effects because only a
finite number of RSB orders are available.

The two independent arguments which have been given above are strong evidence for the leading T
exponent in A(T ) to be z = 3

5 , rather than 1
2 as obtained from a naive analysis. Nevertheless, a deviation of

z from this prediction cannot be ruled out completely. However, one can be sure that there is an irregular
exponent z < 1 involved in the A(T ) expansion near T = 0. From this irregular exponent together with the
Taylor expandability of the free energy in RT

1 , one can conclude that this irregular T term must be a scaling
term and thus it must fit into the scaling analysis of Section 4.4. The fact that a T z term with z 6= 3

5 is hard
to include in the scaling picture then gives another indirect evidence for z = 3

5 .

the leading.
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Appendix C

Definitions and conventions

In the following, the most important definitions and conventions used throughout this work are outlined.
Also the convention differences to some of the literature is pointed out, since it often leads to confusion.

C.1 Gaussian integral operators

In the present work, several conventions for the important Gaussian integral operators are used. First of all,
they appear in two different forms. One is called the linear Gaussian integral (operator) and is denoted by a

G superscript
∫ G

and the other is the exponentiated Gaussian integral (operator) which is denoted by a GE

superscript
∫ GE

. Each exponentiated Gaussian integral operator contains its linear counterpart according
to

∫ GE

i

f =

∫ G

i

fri−1 (C.1)

where ri are block-size ratios and f is a general function. The definition of the block-size ratios depends on
whether one is in a-formulation or in m-formulation. In m-formulation one has

ri =
mi+1

mi
, r0 = m1 (C.2)

while in a-formulation the ratios are defined as1

ri =
ai+1

ai
, r0 = a1. (C.3)

Since ai = βmi, the only real difference between the formulations is found for r0. The linear Gaussian

integral operator
∫ G

is the same for a- and m-formulation. The specific formulation only enters in the

exponentiated version.
∫ G

is used in three different contexts:

• Directly after the replica symmetry breaking scheme is applied, the operator integrates over vector-
valued zi fields and is defined by (n is the number of spin components)

∫ G

i

f({..., zi, ...) =
1

(2π)n/2

∫ ∞

−∞
dnzi exp

(

−|zi|2
2

)

f({..., zi, ...). (C.4)

• The transformation to h-field integration leads to a sequence of functions of one vector-valued variable
hi. In this context, the operator reads

∫ G

i

f(hi) =
1

(2π∆qi)n/2

∫ ∞

−∞
dnhi exp

(

−|hi − hi+1|2
2∆qi

)

f(hi) (C.5)

with ∆qi = qi − qi+1 for 1 ≤ i ≤ κ and ∆qκ+1 = qκ+1.

1Note the different ratio r0.
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• Exploiting the orientation independence of f(hi) in the quasi-isotropic n-component spin glass, the
functions of the recursion sequence depend only on |hi| = hi and the operator is

∫ G

i

f(hi) =
1

∆qi

∫ ∞

0

dhih
n
2
i exp

(

−h2
i + h2

i+1

2∆qi

) In
2 −1

(
hihi+1

∆qi

)

h
n
2 −1
i+1

f(hi) (C.6)

with Iα(x) the modified Bessel function [Wat95].

The context which is used mostly in this work is the a-formulation together with the isotropic h-field
integration.

C.2 Parisi block size parameters and matrix elements

The indices of the matrix elements of ultrametric matrices are chosen such that smaller matrix elements and
smaller block sizes correspond to higher indices:

qi > qi+1, mi > mi+1 (C.7)

The normalization of qν is chosen such that the diagonal matrix element of the matrix qν is qν
0 (see Fig.

2.1) and is equal to 1 for the quasi-isotropic spin glasses. In the literature, one mostly finds the convention
of zero diagonal matrix elements in ultrametric matrices. Also the indices are mostly defined differently in
the literature, namely qi < qi+1 and mi < mi+1. Thus, when comparing to the literature, the conventions
must be adapted properly.



Appendix D

Numerics of the finite RSB formalism

An important part of the present work was the design of a system of programs which allowed the numerical
solution of the self-consistence problem, which has been formulated in Chapter 2 of this thesis, for high orders
of RSB. Therefore, I will present a short description of the different parts of the system in the following with
the aim of reducing the effort for coming generations of spin glass and RSB researchers in the group of Prof.
Oppermann, to assimilate and use this system.

D.1 The program suite

Due to the high numerical cost, it has been indispensable to use more than one computer for the calculations.
The need for interactive access to the calculations1, on the other hand, made the use of supercomputers
unattractive for the present problem. The computers which have been used for the numerical solution are
the 40 dual-core Opteron 242 computers in the CIP-pool of the Physics Department and the 10 dual-core
Opteron 246 computers of the Unix-Cluster of the Department for Theoretical Physics of the University of
Würzburg. In addition, some single workstations of our group have been used. All these computers had to
be connected appropriately by the system described in the following.

Fig. D.1: Design of the program suite.

The core of the program suite (see Fig. D.1) is the rsbServer. This multi-threaded program is responsible
for the management of the time consuming calculations of the free energy and its derivatives with respect
to the order parameters at a given parameter set as they are needed by the Newton algorithm part of

1Interactive access is needed because it is not always clear whether the Newton algorithm, which is used to find the maximum
of the free energy, converges. Thus the parameters must be adapted by hand during the calculation.
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rsbServer. Those calculations are distributed to all attached rsbClient programs which run on many
different machines (one rsbClient for each processor on each computer). The distribution algorithm is
such that the free resources of all computers are optimally used. The single calculations are requested by
the Newton algorithm part of rsbServer, which finds the maximum of the free energy by following the
corrected free energy gradient (Hf [q(a)])

−1 · ∇q(a)f [q(a)], where Hf [q(a)] is the Hessian of the free energy
f at q(a). The second derivatives in Hf are calculated from the (2κ + 1) difference quotients of the free
energy gradient ∇q(a)f [q(a)]. Thus, for each Newton step one needs (2κ + 2) separate calculations from the
rsbClient program. On the other hand, the main2 user interface which is written in Mathematica R©is also
connected to the rsbServer. From the main user interface, the requests for a self-consistent parameter set
with the corresponding free energy are received. The result of a request, after it has been calculated by the
Newton algorithm, is stored in a MySQL database which can also be accessed by the user interface so that
the results can be analyzed conveniently in Mathematica R©.

With this system, extensive calculations have been performed for the Ising spin glass. The parameter space
which has been covered is

• Up to 200 RSB for T = 0 and h = 0.

• Up to 30 RSB for h = 0 and T = 0, ..., 0.3 in steps of ∆T = 0.0001.

• Up to 60 RSB for h = 0 and T = 0, ..., 0.03 in steps of ∆T = 0.0001 or ∆T = 0.00005.

• Up to 65 RSB for T = 0 and h = 0, ...0.5 in steps of ∆h = 0.001 or ∆h = 0.0005.

The final results are available in form of a MySQL database dump. For each RSB order κ, there are two
tables called OrderκData and OrderκFreeEnergy. In each table, the self-consistent parameters and the free
energy are stored, respectively. The (h,T )-coordinates are found in the integer valued columns hPoint and
tPoint from which the real external field and temperature can be obtained by h = ∆h · hPoint and T = ∆T ·
tPoint. ∆T and ∆h are stored in the tables TemperatureSpacings and FieldSpacings, respectively.

D.2 High precision arithmetics

One main problem, one has to deal with in the numerics, is the weak dependence of the free energy on the
order parameters qi and ai. Because of this, the usual numerical accuracy of double or long double3 variables,
which are utilized usually for floating point computations, are not sufficient for higher RSB orders. Because
of that, one is forced to use software libraries which implement arbitrary precision floating point arithmetics
by using the CPU’s exact integer arithmetic unit to emulate high precision floating point operations. This,
of course, is much slower than directly using the floating point unit of the CPU. Nevertheless, with the kerC
formulation it is possible to carry out the computations at high RSB orders on a reasonable time scale.

The arbitrary precision implementation, which has been used in the program rsbClient, is the MPFR
library4. It is available on all standard computer architectures, though, for the sake of parallelization and
stability, the use of Unix-like systems (all computers which have been used for the numerics had a Linux
operating system) is sensible. Also the Newton algorithm in rsbServer works with MPFR and thus the
network communication between rsbServer and rsbClient works with MPFR numbers, as well. After the
maximum search finished, however, the high precision numbers are truncated to fit in normal double precision
variables before they are transfered to the Mathematica R©user interface and to the MySQL database.

2There is also a small user interface in rsbServer for the remote computer management.
3On standard 64bit CPU’s, double variables have a 52 bit mantissa which corresponds to about 16 decimal digits while long

double variables have 64 bits to store the mantissa, which corresponds to an accuracy of about 19 decimal digits.
4MPFR stands for multi-precision floating-point with correct rounding.
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[LS05] F. Lemmerich and B. Späth. Evaluation und effiziente Suche in einem 2-Personen-Nullsummen-
Spiel am Beispiel von Mühle. unpublished (2005).

[MP01] M. Müller and S. Pankov. Mean-field theory for the three-dimensional Coulomb glass. Physical
Review B, 75, 144201 (2001).

[MPRT04] A. Montanari, G. Parisi, and F. Ricci-Tersenghi. Instability of one-step replica-symmetry-broken
phase in satisfiability problems. Journal of Physics A: Mathematical and General, 37, 2073 (2004).
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