
Structural Optimization 7, 1-19 © Springer-Verlag 1994

Review Papers

N umerical comparison of nonlinear programming algorithms for
structural optimization*

K. Schittkowski

Mathematisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

C. Zillober

IWR, Universität Heidelberg, D-69120 Heidelberg, Germany

R. Zotemantel

CAP debis Division Industrie, D-80992 München, Germany

Abstract For FE-based structural optimiza.tion systems, a.
large variety of different numerical algorithms ia ava.i\able, e.g. se­
quential linear programming, sequential quadratic programming,
convex approximation, generalized reduced gradient, multiplier,
penalty or optimality criteria. methods, and combina.tions of these
approaches. The purpose of the pa.per is to present the numerical
reaults of a comparative study of eleven rnathematical program­
rning codes which represent typical realizations of the mathema.t­
ical methods mentioned. They a.re implemented in the structural
optimization system MBB-LAGRANGE, which proceeds from a
typical finite element analysis. The comparative results are ob­
tained from a collection of79 test problems. The majority ofthem
are academic test cases, the others possess some practical reßlliJe
background. Optirnization is performed with respect to sizing of
trusses and bearns, wall thicknesses, etc., subject to stress, dis­
placement, and many other constraints. Numerical cornparison is
based on reliability and efficiency measured by calculation time
ana number of analyses needed to reach a certain accura.cy level.

1 Introduction

The design of a mechanical structure is often based on the
requirement to optimize a suitable criterion to obtain a bett er
design according to the criterion chosen, and to retain feasi­
bility subject to the constraints that must be satisfied. The
more complex the structure, the more difficult is the empiri­
cal iterative refinement by hand based on successive analysis.

In the last ten years, the finite element analysis of a large
number of software systems was extended by optirnization
modules, see e.g. nörnlein and Schittkowski (1993) for a
review. In all cases, the underlying mechanical design prob­
lem is modeJled and described in abstract terms, so that a
mathematical nonlinear programming problem of the follow­
ing form is formulated:

min/(x) ,

x ERn: gj(x) ~ 0, j = 1, ... , m, xl:::; X :::; xu. (1)

We may imagine, for example, that the objective func­
tion describes the weight of a structure that is to be rnini-

'The research project was sponsored by the Deutsche Forschungsge­
meinschaft under research contract DFG-Schi 113/6-1

rnized subject to sizing variables, and that the constraints
impose lirnitations on structural response quantities, e.g. up­
per bounds for stresses or displacements under static loads.
Many other objectives or constraints can be modelIed in a
way so that they fit into the above general frame.

Although permitted by most of the algorithms under in­
vestigation, we do not add equality constraints to the math­
ematical model. The structural design test problems used
for the computational analysis, possess only inequality con­
straints in form of lower and/or upper bounds for some non­
linear functions.

Basically we can distinguish between two different classes
of optimization methods. One class was developed indepen­
dently from the special type of structural design application
we are considering now, and can be specified as folIows:

• sequential linear programming methods,
• penalty methods,
• multiplier methods,
• generalized redueed gradient methods, and
• sequential quadratic programrning methods.

Each implementation of a method in one of these sub­
classes requires additional decisions on a special variant or
parameter sclections, so that different codes of the same
group may have completely different performances in prac­
tiee. Moreover, there exist combinations of the fundamental
strategy making it even more difficult to classify nonlinear
programrning algorithms. Comparative studies of codes for
the general model have been performed in the past (see, e.g.
Colville 1968; Asaadi 1973; Sandgren 1977; Sandgren and
Ragsdell1982; Sehittkowski 1980). They proceed either from
randomly generated test examples (Schittkowski 1980), or are
based on artificial or simple application problems of the kind
described by Hock and Schittkowski (1981) and Schittkowski
(1987).

The second dass of numerical methods is more related to
structural design optirnization and basically consists of two
subcJasses,

• optimality criteria methods, and
• convex approximation methods.

2

Corresponding algorithms have been implemented and
tested entirely for solving structural design optimization
problems, and the codes are either unable or at least inef­
ficient to act as general purpose optimizers. Compara.tive
results are found, for example, in the papers by Eason and
Fenton (1972, 1974) and Arora and Belegundu (1985).

Our intention is to report the results of an extensive eom­
parative study of structural optimization codes, where the
analysis is based on a finite element formulation and where
we consider only the classical sizing situation, i.e. we do not
test the performance of algorithms on shape or topology op­
timization problems.

The FE-analysis is performed by the software system
MBB-LAGRANGE (see Kneppe et al. 198~; Zote~antel
1993). Apart from the nirie optimization algorithms included
in th~ official version, two additional methods are added
to the system, i.e. certain variants of convex approximati'on
methods. Thecodes represent an classes of algorithms men­
tioned above. Most of the methods have been developed,
implemented, and tested outside of the MBB-LAGRANGE
environment, ahd are taken over from external authors.

To conduct the numerical tests, 79 design problems have
, been collected. 'Most of the!J1 are academic, Le. more oi les!!

simple del?ign problems found in the literat ure. The remain­
ing ones possess some pra~tieal real'lile background from
project work or are suitable modifications to"actas bench­
mark test problems for the development,qf the software sys­
tem. In aU situations, we minimize the weight of a structure

, subj~ct to dis placement, st~ess, strain; buckling, dynamic and
other eonstraints. Design variables 1IXe sizing variables, e.g"
cross-sectional areas of ttusse8 and beams.

The purpose of thecomparative tests is to evaluate effi­
ciency and reliability of nonlinear programming algorithms
when applied to structural optimization, in a quantitative
manner. We count the number of problems solved with re­
spect to a given final accuracy, and the corresponding calcula­
tion times and numbers ofFE-analyses, i.e. function and gra­
dient evaluations" Numerical performance is evaluated with
respect to 'different accuracy lev~ls. To be able to compare
mean values with respect to different sets of test problems
solved by a specifie eode subject to a given aecuracy, a spe­
cial priority theory is adapted (cf, Saaty 1980).

In Section 2 some features of the software system MBB­
LAG RANGE are summarized and, in particular, the strue­
tural finite element model is outlined. Information on the
basic idea behind the nonlinear programming algorithms and
some details ab out the special implementation are presented
in Sections 3 and 4. In Section 5 we describe the test prob­
lems and present a table of characteristie data. The test
proeedure and numerical results are summarized in Section
6, followed by a diseussion and some conclusions in Section
7.

2 The structural optimization system MBB­
LAGRANGE

MBB-LAGRANGE is a computer aided structural design
system which allows the optimization of struetural systems.
It is based on the finite element teehnie and mathematical
programming. The optimization model is characterized by

the design variables and many different types of restrictions,
The following design variables are available: element thiek­
nesses, cross-sections, c'oncentrated masses, and fiber angles.
In addition to isotropie, orthotropic, and anisotropi,: applica­
tiona, the analysis and optimization of composite structures
ia among the most important features, The design can be
restricted with respect to statics (e,g. stresses, buckling), dy­
namics (natural frequencies, dynamic response) and aeroelas­
tics (efficiendes, flutter speed). The general aim is to mini­
mize the struetural weight with MBB-LAGRANGE which
has a wide range of optimization strategies and a modular
architecture.

The objective function I(x) is the weight of a structure,
':btit it, is also possible to' take other- linear objective fune­

tions into aecount. In addition it is possible to optimize
.problems with several objeetive functiol,ls, e.g. weight änd
stresses. Special multiobjective optimizatiori' techniquescan
be applied in these cases:

The design variables ca'n be divided into three types.

1. Sizing variables, i.e.

• cross-sectional areas for trusses and beams,
'. wall thicknesses for ~erribrane ~nd shell'elerri~nts, a!ld
• laminate thicknesses for every single layer in c;:omposite

elements.

2. Balance masses.
3. Angles oflayers for composite elements.

Constraints must be defined in theform of inequalityre­
strictions as follows: ; ,

g(x) := 1 - ract(x) ~ 0, (2)
rallow

where r denotes one of the allowed constraints, e.g. stress
constraint. The constriürits specify the feasible domain of
the structure and allow realistic manufacturing, for example,
by gage constraints. The choice of a suitable combination
of constraints depends on the physical model. The following
restrictions may be formulated in MB)3-LAGRANGE:

• displacements

• stresses
• strains
• buckling (criticaI stresses, wrinkling)
• loeal compressive stresses
• aeroelastic efficiencies
• Hutter speed
• natural frequencies
• dynamic responses
• eigenmodes
• weight
• bounds for the design variables (gages)

The objeetive function, the design variables, and the con­
straints describe the optimization model. The highly modu­
lar program arehitecture allows to distinguish between three
main software eoncepts, namely
(i) optimization algorithm,
(ü) structural model (struetural response and gradients),

and
(iii) optimization model as the link between (i) and (ii),

The optimization model has some additional numerieal
features. All model functions and variables are sealed inter­
nally to stabilize the numerieal algorithms. Moreover, the
user is allowed to reduce the nurnber of design variables by
a procedure ealled variable linking, Le. by linking certain
structural variables into one design variable as implied by
the strueture itself, the loading conditions or manufaeturing
requirements. From the mathematieal point of view a trans­
formation of the form z = a+ At ean be defined with a linking
matrix A, the structural variables t and the design variables
z. It is also possible to fix elements which me ans these values
do not change during the optimi~ation process.

The structural and sensitivity analyses are based on the
finite element method. Modules for the following ealculations
are included:

• statie

• (IDeal) buekling

• natural frequeneies

• dynamic responses (frequeney, transient, random)

• (stationary) aeroelastie

• flutter

It is possible to treat homogeneous materials witb
isotropie, orthotropie and anisotropie behaviour as weil as
composite materials. The element library eontains all impor­
tant element types:

• truss elements

• beam elements

• membrane elements (triangle, quadrilateral)

• sbell elements (triangle, quadrilateral)

• some special elements (e.g. spring elements)

Since the evaluation of gradients is the most expensive part of
an optimization proeess, the effieicnt eomputation of deriva­
tives ia emphasized and three different ways of obtaining gra­
dients are included in MBB-LAGRANGEj by
(i) numerieal difference formulae,
(ii) analytical formulae, and
(iii) semi-analytieal formulae.

The most efficient way is to derive analytieal formulae
for the sensitivity analysis. In sizing problems the deriva­
tives with respeet to design variables are analysed and im­
plemented directly, an essential assumption for solving large
seale problems. For geometry variables, however, a semi­
analytieal formula was used to obtain gradients, see the paper
by Hörnlein (1986) for details.

MBB-LAGRANGE has some special features for spaee
and aircraft design, which is eonsidered to be the main do­
main of application. Therefore, it ia essential to allow aero­
elastic and flutter ealculations, in du ding the corresponding
eonstraint formulation. A wide range of dynamie functions is

. also available. For buckling problems it is possible to handle
isotropie and eomposite materials, also loeal stability of sand­
wich structures (wrinkling). In some eases the so-called sys­
tem identification is useful, Le. the evaluation of tbe location
of model imperfection by taking measured data from modal
tests. A powerful way to reduee the weigbt in eomposite
struetures is to define layer angles as weil as layer thicknesses
as design variables (varying of layer angles).

3

3 Mathematical optimization strategies

In this section we outline the mathematical methods behind
the nonlinear programming codes of the MBB-LAGRANGE
system, whieh are used for performing the subsequent nu­
merieal tests. Sinee the mathematieal background is found
in text books and references eited (see, e.g. Gill ei al. 1981;
Papalambros and Wilde 1988), we give only a very brief out­
line on the basic methodology.

To simplify the notation, we omit a separate treatment
of upper and lower bounds for the design variables in this
seetion. They ean be now eonsidered as part of the general
inequality constraints, but are handled separately in the nu­
merical codes discussed in the subsequent section.

The most important tool for understanding the optimiza­
tion, is the so-ealled Lagrange function

m

L(x, u) := I(x) - :E Ujgj(x) ,
j=l

whieh is defined for z E JRn and U = (ul' ., . , um)T, and
wh ich deseribes a linear eombination of the ohjective function
and the eonstraints. The coefficients uj,i = 1, ... , m, are
called the Lagrange multipliers of problem (1).

Now we are ahle to formulate optimality eriteria, which
are needed to understand the methods to be described. To
be able to formulate neeessary conditions, we need an as­
sumption called constraint qualification which means that for
a feasible z, the gradients of aetive constraints, Le. the set
{\7gj(z): gj(z) = O}, are linearly independent.

Theorem: Let land gj for i = 1, ... , m be twice continu­
ously differentiable functions, x· be a loeal minimizer 0/ (1)
and the constraint qualification be satisficd in x*. Then thcre
is a u* E lRm so that the lollowing conditions are satisfied:

(a)uj;?:Ofori=l, ... , m, VxL(z·,u*)=O,

ujgj(z*) == 0 for j = 1, ... , m,

(b) 8TV~L(z*,utS ~ 0 for aH s E JRn ,
with Vgj(X*) 8 == 0 and gj(X*) = O.

The condition, that the gradient of the Lagrange function
vanishes at an optimal solution is called the }(uhn- Tucker­
condition of (1). In other words, the gradient of I is a linear
eomhination of gradients of active eonstraints

m
\7/(z*) == :E ujVgj(z*). (3)

i=l

The complementary slackness condition ujgj(x*) = 0 to­

gether witb the feasibility of x" guarantees, that only the
active eonstraints, i.e. the interesting ones, contribute a gra­
dient in the above sumo Either a constraint is satisfied by
equality or the corresponding multiplier value is zero .

The Kuhn-Tucker condition can be eomputed within an
optimization algorithm, if suitable multiplier estimates are
available, and serves as a stopping condition. However, the
seeond order condition (h) can he evaluated numcrically only
if second derivatives are available. The condition is required
in the optimality criteria to be ahle to distinguish between a
stationary point and a local minimizer.

4

3.1 Optimality criteria methods

For the optimal design of structures there exist a couple of
algorithms that are based on the above conditions and are
therefore ealled the optimality criteria methods in engineer­
ing scienees (Berke and Khot 1974).

One of the approaches developed in the past is ealled the
stress ratio method which is applicable to problems with stress
constraints only. In this case we have separable constraint
functions of the form

gj(x) = Sj - Sj(Xj) ,
where Sj denotes the stress in the j-element and Sj an upper
bound. In the case of a statically determined structure, all
these constraints are active, leading tO.a trivial solution of
the optimization problem." - .'

The technique is extended easily to .t~e .case of.multiple ..
load cases, additional bounds for design variables and non­
determined structures. --

3.2 . Penalty methods

Penalty methbdsbeiong to the first attempts to solve con­
strained optimization problems satisfactorily. The basic :idea

_ isto construct a seq)lence of unconstrained· optimization
problems' and to solve them by. any standard minimization
method, so that the minimizers of the unconstrained prob­
lems .eonverge to the sohltion, öf the constraiiled one.

o Toconstruct the. unconstrained. 'problems, so-ealled
penalty terms are added to the objective function which pe­
nalize f(x) wheIie~er the feasible region is left. A factor rk
cantrols the degree of penalizing f. Proceeding from a se­
quence {rkl with rk -+ 00 for k = 0, 1, 2, ... , penalty func-
tions ,can be defined, for example, by ,

m

Pe(x, r) := f(x) + rk L)min[O, gj(x)]}2,
i=l

or
1 m

Pb(x, r) := f(x) + - 2)og[gj(x)] ,
rk i=l

or
1 m 1

Pi(x, r) := f(x) + - L - .
. rk i=l gj(x)

(4)

(5)

(6)

The first penalty function allows violation of eonstraints
and is called an extern al one. The subsequent two are barrier
funetions, i,e. they can only work with feasible iterates.

The unconstrained nonlinear programming problems are
solved by any standard technique, e.g. a quasi-Newton search
direction combined with a line search. However, the liDe
search must be performed quite accurately due to the steep,
narrow valleys created by the penalty terms.

There exists a large variety of other proposals and combi­
nations of them (e.g. Fiacco and McCormick 1968; Lootsma
1971). The main dis advantage of penalty type methods
is that the condition number of the Hessian matrix of the
penalty function increases when the parameter rk be comes
too large (Murray 1967). It should be noted, however, that
penalty methods became quite attractive again in recent
years either in connection with Karmarkar-type interior point
methods (e.g. Powell 1992), or with second derivatives (e.g.
Broyden and Attia 1988).

3.3 Multiplier methods

Multiplier or augmented Lagrangian methods try to avoid
the disadvantage of penalty algorithms, i.e. that too large
penalty parameters lead to ill-conditioned unconstrained sub­
problems. Thus the objective function is augmented by a
term including information about the Lagrangian function.

One of the first proposals was made by Powell (1969) and
later extended by Fleteher (1975) to inequality constraints

i m
'l/Jr(x, v) := f(x) + 2 L rj[gj(x) - Vj]:, (7)

i=l
where L := min(O, a) for ci E IR, v EIRm; arid r E IRm.
MIlItipliers are approXimatedby TjVj'-

. ,A similar augmented Lagrangian fu~ction was proposed '
by Hestenes (1969) for equality and by Rockafellar (1974) for
inequality constraints,

~rJX, v) := f(x)-

t {[Vi9j(Xt- ~rjgj(x)2], if gj(i) 5:.'vilrj

i=l !v]/rj, . otherwise

(8)
After solving an unconstrained minimization prbblem

with oneof 'the aboveobjective functions,. the muliplier es­
timates are updated a,ccording tocertain ru,les, for exa.mple,
by

Vj:= Vj -'min[gj(~), Vj],
in the first case or

Vi := Vj - min[rjgj(x), Vj],
in thesecond case for j = 1, ... , m. If there is no sufficient
reduction of the constraint violation, then the penalty par­
ameter vector is increascd as weil, typically by 80 constant
factor. More details are found in the literature cited, or in the
work by Pierre and Lowe (1975), Schuldt (1975) or Bertsekas
(1976). '

The unconstrained subproblems are solved more or less
in the same way as in penalty methods. A search direction
is computed successively by a.quasi-Newton technique, and
a one-dimensionalline search is performed, unti! convergence
criteria are satisfied.

3.4 Sequcntiallinear programming methods

Particularly for design optimization, sequential linear pro­
gramming or SLP methods, are quite powerful due to the
special problem structure and, in particular, due to numeri­
cal limitations that prevent the usage of higher order meth­
ods in some cases. The idea ia to approximate the nonlinear
problem (1) by a linear one to obtain a new iterate. TIius
the next iterate xk+l = Xk + dk is formulated with respect
to solution dk of the following linear programming problem:

min V f(:r:kl d,

d E IRn : Vgj(Xk)T d + gj(xk) ~ 0, j = 1, ... , m,

IIdll5:.6k' (9)
The principle advantage is that the above problem ean be

solved by any standard liJ;lear programming software. Addi­
tional bounds for the computation of dk are required to a'void
bad estimates particularly at the beginning of the algorithm;

when the linearization is too inaccurate. The bound 61r; must
be adapted during the algorithm. One possible way is to
consider the so-called exact penalty function

m

p(x, r) := fex) + L: rjl min[O, gj(x)] 1 , (10)
i==l

defined for each:& E iRR and r = (r}> ... , rm)T. Moreover,
we need its first order Taylor approximation given by

Pa(x, d,· r):= fex) + "!(xl d +
m

L: rjl min[O, gj(X) + "gj(xl dJl· (11)
i=I

Then we consider the quotient t;>f the actual and predicted
change at an iterate zlr; and a solution dir; of the linear pro­
gramming subproblem

p(zfr;, r) - p(zlr; + dir;, r) qlr; .-
.- p(xlr;, r) - Pa (xlr;, dir;, r) ,

where the penalty parameters are predetermined and must
be sufliciently large, e.g. larger than the expected multiplier
values at an optimal solution. The blr;-update is then per­
formed by

{

blr;/U, if qlr; < PI
.81r;+1:= blr;U, if qk > P2 .

blr; , otherwise

Here U > 1 and 0 < PI < Pz < 1 are constant numbers.
Some additional safeguards are necessary to be able to prove
convergence (e.g. Lasdon et al. 1983; Fleteher and de la Maza
1987).

9.5 Sequential quadratic programming methods

Sequential quadratic programming or SQP methods are the
standard general purpose algorithms for solving smooth non­
linear optimization problems under the following assump­
tions.

• The problem is not too big.
• The functions and gradients can be evaluated with sufli­

ciently high precision.
• The problem is smooth and well-scaled.

The mathematical convergence and the numerical per­
formance properties of SQP methods are very weil under­
stood now and have been published in so many papers that
only a few can be mentioned here [see, e.g. Stoer (1985)
or Spellucci (1993) for a review]. Theoretical convergence
has been investigated by Han (1976, 1977), Powell (1978a,
1978b), Schittkowski (1983), for example, and the numeri­
cal comparative studies of Schittkowski (1980) and Hock and
Schittkowski (1981) show their superiority over other math­
ematical programming algorithms under the above assump­
tions.

The key idea is to approximate also second-order informa.­
tion to obtain a fast final convergence speed. Thus we define a
quadratic approximation of the Lagrangian function L(z, u)
and an approximation of the Hessian matrix V~L(xlr;, ulr;)
by a so-called quasi-Newton matrix BIr;. Then we have the
subproblem

min ~dT Blr;d + "!(XIr;)T d,

5

dEIRB
: 'Vgj(XIr;)Td+gj(xlr;)~O, j=1, ... ,m. (12)

Instead of trust regions or move limits, respectively, as
for SLP methods, the convergenee is ensured by perform­
ing a line seareh, i.e. a step length eomputation to aceept
a new iterate xk+l := zk + Oilr;dlr; for an Oilr; E [0,1] only if
xlr;+1 satisfies adescent property with respeet to a solution
dk of (12). Follöwing the approach of 'Sehittkowski (1983),
for example, we need also a simultaneous line search with re­
spect to the multiplier approximations called vk and define
vk+1 := vlr; + OiIr;(UIr; - vlr;) where ulr; denotes the optimal La­
grange multiplier of the quadratie programming subproblem
(12).

The line search is performed with respect to a merit func­
tion

tPlr;(Oi) := ~rk [zlr; + Oidlr;, vlr; + Oi(UIr; - Vk)] ,
where .pr(x, v) is a suitable exact penalty or augmented La­
grangian function, for example, of the type (lO) or (8), re­
spectively.

We should note here that also other concepts, i.e. other
merit functions are found in the literature. Then we initiate
a subiteration starting with Oi = 1 and per form a suecessive
reduetion eombined with a quadratie interpolation of tPlr;(Oi)
until, for the first time, a stopping eondition of the form

tPk(Oi) $ tPk(O) + JjOitPk(O) ,

is satisfied, where we must be sure that tPk(O) < 0, of course.
To guaran~ee this condition, the penalty parameter rlr; must
be evaluated by a special formula which is not repeated here.

The update of the matrix Bk can be performed by stan­
dard techniques known from unconstrained optimization.
In most cases, the BFGS-method is applied, a numerically
simple rank-2 correction starting from the identity or any
other positive definite matrix. Only the differenees x k+ I -x k,
"xL(Zk+l' UIr;) - "xL(zfr;, UIr;) are required. Under some
safeguards it is possible to guarantee that all matrices Bk
are positive definite.

One of the most attractive features of SQP methods is
the superlinear convergenee speed in the neighbourhood of a
solution given by

11 xk+1 - x* 11$ ""(Ir; 11 xlr; - x* 11,
wbere ""(Ir; is a sequenee of positive numbers converging to zero
and x* an optimal solution.

9. (j Generalized reduced gradient methods

By introducing artificialslack variables, the original nonlinear
programming problem is eonverted easily into a problem with
non linear equality constraints und lower bounds for the slack
variables only. Thus we proceed from a slightly more general
problem

minf(z) ,

Z E IRn : 9j(Z) = 0, j = 1, ... , m,

zl $ Z $ Zu , (13)

where z := (x, y), Ti = n + m, fez) := fez), 9j(Z) = gj(x) -
Yj; for j = 1, ... , m.

As in linear programming, variables z are classified into
basic and non-basic ones (Wolfe 1967). In our situation we
can use Y for the initial basie and x for the initial non-basic
variables. By now defining

6

g(z) := [gI (z), ... , gm (z)f ,

we try to satisfy tbe system of equations g(z) = 0 for all pos­
sible iterates. Let y(x) be a solution of trus system with
respect to given variables x, i.e. g[x, y(x)] = 0, and let
F(x) := I[x, y(x)] be the so-called reduced objective func­
tion.

Starting from a feasible iterate and an initial set of basic
variables, tbe algorithm perforrns a search step with respect
to the free variables, for example, by a conjugate gradient
or a quasi-Newton method. If the new iterate violates con­
straints, then it will be projected onto the feasible domain
by a Newton-type tecbnique. If necessary, a line search ia
performed also combined with a restoration phase to obtain
'f~asible iterates. . ,

When changing 'an iterate it illight happen' that a hasic
variable y violates abound. In this case the corresponding
variableJeaves the basicand anbtheroneenters it.

For evaluating a searchdirection in the reduced space,
we need the gradient of the reduced objective function F(x)
with respect to the non-basic variables x, which ia computed
hm . '

Vf(x) =
Vxl[x, y(x)]- Vxy[x, y(x)fV'yg[x, y(x)]-TV'yl[x, y(x)].

The situation is more complicated, when we have to con­
; sider also bounds for the 'non-basic variables. For details

see the work elf Abadi~ (1978), Lasdonand Waren (1978),
Lasden et al. '(1(178) orSchittkowski (i986). Generalized

. reduced gradient methods can be easily extended to'prob-'
leins with special structure inthe constraints or very large
problems. Moreover, they are related to sequential quadratic
programming methods and there exist combinations of both
approaches (Parki~son and Wilson 1986; Schittkowski 1985a,
b). The last papers also outline the relationship to penalty
and multiplier methods.

3.7 Sequential convex programming m~thods

Sequential convex programming or convex approximation
(CA) methods, respectively, have been developed in partic­
ular by Fleury (1979, 1986), and Svanberg (1987) extended
this approach. Their key motivation was to implement an
algorithm that is particularly designed for solving mechan­
ical structural optimization problems. Thus their domain of
application is somewhat restricted to a special problem type.

The key idea is to use a convex approximation of the
original problem (1) instead of a lin~ar or quadratic one, and
then to solve the resulting nonlinear subproblem by a specifi­
cally designed algorithm that takes advantage of the simpli­
fied problem structure. Consequently CA methods are only
useful in cases where the evaluation of function and gradient
values is much more expensive than the internal computa­
tions to solve the subproblem.

Let us consider e.g. the objective function I(x). By in­
verting suitable variables, we obtain the convex approxima­
tion of fex) in the neighbourhood of an xk E !Rn by

"'" {} k fk(x):= I(xk) + L..J {}x.!(Xk)(Xi - xi)-
'1+ I IE k '

L: {}~ .!(xk)(l/Xi - 1/x~)(i~)2 ,
iE!; ,

where X = (:c}. ... , xn)T and :Ck = (xf, ... , x~)T
where

r;;:={i:1:$i:$n,

It := {i : 1 :$ i :$ n;

a~/(:Ck) :$ o} ,
a~/(Xk) > o} .

(14)

and

The reason for inverting design variables in the above way
is that stresses and displacements-are exact linear functions qf
the reciprocall~near homogeneous sizing variables in"the case
of a staticallydetermined struct'\.ue. Moreover, numerical
experience shows that also in other cases, convex linearization

isapplied quite successfully in practice, in particu\ar in shape.
, optimization, although a rnathematical motivation cannot be

given in this case.
In "a similar way, reciprocal variables ~re introduced for

the inequality constraints,where .we have to change the signs
to obtain aconcave function approximation, out, onthe
other hand, aconvex fe'asible regionofthesubproblem. The
corresponding index sets are denoted by I k+· and Ik~' for

,J "
j = 1, ... ', m.

After some reorganisation of canstant data, we obtain a
convex subproblem of the foIiowing form:

min r: fikxi -:-2:: N lXi,
iE!: ' ' iE!; .

j = 1, ... , m, (15)

where f~ and gt are the parameters ofthe convex approxima­
tion (14) with respect to objective function and constraints.

The solution to the above problem then determines the
next iterate xk+I' We do not investigate here the question
how the mathematical structure of the subproblem can be
eXploited tö obtain an efficient solution algorithm for solving.
As long as the problem is not too big, we may assume without
loss of generality that (15) is solved by any standard nonlinear
programming technique.

To control the degree of convexification and to adjust it
with respect to the problem to be solved, Svanberg (1987)
introduced so-called moving asymptotes Ui and Li to replace
Xi and l/:Ci by

1 1

Xi - Li' Uj - Xi '
where Li and Uj are given parameters, which can also be ad­
justed from one iteration to the next. The algorithm is called
the method of moving asymptotes. The targer flexibility al­
lows a better convex approximation of the problem and thus
a more efficient and robust solution.

Numerical experience shows that both variants are very
efficient. However, there are no additional safeguards to
stabilize tbe algorithm as, for example, done for sequential
quadratic programming methods. When starting from an in­
appropriate initial design, it may happen tbat tbe algorithm
as described above, does not converge.

To overcome this drawback, Zillober (1993a) added a
line search procedure to the standard convex approximation
method, similar to the approach used in sequential quadratic
programming. In this case, it is possible to prove aglobai
convergence theorem based on very weak assumptions.

4 Nonlinear programming codes

One of the reasons for using the software system MBB­
LAGRANGE for the FE-analysis, was the highly modular
program architecture facilitating the indusion of new opti­
mization algorithms. In addition to nine nonlinear program­
ming codes that are part of the official system, two further
codes have been added to MBB-LAGRANGE forthe purpose
of this comparative study of variations of convex approxima­
tion methods.

By the subsequent comments, some additional features of
the algorithms and special implementation details are out­
lined. To identify the optimization codes we take over the
notation of the MBB-LAGRANGE documentation.

SRM:

IBF:

MOM:

SLP:

The stress ratio code belongs to the dass of opti­
mality criteria methods and is motivated by stati­
cally determined structures. The algorithm is ap­
plicable to problems only with stress constraints,
consists of a simple update formula for the design
variables, and does not need any gradient informa­
tion.
The inverse barrier function method is an imple­
mentation of a penalty method as described in the
previous section, subject to the penalty function
(6). Thus one needs a feasible design to start
the algorithm. The unconstrained minimization is
performed with respect to a quasi-Newton update
(BFGS) and an Hermite interpolation procedure
for the line search. It is recommended to perform
only a relatively small number of iterations, e.g. 5
or 10, and to start another cycle by increasing the
penalty parameter through a constant factor.
Proceeding from the same unconstrained optimiza­
tion routine as IBF, a sequential unconstrained
minimization technique is applied. The method of
multipliers uses the augmented Lagrangian func­
tion (8) for the subproblem and the correspond­
ing update rules for the multipliers. Both meth­
ods, i.e. IBF and MOM, have a special advantage
when evaluating gradients of the objective func­
tion in the subproblem. The inverse of the stiffness
matrix obtained by a decomposition technique is
multiplied only once with the remaining part of
the gradient, not in each restriction as required
for most of the subsequent methods.
The sequential linear programming method was
implemented by Kneppe (1985). The linear sub­
problem is solved by a simplex method. So­
called move limits are introduced to prevent cyc­
ling and iterates too far away from the feasible
area. They are reduced in each iteration by the
formula Dk+l = Dk/(l + Dk) and an additional cu­
bic line search is performed as soon as cyding is
observed.

7

RQPl: The first recursive or sequential quadratic pro­
gramming code is the subroutine NLPQL of Schit­
tkowski (1985, 1986). Subproblems are 80lved by
a dual algorithm based on a routine written by
Powell (1983). The augmented Lagrangian func­
tion (8) serves as a merit function and BFGS­
updates are used for the quasi-Newton formula.
The special implementation of NLPQL is capable
of solving also problems with very many con­
straints (Schittkowski 1992), and is implemented
in MBB-LAGRANGE in reverse communication.
The idea is to save as much working memory as
possible by writing optimization. data on a file dur­
ing the analysis, and by saving analysis data dur­
ing an optimization cyde.

RQP2: This is the original sequential quadratic program­
ming code VMCWD of Powell (1978a) with the
merit function (10). Also in this case, the BFGS­
update is used internally together with a suitable
modification of the penalty parameter.

GRG: The generalized reduced gradient code was im­
plemented by Bremicker (1986). During the line
search an extrapolation is performed to follow
the boundary of active constraints eloser. The
Newton-algorithm for projecting non-feasible iter­
ates during the line search onto the feasible do­
main, uses the derivative matrix for the very first
step. Subsequently a rank-1-quasi-Newton [or­
mula of Broyden is updated.

QPRLT: To exploit the advantages of SQP and GRG meth­
ods, a hybrid method was implemented by Sömer
(1987). Starting from a feasible design, a search
direction is evaluated by the SQP-approach, i.e.
by solving a quadratic programming 8ubproblem.
This direction is thcn divided into basic and nOß­
basic variables, and a line search very similar to
the generalized reduced gradient method GRG is
performed.

CONLIN: This is the original implementation of Fleury
(1989), where a convex and separable subproblem
is generated as outlined in Section 3. In particular,
only variables belonging to negative partial deriva­
tives are inverted. The nonlinear subproblem is
solved by a special dual method.

SCP:

MMA:

The sequential convex programming method was
implemented by Zillober (1993b) and added to the
MBB-LAGRANGE-system for the purpose of this
comparative study. The algorithm uses moving
asymptotes and a line 8earch procedure for sta­
bilization with respect to the merit function (8).

The code is a reimplementation of the original
convex approximation method of Svanberg (1987)
with moving asymptotes. As for CONLIN and
SCP, the 8ubproblems are solved by a special dual
approach. The adaption of moving asymptotes is
described by Zillober (1993b).

8

5 Test problems

The success of any comparative numerical study of optimiza­
tion codes depends mainly on the quality of test problems.
In thc present case all results have' been obtained by 79
test examples, which were collected over the years of the
development of the structural optimization system MBB­
LAGRANGE.

Thus there was no basic strategy or any selection rule
to find gooddesign examples. Most of the problems (about
70%) are more or less academic problems, some are found
in the literature, some represent real life structures. In fact
the 79 test examples do not represent independent problems,
since some of tliem are variants of one and the same undere
lying design modeL There ~Jcist 50 different, independent
models as marked in the .. second column in Table"1, Most
test cases are modifications of academic or real life problems
with the intention to test certain options of the program code
of MBB~LAGRANGE. Moreover, since all test examples are
to be solvable oy all available optimization algorithms, the
structure size, i.e. number of elements and degrees of frcce
dom, is relatively small compared to reallife applications.
, . To describe some characteristic properties of the problems

wedistinguish b~tween ~ve ~ategoi:i~s (the fbUowing numer­
aiion refers to the group numb~r8).
(1) There'arc seven reallife structtires oi models derived from
them, from the design of spaceand aircrafts.

.A bracket link asa small part of the Ariil-ne spacecraft
, (no. 2),a structure with severalload cases and stress cOß­
traints ..

• The swept wing of a Boeing aircraft as a composite struc~
ture (no. 3), without and with layer angle variation.

• A coolplate of aspace structure (no. 13), with stress con­
straints and one lower frequency bound.

• The tank f100r of a combat aircraft (no. 17).
• A center spar of the training aircraft JPATS (no. 24), a

composite structure with failure criteria constraints.

• The propulsion module of a satellite structure (no. 32), a
model only with.frequency constraints and a special mode
control option, with the intention to find a feasible design.

• A bulkhead of a combat aircraft (no. 41), i.e. a struc­
ture sensitive to buckling, thc so-called Grumman wing­
box (no. 20).

(2) Eight examples are taken from the literature or other pub­
lications. These are a simple plate supported at four points
(no. 1) (Fleury et al. 1984), the Boeing swept wing (no.
3), various publications, a three-bar truBS (no. 15), a can­
tilcver plate with different constraints in dynamics (no. 16),
see NASTRAN-manual (1985), a plane frame work (no. 19) as
an example for system identification (ESA model), the sup­
porting beam of a crane structure (no. 27) (Schwarz 1981),
and the wellknown ten-bar truss (no. 43).
(3) Most problems are test cases to verify certain aspects
of the analysis, e.g. element types. Some examples of this
group of 40 problems are to test bar elements (no. 4, 5, 6),
shell elements (no. 1, 13, 20, 31,47,49), solid elements (no.
23, 42), the bucklirig analysis (no. 37, 48, 50), multipoint
constraints (no. 30), different coordinate systems (no. 2, 14),
and special elements (no. 11,21,38).

(4) Other problems check MBB-LAGRANGE with respect to
the optimization model, i.e. eonstraints and design variables.
There are examples for layer angle variation (no. 3, 39), point
masses as design variables (no. 25, 34), buckling constraints
(no. 18, 37, 48, 50), wrinkling eonstraints (no. 18), loeal stress
constraints (no. 9), frequency response constraints (no. 5, 16,
46), time response constraints (no. 16), and manufacturing
constraints (no. 12).
(5) The remaining examples are developed to test the differ­
ent optimization strategies in MBB-LAGRANGE (nos. 1, 15,
26, 31, 43).

We'believe that the preseIit set of test cases is representa­
tiveat least for!lmall or medium size structural designs: It is
also important to note that we' do not want to test the analy- .

. sis part gf an FE-system. Instead, the .response of optimiza­
tion rotitines when applied to solve structural optimization
problems is to be investigated.

In the subsequent tables, we classify sorne' characteristic
data of the test; structures under investigation. For reference

. reasons, 'we use the original notation as determined by the
engineers implementing and testing MBB-LAGRANGE.

Table 1 gives an impression of the size ofthe analysis alld
optimizll,tion model, lind presents the following information::

Table 1. Information.on model structure

!NoO\ModeJjTest example INETINODINLY!i"l'LcINDTINSVINDvINDGI

.1 1 APLATE2 49 64 ,1 1 175 '!§ 51
-I IAPLCON 49· 64 1 1175 '!§ 32 .51'
2 ARIANB 31<l 3~ 1 , .5 21~ 31~ 2 1O~

~ 3 1tl4SIZE 130 88 4 1 24< 52..c 72 522
5- 3 1tl4SIZELA ' 130 : 88 4 1 24< 5~ 8 522 .

~ ,4 ItlALKEN2 2 4 1 2 1.< 4
5 ItlARBIG 9 11 1 , 0 54 9 J 91

! 6 BARDISP 3 4 1 1 12 3 2 <
~ 6 j1jARDYN2 3 4 1 1 12 < ~

H 6 II'I.ARDYN5 3 4 1 1 1 4
11 7 Jl:l.ARMASS 8 H 1 1 ,!! ! ! 1
1 8 I.l:!.AROF9 4 1 1 18
1 9 Jl:l.UST 8 15 1 2 5.' 8 ! H
14 9 BUSTB 8 9 1 2 3 ! ! H

1.li 9 ~USTM 4 6 1 2 8 4 4 J!
.~ 9 ~USTQ 8 15 1 2 5 ! ! :LI:
1 9 Il:IUSTQM 2 ~ 1 2 8 4

g 9 ~USTT 10 15 1 2 5 1C H ~
!! 10 CANE ~ 44 1 1 I!!: 4[10 41
20 11 CELAS4 2 ~ 1 1 8 g 2 g
21 12 ~..oMPKRAG 4 7 4 2 !I: H 10 44
22 13 COOLPLATE 17 18< 1 1 971 17

.. ~ 17
2:1 14 CORDS 6< 35 4 1 8 135 8 9E
24 15 DREI 3 -1 1 2 2 :: 6
25 15 ~REIDISP 3 4 1 2 2 2 !
26 15 DREISLP 3 4 1 2 2 < 6
2 16 !2.YNP1,T 6 ~ 1 1 2~ 6 H 15

~ 17 ~FA2CLAG 492 3~ 1 11859 492 54 15

~ 18 nF3 24 28 9 1 52 100 13 6
30 19 GARTEURI 83 ~ 1 0 231 8 13 21
31 20 GBOX 9 89 1 1 473 9 6 91
32 21 GENTEST 3 4 1 2 18 1 1 2
3:: 22 GRADPLA 4 9 1 2 41 4 4 10

3~ 23 ~EXA 9 52 1 1 1~ 9 € !:l
35 24 JPATS16 25 214 2 1 4Q!l 744 144 4:!Ei

~ 25 IKALA3...1 9 9 4 1 !!! 75 3 ~
3 26 ~RAG 4 3 2 !!: 7 14
3 26 ~RAGBA 8 II 4 2 !! 12 H 2E

~ 26 IKRAGBAD 8 !!: 4 2 16 12 H 25
4(26 ~RAGBAM 8 10 4 2 H 12 10 2<
41 26 ~RAGDYN ! II 4 2 g 12 ! 21
42 26 ~RAGIBF 4 3 2 .ll 1 ~

Table 1. Continued

/No /Modd/Test example /NET/NOD/NLYjN'LC/NDT/NSVIN'DV!NDGI

4:: 26 IKRAGMAN 4 < 2 H

4' 26 IKRAGMOM 4 2 t(

45 27 IKRANO 5< 2(1 1 11
41 27 ~RANI 5, 2(1 1 11
4 28 AGTEST 40 3E 1 1 15~

4S 10 ~1CANE 40 44 1 1 12C
4S 29 MOMENT S ~ 1 2 4~

5C 30 W'C 18 2S 1 1 11::
51 31 IMPLATE E lC 1 2 2E
52 31 rvn'LATEH E 1C 1 2 2E
5 32 PPM 2Q~ 13 1 0 5H
5 33 PLATTE 1e U 4 1 2
.sf ·34 OINTMASS S f(1 0 41
5E 35 PUNCH TEST SC 3 1 6(

5 36 IQUARTOPLT 4 ~ 1 4 H
5f 37 IQUATRIA 3S ;U f 1 8,

5~ 38 IRBAR ~ 2\ 1 1 13
6(39 ßCHEIT210 3 { 4 1 11
61 40 ISPANT ~ fl 1 1 21
62 41 r:JPSLP 41< 191 1 .1 38!
6 41 ISPSLPB 41, 191 1 1 38!
6, 42 113D066 ! 52 1 1 141
65 43 I1BDYN H E 1 (8
6 44 rrEMPER2 H 2 1 1 H
6 43 !I'ENBAR 10 6 1 1 ~

61 43 rrENCON 1e e 1 1 1
6! 43 rrENMOM 1(] E 1 1 8
7C 43 !I'ENRQP 1(] 6 1 1 !
71 43 rrENSRM 1C E 1 1 I
7 2 rrESTCORDl 17 20 1 2101
7:: 2 !l'ESTCORD4 17 20 1 102
74 45 rrESTNASO 3C H 4 72
7~ 46 rrESTPARDYN ~ 11 1 0 54
7E 47 rrR4X4 32 25 1 1 51
7 48 rrRIOM 1C 11 1 1 32
n 49 trSHELL3 1 :: 1 2 -:
n 50 trUBE 6C 3 1 72

NET: net size, Le. number of finite elements

NOD: number of nodes

H lC 44
7 14

5 54 54
5 5, 65
4C 8 4C
4C 40 41

8 8 H
18 2 11

6 6 12
6 6 12

20S 11 2
40 1C 41
8 8 1

SE 2(8E
4 4 2C

92 35 9S
25 2 25
32 4 32
2C 1< 2'<

414 101 414
414 101 415

9 I U
1C H 1
H 1 12
10 10 10
10 lC 10
10 le 1(J
10 le 10
10 1C .10

173 11 176
17~ 11 176

42 3C 84
! 9 91

3 32 32
H 5 1:3
1 1 2

132 8 9S

NLY: number of layers in case of composite elements (maxi-
mum value)

NLC: number of load cases

NDT: number of degrees of freedom

NSV: number of structural variables

NDV: number of design variables

NDG: total number of constraints (without bounds for vari­
ables)

Table 2 summarizes some information on the type of the
constraints. The following data are listed:

NDG: total number of constraints

NGS: number of stress constraints

NGD: number of displacement constraints

NGB: number of buckling constraints

NGF: number of frequency constraints

NGV: number of eigenvector constraints

NGM: number of manufacturing constraints

NGR: number of frequency response constraints

NGT: number of time response constraints

FID: feasible initial design (0 - yes, 1 - no)

9

6 Numerical comparative results

In this section we describe the test procedure and summa­
rize some of the numerical results achieved. All tests have
been performed on a VAX 6000-510 running under VMS,
at the Computing Centre of the University of Bayreuth.
The numericCll codes are implemented in double precision
FORTRAN. Two additional optimization routines, SCP and
MMA, are added to the FE-systcm MBB-LAGRANGE for
the purposes of the comparative study.

The intention behind our tests is to apply alI optimiza­
ti on routines to aU test examples listed in the previous sec­
tion. To evaluate the resuIts achieved, we need some infor­
mation about the optimal solution, since the difference from
the minimal weight of a test structure and the corresponding
constraint violation serves as a measure for the accuracy of
an actual iterate.

Thus we have to compute an optimal solution for each
test case as accurately as possible. The most reliable codes
were executed with a very small termination tolerance and a
large number of iterations, until we got a stable and reliable
solution. Test examples that did not lead to a dear solution
point, because of too many different local minimizers, havc
not been induded in our set of test problems.

Having now an accepted reference value, it is possible to
define whether an actual iterate x is sufficiently elose to the
optimal solution x* subject to a given tolerance c > 0 or not.
For each function or gradient evaluation during a test run,
we store the corresponding objective function value fex) and
the maximum constraint violation

rex) := max{lmin[O, gj(x)ll : j = 1, ''', m},
together with some further data for analysis number and cal­
culation time.

Now we are able to evaluate the performance of an al­
gorithm subject to a given accuracy level c. We Bum up
the performance criterion, i.e. calculation time or number of
function and gradient evaluations, until for the first time the
conditions

I(x) ~ l(x*)(1 + c), r(x) ~ c (16)
are satisfied. We should note here that the constraint func­
tions are scaled internally by the analysis procedure of MBB­
LAGRANGE.

Moreover, there are some reasonable upper bounds for the
number of iterations, and we must be aware of the fact that
there are situations where a code is unable to find at least
one solution in a test problem dass within the given accuracy
level and the maximum number of iterations.

When trying to evaluate the performance of an optimiza­
tion algorithm, we are immediately faced with the following
difficulties .

• The number of successful test runs is too small to pre­
pare a statistical analysis particularly for small accuracy
levels c and special subsets of test examples. Also there
ia no chance of finding the prob ability distribution of our
performance criteria .

• When we evaluate only mean values over all test runs,
we penalize thc more reliable codes. Since the poor ones
are often unable to find a solution of the more difficult
examples, they avoid a large number of iterations needed
to attain a solution in these cases.

10

• When we evaluate mean values only with respect to the
test examples which could be solved successfully by all
algorithms, we obtain a too smaH test set, containing
moreover only the unimportant toy problems. Also it is
possible that we obtain empty test sets.

Thus we need another approach to evaluate the perform­
ance of an algorithm in a suitable way, when their qualifica­
tion varies drastically as in our case. One possible attempt
is the priority theory of Saaty (1980), which was used by
Schittkowski (1980) and Lootsma (1981). In these cases, it
is tried to compare non-measurable quantities of optimiza­
tion codes, e.g. ease of use. We apply now.the same idea to
measurable dat~ such aS calculation time and_humber of func-
4ion and gradient evaluations. " '

For the purpose of our performance evaluation, we exploit
Saaty'spriority theory in .its simplest form, Imagine that

, there, are ,miknown weights or priorities w1, ... , wn, where n
is the number of optimization eodes we want to investigate,
which are positive and which ~atisfy

n

LWi = I,
i=1

These weights are now to characterize one of our perform­
ance criteria, say calculation time. It is very easy to see that
the matrix

A :=(W;!Wj)i,j=l,n,
is of rank one andhas only one eigenvalue n with eigenvector

w = (~1, .. , , wnl , ,
l;e.

Aw = nw.
Mor~over the row sums of A, i.e. Wj Ei=1 l/wj are multiples
of the vector w.

. The idea motivating our approach is now that we are un­
able to obtain appropriate estimates for the desired priorities
Wi direetly, but we can compute estimates for the relative

performance weights wifwj in the following way. Let P~ de­
note a performance index, e.g. number of function evalua­
tions, for optimization algorithni i and test example k, where
i = -1, .. , , n, k = 1, . , ., m, Now n denotes the number of
algorithms that we want to compare, and m the number of
test examples in our test set under consideration. Moreover,
we denote by Iij(f) the indices of all test problems, which
are solved successfuHy by algorithms i and j subject to the
error tolerance e as defined by (16). Then

EkEl" pf
rij := J k (17)

EkEl,; Pj

is considered to be an estimate for Wi/Wj and we use the
~ormalized row surn of matrix (rjj) as an estimate Wj for Wj,

Le.
_ Ei=1 rij
Wj := "n '

LJi,j=1 rjj
(18)

Since the numerical figures for the performance criterion
ealculation time differ drasticaHy, we use the geometrie mean
in this case to estirnate the relative weights as above.

Another difficulty is that sorne nonlinear programming
eod,es are only capable of solving certain subclasses of strue­
tural optimization problems, e.g. problems only with stress

constraints (SRM) or only problems with a feasible initial
design (IBF). Thus we eonsider the -following 8ubsets of test
runs to evaluate the criteria as described:

No. Codes excluded Test cases Description
1 IBF, SRM 79 aJl problems
2 IBF 44 only stress constraints
3 IBF, SRM 35 only mixed constraints
4 SRM 44 feasible starting point
5 IBF, SRM 35 non-feasible starting point

For the purpose of mir eomparative study, we evaluate the
p'erformance criteria '

, • calculationtime inseconds;

• number of functioD' evaluations, where an evaluation 'of
objective and all constraints is counted as one function
call; and " '

• number ofgradlent evaluations, i.e. evaluation or'the gra­
dient of objective function and of all active constraints,
where active 'constraints are determined by the internal
active set strategy of MBB-LAGRANGE.

These' three ~riteria'arecoml)Uted"by the modified :priorlty
theory as described. The resulting numerical figures cannot
be iriterpreted as me~n values for the performance item we

Table 2. Information on constraint types

lNo tI'est example INDGINGSINGDINGBINGFINGVINGMINGRINGTIFIDI

_IAPLATE2 51 49 2 0 0 0 0 0 o JI
2 APLCON, 51 49 2 0 0 0 0 ,0 0,',- 0
~ARIANB. 1020 204 0 0 0 0 0 0 0 JI
4B4SIZE 52 5~ 2 0- 0 0 0 0 0 0
5B4SIZELA 522 520 2 0 0 0 0 0 0 0
6BALKEN2 4 2 0 0 0 0 0 0 0 1
~ARBIG 91 0 0 0 0 0 0 91 0 1

8~ARDISP 3 3 0 0 0 0 0 0 0 0
,9BARDYN2 4 3 0 0 1 0 0 0 00
lCBARDYN5 4 3 0 0 1 0 0 0 0 0
11BARMASS 1 0 0 0 1 0 0 0 0 1
12BAROF9 7 7 0 0 0 0 0 0 0 0
1 ~UST 16 8 0 0 0 0 0 0 0 'c
14 BUSTB 16 8 0 0 0 0 0 0 0 0
15i:IUSTM 8 4 0 0 0 0 0' 0 0 0
I€BUSTQ 16 8 0 0 0 0 0 0 0 Jl
1 BUSTQM 4 2 0 0 0 C 0 0 0 JI
ISBUSTT 20 10 0 0 0 0 0 0 0 0
UCANE 41 40 0 0 1 0 C 0 0 1
20CELAS4 18 18 0 0 0 0 0 0 0 1
21COMPKRAG 44 16 0 0 0 0 12 0 0 1
22COOLPLATE 178 17 0 0 1 0 0 0 0 0
2 CORDS 96 96 0 0 0 0 0 C 0 1
2 DREI 6 3 0 0 0 0 0 0 0 0
2fDREIDISP 6 3 0 0 0 0 0 0 0 0
2t'DREISLP 6 3 0 0 0 0 0 0 o 0
2 DYNPLT 15 63 3 1 1 0 0 61 28 1
2~EFA2CLAG 153 108 45 0 0 0 0 0 0 0
2 F1F3 6 56 0 11 0 0 0 0 0 1
3CGARTEURI 21 0 0 0 1 20 0 0 0 1
31GBOX 98 97 0 1 0 _0 0 0 0 1
3 GENTEST 2 1 0 0 0 0 0 0 0 1
3 GRADPLA 10 4 1 0 0 0 0 0 0 0
3 gEXA 13 9 4 0 0 0 0 0 0 C
35JPATS16 416 416 0 0 0 0 0 0 0 1
3E KALA3_1 40 36 3 0 1 0 0 0 0 1
3 KRAG 1 7 0 0 0 0 0 0 0 1
3~J<:RAGBA 26 12 1 0 0 0 0 0 0 1
3~KRAGBAD 25 12 0 0 1 0 0 0 0 J:
4CKRAGBAM 20 10 0 0 0 0 0 0 0 C

Table 2. Continued
!No.tTest example !NDG!NGs!NGD!NGBINGFlNGVINGMINGR!NGTfFml

41IKRAGDYN 2 12 1 e 1 0 0 0 0 1
42~RAGmF 14 0 e 0 0 0 0 0 0
43!KRAGMAN 44 16 0 0 0 0 12 0 0 1
44!KRAGMOM 14 7 0 0 0 0 0 0 0 1
45!KRANO 54 54 0 0 C 0 0 0 0 0
46!KRANI 55 54 0 C 1 0 C 0 o Jl
47 AGTEST 40 40 0 C 0 0 C 0 0 0
48~CANE 41 40 0 0 1 0 0 0 0 1
49~OMENT 16 8 0 0 0 0 0 0 0 0
50~PC 18 18 0 C 0 0 0 0 0 0
51~PLATE 12 6 0 C 0 0 C 0 0 0
52~PLATEH 12 6 0 0 0 0 0 0 0 0
53PPM2 2 0 0 C 2 0 C 0 0 0
54 LATTE 41 40 0 1 0 0 0 0 0 1
55 OINTMASS 1 0 0 0 1 0 0 0 0 1
56 UNCHTEST 86 86 0 0 0 0 0 0 0 0
5 ~UARTOPLT 20 4 0 1 'e 0 0 0 0 1
58~UATRIA 99 92 2 5 0 0 C 0 0 1
59~AR 25 25 0 C C 0 C 0 0 1
60~CHEIT210 32 32 0 C e 0 0 0 o 0
61~YANT 20 20 0 0 C 0 0 0 0 1
62~J'SLP 414 414 0 0 _0 0 0 Jl 0 1
63SPSLPB 4!5 414 0 1 0 0 0 0 0 1
64rr3D066 13 9 4 0 C 0 0 0 0 0
65rrBDYN 1 0 0 0 1 0 0 0 0 0
66rrEMPER2 12 12 0 0 C 0 0 0 0 1
67TE;NBAR 10 10 0 0 0 0 0 0 0 0
68 rrENC ON 10 10 0 0 0 0 0 0 0 0
69 ITENMOM 10 10 0 0 G 0 0 0 0 0
70ITENRQP 10 10 0 0 0 0 0 0 0 0
7lIT_ENSRM 10 10 C C 0 0 C 0 0 0
72ITESTCORDl 176 88 0 0 0 0 0 0 0 0
731l'ESTCORD4 176 88 0 0 0 0 0 0 0 0
74il'ESTNASO 84 42 0 0 C 0 0 0 0 0
75 TEST- 91 0 0 0 0 0 0 91 0 1

PARDYN
7fll'_R4X4 32 32 0 0 0 0 O· 0 0 0
71l'RIOM 13 10 G 3 0 0 JI 0 0 1
78 TSHELL3 2 1 0 0 0 0 0 0 0 1
79 TUBE 98 96 0 2 _0 0 0 0 0 1

are considering. They give an impression of the relative per­
formance of an optimization code and must be interpreted in
this way. Moreover, we want to evaluate some figures that
measure the reliability of a code, i.e. any guess for the prob­
ability that an algorithm is capablc to compute a solution
subject to a given accuracy. Thus we display also the num­
ber of test problems that are not solved successfully by a
code with respect to four different accuracy levels ranging
from c = 0.01 to g = 0.00001.

The subsequent four figures display the results achieved
in graphical form with respect to the set of all test runs.
Figure 1 shows the numbers of unsolved problems solved with
respect to four termination tolerances. The corresponding
performance results calculation time, number of function and
gradient evaluations are displayed in Figs. 2 to 4 for the final
termination accuracy g = 0.01.

For each of the five subsets of test runs defined above,
two tables with information about the performance of the
optimization algorithms are given. The first five tables show
the robustness of the optimization codes, i.e. the number of
problems that are not solved successfully subject to a given
final accuracy. The subsequent five tables list the efficiency
performance data calculation time and number of function
and gradient evaluations, evaluated by the priority theory as

11

outlined in the beginning. Again theprioritiea are computed
for each of the five different test problem classes separately.

From the numerical results obtained, we can make the
following observations:
(a) Robustness

(1) All test problems (Table 3)
The most robust implementation is the RQP1-code.
For all tolerances it has the least number of unsolved
problems. For g = 10-2 QPRLT is the second most
reliable method, but with decreasing g it got alma;t
the same number offailures as RQP2, SCP and MMA.
For c == 10-2 the program SLP performs as reliably as
SCP or MMA, but its relative robustness decreascs for
lower g. The GRG-method performs a bit worse than
QPRLT, SCP and MMA, especially for the largest c.
For lower termination tolerances, MOM is very un­
reliable a'Qd its usage cannot be recommended. Also
CONLIN is quite unreliable and for lower C only MOM
has more failures.

(2) Stress/mixed constraints (Tables 4/5)
When considering only problems with stress con­
straints, we observe that SLP, RQP2, SCP and MMA
perform considerably better with respect to the per­
centage of unsolved problems than in Lest dass no.
3, while GRG, QPRLT and RQP1, CONLIN do not
seem to be sensitive to the type of constraints. On
the other hand, this fact improves their relative per­
formance with respect to test class no. 3. The SRM­
method, which is only applicable in test problem class
no. 2, is not very robust. Even for very low require­
ments on termination accuracy it solves less than one
half of the test problems.

(3) Feasible/infeasible initial designs (Tables 6/7)
Apart from MOM, all methods are more robust when
the initial design is feasible and considerably worse
when it is infeasible. Their relative performance is
not very different from that in the general case. The
IBF-method, which is only considered in test dass no.
4, is very unreliable and has the worst percentages of
unsolved problems for all g's.

(b) Eßiciency
(1) Calculation time

First of all, we have to mention, that there are no
drastic differences between the computed weights for
the four g-values.

In test dass no. 1, the most efficient method is
CONLIN. It h88 the best weights followed by MMA
and SLP, which do not differ significantly. The next
group of algorithms with about the same efficiency
scores consists of RQP2, QPRLT and SCP. GRG gave
somewhat higher values. The RQPl-method requires
a relatively large amount of calculation time, since the
actual implementation writes and reads all intermedi­
ate analysis or optimization data, respectively, into
temporary files to save memory.

The results in test dass no. 3 are not very different
from those in test class no. L When we consider the
SRM-method in test dass no. 2, we observe that SRM
ia the most efficient method conccrning computation

12

80r---~

701-------

60 1----,.,,,.---

50

MOM SLP RQPl

0.01

0.001

,0.0001

0.00001

RQP2 GRG

Fig. 1. Number cf unsoived problems w.r.t. ill. test runs
,,' '",:"

MOM SLP

-EITl]

111
18

all problems

stress constraints

mixed constraints

feasible design

non-feasible design

RQPl RQP2 GRG

Fig. 2. Calculation time \V.r.t. e = 0.01

QPRLT CONLIN SCP MMA

QPRLT CONLIN SCP MMA

MOM SLP

--9
111
I.~

aIl problems

stress constraints

mixed constraints

feasible design

non-feasible design

RQPl RQP2 GRG

Fig. 3. Number of function evaluations w.r.t. t: = 0.01

MOM SLP

111 all problems

_ stress constraints

11 mixed constraints

_ feasible design

_ non-feasible design

RQPI RQP2 GRG

Fig. 4. Number of gradient evalua.tions w.r.t. t: == 0.01

13

QPRLT CONLIN SCP MMA

QPRLT CONLIN SCP MMA

14

time and stress constraints. The relative performance
of all other methods does not differ very much from
that of test dass no. 1. In test dass no. 4 there are
only slight differences in the relative values of the nine
standard methods. The absolut values changed since
the IBF-method is even worse than MOM, and the
sum of the weights is normed to 100. For infeasible
initial designs we see that QPRLT has high er values
than in test class no. 1 and, on the other hand, the per­
formance of SCP improves. The other methods have
about the same scores in this test dass.

. .
Table 3. Nurnber of unsolved proble~sfor test dass no. i, (all 79
problems) " ,

Code 'e = 0.01 ' e =0.001 e = 0.0001 e = 0.00001,
MOM '30 (38%) 51 (65%) 60 (76%) 67 (85%)
SLP 20 (25%) 27- (34%) 31 (39%), 37 '(47%) ,
RQP1 13 (16%) 15 (19%) 19 (24%) 23 (29%)
RQP2 18 (23%) 20 (25%) 22 .(28%) 26 (33%)
GRG 26 (33%) 30 (38%) 31 (39%) 31 (39%) ,
QPRLT 15 (19%) 20 (25%) 24 (30%) 28 (35%)
CONLIN 34 (43%) 37' (47%) 42 (53%) 43 ' (54%)
SCP 19 (24%) 24 '(30%) 25 (32%) 28 (35%)
MMA 21 (27%) 25 (32%) 25 (32%), 27 (34%): '

Table 4. Nurnberof unsolved probliims for test dass no. 2 (44
pr~blems only with stress constraints)

Code e = 0.01 e = 0.001 e = 0.0001 ' e = 0.00001'
SRM '23 (52%) 24 (55%) 25 ({i7%) 26 ,(59%)
MOhl 16 (36%) 29 (66%) 36 (82%) 42 (95%)
SLP 7 (16%) 10 (23%) 11 (25%)' 13 (30%)
RQPl 7 (16%) 7 (16%) 9 (20%) 9 (20%)
RQP2 6 (14%) 7, (16%) 7 (16%) 10 (23%)
GRG 14 (32%) 14 (32%) 15 (34%) 15 (34%)

'QPRLT 9 (20%) 12 (27%) 14 (32%) 16 (36%)
CONLIN 16 (36%) 17 (39%) 20 (45%) 20 (45%)
SCP 9 (20%) 10 (23%) 10 (23%) 11 (25%)
MMA 8 (18%) 9 (20%) 9 (20%) 9 (20%)

'Table 5. Number of uusolved problems for test dass no. ,3 (35,
problems only with mixed constraints)

Code e = 0.01 e; = 0.001 e = 0.0001 e = 0.00001
MOM 14 (40%) 22 (63%) 24 (69%) 25 (71%)
SLP 13 (37%) 17 (49%) 20 (57%) 24 (69%)
RQPl 6 (17%) 8 (23%) 10 (29%) 14 (40%)
RQP2 12 (34%) 13 (37%) 15 (43%) 16 (46%)
GRG 12 (34%) 16 (46%) 16 (46%) 16 (46%)
QPRLT 6 (17%) 8 (23%) 10 (29%) 12 (34%)
CONLIN 18 (51%) 20 (57%) 22 (63%) 23 (66%)
SCP 10 (29%) 14 (40%) 15 (43%) 17 (49%)
MMA 13 (37%) 16 (46%) 16 (46%) 18 (51%)

(2) Number of function evaluations
The computed weights seem to be more qr less inde­
pendent of c with one exception. The priority values
for number of function evaluations in test dass no. 1
differ strongly from those of the calculation time. SLP,
RQPl, RQP2, CONLIN, SCP and MMA had a bet­
ter score, where MOM, QPRLT and GRG had lower

values. The relative ranking shows that CONLIN and
MMA have the best weights. With some small dif­
ferences in each case, SLP, RQP2, RQPl and SCP
follow. GRG and QPRLT have values much higher
than those of the calculation time. The reason is that
both methods need many function evaluations in their
line--search to reach a feasible design in each iteration.
The weights of MOM are again very bad.'

In test dasses no. 2 and 3 we do not observe signifi­
cant differences to the results of test dass no. 1. The
performance ofthe SRM-method dete~iorates with de­
ereasing c.
, In test dass no. 5 there is one remarkable differ­

: eJice. With decreasing c the performance indices of
MOM improve more and mare and finally,are better

, than those of GRG and QPRLT. In test class no. 4
GRG increases with decreasing c. The relative classi­

, fica!loli. of the other methods is not .very different froni
, that in test dass no. 1.,

, Table, 6. Number of unSolved inoblel?ls for test .~lass no; 4 (44
problems only with feasible starting p~int)

Code .' .. 1;,='0:'01 E: = 0~001 e == 0;0001 e; = 0.00001
IBF 29 (66%) 35 (8.0%) 40 (91%) 40 (9)%)
MOM 14 (32,%) 33 (66%) 33 (75%) 38 (86%)
SLP 9 (20%) 13 (30%) 13 (30%) 16 .(36%)'
RQPl 4 (9%) ,6 (14%) 9 (20%), 10 (23%) ,
RQP2 7 (16%) 9 (20%) 9 (20%) 12 (27%)

',GRG 13 (30%) 13 (30%) 14 (32%) 14 , (32%)
"QPRLT 6 (14%) 10 (23%) 11 (25%) 13 (30%)

qONLIN 13 (30%) 15 ,(34%) 17 (~9%) J8 (41%)
SCP' 9 (20%) 12 (27%) 12 (27%) 14 (32%)
MMA 9 (20%) 12 (27%) 12 (27%) 13 (30%)

Table 7. Number of unsolved problems for test dass uo. 5 (35
problems only with ilcm-feasible startin'g point) .

Code e = 0.01 e = 0.001 e - 0.0001 e = 0.00001'
MOM 16 (46%) 22 (63%) 27 (77%) 29 (83%)
SLP 11 (31%)' 14 (40%) 18 (51%) 21 (60%)
RQPl 9 (26%) 9 (26%) 10 (29%) 13 (37%)
RQP2 . 11 (31%) 11 (31%) 13 (37%) 14 (40%)
GRG 13 (37%) 17 (49%) 17 (49%) 17 (49%)
QPRLT 9 (26%) 10 (29%) 13 (37%) 15 (43%)
CONLIN 21 (60%) 22 (63%) 25 (71%) 25 (71%)
sep 10 (29%) 12 (34%) 13 (37%) 14 (40%)
MMA 12 (34%) 13 (37%) 13 (37%) 14 (40%) ,

(3) Number of gradient evaluations
In this case, the weights do not depend heavily on
c. As GRG and QPRLT got relatively bad scores
far the number of function evaluations, both methods
improved their scores with respect to the number of
gradient evaluations, since they do not use gradients
for the restoration phase, i.e. the projection onto the
feasible region. They are followed by CONLIN and
MMA. SLP, RQPl, RQP2 and SCP have about the
same weights and are a bit worse than the other four.
As in the other cases, MOM is the most inefficient
code.

In test problem dasses no. 2 and 3 there are no sig­
nificant differences to class no. 1 with respect to the

relative performance. The absolute values decrease in
Table 9 only because the weights of MOM increase
and the sum is normed. Only for SLP we observe a
significant improvement for c = 10-4 in test class no.
3, probably generated by side effects of other codes
with lower reliability and emciency in this case. Since
SRM does not use any gradient information at all , it
got the best scores.

For the classes of feasible/infeasible initial design
we cannot observe significant differences in the rela­
tive performance. For test class no. 4 IBF has the
worst values for higher c, but its weights decrease for
lower c. Vice versa, the same is valid for MOM. In
test dass no. 5, there is a decrease in the weights of
MOM similar to the number of function evaluations,
but its final weight is still very bad.

Table 8. Performance indices calculation time, number of func­
tion and gradient evaluations for test problem dass no. 1 (all prob­
lems)

Code t'; = 0.01 t'; = 0.001 ~ = 0.0001 ~ = 0.00001
27.16 31.70 31.58 28.79

MOM 43.72 48.88 47.76 49.64
55.67 61.55 63.20 54.68
7.28 6.82 7.30 6.91

S1P 3.66 3.29 4.22 3.21
6.62 5.84 7.25 6.85

14.15 12.97 13.07 13.63
RQPl 5.59 4.47 4.59 4.51

7.69 6.15 5.75 7.43
9.39 8.25 8.31 8.97

RQP2 4.49 3.64 3.88 3.93
7.05 5.38 5.23 6.89
11.20 10.80 10.68 11.06

GRG 17.34 15.87 15.71 15.56
3.62 3.03 2.71 3.41
8.61 8.13 8.17 8.36

QPRLT 13.45 12.56 12.72 11.77
3.02 2.66 2.53 2.96
5.82 5.68 5.33 5.66

CONLIN 2.63 3.12 2.35 2.45
4.59 5.18 3.49 4.60
9.54 9.06 9.03 9.59

SCP 6.39 5.59 6.01 6.07
7.11 5.94 5.65 7.43
6.86 6.59 6.54 7.04

MMA 2.73 2.59 2.75 2.86
4.64 4.26 4.19 5.75

7 Conclusions

Before drawing any conclusions, we have to note two impor­
tant observations.

• All optimization codes are executed with one constant
. set of parameters and control options. An experienced

user trying to approach a solution ster by 'step, will cer­
tainly be able to tune the parameters depending on the
model and data, and could, therefore, aehieve much bet­
ter results in practice. We do not investigate the question,
whether one algorithm is more robust than another with
respect to input tolerances.

15

Table 9. Performance indices calculation time, number of func­
tiOD and gradient evaluations for test problem class DO. 2 (stress
cODstraints)

Code ~ = 0.01 t'; = 0.001 e = 0.0001 e = 0.00001
3.96 4.04 4.20 4.62

SRM 3.20 3.94 4.45 5.19
0.0 0.0 0.0 0.0

27.31 34.40 37.72 36.91
MOM 44.33 53.62 53.73 54.03

58.64 69.06 78.97 77.51
7.24 6.16 6.08 6.00

S1P 3.69 2.63 3.00 2.72
6.19 3.98 2.86 2.90
12.64 10.89 10.67 10.72

RQPl 4.96 3.35 3.53 3.49
6.38 4.10 2.89 3.13
8.56 7.13 6.94 7.06

RQP2 4.80 3.19 3.42 3.32
7.45 4.70 3.30 3.55
5.68 5.49 4.95 5.01

GRG 2.83 3.02 2.48 2.42
4.11 4.34 2.76 3.01
9.35 9.06 8.57 8.63

QPR1T 13.44 12.56 13.09 13.23
2.81 2.26 1.43 1.50
7.78 6.83 6.35 6.39

CONLIN 13.31 10.36 8.66 8.19
2.54 1.86 1.20 1.24
10.28 9.31 8.50 8.50

SCP 6.55 4.95 5.21 4.94
6.79 5.47 3.74 3.99
7.21 6.68 6.01 6.16

MMA 2.88 2.36 2.42 2.46
4.70 3.95 2.66 2.98

• We cannot exclude that some test examples possess
other loeal solutions with larger objective function values.
Whenever an algorithm approximates a local solution dif­
ferent from the reference design, an error will be reported.
There ie no attempt to identify this situation.

Both remarks explain, at least partially, why the total
number of unsolved problems is relatively large for a11 non­
linear programming codes under investigation. Also the set
of test problems does not consist only of trivial problems, al­
though the problem sizes are relatively small. Thus it must
be recommended to include as many different optimization
algorithms in a struetural design system as possible.

To summarize the most important conclusions, we dis­
tinguish between the seven different optimization strategies
introduced in Section 3. However the eonclusions are drawn
from the numerical results obtained by the special implemen­
tations under consideration. Sinee fer some of the optimiza­
tion strategies eonsidered, only one code was implemented,
we must be careful when applying them to other situations .

1. Optimality criteria methods

The only algorithm of this dass in the MBB-1AGRANGE
system is the stress ratio method SRM. Even if we apply
tbe code only to problems with stress constraints, more tban
50% of all problems cannot be solved at all because of thc
heuristic iteration method without any additional safeguards
guaranteeing convergence. On the other hand, SRM is the

16

Table 10. Performance indices calculation time, numher of func­
ti on and gradient evaluations for 'test problem no. 3 (mixed con­
straints)

Code ö = 0.01 E: = 0.001 ö = 0.0001 e = 0.00001
25.29 25.56 24.96 26.05

MOM 44.67 44.16 42.83 47.30
47.08 48.36 40.27 45.31
6.66 7.26 8.30 6.20

SLP 3.42 3.79 6.06 3.30
7.84 8.84 16.06 9.70
15.67 15.45 15.24 15.13

RQP1 5.97 5.26 5.32 5.14
.' 10.04 9.04 9.32 9.14

10.34 9.72 9.54 10.03
RQP.2 4.02 3.71 3.90 4.07

"

8.00 7.31 7.89 . 8:25.
12.79 12.38 11.96 11.71

GRG 19.87 19:38 16.35 15:17
4.61 4.24 4.02 3.84
9.08 9.50, 9.94 9.59

QPRLT 11.73 12.90 15.08 13,41
. 3.37 3.43 3.89 3.41

5.40 5.27 4.96 5.39
CONLIN 2.20 2.67 1.71 2.Q4

'5.09' 5:62 3.87 4.28
8.37 8.54 8.65 9.13

SCP 5.74 5.67 6.11 6.76
8:46 7.56 8.13 8.71
6.40 6.32 6.46 6.76

MMA 2:37 2.44 2 .. 66 2.81
5;50' . 5.61 6.55 7:36

most efficient method in case of convergence particularly with
respect to calculation time. We have to note here that. the
algorithm does not require any sensitivity analysis.

2. Penalty meihods

The inverse barrier method IBF implemented in MBB­
LAG RANGE, is unreliable and inefficient. Moreover, this
version requires a feasible initial design thus restricting the
doml'-in of application. The usage of an inverse barrier

. method similar to the code IBF within the framework of a
mechanical structural optimization system cannot be recom­
mended.

3. Multiplier methods

Also in this case, the successive unconstrained optimization
cycles require a large number of funetion and gradient evalu­
ations. Only the reliablity is acceptable for very large termi­
nation tolerances. Again the conclusions about the method
are vague since the results are obtained by only one imple­
mentation of a multiplier method.

4- Sequentiallinear programming methods

Although only one realization of a sequentiallinear program­
ming method was tested, the results are very promising.
Since there is no inheritance of round-off errors as for the
more advaneed numerical algorithms, the code is quite ro­
bust and efficient. Moreover, the implementation is simple
provided that a black box sol ver for the linear programming
sub problem is available. Also the method ean be applied to
salve large real life design problems successfully.

Table 11. Performance indices calculation time, number of func­
tion and gradient evaluations for test problem dass no. 4 (feasible
starting point)

Code e = 0.01 e = 0.001 E: - 0.0001 ö - 0.00001
32.57 29.29 24.25 24.87

IBF 56.17 55.89 60.48 56.49
44.89 48.25 24.79 27.91
18.24 21.69 27.41 26.61

MOM 19.03 22.99 22.98 27.45
31.40 34.91 53.43 48.51
4.61 4.45 4.72 4.62

SLP 1.54 . 1.17 1.07 0:,93
3.31 ,2.05 3.23 3.11
9.99 9.48 9.25 9.18'

RQP1 .. 2.72 ;1.98 1.53. i.41 .
4.30 2.85 '3.70 3.93
6.64 6.07 6.00 6.18

RQf2 2.28' 1.73 1.37 . 1.30
'4.24 2.68 3.53 3.90

6.92 3.98 3.70 3.72
GRG 6.78 . 1.33 0.78 0.74

l·60 2.13 2.08 2.28 '
5.22 7.58 7.49 7.53

QPRLT< 5.58 6.46 5.06 5.09
1.33 1.17 1.50 1.70
3.72 5.00 4~98 4.85

CONLIN 1.12 4.31 3.54 JA5
.2.15 0.89 I'.24 1.35
.7.31 7.46_ 7.35 7.47 ,

SCP, "3.53 " 2.98 2.32 }.~9
4.22 3.01 3.86 4.34
4.78 5.01 4.85 4.96

MMA 1.27 '1.14 0.88 0.86
2.57 2.06 2:63 2.97

5. Sequential quadratic programming mcthods

As is also known from other comparative studies, sequen­
tial quadratic programming mcthods can be implemented in
a very reliable and robust way; There are two drawbacks
when applying therri to solve' struetural optimization prob­
lems. First round-off errors may have a significant impact on
the numerical performance, in particular when introduced
by inexact numerical derivatives. Especially they prevent
the superlinear loeal convergence speed. Moreover, they re­
quire some memory space for an approximation of the Hessian
matrix and for the linearized constraints which is often not
availablc for large real life structures when implemented in
the standard way. However, for small or medium size prob­
lems as tested in thc frame of the comparative study, the
sequential quadratic programming algorithms are very effi­
cient with respect to the number of function and gradient
evaluations, and are only inferior to special purpose imple­
mentations exploiting model dependent features.

6. Generalized.reduced gradient methods

The necessity to project a new iterate back to the feasible
region as soon as a constraint is violated, requires additional
function evaluations, since this procedure does not depend
on gradients within the implementation of the codes tested.
Thus the performance scores with respect to number of gra­
dient calls are much better than the corresponding scores for
funetion evaluations. On the other hand the generalized re-

Table 12. Performance indices calculation time, number of func­
tion and gradient evaluations for test problem no. 5 (non-feasible
starting poin t)

Code ~ = 0.01 ~ = 0.001 <! = 0.0001 ~ = 0.00001
27.19 33.54 23.73 19.72

MOM 45.59 51.09 24.94 20.59
52.41 54.68 42.78 26.13
7.95 7.73 9.73 7.83

SLP 3.86 3.78 9.12 6.35
7.98 8.73 16.55 13.52
12.97 12.10 14.04 15.51

RQPl 4.45 3.79 5.93 7.55
7.42 6.56 7.78 12.18
8.67 7.73 8.91 10.22

RQP2 3.30 2.76 4.48 5.83
6.05 5.23 6.50 10.16
12.64 10.73 11.87 12.44

GRG 19.75 15.58 21.54 22.99
4.91 4.22 4.12 5.84
9.95 9.66 11.41 11.90

QPRLT 13.90 14.35 21.58 20.84
4.22 4.06 4.64 5.51
6.46 5.68 6.14 7.06

CONLIN 2.99 3.04 3.24 4.71
6.09 6.42 5.05 ~.17

7.72 7.01 7.63 8.12
SCP 3.65 3.28 5.37 6.22

6.17 5.50 6.41 9.56
6.44 5.82 6.52 7.21

MMA 2.51 2.33 3.79 4.92
4.71 4.58 5.87 8.95

duced gradient method is very reliable in particular when
some features similar to those of sequential quadratic pro­
gramming algorithms are implemented. An additional ad­
vantage of these methods is that whenever an iteration is
stopped, the final design is feasible.

6. ßequential convex programming methods

Since convex programming methods exploit special features
of the underlying design model by inverting some variables,
it ean be expected that the resulting codes are more effi­
cient than the general purpose optimizers discussed above.
However, we obtain a reasonable reliablity only when com­
bining the convex approximation with additional safeguards,
i.e. moving asymptotes or line search. It is surprising' that
the method is also very efficient when applied to mixed con­
straints where the motivation cannot be justified as easily ci.s
only for stress constraints. Probably, in most of these cases
the stress constraints also dominate. The code MMA ia only
slightly less reliable than SCP, although no line search is per­
formed. Obviously we have a test problem set with initial
designs which are relatively e10se to the optimal solution.

References

Abadie, J. 1978: The GRG method for nonlinear programming.
In: Greenberg, H. (ed.) Design and implementation %ptimiza.
tion software. Alphen an den Rijn: Sijthoff and Noordhoff

Arora, J.S.; Belegundu, A.D. 1985: A study of mathematical pro­
gramming methods for structural optimization. Part Il: Numeri­
eal results. [nt. J. Num. Meth. Engng. 21, 1601-1623

17

AS8.adi, J. 1973: A computational comparison of some nonlinear
programs. Nonlinear Programming 4, 144··154

Berke, L.; Khot, N.S. 1974: Use of optimality eliteria methods for
large scale systems. A CARD Lecture Series No. 70 on Structriral
Optimization

Bertsekas, D.P. 1976: Multiplier methods: a survey. Automatica
12, 133-145

Brerniclrer, M. 1986: Entwicklung eines Optimierungsalg0-
rithmus der generalisierten reduzierten Gradienten. Report,
Forschungslaboratorium für angewandte Strukturoptimierung,
Universität.CH Siegen

Broyden, C.G.; Attia, N.F. 1988: Penalty functions, Newton's
method, and quadratic programming. J. Optimiz. Theor" Appl.
58,377-385

Colville, A.R. 1968: A comparative study on nonlinear program­
ming codes. IBM N. Y. Scientific Genter Report 920-2949

Eason, E.D.; Fenton, R.G. 1972: Testing and evaluation of nu­
merical methods for design optimization. Technical Publication
Se ries UTME-TP 7204, Departrnent of Mechanical Engineering,
University of Toronto

Eason, E.D.; Fenton, R.G. 1974: A comparison of numerical opti­
rnization methods for engineering design. Trans. ASME96, Series
~, 196-200

Fiacco, A.V.; McCormick, G.P. 1968: Nonlinear sequential uno
constrained minimization techniques. New York: John Wiley &.
Sons

Fleteher, R. 1975: An ideal penalty function for constrained op­
tirnization. In: Mangasarian, O.L.; Meyer, R.R.; Robinson, S.M.
(eds.) Nonlinear pmgrnmming 2. New York: Academic Press

Fleteher, R.; De La Maza, E.S. 1987: Nonlinear programming
and nonsmooth optimization by successivc linear programming.
Report No. Na/IOD, Department of Mathemalical Sciences, Uni­
versity of Dundee

Fleury, C. 1979: Structural weight optimization by dual methods
of convex programming. Int. J. Num. Meth. Engng. 14, 1761-
1783

Fleury, C. 1986: Shape optimal design by the convex linearization
method. In: Bennett, J.; BotIein, M. (ed •.) The optimum shape:
automated structural design, pp. 297-326. New York: Plenum
Press

Fleury, C. 1989: CONLIN: an efficient dual optimizer based on
convex approximation concepts. Struct. Optim. 1,81-89

Fleury, C.; Ramanathan, R.K.; Salema, M.; Schmitt, L.A. 1984:
Access computer program for the synthesis of large structural sys­
tems. NASA Langle" Research Genter Optimization Gon/.

Gill, P.E.; Murray, W.; Wright, M.H. 1981: Practicaloptimization.
New York: Academic Press

Han, S.-P. 1976: Superlinearly convergent variable metric algo­
rithms for general nonlinear programming problems. Mathemati­
cai Programming 11, 263-282

Han, S.-P. 1977: A globally convergent method for nonlinear pro­
gramrning. J. Optimiz. Theor" Appl. 22, 297-309

Hestenes, M.R. 1969: Multiplier and gradient methods. J. Opti.
miz. Theor" Appl. 4, 303-320

18

Hock, W.; Schittkowski, K 1981: Test examples for nonlinear pro­
gramming codes. Leeture Notes in Economics and M<Jthematical
Systems 187. Berlin, Heidelbcrg, New York: Springer

Hörnlein, H.R.E.M. 1986: Sensitivitätsanalyse für verfor­
mungsabhängige Nebenbedingungen bei der Dimensionierung von
FE-Strukturen. Technical Note TN/S-0129-86, MBB, Ottobrunn

Hörnlein, H.; Schittkowski, K (eds.) 1993: Software systems for
strllctllral optimization. Basel: Birkhäuser

Kneppe, G.; Krammer, H.; Winkler, F. 1987: Struetural optimiza­
tion cf large se ale problems using MBB-LAGRANGE. Proc. 5th
World Gong. and Exhibition on FEM (held in Saizburg, Austria)

K~eppei' G .. 1985: Direkte Lösungsstrategien zur Gestaltsopti­
mierung von Flä.cheiltragwerken: Reih~ 1, No. 135, Düsseldorf:
VDI-Verlag

Lasdon, L:8.; Kim; N.-H.; Zhang, J. 1983: An i~ploved suc~essive
. linear plogramming algorithm. Working Paper 8384-3-1, Depart­
ment of General Business, The University of TexaS 'at .Austin

Lasdon, L.S.;Ratner, M.W.; Waren, ,A.D. 1978: GRG2 U8er~s
guide. Report, School of Business Administration, The' University
of Texas at Aus!in

Lasdon, L.S.; Waren, A.D. 1978: G,meralized' reäuced gradient
software for linearly a~d nonlinearly constra.\ned problems: In:
Greenberg, H. (ed.) Design and implementation of optimization
software. 'Alphen an den Rijn: Sijthoff anq Noordhoff

Lootsma, F.A. 1971: A survey or' methods. fo~ solving con­
, stril.ined ~inimization: problems via ~nconstrained minimization.
'In: Lootsma, ,P.A. (ed.) Numeriool methoos for rioruinear opti-

mization. Ne,,!,York: AcademicPress" '

Lootsma, F.A. 1981: 'Fuzzy performance evaluation of nonlinear
optinuzation methods, with sensitivity analysis and final scores;
J. Information and Optimization Sciences 10, 15-44

MacNeal-Schwendler Co. 1993: MSG-NASTRAN Handbook for
Linear Analysis.

Murray, W. 1967: lll-conditioning in barrier and penalty func­
tions arising in constril.ined nonlinear programming. Proc. Sixth
'Int; Symp. on Mathematical Prog.ramming (held at Princeton Uni­
versity, N.J.)

Parkinson, A.; Wilson, M.1986: Development of a hybrid SQP­
GRG-algorithm for constril.ined nonlinear programming. Proc.
Design Engineering Trichnical Gonf; (held in Ohio)

Papalambros, P.Y.; Wilde, D.J. 1988: Principles of optimal de­
sign. Cambridge: Cambridge University Press

Pierre, D.A.j Lowc, M.J. 1975: Mathematical progmmming via
augmented L<Jgmngian. An in!roduction with computer programs.
Addison-Wesley

Powell, M.J.D. 1969: A method for nonlinear constril.ints in mini­
mization problems. In: Fleteher, R. (ed.) Optimization. New
York: Academic Press

Powell; M.J.D. 1978a: A fast algorithm for nonlinearly constril.ined
optimization calculations. In: Watson, G.A. (ed.) Numerical
analysis. Berlin, Heidelbcrg, New York: Springer

Powell, M.J.n. 1978b: The convergence of variable metric meth­
ods for nonlinearly constraincd optimization calculations. In:
Mangasarian, O.L.; Meyer, R.R.; Robinson, S.M. (eds.) Nonlinear
progmmming. New York: Academic Press

Powell, M.J.D. 1983: On the quadratic programrning algorithm
of Goldfarb and Idnani. Report DAM1'P 19, University of Cam­
bridge

Powell, M.J.D. 1992: Log barrier methods for semi-infinite pro­
gramming calculations. Report DAMTP 11, Univcrsity of Cam­
bridge

Rockafellar, R.T. 1974: Augmented Lagrange multiplier functions
and duality in non-convex programming. SIAM J. Gontrol12,
268--285

Saaty, T.L. 1980: The analytic hiemrchy process, planning, prior­
ity setting, resource al/ocation. New York: McGraw-Hill

Sandgren; E. 1977: The utility of nonline,ar programming alg;'
,.rithms. Ph.D. Thesis, PUI<j.ue University, West Lafayette, Indiana-

Sandgren, E.j Ragsdell, KM. 1982:0~ Borne experiments which
delimit the litility of nonlinear, programming methods for engi­
neering design. Mathematieal Programming Study 16, 118-136

Schittkowskij K. 1980: Nonlinear programming, cci.des. Leeture
Notes in .EcQnomics and,Mathematical Systems 183. Berlin, Hei-'
delberg, New York: Springer '

Schittkowski', K 1983: .On: thc cimvergence of'a sequential
quadratic programming method '",'1ith anaugmented" Lagn>ngian
line search function. Optimization, Mathematische, Operations­
forschung und Statistik 14, 197-216

Schittkowski, K- 1985a: On ,th'e global convergellce of nonlinear
prograinming algorithms. 1. Mech. Trans. Auto. Des. 107,454-
458

Sehittkow~ki,· K.1985b: A unified öutline of nonliriear. program­
ming algorithms. J. Mech. Trans. Auto. Des. 107, 449-453

Schittkowski, K 1985/86: NLPQL: a FORTRAN subroutine solv­
ing constrained nonlinear programming problems. AimClls of Op­
erations Research 5, 485-500'

Schittkowski, K 1986: On the convergence of a generalized re­
duced gradient algorithm for nonlinear programming. Optimiza­
tion 17, 731-755

Schittkowski, K 1987: More test examples for nonlinear program­
ming codes. LectllTe'Notes in Economics and Mathemiitical Sys­
tems 282. Berlin, Heidelberg, New York: Springer

Schittkowski, K 1992:Solving nonlinear programming problems
with very many constril.ints. Op!imization 25,179":196

Schuldt, S.B. 1975: A method of multipliers for mathematieal
programming problems with equality and inequality constraints.
J. Optimiz. Theory Appl. 17

Schwarz, H.R. 1981: FORTRAN-Programme zur Methode der
Finiten Elemente. Stuttgart: Te~bner

Sömer, M. 1987: Aufstellen und Testen eines hybriden SQP-GRG
Optimierungsalgorithmus. Studienarbeit, Institut für Mechanik
und Regelungstechnik, Universität-GB-Siegen

Spellucci, P. 1993: Numerische Verfahren der nichtlinearen Opti­
mierung. Basel: ISNM Birkhäuser

Stoer, J. 1985: Principles of sequential quadratic programming
methods for solving nonlinear programs. In: Schittkowski, K.
(ed.) Gomputational mathematical programming, pp. 165-208

Svanberg, K 1987: Method 01 moving asymptotes - a new
method for structural optimization. Int. J. Num. Meth. Engng.
24,359-373

Wolfe, P. 1967: Methods for linear constraints. In: Abadie, J.
(ed.) Nonlinear programming. Amsterdam: North-Bolland

Zillober, C. 1993a: A globally convergent version of the method
ofmoving asymptotes. Struct. Optim. 6,166-174

Zillober, C. 1993b: SCP - an implcmentation of two algorithms­
tor solving nonJinear programming problems. Report of the DFG
(German Science Foundation), Universität Bayreuth

Received Aug. 9, 1999

Errata

Rozvany, GJ.N.; Sigmund, 0.; Lewiriski, T.; Gerdes, D.;
Birker, T. 1993: Exact optimal structural layouts for non­
self-adjoint problems.

19

Zoternantel, R. 1993: MBB-LAGRANGE: a computer aided struc­
tural design system. In: Hörnlein, H.; Schittkowski, K. (eds.)
Software systems for structural optimization. Basel: Birkhäuser

Stroct. Optim. 5, 204-206
in (4) cos (20'Ü should read - cos (20'1)
in (11) the last "-" sign should read "+".

	Zillober_Numerical__0001__0001
	Zillober_Numerical__0002__0002
	Zillober_Numerical__0003__0003
	Zillober_Numerical__0004__0004
	Zillober_Numerical__0005__0005
	Zillober_Numerical__0006__0006
	Zillober_Numerical__0007__0007
	Zillober_Numerical__0008__0008
	Zillober_Numerical__0009__0009
	Zillober_Numerical__0010__0010
	Zillober_Numerical__0011__0011
	Zillober_Numerical__0012__0012
	Zillober_Numerical__0013__0013
	Zillober_Numerical__0014__0014
	Zillober_Numerical__0015__0015
	Zillober_Numerical__0016__0016
	Zillober_Numerical__0017__0017
	Zillober_Numerical__0018__0018
	Zillober_Numerical__0019__0019

