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1 Introduction

1.1 Historical overview

Clusters of galaxies are the largest and most recent gravitationally-relaxed structures
in the universe. They typically contain hundreds to thousands of galaxies with a
total mass of about 1014−1015 solar masses (M⊙), spread over a region whose size is
roughly 10 million light-years (Mly). Galaxy clusters themselves form even greater
structures called superclusters, which are gravitationally-attracted, but not relaxed,
collections of ten to one hundred clusters and groups of galaxies. The Milky Way
itself belongs to the “Local Group” , which is an aggregation of about 40 galaxies,
with the Andromeda Galaxy and the Milky Way as the largest members of the group.
The Local Group belongs to the “Virgo Supercluster”, with the Virgo cluster at the
center. The Virgo cluster is the nearest cluster of galaxies to our own galaxy at a
distance of 60 Mly; another famous cluster of galaxies is the Coma cluster, which is
called a very regular cluster, because it is nearly spherically symmetric (see figure
1.1).

The tendency of galaxies to form clusters in the sky has long been noticed (for
example Messier (1784) had identified already 16 galaxies, which - as we now know
- belong to the Virgo cluster, and he noted that they form a group), but the first to
study them in detail was Wolf (1906). A great step forward in the systematic study
of the properties of clusters was the work of Abell (1958), who compiled the first
extensive, statistically complete catalog of so-called rich clusters of galaxies1. This
catalog and its successors (e.g. Abell et al. (1989)) are the foundation for much of
our modern understanding of clusters.

The cited catalogs of clusters are based on optical identification techniques. How-
ever in the early 1970s extended x-ray emission from clusters of galaxies was observed
by Gursky et al. (1971); Kellogg et al. (1972), which had been already correctly at-
tributed to thermal bremsstrahlung several years earlier by Felten et al. (1966).
This interpretation requires the space between galaxies in clusters to be filled with a
very hot (≈ 108 K) low density (≈ 103 atoms/m3) gas. Remarkably, the total mass in
this intracluster medium (ICM) is comparable to the total mass of all galaxies in the
cluster. Nevertheless this discovery did not solve the so called missing mass problem
in clusters, which was first formulated by Zwicky (1933, 1937). Zwicky (1933) was

1The richness of a galaxy is a measure that is basically proportional to the number of bright
galaxies in a cluster. It was first strictly defined by Abell for his catalog.
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1 Introduction

Figure 1.1: A Sloan Digital Sky Survey/Spitzer Space Telescope image of the Coma
Cluster in ultraviolet and visible light. From Jenkins (2007).

the first to measure the velocity dispersion of galaxies in the Coma cluster, finding
σgalaxy = 700 km s−1, and he correctly concluded from this fact and his estimate of
the Coma’s cluster overall radius, that the cluster mass, which he computed using
the virial theorem, must be far greater than the observed luminous mass - the first
evidence for dark matter in the universe. In his remarkable paper of 1937, Zwicky
also proposed gravitational lensing as an alternative technique for measuring the
masses of background galaxies. This technique finally became practicable after six
more decades (Tyson et al., 1990), and is now a standard technique for measuring
cluster mass (Bartelmann, 2003).

Measuring the masses of clusters is not only important for the search of dark
matter. Some of the most powerful constraints on current cosmological models
come from observations of how the cluster mass function n(M), which gives the
number density of clusters with a mass greater than M in comoving volume element,
evolves with time (Voit, 2005). The reason why the evolution of the cluster mass
function is so highly sensitive to cosmology is simply because the matter density of
the universe controls the rate at which structure grows. The cluster mass function
can be measured using optical surveys. However it is easier to use X-ray surveys,
because in the X-ray band, instead of a collection of galaxies, each cluster appears
only as a single source (see figure 1.2), which makes it observationally easier to define
consistently cluster properties like the radius. Independently from Supernova IA

10



1.1 Historical overview

Figure 1.2: Chandra X-ray image of the central region of the Coma Cluster. From
Vikhlinin (2002).

and cosmic microwave background (CMB) measurements, these and other cluster-
related surveys can now restrict several important parameters of the cosmological
concordance model (see figure 1.3).

Most of these cluster surveys make use of several relations like the mass-temper-
ature or luminosity-temperature relation, which are only based on observational
findings. If gravity alone would determine the thermodynamical properties of the
clusters, we would expect clusters to be self-similar, meaning clusters of different
size would be scaled versions of each other, leading to a specific simple form of
these relations (Kaiser, 1986). However astronomers have known for more than a
decade that the intracluster medium cannot be self-similar, because the luminosity-
temperature relation of clusters does not agree with self-similar scaling (Voit, 2005).
So only by breaking the self-similar scaling of clusters can the observed relations be
explained. But it is theoretically still uncertain, which mechanism(s) is (are) respon-
sible for that similarity breaking. Many mechanisms have been proposed including
preheating, radiative cooling, feedback from supernovae, feedback from active galac-
tic nuclei (Voit, 2005), shocks, magnetic fields, cosmic rays and turbulence (Dolag
et al., 2008). It therefore remains a challenge for the theory of cluster physics to
find the responsible mechanisms and explain the relations mentioned above.

11



1 Introduction

Figure 1.3: Plot of 68% and 90% confidence regions for ΩM and ΩΛ for Supernova IA,
CMB and cluster data. From Knop et al. (2003).

1.2 Aim of this work

One of the proposed mechanisms that break gravitationally self-similar scaling prop-
erties of clusters is turbulence. Turbulence is also believed to play an important role
in explaining the magnetic field strengths of galaxy clusters and the higher than
expected temperature of cluster cores (the “cooling flow problem”). However nu-
merical simulations of the influence of turbulence in an astrophysical context in
general and especially for clusters have been restricted to measuring passively sta-
tistical quantities like velocity dispersion from simulation data (e.g. Dolag et al.
(2005b)). The active role of small scale velocity fluctuations on the large scale flow
could not be treated at all. There are two main reasons for this:

1. Basically turbulence is a physical phenomenon that is far from being under-
stood. The sole currently existing theory is only applicable to isotropic, in-
compressible turbulence. No accepted theoretical framework for describing
turbulent flows in astrophysical environment including compressible, selfgrav-
itating, high Mach number flows exists.

2. Models describing the effective influence of turbulence in fluid dynamic simu-
lations are restricted to a specific length scale. They are not suitable to treat
the vast range of different length scales (from cosmological scales ≈ 1024 m

12



1.2 Aim of this work

down to the thickness of a shock front (≈ 1011 m, Medvedev et al. (2006)) we
need to address when simulating astrophysical environments.

Therefore it is aim of this work to develop, implement, and apply a new numerical
scheme for modeling turbulent, multiphase astrophysical flows such as galaxy cluster
cores and star forming regions. The method combines the capabilities of adaptive
mesh refinement (AMR) and large-eddy simulations (LES) to capture localized fea-
tures and to represent unresolved turbulence, respectively; it will be referred to as
Fluid mEchanics with Adaptively Refined Large-Eddy SimulationS or FEARLESS.

To start explaining the idea behind this ansatz, we first give a brief overview of the
theory of turbulence in chapter 2. In chapter 3 we introduce a filter formalism, which
is necessary for modeling compressible turbulence according to the ideas of LES. In
chapter 4 we use this formalism to derive the filtered equations of fluid dynamics,
which are the basis for the introduction of our turbulence or subgrid scale (SGS)
model (adapted from work by Schmidt et al. (2006a)) in chapter 5. In this chapter
we also analyse in some detail the influence of the turbulence model on the equation
of fluid dynamics. In chapter 6 we explain the specific problem of combining LES
and AMR in some detail and propose a new method to circumvent this problem.
In chapter 7 we comment on several modifications and numerical issues that had to
be taken into account when implementing our method into the cosmological fluid
code Enzo. We also present the results of several driven turbulence test simulations,
showing the consistency of our treatment of turbulence. Chapter 8 summarizes
some important facts about cluster physics and we also give a brief introduction to
turbulence in cluster simulations. In chapter 9 we describe several issues with our
turbulence model when treating turbulence in cluster simulations on cosmological
scales. We explain our setup and then describe the main results of a first study of
turbulence in galaxy cluster simulations using our FEARLESS approach. Finally in
chapter 10 we summarize our findings and draw conclusions about the influence of
turbulence in the context of cluster simulations.
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2 Turbulence

The equations for a general compressible, viscous, selfgravitating fluid with density
ρ(ri, t), momentum density ρvi(ri, t) and total energy density ρe(ri, t) are1

∂

∂t
ρ +

∂

∂rj
(vjρ) = 0, (2.1)

∂

∂t
(ρvi) +

∂

∂rj
(vjρvi) = − ∂

∂ri
p +

∂

∂rj
σ′

ij + ρgi, (2.2)

∂

∂t
(ρe) +

∂

∂rj
(vjρe) = − ∂

∂rj
(vjp) +

∂

∂rj
(viσ

′
ij) + viρgi, (2.3)

with Newtonian gravity (Poisson Equation)

∂

∂rj
gj = 4πGρ (2.4)

and an equation of state to compute the pressure p(ri, t) dependent on the material
of the fluid. For a Newtonian fluid the stress tensor σij is of the form2

σ′
ij = 2η

[
1

2

(
∂vi

∂rj

+
∂vj

∂ri

)

− 1

3
δij

∂vk

∂rk

]

+ ζδij
∂vk

∂rk

, (2.5)

where the so called dynamic viscosity η and the second viscosity ζ are defined to be
constants3 in a Newtonian fluid.

This system of differential equations is complex and highly nonlinear if the non-
linear advection term ∂

∂rj
(vjρvi) dominates in the momentum equation (2.2) and in

general can be solved only numerically. The influence of the advection term can be
estimated by writing down the momentum equation in dimensionless form, which
yields4

l0
v0t0
︸︷︷︸

Sr

∂

∂t∗
(ρ∗v∗

i ) +
∂

∂r∗j
(v∗

j ρ
∗v∗

i ) = − p0

ρ0v2
0

︸︷︷︸

Ma−2
iso

∂

∂r∗i
p∗ +

σ0

ρ0v2
0

︸︷︷︸

Re−1

∂

∂r∗j
σ∗

ij +
ρ0g0l0
ρ0v2

0
︸ ︷︷ ︸

Fr−1

ρ∗g∗
i . (2.6)

1see eg. Landau and Lifschitz (1991).
2For a derivation see Appendix C.
3The literature on incompressible flows often defines the so called kinematic viscosity ν = η

ρ
. It

should be noted, that this quantity is a constant only for fluids of constant density and cannot
be used in a meaningful way when discussing compressible flows.

4See Appendix A.
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2 Turbulence

Figure 2.1: Laminar flow past a cylinder at Re = 0.16 (Frisch, 1995).

The arising dimensionless numbers5 (Re = Reynolds number, Maiso = isothermal
Mach number, and Fr = Froude number) show the ratio of the mean pressure
energy density p0, the mean potential energy density ρ0g0l0, and the mean energy
dissipation density σ0 to the mean kinetic energy density ρ0v

2
0. If all these numbers

are much greater than one (which means the mean kinetic energy is big compared
to the other energies), the advection term dominates and the fluid flow is called
turbulent.

2.1 Phenomenology of Turbulence

As there is no accepted theory of compressible, selfgravitating turbulence we have to
restrict the following discussion to incompressible turbulence. For an incompressible
fluid, it can be shown that the Reynolds number

Re =
ρ0v

2
0

σ0
=

ρ0l0v0

η0
(2.7)

is the only number which characterizes the dynamics of the fluid flow (Feynman,
1964).

If the Reynolds numbers is small, which is the case for high viscosity and/or low
flow speed, we call the fluid laminar. In this laminar state the streamlines of the
fluid exhibit all the symmetries of the equations and boundary conditions. This

5The Strouhal number Sr can be set to one by assuming v0 = l0
t0

.
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2.1 Phenomenology of Turbulence

(a) Re = 240

(b) Re = 1800

Figure 2.2: Wake behind two identical cylinders (Frisch, 1995).

can be seen in figure 2.1, where the streamlines of a fluid around a cylinder show
up-down and left-right symmetry.6

With increasing Reynolds number, the left-right symmetry first (figure 2.2(a))
and then the up-down symmetry are broken (figure 2.2(b)). If Re > 1000, the flow
becomes completely chaotic and all symmetries are broken. Nevertheless, looking
at the flow at smaller scales l far from the boundaries, all the symmetries of the
equations seem to be restored in a statistical sense. This state of flow is called fully
developed turbulence.

However at the smallest scales of the flow lk, the flow will “behave” laminar again.
This means that the Reynolds number becomes smaller on smaller scales and implies
that the Reynolds number is scale dependent

Re(l) =
ρv(l)l

η
. (2.8)

How the Reynolds number depends on the scales of the flow is explained by the
Kolmogorov theory of incompressible turbulence.

6 Actually the streamlines also show z-invariance (along the axes of the cylinder) and time-
invariance, but they do not show cylindrical symmetry as the direction of the fluid flow breaks
this symmetry.
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2 Turbulence

2.2 The Kolmogorov theory

Kolmogorov first described his theory of turbulence in 1941. Here we discuss the
modern formulation of the Kolmogorov theory as explained in Frisch (1995) and
Pope (2000).

According to Frisch, Kolmogorovs theory is based on three assumptions which are
valid in the limit of infinite Reynolds numbers, at small scales l (lk ≪ l ≪ l0) and
away from boundaries:

1. All the possible symmetries of the Navier-Stokes equation, usually broken by
the mechanisms producing the turbulent flow, are restored in a statistical
sense.

2. The turbulent flow is self-similar.

3. The turbulent flow has a finite nonvanishing mean rate of dissipation 〈ǫ〉 per
unit mass.

The mean rate of dissipation is defined as the mean rate of change of kinetic energy

〈ǫ〉 = 〈 d

dt
ekin〉 ∼

v2
0

l0/v0
=

v3
0

l0
= const. (2.9)

Using this Kolmogorov derived, that for homogeneous and isotropic incompressible
turbulence the third order structure function7 S3(v(l)) is equal to the mean rate of
dissipation times minus four-fifths the length scale l of the structure function

S3(v(l)) = −4

5
〈ǫ〉l. (2.10)

This is the famous four-fifths law of Kolmogorov. From it and the self similarity
assumption, Kolmogorov deduces that the structure functions of order p scale like

Sp(v(l)) ∼ 〈ǫ〉p/3lp/3. (2.11)

Because the second order structure function can be expressed as Fourier transform

of the longitudinal velocity spectrum8
∣
∣V‖(k)

∣
∣
2 ∼ ekin(k) and the wave numbers k

are related to length scales l via k ∼ l−1 it follows for the specific kinetic energy in
Fourier space

ekin(k) ∼ 〈ǫ〉2/3k−2/3. (2.12)

7For a definition of structure functions see appendix D.4.
8Also see appendix D.4.
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2.2 The Kolmogorov theory

The energy spectrum E(k) is the kinetic energy in the wave number interval between
k and k + dk, which is then

E(k) ∼ d

dk
ekin(k) = Ck〈ǫ〉2/3k−5/3. (2.13)

This is the celebrated result of Kolmogorovs theory of incompressible turbulence.
The constant Ck is therefore called the Kolmogorov constant and is experimentally
and numerically found to be Ck ≈ 1.6 (Yokokawa et al., 2002).

It should be noted that the rate of dissipation 〈ǫ〉 is not the rate of conversion of
kinetic energy into internal energy, rather it describes the amount of energy which
is transfered from the bigger to the smaller scales, without the influence of viscosity.
The kinetic energy is converted to internal energy only on scales smaller than the
Kolmogorov scale lk, where the Reynolds number becomes unity. From this and the
relation S1(v(l)) ∼ v(l) ∼ 〈ǫ〉1/3l1/3 we can derive an expression for the Kolmogorov
scale

Re(lk) = 1 =
ρvlk lk

η
=

〈ǫ〉1/3l
4/3
k

ν
⇒ lk =

(
ν3

〈ǫ〉

)1/4

. (2.14)

Using the definition of the dissipation (2.9) in (2.14), we obtain for the ratio
between the largest integral length l0 and the Kolmogorov length lk

l0
lk

=

(
ν3

l30v
3
0

)−1/4

= Re3/4. (2.15)

We can use this to estimate the number of degrees of freedom of a three-dimensional
fluid flow at a point of time

Nf =

(
l0
lk

)3

= Re9/4. (2.16)

One consequence of this is that the storage requirement of a fully resolved numerical
simulation grows as Re9/4. 9 Since the time step must usually be taken proportional
to the spatial mesh, the total number of operations to integrate the equations for a
fixed number of dynamical times is

N =

(
l0
lk

)4

= Re3. (2.17)

As the typical Reynolds numbers in astrophysical context are of the order of 108

(Kritsuk et al., 2007) up to 1014 (Schmidt et al., 2006a) we would need a computer

9 Using this to estimate the Reynolds number from the biggest direct numerical simulation today
by Yokokawa et al. (2002) on the Earth simulator with a resolution of 40963 grid cells yields
Re ≈ 65536.
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2 Turbulence

with at least 1018 Bytes (1 Exabyte) of memory and 1016 FLOPS10 (10 PetaFLOPS)
running for a year to resolve fully an astrophysical simulation. And even if we could
efficiently make use of the fact, that turbulence is not volume filling at a point
of time, it remains intractable to resolve completely the turbulent fluid dynamics
encountered in astrophysics (Schmidt et al., 2006a).

Therefore we can only treat explicitly a limited number of degrees of freedom,
which correspond to the largest scales of the system. The influence of the turbulent
dynamics from smaller scales onto larger scales has to be treated in a statistical way.
How the dynamics on small scales and the dynamics on large scales are intercon-
nected, can be seen by explicitly filtering the equations of fluid dynamics.

10Floating point operations per second.
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3 Filter formalism

Next we present a very general filter formalism, which is useful when dealing with
the compressible equations of fluid dynamics. We collect the most important rules1,
which are necessary to filter the compressible equations of fluid dynamics.

3.1 Reynolds filter

In general filtering means splitting some quantity a in a mean value 〈a〉 generated
by the filter procedure and some deviation a′ from the mean value. If a filter fulfills
the following relations,

〈A + B〉 = 〈A〉 + 〈B〉, (3.1)

〈C〉 = C, if C = const., (3.2)

〈〈A〉B〉 = 〈A〉〈B〉, (3.3)

it is called a Reynolds filter or Reynolds operator. From equation (3.2) and (3.3)
we see that for B = C = const.

〈〈A〉C〉 = 〈A〉C. (3.4)

From this relation (3.4) it follows for C = 1

〈〈A〉〉 = 〈A〉. (3.5)

From the last equation ((3.5)) and (3.3) we get for B = 〈D〉

〈〈A〉〈D〉〉 = 〈A〉〈〈D〉〉 = 〈A〉〈D〉. (3.6)

If we split a quantity a in a sum of some kind of mean value 〈a〉 (computed by a
filter that satisfies the Reynolds criteria (3.1)-(3.3)) and some deviations a′

a = 〈a〉 + a′ (3.7)

it follows from equation (3.5) for the mean of the deviations

〈a′〉 = 〈a − 〈a〉〉 = 〈a〉 − 〈〈a〉〉 = 〈a〉 − 〈a〉 = 0. (3.8)

1These rules have already been used implicitely by Canuto (1997); Schmidt et al. (2006a), but
our work is the first to summarize them explicitly.
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3 Filter formalism

One can show that the so called central moments of this quantity (〈a′b′〉, 〈a′b′c′〉,
〈a′b′c′d′〉, . . .) can be expressed in terms of the classical moments (〈ab〉, 〈abc〉,
〈abcd〉, . . .) like2

〈a′b′〉 = 〈ab〉 − 〈a〉〈b〉 (3.9)

〈a′b′c′〉 = 〈abc〉 − 〈a〉〈b〉〈c〉
− 〈a〉〈b′c′〉 − 〈b〉〈a′c′〉 − 〈c〉〈a′b′〉 (3.10)

〈a′b′c′d′〉 = 〈abcd〉 − 〈a〉〈b〉〈c〉〈d〉
− 〈a〉〈b′c′d′〉 − 〈b〉〈a′c′d′〉 − 〈c〉〈a′b′d′〉 − 〈d〉〈a′b′c′〉
− 〈a〉〈b〉〈c′d′〉 − 〈a〉〈c〉〈b′d′〉 − 〈a〉〈d〉〈b′c′〉
− 〈b〉〈c〉〈a′d′〉 − 〈b〉〈d〉〈a′c′〉 − 〈c〉〈d〉〈a′b′〉

(3.11)

〈a′b′c′d′e′〉 = . . . (3.12)

3.2 Germano formalism

Germano (1992) postulates that the relations between moments and central mo-
ments for non-Reynolds operators3 are of similar form as for Reynolds operators.
Therefore he introduces the so called generalized central moments τ(a, b), τ(a, b, c), . . .
for non-Reynolds operators. These should fulfill in analogy to equation (3.9)-(3.12)
the following relations4

τ(a, b) = 〈ab〉 − 〈a〉〈b〉 (3.13)

τ(a, b, c) = 〈abc〉 − 〈a〉〈b〉〈c〉
− 〈a〉τ(b, c) − 〈b〉τ(a, c) − 〈c〉τ(a, b)

(3.14)

τ(a, b, c, d) = 〈abcd〉 − 〈a〉〈b〉〈c〉〈d〉
− 〈a〉τ(b, c, d) − 〈b〉τ(a, c, d)

− 〈c〉τ(a, b, d) − 〈d〉τ(a, b, c)

− 〈a〉〈b〉τ(c, d) − 〈a〉〈c〉τ(b, d) − 〈a〉〈d〉τ(b, c)

− 〈b〉〈c〉τ(a, d) − 〈b〉〈d〉τ(a, c) − 〈c〉〈d〉τ(a, b)

(3.15)

〈a′b′c′d′e′〉 = . . . (3.16)

For the generalized central moments the following rules apply:

1. They are symmetric in their arguments

τ(a, b) = τ(b, a); τ(a, b, c) = τ(b, a, c), . . . (3.17)

2See for example (Monin and Yaglom, 1971).
3Non-Reynolds operators do not fulfill 3.8, so their mean of the deviations is unequal zero.
4It seems to be very difficult to prove these relations even in case of very simple non-Reynolds

operators.
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3.3 Favre-Germano formalism

2. The generalized central moment of a constant is zero

τ(a, c) = 0, τ(a, b, c) = 0, if c = const. (3.18)

3. In case of a static (time independent) filter operator it permutes with the time
derivative and the chain rule applies

∂

∂t
τ(a, b) = τ

(
∂

∂t
a, b

)

+ τ

(

a,
∂

∂t
b

)

(3.19)

4. If the filter operator is isotropic (independent of position in space) then it
applies

∂

∂xi
τ(a, b) = τ

(
∂

∂xi
a, b

)

+ τ

(

a,
∂

∂xi
b

)

(3.20)

5. Additionally the following relation can be proved

τ(a, Cb) = C · τ(a, b), if C = const. (3.21)

τ(a, b + c) = τ(a, b) + τ(a, c) (3.22)

τ(a, bc) = τ(a, b, c) + 〈b〉τ(a, c) + 〈c〉τ(a, b) (3.23)

3.3 Favre-Germano formalism

In the case of compressible fluid dynamics, the moments appearing in the filtered
equations are one order higher than in non-compressible fluid dynamics (eg. 〈ρuiuj〉
instead of 〈uiuj〉). If we would adopt the Germano relations (3.13) to (3.16) in this
case, we would get many terms which are difficult to interpret physically. But if
we use density weighted quantities5 similar to Favre (1969) and develop relations
in analogy to the Germano relations for these density weighted quantities, we can
write the filtered compressible equations of fluid dynamics in a much simpler way
(Canuto, 1997; Schmidt et al., 2006a).

We define density weighted quantities according to Favre like

〈ρa〉 = 〈ρ〉â ⇒ â =
〈ρa〉
〈ρ〉 . (3.24)

In analogy to Germano we postulate the following relations:

τ̂(a, b) = 〈ρab〉 − 〈ρ〉âb̂ (3.25)

τ̂ (a, b, c) = 〈ρabc〉 − 〈ρ〉âb̂ĉ

− âτ̂(b, c) − b̂τ̂(a, c) − ĉτ̂(a, b)
(3.26)

τ̂(a, b, c, d) = . . . (3.27)

5For a modern review of this procedure see Veynante and Vervisch (2002).
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3 Filter formalism

For the quantities τ̂(. . .) the same rules apply as for the generalized central moments
τ(. . .) introduced by Germano:

1. τ̂ (a, b) = τ̂ (b, a); τ̂(a, b, c) = τ̂ (b, a, c), . . .

2. τ̂ (a, c) = 0, τ̂(a, b, c) = 0, if c = const.

3. ∂
∂t

τ̂(a, b) = τ̂
(

∂
∂t

a, b
)

+ τ̂
(
a, ∂

∂t
b
)

for static filter.

4. ∂
∂xi

τ̂ (a, b) = τ̂
(

∂
∂xi

a, b
)

+ τ̂
(

a, ∂
∂xi

b
)

for isotropic filter.

5. a) τ̂(a, Cb) = C · τ̂(a, b) , if C = const.

b) τ̂(a, b + c) = τ̂(a, b) + τ̂(a, c)

c) τ̂(a, bc) = τ̂(a, b, c) + 〈b〉τ̂ (a, c) + 〈c〉τ̂(a, b)

If we compare the Favre relations to the Germano relations we see:

Germano: 〈ρa〉 = 〈ρ〉〈a〉 + τ(ρ, a) (3.28)

Favre: 〈ρa〉 = 〈ρ〉â (3.29)

⇒ â = 〈a〉 +
τ(ρ, a)

〈ρ〉 (3.30)

⇒ â = 〈a〉, if ρ = const. (3.31)

This means in the case of a constant density, the formalism with Favre density
weighted quantities is equivalent to the Germano formalism. 6

3.4 Explicit filtering

The rules for filtering described in the last sections do not depend on an explicit
form of a filter procedure. However we now want to introduce a commonly used rep-
resentation of a filter procedure, namely the convolution filter. Using a convolution
filter the mean value 〈a〉 of some quantity a(x) is defined as

〈a(x)〉 =

∞∫

−∞

G(x − x′)a(x′)dx′, (3.32)

where G(x− x′) is called the convolution kernel, and is associated with some cutoff
length l∆. The deviation of the mean value is then defined as

a′ = a(x) − 〈a(x)〉 = a(x) −
∞∫

−∞

G(x − x′)a(x′)dx′. (3.33)

6This can also be proved for the higher moments.
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3.4 Explicit filtering

The importance of the convolution filter stems from the fact that it can be used to
generalise discrete operators, e.g. we can write the well-known second-order central
difference formula for the derivative of a continuous variable like7

a(x + h) − a(x − h)

2h
=

d

dx




1

2h

x+h∫

x−h

a(x′)dx′





=
d

dx

∞∫

−∞

G(x − x′)a(x′)dx′

=
d

dx
〈a〉

with

G(x − x′) =

{
1
2h

if |x − x′| ≤ h

0 otherwise
. (3.34)

The convolution kernel (3.34) is also called a box or top-hat filter and is most often
used for performing explicit spatial scale separation.

7See Rogallo and Moin (1984).
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4 Favre-filtered equations of fluid
dynamics

4.1 Basic equations

Using the Favre-Germano formalism developed in 3.3 to filter the equations of com-
pressible selfgravitating fluid dynamics (2.1)-(2.3) leads to

∂

∂t
〈ρ〉 +

∂

∂rj
v̂j〈ρ〉 = 0 (4.1)

∂

∂t
〈ρ〉v̂i +

∂

∂rj
v̂j〈ρ〉v̂i = − ∂

∂ri
〈p〉 +

∂

∂rj
〈σ′

ij〉 + 〈ρ〉ĝi −
∂

∂rj
τ̂(vi, vj) (4.2)

∂

∂t
〈ρ〉ê +

∂

∂rj
〈ρ〉v̂j ê = − ∂

∂rj
〈vjp〉 +

∂

∂rj
〈viσij〉 + 〈ρ〉v̂iĝi

+ τ̂(vi, gi) −
∂

∂rj
τ̂ (vj, e)

(4.3)

with

ê = êint +
1

2
v̂iv̂i +

1

2

τ̂(vi, vi)

〈ρ〉 (4.4)

and

τ̂(vj , e) = τ̂ (vj, eint) +
1

2
τ̂ (vj , vi, vi) + v̂iτ̂ (vj, vi) (4.5)

Filtering the equation for the kinetic energy and the internal energy alone we get:

∂

∂t
〈ρ〉êk +

∂

∂rj
v̂j〈ρ〉êk) = − 〈vi

∂

∂ri
p〉 + 〈vi

∂

∂rj
σ′

ij〉 + 〈ρ〉v̂iĝi

+ τ̂(vi, gi) −
∂

∂rj
τ̂ (vj, ek)

(4.6)

∂

∂t
〈ρ〉êint +

∂

∂rj

v̂j〈ρ〉êint = − 〈p ∂

∂rj

vj〉 + 〈σ′
ij

∂

∂rj

vi〉 −
∂

∂rj

τ̂ (vj, eint) (4.7)
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4 Favre-filtered equations of fluid dynamics

with

êk =
1

2
v̂iv̂i +

1

2

τ̂(vi, vi)

〈ρ〉 (4.8)

and

τ̂ (vj , ek) =
1

2
τ̂(vj , vi, vi) + v̂iτ̂(vj , vi) (4.9)

4.2 Resolved energy and turbulent energy
equations

Multiplying the filtered equation for the momentum (4.2) with the Favre-filtered
velocity v̂i yields the balance equation for the resolved kinetic energy:

∂

∂t
〈ρ〉1

2
v̂iv̂i +

∂

∂rj

v̂j〈ρ〉
1

2
v̂iv̂i = − v̂i

∂

∂ri

〈p〉 + v̂i
∂

∂rj

〈σ′
ij〉 + 〈ρ〉v̂iĝi

− v̂i
∂

∂rj

τ̂(vi, vj)

(4.10)

Adding the equation for the resolved kinetic energy (4.10) to the equation for the
filtered internal energy (4.7) one gets the equation for the total resolved energy
eres = êint + 1

2
v̂iv̂i:

∂

∂t
〈ρ〉eres +

∂

∂rj
v̂j〈ρ〉eres = − v̂i

∂

∂ri
〈p〉 + v̂i

∂

∂rj
〈σ′

ij〉 + 〈ρ〉v̂iĝi

− 〈p ∂

∂ri
vi〉 + 〈σ′

ij

∂

∂rj
vi〉 − v̂i

∂

∂rj
τ̂(vi, vj)

− ∂

∂rj
τ̂(vj , eint)

(4.11)

The arising four terms 〈p ∂
∂ri

vi〉, 〈σ′
ij

∂
∂rj

vi〉, τ̂(vi, vj), τ̂(vj , eint) in the total resolved

energy represent the coupling of the unresolved fluctuations to the filtered resolved
flow. We could now try to find equations based on quantities of the resolved flow,
to model each of these terms independent of each other. Nevertheless we will see
that the first three of these four terms can be connected by an equation for another
quantity, called the turbulent energy εt. From solving the equation for this quantity
we get the three terms 〈p ∂

∂ri
vi〉, 〈σ′

ij
∂

∂rj
vi〉, τ̂(vi, vj). Only the fourth term τ̂ (vj, eint)

is not connected with the turbulent energy and has to be modeled separately.
We get the balance equation for the turbulent energy1 εt = 〈ρ〉et = 1

2
τ̂(vi, vi)

by subtracting the balance equation for the resolved kinetic energy (4.10) from the

1Interpreting the quantity τ̂ (vi, vi) = τ̂ii as an energy is only possible, if τ̂ii ≥ 0. This is only
guaranteed, if the filter convolution kernel is a semi-positive function in position space (Vreman
et al., 1994; Sagaut, 2006).
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4.2 Resolved energy and turbulent energy equations

balance equation of the filtered kinetic energy (4.6) :

∂

∂t
〈ρ〉et +

∂

∂rj
v̂j〈ρ〉et = −

[

〈vi
∂

∂ri
p〉 − v̂i

∂

∂ri
〈p〉
]

+

[

〈vi
∂

∂rj
σ′

ij〉 − v̂i
∂

∂rj
〈σ′

ij〉
]

+ τ̂(vi, gi) −
1

2

∂

∂rj
τ̂(vj , vi, vi) − τ̂(vj , vi)

∂

∂rj
v̂i

(4.12)

For a better comparison with Schmidt et al. (2006a) we will transform the following
terms like

〈vi
∂

∂ri
p〉 =

∂

∂ri
〈vip〉 − 〈p ∂

∂ri
vi〉 (4.13)

v̂i
∂

∂ri
〈p〉 =

∂

∂ri
v̂i〈p〉 − 〈p〉 ∂

∂ri
v̂i (4.14)

〈vi
∂

∂rj
σ′

ij〉 =
∂

∂rj
〈viσ

′
ij〉 − 〈σ′

ij

∂

∂rj
vi〉 (4.15)

v̂i
∂

∂rj
〈σ′

ij〉 =
∂

∂rj
v̂i〈σ′

ij〉 − 〈σ′
ij〉

∂

∂rj
v̂i (4.16)

and rewrite the balance equation for the turbulent energy:

∂

∂t
〈ρ〉et +

∂

∂rj
v̂j〈ρ〉et = − ∂

∂rj

[
1

2
τ̂ (vj , vi, vi) + 〈vip〉 − v̂i〈p〉 − 〈viσ

′
ij〉 + v̂i〈σ′

ij〉
]

−
[

〈p〉 ∂

∂ri

v̂i − 〈p ∂

∂xi

vi〉
]

+

[

〈σ′
ij〉

∂

∂rj

v̂i − 〈σ′
ij

∂

∂rj

vi〉
]

+ τ̂ (vi, gi) − τ̂ (vj, vi)
∂

∂xj

v̂i

(4.17)

If we introduce now in analogy to Schmidt et al. (2006a) the following definitions

−µ = 〈vip〉 − v̂i〈p〉 (4.18)

−κ = 〈viσ
′
ij〉 − v̂i〈σ′

ij〉 (4.19)

D = − ∂

∂rj

[
1

2
τ̂ (vj, vi, vi) − µ + κ

]

(4.20)

〈ρ〉λ =

[

〈p〉 ∂

∂ri
v̂i − 〈p ∂

∂ri
vi〉
]

(4.21)

〈ρ〉ǫ = −
[

〈σ′
ij〉

∂

∂rj

v̂i − 〈σ′
ij

∂

∂rj

vi〉
]

(4.22)

Γ = τ̂ (vi, gi) (4.23)
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4 Favre-filtered equations of fluid dynamics

we can write the balance equation for the turbulence energy like

∂

∂t
〈ρ〉et +

∂

∂rj

v̂j〈ρ〉et = D + Γ − 〈ρ〉(λ + ǫ) − τ̂ (vj, vi)
∂

∂rj

v̂i. (4.24)

With the help of equations (4.13) to (4.16) and the definitions (4.21) and (4.22) we
can also rewrite the equation (4.11) for the total resolved energy:

∂

∂t
〈ρ〉eres +

∂

∂rj
v̂j〈ρ〉eres = − ∂

∂ri
v̂i〈p〉 +

∂

∂rj
v̂i〈σ′

ij〉 + 〈ρ〉v̂iĝi

+ 〈ρ〉(λ + ǫ) − v̂i
∂

∂rj

τ̂ (vi, vj) −
∂

∂rj

τ̂ (vj, eint).

(4.25)

4.3 Summary

The last two equations (4.24) and (4.25) together with equation (4.1) and (4.2) (and
additionally the Poisson equation for the gravity term and the equation of state)
form a complete system of partial differential equations for fluid dynamics

∂

∂t
〈ρ〉 +

∂

∂rj
v̂j〈ρ〉 = 0, (4.26)

∂

∂t
〈ρ〉v̂i +

∂

∂rj
v̂j〈ρ〉v̂i = − ∂

∂ri
〈p〉 +

∂

∂rj
〈σ′

ij〉 + 〈ρ〉ĝi −
∂

∂rj
τ̂ (vi, vj), (4.27)

∂

∂t
〈ρ〉eres +

∂

∂rj
v̂j〈ρ〉eres = − ∂

∂ri
v̂i〈p〉 +

∂

∂rj
v̂i〈σ′

ij〉 + 〈ρ〉v̂iĝi

+ 〈ρ〉(λ + ǫ) − v̂i
∂

∂rj
τ̂ (vi, vj) −

∂

∂rj
τ̂ (vj, eint),

(4.28)

∂

∂t
〈ρ〉et +

∂

∂rj
v̂j〈ρ〉et = D + Γ − 〈ρ〉(λ + ǫ) − τ̂(vj , vi)

∂

∂rj
v̂i, (4.29)

where it is often useful to split the equation for resolved energy into an equation for
the resolved kinetic energy and internal energy respectively

∂

∂t
〈ρ〉êk +

∂

∂rj
v̂j〈ρ〉êk) = − v̂i

∂

∂ri
〈p〉 + v̂i

∂

∂rj
〈σ′

ij〉 + 〈ρ〉v̂iĝi

− v̂i
∂

∂rj
τ̂(vi, vj),

(4.30)

∂

∂t
〈ρ〉êint +

∂

∂rj
v̂j〈ρ〉êint = − 〈p〉 ∂

∂rj
v̂j + 〈σ′

ij〉
∂

∂rj
v̂i + 〈ρ〉(λ + ǫ)

− ∂

∂rj
τ̂ (vj , eint).

(4.31)
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4.3 Summary

The explicit forms of the quantities D, λ, ǫ, Γ and τ̂(vi, vj) are unknown and have
to be modeled in terms of the turbulence energy et. The term τ̂ (vj, eint) has to be
modeled independently of et. The models for all these terms represent our turbulence
or subgrid model.
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5 LES and SGS model

5.1 The concept of LES

The idea behind large eddy simulations (LES) is to solve the filtered equations of
fluid dynamics (FE) (4.26) - (4.29) instead of the unfiltered ones (UE) (2.1)-(2.3).
There are two reasons for this:

1. The FE represent a system with a smaller number of resolved degrees of free-
dom (DOF) compared with the UE. This is a necessary restriction, because
the numerical discretization itself acts as a filter1 and limits the number of
DOF which we can resolve in a high Reynolds number flow. In effect this
leads to the problem that the outcome of a simulation of turbulence using the
UE depends on the numerical scheme used. If instead we solve the FE using
a certain subgrid model with a characteristic cutoff length higher than the
numerical cutoff length, the outcome of the turbulence simulation is only de-
pendent on our subgrid model and not on the numerical scheme used (Mason
and Brown, 1999). From this point of view, we should call a turbulence model
simply a filter model.

2. Using the numerical cutoff as an explicit filter in an energy conserving numer-
ical scheme converts kinetic into internal energy. But the back reaction of the
internal energy on the kinetic energy can only be via the pressure term, which
is presumably not right. With an explicit turbulence model, we can model the
backscattering of small scale fluctuations on the resolved kinetic energy in a
much better way (Schmidt, 2004). To model the backscattering we have to
know explicitly the amount of energy on the scales between the cutoff scale
and the Kolmogorov scale. This is what we call subgrid energy or turbulent
energy and that is why the term subgrid scale (SGS) model is appropriate for
the unknown terms in the FE.

Unfortunately there is a substantial variety of SGS models in the literature and
no agreement on a standard model. An extensive overview of SGS models for in-
compressible flows can be found for example in the book by Sagaut (2006). There
are fewer models explicitly for compressible flows. A simple one, that was first in-
troduced by Schmidt (2004); Schmidt et al. (2006b), will be described in the next

1See section 3.4.
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sections. This Schmidt model2, together with some corrections due to Sarkar (1992),
which will be outlined later, is the model we use to describe the influence of turbu-
lence on the resolved scales in our work.

5.2 Schmidt model

As we interpret the trace of the generalized central moment of the velocity 〈τ〉ij as
a turbulent energy, we can define a velocity of the turbulent motions3 q =

√
2et,

which is used as characteristic velocity of the subgrid terms in the Schmidt model.
As a characteristic length scale the size of one grid cell l∆ is used 4.

The Schmidt model neglects the convective flux term τ̂ (vj, eint) and the gravita-
tional effects Γ on the subgrid scales. The models for the other terms are described
in the following sections.

5.2.1 Transport term D

The transport or diffusion term is modeled by a gradient hypothesis, by stat-
ing that the non-linear term is proportional to the turbulent velocity q2 gradient
(Kolmogorov-Prandl relation, see Sagaut (2006, p.97))

D =
∂

∂ri
CD〈ρ〉l∆q2 ∂

∂ri
q. (5.1)

The constant CD is calibrated to CD ≈ 0.4 = 2
5

by numerical experiments (Schmidt
et al., 2006a).

5.2.2 Pressure dilatation λ

For λ an estimate is used that is presumably only valid in the subsonic (nearly
incompressible) regime:

λ = Cλq
2 ∂

∂ri
v̂i. (5.2)

The constant Cλ = −1
5

as found by numerical experiments (Schmidt et al., 2006a).

2Actually the original implementation of the SGS model proposed by Schmidt et al. (2006b)
had severe problems with energy conservation and was notoriously difficult to implement in an
AMR code. The version of the Schmidt model described in this work is a simplified version,
but it conserves energy and proved to be sufficient for our work.

3This is based on an analogy to kinetic energy in the sense, that 1

2
ρq2 = ρet.

4As mentioned, the implicit cutoff of our subgrid = filter model should be greater than the
numerical cutoff, so one might object, that l∆ is too small for that. But every term in the
subgrid model is multiplied by some dimensionless constant, which is set to a value high enough
to make numerical cutoff effects insignificant.
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5.2 Schmidt model

5.2.3 Turbulent dissipation ǫ

The turbulent dissipation accounts for effects of viscosity on subgrid scales. These
effects convert turbulent energy to internal energy even if, on the larger scales, the
effect of viscosity can be neglected. The most simple expression which can be built
from the characteristic turbulent velocity and length scale for the dissipation is

ǫ = Cǫ
q3

l∆
. (5.3)

For our simulations we will set Cǫ = 0.5.5

5.2.4 Turbulence production tensor τ̂(vi, vj)

The turbulence production term is symmetric in its arguments and can therefore be
written as follows

τ̂ (vi, vj) = τ̂ij =
1

2
(τ̂ij + τ̂ij) =

1

2
(τ̂ij + τ̂ji). (5.4)

By subtracting the trace of this tensor

τ̂ij =
1

2
(τ̂ij + τ̂ji) −

1

n
δij τ̂kk +

1

3
δij τ̂kk (5.5)

and recognizing that τ̂kk = 〈ρ〉q2 we can split the tensor in a symmetric, tracefree
part τ̂ ∗

ij = 1
2
(τ̂ij + τ̂ji) − 1

3
δij τ̂kk and the trace

τ̂ij = τ̂ ∗
ij +

1

3
δij〈ρ〉q2 = τ̂ ∗

ij + pt, (5.6)

where the trace is commonly called turbulent pressure pt.
A model for τ̂ ∗

ij is based on the turbulent viscosity hypothesis. There it is assumed,
that τ̂ ∗

ij is of the same form like S∗
ij for a newtonian fluid, so

τ̂ ∗
ij = −2ηtS

∗
ij (5.7)

with a turbulent dynamic viscosity ηt = 〈ρ〉νt = 〈ρ〉Cνl∆q and

S∗
ij =

1

2

(
∂

∂rj
v̂i +

∂

∂ri
v̂j

)

− 1

3
δij

∂

∂rk
v̂. (5.8)

The turbulence production term is therefore modeled as

τ̂(vi, vj) = −2〈ρ〉Cνl∆qS∗
ij +

1

3
δij〈ρ〉q2. (5.9)

5Suggested by W. Schmidt, personal communication.
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5 LES and SGS model

It should be noted, that in general the old idea of turbulent viscosity (which was
first forumlated by Boussinesq (1877)) is incorrect. As Pope (2000) shows, it is only
true when the ratio of production of turbulent energy Σ∗ = τ̂ ∗

ij
∂vi

∂rj
to dissipation ǫ

is Σ∗

ǫ
∼ 1. If this ratio is much greater or much smaller than one the turbulent

viscosity hypothesis is incorrect.
Nevertheless since it is the most common idea used to model the turbulent pro-

duction tensor it is also used in the Schmidt model. Setting the constant Cν = 0.05
seems to be a rational choice (Schmidt et al., 2006a).

5.2.5 Summary of the Schmidt model

Using the Schmidt model, the FE form the following system of equations

∂

∂t
〈ρ〉 +

∂

∂rj

v̂j〈ρ〉 = 0, (5.10)

∂

∂t
〈ρ〉v̂i +

∂

∂rj

v̂j〈ρ〉v̂i = − ∂

∂ri

(〈p〉 + pt) + 〈ρ〉ĝi −
∂

∂rj

τ̂ ∗
ij , (5.11)

∂

∂t
〈ρ〉eres +

∂

∂rj

v̂j〈ρ〉eres = − ∂

∂ri

v̂i(〈p〉 + pt) + 〈ρ〉v̂iĝi

+ 〈ρ〉(λ + ǫ) − v̂i
∂

∂rj

τ̂ ∗(vi, vj), )

(5.12)

∂

∂t
〈ρ〉et +

∂

∂rj

v̂j〈ρ〉et = D − 〈ρ〉(λ + ǫ) − τ̂ ∗(vj , vi)
∂

∂rj

v̂i − pt
∂

∂ri

v̂i. (5.13)

Again it is often useful to split the equation for resolved energy into an equation for
the resolved kinetic energy and internal energy respectively

∂

∂t
〈ρ〉êk +

∂

∂rj

v̂j〈ρ〉êk) = − v̂i
∂

∂ri

(〈p〉 + pt) + 〈ρ〉v̂iĝi − v̂i
∂

∂rj

τ̂ ∗(vi, vj), (5.14)

∂

∂t
〈ρ〉êint +

∂

∂rj

v̂j〈ρ〉êint = − (〈p〉 + pt)
∂

∂rj

v̂j + 〈ρ〉(λ + ǫ). (5.15)

5.3 Impact of the Schmidt SGS on the fluid
equations

5.3.1 General observations

In this section we want to investigate the influence of the Schmidt model on the
equations of fluid dynamics. This can be done most easily in a graphical way.

One can see in figure 5.1 the energy transfer between potential, kinetic, and
internal energy for the UE. We see that it is possible to convert potential energy
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Figure 5.1: Energy transfer in the unfiltered equations of fluid dynamics.

into kinetic energy and vice versa, and also kinetic energy into internal energy and
vice versa via adiabatic pressure effects. On the other side, irreversible changes of
state due to viscous effects can only lead to an increase of internal energy and not(!)
vice versa.

In figure 5.2 the energy transfer for the FE with the Schmidt model is depicted in
the same schematical way. We see that the kinetic energy is now split into two parts:
the filtered kinetic energy on resolved scales and the turbulent energy on unresolved
scales. From this picture it becomes clear that the turbulent energy is converted to
internal energy by the same processes as the filtered kinetic energy. Also it could
be converted to potential energy6, but as already mentioned, this effect is neglected
in the Schmidt model and therefore not depicted here, as well as the effects due to
the convective flux term.

One very important assumption that has not yet been discussed, but is also de-
picted in figure 5.2, is that conversion of resolved kinetic energy into internal energy
due to viscous effects is neglected. Basically all SGS models that make use of the
turbulent viscosity hypothesis, and therefore also the Schmidt model, assume that
for high Reynolds numbers the turbulent viscosity is much greater than the real
viscosity. Why this assumption can be made will be explained in section 5.3.2.

The last conclusion that can be drawn from this pictures is that certain quantities
are related to the cutoff scale (Σ∗, pt) and others are related to the dissipation

6Drawing the analogy from the conversion of kinetic into internal energy one might ask if there
could be something like irreversible conversion of potential energy into kinetic energy or perhaps
vice versa. But from general relativity we know that there is no gravity, there is only curvature
of space time. It seems very strange to imagine something like irreversible curvature of space
time.
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Figure 5.2: Energy transfer in the filtered equations of fluid dynamics with Schmidt
SGS.

scale (ǫ,λ). Nevertheless we find that the turbulent dissipation ǫ in the Schmidt
model (and also in most other SGS models) is modeled depending on the cutoff
scale l∆, although it should ultimately only depend on the dissipation scale. As we
shall see later this is a point of major concern in the development of a SGS model
for an adaptive grid code.

5.3.2 Dimensional analysis

In complete analogy to the UE7 we can do a dimensionless analysis for the FE with
the Schmidt model.

Momentum equation

Introducing the dimensionless quantities

e∗t =
et

q2
0

, p∗t =
pt

ρ0q
2
0

, τ ∗∗
ij =

τij

ηv0/l0
=

τij

ρ0q0v0

(5.16)

the momentum equation can be written as

l0
t0v0

∂

∂t∗
〈ρ∗〉v̂∗

i +
∂

∂r∗j
v̂∗

j 〈ρ∗〉v̂∗
i = +

ρ0g0l0
ρ0v2

0

〈ρ∗〉ĝ∗
i −

p0

ρ0v2
0

∂

∂r∗i
〈p∗〉 − q2

0

v2
0

∂

∂r∗i
pt (5.17)

+
η0

ρ0l0v0

∂

∂r∗j
〈σ′∗

ij 〉 −
q0

v0

∂

∂r∗j
τ̂ ∗∗
ij (5.18)

7See appendix A.
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5.3 Impact of the Schmidt SGS on the fluid equations

From this we can estimate, that the turbulent pressure will become important, when

q2
0

v2
0

≥ p0

ρ0v2
0

⇒ q2
0

p0/ρ0
≥ 1 (5.19)

If we now introduce the turbulent Mach number

Mt =
q0

cs

(5.20)

and use p0

ρ0
= c2s

γ
we see that the turbulent pressure will dominate over the thermal

pressure, if

M2
t ≥ γ. (5.21)

The turbulence production tensor τ̂ ∗
ij becomes important compared to the stress

tensor, if

ρ0q0l0 ≥ η0. (5.22)

So we see that if the turbulent viscosity is greater than the physical viscosity the
turbulent production tensor will dominate over the stress tensor in the FE. The
physical viscosity is

η0 ∼ ρ0

√
u0lλ (5.23)

where u0 is the mean thermal energy and lλ the mean free path of a particle, so we
see that the turbulent viscosity is greater than the physical viscosity, if

q2
0

u0

≥
(

lλ
l0

)2

⇒ q2
0

u0

≥ (Kn)2, (5.24)

which means the ratio of turbulent energy to internal energy must be greater than
the square of the Knudsen number Kn = lλ

l0
. Since in any case the Knudsen number

must be much smaller than one for the continuum approximation to hold, we can
practically always assume that the turbulent production tensor will dominate over
the stress tensor.8 This justifies our assumption in the Schmidt model to neglect the
influence of the stress tensor completely in the momentum equation and therefore
also in the kinetic energy equation.

For completeness we also compare the gravitational force to the turbulent pressure,
which yields

ρ0q
2
0

ρ0g0l0
≥ 1. (5.25)

Turbulence will thus dominate over gravity in the momentum equation, if the average
turbulent energy is greater than the gravitational energy.

8Of course this analysis is restricted to l0 > lk, since if we resolve the fluid up to the Kolmogorov
length lk the turbulent energy will be zero. For scales smaller than the Kolmogorov length we
cannot neglect the influence of the physical viscosity.
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Internal energy equation

The internal energy equation can be analyzed in the same way as the momentum
equation using the additional dimensionless quantities

e∗int =
eint

u0
, λ∗ =

λ

λ0
=

λ

q2
0v0/l0

, ǫ∗ =
ǫ

ǫ0
=

ǫ

q3
0/l0

. (5.26)

This results in

l0
t0u0

∂

∂t∗
〈ρ∗〉ê∗int +

∂

∂r∗j
v̂∗

j 〈ρ∗〉ê∗int = − p0

ρ0v2
0

〈p∗〉 ∂

∂r∗j
v̂∗

j +
η0v0

ρ0u0l0
〈σ′∗〉 ∂

∂r∗j
v̂∗

j

− q2
0

u0

pt
∂

∂r∗j
v̂∗

j +
q2
0

u0

〈ρ∗〉λ∗ +
q3
0

v0u0

〈ρ∗〉ǫ∗.
(5.27)

We see that the pressure dilatation λ will dominate over the pressure term if

M2
t ≥ γ (5.28)

and that the turbulent dissipation ǫ will dominate over the viscous dissipation, if

ρ0l0q0

(
q0

v0

)2

≥ η0 ⇒
(

q0

v0

)2

≥ η0

ηt
. (5.29)

As shown in section 5.3.2 η0 ≪ ηt, so we can always neglect the influence of the
stress tensor in the internal energy equation. This also leads to the conclusion,
that turbulence will be the only source of entropy in the equations, since the only
irreversible conversion of energy into internal energy is via turbulent dissipation ǫ.

Turbulent energy equation

For the dimensional analysis of the turbulent energy equation we need the additional
dimensionless quantity

D
∗ =

D

ρ0q3
0/l0

. (5.30)

Inserting it together with the dimensionless quantities introduced in the former
sections yields

l0
t0u0

∂

∂t∗
〈ρ∗〉e∗t +

∂

∂r∗j
v̂∗

j 〈ρ∗〉e∗t =
q0

v0

(D∗ − 〈ρ∗〉ǫ∗) − v0

q0

τ̂ ∗∗
ji

∂

∂r∗j
v̂∗

i − p∗t
∂

∂r∗i
v̂∗

i − 〈ρ∗〉λ∗.

(5.31)

This analysis shows that the behavior of turbulent energy equation can be completely
characterized by the ratio q0

v0
. If q0

v0
≫ 1, then only diffusion D and dissipation ǫ are

relevant. If q0

v0
≪ 1 then the equation is dominated by the turbulent production

term Σ∗ = τ̂ ∗
ji

∂
∂rj

v̂i and only if q0

v0
≈ 1 do all terms contribute to the equation.
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5.4 Sarkar model

5.4 Sarkar model

The effect of compressibility on the structure of turbulence is an important but
difficult topic in turbulence modeling and is not really taken into account by the
Schmidt model. Sarkar (1992) performed simulations of simple compressible flows
and investigated the influence of the mean Mach number of the flow on the turbulent
dissipation ǫ and the pressure dilatation λ. Based on this analysis he suggested
different models for these terms, which we will describe in the following sections.
These modifications have been proven to yield good results9 and that’s why we
use them in the course of this work, when we reach the limitations of the original
Schmidt model with our simulations.

5.4.1 Turbulent dissipation ǫ

As a major effect of compressibility from direct numerical simulation Sarkar (1992)
identifies that the growth rate of kinetic energy decreases when the initial turbulent
Mach number increases. This means that the dissipation of kinetic energy (and
therefore also for the turbulent energy) increases with the turbulent Mach number
Mt and Sarkar (1992) suggests accounting for this effect by using

ǫ = Cǫ
q3

l∆
(1 + α1M

2
t ) (5.32)

with α1 = 0.5 as a model for the dissipation of turbulent energy.

5.4.2 Pressure dilatation λ

Based on a decomposition of all variables of the equation for instantaneous pressure10

∂2

∂r2
i

p =
∂2

∂t2
ρ − ∂2

∂ri∂rj
(ρvivj − σ′

ij) (5.33)

into a mean and a fluctuating part and comparisons with direct numerical simula-
tions of simple compressible flows Sarkar (1992) proposed a different model for the
pressure dilatation

λ = α2Mtτ̂
∗
ij

∂v̂i

∂rj

− α3M
2
t Cǫ

q3

l∆
− 8α4M

2
t pt

∂v̂k

∂rk

(5.34)

with α2 = 0.15,α3 = 0.2 obtained from a curve fit of the model with DNS simula-
tion. Unfortunately Sarkar (1992) does not specify a value for α4, so there is some

9See Shyy and Krishnamurty (1997).
10For a derivation see appendix E.
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confusion in the literature about it. For example Shyy and Krishnamurty (1997)
set α4 = 0 and still found the Sarkar model in good agreement with their DNS
simulation. In this work, we adopt a value of α4 = α2

2/2, which was suggested in a
work by Schmidt (2007).
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As mentioned in the last chapter, in LES we try to solve the FE instead of the UE
and treat the unresolved scales with a subgrid scale model, which acts like a filter
with a characteristic length l∆ for the UE. However we can only model the subgrid
scales in an averaging sense, which can only be correct, if the fluid motions on the
subgrid scales are nearly isotropic. This limits the LES methodology to flows where
we can resolve all anisotropies, which stem from large-scale features like boundary
conditions or external forces. Therefore the ideal numerical method for LES would
include adaptive gridding to ensure automatically that the grid, and hence the filter,
are everywhere sufficiently fine to resolve the energy-containing motions (Pope, 2000,
p. 636).

6.1 Adaptive mesh refinement

The most powerful technique for grid-based solvers to resolve localized and anisotropic
structures in a flow is adaptive mesh refinement (AMR). Using AMR the grid will
be refined1, depending on a refinement criterion, only at the defined “interesting”
areas of the flow field. This allows for treating a much bigger range of dynamic
scales of the fluid with the same number of grid cells compared to a static grid.

The grid structure can thereby be understood as a hierarchy of grid patches (see
figure 6.1) that approximate the flow on various levels of resolution (Berger and
Oliger, 1984; Berger and Colella, 1989). But not only the spatial resolution, also the
time resolution is adaptive. All grids on a given level are advanced simultaneously
with a maximum timestep such that the Courant condition is satisfied by all the
cells on that level. This results in a hierarchy of timesteps: a coarse, parent grid
on level l is advanced by ∆tcoarse, and then its finer, subgrid(s) on level l + 1 are
advanced by one or more timesteps ∆tfine until they reach the same physical time
as their parent grid. At this point, the coarse grid values ucoarse are replaced by the

1Refined means that the values from a coarse parent grid are interpolated onto a finer child grid
and then integrated independently from the coarse grid. However, the way how to interpolate
the values from coarse to fine grid is not discussed in the literature and most often not described
by the developers of AMR fluid codes. Although outside the scope of our work, the depen-
dence of the solution and the spectrum of the solution on this interpolation routines should be
investigated in the future.
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Figure 6.1: Hierarchy of rectangular subgrids in blockstructured AMR (Deiterding,
2003).

underlying fine grid values ufine
i using mass weighted, conservative averaging2

ucoarse =
1

M

∑

i

ρiu
fine
i Vi, (6.1)

where M =
∑

i ρiVi is the total mass of the underlying subgrid cells and Vi is the
volume of a fine grid cell.

To completely ensure mass conservation, however, one not only has to replace the
coarse grid values with averaged fine grid values, but also must correct coarse grid
cells, which abut fine grid cells, but are not themselves covered by any fine grid. This
can be understood, by writing the underlying, conservative, explicit finite difference
scheme as

un(t + ∆tcoarse) = u(t) − ∆tcoarse

δx

(
F coarse

n+1/2 − F coarse
n−1/2

)
, (6.2)

where Fn±1/2 are the fluxes on the left and right hand side of the cell number n
respectively. If the left hand side of cell n abuts on a fine grid, the flux F coarse

n−1/2 has
to be replaced by the fluxes of the neighboring fine grid cells

F fine
n−1/2 =

∑

i

Fi+1/2(t + i∆tfine), (6.3)

where the sum is due to the refinement in time. This flux replacement is most often
implemented as a correction pass after a grid has been integrated using equation 6.2

un(t + ∆tcoarse,corr) = un(t + ∆tcoarse) + ∆F (6.4)

2Density itself is not weighted by mass but only by volume ρcoarse = 1

V

∑

i ρfine
i Vi.
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with

∆F = −F coarse
n−1/2 +

∑

i

Fi+1/2(t + i∆tfine). (6.5)

This ”Flux Correction” step is the most difficult and error-prone part of an AMR
implementation, since one has to track all the fluxes of the time varying boundaries
of coarse and fine grids, and correctly maintain them between processors, if the
simulation is run in parallel on several CPUs.

Nevertheless, if done correctly, this technique has proven to be very well suited for
astrophysical problems which include strong shocks or gravitational collapse (Bryan
et al., 2001) among many other applications. However, in the case of astrophysically
relevant Reynolds numbers3 even with AMR we cannot hope to resolve all relevant
scales down to the dissipative scales (Schmidt et al., 2006b).

But as mentioned in the introduction, we do not have to resolve all scales if we
use a SGS model. We only need to resolve energy-containing motions. That’s the
reason why combining LES and AMR offers the possibility of treating turbulence
in astrophysical simulations in a much better way. Though there is one big prob-
lem, when trying to combine LES with AMR. Most of the terms of a SGS model
like the Schmidt model do depend on the cutoff scale l∆ of the grid and this cutoff
scale varies in time and space if one uses AMR. But when filtering the fluid dy-
namic equations, we assumed our filter operation to commute with time and spatial
derivatives and hence be static and isotropic, in direct contradiction to the methods
of AMR. Therefore combining LES and AMR seem to pose a big challenge and only
few attempts have been made so far.

6.2 Attempts to combine LES and AMR

Although proposals to combine LES and AMR are frequently made (e.g Pope
(2004)), literature on the topic is still rare.

Probably the first attempt to combine LES and AMR is due to Sullivan et al.
(1996). They used a kind of zero-filling to interpolate the solution between the
coarse and fine grid. But their simulation of planetary boundary layers only used
one static nested fine grid within a coarse grid and was therefore of limited use
for more general problems. Boersma et al. (1997) came to the conclusion, using
the methods of Sullivan et al. (1996), that with respect to statistics, the nested
grid simulations are clearly superior to the results obtained with a simulation on a
coarse grid in the whole flow domain. They also found that their solution of a 2d
Kelvin-Helmholtz instability improves even in the area only covered by the coarse
grid, an encouraging fact. Another approach to large eddy simulations using AMR

3See section 2.2.
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was put forward by Cook (1999). He presented a method for computing a fine grid
solution given a coarse grid solution and vice versa using a deconvolution with a
gaussian filter. He showed how to avoid commutation errors with this technique,
and that boundary errors are usually small. He also emphasized the advantage of
using several nested grids instead of one stretched grid. He came to the conclusion,
however, that shocks and other high-frequency phenomena should not be allowed to
cross grid boundaries, which renders his method invalid for simulating compressible
flows in astrophysics.

A sophisticated approach is the multilevel algorithm for large-eddy simulation of
turbulent flow by Terracol et al. (2001, 2003). 4 But although they use a time-
dependent number of grids, the finer grids in their simulations always cover the
whole computational domain and and are only used to improve the overall LES
performance. Also methods based on wavelets have been proposed by Goldstein
and Vasilyev (2004) and Léonard et al. (2006) and even for adaptive, unstructured
grids (Mitran, 2001; Nägele and Wittum, 2003), but seem to be rarely used. The
newest method to combine LES and blockstructured AMR comes from Pantano
et al. (2007), but they use a very different SGS-model compared to the Schmidt
model considered in our work and therefore it is unclear if their method is of general
use.

Finally in an astrophysical context Falle (1994) claims to use a k-ǫ subgrid scale
model build into the hierarchical adaptive grid code µCobra to treat the effect of
turbulence on the large structure of radio jets. However the specific problems due
to adaptive gridding are not mentioned in this paper and Falle (1994) himself comes
to the conclusion that his treatment of turbulence is rather dubious. Nevertheless,
the same model seems to be used in a recent paper by Pope et al. (2008) on the
generation of optical emission-line filaments in galaxy clusters.

6.3 ǫ-based approach to combine AMR and LES

In this chapter, we want to present a new simple method to address the problem
of combination of AMR and LES. It is based on the finding of section 5.3, that
the turbulent dissipation ǫ is related to the dissipation scale, but in the Schmidt
model (and most other SGS models) modeled depending on the cutoff scale. This
is no problem, if we use a static grid in our fluid dynamic simulation, but it poses
a problem in AMR simulations. The reason is that the time and spatial variance
of l∆ in an adaptive simulation leads to an artificial dependence of ǫ on the grid
structure of the simulation. But as we now from Kolmogorovs theory of turbulence
the average rate of dissipation should be independent of the length scale in fully
developed turbulence. This would not be the case in a AMR simulation of fully
developed turbulence, if ǫ depends on the cutoff scale, since the average turbulent

4Also see the book of Sagaut et al. (2006).
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energy and therefore the turbulent velocity q is independent of the lengthscale in
a conservative AMR code. So our idea is to try to enforce the independence of ǫ
on the grid patches of different cutoff scale in our AMR simulations of turbulence.
Explicitely this can be written as

ǫ(l∆,1) = ǫ(l∆,2), l∆,1 > l∆,2 (6.6)

where ǫ(l∆,1) is the value of the turbulent dissipation in one grid cell of the coarse
grid and ǫ(l∆,2) is the average value of the turbulent dissipation after interpolation
on a overlapping fine grid patch. Inserting our model for epsilon (5.3) we get

Cǫ,1
q3
1

l∆,1

= Cǫ,2
q3
2

l∆,2

. (6.7)

Assuming Cǫ,1 = Cǫ,2 this leads to

q2
1

q2
2

=

(
l∆,1

l∆,2

)2/3

, (6.8)

which is a scaling relation for the turbulent energy. This scaling relation should hold
between the turbulent energy on grid patches of different cutoff scale. But on the
other side, the total energy must be locally conserved

1

2
v2
1 +

1

2
q2
1 + u1 =

1

2
v2
2 +

1

2
q2
2 + u2. (6.9)

Since in a conservative AMR code u1 = u2 and using the scaling relation (6.8) to
eliminate q2 we get

v2
2 = v2

1 + q2
1

(
1 − r−2/3

)
, (6.10)

where we introduced the refinement factor r =
l∆,1

l∆,2
. If we divide (6.10) by v2

1 and

assume isotropy, we can derive a relation for the components of velocity

v2,i = v1,i

√

1 +
q2
1

v2
1

(1 − r−2/3). (6.11)

If we write equation (6.8) like

q2
2 = q2

1 − q2
1

(
1 − r−2/3

)
(6.12)

we see, that for infinite refinement r → ∞ the turbulent velocity q2 is zero as
expected.
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7 Numerical testing

7.1 The Enzo code

Enzo is a multiphysics, parallel AMR application for simulating the cosmological
evolution and star formation written in a mixture of C++ and Fortran, making use
of the message-passing interface (MPI) libaries and the HDF5 data format. Norman
et al. (2007) describes the newest version of the code in detail. In the following we
summarize the most important features of the code.

Enzo simulates the evolution of dark and baryonic matter in a self-consistent way
on cosmological scales. Baryonic matter is evolved using a finite volume discretiza-
tion of the compressible fluid dynamic equations in comoving coordinates1. The
Piecewise Parabolic Method (PPM) in dual energy formalism for high Mach num-
ber flows is used to integrate these equations (Bryan et al., 1995). Energy source
and sink terms due to radiative heating and cooling processes are included, but not
used in our work. Also we do not use the multi-species (H, H+, He, He+, He++
and e-) capabilities of Enzo; instead we always set the gas to be fully ionized with
a mean molecular weight mµ = 0.6 u. Dark matter is assumed to behave as col-
lisionless fluid, obeying the Vlasov-Poisson system of equations2. Its evolution is
solved using particle-mesh algorithms for collisionless N-body dynamics; specifically
a second order accurate Cloud-in-Cell (CIC) formulation with leapfrog time integra-
tion is used. Dark matter and baryonic matter interact through their gravitational
potential. The gravitational potential is computed by solving the Poisson equation
on the adaptive grid hierarchy using Fast Fourier Transform and multigrid tech-
niques. In generic terms, Enzo is a fluid solver for the baryonic matter coupled to
a particle-mesh solver for the dark matter via a Poisson solver. The coordinates of
the simulation domain are given as comoving coordinates in an expanding universe
with a scale factor a(t), which is computed as a solution of the Friedman equation.

The code uses blockstructured adaptive mesh refinement (as described in section
6.1) to achieve high resolution. To parallelize the computation, a concept of ghost
grids is used. The root grid is split into a number of grid patches, at least as many as
the number of processors. Then, as grids are added, each grid is placed by default
on the same processor as its parent. Once the rebuild of the hierarchy has been
completed on a given level, the load balancing ratio between processors is computed

1See appendix H.3.
2See appendix F.
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Processor 1 Processor 2

ghost zone

Distributed hierarchy Grid zones

real grid
ghost grid

real zone

Figure 7.1: Real and ghost grids in a hierarchy; real and ghost zones in a grid (Norman
et al., 2007).

and grids are transfered between processors in an attempt to even the load. However,
the structure of the grid patch hierarchy is stored redundantly on every processor
to ease communication. To allow for this, each real grid, which resides on only one
processor, is represented by a ghost grid (which is a grid patch without data) on
every other processor. This structure is shown graphically in figure 7.1.

Enzo is publicly available from http://lca.ucsd.edu/software/enzo/. However to
integrate and test our SGS model several modifications to the public version were
necessary.

7.2 Modifications to Enzo

7.2.1 Turbulent energy as a color field

To implement the Schmidt model into Enzo, it was necessary to introduce a new
field for the turbulent energy, which is advected by the PPM solver. To achieve this,
we used the capability of Enzo to incorporate an arbitrary number of color fields3

into the simulation. Thus the turbulent energy field is implemented as another color
field. Nevertheless it was necessary to change the default behavior of color fields in
Enzo. By default, Enzo treats a color like a density. But since we want turbulent
energy to be treated in analogy to the internal energy, which is implemented as
specific quantity, we changed the treatment of color fields in our version of Enzo as
to behave like a specific quantity.

3See appendix I.
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7.2 Modifications to Enzo

7.2.2 Coupling of turbulent energy and time step restrictio n

The source/sink terms in the turbulent energy equation and the terms arising in
the internal energy equation and the momentum equation due to our subgrid model
are coupled to the fields in first order, which means for some arbitrary field f at
timestep tn, the source terms s1, s2, . . . are added in the following way

fn+1 = fn + s1,n∆t + s2,n∆t + . . . (7.1)

where ∆t = tn+1 − tn is the chosen timestep. But due to the low accuracy of the
scheme, it might happen, that for a big timestep the value of one of the energy fields
in a cell drops below zero, which is unphysical and numerically unstable. To account
for that, we had to restrict the timestep in the code. We do this by applying the
following estimator

∆tturb = Cturb min

(√

l∆
|aturb|

)

, (7.2)

where the minimum is taken over all cells of all grids on one level of refinement, the
turbulent acceleration is aturb = 1

〈ρ〉
∂

∂rj
τ̂(vi, vj) and Cturb = 0.05. If the so-estimated

minimal allowed timestep due to our turbulent model ∆tturb is smaller than the
timestep computed by the other estimators in the code (e.g. estimator based on the
CFL-criterion, for gravity and so on) it will be chosen as the timestep for the next
iteration. This procedure ensures that even for big turbulent acceleration (which
also means big source/sink terms) due to our turbulent model, our computation
is numerically stable. Of course, there is one drawback to this procedure: if the
turbulent acceleration becomes really huge, the timestep of the simulation will be
extremely small, effectively stopping the simulation. This can only be circumvented
by either using a higher accuracy scheme for coupling the sink/source terms to the
equations or by using a different subgrid model, which does not produce numerically
instable huge values of |aturb|. The Sarkar corrections are a step in this direction,
but further steps may be necessary in the future.

7.2.3 Transfer of turbulent energy at grid
refinement/derefinement

By default, when a new finer grid gets created in Enzo, the values on the finer
grid are generated by interpolating them from the coarser grid using a conservative
interpolation scheme. At each timestep of the coarse grid, the values from the
fine grid are averaged and replace the values computed on the coarse grid in the
region where fine and coarse grid overlap. As already mentioned in section 6.3 these
procedures must be modified in our approach to combine LES and AMR.

So at refinement we do the following:
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1. Interpolate the values from the coarse to the fine grid using standard interpo-
lation scheme from Enzo.

2. On the finer grid, correct the values of specific kinetic energy ek = 1
2
v2, velocity

components vi and specific turbulent energy et = 1
2
q2 as follows

e′k = ek + et

(
1 − r−2/3

)
, (7.3)

v′
i = vi

√

1 +
et

ek
(1 − r−2/3), (7.4)

e′t = et − et

(
1 − r−2/3

)
, (7.5)

where primed quantities are the final values on the fine grid.

At derefinement we reverse this procedure:

1. Average the values from the fine grid and replace the corresponding values on
the coarse grid

2. On the coarse grid, correct the averaged values of kinetic energy, velocity
components and turbulent energy

e′t = et + et

(
r2/3 − 1

)
, (7.6)

v′
i = vi

√

1 − et

ek
(r2/3 − 1), (7.7)

e′k = ek − et

(
r2/3 − 1

)
. (7.8)

Here primed quantities denote the final values on the coarse grid.

It should be noted that derefinement with this procedure is only possible if there
is enough kinetic energy on the fine grid, because on the coarse grid, we must have
e′k ≥ 0. This is only the case for

et

ek
≤
(
r2/3 − 1

)
. (7.9)

For example for a refinement ratio r = 2 this yields ek ≥ 0.58et. So if this crite-
rion is not satisfied, we do not correct the values of the energies and velocities at
derefinement.4

4One might ask, why not do the correction step before the interpolation/averaging step, since
that might produce less noise. The reason for our choice was, that otherwise we would had to
introduce an additional temporary field into the code, which would lower the performance.
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7.3 Energy conservation

7.2.4 Random forcing

To simulate driven turbulent flow, a random forcing mechanism was implemented
into our version of Enzo. The forcing field is generated by a stochastic differential
equation called Ornstein-Uhlenbeck process (Schmidt, 2004). This process generates
a temporally and spatially varying force field which acts on the fluid. The compo-
nents of the force are generated in Fourier space, because there it is easier to split
the force field into a solenoidal and a dilatational (compressive) part.5 Hence the
force field is characterized by a weight ζ , which is zero, if the force field is purely
compressive (which means it will not directly generate any vorticity), and one, if
the force field is purely solenoidal (which means it will not directly generate any
divergence in the velocity field). The strength of the force field is characterized by
a forcing Mach number Mf , which is loosely connected to the mean Mach number
reached in the simulation after one integral time

tint =
l0

Mf 〈cs〉
, (7.10)

where l0 is the mean driving length scale size and 〈cs〉 is the mean sound speed. The
force field is adjusted to drive the fluid only on length scales around the characteristic
forcing length l0 = lbox

αf
with αf = 2 to allow for an undisturbed generation of the

energy dissipation cascade down to smaller scales.

7.2.5 Statistics tool

To be able to extract and analyze statistical quantities from the simulation, sophis-
ticated routines have been implemented, which allow us to compute mass weighted
and normal mean values, standard deviations and root mean square values at every
cycle for each quantity and for each level of an AMR simulation. We make heavy
use of these routines in the following sections.

7.3 Energy conservation

Global conservation of energy in a fluid code with a SGS model like the Schmidt
model is not achieved easily. This is because of the nonlocal features of this model.
As shown in chapter 4, the equation of turbulent energy (4.29) is generated by
subtracting the equation of resolved kinetic energy (4.30) from the filtered equation
of turbulent energy 4.6. In other words, the sum of turbulent energy equation
and resolved energy equation must yield the filtered kinetic energy equation. In
particular, the sum of turbulent production term τ̂ (vj, vi)

∂
∂rj

v̂i and resolved kinetic

5Also called Helmholtz decomposition, see Schmidt (2004).
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energy reduction term v̂i
∂

∂rj
τ̂ (vi, vj) must add up to the corresponding flux term in

the filtered equation of kinetic energy

∂

∂rj
v̂iτ̂ (vi, vj) = v̂i

∂

∂rj
τ̂ (vi, vj) + τ̂(vj , vi)

∂

∂rj
v̂i. (7.11)

This is important, since we know that the integral of the flux term over the whole
volume must be zero

∫
∂

∂rj
v̂iτ̂(vi, vj)dV =

∮

v̂iτ̂ (vi, vj)dA = 0. (7.12)

But this is not guaranteed numerically, if we compute the turbulent production
term and the kinetic energy reduction term independent of each other, since small
numerical errors might lead to a violation of equation (7.11) locally, which leads to
a big violation of equation (7.12) globally.

We therefore compute the resolved kinetic energy reduction term indirectly as

v̂i
∂

∂rj
τ̂(vi, vj) =

∂

∂rj
v̂iτ̂(vi, vj) − τ̂ (vj, vi)

∂

∂rj
v̂i, (7.13)

since this will guarantee, that equation (7.12) is fullfilled globally. We found that
the global energy is thus much better conserved.

In the following we present our results on energy conservation. The analyzed
simulation of driven turbulence has a static grid of size 1.0 (in code units) with
a resolution of 2563 grid points and periodic boundary conditions. At time t = 0
the baryonic fluid is at rest. The fluid is driven by random forcing as described in
section 7.2.4 with ζ = 1.0 and Mf = 0.68. The simulation is adiabatic (the adiabatic
index γ = 5

3
) and uses none of the features necessary for a cosmological simulation

(comoving coordinates, selfgravity, dark matter . . . ) except dual energy formalism.
The mean sound speed of the simulation is cs =

√
γ, since the mean pressure and

density are set to one in code units.
The plots 7.2(a) and 7.2(b) show the typical time development of the mass

weighted mean energies in our simulation including the energy injected into the
system by random forcing. It is evident from the curve of the turbulent energy,
that after one integral time scale, our simulation reaches a equilibrium between
production and dissipation of turbulent energy.

In figure 7.3 we plotted the time development of the relative error ∆e(t)
e(0)

of the
mean total energy, which is the sum of the mass weighted means of internal energy,
kinetic energy, turbulent energy minus the injected energy due to the forcing

êtot = êint + êkin + êt − êf , (7.14)

where ê = 〈ρe〉
〈ρ〉

. It demonstrates, that with our Schmidt model, the relative error in

energy is comparable to the error without SGS model and is around 1%. Also the
energy conserving properties of the Sarkar model are equally good.
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(b) Schmidt model.

Figure 7.2: Mass weighted mean energies over time in driven turbulence simulation.
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Figure 7.3: Relative error of total energy in the simulation.
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Figure 7.4: Differences in energies between simulation with and without SGS model,
compared to the time development of the turbulent energy.

It is also instructive to plot the difference between internal energy of the simulation
without the SGS model and the internal energy with the Schmidt model and the
difference between the kinetic energies of both simulations. These differences are
shown in figure 7.4. One can conclude from this figure, that, at the beginning of
the turbulent driving, the turbulent energy produced in our simulation with SGS
is found in the kinetic energy of the simulation without SGS. From t = 1.2 tint on
most of the turbulent energy can be found in the internal energy of the simulation
without SGS. Turbulent energy can therefore be interpreted as a kind of buffer,
which prevents the kinetic energy in our simulation to be converted instantly into
thermal energy.

7.4 Scaling of turbulent energy

In our ǫ-based approach to combine AMR and LES we assumed that the turbulent
energy scales according to equation (6.8) like q2 ∼ l2/3. We conducted several
simulations of driven turbulence to check the validity of this assumption.

The simulations were done on a static grid in a computational domain of size 1.0
with periodic boundary conditions. At time t = 0 the baryonic fluid is at rest. The
fluid is driven by random forcing as described in section 7.2.4 with ζ = 0 (purely
solenoidal forcing). The simulations were done for nearly isothermal gas (γ = 1.01)
with mean pressure and density set to 1.0 in code units. We used forcing Mach
numbers of Mf = 0.2 and Mf = 0.68 and varied the resolution from 323 to 2563

grid points. For Mf = 0.68 the simulations were transonic reaching reaching a Mach
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Figure 7.5: Mean Mach number for adiabatic and isothermal simulation using an equal
forcing Mach number Mf = 0.68.

number around one (see figure 7.5).

The characteristic time development of the turbulent energy dependent on the
resolution of the simulation can be seen in figures 7.6(a) - 7.6(d).

We compute mean turbulent energies by averaging the turbulent energy from
t = 3.0 tint to the end of the simulation and plot them against the resolution of the
simulation. The results together with a power-law fit are shown in figures 7.7(a)
and 7.7(b). From this we see that for a low Mach number forcing our assumption
q2 ∼ l2/3 (l is indirect proportional to the resolution) is fulfilled indeed. Nevertheless
for high Mach number flows the scaling of turbulent energy becomes steeper and
is q2 ∼ l0.77 for the Schmidt model and q2 ∼ l0.71 for the Sarkar model. In other
words for higher Mach number flows, our correction of turbulent energy at grid
refinement/derefinement based on relation (6.8) should probably be seen only as a
good guess of the initial values of turbulent energy on the finer/coarser grid. Also we
conclude that for higher Mach number flows one should use the Sarkar corrections
to the Schmidt model, since this leads to a scaling of turbulent energy more similar
to the incompressible low Mach number case.

7.5 Comparison of static grid to AMR turbulence
simulations

To be consistent the results of an AMR simulation in the limit of complete refinement
of the whole computational domain should resemble the results of a corresponding
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(a) Schmidt model, Mf = 0.2.
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(b) Sarkar model, Mf = 0.2.
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(d) Sarkar model, Mf = 0.7.

Figure 7.6: Mass weighted mean turbulent energies over time in driven turbulence sim-
ulation, for resolutions 323 to 2563 with forcing Mach number Mf = 0.2 and Mf = 0.68.
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Figure 7.7: Scaling of turbulent energy dependent on resolution for different strength of
the forcing.
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Figure 7.8: Thick lines: mean mass weighted turbulent energy for each level of the
AMR simulation using our procedure of transferring turbulent energy at grid refine-
ment/derefinement. Thin lines: the corresponding development of turbulent energy of
the static grid simulations.
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static grid simulation. To test this, we compared an AMR simulation with a 323 root
grid resolution and three additional levels with a refinement factor of 2 between each
level, covering the whole domain, with the corresponding static grid simulations of
driven turbulence with resolutions of 323, 643, 1283 and 2563.

Again the simulations were done in a computational domain of size 1.0 with
periodic boundary conditions. At time t = 0 the baryonic fluid is at rest. The
fluid is driven by random forcing as described in section 7.2.4 with ζ = 0 (purely
solenoidal forcing). The simulations were done for nearly isothermal gas (γ = 1.01)
with mean pressure and density set to 1.0 in code units. We used a forcing Mach
number of Mf = 2.7 and therefore used the SGS model with Sarkar corrections.

The results of this consistency check can be seen in figure 7.8. We observe that
the time development of the mean turbulent energy in this simulation of supersonic
driven turbulence simulation is very similar on the different levels of the AMR
simulation compared with the static grid simulations, except for some deviations
at the root level. But comparing these results to a simulation without correcting
turbulent energy at grid refinement/derefinement (figure 7.9), it is evident that our
ǫ-based approach of turbulent energy transfer is much more consistent with the
static simulations of driven turbulence.
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8 Cluster physics

In the following we want to review some basic theoretical and observational facts
of cluster physics. The presentation in this section has been inspired by Pfrommer
(2005), Sarazin (1988), Voit (2005) and Plionis et al. (2008).

8.1 Cluster formation

8.1.1 Initial density fluctuations

On very large scales the universe appears homogeneous and isotropic. However the
existence of stars, galaxies, and galaxy clusters demonstrates that the universe is not
perfectly homogeneous. The early universe must have been slightly clumpy. These
perturbations away from the mean density 〈ρ〉 can be characterized as a overdensity
field

δ(x) =
ρ(x) − 〈ρ〉

〈ρ〉 (8.1)

with Fourier transform

δ(k) ==
1

(2π)3/2

∞∫∫∫

−∞

δ(x)e−ikxdV. (8.2)

In case that δ(x) is isotropic, it can be specified by an isotropic power spectrum

P (k) = δ∗(k)δ(k) = |δ(k)|2 . (8.3)

If we assume, that the power spectrum has a power-law form P (k) ∼ kn, one can
show (Peebles and Yu, 1970), that the gravitational potential fluctuations δΦ scale
as

δΦ ∼ k(n−1)/2. (8.4)

Therefore the magnitude of these fluctuations diverges on either the small scale or
the high scale end, except in the case of n = 1. This special property makes P (k) ∼ k
the most natural power-law spectrum and it also appears to be a good approximation
to the true power spectrum of density fluctuations in the early universe.
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8.1.2 Hierarchical growth of density fluctuations

Once the universe has been seeded with density perturbations, they begin to grow,
because the gravity of the overdense regions attracts matter away from neighboring
underdense regions. The gravitational pull of the density perturbations on the small-
est scales causes them to collapse first, because, as shown in the last section, the
density perturbations have larger amplitude on smaller mass scales. That’s why the
standard model of cosmology envisions structure formation as a hierarchical process
in which gravity is drawing matter together to form increasingly larger structures.
Clusters of galaxies are believed to be the largest structures formed by this process
nowadays. Since it is assumed in the standard model that most of the matter in the
universe is cold, collisionless dark matter1, the evolution of clusters is basically gov-
erned by the collisionless build-up of dark matter from small to successively larger
haloes. In the course of this evolution, small structures merge to form larger struc-
tures. A full understanding of this hierarchical merging process requires numerical
simulations, although its basic concepts can be obtained by means of the analytical
spherical collapse model (Gunn and Gott, 1972; Bertschinger, 1985).

However, the accretion process in real clusters is not symmetric. Gravitational
forces between merging matter clumps produce a time-varying collective potential
which randomizes the velocities of the infalling particles yielding a Maxwellian ve-
locity distribution. This process is known as violent relaxation (Lynden-Bell, 1967)
and leads to a state of virial equilibrium. The final outcome of such a virialized,
collisionless system would be a self-gravitating isothermal sphere, in which the ve-
locity dispersion σv is constant and isotropic at every point and the density profile
is

ρ(r) =
σ2

v

2πGr2
. (8.5)

But this model leads to the unfortunate result of infinite mass and energy for a
galaxy cluster, and so it can never exist in nature.

Numerical N-body simulations instead find that the profile of dark matter haloes
is described by a universal law (Navarro et al., 1997)

ρdm(r) =
ρdm,0

r(r + r0)2
, (8.6)

where ρ0 is the central density and r0 a characteristic scale radius. But even with this
more sophisticated density profile mass diverges logarithmically with radius. Thus,
the cluster’s mass and relations linking that mass to observables depend crucially
on the definition of the outer boundary of the cluster. It turns out, that their is no
unique definition for the boundary of a cluster, however a common definition, also

1The evolution of cold, collisionless dark matter can be described by the Vlasov-Poisson system
of equations, see appendix F.
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used in the analysis tools for this work, is the scale radius r200 within which the

mean matter density is 200 times the critical density ρcr = 3H(z)2

8πG
of the universe 2.

8.2 Intracluster medium

It is widely assumed that the total matter density profile of the galaxy clusters
follows the NFW dark matter profile (equation (8.6)), because the dark matter
accounts for the biggest part of the total mass. The profile of the baryonic density
will also follow the NFW profile on the larger scales, because the baryons follow the
gravitational potential of the dark matter. Only in the core, significant deviations
from the NFW profile can be expected for the baryonic density, since the baryons are
not collisionless and pressure effects should lead to a different profile. This can be
tested by measurements of the extended x-ray emissions of the intracluster medium
and by numerical fluid dynamical simulations, if the mean free path of the very hot,
but dilute ICM is small enough.

8.2.1 Mean free path of the ICM

To determine if the fluid assumption holds for the ICM, it is important to estimate
the mean free path. The mean free path of electrons and protons in a plasma is
determined by coulomb collisions. The electrons in a Maxwellian plasma undergo
Coulomb collisions in a time which is a factor of ∼

√

me/mp shorter than the
protons. On the other hand, the electrons move faster by the inverse of this factor.
Thus, the mean free paths of electrons and protons are essentially equal, with (Plionis
et al., 2008)

λe = λp ≈ 23

(
T

108 K

)2( ne

10−3 cm−3

)−1

kpc. (8.7)

So for typical values of temperature and density of the ICM, we have mean free
paths of the order of 10 kpc, which is roughly the scale of a galaxy.

However the ICM contains a significant magnetic field (Plionis et al., 2008), with
typical values of B = 1 µG, which might be not dynamically relevant on large scales,
but it alters the microscopic motions of the electrons and protons. In a magnetic
field, charged particles follow helical orbits, gyrating about magnetic field lines. For
example the gyroradius of a typical electron is

rg ≈ 9.72 · 10−11

(
T

108 K

)1/2(
B

1 µG

)

kpc. (8.8)

2Although not precisely equivalent, we will call r200 the virial radius and the mass inside this
radius the virial mass in our work.

63



8 Cluster physics

These very small gyroradii probably ensure that the ICM acts as a fluid even when
the Coulomb mean free paths are long.

8.2.2 Magnetic fields

The general consensus is that no mechanism can produce significant magnetic fields
in the ICM prior to the formation of galaxies and large scale structures (Kulsrud and
Zweibel, 2008). So where do the significant magnetic fields in the ICM mentioned in
chapter 8.2.1 come from? It is assumed, that weak seed fields were created early in
the universe by the so-called Biermann battery mechanism (Biermann and Schlüter,
1951), which predicts fields of a strength ≈ 10−20 G. Several theories (e.g. Kulsrud
and Anderson (1992)) expect that these seed fields were amplified by Kolmogorov
turbulence by a factor of 1014−1015, which yields a magnetic field strength of ≈ 1 µG
nowadays, a value which is observationally found in cores of galaxy clusters (Carilli
and Taylor, 2002).

But what is the driving mechanism that generates the turbulence amplifying the
magnetic field in cluster cores? One process is merger events. Roettiger et al. (1999)
found that the field energy after a merger is found to increase by nearly a factor of
three (and locally up to a factor of 20) with respect to a non-merging cluster. Since
it is quite likely that a galaxy cluster experiences more than one of these events,
the amplification will be even larger. Nevertheless the most significant process one
can think of is the Kelvin-Helmholtz (KH) instability driven by shear flows, which
are common during the formation of cosmic structures. When applied to a cluster
core environment, the core dimensions basically define the injection scale and the
KH timescale turns out to be 107 years, which makes this instability an interesting
process to amplify weak magnetic fields (Dolag et al., 2008).

However although numerical simulations could show that the amplification of
magnetic fields by shear flows is significant (Dolag et al., 2005a; Brüggen et al.,
2005), they still have problems explaining the large amplification factors of the
initial magnetic fields. Dolag et al. (2005a), who used a Magnetic Smoothed Particle
Hydrodynamic code, had to assume a initial seed field of 10−11 G at a redshift z = 20
to achieve realistic magnetic field strengths at z = 0. But these problems might be
due to the numerical method used. Only recently it has been shown by Agertz et al.
(2007), that Smoothed Particle Hydrodynamic (SPH) codes have severe problems
describing Kelvin-Helmholtz instabilities. Although a solution to these problems has
already been proposed by Price (2007), we have to assume, that up to now basically
all SPH simulations of turbulence driven by flow instabilities are questionable. Hence
a better treatment of turbulence is necessary to be able to study the evolution of
magnetic fields in galaxy clusters.
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8.2 Intracluster medium

8.2.3 X-ray observations of the ICM

X-ray observations are the most accurate source of information about galaxy clus-
ters today. Observables in the X-ray band include the overall X-ray luminosity of
a cluster, emitted by the hot plasma trapped in the cluster’s gravitational poten-
tial and the cluster’s temperature inferred from the X-ray spectrum of that plasma.
From these data, one can reconstruct density, temperature and entropy profiles.
Of course, projection effects, cluster substructure, and deviations from spherical
symmetry complicate the generation of these profiles. However only recently Nagai
et al. (2007) could demonstrate using data from cosmological simulations, that the
methods used by Vikhlinin et al. (2006) for analyzing X-ray data of the the X-ray
satellite CHANDRA can reliably recover the distribution of density and tempera-
ture of the hot ICM. So given these three-dimensional models for the gas density
and temperature profiles, the total gravitational mass within the radius r can be
estimated from the hydrostatic equilibrium equation in the form3

M(r) = −RsTgr

G

(
∂ ln Tg

∂ ln r
+

∂ ln ρg

∂ ln r

)

. (8.9)

Given M(r), one can then calculate the total matter density profile

ρ(r) =
1

4πr2

dM

dr
. (8.10)

The result of such an analysis (Vikhlinin et al., 2006) can be seen in figure 8.1. It is
apparent, that the NFW profile provides a good fit for the density profile of the total
mass of the clusters. The scatter in the baryonic density profiles is significantely
larger and for lower temperature clusters the profiles are flatter towards the center
of the cluster. The temperature profiles also show signs of self-similarity, at least
for the higher temperature clusters T > 2.5 keV, which are fitted by

T (r)

Tmg

= 1.35
(x/0.045)1.9 + 0.45

(x/0.045)1.9 + 1

1

[1 + (x/0.6)2]
(8.11)

where x = r/r500 according to (Vikhlinin et al., 2006). Also visible from the tem-
perature fit are a isothermal plateau at r ≈ 0.2 r500 and the significant decrease
of temperature towards the center. This behavior is often explained by assuming
some cooling mechanism. Theoretically cooling should lead to lower pressure in the
center of the cluster, thereby leading to an even denser core to maintain hydrostatic
equilibrium. But, because cooling is even more effective at lower densities, this pro-
cess is instable leading to catastrophic cooling of the core, which is not observed,
giving rise to the so-called “cluster cooling flow problem”. Observationally emis-
sions from the central cluster gas can be detected for gas temperatures between the

3For a derivation see appendix G.
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(a) Density profiles for gas density ρgas and total density
ρtot.

(b) Temperature profiles.

Figure 8.1: Scaled density and temperature profiles for galaxy clusters observed with
CHANDRA by (Vikhlinin et al., 2006). The yellow line are a NFW fit to the total gas
density and a average fit to the temperature profiles.
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ambient temperature T0 and ∼ T0/2, but not below < T0/3 (Peterson et al., 2003),
so some sort of heating mechanism seems to be inhibiting the cooling below this
temperature. There are plenty of candidates for this - supernovae, outflows from
active galactic nuclei, thermal conduction and turbulent mixing - but there is still
no consensus on the relative importance of these mechanisms. Turbulence is espe-
cially interesting because it was also suggested by Nagai et al. (2007) as mechanism,
which might explain some deviations in the computation of the total mass, based on
the assumption of hydrostatic equilibrium, without taking turbulent pressure into
account.

8.2.4 Turbulence in the ICM

The “bottom-up” model or hierarchical model of cosmological structure formation
(eg., Ostriker, 1993) explains the build up of clusters through a sequence of mergers
of lower-mass systems (stars → galaxies → groups → clusters). In particular, merg-
ers of galaxies play a fundamental role in determining the structure and dynamics
of massive clusters of galaxies. It is found that major mergers induce temperature
inhomogeneities and bulk motions with velocities > 1000 km s−1 in the intracluster
medium (ICM) (Norman and Bryan, 1999). This results in complex hydrodynamic
flows where most of the kinetic energy is quickly dissipated to heat by shocks, but
some part may in principle also excite long-lasting turbulent gas motions.

In numerical simulations of merging clusters (Schindler and Mueller, 1993; Roet-
tiger et al., 1997; Ricker and Sarazin, 2001; Takizawa, 2005) it has been shown
that infalling subclusters generate a laminar bulk flow, but inject turbulent motions
via Kelvin-Helmholtz instabilities at the interfaces between the bulk flows and the
primary cluster gas. Such eddies redistribute the energy of the merger through the
cluster volume and decay with time into more and more random and turbulent veloc-
ity fields, eventually developing a turbulent cascade with a spectrum of fluctuations
expected to be close to a Kolmogorov spectrum (Dolag et al., 2005b).

The turbulent nature of the flow could be directly confirmed with the help of high-
resolution X-ray spectroscopy of emission line broadening of lines of heavy ions. It
has been suggested (Sunyaev et al., 2003), that the X-ray microcalorimeters (XRS)
on board of the X-ray satellite ASTRO-E24 should be able to detect this broadening.
But due to a critical flaw discovered in the XRS instrument in August 2005, this test
has to be postponed until future instruments like XEUS are available. Nevertheless
other observations have revealed some signature for turbulence in the ICM. For
example Schuecker et al. (2004) analyzed the pressure fluctuation spectrum of the
Coma cluster claiming that it scales according to Kolmogorov-Obukhov theory (see
figure 8.2).

Vogt and Enßlin (2005) makes use of the Faraday rotation effect to investigate the

4Also called Suzaku.
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Figure 8.2: Observed projected shot-noise-subtracted power spectral densities (dots with
1σ error bars) compared with model predictions (dashed lines). From Schuecker et al.
(2004).

Figure 8.3: Power spectra for two different inclination angles θ = 30◦ and θ = 45◦. For
comparison a Kolmogorov-like power spectrum is plotted as a straight dashed line. One
can see that the calculated power spectra follow such a power spectrum over at least one
order of magnitude. From Vogt and Enßlin (2005).
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magnetic field structure of the ICM in the Hydra cluster. They extract magnetic
field strength power spectra from their data and find a Kolmogorov scaling behavior
below a length scale of 1 kpc (see figure 8.3) .

Furthermore the broadening of the iron abundance profile in the core of the
Perseus cluster (Rebusco et al., 2005) and other galaxy clusters (Rebusco et al.,
2006) and the lack of resonant scattering in the 6.7 keV He-like iron Kα line in the
Perseus cluster (Churazov et al., 2004) can also be interpreted as evidence for the
turbulent state of the ICM.
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9 Simulations of galaxy clusters

9.1 Details of the simulations

We performed two simulations of cluster formation with Enzo following Iapichino
and Niemeyer (2008). One simulation was done with the Schmidt SGS model includ-
ing the Sarkar corrections and some additional modifications described below. For
comparsion we conducted a second simulation without SGS model. In the following
section we describe the common features of these two simulations, in section 9.1.2
we describe some additional numerical issues, which had to be taken into account
when doing a cluster simulation with SGS model in comoving coordinates.

9.1.1 Common features

The simulations were done using a flat (critical density Ω = 1) cold dark matter
(CDM) background cosmology with a dark energy density ΩΛ = 0.7, a total (includ-
ing baryonic and dark matter) matter density Ωm = 0.3, a baryonic matter density
Ωb = 0.04, the Hubble parameter set to h = 0.7, a galaxy fluctuation amplitude
σ8 = 0.9, and a scalar spectral index n = 1. Both simulations were started with
the same initial conditions at redshift zini = 60, using the Eisenstein and Hu (1999)
transfer function, and evolved to z = 0. The simulations were adiabatic with a heat
capacity ratio γ = 5/3 assuming a fully ionized gas with a mean molecular weight
mµ = 0.6 u. Cooling physics, magnetic fields, feedback, and transport processes are
neglected.

The simulation box had a comoving size of 128 Mpc h−1. It was resolved with a
root grid (level l = 0) of 1283 cells and 1283 N-body particles. A static child grid
(l = 1) was nested inside the root grid with a size of 64 Mpc/h, 1283 cells and 1283

N-body particles. The mass of each particle in this grid was 9× 109 M⊙ h−1. Inside
this grid, in a volume of 38.4 Mpc h−1, adaptive grid refinement from level l = 2 to
l = 6 was enabled using a overdensity refinement criteria as described in Iapichino
and Niemeyer (2008) with an overdensity factor f = 4.0. The refinement factor
between two levels was set to r = 2, allowing for a effective resolution of 81963 cells
or 15.6 kpc h−1.

The static and dynamically refined grids were nested around the place of formation
of a galaxy cluster, identified by Iapichino and Niemeyer (2008) using the HOP
algorithm (Eisenstein and Hut, 1998). The cluster had a virial mass of Mvir =
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9 Simulations of galaxy clusters

5.49× 1014 M⊙ h−1 and a virial radius of Rvir = 1.33 Mpc h−1 for both simulations.

9.1.2 Numerical issues

Running robust simulations including a SGS model like the Schmidt or Sarkar model
in a comoving cosmological background requires some additional techniques not yet
discussed. Apart from the additional terms due to comoving coordinates in the
filtered equations, these techniques help to handle the extreme high turbulent Mach
numbers, which appear on the coarsest grids in these simulations and are briefly
described in the following sections.

Filtered equations of fluid dynamics in comoving coordinate s

Filtering the equations of fluid dynamics in comoving coordinates (H.25)-(H.27) can
be done in the same way as filtering the equations in cartesian coordinates as shown
in chapter 4. As a result we get

∂

∂t
〈ρ̃〉 +

1

a

∂

∂xj
ûj〈ρ̃〉 =0, (9.1)
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〈ρ̃〉ûiûi + 〈p̃〉)

+ 〈ρ̃〉(λ + ǫ) − 1

a
ûi
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(9.4)

In the source code of Enzo the derivatives are always taken with respect to ri = axi

and the additional terms due to comoving coordinates in momentum and resolved
energy equation are already implemented. So the only term we had to implement
additionally compared to the non-comoving case was the term 2 ȧ

a
〈ρ̃〉et in the equa-

tion of turbulent energy. Furthermore for the subgrid model terms it is necessary
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to take into account that the Jacobian of the velocity in comoving coordinates is1

Jij =
∂

∂ri
vj =

1

a

∂

∂xi
uj +

ȧ

a
δij . (9.5)

The tracefree rate of strain tensor in comoving coordinates for example can then be
easily expressed in terms of the Jacobian of the velocity field

S∗
ij =

1

2
(Jij + Jji) −

1

3
δijJkk. (9.6)

Basically all terms in the subgrid model using derivatives of the resolved velocity
are therefore written in terms of the Jacobian of the velocity.

Turbulent energy cutoff and lower limit for temperature

High turbulent Mach numbers occur in cosmological simulations especially in the
very cold, low-density voids of the computational domain. To make sure that in our
adiabatic simulation the temperature and therefore the sound speed doesn’t drop to
unphysical low values we introduced a lower limit of the temperature Tmin = 10 K.
This value is reasonable, since no gas in the universe can have a temperature lower
than the cosmic microwave background temperature of 2.7 K for a longer time. Since
there are presumably more heating mechanisms like UV-heating, choosing 10 K as
a lower limit seems to be a rational choice.

On the other side, low density gas can be accelerated very quickly in a gravitating
field, leading to high velocity gradients, which lead to production of high amounts
of turbulent energy according to the turbulent viscosity hypothesis. However the
validity of the turbulent viscosity hypothesis has never been tested or verified in
astrophysical flows. We are therefore free to assume that for flows with high velocity
gradients, the production of turbulent energy is restricted and use as an upper limit
of the turbulent Mach number Mt,max =

√
2. The exact value of this limit is based

on the idea that in an isothermal gas (speed of sound cs,iso = pth

ρ
), the total pressure

can be expressed as

ptot = ρc2
s,iso +

1

3
ρq2 = γeffρc2

s,iso. (9.7)

If we assume that γeff is not allowed to be higher than the adiabatic value γ = 5/3,
we have to limit the isothermal turbulent Mach number to q

cs,iso
≤

√
2.

Treatment of shocks

Shocks form unavoidably during cosmological structure formation due to infalling
plasma which accretes onto filaments, sheets, and halos, as well as due to supersonic

1See equation (H.7) in the Appendix.
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flows associated with merging substructures (Pfrommer et al., 2006). But shocks
are the most localized and anisotropic features of a flow and therefore cannot be
treated by an SGS model, which is based on the assumption of isotropy of the flow
on the subgrid scales.2 So in principle, shocks should be treated by the mechanisms
of AMR alone and the SGS model should not influence the shocks. That’s why we
implemented a simple shock detector

−∂vi

∂ri

l∆ > cs, (9.8)

which marks all cells, where the velocity increments are greater than the speed
of sound, as shocks. At these cells, we disable the SGS model, which means no
production or dissipation of turbulence takes place. The turbulent energy is only
advected in these cells.

9.2 Results

9.2.1 Energy conservation

Energy conservation is crucial for any adiabatic fluid dynamic simulation. However
it is difficult to test for this directly in our setup, since we cannot extract easily the
energy injected by gravity into the system. By plotting the time development of the
mass weighted mean total energy in the system, which is for the simulation without
SGS model the sum of mass weighted mean internal energy and mass weighted mean
kinetic energy and for the simulation with Sarkar model the sum of mass weighted
means of internal, kinetic and turbulent energy, we can still gain some insights into
the differences between the two simulations.

This is what has been done in figure 9.1. From it we can see that the time devel-
opment of the total energy is nearly identical, if we take the turbulent energy into
account when computing the total energy of the simulation with Sarkar model. On
the other side, the difference between the sum of kinetic and internal energy between
the simulations seems to be again mostly accounted for by the turbulent energy, a
result similar to what was already found in the simulations of driven turbulence.3

We can also infer from figure 9.1, that the SGS model mainly changes the ratio
of mean internal to mean kinetic energy and does not have much influence on the
mean potential energy of the system. However, this is to be expected, since most of
the gravitational potential is due to dark matter anyway, and we do not model the
influence of gravity on subgrid scales and vice versa in our SGS model. This leads
us to conclude that the general effects of our SGS model in a selfgravitating fluid
are very similar to the effects found in the driven turbulence simulations without
self gravity.

2Also see chapter 6.
3See section 7.3.
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Figure 9.1: Time development of total energy in cluster simulation with and without
SGS model.

9.2.2 Mass fractions of different gas phases

The IGM on large scales of the universe can be classified roughly into four phases
according to gas temperature: the hot gas with T > 107 K inside and around clusters;
the warm-hot intergalactic medium (WHIM) with 105 K < T < 107 K found mostly
in filaments; the low temperature WHIM with 104 K < T < 105 K distributed mostly
as sheetlike structures; and the diffuse cold gas with T < 104 K residing mostly in
voids (Cen and Ostriker, 1999; Kang et al., 2005). To investigate the influence of the
SGS model on these different gas phases, we plotted the time development of the
mass fractions according to each of the phase for the simulation with and without
SGS model (figure 9.2(a) and 9.2(b)). We also show the mass fractions of each gas
phase at redshift z = 0 in table 9.1. The results seem to indicate that the SGS

Run mcluster

mall
[%] mfilaments

mall
[%] msheets

mall
[%] mvoids

mall
[%]

no SGS 5.50 40.3 4.22 49.1
SGS 5.47 37.5 3.28 53.0

Table 9.1: Mass fractions of different gas phases at redshift z = 0.

model leads to higher mass fraction of the voids and a lower mass fraction of the
filaments compared to the simulation without SGS model. However our simulation
domain is not very well resolved outside the central region, since we do not allow
for adaptive refinement there. If we restrict our analysis to the adaptively refined
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Figure 9.2: Time development of mass fractions of different gas phases in the whole
simulation box had with a comoving size of 128Mpc h−1.
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Figure 9.3: Time development of mass fractions of different gas phases in the centered
subset of the simulation box with a comoving size of 38.4Mpc h−1. One can see that the
total mass in this open region is not conserved.

region in the box with a size of 38.4 Mpc h−1, the differences between the simulation
with SGS model and without SGS model vanish (figure 9.3(a) and 9.3(b)). This
can also be seen from the mass fractions at redshift z = 0 normalized to the total
mass in the central region in table 9.2. From these results we conclude that the SGS
model has no or only very little influence on the mass fractions of the different gas
phases in the simulations. For the important mass fraction of the WHIM we get
≈ 38%, which is higher than found by Davé et al. (2001, simulation B1) (≈ 32%)
with a lower resolution AMR simulation, but lower than found by Gottlöber et al.
(2006) (≈ 40%), who used smoothed particle hydrodynamic (SPH) with 2 × 10243

particles to simulate a box of size 500 Mpc h−1; so we are also consistent with the
literature in this respect.
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Run mcluster

mall
[%] mfilaments

mall
[%] msheets

mall
[%] mvoids

mall
[%]

no SGS 19.2 40.8 2.61 37.5
SGS 19.0 40.1 2.64 38.2

Table 9.2: Mass fractions of different gas phases at redshift z = 0 for the adaptively
refined region with a size of 38.4Mpc h−1.

9.2.3 Development of turbulence in different gas phases

The eddy turnover time tl associated with a scale l

t(l) =
l

q(l)
(9.9)

is the typical time for a structure of size ∼ l to undergo a significant distortion
due to turbulent motions characterized by the typical turbulent velocity q(l) at that
scale (Frisch, 1995). So if we divide the age of the universe t(z) by the eddy turnover
time, we get the number of eddy turnovers

n(l, z) =
t(z)

t(l)
(9.10)

at a given redshift z at a scale l. If n > 1, there has been enough time for eddies of
size l to cascade down to smaller scales and we can call the fluid turbulent at scale
l.

In static grid simulations one often chooses to use the grid resolution l∆ as charac-
teristic length scale and to compute a characteristic velocity and eddy turnover time
for this scale. However in an AMR code it is not trivial to compute the turbulent
velocity ql associated with a characteristic length scale l = l∆, since l∆ is varying
in time and space. To circumvent this difficulty, we assume that below the grid
resolution at a certain position turbulent velocity scales according to Kolmogorov

q(l) ∼ l1/3. (9.11)

We thereby assume that locally, the cascade starts at a different length scale char-
acterized by the different resolution of our grid at that position. We also assume
that our refinement criterion tracks and finds the regions inside the fluid, which
do not scale according to Kolmogorov, and refines them until a Kolmogorov scal-
ing is reached. Of course one might doubt that our refinement criterion based on
overdensity will accomplish that. But since in cosmological simulations gravity is
basically the energy-injecting force in the fluid and gravity is strongest in regions of
high density, one can argue that in regions of high density, the Kolmogorov cascade
starts at smaller length scales and the energy injecting scales in these regions have
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Figure 9.4: Mean number of eddy turnovers for gas phases of different temperature over
time.

to be refined with a finer grid. Of course a criterion solely based on density might
be necessary, but is not at all sufficient to track regions of Non-Kolmogorov scaling.
More research needs to be done in this direction, but it is outside of the scope of
this work.

For the analysis in our work, we adopt the hypothesis of local Kolmogorov scaling
below the grid resolution. As a characteristic scale of our analysis, we choose the
length scale of our highest resolved regions, which is lmin = 15.6 kpc h−1. The
turbulent velocity in the highest resolved regions can be directly computed from the
values of the turbulent energy q(l) =

√
2et on the grid; the turbulent velocity in less

refined regions is scaled down according to our local Kolmogorov hypothesis as

q(lmin) = q(l∆)

(
lmin

l∆

)1/3

. (9.12)

Using this scaled turbulent velocity to compute the eddy turnover time, we plotted
the mean mass weighted number of eddy turnovers at lmin with respect to redshift
(see figure 9.2.3). We can clearly see from this graph, that starting from a redshift
z = 2 all gas phases are turbulent at the scale lmin = 15.6 kpc h−1. We also see
that the amount of turbulence in terms of eddy turnover times is higher in regions
of higher temperature and therefore highest in the cluster gas.

Another important measure for turbulence is the turbulent Mach number intro-
duced in section 5.3.2. Like the eddy turnover time, the turbulent Mach number is
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Figure 9.5: Mean turbulent Mach number at a scale lmin = 15.6 kpc h−1 for gas phases
of different temperature over time.

scale dependent

Mt(l) =
q(l)

cs

. (9.13)

In figure 9.5 we plot the mean mass weighted turbulent Mach number characteristic
for the scale of our analysis lmin = 15.6 kpc h−1 making again use of our local
Kolmogorov hypothesis. It is evident that the turbulence at lmin is subsonic in all
gas phases during the whole time of the simulation. At redshift z = 0 the average
turbulent Mach number is ≈ 0.2. If the amount of turbulence would be equal in each
gas phase one would expect the turbulent Mach number to scale ∼ 1/cs ∼ 1/

√
T .

However this is not the case. The cluster gas is much more turbulent than estimated
by this simple scaling relation; in fact there is more turbulent energy compared to
internal energy in the hottest gas phase than in the WHIM, although there is a
substantial drop of the turbulent Mach number between redshift z = 1 − 2. The
drop in turbulent Mach number is presumably due to heating of the cluster gas
during a phase of major mergers at that time. In the next section, we will present
some further evidence for this interpretation.

9.2.4 Scaling of turbulent energy

In chapter 7 we studied the scaling of the turbulent energy with the resolution and
were able to show that the scaling of turbulent energy in our simulations of driven
turbulence actually follows the Kolmogorov scaling law. In this section we repeat
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Figure 9.6: Time development of mean turbulent energy over time for each level of
refinement.

this analysis for our cluster simulation. Figure 9.6 shows the time development of
the mass weighted mean turbulent energy for every level of our AMR simulation. We
see from the plot, that the turbulent energy on the higher levels (meaning at smaller
scales) is higher at times t < 6 Gyr. Later this picture changes, but not completely.
For example the turbulent energy on level 4 stays above the turbulent energy of
level 3 for the whole simulation time. Also striking are the high fluctuations in the
time 2 Gyr < t < 6 Gyr, which correspond to a redshift z = 3 − 1 of the turbulent
energy at the smaller scales. This is also the time when the turbulent Mach number
inside the cluster drops significantly (see last section), so we can interpret these high
fluctuations as further evidence for violent major mergers, that happen at that time,
producing turbulent energy, which is then dissipated into internal energy heating up
the cluster gas. However at the time t > 13 Gyr, the simulation seems to reach some
kind of stable state, similar to what is found in driven turbulence simulations. We
therefore can compute mean turbulent energies by averaging the turbulent energy
from t = 13 Gyr to the end of the simulation and plot them against the grid length
scale of the associated level. The result (in terms of the turbulent velocity) can
be seen in figure 9.7. It is obvious that this is no Kolmogorov scaling. However,
we do not expect to see a Kolmogorov scaling again, since, as explained in the last
section, we assume the resolved regions to be non-Kolmogorov anyway. Still the
result is interesting, showing a peak in the turbulence around 100 kpc h−1 and a
drop off towards higher and smaller scales. Also shown in the figure are power-law
fits, which gave a scaling of q ∼ l−0.78 for scales bigger than 100 kpc h−1 and a scaling
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Figure 9.7: Scaling of mean turbulent energy. The dotted line is a fit showing the scaling
behavior of turbulent energy below 100 kpc h−1, the dashed line is a fit showing the scaling
behavior above 100 kpc h−1.

of q ∼ l0.24 ∼ l1/4 for smaller scales. If one wants to interpret this result in terms of
a turbulent cascade, one could say that up to a length scale of 100 kpc h−1, energy
is injected into the system, cascading down towards smaller scales with a scaling
behavior q ∼ l1/4 flatter than expected for a Kolmogorov scaling with q ∼ l1/3. But,
assuming our local Kolmogorov hypothesis holds, it would follow, that below the
grid resolution of 15.7 kpc h−1 the cascade should be Kolmogorov again. Of course
a interpretation like this is highly speculative; much more data on turbulence in
cluster simulations is necessary to show that the observed power-law scalings are
real indeed.

9.2.5 Radial profiles of the cluster

As mentioned in section 9.1.1, the simulation is centered around a galaxy cluster with
a virial mass of Mvir = 5.49×1014 M⊙ h−1 and a virial radius of Rvir = 1.33 Mpc h−1

for both simulations, which center is identified using the HOP algorithm. In the
following we present plots of radial profiles of several quantities around the center
of this cluster (figure 9.8(a)-9.9(c)) obtained by using a modified version4 of the
enzo anyl tool, which is part of the public Enzo release.

The plots show the mass weighted average values at radius r of temperature T (r)

4We modified enzo anyl to allow plotting of SGS model quantities like the turbulent velocity.

81



9 Simulations of galaxy clusters

0.1 1.0
r (Rvir)

1011

1012

1013

1014

B
a

ry
o

n
 d

e
n

si
ty

 [
M

so
la

r/
M

p
c

3
]

No SGS

Sarkar SGS

(a) Gas density.

0.1 1.0
r (Rvir)

2•107

4•107

6•107

8•107

1•108

M
a

ss
-w

e
ig

h
te

d
 g

a
s 

T 
[K

]

No SGS

Sarkar SGS

(b) Temperature.

0.1 1.0
r (Rvir)

105

106

E
n

tr
o

p
y
 (

a
rb

. 
u

n
it
s)

No SGS

Sarkar SGS

(c) Entropy.

0.1 1.0
r (Rvir)

0.1

1.0

X
-r

a
y
 lu

m
in

o
si

ty
 [

1
0

4
4
 e

rg
/s

]

No SGS

Sarkar SGS

(d) X-ray luminosity.
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Figure 9.8: Radial profiles of several thermodynamic quantities around the center of the
galaxy cluster. The results for the simulation with and without Sarkar SGS model are
plotted in red and black respectively.
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(b) Radial averaged velocity dispersion.
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Figure 9.9: Radial profiles of several velocity related quantities around the center of the
galaxy cluster. The results for the simulation with and without Sarkar SGS model are
plotted in red and black respectively.
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in Kelvin, the density5 ρ(r) in M⊙/Mpc3, the scaled turbulent velocity according to
equation (9.12) vt(r) in km s−1, the radial component of the resolved velocity vr(r)
in km s−1, the entropy K in code units, which is defined as6

K =
T

ργ−1
(9.14)

with γ = 5/3, the x-ray luminosity LX ∼ ρ2T 1/2 and the radially averaged velocity
dispersion, which is defined as the standard deviation of the velocity averaged over
a spherical shell as

σ(r) =

∑

i mi(vi − 〈v(r)〉)2
∑

i mi
(9.15)

where 〈v(r)〉 =
P

i mi
P

i mi
is the mass weighted mean value of velocity in the spherical

shell at radius r ± δr.
At first it is apparent from these plots that, except for the radial component

of the resolved velocity, the run with SGS model only shows significant deviations
from the run without SGS model in the cluster core at r < 0.1 Rvir. However since
enzo anyl proved not to be robust for r < 0.07 Rvir (Iapichino and Niemeyer,
2008), one cannot use the values obtained by these plots for a consistent analysis
of the cluster core; this will be done in the next chapter using a different tool.
Nevertheless the general trend from these plots is, that the SGS model lowers the
entropy in the core, which leads to a higher density and a lower temperature in the
center of the cluster. Since the X-ray luminosity is proportional to ρ2, it is higher in
the cluster core of the simulation with SGS model. Looking more precisely at the
radial profile of entropy (fig. 9.8(c)), one can also see that in the simulation without
the SGS model, the entropy inside the core of the cluster r > 0.1 Rvir is basically
constant, which suggests that the gas is adiabatic there. With the SGS model this
is not the case; the entropy is falling steadily towards the center of the core.

The last observation can be discussed more quantitatively in terms of polytropic
processes. A polytropic process is defined as a process, where

T

ρn−1
= const., (9.16)

where n is called the polytropic index. By reversing that logic we can compute an
effective polytropic neff(r) index by demanding that

d

dr

(
T

ρneff(r)−1

)

= 0, (9.17)

5The density is not mass weighted .
6This definition of entropy is often used in literature on galaxy clusters (Voit, 2005; Iapichino and

Niemeyer, 2008).
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which leads to

neff(r) =
ρ

T

dT
dr
dρ
dr

+ 1 =
d ln ρ

d lnT
+ 1. (9.18)

In figure 9.8(e) we show a plot of the radial dependence of the effective polytropic
index for our two simulations with and without SGS model. We see that the poly-
tropic index in the simulation without SGS model is neff ≈ 1.7, which is near to the
adiabatic case neff ≈ 5/3, as expected. The simulation with SGS model is clearly
not adiabatic, with neff ≈ 1.3 ≈ 4/3 in the center. We also note that at a ra-
dius r ≈ 0.2 Rvir, the gas behaves basically isothermal, which can also be seen in
the temperature profile (figure 9.8(b)). At an even bigger distance from the core
r > 0.2 Rvir, the cluster gas in both simulations behaves similarly, with a polytropic
index rising from n ≈ 1.3 to n ≈ 1.4. If we compute an average polytropic index
over the region 0.05 Rvir < r < 1.0 Rvir we get neff = 1.27 and neff = 1.18 for the
simulation without and with SGS respectively. It is interesting to compare these
values with results from observations. For example Markevitch et al. (1998) found
that they could fit their measured temperature profiles with a polytropic index of
n = 1.2 − 1.3, which would fit reasonably well to our average values. However,
Pratt and Arnaud (2002) claim that n = 1.07 ± 0.1 is the best fit to their observed
temperature profile, and therefore state, that the whole cluster can be seen as nearly
isothermal. But newer measurements by Vikhlinin et al. (2006) now reveal, that the
temperature profile cannot be fitted by a single polytropic index in agreement with
our analysis. Vikhlinin et al. (2006) also find a broad plateau of temperature at
r = 0.2 Rvir in most of their clusters, however all their temperature profiles show a
decline of temperature towards the center of the cluster at r < 0.2 Rvir, a so-called
”cool core”. This feature could neither be reproduced by the simulation without
SGS nor with SGS. It seems like including turbulence alone in a cluster simulation
cannot be a solution to the ”cool core” problem.

The radial resolved velocity is not changed significantely by the SGS model, but
comparing this plot with the radial profile of the turbulent velocity the following
picture emerges: From a radius r > Rvir material is falling onto the cluster, being
decelerated strongly at the virial radius r = Rvir (see drop of radial velocity at this
point in figure 9.9(a)). This deceleration leads to a steady rise in turbulent energy
at r < Rvir up to a peak at r = 0.5 Rvir followed by a drop of to a quite stable
value of ∼ 110 kms−1 in the region r < 0.3 Rvir. One might want to compare these
value to the velocity dispersion, however these values are not comparable directly.
The turbulent velocity depicted in the plot is computed for the characteristic scale
15.7 kpc h−1, which is constant with the radius. The velocity dispersion is the
deviation of velocity in a spherical shell at radius r, so the characteristic scale of σ
is basically the circumference of this shell l = 2πr, which is of course not independent
of the radius. Therefore we cannot interpret the value of σ in the same local sense
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as we can do for the other quantities. We therefore doubt that it is useful to draw
conclusions about the local nature of turbulence from a plot like fig. 9.9(b), as is
often done in the literature (e.g. (Norman and Bryan, 1999)).

9.2.6 Spatial distribution of turbulent energy

To investigate the time development of the spatial distribution of turbulent energy,
we generated slices of density and turbulent energy with the graphical analysis tool
VisIt. The slices are taken around the place of formation of our main galaxy
cluster and show a region of size 6.4 × 6.4 Mpc h−1. Overlayed onto the slices are
density contour lines and a vector field showing the strength and direction of the
velocity. In the density slice at redshift z = 0.15 (figure 9.10(a)), we can see from
the velocity vectors that material is falling onto the cluster along filament from the
lower left and from the upper right corner. But from the upper right corner we do
not have a smooth inflow of matter, instead two small clumps are approaching. Over
the course of the simulation these two clumps merge with the main cluster (figure
9.10(c)-9.10(c)) and are assimilated completely at redshift z = 0. Only the velocity
field still shows some disturbance due to the infalling clumps.

In the slice of the turbulent energy (figure 9.10(b)) at z = 0.15, we see a hot
spot of turbulent energy in the center of our cluster, which is due to a former major
merger. The turbulent energy produced due to this merger is declining (figure
9.10(d)-9.11(d)) and at redshift z = 0 it is presumably dissipated into internal
energy completely, so there is only little turbulent energy left at the center of the
cluster.

However the two approaching clumps will drive turbulence again in the cluster.
Thereby the left clump can be identified in the turbulent energy slice at z = 0.15
(figure 9.10(b)) as a ring-like structure, showing that turbulence is not produced in
the center of the infalling clump, but is presumably produced at the front (behind
a bow shock) and in the wake of the infalling material. But the right clump only
shows some turbulence production in its wake, which might be due to its smaller
size and smaller velocity. However, on their way towards the main cluster, both
clumps develop a hot spot of turbulent energy (figure 9.10(d)-9.11(b)). The hot
spot of turbulent energy can even be identified after the two clumps have merged
with the main cluster (figure 9.11(d)) and are not visible in the density slice (figure
9.11(c)) anymore. In this sense, the distribution of turbulent energy traces the local
merging history of a galaxy cluster until it is dissipated into heat completely. Also
the merging of the two small clumps with the main cluster drives turbulence only in
its outer rim, showing that smaller mergers might only be able to drive turbulence
in the outer regions (r > Rvir) of a cluster. But turbulence is sustained for a
longer time in a galaxy cluster than one might expect from just looking at density
development.
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(a) z = 0.15. (b) z = 0.15.

(c) z = 0.1. (d) z = 0.1.

Figure 9.10: Slices of density (left) and turbulent energy at a length scale of 15.6Mpc h−1

(right) at varying redshifts z. The color coding shows both quantities in code units using
a logarithmic scaling. The overlayed contours show density and the overlayed vector field
depicts the strength and direction of the baryonic velocity field in code units using a linear
scale. The slices show a region of 6.4 × 6.4Mpc h−1.
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(a) z = 0.05. (b) z = 0.05.

(c) z = 0. (d) z = 0.

Figure 9.11: Slices of density (left) and turbulent energy at a length scale of 15.6Mpc h−1

(right) at varying redshifts z. The color coding shows both quantities in code units using
a logarithmic scaling. The overlayed contours show density and the overlayed vector field
depicts the strength and direction of the baryonic velocity field in code units using a linear
scale. The slices show a region of 6.4 × 6.4Mpc h−1.

88



9.2 Results

(a) General quantities.

Run mbar ρ T K σ
[1012 M⊙] [1014 M⊙ Mpc−3] [107 K] [105 × code units] [km s−1]

no SGS 2.73 0.996 7.88 4.40 200
SGS 3.37 1.29 6.99 3.38 257

(b) Resolved and thermal pressure.

Run pth/ρ pres/ρ
pres

pth+pres

[1016 cm2s−2] [1014 cm2s−2] [%]

no SGS 1.05 1.34 1.25
SGS 0.936 2.20 2.30

(c) SGS quantities.

Run pturb/ρ ǫ Σ
[1014 cm2s−2] [10−5 cm2s−3] [10−5 cm2s−3]

no SGS 0.0 0.0 0.0
SGS 0.380 3.06 2.92

Table 9.3: Mass weighted values of some quantities, calculated within a sphere with
R = 0.1 Rvir centred at the cluster center at z=0.

9.2.7 Cluster core analysis

As mentioned we couldn’t use the enzo anyl tool to compute average values of
thermodynamic quantities of the cluster core. Instead we analyzed the cluster core
using the interactive parallel visualization and graphical analysis tool VisIt7. Using
this tool we computed several mass-weighted averaged quantities within a sphere
of radius R = 0.1 Rvir, centered at the cluster center. The results of this analysis
are summarized in tables 9.3(a)-9.3(c). The table lists as general quantities of the
simulations the baryonic mass mbar inside the chosen sphere, the density ρ, the tem-
perature T , the entropy K = T

ργ−1 with γ = 5/3 and the baryonic velocity dispersion

σ =
P

i mi(vi−〈v〉)2

mbar
at the length scale l = 0.1 Rvir = 133 kpc h−1. According to Voit

(2005) entropy is the most important quantity to look at, because it determines the
structure of the intracluster medium and it records the thermodynamic history of
the cluster’s gas; the temperature and density are just manifestations of the entropy.
We find that the ratio of the entropies in the cluster core of the two simulations (in
the following 1 is used to subscript quantities of the run without SGS model, 2

7Freely available from https://wci.llnl.gov/codes/visit.
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subscripts quantities of the simulation with SGS model) is

K1

K2
= 1.30 =

(
ρ1

ρ2

)−1

=

(
σ1

σ2

)−1

. (9.19)

Since K1

K2
=
(

T1

T2

)(
ρ1

ρ2

)−2/3

by definition, this yields

(
T1

T2

)

=

(
ρ1

ρ2

)−1/3

= 1.09, (9.20)

which is roughly fulfilled, since from the data directly we get T1/T2 = 1.13. So tem-
perature and density are really just manifestations of entropy, but also the velocity
dispersion of the baryonic gas in the cluster core seems to be directly connected to
the entropy. Because of this, the velocity dispersion at a length scale of l = 0.1 Rvir

in the simulation with the SGS model is significantely higher than in the simulation
without SGS model.

In table 9.2(b) we list the thermodynamic pressure pth and the resolved pressure,
which is defined as

pres =
1

3
ρσ2, (9.21)

and the ratio between resolved and thermodynamic pressure. We see that, in the
case of the SGS model simulation, the ratio of resolved to thermal pressure is nearly
twice as high compared to the simulation without SGS model, since density and
velocity dispersion are higher in the core when using the SGS model.

Listed in table 9.2(c) is also the turbulent pressure, defined as

pres =
1

3
ρq2, (9.22)

where q2 is related to the velocity fluctuations at grid length scale l = 15.7 kpc h−1.
So directly comparing or adding the resolved pressure to the turbulent pressure is
not useful, since both are related to the deviations of the velocity on different length
scales. However, the ratio of turbulent production Σ to turbulent dissipation ǫ in
the core of the cluster is interesting

Σ

ǫ
= 0.95, (9.23)

showing that we are actually in a regime of near equilibrium of production and
dissipation of turbulent energy, a sign that a turbulent cascade has established.
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Figure 9.12: Plot of turbulent pressure over density versus turbulent dissipation in the
center of the cluster core for different parameters of the SGS model.

9.2.8 Influence of SGS parameters on cluster core

In an attempt to better understand the influence of the SGS model on the thermo-
dynamic properties of the cluster core, we conducted a series of simulations with
different parameters for the SGS model. Because of our restricted CPU budget we
could not afford to do these simulations with the full 1283 root grid resolution, rather
we were only able to do these studies using a root grid resolution of 323 grid cells and
323 N-body particles. In analogy to the high resolution simulation, we also nested
a static child grid inside the root grid, with 323 cells and 323 N-body particles. The
mass of each particle in this grid was 5.8 × 1011 M⊙ h−1, so the resolution of the
gravitational potential due to dark matter was much lower in these runs. We al-
lowed adaptive grid refinement from level l = 2 to l = 8 in a volume of 38.4 Mpc h−1

inside this grid, so the effective resolution of the baryonic component and all the
other parameters were equal to the high resolution runs. The galaxy clusters that
formed in these simulations had a virial mass of roughly Mvir = 6.9 × 1014 M⊙ h−1

and a virial radius of Rvir = 1.27 Mpc h−1.
As parameters we chose all combination of Cν = (0.0, 0.05), Cλ = (0.0,−0.2), CD =

(0.0, 0.4) and Cp = (0.0, 1.0)8, which gave use 16 combinations altogether. In com-
plete analogy to the high resolution runs we analyzed the average values of ther-
modynamic quantities of the cluster core. Albeit one interesting preliminary result
emerged. By plotting the average values of the turbulent pressure over the average
value of turbulent dissipation in the cluster core (figures 9.12(a),9.12(b)), we found
that they seem to be related as

〈pt(lmin)

ρ
〉 = C(〈ǫ〉Rvir)

2/3, (9.24)

8Setting Cp = 0.0 means switching off the influence of the turbulent pressure in the momentum
equation.
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9 Simulations of galaxy clusters

where 〈〉 means the mass weighted average over the cluster core r < 0.1 Rvir, lmin =
15.6 kpc h−1 and Rvir = 1.27 Mpc h−1. The constant C can be found from a linear
fit to be C ≈ 1 (see fit in figures 9.12(a),9.12(b)). If we use again our scaling relation

for the turbulent velocity (9.12), we get with 〈pt(lmin)
ρ

〉 = 〈q2(lmin)〉 and C = 1

〈q2(l)〉 =

(
Rvir

lmin

)2/3

〈ǫ〉2/3l2/3 (9.25)

If we assume, that the value of Rvir

lmin

2/3
= 18.8 is universal, we get for cluster core

turbulence the relation

〈q2(l)〉 = 18.8〈ǫ〉2/3l2/3. (9.26)

In this sense, we can interpret Ck,core = 18.8 as a Kolmogorov constant for the
cluster core turbulence, which is more than 10 times higher than what is found for
the Kolmogorov constant in simulations of incompressible turbulence.
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10 Summary and Conclusions

Turbulence is often invoked in astrophysics to explain phenomena, which are not
understood. However, studies that quantify the real impact of turbulence in astro-
physical environments in general, or especially for the formation of galaxy clusters,
are not available. One reason for this is obviously the lack of an accepted theory of
compressible and/or supersonic and/or selfgravitating turbulence. A second reason
is that the models used to describe numerically the influence of turbulence (so-called
large-eddy-simulations) are based on the notion of filtering the fluid dynamic equa-
tions at a specific length scale, which is incompatible with adaptive grid codes used
to study astrophysical phenomena.

The aim of this work was to address the second problem, thereby developing,
implementing, and applying a new numerical scheme for modeling turbulent flows
over a great range of length scales suitable to treat astrophysical flows in galaxy
cluster cores or star forming regions. Because the cosmological fluid code Enzo uses
blockstructured adaptive mesh refinement in combination with a low dissipative
PPM-Solver, it was a natural choice to implement our ideas into this code.

Still, great technical and numerical difficulties had to be circumvented. Never-
theless, we could finally show that the idea of our ǫ-based approach to correct the
velocity and energy fields at grid refinement/derefinement according to local Kol-
mogorov scaling can produce consistent results in simulations of driven turbulence.
We demonstrated that energy conservation and the scaling of turbulent energy in
our adaptive simulations is consistent with static grid simulations.

Motivated by these results, we then attempted to use our new numerical scheme in
simulations of galaxy cluster formation. Two high resolution runs of galaxy cluster
formation, one with and one without a turbulence model, have been conducted to
explore the influence of turbulence modeled with our scheme on the formation of
galaxy clusters. From the analysis of these simulations, we conclude the following:

• Our turbulence model seems to have no significant influence on the mass frac-
tions of different gas phases of the ICM.

• The time development of turbulent energy in the simulation suggests that
basically all gas phases of the intracluster medium had enough time to develop
a turbulent cascade. In fact, we could show that our model seems to be near
an equilibrium of production and dissipation of turbulence, especially in the
cluster core.
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• The turbulence at a length scale of galaxies (≈ 10 kpc h−1) is subsonic, and
the average turbulent Mach number at these scale is found to be 0.2 at redshift
z = 0.

• In the beginning of galaxy cluster formation great fluctuations of turbulent
energy can be seen, suggesting that violent merging can produce a substantial
amount of turbulence.

• Minor mergers can drive turbulence only at the outer rim (r > Rvir) of the
galaxy cluster. The spatial distribution of turbulent energy traces the local
merging history of a galaxy cluster until the turbulent motions are dissipated
into heat completely.

• From the scaling properties of turbulent energy it seems that energy is injected
at a scale of ≈ 100 kpc h−1 cascading down to smaller scales. From the radial
profile of our cluster we found a peak of turbulent energy at r = 0.5 Rvir,
probably produced by the infall and strong deceleration of material, when it
hits the virial boundary of the cluster.

• From the radial profiles of several thermodynamical quantities of the galaxy
cluster it is evident, that only inside the core (r < 0.1 Rvir) can one find a
significant influence of our turbulence model. The radial profile of the effec-
tive adiabatic index shows that the influence of the turbulent model can be
described as a kind of cooling, leading to lower entropy, lower temperature,
and therefore higher gas density and higher velocity dispersion in the core.
”Cooling” due to turbulence does not lead to an overcooling problem, but it
is not strong enough to explain the cool cores of galaxy clusters.

The last result begs the question of how turbulence would influence a simulation
of cluster formation including cooling. If there is no nontrivial interaction between
cooling and the turbulence model, our results indicate that turbulence would even
enhance the overcooling problem in the core. So suggesting turbulence as a heating
mechanism that prevents galaxy cluster cores from overcooling seems to be problem-
atic. Nevertheless more simulations of galaxy clusters, including different physics
have to be carried out to confirm our results.

Interestingly preliminary results from low resolution simulations suggest, that
turbulent velocity in the cluster core obeys a Kolmogorov scaling law with a Kol-
mogorov constant more than 10 times higher than in incompressible simulations.
Whether this finding is only a feature of our SGS model or a universal feature of
turbulence in the cluster core should be investigated in the future.

More attention should also be given to the fact that turbulent energy and thus
unresolved turbulent velocity fluctuations are scale dependent. It is often claimed
in the astrophysical literature that the amount of turbulence is a certain fraction
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of thermal energy or kinetic energy, without specifying the length scale for which
this statement was made. In the spirit of Kolmogorov theory of turbulence, such
statements are incomplete. This is especially apparent in our adaptive grid simu-
lations, where different grid length scales at the same time are used to describe a
flow. However, we have to note that the idea of scale dependent velocity fluctuations
poses difficult conceptual problems. For example, the mass inside a certain radius
r from the equation of hydrostatic equilibrium is, including turbulent pressure, also
scale dependent1

M(r, l) = − r

G

[

RsTg

(
∂ ln Tg

∂ ln r
+

∂ ln ρg

∂ ln r

)

+
q2(l)

3

(
∂ ln q2(l)

∂ ln r
+

∂ ln ρ

∂ ln r

)]

, (10.1)

a fact, which is often overlooked. Arguing that turbulent pressure might explain
deviation from the mass found by estimates based on the hydrostatic equilibrium,
is therefore not advisable.

Nevertheless, it might also come out, that the ideas of Kolmogorov and scale
dependent velocity fluctuations are not useful in an astrophysical context. Within
our work, we only showed how the influence of turbulence obeying basically Kol-
mogorov scaling can be numerically treated and what kind of results can be expected.
We could not prove that turbulence in an astrophysical environment really can be
described in this way. Theoretically, Kolmogorov derived his celebrated result as-
suming a forcing of turbulence restricted to the largest length scales, so that in the
limit of infinite Reynolds numbers an undisturbed cascade down to smaller scales
can develop. However, gravity is a force acting on all length scales, in contradic-
tion to the ideas of Kolmogorov and our turbulence model. A better understanding
of selfgravitating turbulence is therefore extremely important for the future of tur-
bulence research in general. That’s why in the future comparisons between direct
numerical simulations of selfgravitating gas and simulations with our subgrid model
should be conducted. If these simulations support our SGS model (which would also
show, that Kolmogorov scaling is more universal than theory suggests), we can be
confident in saying, that with our FEARLESS ansatz we developed a unique tool
for describing turbulence which aside from cluster physics will lead to many other
applications in astrophysics.

1For a derivation see appendix G.
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A Dimensional analysis

We want to write down the general equations of fluid dynamics in dimensionless
form. Therefore we introduce the following dimensionless quantities

r∗i =
ri

l0
⇒ ∂

∂ri
=

∂

∂r∗i

∂r∗i
∂ri

=
1

l0

∂

∂r∗i
,

v∗
i =

vi

v0
,

t∗ =
t

l0
⇒ ∂

∂t
=

∂

∂t∗
∂t∗

∂t
=

1

t0

∂

∂t∗
,

ρ∗ =
ρ

ρ0
.

Inserting these into the continuity equation (2.1) we get

ρ0

t0

∂

∂t∗
ρ∗ +

v0ρ0

l0

∂

∂r∗j
(v∗

j ρ
∗) = 0 | · l0

ρ0v0
,

l0
v0t0
︸︷︷︸

Sr

∂

∂t∗
ρ∗ +

∂

∂r∗j
(v∗

j ρ
∗) = 0.

This derivation shows that solutions of the continuity equation are similar, if the
Strouhal number Sr = l0

v0t0
is the same. Flows with a Strouhal number Sr = 0

are so called stationary flows. Nevertheless, the Strouhal number is most often
set to one, by assuming vo = l0

t0
. Using the additional dimensionless quantities

p∗ = p
p0

, σ∗
ij =

σij

σ0
, g∗ = g

g0
in the momentum equation (2.2) yields

ρ0v0

t0

∂

∂t∗
(ρ∗v∗

i ) +
ρ0v

2
0

l0

∂

∂r∗j
(v∗

j ρ
∗v∗

i ) = −p0

l0

∂

∂r∗i
p∗ +

σ0

l0

∂

∂r∗j
σ∗

ij + ρ0g0ρ
∗g∗

i | · l0
ρ0v

2
0

,

l0
v0t0
︸︷︷︸

Sr

∂

∂t∗
(ρ∗v∗

i ) +
∂

∂r∗j
(v∗

j ρ
∗v∗

i ) = − p0

ρ0v2
0

︸︷︷︸

Ma−2
iso

∂

∂r∗i
p∗ +

σ0

ρ0v2
0

︸︷︷︸

Re−1

∂

∂r∗j
σ∗

ij +
ρ0g0l0
ρ0v2

0
︸ ︷︷ ︸

Fr−1

ρ∗g∗
i .

The occurring dimensionless numbers are the isothermal Mach number Maiso, which
is related to the Euler number Eu or the Ruark number Ru like Ma2

iso = Eu = Ru−1,
the Froude number Fr, which is related to the Richardson number Ri like Fr = Ri−1
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A Dimensional analysis

and the Reynolds number Re. All these numbers measure the importance of the
term they are related to compared to the nonlinear advection term ∂

∂r∗j
(v∗

j ρ
∗v∗

i ), e.g.

for high Mach numbers, the pressure term ∂
∂r∗i

p∗ becomes less and less important

compared to the advection term; for high Reynolds numbers the stress term ∂
∂r∗j

σ∗
ij

becomes less and less important compared to the advection term, and the equation
shows more and more nonlinear behavior. For a newtonian fluid with

σij ≃ η
∂vi

∂rj
=

η0v0

l0
η∗∂v∗

i

∂r∗j
, (A.1)

where we introduced the dimensionless quantity η∗ = η
η0

, we get σ0 = η0v0

l0
and

therefore we can express the Reynolds number1 like

Re =
l0ρ0v

2
0

η0v0

=
ρ0l0v0

η0

. (A.2)

Playing the same game with the equation for the internal energy

∂

∂t
ρeint +

∂

∂rj
vjρeint = T

(
∂

∂t
ρs +

∂

∂rj
vjρs

)

− p
∂

∂rj
vj (A.3)

using e∗int = eint

u0
we get

l0
v0t0
︸︷︷︸

Sr

∂

∂t∗
ρ∗e∗int +

∂

∂r∗j
v∗

j ρ
∗e∗int = − p0

ρ0u0
︸︷︷︸

Ga1

p∗
∂

∂r∗j
v∗

j +
σ0

ρ0u0
︸︷︷︸

Ga2

σ∗
ij

∂

∂r∗j
v∗

i .

The new dimensionless quantities that occur in the energy equation seem to have
no name in the literature, but we will call them ”Gamma1” (Ga1) and ”Gamma2”
(Ga2) for now, since they are related to the adiabatic coefficient. This can be seen
by replacing p0p

∗ according to equation

p0p
∗ = (γ − 1)ρ0u0ρ

∗e∗int, (A.4)

which is valid for an an ideal, nonisothermal (γ 6= 1) gas. Doing this we get2

Sr · ∂

∂t∗
ρ∗e∗int +

∂

∂r∗j
v∗

j ρ
∗e∗int = −(γ − 1)ρ∗e∗int

∂

∂r∗j
v∗

j + Ga2 · σ∗
ij

∂

∂r∗j
v∗

i .

1We neglected the second viscosity ζ. In principle there exists a second Reynolds number Re2 =
ρ0l0v0

ζ0

.
2We cannot get rid of Ga2 in the same way, since therefore we would have to assume an equation

relating σ0σ
∗
ij to the internal energy. But this would only be possible, if we would assume that

the internal energy is a tensorial quantity, which is not the way how internal energy is defined
normally.
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For a selfgravitating fluid we even have on more dimensionless quantity, which ap-
pears, when we write down the dimesionless form of the Poisson equation of gravity

g0

4πGρ0l0
︸ ︷︷ ︸

CG

∂g∗
i

∂r∗i
= ρ∗. (A.5)

But this quantity CG also seems to have no name in the literature (e.g. Durst, 2007).
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B Properties of second order
tensors

A second order tensor can be decomposed into a symmetric and an antisymmetric
part in the following way

Tij =
1

2
(Tij + Tji)
︸ ︷︷ ︸

symmetric

+
1

2
(Tij − Tji)
︸ ︷︷ ︸

antisymmetric

. (B.1)

It can also be decomposed into an isotropic and deviatoric part by subtracting and
adding the trace of the tensor like

Tij =
1

n
δijTkk

︸ ︷︷ ︸

isotropic

+ Tij −
1

n
δijTkk

︸ ︷︷ ︸

deviatoric, tracefree

. (B.2)

Combining these two relations yields the general decomposition

Tij =

isotropic
︷ ︸︸ ︷

1

n
δijTkk +

deviatoric, tracefree
︷ ︸︸ ︷

1

2

(

Tij + Tji −
2

n
δijTkk

)

︸ ︷︷ ︸

symmetric, tracefree

+
1

2
(Tij − Tji)

︸ ︷︷ ︸

symmetric

︸ ︷︷ ︸

antisymmetric

.

(B.3)

An interesting relation can be found when computing the contraction of a unsym-
metric tensor Uij 6= Uji with a symmetric tensor Vij = Vji

UijVij =
1

2
UijVij +

1

2
UjiVji =

1

2
UijVij +

1

2
UjiVij =

1

2
(Uij + Uji)Vij. (B.4)

In analogy one finds for the contraction of an unsymmetric tensor Uij with an
antisymmetric tensor Wij = −Wji

UijWij =
1

2
(Uij − Uji)Wij . (B.5)
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C Derivation of the stress tensor
for a newtonian fluid

We derive the stress tensor by considering the dissipation of a motionless fluid seen by
a rotating observer. This derivation is different from what is found in the literature
(eg. Greiner and Stock, 1991) and therefore presented here.

It is generally assumed that friction between fluid elements is proportional to the
area of their surfaces. So in general the frictional or viscous force on a fluid element
can be expressed like

Fvisc,i =

∮

A

σ′
ijnjdA =

∫

V

∂

∂rj
σ′

ijdV. (C.1)

This force leads to an irreversible rise of temperature in the fluid or an irreversible
decrease of kinetic energy expressed by the equation for the dissipation1

∂

∂t
Ekin,visc = −

∫

V

σ′
ij

∂

∂rj

vidV. (C.2)

For a motionless fluid (vi = 0) and for a fluid with constant velocity ( ∂vi

∂rj
= 0) this

integral is zero. But also a rotating observer of a motionless fluid should not see a
rise in the temperature of a fluid 2 that means

∫

V

σ′
ij

∂

∂rj

vidV = 0. (C.3)

A rotating observer of a motionless fluid sees a velocity field of the form

vi = ǫijkωjrk. (C.4)

1See Landau and Lifschitz (1991).
2We do not consider here the a rigidly rotating fluid as is often done in the literature, because a

rigidly rotating fluid is unphysical. This is so, because a rigidly rotating fluid can never fulfill
the boundary condition vi = 0. However, for a rotating observer, the boundary is also rotating,
so that the boundary condition for a boundary at distance R is vi = ǫijkωjRk and there is no
contradiction to the velocity field (C.4).
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where ωj is the angular velocity vector and rk is the position vector. It can be
shown that for such a velocity field the Jacobian is antisymmetric (Greiner and
Stock, 1991), that means

∂vi

∂rj
= −∂vj

∂ri
. (C.5)

Using this and equation (B.5) in equation (C.3) we get

∫

V

1

2

(
σ′

ij − σ′
ji

) ∂

∂rj
vidV = 0. (C.6)

This relation can only be fulfilled if the stress tensor σ′
ij is symmetric

σ′
ij = σ′

ji. (C.7)

For a newtonian fluid is it assumed that the stress tensor is proportional only to the
first derivatives of the velocity field. Together with the requirement of symmetry
the most general form of such a tensor is

σ′
ij = a

(
∂vj

∂ri
+

∂vi

∂rj

)

+ bδij
∂vk

∂rk
. (C.8)

Usually the trace is split off the first term and added to the second term so

σ′
ij = a

(
∂vj

∂ri
+

∂vi

∂rj
− 2

3
δij

∂vk

∂rk

)

+

(
2a

3
+ b

)

δij
∂vk

∂rk
. (C.9)

Using the definitions a = η and 2a
3

+b = ζ we get the form most common in literature

σ′
ij = 2η

[
1

2

(
∂vi

∂rj
+

∂vj

∂ri

)

− 1

3
δij

∂vk

∂rk

]

+ ζδij
∂vk

∂rk
. (C.10)
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D Fourier transform and structure
functions

The continuous one-dimensional Fourier transform in k-space F (k) of some function
in x-space f(x)is defined like

F (k) =
1√
2π

∞∫

−∞

f(x)e−ikxdx (Fourier transform). (D.1)

Using the Fourier transform on a function twice will produce the original function
again, but mirrored at the origin. That’s why one conventionally defines an inverse
Fourier transform1, that will generate the not mirrored original function again, when
used on the Fourier transform of a function

f(x) =
1√
2π

∞∫

−∞

F (k)eikxdx (inverse Fourier transform). (D.2)

In three dimensions one defines the Fourier transform like

F (k) =
1

(2π)3/2

∞∫∫∫

−∞

f(x)e−ikxdV, (D.3)

f(x) =
1

(2π)3/2

∞∫∫∫

−∞

F (k)eikxdK. (D.4)

In cartesian coordinates the kernel of the Fourier transform e−ikx = e−i(kxx+kyy+kzz)

separates and so the three-dimensional Fourier transform of a function which sepa-
rates in cartesian coordinates f(x) = a(x)b(y)c(z) is also separable

F (k) = A(kx)B(ky)C(kz) =
1

(2π)3/2

∞∫

−∞

a(x)e−ikxxdx

∞∫

−∞

b(y)e−ikyydy

∞∫

−∞

c(z)e−ikzzdz.

Thats why we like to use cartesian coordinates when we are using Fourier transforms.

1Nature does not know about the inverse Fourier transform. If you have some optical device,
which produces the Fourier transform of some image and you use it twice on your image you
will get a mirrored image!
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D.1 Fourier transform of a delta function

An important result can be derived by computing the inverse Fourier transform of
the Fourier transform of a delta function

δ(x − x0) =
1√
2π

∞∫

−∞

1√
2π

∞∫

−∞

δ(x − x0)e
−ikxdxeikxdk

=
1

2π

∞∫

−∞

e−ikx0eikxdk =
1

2π

∞∫

−∞

eik(x−x0)dk.

From this we get that the inverse Fourier transform of a constant is the delta function

1√
2π

∞∫

−∞

eik(x−x0)dk =
√

2πδ(x − x0).

Taking the complex conjugate of this equation and making use of the fact that
δ∗(x − x0) = δ(x − x0) we get as a definition for the delta function

δ(x − x0) =
1

2π

∞∫

−∞

e±ik(x−x0)dk. (D.5)

Using this we can derive the astonishing result

∞∫

−∞

f(x)dx =
√

2πF (0) (D.6)

as can be seen from

∞∫

−∞

f(x)dx =

∞∫

−∞

1√
2π

∞∫

−∞

F (k)eikxdkdx =
1√
2π

∞∫

−∞

F (k)

∞∫

−∞

eikx

︸ ︷︷ ︸

2πδ(k)

dxdk

=
√

2π

∞∫

−∞

F (k)δ(k)dk =
√

2πF (0).
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D.2 Convolution theorem

D.2 Convolution theorem

The Fourier transform of the product of two function in k-space is

1√
2π

∞∫

−∞

F (k)G(k)eikxdk =

=
1√
2π

∞∫

−∞

1√
2π

∞∫

−∞

f(x′)e−ikx′

dx′ 1√
2π

∞∫

−∞

g(x′′)e−ikx′′

dx′′eikxdk

=
1

(2π)3/2

∞∫∫∫

−∞

f(x′)e−ikx′

g(x′′)e−ikx′′

eikxdx′dx′′dk

=
1

(2π)3/2

∞∫∫

−∞

f(x′)g(x′′)

∞∫

−∞

e−ik(x′+x′′−x)dk

︸ ︷︷ ︸

2πδ(x′′−(x−x′))

dx′dx′′

=
1√
2π

∞∫

−∞

f(x′)

∞∫

−∞

g(x′′)δ(x′′ − (x − x′))dx′′dx′

=
1√
2π

∞∫

−∞

f(x′)g(x − x′)dx′ = h(x).

The integral h(x) is called convolution of the functions f(x) and g(x). So the
convolution theorem says that

h(x) =
1√
2π

∞∫

−∞

f(x′)g(x− x′)dx′ =
1√
2π

∞∫

−∞

F (k)G(k)eikxdk. (D.7)

D.3 Autocorrelation and Wiener-Khinchin Theorem

The autocorrelation of a function is defined as2

hAC(x) =
1√
2π

∞∫

−∞

f ∗(x′)f(x + x′)dx′. (D.8)

2Note that with our definition of the Fourier transform we cannot define the autocorrelation
function as hAC(x) = 1√

2π

∫∞
−∞ f(x′)f∗(x+x′)dx′, because we could then not derive the Wiener-

Khinchin theorem.
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The Wiener-Khinchin Theorem states that

1√
2π

∞∫

−∞

f ∗(x′)f(x + x′)dx′ =
1√
2π

∞∫

−∞

|F (k)|2 eikxdk, (D.9)

which can be proved in analogy to the convolution theorem

1√
2π

∞∫

−∞

f ∗(x′)f(x + x′)dx′ =

=
1√
2π

∞∫

−∞

f ∗(x′)

∞∫

−∞

f(x′′)δ(x′′ − (x + x′))dx′′dx′

=
1√
2π

∞∫

−∞

f ∗(x′)

∞∫

−∞

f(x′′)
1

2π

∞∫

−∞

e−ik(x′+x′′−x)dkdx′′dx′

=
1√
2π

∞∫

−∞

1√
2π

∞∫

−∞

f ∗(x′)eikx′

dx′ 1√
2π

∞∫

−∞

f(x′′)e−ikx′′

dx′′eikxdk

=
1√
2π

∞∫

−∞

F ∗(k)F (k)eikxdk =
1√
2π

∞∫

−∞

|F (k)|2 eikxdk.

A special case of the Wiener-Khinchin theorem is Parseval’s theorem

∞∫

−∞

|f(x)|2 dx =

∞∫

−∞

|F (k)|2 dk, (D.10)

which can be obtained from the Wiener-Khinchin theorem for x = 0

hAC(0) =
1√
2π

∞∫

−∞

f ∗(x′)f(x′)dx′ =
1√
2π

∞∫

−∞

|f(x)|2 dx

=
1√
2π

∞∫

−∞

|F (k)|2 eik0dk =
1√
2π

∞∫

−∞

|F (k)|2 dk.
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D.4 Structure functions

D.4 Structure functions

A structure function of order p is defined as3

Sp(f(x)) = 〈[f(x + x′) − f(x′)]
p〉 =

1√
2π

∞∫

−∞

[f(x + x′) − f(x′)]
p
dx′. (D.11)

The second order structure function is related to the spectrum |F (k)| of the function
f like

1√
2π

∞∫

−∞

[f(x + x′) − f(x′)]
2
dx′ =

2√
2π

∞∫

−∞

(1 − eikx) |F (k)|2 dk, (D.12)

which can be proved4 by expanding the second order structure function

S2(f(x)) =
1√
2π

∞∫

−∞

[f(x + x′) − f(x′)]
2
dx′

=
1√
2π





∞∫

−∞

|f(x + x′)|2 dx′ − 2

∞∫

−∞

f ∗(x′)f(x + x′)dx′ +

∞∫

−∞

|f(x′)|2 dx′



.

Substituting x′′ = x + x′ in the first term we get

S2(f(x)) =
1√
2π





∞∫

−∞

|f(x′′)|2 dx′′ − 2

∞∫

−∞

f ∗(x′)f(x + x′)dx′ +

∞∫

−∞

|f(x′)|2 dx′





=
2√
2π





∞∫

−∞

|f(x′)|2 dx′ −
∞∫

−∞

f ∗(x′)f(x + x′)dx′



.

Using Parseval’s and the Wiener-Khinchin theorem we obtain the final result

S2(f(x)) =
2√
2π





∞∫

−∞

|F (k)|2 dk −
∞∫

−∞

|F (k)|2 eikxdk





=
2√
2π

∞∫

−∞

(1 − eikx) |F (k)|2 dk.

3See Pope (2000).
4A sketch of this prove can also be found in Pope (2000, Appendix G).
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D Fourier transform and structure functions

The structure functions used in the theory of Kolmogorov are the so called longi-
tudinal structure functions of the velocity, which are defined as

S2(v‖(l)) = 〈
(

[v(x + l) − v(x)] · l

l

)p

〉 = 〈
(
v‖(x + l) − v‖(x)

)p〉. (D.13)

They are related to the longitudinal velocity spectrum5
∣
∣V‖(k)

∣
∣
2

via equation (D.12).
Sometimes also second order transverse structure functions are measured. These are
defined as

S2(v⊥(l)) = 〈
( |[v(x + l) − v(x)] × l|

l

)p

〉. (D.14)

The behavior of the second order transverse structure functions for homogeneous
turbulence is uniquely determined by the longitudinal structure function (Pope,
2000, p. 192, Eqs. (6.28)). They also show the characteristic 2/3-slope as predicted
for the longitudinal structure functions (Frisch, 1995, p.60).

In general structure functions of vectorial quantities like the velocity are tensors,
e.g. the general second order structure function of the velocity can be defined as

Sij(x, l) = 〈[vi(x + l) − vi(x)][vj(x + l) − vj(x)]〉. (D.15)

But it can be shown that for local isotropy only the longitudinal structure function
S2(v‖(l)) = S11 and the transversal structure S2(v⊥(l)) = S22 = S33 are unequal
zero (Pope, 2000). Since the transverse structure function is determined by the
longitudinal structure function in case of local homogeneity, for homogeneous and
isotropic turbulence Sij is determined by the single scalar function S11 = S2(v‖(l))
(Pope, 2000).

The third order structure function used in Kolmogorov theory is defined as

S111(x, l) = 〈[v1(x + l) − v1(x)]3〉, (D.16)

which is often simply called S3(v(l)). So the famous four-fifths law of Kolmogorov is
actually true only for one component of the third order structure function tensor, but
again for homogeneous and isotropic turbulence the third order structure function
tensor Sijk is uniquely determined by the single scalar function S111 = S3(v(l)).

5In the literature this is often called kinetic energy spectrum, but this is only true for incompress-
ible flows.
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E The divergence equation

We start with the momentum equation (2.2)

∂

∂t
(ρvi) +

∂

∂rj
(vjρvi) = − ∂

∂ri
p +

∂

∂rj
σ′

ij − ρ
∂

∂ri
φ,

where we assumed gi = − ∂
∂ri

φ. If we make the substitutions ∂
∂ri

p → ∂
∂rj

pδij and
∂

∂ri
φ → ∂

∂rj
φδij we can write it in the form

∂

∂t
(ρvi) +

∂

∂rj
(vjρvi + pδij − σ′

ij) = −ρ
∂

∂rj
φδij.

Taking the divergence of this equation we get

∂

∂t

[
∂

∂ri
(ρvi)

]

+
∂2

∂ri∂rj
(vjρvi + pδij − σ′

ij) = − ∂

∂ri

(

ρ
∂

∂rj
φδij

)

,

where we assumed that ∂
∂t

and ∂
∂ri

commute. Using the continuity equation (2.1) we
get a interesting form of the fluiddynamic equations

∂2

∂t2
ρ − ∂2

∂ri∂rj

(vjρvi + pδij − σ′
ij) = +

∂

∂ri

(

ρ
∂

∂rj

φδij

)

. (E.1)

In case of no gravitation, the fluiddynamic equation can be written in a form showing
some similarity to a wave equation

∂2

∂t2
ρ − ∂2

∂ri∂rj
(vjρvi + pδij − σ′

ij) = 0.

But despite its simple form, this equation hides an extreme complexity.
Solving for pressure this equation is written like

∂2

∂r2
i

p =
∂2

∂t2
ρ − ∂2

∂ri∂rj
(ρvivj − σ′

ij) (E.2)

and sometimes called the equation for the instantaneous pressure.
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F Vlasov-Poisson Equations

The number of particles in the six-dimensional phase space element dV dP at time
t can be expressed as

N(t) =

∫

f(ri, pi, t)dV dP, (F.1)

where f(ri, pi, t) is the so called distribution function of particles in phase space.
The particle density can be expressed in terms of the distribution function as

ρ(ri, t) = mn(ri, t) = m

∫

f(ri, pi, t)dP, (F.2)

where n(ri, t) is the number density of all particles and m is the particle mass.

Without collisions, the distribution function satisfies the equation

d

dt
f(ri, pi, t) = 0. (F.3)

Writing the time derivative explicitely we get the collisionless Boltzmann equation

∂

∂t
f +

∂ri

∂t

∂f

∂ri
+

∂pi

∂t

∂pi

∂f
= 0. (F.4)

With the velocity vi = ∂ri

∂t
and the gravitational force Fi = ∂pi

∂t
= mgi, this equation

can be expressed as

∂

∂t
f + vi

∂f

∂xi
+ mgi

∂pi

∂f
= 0. (F.5)

Together with the Poisson equation of gravity

∂

∂ri
gi = 4πGm

∫

f(ri, pi, t)dP (F.6)

equations F.5 and F.6 are often called the Vlasov-Poisson system of equations (Pee-
bles, 1980). This system is used in astrophysics to describe the evolution of colli-
sionless matter interacting only by gravity.
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F Vlasov-Poisson Equations

However in cosmological N-Body simulations it is not the Vlasov-Poisson system
of equations that is solved. In fact, one assumes that the solution of the trajectories
of N particles determined by Newtons laws

∂pi,j

∂t
= mjgi,j, (F.7)

gi,j = G
N∑

l=1

ml
ri,j − ri,l

(ri,j − ri,l)3
, (F.8)

where mj , ml and ri,j, ri,l are the position of the jth and lth particle respectively,
can be interpreted as Monte-Carlo-Approximation of the Vlasov-Poisson system
(Steinmetz, 1999). So every particle in a cosmological N-Body simulation can in
fact represent a huge number of particles, which is a major conceptual difference to
N-body simulations used to model planetary systems or stars in star clusters, where
each particle intends to mimic an actual physical body.
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G Hydrostatic equilibrium

G.1 Standard derivation

The equations of hydrostatic equilibrium can be obtained from the equations of fluid
dynamics (2.1)-(2.3) assuming vi = 01. This yields

∂

∂t
ρ = 0, (G.1)

∂p

∂ri

= ρgi. (G.2)

The gravitational force for a sphere with a mass profile M(r) is

gi = −∂Φ

∂ri
= −G

M(r)

r2
, (G.3)

so the equation of hydrostatic equilibrium for such a configuration is

1

ρ

∂p

∂r
= −G

M(r)

r2
. (G.4)

Substituting the ideal gas equation p = ρRsT on the left hand side leads to

1

ρ

∂p

∂r
=

Rs

ρ

(

ρ
∂T

∂r
+ T

∂ρ

∂r

)

= RsT

(
1

T

∂T

∂r
+

1

ρ

∂ρ

∂r

)

= RsT

(
∂ ln T

∂r
+

∂ ln ρ

∂r

)

.

(G.5)

Plugging the last result into the equation for hydrostatic equilibrium (G.4), and
solving for M(r) gives an useful form of the hydrostatic equilibrium equation

M(r) = −RsTr

G

(

r
∂ ln T

∂r
+ r

∂ ln ρ

∂r

)

= −RsTr

G

(
∂ ln T

∂ ln r
+

∂ ln ρ

∂ ln r

)

. (G.6)

1Actually this assumption is a little bit to stringent. For a spherical symmetric system it is
enough, that the average radial component of velocity 〈vr〉 = 0.
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G Hydrostatic equilibrium

G.2 Derivation including turbulent pressure

If we add a turbulent pressure pt to the ideal gas equation we get for the total
pressure

p = pth + pt(l) = ρRsT +
1

3
ρq2(l). (G.7)

If we substitute this into the equation for hydrostatic equilibrium (G.4), we get an
additional term due to the turbulent pressure

∂pt(l)

∂r
=

1

3
ρq2(l)

(
∂ ln q2(l)

∂r
+

∂ ln ρ

∂r

)

. (G.8)

Therefore the total gravitational mass within the radius r assuming hydrostatic
equilibrium including a turbulent pressure associated with a length scale l is

M(r, l) = − r

G

[

RsTg

(
∂ ln Tg

∂ ln r
+

∂ ln ρg

∂ ln r

)

+
q2(l)

3

(
∂ ln q2(l)

∂ ln r
+

∂ ln ρ

∂ ln r

)]

. (G.9)
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H Fluid dynamics in comoving
coordinates

H.1 Introduction

On large scales (> 100Mpc) the distribution of matter in the universe is isotropic (it
looks the same in all directions) and homogeneous (it is isotropic at each point). But
only the space is assumed to be isotropic and homogenous. The observed expansion
of the universe singles out a special direction in time.1

The physical distance on large scales2 between two points in such an expanding
universe varies with time like

ri = a(t)xi. (H.1)

The factor a is a dimensionless scale factor greater than zero, which must be the
same for each component of the distance vector because of the assumed isotropy.
The scale factor can only depend on the time t and not on the position xi because
of the assumed homogeneity of space.

The change of the distance with time in an expanding universe is then

ṙi = ȧxi + aẋi. (H.2)

The global velocity of a particle vi = ṙi which does not move relative to the expand-
ing space (ẋi = 0) is

v̇i = ȧxi =
ȧ

a
ri = H(t)ri (H.3)

where H is the so called Hubble parameter. Is a particle moving relative to the
expanding space (ẋi 6= 0) then we measure the additional local (also called proper)

1In other words: The universe is not a maximally symmetric 4-dimensional manifold, but can be
depicted as maximally symmetric 3-dimensional spacelike sheets in a 4-dimensional spacetime.
The metric on such a manifold is the Robertson-Walker-metric.

2This is a very important point. If the space would also expand on small scales we couldn’t
measure the expansion, because everything including our distance measurement device would
expand. But on small scales the universe is not homogenous. On small scales the metric of
the universe is not a Robertson-Walker metric, but more like a Schwarzschild metric, which is
isotropic, but not homogenous.

117



H Fluid dynamics in comoving coordinates

velocity ui = aẋi of the particle. This local velocity can, according to special
relativity, be never greater than the speed of light c. Nevertheless, the global velocity
(e.g. the measured escape velocities of galaxies at great distances) can be greater
than c (Davis and Lineweaver, 2004). Generally the physical velocity of a particle
is the sum of global and local velocity

vi = ȧxi + ui(xi, t). (H.4)

H.2 Useful transformations

From the definition of the distance ri and the velocity vi in comoving coordinates
we get

∂

∂ri
=

1

a

∂

∂xi
, (H.5)

∂

∂ri
vi =

1

a

∂

∂xi
ui + 3

ȧ

a
, (H.6)

∂

∂ri
vj =

1

a

∂

∂xi
uj +

ȧ

a
δij, (H.7)

(
∂A

∂t

)

r

+ vj
∂A

∂rj
=

(
∂A

∂t

)

x

+
1

a
uj

∂A

∂xj
, (H.8)

A(ri, vi, t) 6= A(xi, ui, t). (H.9)

With the help of transformation (H.6) and (H.7) we can transform the stress
tensor for a newtonian fluid in cartesian coordinates

σ′
ij = 2η

[
1

2

(
∂

∂rj

vi +
∂

∂ri

vj

)

− 1

n
δij

∂

∂rk

vk

]

+ ζδij
∂

∂rk

vk (H.10)

into the stress tensor for a newtonian fluid in comoving coordinates

σ′
ij =2η

[
1

2

(
1

a

∂

∂xj

ui +
ȧ

a
δij +

1

a

∂

∂xi

uj +
ȧ

a
δji

)

− 1

n
δij

(
1

a

∂

∂xk

uk + n
ȧ

a

)]

(H.11)

+ ζδij

(
1

a

∂

∂xk

uk + n
ȧ

a

)

(H.12)

=2η

[
1

2a

(
∂

∂xj
ui +

∂

∂xi
uj

)

+
ȧ

a
δij −

n

n

ȧ

a
δij −

1

na
δij

∂

∂xk
uk

]

(H.13)

+ ζδij

(
1

a

∂

∂xk

uk + n
ȧ

a

)

(H.14)

=
1

a

{

2η

[
1

2

(
∂

∂xj
ui +

∂

∂xi
uj

)

− 1

n
δij

∂

∂xk
uk

]

+ ζδij

(
∂

∂xk
uk + nȧ

)}

. (H.15)
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H.3 Equations in comoving coordinates

H.3 Equations in comoving coordinates

With the help of the relations described in the last section, we can write down the
fluid dynamic equations in explicit comoving form

∂

∂t
ρ +

1

a

∂

∂xj
(ujρ) = − 3

ȧ

a
ρ, (H.16)

∂

∂t
(ρui) +

1

a

∂

∂xj
(ujρui) = − 1

a

∂

∂xi
p +

1

a

∂

∂xj
σ′

ij + ρg∗
i − 4

ȧ

a
ρui, (H.17)

∂

∂t
(ρe) +

1

a

∂

∂xj
(ujρe) = − 1

a

∂

∂xj
(ujp) +

1

a

∂

∂xj
(uiσ

′
ij) +

1

a
uiρg∗

i

− 3
ȧ

a
(ρe +

1

3
ρu2

i + p),

(H.18)

with Newtonian Gravity in comoving coordinates (Poisson Equation)

1

a

∂

∂xi
g∗

i = 4πG, (H.19)

where g∗
i = −1

a
∂ϕ
∂xi

and the gauge transformed newtonian potential ϕ = φ + 1
2
aäx2

i .
The energy equation is the sum of the equation for the kinetic energy and the

internal energy

∂

∂t
(ρek) +

1

a

∂

∂xj
(ujρek) = −1

a
ui

∂

∂xi
p +

1

a
ui

∂

∂xj
σ′

ij +
1

a
ρuig

∗
i − 5

ȧ

a
ρek, (H.20)

∂

∂t
(ρeint) +

1

a

∂

∂xj
(ujρeint) = −1

a
p

∂

∂xj
uj −

1

a
σ′

ij

∂

∂xj
ui − 3

ȧ

a
(ρeint + p). (H.21)

A even simpler form of the equations of fluid dynamics in comoving coordinates
can be found by expressing density and pressure in comoving coordinates. The
connection between the density in physical coordinates ri = a(t)·xi and the comoving
coordinates xi is given by

ρ(ri) =
dM

dV
=

dM

dr1dr2dr3
=

1

a(t)3

dM

dx1dx2dx3
=

1

a(t)3
ρ(xi) =

1

a(t)3
ρ̃ (H.22)

and in analogy for the pressure

p(ri) =
1

a(t)3
p(xi) =

1

a(t)3
p̃. (H.23)

Because

∂

∂t
ρ =

∂

∂t

1

a(t)3
ρ̃ =

1

a(t)3

∂

∂t
ρ̃ − 3

ȧ

a
ρ (H.24)
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H Fluid dynamics in comoving coordinates

the source term on the right hand side of the momentum equation (H.17) and energy
conservation equation (H.18) is reduced and even vanishes in the mass conservation
equation (H.16), so that we can write the system of equations for fluid dynamic in
comoving coordinates like

∂

∂t
ρ̃ +

1

a

∂

∂xj

(ujρ̃) =0, (H.25)

∂

∂t
(ρ̃ui) +

1

a

∂

∂xj

(ujρ̃ui) = − 1

a

∂

∂xi

p̃ +
1

a

∂

∂xj

σ′
ij + ρ̃g∗

i −
ȧ

a
ρ̃ui, (H.26)

∂

∂t
(ρ̃e) +

1

a

∂

∂xj

(ujρ̃e) = − 1

a

∂

∂xj

(uj p̃) +
1

a

∂

∂xj

(uiσ
′
ij) +

1

a
uiρ̃g∗

i

− ȧ

a
(ρ̃e +

1

3
ρ̃u2

i + p̃).

(H.27)
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I Color fields

There are two possibilities to implement a color field c in a fluid code. One can
treat color like the density, i.e. the color variable obeys a conservation law like the
density

∂

∂t
c +

∂

∂rj
(vjc) = 0. (I.1)

In this case c will exactly behave like density, if density and color have the same
initial value.

On the other hand one can treat it like a specific quantity obeying a conservation
law like

∂

∂t
ρc +

∂

∂rj
(vjρc) = 0. (I.2)

In this case we see that if c is spatially constant at a time t0, i.e. c(t0) = c0,
∂c(t0)
∂rj

= 0,

it will stay constant forever

∂

∂t
ρc +

∂

∂rj
(vjρc) = 0

⇔ ∂c

∂t
+ vj

∂c

∂rj
= 0

⇔ d

dt
c = 0

⇒ c = const. = c0
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Zusammenfassung

Galaxienhaufen sind die größten, gravitativ gebundenen Strukturen im Universum.
Nach dem hierarchischen Modell der Strukturentstehung, wonach größere, gravi-
tativ gebundene Systeme aus kleineren Systemen entstehen, sind sie damit auch
die jüngsten Strukturen im Universum. Daher kann die genaue Verfolgung ihrer
Entwicklung, z.B. anhand ihrer Anzahldichte abhängig von der Zeit, zur Messung
wichtiger kosmologischer Parameter verwendet werden.

Viele Eigenschaften von Galaxienhaufen können mit optischen Beobachtungen
bestimmt werden, die derzeit verlässlichsten Daten erhält man jedoch durch Beobach-
tungen mit Röntgensatelliten wie z.B. CHANDRA und XMM-Newton. Aus diesen
Daten ergeben sich Korrelationen z.B. zwischen Leuchtkraft und Temperatur oder
zwischen Masse und Temperatur für Galaxienhaufen. Nimmt man an, dass alleine
Gravitation eine Rolle bei der Entstehung von Galaxienhaufen spielt, sollten diese
selbstähnlich sein, jedoch stimmen die experimentell gefundenen Relationen nicht
mit dieser Annahme überein. Eine physikalische Erklärung, warum die Selbstähn-
lichkeit verletzt ist, kann die Existenz von turbulenten Strömungen in Galaxien-
haufen sein.

Die bisherigen Untersuchungen von Turbulenz in Galaxienhaufen waren jedoch
darauf beschränkt, alleine passiv nach Eigenschaften der Strömung in Galaxien-
haufen zu suchen, die auf Turbulenz hinweisen. Die aktive Rolle der Turbulenz, d.h.
den möglichen Einfluss von klein und kleinstskaligen Geschwindigkeitsfluktuationen
auf die Strukturentstehung, zu modellieren war bisher nicht möglich. Ein Grund
dafür ist, das die akzeptierte Kolmogorov-Theorie der Turbulenz nur für inkompress-
ible, homogene und isotrope Strömungen angewendet werden kann, Strömungen in
der Astrophysik jedoch meist kompressibel, selbstgravitierend und anisotrop sind.
Ein zweiter Grund ist, dass die derzeitigen Modelle zur numerischen Beschreibung
von Turbulenz (sog. Grobstruktursimulationen) auf der Filterung der fluiddynamis-
chen Gleichungen bei einer bestimmten charakteristischen Längenskala beruhen, was
im offenen Widerspruch zu numerischen Methoden der Astrophysik steht, welche
mit adaptiven Gittern arbeiten, um die vielen Phänomene auf unterschiedlichsten
Längenskalen in astrophysikalischen Umgebungen darzustellen.

Ziel dieser Arbeit war es daher, ein neues numerisches Modell zu entwickeln,
welches es ermöglicht Grobstruktursimulationen auch mit adaptiven Gittercodes
auszuführen, um Turbulenz über große Längenskalenbereiche konsistent zu simulieren.
Da das frei verfügbare Programm Enzo zur Simulation kosmologischer Strömungen
adaptive, in Blöcken organisierte Gitter und den wenig-dissipativen PPM-Lösungsal-
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gorithmus benutzt, sollte unser neues Modell in diesen Code implementiert werden.
Um Grobstruktursimulationen mit Enzo zu ermöglichen, implementierten wir eine

neue Erhaltungsgleichung für die turbulente Energie in das Programm und koppel-
ten sie an die bereits vorhandenen Erhaltungsgleichungen von Impuls, kinetischer
und interner Energie. Wichtigster Punkt und zentrale Idee um Grobstruktursimula-
tionen mit adaptiven Gittern zu ermöglichen, war jedoch die Modifikation der Algo-
rithmen zur Interpolation von turbulenter und kinetischer Energie bei der Erzeugung
von Gittern, damit die turbulente Dissipation lokal auf verschiedenen Längenskalen
erhalten bleibt.

Nach der Lösung sehr vieler numerischer und technischer Probleme, die uns der
schlecht gewartete Enzo-Code leider aufzwang, ist es uns im Rahmen dieser Arbeit
gelungen zu zeigen, dass die Annahme lokaler Erhaltung der turbulenten Dissipation
zu einem konsistenten Skalierungsverhalten der turbulenten Energie in adaptiven
Gittercodes führen kann. Wir konnten auch zeigen, dass unsere Modifikation nicht
zu einer Verletzung der Energieerhaltung führt.

Motiviert von diesen Ergebnissen verwendeten wir unser neues numerisches Modell
zur Simulation von Galaxienhaufen. Im Rahmen dieser Arbeit wurden dazu eine
hochaufgelöste Simulation mit und eine ohne Turbulenzmodell durchgeführt, um
den Einfluss unseres Turbulenzmodells auf die Entstehung eines Galaxienhaufens zu
untersuchen. Die Auswertung der Simulationen ergab folgendes Bild:

• Unser Turbulenzmodell hat keinen signifikanten Einfluss auf Massenanteile der
unterschiedlichen Gasphasen im interstellaren Medium.

• Die zeitlichen Entwicklung der turbulenten Energie lässt darauf schließen, dass
alle Gasphasen auf der Längenskala einer Galaxie genug Zeit hatten, um im
heutigen Universum eine turbulente Kaskade auszubilden. Wir konnten auch
zeigen, dass die Produktion und Dissipation turbulenter Energie im heutigen
Universum praktisch im Gleichgewicht zu sein scheint.

• Die Turbulenz auf der Längenskala einer Galaxie ist Unterschallturbulenz, die
mittlere turbulente Machzahl bei einer Rotverschiebung z = 0 beträgt etwa
0.2.

• Große Fluktuationen der turbulenten Energie bei beginnender Galaxienhaufen-
bildung deuten darauf hin, dass

”
gewaltsames“Verschmelzen kleinerer zu großen

Strukturen zu turbulenten Strömungen führt.

• Turbulenz in Galaxienhaufen wird durch die Akkretion kleinerer Strukturen
nur am äußeren Rand (r > Rvir) getrieben. Dabei lässt sich aus der räumlichen
Verteilung der turbulenten Energie auf die Akkretionsgeschichte des Galaxien-
haufens zurückschließen, zumindest solange, bis die turbulenten Geschwindigkeits-
fluktuationen in thermische Energie umgewandelt sind.
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• Aus dem Skalierungsverhalten der turbulenten Energie lässt sich ableiten, dass
Kräfte auf einer Längenskala von ≈ 100 kpc h−1 Energie in das System einkop-
peln und sich zu kleineren Längenskalen hin eine turbulente Kaskade ausbildet.
In den Radialprofilen des Galaxienhaufens findet man den Maximalwert der
turbulenten Energie bei r = 0.5 Rvir, wahrscheinlich verursacht durch die
starke Abbremsung und damit verbundenen Verwirbelung von Material, wenn
es auf den Rand des Galaxienhaufen r = Rvir trifft.

• Aus den Radialprofilen folgt auch, dass nur im Zentrum ein signifikanter Ein-
fluss unseres Turbulenzmodells auf die thermodynamischen Eigenschaften des
Galaxienhaufens besteht. Aus dem effektiven adiabatischen Index ergibt sich,
dass mit unserem Turbulenzmodell das interstellare Medium im Zentrum des
Galaxienhaufens kühlt, d.h. die Entropie und die Temperatur sind niedriger,
die Dichte und Geschwindigkeitsdispersion höher als ohne Turbulenzmodell.

Ausgehend vom letztgenannten Punkt kann man auch vermuten, dass Turbulenz
als Mechanismus zur Lösung des

”
Überkühlungsproblems“ nicht in Frage kommt.

Desweiteren führten vorläufige, niedrigaufgelöste Simulationen von Galaxienhaufen
zu dem interessanten Resultat, dass die Kolmogorovkonstante im Skalierungsge-
setz der turbulenten Geschwindigkeitsfluktuationen im Galaxienhaufenzentrum eine
Größenordnung höher als in inkompressibler Turbulenz zu sein scheint.

Ein wichtiger Punkt bei der Quantifizierung von Turbulenz, der speziell in unserer
Arbeit offensichtlich wurde, ist die Skalenabhängigkeit der turbulenten Energie und
damit auch des turbulenten Druckes. Oft wird dies in der astrophysikalische Liter-
atur nicht berücksichtigt, was viele Aussagen hinsichtlich der Stärke von Turbulenz
unvollständig macht. Die Frage jedoch, ob mit einer skalenabhängigen turbulenten
Energie, wie sie sich aus der Kolmogorov-Theorie und in unserem Turbulenzmodell
ergibt, wirklich Turbulenz in selbstgravitierenden Strömungen korrekt beschrieben
werden kann, können wir nicht beantworten. Ein besseres Verständnis selbstgrav-
itierender, turbulenter Strömungen scheint daher unerlässlich und extrem wichtig
für die weitere Erforschung von Turbulenz in der Astrophysik.
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