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Abstract: The Northern Bald Ibis (Geronticus eremita, NBI) is an endangered migratory species, which
went extinct in Europe in the 17th century. Currently, a translocation project in the frame of the
European LIFE program is carried out, to reintroduce a migratory population with breeding colonies
in the northern and southern Alpine foothills and a common wintering area in southern Tuscany.
The population meanwhile consists of about 200 individuals, with about 90% of them carrying a
GPS device on their back. We used biologging data from 2021 to model the habitat suitability for the
species in the northern Alpine foothills. To set up a species distribution model, indices describing
environmental conditions were calculated from satellite images of Landsat-8, and in addition to
the well-proven use of optical remote sensing data, we also included Sentinel-1 actively sensed
observation data, as well as climate and urbanization data. A random forest model was fitted on NBI
GPS positions, which we used to identify regions with high predicted foraging suitability within the
northern Alpine foothills. The model resulted in 84.5% overall accuracy. Elevation and slope had
the highest predictive power, followed by grass cover and VV intensity of Sentinel-1 radar data. The
map resulting from the model predicts the highest foraging suitability for valley floors, especially
of Inn, Rhine, and Salzach-Valley as well as flatlands, like the Swiss Plateau and the agricultural
areas surrounding Lake Constance. Areas with a high suitability index largely overlap with known
historic breeding sites. This is particularly noteworthy because the model only refers to foraging
habitats without considering the availability of suitable breeding cliffs. Detailed analyses identify the
transition zone from extensive grassland management to intensive arable farming as the northern
range limit. The modeling outcome allows for defining suitable areas for further translocation
and management measures in the frame of the European NBI reintroduction program. Although
required in the international IUCN translocation guidelines, the use of models in the context of
translocation projects is still not common and in the case of the Northern Bald Ibis not considered
in the present Single Species Action Plan of the African-Eurasian Migratory Water bird Agreement.
Our species distribution model represents a contemporary snapshot, but sustainability is essential for
conservation planning, especially in times of climate change. In this regard, a further model could be
optimized by investigating sustainable land use, temporal dynamics, and climate change scenarios.

Keywords: Northern Bald Ibis; conservation; species distribution modeling; random forest modeling;
remote sensing; reintroduction

1. Introduction

The Northern Bald Ibis (NBI, Geronticus eremita) used to live as a migratory species in
various areas around the Mediterranean. Known wintering sites were located along the
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west coast of Africa down to Mauritania and Senegal and along the east coast to Eritrea
and Ethiopia [1–6]. Human influence and climate change caused the extinction of the
Egyptian population already at the end of the third millennium BC and of the European
population in the early 17th century [7,8]. In almost all further regions, the species went
extinct during the 20th century. Only one population on the Moroccan coast remained [1,9].
The species was listed on the IUCN Red List as critically endangered for 24 years before it
was downlisted to endangered in 2018, due to successful conservation efforts in Morocco,
zoo breeding programs, and ongoing translocation projects in Europe [10,11].

Being a gregarious species, the NBI used to breed in colonies with up to several thou-
sand individuals on cliffs, using niches and caves as nesting sites. Evidence is also given
for broods on castles, towers, or ruins [3,7].The long, curved and abundantly innervated
bill makes the NBI a highly specialized tactile hunter. In suitable habitats, it mainly feeds
on larvae and worms, which it pokes out of the ground from a depth of up to 10 cm [12–14].
But the species is also known for its high flexibility regarding its feeding behavior if re-
quired. A meanwhile extinct relict population in the Syrian desert was known to feed on
tadpoles [15]. A managed population in Birecik, Turkey, feeds on mint crops or in fields
covered with manure, in addition to the offered food [16]. The remaining wild population
in Morocco, which changed to a sedentary lifestyle, mainly feeds on lizards and beetles,
even though the morphology of the bill and the positioning of the eyes make the NBI rather
inefficient at catching fast-moving prey [9,14,17].

In the range of the northern Alpine foothills, indications of several historical NBI
breeding sites are documented [3,8]. Most of the historical knowledge was documented
by the Swiss naturalist Conrad Gesner (1516–1565). In his Historiae animalium [18], he
described the gastric section of a European NBI, where he found larvae of cockchafers,
mole crickets, and other insects. Historically, meadows, pastures, and gardens are named
as main foraging habitats. The use of cultivated land and the resulting proximity to human
settlements has probably also contributed significantly to the extinction of the European
populations, and elsewhere [7,17,19].

Historical data on habitat use and feeding ecology largely correspond to the feeding
ecology of a currently released migratory NBI population in Central Europe, with breeding
sites located in the historic NBI range. These birds mainly feed on open meadows and
pastures with earthworms and larvae as their primary prey [14,17].The European migratory
population currently consists of about 200 individuals. Offspring of zoo breeding colonies
were hand-raised by human foster parents. They learned the migration route through
human-led migration as the main translocation method before they were released in the
wintering area in southern Tuscany [11,12]. Nowadays, there are three breeding colonies
north of the Alps. Within the next years, further conservation measures are planned, to
ensure a self-sustaining NBI population [20].

For planning conservation measures in the scope of reintroduction projects, precise
information on actual and potential species distributions is essential to enhance the chances
of success [21–25]. Incorporating remotely sensed data as environmental predictors is a
standard technique in species distribution modeling, as they cover large areas with an
appropriate resolution [26–30]. Earth observation missions like NASA’s Landsat and the
European Sentinel fleet (ESA) cover the entire planet, revisiting each place every 16 days
and 5–6 days respectively [31]. Due to their availability and their high spatial and temporal
resolution, both are frequently used for species distribution modeling. Although species
distribution models alone cannot ensure reintroduction success, they provide a realistic
framework for action [21,26].

About 90% of all NBIs of the European migratory population are monitored remotely
by the use of conventional GPS devices [32]. GPS tracking of so many individuals allows
us to perform a species distribution model with precise information on presence data
for the entire population, with the additional benefit that we can register and reduce
mortality causes [6,20].The population contains breeders, mainly subadult non-breeders
and juveniles. The breeders and juveniles generally stay close to the breeding site during
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the main part of the breeding season, where their small-scale movements are driven by their
foraging activities (Figure 1). Non-breeders, in contrast, are not tied to the breeding sites.
They generally move on a large scale along the northern Alpine foothills, where numerous
observations clearly indicate that they selectively visit areas with high food abundance and
stay there for longer periods [17]. Thus, we expect GPS positions of breeders, non-breeders,
and juveniles to aggregate around areas with high foraging suitability. By linking GPS
data to environmental variables gathered from earth observation satellites, we created a
foraging suitability index based on NBI presences, which we then applied to the entire
area of interest [26–30].This area largely included the documented breeding range of the
historic European NBI population. Based on our insights, we discuss implications for
future translocation and management measures for the conservation of the NBI population.
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2. Methods
2.1. Study Species and Study Area

The reintroduction of a migratory NBI population started in 2014, in the frame of
a European LIFE+ project (LIFE+12-BIO_AT_000143) with seven partners from Austria,
Germany, and Italy. A 13-year feasibility study on translocation methodology and bird
ecology preceded the LIFE+ project [12]. Nowadays, the population consists of about
200 individuals, which migrate between the common wintering site, a WWF reserve in
southern Tuscany, and four established breeding sites in Bavaria, Baden-Wuerttemberg,
Salzburg, and Carinthia. Since 2012, the birds reproduce in the wild, with 36 chicks fledged
in 2021 [11,20]. In 2022, a second seven-year LIFE project (LIFE20 NAT/AT/000049) is
going to start, directed by the Zoo Vienna and nine partners from Austria, Germany, Italy,
and Switzerland. This second LIFE project aims at leading the existing population to
self-sustainability by exceeding the calculated threshold population size of about 350 indi-
viduals [11,20].

Several historic NBI breeding sites were located along the northern Alpine foothills [3,8,33].
Therefore, an approximately 130 km wide area of 98,768 km2 along the northern edge of
the Alps was analyzed (Figure 1). Additionally, three regional examples were chosen for
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an in-depth observation: (I) Bad Ragaz/Pfäfers (CH, 160 km2, 47.001481◦, 9.502749◦), as a
documented historic breeding site in an Alpine environment (Schen-ker, 1977); (II) a rural
area north of Lake Constance (DE, 160 km2, 47.831484◦, 9.055227◦), located in the transition
zone between grassland farming in the south and predominantly arable farming to the
north; (III) Rosenheim (DE, 490 km2, 47.856210◦, 12.123908◦), as an example of a highly
urbanized area.

2.2. Biologging

Since 2016, about 90% of the release population and their wild-hatched offspring
are equipped with GPS devices [32]. During the study period, most of the devices were
solar-powered commercial tags. All tags are positioned on the lower back of the birds and
fixed via a leg-loop harness made of Teflon tube. The data is automatically transferred
to the open-source animal movement platform Movebank (https://www.movebank.org/
cms/movebank-main; accessed on: 12 November 2021) as well as to the internal database
owned by the enterprise Waldrappteam Conservation & Research. All analyses were done
using data from the internal database.

For our habitat suitability analysis, we used biologging data of 78 wild roaming birds
(27 breeders with 14 females and 13 males; 25 non-breeders with 12 females and 13 males;
26 juveniles with 13 females and 13 males) within the defined study area during the spring
migration and breeding season (May to August 2021). To exclude positions recorded
during flight, only positions with a speed of less than 5 m/s were used. GPS positions
within a 100 m radius around the three breeding sites were excluded. Furthermore, only
daytime GPS positions (between 07:00 AM and 06:00 PM) were used, to exclude overnight
roosting. Ultimately, the selected GPS positions were recorded primarily during foraging
and daytime roosting. NBIs normally roost at a close distance to their foraging grounds
(trees or electric power poles), which cannot be disentangled from the foraging grounds
themselves on the scale of our analysis. Processing and preparation of the NBI movement
data were performed in QGIS [34]. Overall, a total of 204,074 NBI biologging positions
were used to set up the model.

2.3. Environmental Indices

We used 11 environmental indices from 7 different data sources (Table 1). Landsat-8
data provides several useful indices which we incorporated into our model, describing the
characteristics of vegetation intensity (enhanced vegetation index, EVI), ground tasseled
cap brightness (TC brightness), moisture (TC wetness), and water content (normalized dif-
ference water index, NDWI). We added the synthetic-aperture radar intensity of Sentinel-1
as an index calculated from the intensity of vertically sent and vertically received radar
data (VV polarization), which reflects the ground structure and surface wetness [35–37].
Additionally, we applied the fractional grass cover processed by the Copernicus Land
Monitoring Service from 2019 [38]. We also included the elevation and steepness of slopes,
obtained from NASA’s Shuttle Radar Topography Mission in 2000 [39]. We added the
surface temperature as a climatic variable [40]. Ultimately, a water mask [41] from 2013 as
well as a world settlement footprint [42] made in 2015 from the German aerospace center
(DLR) were used.

Data download and all pre-processing steps were done using the cloud computing
platform Google Earth Engine [31]. Landsat-8 and Sentinel-1 images from the study period
(Mai to August 2021) were processed into a single image mosaic. All indices were calculated
from the resulting median composites. The water mask was used to exclude water surfaces
from all data sources. We then computed a 100 m resolution raster covering the entire
study area and assigned the environmental indices by calculating mean values from the
original resolutions. This step, as well as model building, fitting and spatial prediction,
were executed with R [43].

When testing the indices for collinearity, the highest correlation (0.75) was found
between slope and surface temperature, since temperature decreases with elevation. Al-
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though surface temperature probably has a higher ecological relevance for NBIs, elevation
data had a higher resolution, so we excluded surface temperature and used elevation
as a comprehensive proxy. All other indices showed only minor correlations below 0.7
(correlation matrix can be found in the Supplementary Materials).

Table 1. Overview of environmental indices and their remote sensing sources.

Index Full Name Satellite/Source Mission Resolution (Meters) Year of Data
Collection

EVI Enhanced vegetation index Landsat-8 30 m 2021

TC Brightness Tasseled cap brightness Landsat-8 30 m 2021

TC Wetness Tasseled cap wetness Landsat-8 30 m 2021

NDWI Normalized difference
water index Landsat-8 30 m 2021

Grass cover Grass cover fraction CORINE Landcover
Inventory 100 m 2018

Elevation Elevation Shuttle Radar
Topography Mission 30 m 2000

Slope Slope Shuttle Radar
Topography Mission 30 m 2000

VV intensity Intensity of vertical send and
vertical received radar data Sentinel-1 10 m 2021

Surface Temperature Surface Temperature [40] 1000 m 2021

Water Water Mask [41] 30 m 2015

World Settlement
Footprint Impervious/urban areas DLR 10 m 2015

2.4. Species Distribution Modeling

We classified 11,000 cells as presence points because they contained one or more GPS
positions. From the remaining study area, 11,000 cells were randomly chosen to apply
a 1:1 relationship between presence and randomly generated background points [44,45].
Selecting background points is necessary for training models on the range of the environ-
mental indices apart from the presence points. Finally, the value of each environmental
index was extracted for each presence and background point [29,46,47].

A random forest model fitted the presence and background points with the environ-
mental indices. The model was then used to generate a foraging suitability index, which
was applied to the entire study area based on the composition of environmental indices of
every single grid cell [48,49]. As post-modeling analysis revealed that the resulting model
was insensitive to urbanization, we applied the world settlement footprint data to weigh
down the foraging suitability in urban areas.

An additional in-depth analysis was done for the three regions outlined above, using
the same methods but a higher resolution with 30 m raster cells.

2.5. Variable Importance

We estimated the variable importance for each environmental index separately to
quantify its effect on the model output. We compared the prediction made from the full
model to the prediction of a model where the respective variable was entirely randomized.
If the randomized model prediction was highly correlated with the prediction of the full
model, the index was interchangeable and did not play an important role. If the correlation
was low, the index had a strong influence on the model and its prediction [49].
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2.6. Ethical Standards

Bird care, keeping, training, and release followed well-established standards in ac-
cordance with the legal framework and under the supervision of Waldrappteam Conser-
vation & Research experts. The weight of the GPS devices was about 22 grams, which is
well below the recommended maximum value of 3% of the bird’s body weight of about
1300 grams [32]. The loggers were fixed on the lower back of the birds via a leg-loop
harness made from Teflon tubes. This position is known to cause the least drag and
minimize additional disadvantages and risks for the carrier [32]. All translocation and
management measures have been implemented in the frame of the European LIFE+ project
LIFE+12-BIO_AT_000143. National approvals were provided by the respective institutions
of Salzburg (21302-02/239/352-2012), Carinthia (11-JAG-s/75-2004), Baden-Württemberg
(I1-7.3.3_Waldrapp), Bavaria (55.1-8646.NAT_03-10-1) and Italy (0027720-09/04/2013).

3. Results
3.1. Overall Study Area

The final random forest model was used to predict a foraging suitability index, which
was then applied to generate a map of the foraging suitability in the northern Alpine
foothills (Figure 2; detailed model statistics can be found in the supplementary material).
The overall accuracy of the random forest model was 84.5%. The variable importance
ranged between 0.5 and 1. The highest importance (i.e., the lowest correlation between
the standard prediction and the prediction based on randomly generated index values)
was found for elevation (0.56) and slope (0.69), followed by grass cover fraction (0.76),VV
intensity (0.85) and TC brightness (0.87). The lowest importance had TC wetness (0.93), EVI
(0.95), and NDWI (0.96). Consequently, elevation contributed with 30.3% to the prediction,
followed by slope (21.8%), grass cover (17.1%), VV intensity (10.2%) and TC brightness
(9.4%). The three remaining variables contributed less than 5% each to the prediction.
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Figure 2. Foraging suitability for the NBI in the study area (northern Alpine foothills). Suitability
index is shown in colors ranging from purple (not suitable/0.125) to yellow (high suitable/1.0). Areas
of suitability = 0 are masked out due to e.g., urban areas. Regions for detailed analyses are marked
in Figure 1.



Remote Sens. 2022, 14, 1015 7 of 13

3.2. Regional Examples

Within the Bad Ragaz region (Figure 3), which is a historic breeding site, the suitability
index for the broad, agriculturally used valley grounds is high. This indicates abundant
and strongly aggregated foraging areas of high suitability, buffered by areas of intermediate
suitability. The more elevated Alpine areas featured a foraging suitability index between
0.0 and 0.3. They are, thus, unsuitable for foraging, but they may include potentially
suitable nesting sites around the foraging areas.
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Suitability index is displayed in colors ranging from purple (not suitable/0.125) to yellow (high
suitable/1.0). Areas of suitability = 0 are masked out due to e.g., urban areas.

The rural area north of Lake Constance (Figure 4) is a predominantly agrarian region
with a mixture between grassland farming and arable land use. It represents the northern
limit of the historic breeding area. Most areas within this region have intermediate foraging
suitability. The areas of high suitability are vaguely aggregated, but in contrast to Bad
Ragaz, they do not form a single, connected area with high foraging suitability. The forested
areas feature low foraging suitability.

The Bavarian city Rosenheim (Figure 5) represents urbanized areas. The impervious
surfaces are excluded from the model via the world settlement footprint [42]. Interestingly,
the rather small city is surrounded by high foraging suitability values.
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Figure 5. Foraging suitability for the NBI in the small Bavarian city Rosenheim. Suitability index is
displayed in colors ranging from purple (not suitable/0.125) to yellow (high suitable/1.0). Areas of
suitability = 0 are masked out due to e.g., urban areas. The developed and impervious surfaces are
excluded from the model via the World Settlement Footprint.
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4. Discussion

In our study, we applied a random forest model using remote sensing data as a suitable
tool for the large-scale assessment of habitats in the context of a species conservation project.
This is of significant relevance, not only for the NBI as the bird species concerned, but
also from a general conservation perspective. Meta-studies indicate a rather low success
of translocation projects, although they are mostly implemented with considerable effort
and expense [22,24,50]. However, various authors point out that the use of models, in
particular for demography and habitat availability, significantly improve planning and
management, and thus the chance of success of translocation projects [22,23]. The use
of models is also suggested in the IUCN translocation guidelines [25]. In the context
of the NBI reintroduction project, a population viability analysis based on an extensive
demographic dataset forms the basis for further translocation measures [20]. The current
analysis significantly supports a fact-based definition of locations for the establishment of
further breeding colonies.

The increasingly frequent and diverse use of GPS devices for remote monitoring in the
frame of conservation and translocation projects [51–54] is an important basis for modeling
the potential species distribution and habitat availability. However, it is increasingly
evident that the attachment of devices affects the behavior of the carrier animals and
thus the spatiotemporal data obtained [32,53,55–57]. This also became evident in the
NBI reintroduction project [32] and therefore, special attention was paid to the adequate
positioning and attachment of the GPS devices, to minimize the impairment of the birds
and the effect on the obtained data.

In the course of the NBI reintroduction project, three breeding colonies have been
established in the area of the northern Alpine foothills so far, all in the vicinity of historic
breeding sites [11,17]. The species distribution model showed high suitability index values
for all these areas, also outside the radius of about six kilometers in which breeders
and juveniles mostly reside [12] and from which a large part of the GPS data originates
(Figure 1). This indicates the potential for regional expansion of the breeding areas through
the establishment of satellite colonies.

On a larger scale, the model showed a high density of grid cells with the highest
suitability indices along wide Alpine valleys with agriculturally used valley floors. This
particularly affects the Salzach Valley, Inn Valley, and Rhine Valley, where the areas with
high suitability index reach far out into the foothills of the Alps and expand in form of
deltas along the course of the rivers. In Switzerland, characterized by the Western Alps
with their typical geology and topography, the areas with a high suitability index cover
large parts of the Alpine foothills, although here, too, they mostly follow the course of
the river and often extend far south into the large Alpine valleys. At Lake Constance, the
model marked high suitability areas all around the lake.

The known historic breeding sites are located within those areas which, according to
the model, are still suitable habitats for the NBI today. This is remarkable, as the model
assessed the availability of feeding habitats, without considering the availability of suitable
rock formations as breeding opportunities. Seemingly, the availability of suitable foraging
areas along rivers and in broad Alpine valleys overlaps geographically with the presence of
rock faces with niches, ledges, and caves that allow breeding. A correspondence between
historical breeding areas [3,33] and the currently suitable foraging habitats identified by the
model is particularly evident along the valleys Salzach and Inn, in the area of Überlingen
at Lake Constance, with extensive sandstone cliffs at the lakeshore, and along the Rhine
Valley in the region of Bad Ragaz in Switzerland.

Bad Ragaz was one of the three regional examples with higher resolution (Figure 3),
representative of large Alpine valleys with wide agriculturally used valley floors. Historical
evidence indicates a breeding colony in the side valley Tamina near the village Pfäfers [3]. In
general, the model did not identify the Alpine areas as suitable foraging habitats. However,
within the usual activity radius of six kilometers around the breeding site, the model
indicated plenty of highly suitable foraging areas. Thus, this region is a potentially suitable
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candidate for establishing a new breeding colony, even more since the course of the Rhine
valley lies along the migration corridor of the Überlingen breeding colony.

The second regional example (Figure 4) was an area north of Lake Constance. The
model showed intermediate suitability for this agriculturally dominated area which is
made up of a mixture of grassland farming and arable land, is increasingly dominated by
maize cultivation. Areas with high suitability index were rather scattered and small. This
transition zone between intensive arable farming to the north and more extensive grassland
farming towards the Alps represent the most northern edge of the Alpine foothills [58,59]
and also marks the northern end of the known historic breeding range [3,8,33] and the cur-
rently ongoing reintroduction measures. For the established breeding colony in Überlingen
at Lake Constance, only 40 km SW of this example area, the model indicated plenty of
highly suitable foraging areas.

The third regional example (Figure 5) was located around the city of Rosenheim (about
60,000 inhabitants). It is an example of a highly urbanized landscape. The developed and
impervious surfaces were excluded from the model, as they are considered unsuitable
foraging habitats. However, the model indicated plenty of suitable foraging areas in the
vicinity of the city. This is also the case for other communities and small towns. This is in
line with historical reports that the NBI often foraged in the vicinity of settlements and even
bred in castles and palaces in more populated areas [3,12]. Furthermore, breeding colonies
were successfully established on the outskirts of the two towns Burghausen in Bavaria
(about 20,000 inhabitants) and Überlingen on Lake Constance (about 23,000 inhabitants).
Thus, attention should be paid to conservation planning to differentiate between highly
urbanized and therefore unsuitable areas and smaller communities and towns. These
developed areas may even provide suitable secondary nesting sites, as in the case of
Burghausen, where the birds breed at a defensive wall of a historic castle.

Sustainability is an important criterion for evaluating suitable areas in the context of
reintroduction and translocation projects [25], but the model represented only a contem-
porary snapshot. However, the extensive overlap between the historical range and the
current quality of the areas identified by the model indicates the sustainable suitability of
the concerned areas. In addition, the areas of high foraging suitability for the NBI indicated
by the model are largely located in regions that are characterized by a high and increasing
proportion of ecological grassland farming, which is considered one of the most sustainable
and, in relation to climate change, most persistent forms of agricultural management [60,61].
A more concrete inclusion of sustainability could improve the model, particularly in light
of ongoing climate change. In an agricultural context, a potential approach is to include
the sustainability of land management or the proportion of ecological land management as
indices. Another potential approach is to model different climate change scenarios.

The study highlights the possibilities of species distribution and habitat assessment
models for conservation and translocation planning. Furthermore, the use of models for
planning and monitoring translocation projects is also required in international guidelines,
in particular in the IUCN translocation guidelines [25]. However, even with the increasing
use of biologging, the application of species distribution modeling in conservation and
translocation projects is still in its early stages. In the case of the NBI, the Single Species
Action Plan of the African-Eurasian Migratory Water bird Agreement (AEWA) for the
NBI [62] does not include the necessity of scientific models, the term modeling does not
even appear once in the text.

5. Conclusions

Various environmental indices were calculated from earth observation data and used
to fit a random forest model to investigate areas with potentially high foraging suitability
for the NBI in the northern Alpine foothills. A combination of optical remote sensing data
and actively sensed radar data led to an overall accuracy of 84.5% of the model, which
can be labeled as good compared to the state-of-art of spatial prediction modeling [47].
Areas of good foraging quality were mainly found in Alpine valley floors and agricultural
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areas north of the Alps. Swiss flatlands as well as Inn, Rhine, SalzachValley, and regions
surrounding Lake Constance were classified as the most suitable foraging areas.

In summary, the indicated high availability of suitable foraging areas in the northern
Alpine foothills is remarkable in the light of agricultural intensification while the NBI
was absent in Europe for several centuries. Additional foraging areas besides the ones
surrounding already established breeding sites promise excellent possibilities for the NBI
to spread in the northern Alpine foothills, especially at historic breeding sites like in Bad
Ragaz/Pfäfers.
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Figure S5: ModelAccuracy; Table S1:Correlation Matrix of Variables.
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