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Abstract  For FE-based structural optimization systems, a
large variety of different numerical algorithms is available, e.g. se-

quential linear programming, sequential quadratic programming,

convex approximation, generalized reduced gradient, multiplier,
penalty or optimality criteria methods, and combinations of these
approaches. The purpose of the paper is to present the numerical
results of a comparative study of eleven mathematical program-
ming codes which represent typical realizations of the mathemat-
ical methods mentioned. They are implemented in the structural
optimization system MBB-LAGRANGE, which proceeds from a
typical finite element analysis. The comparative results are ob-
tained from a collection of 79 test problems. The majority of them
are academic test cases, the others possess some practical real life
background. Optimization is performed with respect to sizing of
trusses and beams, wall thicknesses, etc., subject to stress, dis-
placement, and many other constraints. Numerical comparison is
based on reliability and efficiency measured by calculation time
and number of analyses needed to reach a certain accuracy level.

1 Introduction

The design of a mechanical structure is often based on the
requirement to optimize a suitable criterion to obtain a better
design according to the criterion chosen, and to retain feasi-
bility subject to the constraints that must be satisfied. The
more complex the structure, the more difficult is the empiri-
cal iterative refinement by hand based on successive analysis.

In the last ten years, the finite element analysis of a large
number of software systems was extended by optimization
modules, see e.g. Hornlein and Schittkowski (1993) for a
review. In all cases, the underlying mechanical design prob-
lem is modelled and described in abstract terms, so that a
mathematical nonlinear programming problem of the follow-
ing form is formulated:

min f(z),
z€R": gi(2) 20, j=1,...,m, zg<zr<zy. (1)
We may imagine, for example, that the objective func-
tion describes the weight of a structure that is to be mini-
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mized subject to sizing variables, and that the constraints
impose limitations on structural response quantities, e.g. up-
per bounds for stresses or displacements under static loads.
Many other objectives or constraints can be modelled in a
way so that they fit into the above general frame.

Although permitted by most of the algorithms under in-
vestigation, we do not add equality constraints to the math-
ematical model. The structural design test problems used
for the computational analysis, possess only inequality con-
straints in form of lower and/or upper bounds for some non-
linear functions.

Basically we can distinguish between two different classes
of optimization methods. One class was developed indepen-
dently from the special type of structural design application
we are considering now, and can be specified as follows:

o sequential linear programming methods,

e penalty methods,

o multiplier methods,

o generalized reduced gradient methods, and
o sequential quadratic programming methods.

Each implementation of a method in one of these sub-
classes requires additional decisions on a special variant or
parameter selections, so that different codes of the same
group may have completely different performances in prac-
tice. Moreover, there exist combinations of the fundamental
strategy making it even more difficult to classify nonlinear
programming algorithms. Comparative studies of codes for
the general model have been performed in the past (see, e.g.
Colville 1968; Asaadi 1973; Sandgren 1977; Sandgren and
Ragsdell 1982; Schittkowski 1980). They proceed either from
randomly generated test examples (Schittkowski 1980), or are
based on artificial or simple application problems of the kind
described by Hock and Schittkowski (1981) and Schittkowski
(1987).

The second class of numerical methods is more related to
structural design optimization and basically consists of two
subclasses,

o optimality criteria methods, and
e convex approximation methods.



Corresponding algorithms have been implemented and
tested entirely for solving structural design optimization
problems, and the codes are either unable or at least inef-
ficient to act as general purpose optimizers. Comparative
results are found, for example, in the papers by Eason and
Fenton (1972, 1974) and Arora and Belegundu (1985).

Qur intention is to report the results of an extensive com-
parative study of structural optimization codes, where the
analysis is based on a finite element formulation and where
we consider only the classical sizing situation, i.e. we do not
test the performance of algorithms on shape or topology op-
timization problems.

The FE-analysis is performed by the software system -

MBB-LAGRANGE (see Kneppe. et al. 1987; Zotemantel
1993) Apart from the nirie optimization algorithms included
in the official version, two additional. methods are added
to the system, i.e. certain variants of convex approximation
methods. The codes represent all cla.sses of algorithms men-
tioned above. Most of the methods have been developed,
implemented, and tested outside of the MBB-LAGRANGE
environment, and are taken over from external authors.

To conduct the numerical tests, 79 design problems have
~ been collected. ‘Most of them are academic, i.€. more or less
simple design problems found in the literature. The remain-
ing ones possess some practical real dife background from
project work or are suitable modifications to-act as bench-
mark test problems for the development of the software sys-
tem. In all situations, we minimize the weight of a structure

- subject to displacement, stress straim, buckhng, dynarnic and
other constraints. Design variables are sizing variables, e.g.’

cross-sectional areas of tiusses and beams.

The purpose of the ‘comparative tests is to evaluate efﬁ-
ciency and reliability of nonlinear programming algorithms
when applied to structural optimization, in a quantitative
manner. We count the number of problems solved with re-
spect to a given final accuracy, and the corresponding calcula-
tion times and numbers of FE-analyses, i.e. function and gra-
dient evaluations.- Numerical performance is evaluated with
respect to different accuracy-levels. To be able to compare
mean values with respect to different sets of test problems
solved by a specific code subject to a given accuracy, a spe-
cial priority theory is adapted (cf. Saaty 1980).

In Section 2 some features of the software system MBB-
LAGRANGE are summarized and, in particular, the struc-
tural finite element model is outlined. Information on the
basic idea behind the nonlinear programming algorithms and
sorme details about the special implementation are presented
in Sections 3 and 4. In Section 5 we describe the test prob-
lems and present a table of characteristic data. The test
procedure and numerical results are summarized in Section
6, followed by a discussion and some conclusions in Section
7_ .

2 The structural
LAGRANGE

MBB-LAGRANGE is a computer aided structural design
system which allows the optimization of structural systems.
It is based on the finite element technic and mathematical
programming. The optimization model is characterized by

optimization system MBB-

"

the design variables and many different types of restrictions.
The following design variables are available: element thick-
nesses, cross-sections, concentrated masses, and fiber angles.
In addition to isotropi¢, orthotropic, and anisotropic applica-
tions, the analysis and optimization of composite structures
is among the most important features. The design can be
restricted with respect to statics (e.g. stresses, buckling), dy-
namics (natural frequencies, dynamic response) and acroelas-
tics (efficiencies, flutter speed). The general aim is to mini-
mize the structural weight with MBB-LAGRANGE which
has a wide range of optlmlzatlon strategies and a modular
architecture.

The objective function f(z) is the welght of a structure,

“Ubut it-is also possible to take other lineatr objective func-

tions into account. In addition it is possible to optimize

-problems with several objective functions, e.g. weight and

stresses. Special multiobjective optimization techmques can
be applied in these cases:
> The desxgn variables can be divided into three types

1. Slzmg variables, i.e. ,
. cross—sectlonal areas for trusses and beams,
‘e wall thicknesses for membra.ne and shell’ elements and

o laminate thicknesses for every single layer in compomte
elements. :

2. Balance rnasses.

~ 3. Angles of layers for cdnipbsite elements.

Constraints must be defined in the form of mequahty e
strictions as follows: : :

‘ (z) := v act(z) >0, o i ‘ (2)

Tallow

where r denotes one of the allowed constraints, e. g stress
constraint. - The constraints specify the feasible domain of
the structure and allow realistic manufacturing, for example,
by gage constraints. The choice of a suitable combination
of constraints depends on the physical model. The following
restrictions may be formulated in MBB-LAGRANGE:

¢ displacements

@ stresses

o strains

o buckling (critical stresses, wrinkling)

e local compressive stresses

e aeroelastic efficiencies

o flutter speed

¢ natural frequencies

o dynamic responses

¢ cigenmodes

* weight

e bounds for the design variables (gages)

The objective function, the design variables, and the con-
straints describe the optimization model. The highly modu-
lar program architecture allows to distinguish between three
main software concepts, namely
(i) optimization algorithm,

(ii) structural model (structural response and gradients),
and
(iii) optimization model as the link between (i) and (i1).



The optimization model has some additional numerical
features. All model functions and variables are scaled inter-
nally to stabilize the numerical algorithms. Moreover, the
user is allowed to reduce the number of design variables by
a procedure called variable linking, i.e. by linking certain
structural variables into one design variable as implied by
the structure itself, the loading conditions or manufacturing
requirements. From the mathematical point of view a trans-
formation of the form ¢ = a+ At can be defined with a linking
matrix A, the structural variables ¢ and the design variables
z. It is also possible to fix elements which means these values
do not change during the optimization process.

The structural and sensitivity analyses are based on the
finite element method. Modules for the following calculations
are included:

e static

o (local) buckling

e natural frequencies

e dynamic responses (frequency, transient, random)
o (stationary) aeroelastic

o flutter

It is possible to treat homogeneous materials with
isotropic, orthotropic and anisotropic behaviour as well as
composite materials. The element library contains all impor-
tant element types:

o truss elements

¢ beam elements

e membrane elements (triangle, quadrilateral)
o shell clements (triangle, quadrilateral)

o some special elements (e.g. spring elements)

Since the evaluation of gradients is the most expensive part of
an optimization process, the efficient computation of deriva-
tives is emphasized and three different ways of obtaining gra-
dients are included in MBB-LAGRANGE; by

(i) numerical difference formulae,

(it) analytical formulae, and

(iil) semi-analytical formulae.

The most efficient way is to derive analytical formulae
for the sensitivity analysis. In sizing problems the deriva-
tives with respect to design variables are analysed and im-
plemented directly, an essential assumption for solving large
scale problems. For geometry variables, however, a semi-
analytical formula was used to obtain gradients, see the paper
by Hérnlein (1986) for details.

MBB-LAGRANGE has some special features for space
and aircraft design, which is considered to be the main do-
main of application. Therefore, it is essential to allow aero-
elastic and flutter calculations, including the corresponding
constraint formulation. A wide range of dynamic functions is

.also available. For buckling problems it is possible to handle
isotropic and composite materials, also local stability of sand-
wich structures (wrinkling). In some cases the so-called sys-
tem identification is useful, i.e. the evaluation of the location
of model imperfection by taking measured data from modal
tests. A powerful way to reduce the weight in composite
structures is to define layer angles as well as layer thicknesses
as design variables (varying of layer angles).

3 Mathematical optimization strategies

In this section we outline the mathematical methods behind
the nonlinear programming codes of the MBB-LAGRANGE
system, which are used for performing the subsequent nu-
merical tests. Since the mathematical background is found
in text books and refercnces cited (see, e.g. Gill et al. 1981;
Papalambros and Wilde 1988), we give only a very brief out-
line on the basic methodology.

To simplify the notation, we omit a separate treatment
of upper and lower bounds for the design variables in this
section. They can be now considered as part of the general
inequality constraints, but are handled separately in the nu-
merical codes discussed in the subsequent section.

The most important tool for understanding the optimiza-
tion, is the so-called Lagrange function

L(z, u) = f(z) = Y ujgi(z),
i=1

which is defined for z € R™ and u = (vq, ..., um)T, and
which describes a linear combination of the objective function
and the constraints. The coeficients uj,j = 1,..., m, are
called the Lagrange multipliers of problem (1).

Now we are able to formulate optimality criteria, which
are needed to understand the methods to be described. To
be able to formulate necessary conditions, we need an as-
sumption called constraint qualification which means that for
a feasible z, the gradients of active constraints, i.e. the set
{Vg;(z) : g;(z) = 0}, are linearly independent.

Theorem: Let f and g; forj=1,..., m be twice continu-
ously differentiable functions, z* be a local minimizer of (1)
and the consiraint qualification be satisfied in ©*. Then there
1s @ u* € R™ so that the following conditions are satisfied:

(a)u?g(]forj:l, ,m, Vgl(z*,u*)=0,
u;-‘gj(:c*)=0forj=1, ..., m,

(b) aTVgL(z*,u;)s >0 for all s € R®,
with Vg;(z*)" s = 0 and g;(z*) = 0.

The condition, that the gradient of the Lagrange function
vanishes at an optimal solution is called the Kuhn-Tucker-
condition of (1). In other words, the gradient of f is a linear
combination of gradients of active constraints

Vi(*) =) ujVgi(z*). (3)
i=1

The complementary slackness condition u;f g9;(z*) =0 to-

gether with the feasibility of z* guarantees, that only the
active constraints, i.e. the interesting ones, contribute a gra-
dient in the above sum. Either a constraint is satisfied by
equality or the corresponding multiplier value is zero.

The Kuhn-Tucker condition can be computed within an
optimization algorithm, if suitable multiplier estimates are
available, and serves as a stopping condition. However, the
second order condition (b) can be evaluated numcrically only
if second derivatives are available. The condition is required
in the optimality criteria to be able to distinguish between a
stationary point and a local minimizer.



3.1 Optimality criteria methods

For the optimal design of structures there exist a couple of
algorithms that are based on the above conditions and are
therefore called the optimality criteria methods in engineer-
ing sciences (Berke and Khot 1974).

One of the approaches developed in the past is called the
stress ratio method which is applicable to problems with stress
constraints only. In this case we have separable constraint
functions of the form

9j(2) =5; ~ 55(z;),

where s 5 denotes the stress in the j-element and 5; an upper
bound. In the case of a statically determined structure, all
these constraints are active, leading to'a trivial solutlon of
the optlmxzatxon problem.

The technique is extended easxly to the case of. multlple.v

load cases, additional bounds for design variables and non—'
determmed structures. . -

3.2 Penalty methods
Penalty methods belong to the first attempts to solve con-

. strained optimization problems satisfactorily. The basic idea
" . is to construct. a sequence of unconstrained: optimization

problems and to solve them by any standard minimization
method, so that the minimizers of the unconstrained prob-
_lems converge to the solution of the constrained one.

To -construct the. unconstra.med - problems; so-called

,penalty terms are addéd to the obJectlve function which pe-

nalize f(z) wheriever the feasible region is left.” A factor rL
controls the degree of penalizing f. Proceeding from a se-

quence {rg} with rj — oo for k =0, 1,2, ..., penalty func-
. tions can be defined, for example, by "
pe(e, ) = f(2) + 7k S mind, g5, (@
1=1
or
1 m .
e, 1) = f(z) + - > loglg; ()], (5)
: i=1
or
1en 1
pi(z, r) = f(z)+ — 6
en) =@+ 5 Yo (6

The first penalty function allows violation of constraints
and is called an external one. The subsequent two are barrier
functions, i.e. they can only work with feasible iterates.

The unconstrained nonlinear programming problems are
‘solved by any standard technique, e.g. a quasi-Newton search
direction combined with a line search. However, the line
search must be performed quite accurately due to the steep,
narrow valleys created by the penalty terms.

There exists a large variety of other proposals and combi-
nations of them (e.g. Fiacco and McCormick 1968; Lootsma
1971). The main disadvantage of penalty type methods
is that the condition number of the Hessian matrix of the
penalty function increases when the parameter rj becomes
too large (Murray 1967). It should be noted, however, that
penalty methods became quite attractive again in recent
years either in connection with Karmarkar-type interior point
methods (e.g. Powell 1992), or with second derivatives (e.g.
Broyden and Attia 1988).

3.8 Multiplier methods

Multiplier or augmented Lagrangian methods try to avoid
the disadvantage of penalty algorithms, i.e. that too large
penalty parameters lead to ill-conditioned unconstrained sub-
problems. Thus the objective function is augmented by a
term including information about the Lagrangian function.
One of the first proposals was made by Powell (1969) and -
later extended by Fletcher (1975) to inequality constraints

QET 95 (=) - J]—’ O]
i=1
where a_ := min(0, a) for a € R; v € R’", and T € R’"
Multipliers are approximated.- by r;vy.
-~ A similar augmented Lagranglan function, was pmposed N
by Hestenes (1969) for equa.hty and by Rockafellar (1974) for
inequality constraints, .

ér(z, v) = f(z) -

Z { [ngj(z)l"z" ]g](z)

j:l “U] /TJ, .

¥r(z, v) :.=

if gj(:é) S'v}/rj
otherwise

A
, - (®)
Affer solving an unconstrained minimization problem
with one.of the above objective functions;, the muliplier es-
timates are updated according to certain rules for example,

by

7= v~ mm[g,(z v]]

in the first case or

vj=v; - mm[rjgj(z), v;],

in.the second case for j = 1, ..., m. If there is no sufficient
reduction of the constraint v1olat10n then the penalty par-

- ameter vector is increased as well, typically by a constant

factor. More details are found in the literature cited, or in the
work by Pierre and Lowe (1975), Schuldt (1975) or Bertsekas
(1976). :

The unconstramed subproblems are solved more or less
in the same way as in penalty methods. A’ séarch direction
is computed successively by a.quasi-Newton technique, and
a one-dimensional line search is performed, until convergence
criteria are satisfied.

3.4 Sequential linear programming methods

Particularly for design optimization, sequential linear pro-
gramming or SLP methods, are quite powerful due to the
special problem structure and, in particular, due to numeri-
cal limitations that prevent the usage of higher order meth-
ods in some cases. The idea is to approximate the nonlinear
problem (1) by a linear one to obtain a new iterate. Thus
the next iterate zz 1 = 7 + dy is formulated with respect
to solution dj, of the following linear programming problem:

min V f(z)7 d,
Vy,'(zk)Td +9i(zx) 20,

i< b (9)

The principle advantage is that the above problem can be
solved by any standard linear programming software. Addi-
tional bounds for the computation of dj, are required to avoid
bad estimates particularly at the beginning of the algorithm,

de R": i=1,..,m,



when the linearization is too inaccurate. The bound §; must
be adapted during the algorithm. One possible way is to
consider the so-called exact penalty function

m
plz, 1) = f(z)+zrjlrnin[0’ g_,'(:c)]l, (10)
1=1
defined for each z € R™ and r = (rq, ..., rm)T. Moreover,
we need its first order Taylor approximation given by

palz, d;7) = f(z) + VF(z)d+

m
3 rilminf0, g;(2) + Vg;(@)Tdll. (1)
i=1
Then we consider the quotient of the actual and predicted
change at an iterate z} and a solution dj of the linear pro-
gramming subproblem

_ P(eg, 7) — p(zg +dg, )

. P(l'k: r) "pa(zk: dg, r) '

where the penalty parameters are predetermined and must
be sufficiently large, e.g. larger than the expected multiplier

values at an optimal solution. The éj-update is then per-
formed by

%

opfo, g <p
Srq1:=9 6oy Mg >p2 .
0r, otherwise
Here ¢ > 1 and 0 < py < pp < 1 are constant numbers.
Some additional safeguards are necessary to be able to prove
convergence (e.g. Lasdon et al. 1983; Fletcher and de la Maza
1987).

3.5 Sequential quadralic programming methods

Sequential quadratic programming or SQP methods are the
standard general purpose algorithms for solving smooth non-
linear optimization problems under the following assump-
tions.

¢ The problem is not too big.

o The functions and gradients can be evaluated with suffi-

ciently high precision.

o The problem is smooth and well-scaled.

The mathematical convergence and the numerical per-
formance properties of SQP methods are very well under-
stood now and have been published in so many papers that
only a few can be mentioned here [see, e.g. Stoer (1985)
or Spellucci (1993) for a review]. Theoretical convergence
has been investigated by Han (1976, 1977), Powell (1978a,
1978b), Schittkowski (1983), for example, and the numeri-
cal comparative studies of Schittkowski (1980) and Hock and
Schittkowski (1981) show their superiority over other math-
ematical programming algorithms under the above assump-
tions.

The key idea is to approximate also second-order informa-
tion to obtain a fast final convergence speed. Thus we define a
quadratic approximation of the Lagrangian function L(z, u)
and an approximation of the Hessian matrix V';",L(:z:k, ug)
by a so-called quasi-Newton matrix Bi. Then we have the
subproblem

min %dTBkd+ Vf(zk)Td,

de R": Vgj(zp) d+gj(z3) 20, j=1,...,m. (12)

Instead of trust regions or move limits, respectively, as
for SLP methods, the convergence is ensured by perform-
ing a line search, i.e. a step length computation to accept
a new iterate zx .1 := z + apd; for an a; € [0,1] only if
£+ satisfies a descent property with respect to a solution
dy of (12). Following the approach of ‘Schittkowski (1983),
for example, we need also a simultaneous line search with re-
spect to the multiplier approximations called vy and define
Vg1 = Y +op(up — vi) where uy denotes the optimal La-
grange multiplier of the quadratic programming subproblem
(12).

The line search is performed with respect to a merit func-
tion
Yi(a) 1= ére[og + ady, v + o(ug — )],
where ¢r(z, v) is a suitable exact penalty or augmented La-
grangian function, for example, of the type (10) or (8), re-
spectively,

We should note here that also other concepts, i.e. other
merit functions are found in the literature. Then we initiate
a subiteration starting with & = 1 and perform a successive
reduction combined with a quadratic interpolation of ¥ (a)
until, for the first time, a stopping condition of the form
¥i(@) < ¥x(0) + payy 0),
is satisfied, where we must be sure that gb'k(O) < 0, of course.
To guarantee this condition, the penalty parameter rp must
be evaluated by a special formula which is not repeated here.

The update of the matrix By can be performed by stan-
dard techniques known from unconstrained optimization.
In most cases, the BFGS-method is applied, a numerically
simple rank-2 correction starting from the identity or any
other positive definite matrix. Ounly the differences z_ ; -z,
VeL(zg41, ug) — Vo L(zg, ug) are required. Under some

.safeguards it is possible to guarantee that all matrices By

are positive definite.

One of the most attractive features of SQP methods is
the superlinear convergence speed in the neighbourhood of a
solution given by

lzepr —2* IS N 2g =2 ||,
where 7}, is a sequence of positive numbers converging to zero
and z* an optimal solution.

3.6 Generalized reduced gradient methods

By introducing artificial slack variables, the original nonlinear
programming problem is converted easily into a problem with
nonlinear equality constraints und lower bounds for the slack
variables only. Thus we proceed from a slightly more general
problem

min__f-(z),
€R": §j(2)=0, j=1,...,m,
Ztszszuy (13)

where z := (z, y), @ = n + m, f(z) == f(z), 7;(2) = 9(=) -
yj;forjzl, ceey ML

As in linear programming, variables z are classified into
basic and non-basic ones (Wolfe 1967). In our situation we
can use ¥ for the initial basic and z for the initial non-basic
variables. By now defining



7)== [, - Tm ()]

we try to satisfy the system of equations §(z) = 0 for all pos-
sible iterates. Let y(z) be a solution of this system with
respect to given variables z, i.e. Pz, y(z)] = 0, and let
F(z) := f[z, y(z)] be the so-called reduced objective func-
tion.

Starting from a feasible iterate and an initial set of basic
variables, the algorithm performs a search step with respect
to the free variables, for example, by a conjugate gradient
or a quasi-Newton method. If the new iterate violates con-
straints, then it will be projected onto the feasible domain
by a Newton-type technique. If necessary, a line search is

performed also comblned with a restoratlon pha.se to obtam

feasible iterates.

When changing ‘an iterate it might happen'that a basic
- variable y violates. a bound. In this case the corresponding
variable leaves the basic-and another one.enters it.

For evaluating a search direction in the reduced space,
we need the gradient of the reduced objective function F(z)

with respect to the non-basic vanables z, which is computed )

from

VF(z) =

Vo lz, y(2)] - V=alz, y(&)) Vyglz, (@)~ T VyFlz, ().
The situation is more complicated, when we have to con-
; sider also bounds for the non-basic variables. For details

see the work of Abadie (1978), Lasdon and Wa.ren (1978), '

Lasden et al. (1978) or Schittkowski (1986).  Generalized

_ reduced gradient methods can be easily extended to prob-

lems with special structure in the constraints or very large
problems. Moreover, they are related to sequential quadratic
programming methods and there exist combinations of both
approaches (Parkmson and Wilson 1986; Schittkowski 1985a,
b). The last papers also outline the relationship to penalt.y
and multiplier methods.

3.7 Sequential convez prograniming methods

Sequential convex programming or convex approximation
{CA) methods, respectively, have been developed in partic-
ular by Fleury (1979, 1986), and Svanberg (1987) extended
this approach. Their key motivation was to implement an
algorithm that is particularly designed for solving mechan-
ical structural optimization problems. Thus their domain of
application is somewhat restricted to a special problem type.

The key idea is to use a convex approximation of the
original problem (1} instead of a linear or quadratic one, and
then to solve the resulting nonlinear subproblem by a specifi-
cally designed algorithm that takes advantage of the simpli-
fied problem structure. Consequently CA methods are only
useful in cases where the evaluation of function and gradient
values is much more expensive than the internal computa-
tions to solve the subproblem.

Let us consider e.g. the objective function f(z). By in-
verting suitable variables, we obtain the convex approxima-
tion of f(z) in the neighbourhood of an z € R™ by

felz) = flzp)+ Y, —~f<xk)(m. —x.)-
lGI+

Y 2 /i~ kb, (1)
S
where ¢ = (21, ..., on)T and Ty = (z{‘,..., z5)T and

where

- . , 4
I :={z:152§n, gf(a:k)SO},

I+ ':{"1<i<n' ——f(zk)>0}

The reason for inverting design vanables in the above way

" isthat stresses and dlsplacements -are exact linear functlons of

the reciprocal linéar homogenéous sizing variables in the case
of a statically “determined structure. Moreover, numerical-

- experience shows that also in other cases, convex linearization
.is.applied quite successfully in practice, in particular in shape.
' optlmlzatlon although a ma.themamcal motivation cannot be

given in this case.

In a similar way, recxprocal variables are introduced for
the inequality constraints, where we have to change the signs
to obtain a concave function approximation, but, on -the
other hand, a convex feasible region. of the subproblem The
correspondmg index sets are denoted by Ik . and I,c for
i=1 :
After some reorgamsatlon of constant data, we obtain a
convex subproblem of the followmg form:

mlnz f,:c - Z ff/z,,

ze]+ . lGI_ « o
z€R": Z i Y 9,,/%+y,,
€l ; ierf ki ,

where fk and 9k are the parameters of the convex approxima-
tion (14) with respect to objective function and constraints.

The solution to the above problem then determines the
next iterate z3, 1. We do not investigate here the question
how the mathematical structure of the subproblem can be
exploited to obtain an efficient solution algorithm for solving.
As long as the problem is not too big, we may assume without
loss of generality that (15) is solved by any standard nonlinear
programming technique.

To control the degree of convexxﬁcatlon and to adjust it
with respect to the problem to be solved, Svanberg (1987)
introduced so-called moving asymptotes U,- and L; to replace
z; and 1/z; by

1 1
;- Ly Uj—zxi'
where L; and U; are given parameters, which can also be ad-
justed from one iteration to the next. The algorithm is called
the method of moving asymptotes. The larger flexibility al-
lows a better convex approximation of the problem and thus
a more efficient and robust solution.

Numerical experience shows that both variants are very
efficient. However, there are no additional safeguards to
stabilize the algorithm as, for example, done for sequential
quadratic programming methods. When starting from an in-
appropriate initial design, it may happen that the algorithm
as described above, does not converge.




To overcome this drawback, Zillober (1993a) added a
line search procedure to the standard convex approximation
method, similar to the approach used in sequential quadratic
programming. In this case, it is possible to prove a global
convergence theorem based on very weak assumptions.

4 Nonlinear programming codes

One of the reasons for using the software system MBB-
LAGRANGE for the FE-analysis, was the highly modular
program architecture facilitating the inclusion of new opti-
mization algorithms. In addition to nine nonlinear program-
ming codes that are part of the official system, two further
codes have been added to MBB-LAGRANGE for the purpose
of this comparative study of variations of convex approxima-
tion methods.

By the subsequent comments, some additional features of
the algorithms and special implementation details are out-
lined. To identify the optimization codes we take over the
notation of the MBB-LAGRANGE documentation.

SRM: The stress ratio code belongs to the class of opti-
mality criteria methods and is motivated by stati-
cally determined structures. The algorithm is ap-
plicable to problems only with stress constraints,
consists of a simple update formula for the design
variables, and does not need any gradient informa-
tion.

The inverse barrier function method is an imple-
mentation of a penalty method as described in the
previous section, subject to the penalty function
(6). Thus one needs a feasible design to start
the algorithm. The unconstrained minimization is
performed with respect to a quasi-Newton update
(BFGS) and an Hermite interpolation procedure
for the line search. It is recommended to perform
only a relatively small number of iterations, e.g. 5
or 10, and to start another cycle by increasing the
penalty paramecter through a constant factor.
Proceeding from the same unconstrained optimiza-
tion routine as IBF, a sequential unconstrained
minimization technique is applied. The method of
multipliers uses the augmented Lagrangian func-
tion (8) for the subproblem and the correspond-
ing update rules for the multipliers. Both meth-
ods, i.e. IBF and MOM, have a special advantage
when evaluating gradients of the objective func-
tion in the subproblem. The inverse of the stiffness
matrix obtained by a decomposition technique is
multiplied only once with the remaining part of
the gradient, not in each restriction as required
for most of the subsequent methods.

The sequential linear programming method was
implemented by Kneppe (1985). The linear sub-
problem is solved by a simplex method. So-
called move limits are introduced to prevent cyc-
ling and iterates too far away from the feasible
area. They are reduced in each iteration by the
formula 8,1 = 6;/(1 + &) and an additional cu-
bic line search is performed as soon as cycling is
observed.

IBF:

MOM:

SLP:

RQP1:

RQP2:

GRG:

QPRLT:

CONLIN:

SCP:

MMA:

The first recursive or sequential quadratic pro-
gramming code is the subroutine NLPQL of Schit-
tkowski (1985, 1986). Subproblems are solved by
a dual algorithm based on a routine written by
Powell (1983). The augmented Lagrangian func-
tion (8) serves as a merit function and BFGS-
updates are used for the quasi-Newton formula.
The special implementation of NLPQL is capable
of solving also problems with very many con-
straints (Schittkowski 1992), and is implemented
in MBB-LAGRANGE in reverse communication.
The idea is to save as much working memory as
possible by writing optimization data on a file dur-
ing the analysis, and by saving analysis data dur-
ing an optimization cycle.

This is the original sequential quadratic program-
ming cdgde VMCWD of Powell (1978a) with the
merit function (10). Also in this case, the BFGS-
update is used internally together with a suitable
modification of the penalty parameter.

The generalized reduced gradient code was im-
plemented by Bremicker (1986). During the line
search an extrapolation is performed to follow
the boundary of active constraints closer. The
Newton-algorithm for projecting non-feasible iter-
ates during the line search onto the feasible do-
main, uses the derivative matrix for the very first
step. Subsequently a rank-1-quasi-Newton for-
mula of Broyden is updated.

To exploit the advantages of SQP and GRG meth-
ods, a hybrid method was implemented by Somer
(1987). Starting from a feasible design, a search
direction is evaluated by the SQP-approach, i.e.
by solving a quadratic programming subproblem.
This direction is then divided into basic and non-
basic variables, and a line search very similar to
the generalized reduced gradient method GRG is
performed.

This is the original implementation of Fleury
(1989), where a convex and separable subproblem
is generated as outlined in Section 3. In particular,
only variables belonging to negative partial deriva-
tives are inverted. The nonlinear subproblem is
solved by a special dual method.

The sequential convex programming method was
implemented by Zillober (1993b) and added to the
MBB-LAGRANGE-system for the purpose of this
comparative study. The algorithm uses moving
asymptotes and a line search procedure for sta-
bilization with respect to the merit function (8).

The code is a reimplementation of the original
convex approximation method of Svanberg (1987)
with moving asymptotes. As for CONLIN and
SCP, the subproblems are solved by a special dual
approach. The adaption of moving asymptotes is
described by Zillober (1993b).
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5 Test problems

> The success of any comparative numerical study of optimiza-
tion codes depends mainly on the quality of test problems.
In the present case all results have been obtained by 79
test examples, which were collected over the years of the
development of the structural optimization system MBB-
LAGRANGE.

Thus there was no basic strategy or any selection rule .

to find good design examples. Most of the problems (about
70%) are more or less academic problems, some are found
in the literature, some represent real life structures. In fact

the 79 test examples do not represent independent problems,
since some of them are variants of one and the same under:

lying design model: There exist 50 different, independent
models as marked in the second column in Table 1. Most
test cases are modifications of academic or real life problems
with the intention to test. certain options of the program code
of MBB-LAGRANGE. Moreover, since all test examples are
to be solvable by all available optimization algorithms, the
structure size, i.e. number of elements and. degrees of free-
dom, is relatively small compared to real life applications.

-To describe some characteristic propertles of the problems .

we distinguish between five categories (the following numier-
ation refers to the group numbers).

(1) There are seven real life structures or models derived from
them, from the design of space and aircrafts.

*'A bracket link as a small part of the Ariane spacecraft
" (no. 2), a structure w1th several load cases and stress con-
traints.. :

- o The swept wing of a Boemg alrcra,ft. as a composite stric-
_ture (no. 3), without and with layer angle variation.

o ‘A coolplate of a space structure (no. 13), with stress con-
straints and one lower frequency bound.

¢ The tank floor of a combat aircraft (no. 17).

o A center spar of the traininé aircraft JPATS (no. 24), a
composite structure with failure criteria constraints.

o The proplﬂsion module of a satellite structure (no. 32), a
model only with frequency constraints and a special mode
control option, with the intention to find a feasible design.

¢ A bulkhead of a combat aircraft (no. 41), i.e. a struc-
ture sensitive to buckling, the so-called Grumman wing-
box (no. 20).

(2) Eight examples are taken from the literature or other pub-
lications. These are a simple plate supported at four points
(no. 1) (Fleury ef al. 1984), the Boeing swept wing (no.
3), various publications, a three-bar truss (no. 15), a can-
tilever plate with different constraints in dynamics (no. 16),
see NASTRAN-manual (1985), a plane frame work (no. 19) as
an example for system identification (ESA model), the sup-
porting beam of a crane structure (no. 27) (Schwarz 1981),
and the wellknown ten-bar truss (no. 43).

(3) Most problems are test cases to verify certain aspects
of the analysis, e.g. element types. Some examples of this
group of 40 problems are to test bar elements (no. 4, 5, 6),
shell elements (no. 1, 13, 20, 31, 47, 49), solid elements (no.
23, 42), the buckling analysis (no. 37, 48, 50), multipoint
constraints (no. 30), different coordinate systems (no. 2, 14),
and special elements (no. 11, 21, 38).

(4) Other problems check MBB-LAGRANGE with respect to
the optimization model, i.e. constraints and design variables.
There are examples for layer angle variation {no. 3, 39), point
masses as design variables (no. 25, 34), buckling constraints
(no. 18, 37, 48, 50), wrinkling constraints (no. 18), local stress
constraints (no. 9), frequency response constraints (no. 5, 16,
46), time response constraints (no. 16), and manufacturing
constraints (no. 12).
(5) The remaining examples are developed to test the differ-
ent optimization strategies in MBB-LAGRANGE (nos. 1, 15,
26, 31, 43).

We believe that the present set of test cases is representa-
tive at least for small or medium size structural designs. It is

~also important to note that we do not want to test the analy- .

sis part of an FE—system Instead, the resporise of optimiza-
tion routines when applied to solve structural optimization
problems is to be investigated.

In the subsequent tables, we classify sonie charactenstlc
data of the test structures under investigation. For reference

_Teasons, we use the original notation as determined by the

engineers implementin‘g and testing MBB-LAGRANGE.
Table 1 gives an impression of the size of the analysis and
optimization model and presents the following 1nformat10n

Table 1. Informatlon on model structure

[NoJModelTest example uvmmwmwuvmmﬁmsvj\mvynq

1] 1 [APLATE2 - 64 ] 1] 175 4 751
2] -1 [APLCON - ,49. 64 1] 1] 178] 49/ 32 5
2 [ARIANB 310 357 1] . 5[213¢[ 310] "24[1020
4 3 [B4SIZE [ 1300 88 4 1| 240 520 72| 522
5| "3 |B4SIZELA " | 130[ 8§ "4 1] 240 520 83 522
6 4 BALKEN2 | 2 4 1" 2 100 2 o[ 4
7 5 IBARBIG _ 9l 13 1 o s4 9 o o
8.6 |BARDISP 3 4 1] 1 12 3 4 3
9 .6 [BARDYN2 3 4 1 1] 19 3 3 4
10 6 [BARDYN5. 3 4 1] 1] 19 3 3
11} 7 |BARMASS 8 100 1 3 48 8 8 1
12 8 [BAROF9 I
13 9 [BUST 8 15] 1] . 2 54 8 8 16
14 9 |BUSTB 8 9o 1] 2 3 4 1
15| 9 [BUSTM 4 ¢ 1 2 g 4 4
16/ 9 [BUSTQ 8 151 1] 2] 54 8§ 8 16
#{ 9 [BUSTQM 2l 6 1 of 8 o o 4
1§ 9 [BUSTT . 100 150 "1 " 2] 54 10 19 2
19] 10 [CANE 40 44 1] 1[ 120 4f 10 41
20, 11 |CELAS4 . 220 29 1 1] 87 1 2 1
21] 12 |COMPKRAG| 4 7 4 2 1d 16 10 44
220 13 [COOLPLATE| 177 180 1] 1f 971l 177] 8 177
23| 14 [CORDS 63 351 4 1{ 87135 9
24| 15 [DREI 3| 4 1] 2l o[ 3 3 6
25 15 |DREIDISP 3] 4 1 2 2o 3 2
26 15 |DREISLP 3 4 1 o 2 g 3 §
27 16 [DYNPLT 63 60 1] 1] 2500 63 10 15
28 17 |[EFA2CLAG | 492] 385 1| 1]1859] 492] 54] 153
29{ 18 |F1F3 24 28 9 1] 52[100] 13 67
30] 19 [GARTEURL | 83 79 1| ‘o 231] 83 13 21
31] 20 [GBOX o7 89 1| 1 473 97 6 9
32] 21 |[GENTEST 3 4 1 2 1y 1 1 2
33] 22 [GRADPLA 4 o 1] of & 4 4 10
34) 23 HEXA 9 52 1] 17148 9o € 13
35 24 [JPATS16 252] 214] 2] 1| 406] 744] 144] 416
36] 25 |[KALA31 9 9o 4 1f 18 75 37 40
37 26 |[KRAG 4 7 3 2 1 {4 7 14
38 26 |[KRAGBA 8 10 4 2 16 12 10 26
39 26 [KRAGBAD 8 100 4 2| 14 12[ 1q[ 23
400 26 [KRAGBAM | 8 10 4 2 16 12] 10 20
41] 26 [KRAGDYN 8 10 4] 2[ 16 12 27]
42] 26 [KRAGIBF 4 7 3 o g A 7 14




Table 1. Continued

NoModel[Test example ETINODNLYINLCINDTINSVNDVINDG]
43 26 [KRAGMAN 2[ 10] 160 10 44
44] 26 [KRAGMOM 4 74 I 2 1 q 7 14
45 27 JKRANOD 54 20 1| 1] 112 54 54 54
46] 27 |[KRAN1 54 200 1| 1) 112 54 54 33
47 28 [LAGTEST 40 36 1 1] 154 4 8 40
48] 10 [MCANE 400 44 1f 1] 120 40 40 41
49 29 MOMENT o 1 2] 48 8 8 16
50] 30 MPC 18 29 1 i ng 1 2l 1
51 31 LATE 6 19 11 2 26 6 6 12
52 31 MPLATEH 1 2] 26 6 12
53 32 OPM 208 133 1 of 514 208 11] 2
54 33 PLATTE 100 160 4 1) 27 40 10 41
55 -34 [POINTMASS g 10 1 48 8 8 1
56 356 |PUNCHIEST | 50 31 4 1| 60 8§ 20 8
57 36 [QUARTOPLT 4 I 4 19 4 4 29
58] 37 |QUATRIA EE I 1] 84 92 35 99
59 38 RBAR 25] 29 1] 1] 134 2 2 25
60 39 [SCHEIT210 8 9 i 15 3 4 32
61] 40 [SPANT 20 1 1 1 26 20 13 20
62[ 41 EPSLP — [ 414 19d 1] 1] 38d 414] 10§ 414
63 41 [SPSLPB 414 196 1] 1] 389 414] 108 415
64 42 [T3D066 o 52 1 1] 149 9 13
65 43 [TBDYN 100 6 1 0 8§ 10 1 1
66 44 [TEMPER?2 16 25 1f 1] 18 16 12 12
67 43 [TENBAR 100 ¢ 1 1 g 10 19 10

43 [TENCON 1id ¢ 1 1 8 19 10 10
64 43 [TENMOM 1 o 1] 1 & 19 100 10
700 43 [TENRQP 10 6 1f 11 g 1d 10 10
71 43 [TENSRM 19 6 11 1 g 19 1d 1
720 2 [TESTCORD1 | 179 207 1 1017 173 1] 17
73 2  |[TESTCORD4 | 173 207 1] 21027 173 11| 17§
74| 45 [TESTNASO 30 1 4 2 72 42 30 &4
75| 46 [TESTPARDYN| 9 11 1 54 o 9 91
76 47 |TRAX4 32] 25 1] 1] 56 34 3z 32
77 48 [TRIOM 100 18 1] 1 32 10 5[ 13
78] 49 [TSHELL3 N
79 50 [TUBE 60l 32| 4 1 72(132 8§ 9

NET: net size, i.e. number of finite elements
NOD: number of nodes

NLY: number of layers in case of composite elements (maxi-
mum value)

NLC: number of load cases

NDT: number of degrees of freedom
NSV: number of structural variables
NDV: number of design variables

NDG: total number of constraints (without bounds for vari-
ables)

Table 2 summarizes some information on the type of the
constraints. The following data are listed: '

NDG: total number of constraints
NGS:
NGD: number of displacement constraints

number of stress constraints

NGB: number of buckling constraints

NGF: number of frequency constraints

NGYV: number of eigenvector constraints

NGM: number of manufacturing constraints
NGR: number of frequency response constraints
NGT: number of time response constraints
FID: feasible initial design (0 - yes, 1 - no)

6 Numerical comparative results

In this section we describe the test procedure and summa-
rize some of the numerical results achieved. All tests have
been performed on a VAX 6000-510 running under VMS,
at the Computing Centre of the University of Bayreuth.
The numerical codes are implemented in double precision
FORTRAN. Two additional optimization routines, SCP and
MMA, are added to the FE-system MBB-LAGRANGE for
the purposes of the comparative study.

The intention behind our tests is to apply all optimiza-
tion routines to all test examples listed in the previous sec-
tion. To evaluate the results achieved, we need some infor-
mation about the optimal solution, since the difference from
the minimal weight of a test structure and the corresponding
constraint violation serves as a measure for the accuracy of
an actual iterate.

Thus we have to compute an optimal solution for each
test case as accurately as possible. The most reliable codes
were executed with a very small termination tolerance and a
large number of iterations, until we got a stable and reliable
solution. Test examples that did not lead to a clear solution
point, because of too many different local minimizers, have
not been included in our set of test problems.

Having now an accepted reference value, it is possible to
define whether an actual iterate z is sufficiently close to the
optimal solution z* subject to a given tolerance € > 0 or not.
For each function or gradient evaluation during a test run,
we store the corresponding objective function value f(z) and
the maximum constraint violation
r(2) 1= max{|min[0, g;(2)]|: j =1, ..., m},
together with some further data for analysis number and cal-
culation time.

Now we are able to evaluate the performance of an al-
gorithm subject to a given accuracy level &. We sum up
the performance criterion, i.e. calculation time or number of
function and gradient evaluations, until for the first time the
conditions
fl@) < f(=")(1+e), r(z)<e (16)
are satisfied. We should note here that the constraint func-
tions are scaled internally by the analysis procedure of MBB-
LAGRANGE.

Moreover, there are some reasonable upper bounds for the
number of iterations, and we must be aware of the fact that
there are situations where a code is unable to find at least
one solution in a test problem class within the given accuracy
level and the maximum number of iterations.

When trying to evaluate the performance of an optimiza-
tion algorithm, we are immediately faced with the following
difficulties.

¢ The number of successful test runs is too small to pre-
pare a statistical analysis particularly for small accuracy
levels € and special subsets of test examples. Also there
is no chance of finding the probability distribution of our
performance criteria.

o When we evaluate only mean values over all test runs,
we penalize the more reliable codes. Since the poor ones
are often unable to find a solution of the more difficult
examples, they avoid a large number of iterations needed
to attain a solution in these cases.
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o When we evaluate mean values only with respect to the
test examples which could be solved successfully by all
algorithms, we obtain a too small test set, containing
moreover only the unimportant toy problems. Also it is
possible that we obtain empty test sets.

Thus we need another approach to evaluate the perform-
ance of an algorithm in a suitable way, when their qualifica-
tion varies drastically as in our case. One possible attempt
is the priority theory of Saaty (1980), which was used by
Schittkowski (1980) and Lootsma (1981). In these cases, it
is tried to compare non-measurable quantities of optimiza-
tion codes, e.g. ease of use. We apply now the same idea to
measurable data such as calculation time and number of func-
tion and gradient evaluations.

For the purpose of our performa.nce evaluatlon we exp101t
Saaty’s priority theory in .its simplest form. Imagine that

“there are unknown weights or priorities wy, .. , Wa, where n
is the number of optimization.codes we want to investigate,
' which are positive and which satisfy

Zw,—l

N

These wexghts are now to charactenze one of our perform-

ance criteria, say calculation time. It is very easy to see that
the matrix

(wt/w])i,g =Iyn>»
is of ra.nk one and-has only one elgenvalue n with éigenvector

(wl, Ve ‘U}n)
i.e. )

"Aw = nw. _
Moreover the row sums of A, i.e. wi Y req 1 /w; are multiples
of the vector w.

* _ The idea motivating our approach is now that we are un-
able to obtain appropriate estimates for the desired priorities
w; directly, but we can compute estimates for the relative
performance weights w;/wj in the following way. Let pf de-
note a performance index, e.g. number of function evalua-
tlons for optimization algorithm ¢ and test example k, where

=., n, k=1,..., m. Now n denotes the number of
algonthms that we want to compare, and m the number of
test examples in our test set under consideration. Moreover,
we denote by I;;(e) the indices of all test problems, which
are solved successfully by algorithms ¢ and j subject to the
error tolerance E as defined by (16). Then

Zke]u pl

kel

is consxdered to be an estimate for w;/w; and we use the
normalized row sum of matrix (r;;) as an estimate w; for w;,
Le.

_ Xl
U, ==

(17

Py =

. (18)
oi=17ij

Since the numerical figures for the performance criterion
calculation time differ drastically, we use the geometric mean
in this case to estimate the relative weights as above.

Another difficulty is that some nonlinear programming
codes are only capable of solving certain subclasses of struc-
tural optimization problems, e.g. problems only with stress

constraints (SRM) or only problems with a feasible initjal
design (IBF). Thus we consider the following subsets of test
runs to evaluate the criteria as described:

No. | Codes excluded | Test cases | Description

1- | IBF, SRM 79 all problems

2 | IBF 44 only stress constraints

3 | IBF, SRM "~ 35 only mixed constraints

4 | SRM 44 feasible starting point

5 | IBF, SRM 35 non-feasible starting point

For the purpose of our compa,ratlve study, we evaluate the
performa.nce criteria :

" calculation time in seconds,

‘e number of function evaluations, where an evalua.tlon -of
objective and all constraints is counted as one functlon
.call; and N

o number of gradient evaluatlons, le. eva.luatlon of the gra-
dient of objective function and of all active constraints,
where - active constraints are determined by the internal
active set strategy of MBB-LAGRANGE.

. These three crlterla are computed-by the modified’ prlorlty

theory as described. The resulting numerical figures cannot
be interpreted as mean values for the performance item we

Table 2. Information on constraint types

[No JTest example [NDG] GSINGDINGB GFINGVINGMINGRINGTIFID

- JAPLATE?2 51] 49 2 of o o o o 0
2JAPLCON- | 51 4 2t o ol o "o of oo
IARIANB, ~ "|1020] 20 o 0 o o o o
4/B4SIZE 5220 5200 2| O] ol o o o 0
5B4SIZELA [ 5220 5200 21 o of "o o o o o
6BALKEN2 4 2] o o o o "o o o 1
_7BARBIG 91 00 o o o o o 9y 0o 1
8BARDISP 3 3 o o o o o o o o
9BARDYN2 4 3 o of 1 of o o o o
10BARDYNS5 4 3 o o 1 o o o o 0
11BARMASS 1 0 o0 0 1 0 of o o 1

12BAROF9 77 o of o d o o o

13BUST 160 8 o o o o o d o0
14BUSTB 16 8 o of o o o 9o o 9
15BUSTM g 4 o o o o o o o ¢
16BUSTQ 160 8 o of o o o o 0

17BUSTQM 4 2 o of o o o o o

[ 18BUSTT 200 100 o of o o o o o ©
19[CANE |41 400 o o 1] 0 o o 1
20[CELAS4 18] 18 ol of o o o o o 1
21ICOMPKRAG| 44 18] 0o o o o 12 o o 1
22ICOOLPLATE] 178 1771 o o 1 0 o 0o 0 ¢
23)CORDS 96l 96] o of o o o o o 1
24DREI 6 3 o o o o o o o o
25DREIDISP 6 3 o o o o o o 0o o
26DREISLP 6f 3 o of o o o o o O
27DYNPLT 157 63 ] o o o 61 28 1
28EFA2CLAG | 153/ 108 45 of o o o o o ¢
29F1F3 671 56 o 11y o of o o o 1
30GARTEUR1 21 o o of 3 20 o o o 1
31GBOX 98 971 o i o o o o o 1
32IGENTEST 24 1 o o o o o o o 1
33GRADPLA 100 4 1 o o o o o o o
34HEXA 13 9of 4 of o o of o o o
35JPATS16 416 416 of of o o o o o 1
36KALA3.1 400 36| 3 of 1 o of o 0 1
%(RAG 14 7 o o 9o o o o o 1
38KRAGBA 26 12 1 o o o o o o 1
3gKRAGBAD 25| 12 o o 1 o o o o o
10KRAGBAM 20] 10} o0 o o of o o o




Table 2. Continued

No JTest example NDGINGSINGDNGBNGFINGVINGMNGRINGTJFID)]
41KRAGDYN 2 1 i o 1 of o o o 1
42 KRAGIBF 14 7 o o o o o o o o
43KRAGMAN 44 16 of o o o 12 o o 1
44KRAGMOM | 14 7 o o o o o o o 1
45KRAND 54 54 ol o of o o 9
46KRAN1 55 54/ of o 1 of o of o o
[ 47LAGTEST 40 400 o o o o ¢ 0o 0 0o
48MCANE 141 4 o of 1§ o o o o 1
49MOMENT 16 of o o o d o o o
50MPC 1§ 188 of o o o o o o o
[ 51MPLATE 12] ¢ of of o o o o o o
52]MPLATEH 12 o o J' 6 o o 0o 0
530PM2 2l of ol o 2 of o o 0o ©
54PLATTE 41 400 o 1 o o o o o 1
55POINTMASS| 3] o of of 1f o o o o 1
56PUNCHTEST] 86 8] of o o o o ol 0
S57QUARTOPLT] 200 4 of 1| o O o 1
58QUATRIA 99 92| 2 5 o o o o o 1
59RBAR 250 25 of o o o d o o 1
60SCHEIT210 320 32 of o o of d o "o o
61SPANT 200 200 of o of o o o o 1
628PSLP 414414 Oof 0 o0 o o o o 1
635PSLPB 415414 o 1 o o o o o 1
64/T3D066 13| 4 o o o o o o o
65TBDYN i o o o 1 o o o o 0o
66[lEMPER2 12 12 o o o o o o o 1
67TENBAR 10 0] o o o o o o o 0
68TENCON 10 100 of o o o o o o 0
69TENMOM 1 100 of o o o o o o o
70TENRQP 1 100 of o o o of 0
71 TENSRM 1 100 of o o o d o o o
72TESTCORD1] 176 8 oo of o o o o o o
7ITESTCORD4| 176] 88 o o o o o 0o o o
74TESTNASO 84 42l O o o o o o o o
7S[TEST- ot of o o o o o o1 o 1
PARDYN
76[LR4X4 32 321 of o o o o o o o
77TRIOM 13 100 o 3 o o o o o 1
78{TSHELL3 2l Y ol o o o d o o 1
79TUBE 98 96 o 9 o o o o 0 1

are considering. They give an impression of the relative per-
formance of an optimization code and must be interpreted in
this way. Moreover, we want to evaluate some figures that
measure the reliability of a code, i.e. any guess for the prob-
ability that an algorithm is capable to compute a solution
subject to a given accuracy. Thus we display also the num-
ber of test problems that are not solved successfully by a
code with respect to four different accuracy levels ranging
from € = 0.01 to £ = 0.00001.

The subsequent four figures display the results achieved
in graphical form with respect to the set of all test runs.
Figure 1 shows the numbers of unsolved problems solved with
respect to four termination tolerances. The corresponding
performance results calculation time, number of function and
gradient evaluations are displayed in Figs. 2 to 4 for the final
termination accuracy £ = 0.01.

For each of the five subsets of test runs defined above,
two tables with information about the performance of the
optimization algorithms are given. The first five tables show
the robustness of the optimization codes, i.e. the number of
problems that are not solved successfully subject to a given
final accuracy. The subsequent five tables list the efficiency
performance data calculation time and number of function
and gradient evaluations, evaluated by the priority theory as
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outlined in the beginning. Again the priorities are computed
for each of the five different test problem classes separately.

From the numerical results obtained, we can make the

following observations:
(a) Robustness

(1) All test problems (Table 3)

The most robust implementation is the RQP1-code.
For all tolerances it has the least number of unsolved
problems. For ¢ = 10—2 QPRLT is the second most
reliable method, but with decreasing € it got almost
the same number of failures as RQP2, SCP and MMA.
For ¢ = 1072 the program SLP performs as reliably as
SCP or MMA, but its relative robustness decreases for
lower €. The GRG-method performs a bit worse than
QPRLT, SCP and MMA, especially for the largest €.
For lower termination tolerances, MOM is very un-
reliable and its usage cannot be recommended. Also
CONLIN is quite unreliable and for lower € only MOM
has more failures.

(2) Stress/mixed constraints (Tables 4/5)

When considering only problems with stress con-
straints, we observe that SLP, RQP2, SCP and MMA
perform considerably better with respect to the per-
centage of unsolved problems than in test class no.
3, while GRG, QPRLT and RQP1, CONLIN do not
seem to be sensitive to the type of constraints. On
the other hand, this fact improves their relative per-
formance with respect to test class no. 3. The SRM-
method, which is only applicable in test problem class
no. 2, is not very robust. Even for very low require-
ments on termination accuracy it solves less than one
half of the test problems.

(3) Feasible/infeasible initial designs (Tables 6/7)
Apart from MOM, all methods are more robust when
the initial design is feasible and considerably worse
when it is infeasible. Their relative performance is
not very different from that in the general case. The
IBF-method, which is only considered in test class no.
4, is very unreliable and has the worst percentages of
unsolved problems for all ¢'s.

(b) Efficiency

(1) Calculation time
First of all, we have to mention, that there are no
drastic differences between the computed weights for
the four e-values.

In test class no. 1, the most efficient method is
CONLIN. It has the best weights followed by MMA
and SLP, which do not differ significantly. The next
group of algorithms with about the same efficiency
scores consists of RQP2, QPRLT and SCP. GRG gave
somewhat higher values. The RQP1-method requires
a relatively large amount of calculation time, since the
actual implementation writes and reads all intermedi-
ate analysis or optimization data, respectively, into
temporary files to save memory.

The results in test class no. 3 are not very different
from those in test class no. 1. When we consider the
SRM-method in test class no. 2, we observe that SRM
i8 the most efficient method concerning computation
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time and stress constraints. The relative performance
of all other methods does not differ very much from
that of test class no. 1. In test class no. 4 there are
only slight differences in the relative values of the nine
standard methods. The absolut values changed since
the IBF-method is even worse than MOM, and the
sum of the weights is normed to 100. For infeasible
initial designs we see that QPRLT has higher values
than in test class no. 1 and, on the other hand, the per-
formance of SCP improves. The other methods have

values. The relative ranking shows that CONLIN and
MMA have the best weights. With some small dif-
ferences in each case, SLP, RQP2, RQP1 and SCP
follow. GRG and QPRLT have values much higher
than those of the calculation time. The reason is that
both methods need many function evaluations in their
line—search to reach a feasible design in each iteration.
The weights of MOM are again very bad.

In test classes no. 2 and 3 we do not observe signifi-
cant differences to the results of test class no. 1. The

- "problems)

about the same scores in this test class. performance of the SRM- method detenorates w1th de-
creasmg E.
‘ In test class no. 5 there is one remarka.ble dxffer-
Table 3, Number of unsolved problems for test cla.ss no. 1 (all 79 S ’,;:ence With decreasing € the performance indices of
.. MOM improve more and more and finally are better
. . than those of GRG and QPRLT. In test class no. 4
GRG increases with decreasmg €. The relative ¢lassi-
. fication of the other methods is not very different from
" that in test class no. 1. '

Code 'e=0.01 | e=0.001 |e=0.0001]¢=0.00001
"MOM 30 | (38%) [ 51 | (65%) | 60 | (76%) | 67 | (85%)
SLP .| 20 (25%) | 27| (34%) | 31 | (39%) | 37 | (47%)..
RQP1 13 [ (16%) | 15 | (19%) | 19 | (24%) | 23 | (29%)
| RQP2 18 | (23%) | 20 | (25%) | 22 | (28%) | 26 | (33%)
GRG 26 | (33%) |30 | (38%) | 31 | (39%) | 31| (39%) .
QPRLT |15 | (19%) | 20 | (25%) | 24 | (30%) |28 | -(35%)

_Table 6. Number. of unsolved problems for test class no: 4 (44
problems only w1th {ea.mble startmg pomt)

CONLIN. | 34 243‘5’;”37 .{4733 4 'E“?%“;“ "E5.—4§'§ © [Code” T e=0@1 ] ¢=0.001 [ 00001 ] e;o.bbom
SCP |19 | (24%) | 24 | (30%) | 25 | (32%) | 28 | (35% t - : :

; ‘[TBF |29 [(66%) | 35 | (80%) | 40 | (91%) | 40| (91%

L LMMA 21 ) @27%) [ 25| (32%) | 25 | (32%) | 27 | (34%).]  |mMom |14 Eazyg 33 266‘7:; 33 E757:; 38 Ese‘%tg

\ SLP- .9 | (20%) |-13 | (30%) [ 13 | (30%) | 16 | (36%)
' ; > - : i | RQPL | 4 | (9%) [ 6.| (14%) |9 | (20%)-] 10 | (23%)"
Tat;lle 4, N;lmbe;()f unsolvedt pro}t)lems fgr test class no. 2 (44 RQP2 7 | 16%) | o | (20%) | 9 | (20%) [-12 | (27%)
 problems on’y with stress constrain s) c 7 Jere 13 | (30%) | 13 | (30%). | 14 | (32%) | 14 | (32%)
Code ~ ] =001 [e=0.001 |¢=0.0001 [<=0.00001 _ "QPRIT | 6 (14%) |10 | (23%) | 117} (25%) | 13 |"(30%)

SRM |23 | (52%) | 24 | (55%) | 25 | (57%) | 26 [ -(59%) CONLIN | 13 | (30%) | 15-|.(34%) | 17 | (38%) |18 | (41%)
MOM" | 16| (36%) | 29 | (66%) | 36 | (82%) | 42 | (95%) Scp- 9 | (20%) | 12 |(27%) | 12 | (27%) | 14 | (32%)
SLP- 7 | (16%) | 10 | (23%) | 11 | (25%)| 13 | (30%) MMA 9 | (20%) [12 | (27%) | 12 | (27%) | 13 | (30%)

RQP1 7L6%) [ 7 [(16%) | 9 | (20%) | 9 | (20%)
RQP2 6 | (14%) | 7. | (16%) | 7 | (16%) | 10| (23%)
GRG 14 | (32%) | 14 | (32%) |15 | (34%) | 15 | (34%)
'QPRLT | 9 | (20%) | 12 | (27%) | 14 | (32%) | 16 | (36%)

Table 7. Number of unsolved problems for test cla.ss no. 5 35
problems only with non-feasible startmg point) = .

‘| CONLIN | 16 | (36%) | 17-| (39%) | 20 | (45%) | 20 | (45%) Code e =001 | c=0001 <= 0.0001 | & = 0.00001
sCp 9 | (20%) | 10 | (23%) | 10 | (23%) | 11 | (25%) | MOM 16 [ (46%) | 22 [ (63%) | 27 [ (77%) | 29 | (83%)
MMA 8 | (18%) {9 [(20%) | 9 | (20%) ) 9 | (20%) SLP 11| (31%)| 14 | (40%) | 18 | (51%) | 21 | (60%)

_ RQP1 | 9 | (26%) | 9 | (26%) | 10 | (20%) | 13 | (37%)
RQP2 © |11 (31%) |11 | (31%) | 13 | (37%) | 14 | (40%)
-Table 5. Number of unsolved problems for test class no. 3 (35. GRG |13 | (37%) | 17 | (49%) | 17 { (49%) | 17 | (49%)

problems only with mixed constraints) QPRLT 9 | (26%) | 10 (29%) 13 (37%) 15 | (43%)
— — - — -| CONLIN 21 | (60%) {22 | (63%) | 25 | (71%) | 25 | (71%)

Code € =0.01 e=0,001 | £=0.0001 | e =0.00001
MOM 14 | (40%) [ 22 | (63%) | 24 | (69%) |25 | (71%) SCP 10 ] (29%) | 12 | (34%) [ 13 | (37%) | 14 | (40%)

MMA |12 | (34%) | 13 | (37%) | 13 | (37%) | 14 | (40%) -

SLP 13| (37%) | 17 | (49%) | 20 | (57%) | 24 | (69%)
RQP1 | 6 | (17%) | 8 | (23%) | 10 | (20%) | 14 | (40%)
RQP2 12 | (34%) {13 | (37%) | 15 | (43%) | 16 | (46%) (3) Number of gradient evaluations
GRG 12 | (34%) | 16 | (46%) | 16 | (46%) | 16 | (46%) In this case, the weights do not depend heavily on
QPRLT | 6 | (17%) | 8 | (23%) [ 10 | (29%} | 12 | (34%) €. As GRG and QPRLT got relatively bad scores
gggLIN ig 8;?; fi Eigg’g f% 823’% f: Eig‘;’; for the number of function evaluations, both methods
o o) 2 ° ° improved their scores with respect to the number of
MMA 13 | (37%) | 16 | (46%) | 16 | (46%) | 18 | (51%) gradient evaluations, since they do not use gradients
for the restoration phase, i.e. the projection onto the
feasible region. They are followed by CONLIN and
MMA. SLP, RQP1, RQP2 and SCP have about the

(2) Number of function evaluations
The computed weights seem to be more or less inde-
pendent of ¢ with one exception. The priority values same weights and are a bit worse than the other four.
for number of function evaluations in test class no. 1 As in the other cases, MOM is the most inefficient
differ strongly from those of the calculation time. SLP, code.
RQP1, RQP2, CONLIN, SCP and MMA had a bet- : In test problem classes no. 2 and 3 there are no sig-
ter score, where MOM, QPRLT and GRG had lower nificant differences to class no. 1 with respect to the



relative performance. The absolute values decrease in
Table 9 only because the weights of MOM increase
and the sum is normed. Only for SLP we observe a
significant improvement for e = 104 in test class no.
3, probably generated by side effects of other codes
with lower reliability and efficiency in this case. Since
SRM does not use any gradient information at all, it
got the best scores.

For the classes of feasible/infeasible initial design
we cannot observe significant differences in the rela-
tive performance. For test class no. 4 IBF has the
worst values for higher ¢, but its weights decrease for
lower €. Vice versa, the same is valid for MOM. In
test class no. 5, there is a decrease in the weights of
MOM similar to the number of function evaluations,
but its final weight is still very bad.

Table 8. Performance indices calculation time, number of func-
tion and gradient evaluations for test problem class no. 1 (all prob-
lems)

Code e=0,01|e =0.001]ec = 0.0001|c = 0.00001
27.16 | 31.70 31.58 28.79
MOM 43.72 | 48.88 47.76 49.64
55.67 | 61.55 63.20 54.68
7.28 6.82 7.30 6.91
SLP 3.66 3.29 4.22 3.21
6.62 5.84 7.25 6.85
14.15 | 12.97 13.07 13.63
RQP1 5.59 447 4.59 4.51
7.69 6.15 5.75 7.43
9.39 8.25 8.31 8.97
RQP2 4.49 3.64 3.88 3.93
7.05 5.38 5.23 6.89
11.20 | 10.80 10.68 11.06
GRG 17.34 15.87 15.71 15.56
3.62 3.03 2.71 3.41
8.61 8.13 8.17 8.36
QPRLT | 13.45 | 12.56 12.72 11.77
3.02 2.66 2.53 2.96
5.82 5.68 5.33 5.66
CONLIN| 2.63 3.12 2.35 2.45
4.59 5.18 3.49 4.60
9.54 9.06 9.03 9.59
SCP 6.39 5.59 6.01 6.07
7.11 5.94 5.65 7.43
6.86 6.59 6.54 7.04
MMA 2.73 2.59 2.75 2.86
4.64 4.26 4.19 5.75

7 Conclusions

Before drawing any conclusions, we have to note two impor-
tant observations. )
o All optimization codes are executed with one constant
" set of parameters and control options. An experienced
user trying to approach a solution step by step, will cer-
tainly be able to tune the parameters depending on the
model and data, and could, therefore, achieve much bet-
ter results in practice. We do not investigate the question,
whether one algorithm is more robust than another with
respect to input tolerances.
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Table 9. Performance indices calculation time, number of func-
tion and gradient evaluations for test problem class no. 2 (stress
constraints)

Code £=0.01]|g=0.001]e=0.0001]e = 0.00001
3.96 4.04 4,20 4.62
SRM 3.20 3.94 4.45 5.19
0.0 0.0 0.0 0.0
27.31 34.40 37.72 36.91
MOM 44.33 53.62 53.73 54.03
58.64 69.06 78.97 77.51
7.24 6.16 6.08 6.00
SLP 3.69 2.63 3.00 2,72
6.19 3.98 2.86 2.90
12.64 10.89 10.67 10.72
RQP1 4.96 3.35 3.53 3.49
6.38 4.10 2.89 3.13
8.56 7.13 6.94 7.06
RQP2 4.80 3.19 3.42 3.32
7.45 4.70 3.30 3.55
.5.68 5.49 4.95 5.01
GRG 2.83 3.02 2.48 2.42
4.11 4.34 2.76 3.01
9.35 9.06 8.57 8.63
QPRLT | 13.44 12.56 13.09 13.23
2.81 2.26 1.43 1.50
7.78 6.83 6.35 6.39
CONLIN| 13.31 10.36 8.66 8.19
2.54 1.86 1.20 1.24
10.28 9.31 8.50 8.50
SCp 6.35 495 [ 5.21 4.94
6.79 5.47 3.74 3.99
7.21 6.68 6.01 6.16
MMA 2.88 2.36 2.42 2.46
4.70 3.95 2.66 2.98

e We cannot exclude that some test examples possess
other local solutions with larger objective function values.
Whenever an algorithm approximates a local solution dif-
ferent from the reference design, an error will be reported.
There is no attempt to identify this situation.

Both remarks explain, at least partially, why the total
number of unsolved problems is relatively large for all non-
linear programming codes under investigation. Also the set
of test problems does not consist only of ¢rivial problems, al-
though the problem sizes are relatively small. Thus it must
be recommended to include as many different optimization
algorithms in a structural design system as possible.

To summarize the most important conclusions, we dis-
tinguish between the seven different optimization strategies
introduced in Section 3. However the conclusions are drawn
from the numerical results obtained by the special implemen-
tations under consideration. Since for some of the optimiza-
tion strategies considered, only one code was implemented,
we must be careful when applying them to other situations.

1. Optimality criteria methods

The only algorithm of this class in the MBB-LAGRANGE
system is the stress ratio method SRM. Even if we apply
the code only to problems with stress constraints, more than
50% of all problems cannot be solved at all because of the
heuristic iteration method without any additional safeguards
guaranteeing convergence. On the other hand, SRM is the
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Table 10. Performance indices calculation time, number of func-
tion and gradient evaluations for test problem no. 3 (mixed con-
straints)

Code € =0.01]e = 0.001]e = 0.0001 [ = 0.00001
25.29 25.56 24.96 26.05
MOM 44.67 | 44.16 42.83 47.30
47.08 | 48.36 40.27 45.31
6.66 7.26 8.30 6.20
SLP 3.42 3.79 6.06 3.30
7.84 8.84 16.06 9.70
. 15.67 15.45 15.24 15.13
RQP1 5.97 5.26 5.32 5.14
.- | 10,04 | 9.04 932 | 9.14
‘ 10.34 972 | 954 | 10.03
RQP2 4,02 3.71. | 3.90...] 407
- | 800 | “731 | 789 8:25 .
12.79 12.38 11.96 11.71
GRG 19.87 19.38 1635 [ 1517
‘ 4.61 424 | 402 | 3.84
9.08 9.50. 9.94 9.59
QPRLT | 11.73 12.90 |. 15.08 13.41
o ©3.37 343 [ 3.89 3.41
. 540 | 527 4.96 5.39
CONLIN| 2.20 267 | 171 2.04"
'5:09° 562 | 3.87 | -.4.28
8.37 8.54 8.65 9.13
SCP 5.74 5.67 6.11 6.76
S 8.46 7.56 813 - | 871
640 | 632 | 6.46 76.76
MMA’ 2.37 2.44 2.66 2.81
o 550 | 561 -] . 655 *7:36

most efficient method in case of convergence particularly with
respect to calculation time. ‘We have to note here that. the
algorithm does not require any sensitivity analysis.

2. Penalty methods

The inverse barrier method- IBF implemented in MBB-
LAGRANGE, is unreliable and inefficient. Moreover, this
version requires a feasible initial design thus restricting the
domain of application. The usage of an inverse barrier
method similar to the code IBF within the framework of a
mechanical structural optimization system cannot be recom-
mended.

3. Multiplier methods

Also in this case, the successive unconstrained optimization
cycles require a large number of function and gradient evalu-
ations. Only the reliablity is acceptable for very large termi-

nation tolerances. Again the conclusions about the method -

are vague since the results are obtained by only one imple-
mentation of a multiplier method.

{. Sequential linear programming methods

Although only one realization of a sequential linear program-
ming method was tested, the results are very promising.
Since there is no inheritance of round-off errors as for the
more advanced numerical algorithms, the code is quite ro-
bust and efficient. Moreover, the implementation is simple
provided that a black boz solver for the linear programming
subproblem is available. Also the method can be applied to
solve large real life design problems successfully.

Table 11. Performance indices calculation time, number of func-
tion and gradient evaluations for test problem class no. 4 (feasible
starting point)

Code € = 0.01[e = 0.001 [ ¢ = 0.0001 |« = 0.00001
32,57 | 29.29 24.25 2487 |
IBF 56.17 55.89 60.48 56.49
44.89 48.25 24.79 27.91
18.24 21.69 27.41 26.61
MOM 19.03 22.99 22.98 27.45
31.40 34.91 53.43 48.51
4.61 4.45 4.72 4.62
|SLP 154 | 117 1.07 0.93
. 331 | 2,05 323 | 311
9.99 [ 7948 9.25 9.18'
RQP1 ~2.72 1,198 1.53. 141,
430 2.85 370 | 3.93
. 6.64 6.07 | 6.00 " 6.18
RQP2 228 | 143 | 1370 | 130
T a4 | 268 353 | 390
692 | 3.98 3.70 3,72
GRG 678 | .1.33 | 078 0.74
E '1.60 |- 2.13 . 2.08 2,28 -
522 | . 7.58 749 7.53 '
QPRLT .| 5.58 6.46 .| 5.06 5,09
133 | 117 1.50 . 170
3.72 5.00 4.98 4.85
CONLIN| 1.2 4.31 3.54. 3.45
2.15 0.89 1.24 1.35
- T3 | 746 735 .47
SCP. | '3.53: 298 | 232 .| .229
422" | 301 | 386 | 434
4.78 5.01 4.85 4.96
MMA 1.27 "1.14 0.88 0.86
2.57 | 2.06 2.63 2.97

5. Sequential quadratic programming methods

As is also known from other comparative studies, sequen-
tial quadratic programming methods can be implemented in
a very reliable and robust way: There are two drawbacks
when applying them to solve structural optimization prob-
lems. First round-off errors may have a significant impact on
the numerical performance, in particular when introduced
by inexact numerical derivatives. Especially they prevent
the superlinear local convergence speed. Moreover, they re-
quire some memory space for an approximation of the Hessian
matrix and for the linearized constraints which is often not
available for large real life structures when implemented in
the standard way. However, for small or medium size prob-
lems as tested in the frame of the comparative study, the
sequential quadratic programming algorithms are very effi-
cient with respect to the number of function and gradient
evaluations, and are only inferior to special purpose imple-
mentations exploiting model dependent features.

6. Generglized reduced gradient methods

The necessity to project a new iterate back to the feasible
region as soon as a constraint is violated, requires additional
function evaluations, since this procedure does not depend
on gradients within the implementation of the codes tested.
Thus the performance scores with respect to number of gra-
dient calls are much better than the corresponding scores for
function evaluations. On the other hand the generalized re-



Table 12. Performance indices calculation time, number of func-
tion and gradient evaluations for test problem no. 5 (non-feasible
starting point)

Code € =0.01]e = 0.001 e = 0.0001 [ = 0.00001
27.19 33.54 23.73 19.72
MOM 45.59 51.09 24.94 20.59
52.41 54.68 42.78 26.13
7.95 7.73 9.73 7.83
SLP 3.86 3.78 9.12 6.35
7.98 8.73 16.55 13.52
12.97 12.10 14.04 15.51
RQP1 4.45 3.79 5.93 7.55
7.42 6.56 7.78 12.18
8.67 1.73 8.91 10.22
RQP2 3.30 2.76 4.48 5.83
6.05 5.23 6.50 10.16
12.64 10.73 11.87 12.44
GRG 19.75 15.58 21.54 22.99
4.94 4.22 4.42 5.84
9.95 9.66 11.41 11.90
QPRLT | 13.90 14.35 21.58 20.84
4.22 4.06 4.64 5.51
6.46 5.68 6.14 7.06
CONLIN| 2.99 3.04 3.24 4.71
6.09 6.42 5.05 8.17
772 7.01 7.63 8.12
SCP 3.65 3.28 5.37 6.22
6.17 5.50 6.41 9.56
6.44 5.82 6.52 7.21
MMA 2.51 2.33 3.79 4.92
4.71 4.58 5.87 8.95

duced gradient method is very reliable in particular when
some features similar to those of sequential quadratic pro-
gramming algorithms are implemented. An additional ad-
vantage of these methods is that whenever an iteration is
stopped, the final design is feasible.

6. Sequential conver programming methods

Since convex programming methods exploit special features
of the underlying design model by inverting some variables,
it can be expected that the resulting codes are more effi-
cient than the general purpose optimizers discussed above.
However, we obtain a reasonable reliablity only when com-
bining the convex approximation with additional safeguards,
i.e. moving asymptotes or line search. It is surprising that
the method is also very efficient when applied to mixed con-
straints where the motivation cannot be justified as easily das
only for stress constraints. Probably, in most of these cases
the stress constraints also dominate. The code MMA is only
slightly less reliable than SCP, although no line search is per-
formed. Obviously we have a test problem set with initial
designs which are relatively close to the optimal solution.
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