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Abstract
In this paper we study properties of the Laplace approximation of the posterior dis-
tribution arising in nonlinear Bayesian inverse problems. Our work is motivated by
Schillings et al. (Numer Math 145:915–971, 2020. https://doi.org/10.1007/s00211-
020-01131-1), where it is shown that in such a setting the Laplace approximation
error in Hellinger distance converges to zero in the order of the noise level. Here,
we prove novel error estimates for a given noise level that also quantify the effect
due to the nonlinearity of the forward mapping and the dimension of the problem.
In particular, we are interested in settings in which a linear forward mapping is per-
turbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace
approximation error is of the size of the perturbation. The paper provides insight into
Bayesian inference in nonlinear inverse problems, where linearization of the forward
mapping has suitable approximation properties.

Mathematics Subject Classification 47J06 · 62E17 · 62E20 · 62F15 · 65D30 · 65D32 ·
65J20 · 65J22

1 Introduction

The study of Bayesian inverse problems [8,26] has gained wide attention during the
last decade as the increase in computational resources and algorithmic development
have enabled uncertainty quantification in numerous new applications in science and
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engineering. Large-scale problems, where the computational burden of the likelihood
is prohibitive, are, however, still a subject of ongoing research.

In this paper we study the Laplace approximation of the posterior distribution
arising in nonlinearBayesian inverse problems.TheLaplace approximation is obtained
by replacing the log-posterior density with its second order Taylor approximation
around the maximum a posteriori (MAP) estimate and renormalizing the density. This
produces a Gaussian measure centered at the maximum a posteriori (MAP) estimate
with a covariance corresponding to the Hessian of the negative log-posterior density
(see, e.g., [3, Section 4.4]).

The asymptotic behavior of the parametric Laplace approximation in the small
noise or large data limit has been studied extensively in the past (see, e.g., [30]).
We note that in terms of approximation properties with respect to taking a posterior
expectation over a given function, there is a long line of research which we discuss
below. Our work is parallel to this effort in that we aim to estimate the total variation
(TV) distance between the two probability measures. On the one hand, the error in
TV distance bounds the error of the expectation of any function with respect to the
Laplace approximation. On the other hand, it is a measure of the non-Gaussianity of
the posterior distribution. Thus, our results describe and quantify how the nonlinearity
of the forward mapping translates into non-Gaussianity of the posterior distribution.

Our work is motivated by a recent result by Schillings, Sprungk, and Wacker in
[25], where the authors show that in the context of Bayesian inverse problems, the
Laplace approximation error in Hellinger distance converges to zero in the order of
the noise level. In practice, one is, however, often interested in estimating the error for
a given, fixed noise level. It can, e.g., be unclear if the noise level is small enough in
order to dominate the error estimate. Indeed, the nonlinearity of the forward mapping
(more generally, the non-Gaussianity of the likelihood) or a large problem dimension
can have a signifact contribution to the constant appearing in the asymptotic estimates.
Therefore, it is of interest to quantify such effects in non-asymptotic error estimates
for the Laplace approximation. This is the main goal of our work.

1.1 Our contributions

The main contribution of this work is threefold:

1. In Theorem 3.4, we derive our central error estimate for the total variation distance
of the Laplace posterior approximation in nonlinear Bayesian inverse problems.
The error bound consists of two error terms for which we derive an implicit opti-
mal balancing rule in Proposition 3.13. We assume uniform bounds on the third
differentials of log-likelihood and log-prior density as well as a quadratic lower
bound on the log-posterior density to control the error. Given such bounds the error
estimate can be numerically evaluated.

2. In Theorem 4.1, we derive a further estimate for the Laplace approximation error
that makes the effect of noise level, the bounds specified above and the dimen-
sion of the problem explicit. This error estimate readily implies linear rates of
convergence for fixed problem dimension both in the small noise limit and when
the third differential of the log-likelihood goes to zero, see Corollary 4.4. It fur-

123



Non-asymptotic error estimates for the Laplace… 523

thermore leads to a convergence rate for increasing problem dimension in terms
of noise level, problem dimension, and aforementioned bounds aligned with [15],
see Corollary 4.6.

3. In Theorem 5.3, we quantify the error of the Laplace approximation in terms of the
nonlinearity of the forwardmapping for linear inverse problemswith small nonlin-
ear perturbation andGaussian prior distribution.We assume uniformbounds on the
differentials of the nonlinear perturbation of up to third order to control the error.
This error estimate immediately implies linear convergence in terms of the size of
the perturbation. Moreover, such a result provides insight into Bayesian inference
in nonlinear inverse problems, where linearization of the forward mapping has
suitable approximation properties.

1.2 Relevant literature

The asymptotic approximation of general integrals of the form
∫
eλ f (x)g(x)dx by

Laplace’smethod is presented in [21,30]. Non-asymptotic error bounds for the Laplace
approximation of such integrals have been stated in the univariate [20] andmultivariate
case [7,16]. The Laplace approximation error and its convergence in the limit λ → ∞
have been estimated in the multivariate case when the function f depends on λ or the
maximizer of f is on the boundary of the integration domain [10]. A representation
of the coefficients appearing in the asymptotic expansion of the approximated integral
utilizing ordinary potential polynomials is given in [18].

The error estimates on the Laplace approximation in TV distance are closely con-
nected to the so-called Bernstein–von Mises (BvM) phenomenon that quantifies the
convergence of the scaled posterior distribution toward a Gaussian distribution in the
large data or small noise limit. Parametric BvM theory is well-understood [12,29].
Our work is inspired by a BvM result by Lu [15], where a parametric BvM theorem
for nonlinear Bayesian inverse problems with an increasing number of parameters
is proved. Similar to our objectives, he quantifies the asymptotic convergence rate
in terms of noise level, nonlinearity of the forward mapping and dimension of the
problem. However, our emphasis differs from [15] (and other BvM results) in that we
are not restricted to considering the vanishing noise limit, but are more interested in
quantifying the effect of small nonlinearity or dimension at a fixed noise level. We also
point out that BvM theory has been developed for non-parametric Bayesian inverse
problems (see, e.g., [6,17,19]), where the convergence is quantified in a distance that
metrizes the weak convergence.

Let us conclude by briefly emphasizing that the Laplace approximation is widely
utilized for different purposes in computational Bayesian statistics including, i.a.,
the celebrated INLA algorithm [22]. It has also recently gained popularity in optimal
Bayesian experimental design (see, e.g., [1,14,23]).Moreover, it provides a convenient
reference measure for numerical quadrature [4,24] or importance sampling [2].
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1.3 Organization of the paper

Before we present the aforementioned three main results in Sects. 3 to 4 to 5, we
introduce our set-up and notation, Laplace’s method, and the total variation metric in
Sect. 2. In Sect. 3, we introduce our central error bound for the Laplace approximation
and explain the idea behind its proof. In Sect. 4, we derive an explicit error estimate
for the Laplace approximation and describe its asymptotic behavior. In Sect. 5, we
prove the error estimate for inverse problems with small nonlinearity in the forward
mapping and Gaussian prior distribution.

2 Preliminaries and set-up

We consider for ε > 0 the inverse problem of recovering x ∈ R
d from a noisy

measurement y ∈ R
d , where

y = G(x) + √
εη,

η ∈ R
d is randomnoisewith standard normal distributionN (0, Id), andG:Rd → R

d

is a possibly nonlinear mapping. In the following, |·| denotes the Euclidean norm on
R
d . If we assume a prior distribution μ on R

d with Lebesgue density exp(−R(x)),
then Bayes’ formula yields a posterior distribution μy with density

μy(dx) ∝ exp

(

− 1

2ε
|y − G(x)|2

)

μ(dx) = exp

(

− 1

2ε
|y − G(x)|2 − R(x)

)

dx .

(2.1)

For all x, y ∈ R
d , we denote the scaled negative log-likelihood by

Φ(x) = 1

2
|y − G(x)|2.

If

x �→ Φ(x) + εR(x)

has a unique minimizer inRd , we call this minimizer themaximum a posteriori (MAP)
estimate and denote it by x̂ = x̂(y). Furthermore, we set

I (x) := Φ(x) + εR(x) − Φ(x̂) − εR(x̂)

for all x ∈ R
d . This way, I is nonnegative, the MAP estimate x̂ minimizes I and

satisfies I (x̂) = 0. Moreover, we can express the posterior density as

μy(dx) = 1

Z
exp

(

−1

ε
I (x)

)

dx (2.2)
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with a normalization constant Z .
Laplace’smethod approximates the posterior distribution by aGaussian distribution

Lμy whose mean and covariance are chosen in such a way that its log-density agrees,
up to a constant, with the second order Taylor polynomial around x̂ of the log-posterior
density. If I ∈ C2(Rd ,R), the Laplace approximation of μy is defined as

Lμy := N (x̂, εΣ),

where Σ := (D2 I (x̂))−1. Here, DI denotes the differential of I , and we identify
D2 I (x̂) with the Hessian matrix {D2 I (x̂)(e j , ek)}dj,k=1. The Lebesgue density of
Lμy is given by

Lμy (dx) = 1

Z̃
exp

(

− 1

2ε
‖x − x̂‖2Σ

)

dx

= 1

Z̃
exp

(

− 1

2ε
D2 I (x̂)(x − x̂, x − x̂)

)

dx,

where

Z̃ =
∫

Rd
exp

(

− 1

2ε
‖x − x̂‖2Σ

)

dx = ε
d
2 (2π)

d
2
√
detΣ. (2.3)

Since I (x̂) = 0 and DI (x̂) = 0, 1
2ε‖x − x̂‖2Σ is precisely the truncated Taylor series

of I/ε around x̂ .
The total variation (TV) distance between two probability measures ν and μ on

(Rd ,B(Rd)) is defined as

dTV(ν, μ) = sup
A∈B(Rd )

|ν(A) − μ(A)|,

see Section 2.4 in [27]. It has the alternative representation

dTV(ν, μ) = 1

2
sup

‖ f ‖∞≤1

{∫

Rd
f dν −

∫

Rd
f dμ

}

= 1

2

∫

Rd

∣
∣
∣
∣
dν

dρ
− dμ

dρ

∣
∣
∣
∣ dρ

where ‖ f ‖∞ := supx∈Rd | f (x)| and ρ can be any probability measure dominating
both μ and ν, see Remark 5.9 in [27] and equation (1.12) in [11]. The total variation
distance is valuable for the purpose of uncertainty quantification because it bounds
the error of any credible region when using a measure ν instead of another measure
μ. It can, moreover, be used to bound the difference in expectation of any bounded
function f on R

d with respect to μ and ν, respectively, by

∣
∣Eν[ f ] − E

μ[ f ]∣∣ ≤ 2‖ f ‖∞dTV(ν, μ),

see Lemma 1.32 in [11]. By Kraft’s inequality

dH(μ, ν)2 ≤ dTV(μ, ν) ≤ √
2dH(μ, ν),
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the total variation distance bounds the square of the Hellinger distance

dH(μ, ν) =
⎛

⎝1

2

∫

Rd

∣
∣
∣
∣
∣

√
dν

dρ
−
√
dμ

dρ

∣
∣
∣
∣
∣

2

dρ

⎞

⎠

1
2

,

see Definition 1.28 and Lemma 1.29 in [11] or [9], while both metrics induce the same
topology. The bounded Lipschitz metric

dBL(μ, ν) = 1

2
sup

‖ f ‖∞+‖ f ‖Lip≤1

{∫

Rd
f dμ −

∫

Rd
f dν

}

,

which induces the topology of weak convergence of probability measures, is trivially
bounded by the total variation distance. Here, we denote

‖ f ‖Lip := sup
x,y∈Rd , x 
=y

| f (x) − f (y)|
|x − y| .

For further information on the relation between the total variation distance and other
probability metrics we refer the survey paper [5].

3 Central error estimate

We will use the following ideas to bound the error of the Laplace approximation
Lμy for a given realization of the data y ∈ R

d . First, we will prove the fundamental
estimate

dTV(μy,Lμy ) ≤ 1

Z̃

∫

Rd

∣
∣
∣
∣exp

(

−1

ε
I (x)

)

− exp

(

− 1

2ε
‖x − x̂‖2Σ

)∣∣
∣
∣ dx . (3.1)

If we have a radial upper bound f (‖x − x̂‖Σ) for the integrand on the right hand side
of (3.1), we can estimate

dTV(μy,Lμy ) ≤
∫

Rd
f (‖x − x̂‖Σ)dx = √

detΣ
∫

Rd
f (|u|)du,

where we applied a change of variable to a local parameter u := Σ− 1
2 (x − x̂). This

integral, we can now express as a 1-dimensional integral using polar coordinates.
The integrand on the right hand side of (3.1) is very small and flat around x̂ , since

1
2‖x − x̂‖2Σ is the second order Taylor expansion of I (x) around x̂ , and it falls off
as |x | → ∞ because it is integrable. Its mass is thus concentrated in an intermediate
distance from x̂ . This can be seen, e.g., in Fig. 1. We exploit this structure by splitting
up the integral in (3.1) and bounding the integrand on a Σ-norm ball

U (r0) := {x ∈ R
d : ‖x − x̂‖Σ ≤ r0}
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around the MAP estimate x̂ and on the remaining space R
d\U (r0) separately. On

U (r0), we then control the integrand by imposing uniform bounds on the third order
differentials of the log-likelihood and the log-prior density. Outside of U (r0), we
control it by imposing a quadratic lower bound on I .

We make the following assumptions on Φ, R, I , x̂ , and Σ , which will be further
discussed in Remark 3.9.

Assumption 3.1 We have Φ, R ∈ C3(Rd ,R), I has a unique global minimizer x̂ =
x̂(y) ∈ R

d and D2 I (x̂) is positive definite.

Assumption 3.2 There exists a constant K > 0 such that

max
{
‖D3Φ(x)‖Σ, ‖D3R(x)‖Σ

}
≤ K

for all x ∈ R
d , where

‖D3Φ(x)‖Σ := sup
{∣
∣D3Φ(x)(h1, h2, h3)

∣
∣ : ‖h1‖Σ, ‖h2‖Σ, ‖h3‖Σ ≤ 1

}
.

Assumption 3.3 There exists 0 < δ ≤ 1 such that

I (x) ≥ δ

2
‖x − x̂‖2Σ for all x ∈ R

d .

LetΓ (z)denote the classical gamma function andγ (a, z) the lower incomplete gamma
function. Then,

Ξd(t) := γ
( d
2 , t

2

)

Γ
( d
2

) for all t ≥ 0, d > 0,

describes the probability of a Euclidean ball in R
d with radius

√
t around 0 under a

standard Gaussian measure (see Lemma 3.12).
The main result of this section is the following error estimate.

Theorem 3.4 Suppose that Assumptions 3.1–3.3 hold. Then we have

dTV(μy,Lμy ) ≤ E1(r0) + E2(r0) (3.2)

for all r0 ≥ 0, where

E1(r0) := cdε
− d

2

∫ r0

0
f (r)rd−1dr , (3.3)

E2(r0) := δ− d
2

(

1 − Ξd

(
δr20
ε

))

(3.4)

123



528 T. Helin, R. Kretschmann

for all r0 ≥ 0,

f (r) :=
[

exp

(
(1 + ε)K

6ε
r3
)

− 1

]

exp

(

− 1

2ε
r2
)

(3.5)

for all r ≥ 0, and

cd := 21− d
2

Γ
( d
2

) .

Remark 3.5 The two functions E1 and E2 are continuous and monotonic with the
following asymptotic behavior. The first error term E1(r0) obeys

E1(0) = 0, lim
r0→∞ E1(r0) = ∞,

whereas the second error term E2(r0) satisfies

E2(0) = 2δ− d
2 , lim

r0→∞ E2(r0) = 0.

This can be seen as follows.
The function f (r)rd−1 is bounded on the interval [0, 1], so that the integral∫ r0

0 f (r)rd−1dr converges to 0 as r0 → 0, and hence also E1(r0). On the other
hand, f (r)rd−1 converges to ∞ as r → ∞, so that the integral

∫ r0
0 f (r)rd−1dr and

E1(r0) converge to ∞ as r → ∞. Since f (r)rd−1 is positive for all r ≥ 0, E1 more-
over increases monotonically. By definition of the lower incomplete gamma function,
Ξd increases monotonically and Ξd(t) ∈ [0, 1] for all t ≥ 0 and d > 0. Moreover,
Ξd(t) → 0 as t → 0 and Ξd(t) → 1 as t → ∞. Consequently, E2(r0) converges
toward 2δ−d/2 as r0 → 0, and toward 0 as r0 → ∞. The asymptotic behavior of E2
is described more precisely in Lemma 4.3.

The following three propositions formalize the ideas described in the beginning of
this section and constitute the prove of Theorem 3.4.

Proposition 3.6 (Fundamental estimate) The Laplace approximationLμy of μy sat-
isfies

dTV(μy,Lμy ) ≤
∫

Rd

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx),

where R2(x) := I (x) − 1
2‖x − x̂‖2Σ for all x ∈ R

d .

Proof For a fixed ε > 0 we can estimate

2dTV(μy ,Lμy ) =
∫

Rd

∣
∣
∣
∣
1

Z
exp

(

−1

ε
I (x)

)

− 1

Z̃
exp

(

− 1

2ε
‖x − x̂‖2Σ

)∣∣
∣
∣ dx
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= 1

Z̃

∫

Rd

∣
∣
∣
∣
Z̃

Z
exp

(

−1

ε
I (x)

)

− exp

(

− 1

2ε
‖x − x̂‖2Σ

)∣∣
∣
∣ dx

≤ 1

Z̃

∣
∣
∣
∣
Z̃

Z
− 1

∣
∣
∣
∣

∫

Rd
exp

(

−1

ε
I (x)

)

dx

+ 1

Z̃

∫

Rd

∣
∣
∣
∣exp

(

−1

ε
I (x)

)

− exp

(

− 1

2ε
‖x − x̂‖2Σ

)∣∣
∣
∣ dx

= 1

Z̃

∣
∣Z̃ − Z

∣
∣+
∫

Rd

∣
∣
∣
∣exp

(

−1

ε
I (x) + 1

2ε
‖x − x̂‖2Σ

)

− 1

∣
∣
∣
∣Lμy (dx).

= 1

Z̃

∣
∣Z̃ − Z

∣
∣+
∫

Rd

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx).

Now, the estimate

∣
∣Z − Z̃

∣
∣ ≤

∫

Rd

∣
∣
∣
∣exp

(

−1

ε
I (x)

)

− exp

(

− 1

2ε
‖x − x̂‖2Σ

)∣∣
∣
∣ dx

= Z̃
∫

Rd

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx)

yields the proposition. �
Proposition 3.7 (Close range estimate) Suppose that Assumption 3.2 holds. Then it
follows that

∫

U (r0)

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx) ≤ cdε

− d
2

∫ r0

0
f (r)rd−1dr

for all r0 ≥ 0, where f and cd are defined as in Theorem 3.4.

Proposition 3.8 (Far range estimate) Suppose that Assumption 3.3 holds. Then we
have

∫

Rd\U (r0)

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx) ≤ δ− d

2

(

1 − Ξd

(
δr20
ε

))

(3.6)

for all r0 ≥ 0.

The proof of Theorem 3.4 is now very short.

Proof of Theorem 3.4 By Proposition 3.6 we have

dTV(μy,Lμy ) ≤
∫

Rd

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx).

Now, splitting up this integral into integrals overU (r0) and its complement and apply-
ing Propositions 3.7 and 3.8 proves the statement. �
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Remark 3.9 1. Because of I (x̂) = 0 and the necessary optimality condition DI (x̂) =
0, the function R2(x) = I (x)− 1

2‖x − x̂‖2Σ defined in Proposition 3.6 is precisely
the remainder of the second order Taylor polynomial of I around x̂ . In Proposi-
tion 3.7, Assumption 3.2 is used to control R2 near theMAP estimate by bounding
the third order differential of I . In Proposition 3.8, in turn, Assumption 3.3 is used
to control R2 at a distance from x̂ by bounding it from below by − 1−δ

2 ‖x − x̂‖2Σ .
2. The constant K ≥ 0 in Assumption 3.2 quantifies the non-Gaussianity of the

likelihood and the prior distribution and can be arbitarily large. Assumption 3.3
bounds the unnormalized log-posterior density from above by a multiple of the
unnormalized log-density of the Laplace distribution, where the constant δ > 0
represents the scaling factor and can be arbitrarily small. This restricts our results
to posterior distributions whose tail does not decay slower than that of a Gaussian
distribution. Assumption 3.3 can for example be violated if a prior distribution
with heavier than Gaussian tail is chosen such as a Cauchy distribution and if the
forward mapping is linear but singular. Our main interest lies on inverse problems
with a posterior distribution that is not too different from a Gaussian distribution,
since this is a setting in which the Laplace approximation can be expected to yield
reasonable results.

3. In case of a linear inverse problem and a Gaussian prior distribution, the Laplace
approximation is exact, so that Assumptions 3.2 and 3.3 are trivially satisfied with
K = 0 and δ = 1. We will see in Sect. 5 that Assumptions 3.2 and 3.3 are satisfied
for nonlinear inverse problems with δ and K as given in Propositions 5.6 and 5.7
if the prior distribution is Gaussian and the nonlinearity of the forward mapping
is small enough. In this case, the quadratic lower bound on I in Assumption 3.3
restricts the nonlinearity of the forward mapping to be small enough such that
the tail of the posterior distribution does not decay slower than that of a Gaussian
distribution.

4. Note that neither in Sect. 3 nor in Sect. 4 we make use of the Gaussianity of
the noise. Therefore, the results of these sections remain valid for non-Gaussian
noise as long as the log-likelihood satisfies Assumptions 3.2 and 3.3. In case of
noise with a log-density −ν ∈ C3(Rd), the negative log-likelihood takes the form
Φ(x) = ν(y − G(x)) and we have I (x) = ν(y − G(x)) + εR(x) + c. Consider
for example standard multivariate Cauchy noise, where

ν(η) = − ln

⎡

⎣ C
(
1 + |η|2) d+1

2

⎤

⎦ = d + 1

2
ln
(
1 + |η|2

)
− lnC

for all η ∈ R
d . The derivatives of up to third order of s �→ ln(1 + s), s ≥ 0, are

bounded since they are continuous and converge to 0 as s tends to infinity. By the
smoothness of x �→ |x |2, ν is therefore in C3(Rd) and

‖D3ν(x)‖ := sup
|h1|,|h2|,|h3|≤1

∣
∣
∣D3ν(x)(h1, h2, h3)

∣
∣
∣
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is uniformly bounded. In case of a linear forward mapping, the uniform bounded-
ness transfers to ‖D3Φ(x)‖ and we can estimate

‖D3Φ(x)‖Σ ≤
∥
∥
∥Σ− 1

2

∥
∥
∥

−3 ‖D3Φ(x)‖

for any symmetric positive definite matrix Σ .
5. We make Assumptions 3.2 and 3.3 globally, i.e., for all x ∈ R

d , for the sake of
simplicity. For a given r0 ≥ 0, Theorem 3.4 remains valid if Assumption 3.2 only
holds for ‖x − x̂‖Σ ≤ r0 and if Assumption 3.3 only holds for ‖x − x̂‖Σ ≥ r0.
This allows for prior distributions which are not supported on the whole spaceRd ,
as long as the support of the prior contains the set U (r0) and R ∈ C3(U (r0)). In
this case, R and I are allowed to take values in R := R ∪ {∞} and we follow the
convention exp(−∞) = 0.

6. The constant K in Assumption 3.2 can be replaced by a radial bound ρ(‖x − x̂‖Σ)

with amonotonically increasing function ρ. This way, an estimate of the form (3.2)
can be obtained with f replaced by

f̃ (r) =
(

exp

(
1 + ε

6ε
ρ(r)r3

)

− 1

)

exp

(

− 1

2ε
r2
)

.

Remark 3.10 Both the unnormalizedposterior density exp(− 1
ε
I (x)) and the unnormal-

ized Gaussian density exp(− 1
2ε‖x − x̂‖2Σ) attain their maximum 1 in x̂ . The densities

of μy and Lμy themselves, however, take the values 1/Z and 1/Z̃ in x̂ due to the
different normalization, see Figure 1. For this reason, the probability of small balls
around x̂ underμy andLμy differs asymptotically by a factor of Z̃/Z . This has several
consequences in case that the normalization constants Z and Z̃ differ considerably.

One the one hand, credible regions around x̂ may have considerably different size
under the posterior distribution and its Laplace approximation. On the other hand, the
integrand

1

2

∣
∣
∣
∣
∣

exp(− 1
ε
I (x))

Z
− exp(− 1

2ε‖x − x̂‖2Σ)

Z̃

∣
∣
∣
∣
∣

of the total variation distance dTV(μy,Lμy ) may, unlike the integrand of the funda-
mental estimate (3.1), have a significant amount of mass around x̂ , see Figure 1. This
means that a significant portion of the error when approximating the probability of
an event under μy by that under Lμy may be due to the difference in their densities
near the MAP estimate x̂ . So although the Laplace approximation is defined by the
local properties of the posterior distribution in the MAP estimate, it is not necessarily
a good local approximation around it.

A large difference in the normalization constants Z and Z̃ as mentioned above
reflects that the log-posterior density cannot be approximated well globally by its
second order Taylor polynomial around x̂ . In the proof of Proposition 3.6, we saw
that the difference in normalization is in fact bounded by the total variation of the
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532 T. Helin, R. Kretschmann

Fig. 1 The probability densities of a posterior distribution μy and its Laplace approximationLμy (left), as
well as the integrands of the total variation distance between μy andLμy and of the fundamental estimate
(3.1) (right)

unnormalized densities. The value of Proposition 3.6 lies in providing an estimate for
the total variation error that only involves unnormalized densities.

In the following sections, we present the proofs of our close and far range estimate,
and characterize the optimal choice of r0.

3.1 Proof of Proposition 3.7

We consider the close range integral

∫

U (r0)

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx)

over the Σ-norm ball with radius r0 ≥ 0. The proof of our close range estimate is
based upon the following estimate for the remainder term R2(x).

Lemma 3.11 If Assumption 3.2 holds, then we have

|R2(x)| ≤ 1 + ε

6
K‖x − x̂‖3Σ for all x ∈ R

d . (3.7)

Proof Weset h := x−x̂ andwrite the remainder of the second order Taylor polynomial
of Φ in mean-value form as

R2,Φ(x) := Φ(x) − Φ(x̂) − DΦ(x̂)(h) − 1

2
D2Φ(x̂)(h, h) = 1

6
D3Φ(z)(h, h, h)

for some z ∈ x̂ + [0, 1]h. Since x̂ + [0, 1]h ⊂ U (‖x − x̂‖Σ), we can now use the
multilinearity of D3Φ(z) to express R2,Φ as

R2,Φ(x) = 1

6
D3Φ(z)

(
h

‖h‖Σ

,
h

‖h‖Σ

,
h

‖h‖Σ

)

‖h‖3Σ
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for some z ∈ U (‖x − x̂‖Σ), and estimate

|R2,Φ(x)| ≤ 1

6
‖D3Φ(z)‖Σ‖h‖3Σ ≤ 1

6
K‖h‖3Σ

using Assumption 3.2. By proceeding similarly for R, we now obtain

|R2(x)| ≤ |R2,Φ(x)| + ε|R2,R(x)| ≤ 1

6
K‖h‖3Σ + ε

6
K‖h‖3Σ.

�
Now, we can prove our close range estimate.

Proof of Proposition 3.7 By Lemma 3.11 and (2.3), we have

∫

U (r0)

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx) ≤ 1

Z̃

∫

U (r0)
f (‖x − x̂‖Σ)dx

= 1

Z̃

√
detΣ

∫

{u∈Rd :|u|≤r0}
f (|u|)du

= ε− d
2 (2π)−

d
2 · dκd

∫ r0

0
f (r)rd−1dr ,

since |u| = ‖x − x̂‖Σ . Here

κd = πd/2

Γ (d/2 + 1)

denotes the volume of the d-dimensional Euclidean unit ball (dκd is its surface area).
Using the fundamental recurrence Γ (z + 1) = zΓ (z), we can write

dκd = 2πd/2

Γ (d/2)
.

�

3.2 Proof of Proposition 3.8

Now, we consider the integral

∫

Rd\U (r0)

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx)

over the space outside of a Σ-norm ball with radius r0 ≥ 0. In the proof of our
far range estimate, the following expression is used to describe the probability of
R
d\U (r0) under Lμy . Let Γ (a, z) denote the upper incomplete gamma function.
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Lemma 3.12 Let ν = N (x̂, δ−1εΣ) with δ > 0. Then,

ν
(
R
d\U (r0)

)
= 1

Γ (d/2)
Γ

(
d

2
,
δr20
2ε

)

for all r0 ≥ 0.

Proof We compute the tail integral explicitly using a local parameter and polar coor-
dinates. This yields

ν({‖x − x̂‖Σ ≥ r0}) = δd/2

εd/2(2π)d/2
√
detΣ

∫

{‖x−x̂‖Σ≥r0}
exp

(

− δ

2ε
‖x − x̂‖2Σ

)

dx

= δd/2

εd/2(2π)d/2

∫

{|u|≥r0}
exp

(

− δ

2ε
|u|2
)

du

= δd/2

εd/2(2π)d/2 dκd

∫ ∞

r0
exp

(

− δ

2ε
r2
)

rd−1dr .

We can express this integral in terms of the upper incomplete gamma function by
substituting s = δr2/2ε (note that r ′(s) = 2−1/2ε1/2δ−1/2s−1/2) as

∫ ∞

r0
e− δ

2ε r
2
rd−1dr =

∫ ∞
δr20
2ε

e−s2
d
2 −1ε

d
2 δ− d

2 s
d
2 −1ds = 2

d
2 −1ε

d
2 δ− d

2 Γ

(
d

2
,
δr20
2ε

)

.

This leads to

ν({‖x − x̂‖Σ ≥ r0}) = d

2

1

Γ (d/2 + 1)
Γ

(
d

2
,
δr20
2ε

)

.

Now, using the fundamental recurrence Γ (z + 1) = zΓ (z) completes the proof. �
Now, we can prove our far range estimate.

Proof of Proposition 3.8 Let x ∈ R
d\U (r0). We distinguish between two cases. First,

consider the case that R2(x) ≥ 0. For t ≥ 0, the estimate |e−t − 1| ≤ 1 holds. This
implies

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣ ≤ 1.

Next, consider the case that R2(x) < 0. By Assumption 3.3, we have

R2(x) = I (x) − 1

2
‖x − x̂‖2Σ ≥ δ − 1

2
‖x − x̂‖2Σ

for all x ∈ R
d . For t ≤ 0 we have |e−t − 1| = e−t − 1 < e−t , and thus

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣ ≤ exp

(

−1

ε
R2(x)

)

≤ exp

(

−δ − 1

2ε
‖x − x̂‖2Σ

)

.
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Together, this shows that

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣ ≤ exp

(

−δ − 1

2ε
‖x − x̂‖2Σ

)

for all x ∈ R
d . Now it follows that

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣ exp

(

− 1

2ε
‖x − x̂‖2Σ

)

≤ exp

(

− δ

2ε
‖x − x̂‖2Σ

)

for all x ∈ R
d . This yields

∫

Rd\U (r0)

∣
∣
∣
∣exp

(

−1

ε
R2(x)

)

− 1

∣
∣
∣
∣Lμy (dx)

≤ 1

(2πε)d/2
√
detΣ

∫

Rd\U (r0)
exp

(

− δ

2ε
‖x − x̂‖2Σ

)

dx

Now, the proposition follows from

δd/2

(2πε)d/2
√
detΣ

∫

Rd\U (r)
exp

(

− δ

2ε
‖x − x̂‖2Σ

)

dx

= 1

Γ (d/2)
Γ

(
d

2
,
δr2

2ε

)

= 1 − Ξd

(
δr20
ε

)

,

which in turn holds by Lemma 3.12 and the identity Γ (a, z) = Γ (a) − γ (a, z). �

3.3 Optimal choice of the parameter

We have the following necessary optimality condition for the parameter r0 in Theo-
rem 3.4.

Proposition 3.13 The optimal choice of r0 in the error bound (3.2) is either 0 or
satisfies

exp

(
(1 + ε)K

6ε
r30

)

− 1 − exp

(
1 − δ

2ε
r20

)

= 0.

Proof The terms E1 and E2 are differentiable on [0,∞). Clearly, the optimal r0 is
either 0 or satisfies the identity

E ′(r0) = E ′
1(r0) + E ′

2(r0) = 0. (3.8)

We have that

E ′
1(r0) = cdε

− d
2 f (r0)r

d−1
0 = cdε

− d
2

(

exp

(
(1 + ε)K

6ε
r30

)

− 1

)

exp

(

− 1

2ε
r20

)

rd−1
0
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and

E ′
2(r0) = −2δ1− d

2 r0
ε

Ξ ′
d

(
δr20
ε

)

= − 2

2d/2Γ (d/2)
· r

d−1
0

εd/2 exp

(

− δ

2ε
r20

)

Identity (3.8) now corresponds to

exp

(
(1 + ε)K

6ε
r30

)

− 1 − exp

(
1 − δ

2ε
r20

)

= 0

which yields the result. �
Remark 3.14 The right hand side of the far range estimate (3.6) can be written as

cdε
− d

2

∫ ∞

r0
exp

(

− δ

2ε
r2
)

rd−1dr ,

where cd is defined as in Theorem 3.4. The optimal choice of r0 is therefore one for
which the integrands f (r0)rd−1 and exp(−δr20/2ε)rd−1 of the close and the far range
estimate take the same value.

4 Explicit error estimate

Here, we present a non-asymptotic error estimate in terms of K , δ, ε, and the problem
dimension d. While Theorem 3.4 constitutes a non-asymptotic error estimate and
is the sharpest of our three main results, it is not immediately clear how the non-
Gaussianity of the likelihood and the prior distribution, as quantified by the constant
K in Assumption 3.2, the noise level, and the problem dimension affect the error
bound. The purpose of the following theorem is to make this influence more explicit.

Theorem 4.1 Suppose that I , Φ, and R satisfy Assumptions 3.1–3.3. If K , δ, ε, and d
satisfy

6δ
3
2

(1 + ε)ε
1
2 K

≥ max

⎧
⎨

⎩
8d

3
2 ,

(

8 ln

(
2

C(1 + ε)ε
1
2 K δ

d
2

· Γ
( d
2

)

Γ
( d
2 + 3

2

)

)) 3
2

⎫
⎬

⎭
(4.1)

with C := √
2e/3, then

dTV
(
μy,Lμy

) ≤ 2C(1 + ε)ε
1
2 K

Γ
( d
2 + 3

2

)

Γ
( d
2

) . (4.2)

Remark 4.2 Condition (4.1) can be interpreted in the following way. For given d and δ,
it imposes an upper bound on the noise level ε1/2 and K , whereas for given δ, K , and ε,
it imposes an upper bound on the dimension d. As d → ∞, the ratio Γ

( d
2 + 3

2

)
/Γ
( d
2

)

grows in the order of d3/2, see [28, pp. 67–68].
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In order to prove this theorem, we introduce an exponential tail estimate for the
Laplace approximation, which is a modified version of [25, Prop. 4].

Lemma 4.3 Let ν = N (x̂, δ−1εΣ) with δ > 0. Then,

ν(Rd\U (r)) = 1 − Ξd

(
δr2

ε

)

≤ 2 exp

(

−δr2

8ε

)

holds for all r ≥ 2(dε/δ)1/2.

Proof By Lemma 3.12, we have

ν(Rd\U (r0)) = 1

Γ (d/2)
Γ

(
d

2
,
δr20
2ε

)

= 1 − Ξd

(
δr20
ε

)

.

Let x ∼ N (x̂, δ−1εΣ). Then u := Σ−1/2(x − x̂) ∼ N (0, δ−1ε Id). The concentra-
tion inequality for Gaussian measures yields

P(|u| > s + E[|u|]) ≤ P
(∣∣|u| − E[|u|]∣∣ > s

) ≤ 2 exp

(

− s2

2σ 2

)

for all s > 0,

where σ := sup|z|≤1 E[|(z, u)|2], see [13, Chapter 3]. Now,

σ 2 = λmax(δ
−1ε Id) = δ−1ε,

and

E[|u|] ≤ E[|u|2] 12 = δ− 1
2 ε

1
2 tr(Id)

1
2 = δ− 1

2 ε
1
2 d

1
2 .

By choosing s = δ− 1
2 ε1/2d1/2 and using that r ≥ 2s, we obtain

μy(Rd\U (r)) = P(|u| > r) ≤ P

(
|u| >

r

2
+ E[|u|]

)
≤ 2 exp

(

−δr2

8ε

)

.

�
Proof of Theorem 4.1 We choose

r0 :=
(

6ε

(1 + ε)K

) 1
3

.

According to Theorem 3.4, we then have

dTV
(
μy,Lμy

) ≤ E1(r0; K , ε, d) + E2(r0; δ, ε, d).
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For all t ≥ 0, the exponential function satisfies the estimate

exp(t) − 1 = (1 − exp(−t)) exp(t) ≤ t exp(t).

Therefore, we have

E1(r0; K , ε, d) = 2

Γ
(
d
2

) (2ε)− d
2

∫ r0

0

(

exp

(
(1 + ε)K

6ε
r3
)

− 1

)

exp

(

− 1

2ε
r2
)

rd−1dr

≤ 2

Γ
(
d
2

) (2ε)− d
2 −1 (1 + ε)K

3

∫ r0

0
exp

(
(1 + ε)K

6ε
r3 − 1

2ε
r2
)

rd+2dr .

By the choice of r0, we have

(1 + ε)K

6ε
r3 ≤ 1 for all r ∈ [0, r0],

so that the integral is bounded by

e
∫ r0

0
exp

(

− 1

2ε
r2
)

rd+2dr .

By substituting s = r2/2ε, we can in turn express this integral as

1

2
(2ε)

d
2 + 3

2

∫ r20
2ε

0
e−ss

d
2 + 1

2 ds = 1

2
(2ε)

d
2 + 3

2 γ

(
d

2
+ 3

2
,
r20
2ε

)

.

Now, we use the inequality γ (a, z) ≤ Γ (a) to obtain that

E1(r0; K , ε, d) ≤ 2
1
2 e

3
(1 + ε)ε

1
2 K

Γ
( d
2 + 3

2

)

Γ
( d
2

) .

By condition (4.1), we have

r0 =
(

6ε

(1 + ε)K

) 1
3 ≥ 2

(
dε

δ

) 1
2

.

Thus, we may apply Lemma 4.3, which yields

E2(r0; δ, ε, d) = δ− d
2

(

1 − Ξ

(

− δr20
ε

))

≤ 2δ− d
2 exp

(

−δr20
8ε

)

= 2δ− d
2 exp

⎛

⎝−1

8

(
6δ

3
2

(1 + ε)ε
1
2 K

) 2
3
⎞

⎠ ≤ C(1 + ε)ε
1
2 K

Γ
( d
2 + 3

2

)

Γ
( d
2

)
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by condition (4.1). Now, we obtain by summing up that

dTV
(
μy,Lμy

) ≤ 2C(1 + ε)ε
1
2 K

Γ
( d
2 + 3

2

)

Γ
( d
2

) .

�

4.1 Asymptotic behavior for fixed and increasing problem dimension

Now, we describe the convergence of the Laplace approximation for a sequence of
nonlinear problems that satisfyAssumptions 3.1–3.3with varyingbounds {Kn}n∈N and
{δn}n∈N, respectively, and varying squared noise levels {εn}n∈N, both in case of a fixed
and an increasing problem dimension. We denote the data by yn , the prior distribution
by Rn , the scaled negative log-likelihood by Φn , and set In(x) = Φn(x) + εn Rn(x).

First, we consider the case that the problem dimension d remains constant.

Corollary 4.4 (Fixed problemdimension) Suppose that In,Φn, and Rn satisfy Assump-
tions 3.1–3.3. If ε1/2n Kn → 0 and if there exist δ > 0 and N0 ∈ N such that

δn ≥ δ and εn ≤ 1

for all n ≥ N0, then there exist C = C(d) > 0 and N1 ≥ N0 such that

dTV
(
μyn ,Lμyn

) ≤ Cε
1
2
n Kn

for all n ≥ N1.

Proof Since {δn}n∈N is bounded from below and {εn}n∈N is bounded from above, the
left hand side of (4.1) is bounded from below by C1/ε

1/2
n Kn for some C1 > 0. On the

other hand, the right hand side of (4.1) is bounded from above by (8 lnC2/ε
1/2
n Kn)

2/3

for large enough n and some C2 > 0, since {δn}n∈N is bounded from below and
{εn}n∈N is bounded from below by 0. Consequently, there exists N1 ≥ N0 such that
condition (4.1) holds for all n ≥ N1 by the convergence ε

1/2
n Kn → 0 and since

limt→∞ t−2/3 ln t = 0. Now, Theorem 4.1 yields the proposition. �
Remark 4.5 Corollary 4.4 covers two cases of particular interest: That of Kn → 0
while εn = ε remains constant, which yields a rate of Kn , and that of εn → 0 while
Kn = K remains constant, which yields a rate of ε

1/2
n . The former case can, for

example, occur if the sequence of forward mappings Gn converges pointwise towards
a linear mapping, see Sect. 5. The convergence rate in the latter case, i.e., in the small
noise limit, agrees with the rate established in [25, Theorem 2] if we set εn = 1

n .

Now, we consider the case of an increasing problem dimension d → ∞. To this
end, we index Kd , δd , εd , and Rd by d ∈ N.
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Corollary 4.6 (Increasing problem dimension) Suppose that Id , Φd , and Rd satisfy
Assumptions 3.1–3.3 and that ε

1/2
d Kd → 0. If there exists N0 ∈ N such that δd ≤

e−1/2, εd ≤ 1, and

3

ε
1
2
d Kd

≥
(

8

δd
ln

1

δd

) 3
2

d
3
2 (4.3)

for all d ≥ N0, then for every C > 2
√
2e/3, there exists N1 ≥ N0 such that

dTV
(
μyd ,Lμyd

) ≤ Cε
1
2
d Kdd

3
2

for all d ≥ N1.

Proof We can write condition (4.1) as

⎛

⎝ 6

(1 + εd)ε
1
2
d Kd

⎞

⎠

2
3

≥ 4d

δd
and (4.4)

⎛

⎝ 6

(1 + εd)ε
1
2
d Kd

⎞

⎠

2
3

≥ 8

δd
ln

⎛

⎝ 2

C(1 + εd)ε
1
2
d Kd

· Γ
( d
2

)

Γ
( d
2 + 3

2

)

⎞

⎠+ 4d

δd
ln

1

δd
. (4.5)

By [28, pp. 67–68], we have

lim
d→∞

Γ
( d
2 + 3

2

)

Γ
( d
2

)

(
d

2

)− 3
2 = 1, (4.6)

so that the first term on the right hand side of (4.5) is bounded from above by

8e
1
2 ln

C1

ε
1
2
d Kdd

3
2

≤ 8e
1
2 ln

C1

ε
1
2
d Kd

for some C1 > 0, which in turn is bounded from above by

1

2

(
3

ε
1/2
d Kd

) 2
3

≤ 1

2

(
6

(1 + εd)ε
1/2
d Kd

) 2
3

(4.7)

for large enough d, due to the convergence ε
1/2
d Kd → 0, the boundedness from

above of {εn}n∈N, and since limt→∞ t−2/3 ln t = 0. By (4.3), the second term on
the right hand side of (4.5) is bounded from above by (4.7) for all d ≥ N0 as well.
Due to the assumption δd ≤ e−1/2 and (4.7), condition (4.3) also ensures that (4.4)
is satisfied for all d ≥ N0. Therefore, condition (4.1) is satisfied for large enough d.
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Now, Theorem 4.1 and (4.6) yield that for every C > 2
√
2e/3 there exists N1 ≥ N0

such that

dTV
(
μyd ,Lμyd

) ≤ Cε
1
2
d Kdd

3
2

for all d ≥ N1. �

5 Perturbed linear problems with Gaussian prior

In this section we consider the case that the forward mapping G is given by a linear
mapping with a small nonlinear perturbation, i.e., that

Gτ (x) = Ax + τ F(x), (5.1)

with A ∈ R
d×d , F ∈ C3(Rd), and τ ≥ 0. We then quantify the error of the Laplace

approximation for small τ , that is, when the nonlinearity of the forward mapping
is small, and for fixed problem dimension d. In order to isolate the effect of the
nonlinearity on estimate (4.2), we consider the case when not only the noise, but also
the prior distribution is Gaussian. This ensures that all non-Gaussianity in the posterior
distribution results from the nonlinearity of Gτ .

We assign a prior distribution μ = N (m0,Σ0) with m0 ∈ R
d and symmetric,

positive definite Σ0 ∈ R
d×d , i.e., we set

R(x) := − ln

(
1

(2π)d/2
√
detΣ0

exp

(

−1

2
‖x − m0‖2Σ0

))

= 1

2
‖x − m0‖2Σ0

+ d

2
ln 2π + 1

2
ln detΣ0. (5.2)

For each τ ≥ 0 we denote the data by yτ and the scaled negative log-likelihood by
Φτ (x) = 1

2 |Gτ (x) − yτ |2.
We make the following assumptions on the function Iτ and the perturbation F . Let

B(r) ⊂ R
d denote the closed Euclidean ball with radius r around the origin.

Assumption 5.1 We assume that there exists τ0 > 0 such that for all τ ∈ [0, τ0],

Iτ (x) = 1

2
|Ax + τ F(x) − yτ |2 + ε

2
‖x − m0‖2Σ0

+ cτ

has a unique minimizer x̂τ with D2 Iτ (x̂τ ) > 0. Furthermore, we assume that yτ , x̂τ

and Στ := D2 Iτ (x̂τ )
−1 converge as τ → 0 with limτ→0 Στ > 0 and denote their

limits by y, x̂ , and Σ , respectively.

Assumption 5.2 There exist constants C0, . . . ,C3 > 0 and τ0 > 0 such that

‖D j F(x)‖Στ
≤ C j , j = 0, . . . , 3,
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542 T. Helin, R. Kretschmann

for all x ∈ R
d and τ ∈ [0, τ0], and there exists M > 0 such that

D3F ≡ 0 on R
d\B(M).

The idea behind the following theorem is to make explicit how the nonlinearity of
the forward mapping, as quantified by τ and the constants C0, . . . ,C3, M in Assump-
tion 5.2, influences the total variation error bound of Theorem 4.1.

Theorem 5.3 Suppose that Assumptions 5.1 and 5.2 hold. Then, there exists τ1 ∈
(0, τ0] such that

dTV
(
μyτ ,Lμyτ

) ≤ C(1 + ε)ε
1
2

(

V (τ )τ + W

2
τ 2
)

for all τ ∈ [0, τ1], where

C := 2

3

√
2e

Γ
( d
2 + 3

2

)

Γ
( d
2

) ,

V (τ ) := C3 (‖A‖M + |yτ |) + 3C2

∥
∥
∥
∥AΣ

1
2
τ

∥
∥
∥
∥ ,

W := C3C0 + 3C2C1.

Moreover, {V (τ )}τ∈[0,τ1] is bounded.
Remark 5.4 1. The choice of the upper bound τ1 is made explicit in the proof of

Theorem 5.3 and depends on d and ε, i.a., through δ0 as defined in Proposition 5.6.
Theproof ofTheorem5.3 canbe adapted to yield a result analogous toCorollary 4.6
in the case when the problem dimension d tends to ∞ while the size τd of the
perturbation tends to 0. Then, δτd may converge to 0, and (4.3) imposes a bound
on the rate at which {τd}d∈N tends to 0.

2. By the boundedness and continuity of F , Gτ Γ -converges toward A. By the
fundamental theorem of Γ -convergence and Assumption 5.1, this, in turn, implies
that x̂ is the minimizer of

I (x) = 1

2
|Ax − y|2 + ε

2
‖x − m0‖2Σ0

+ c

and that Σ = D2 I (x̂)−1.
3. Theorem 5.3 remains valid if the assumption that D3F ≡ 0 outside of a bounded

set is replaced by

‖D3F(x)‖Στ
≤ C3M |x |−1

for all x ∈ R\{0} and τ ∈ [0, τ0].
In order to prove Theorem 5.3, we first show that Assumptions 3.2 and 3.3 are

satisfied for small enough τ and determine the bounds Kτ and δτ . Then, we derive the
error estimate for the perturbed linear case.
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5.1 Verifying Assumption 3.3

We verify that Assumption 3.3 holds for small enough τ and determine δτ . First, we
estimate Iτ from below.

Lemma 5.5 For all τ ≥ 0 and x ∈ R
d , we have

Iτ (x) ≥ 1

2
|Gτ (x) − Gτ (x̂τ )|2 + ε

2
‖x − x̂τ‖2Σ0

− |Gτ (x) − Gτ (x̂τ ) − DGτ (x̂τ )(x − x̂τ )| · |Gτ (x̂τ ) − yτ |.

Proof Since x̂τ satisfies the necessary optimality condition

DΦτ (x̂τ ) + εDR(x̂τ ) = DIτ (x̂τ ) = 0,

we can write Iτ (x) as

Iτ (x) = Φτ (x) − Φτ (x̂τ ) − DΦτ (x̂τ )(x − x̂τ ) + ε
(
R(x) − R(x̂τ ) − DR(x̂τ )(x − x̂τ )

)

for all x ∈ R
d . For the log-likelihood, we have

Φτ (x) − Φτ (x̂τ ) = 1

2
|Gτ (x) − Gτ (x̂τ )|2 + (Gτ (x) − Gτ (x̂τ ),Gτ (x̂τ ) − yτ ),

and

DΦτ (x̂τ )(x − x̂τ ) = (DGτ (x̂τ )(x − x̂τ ),Gτ (x̂τ ) − yτ )

for all x ∈ R
d . From this, we obtain

Φτ (x) − Φτ (x̂τ ) − DΦτ (x̂τ )(x − x̂τ )

≥ 1

2
|Gτ (x) − Gτ (x̂τ )|2 − |Gτ (x) − Gt (x̂τ ) − DGτ (x̂t )(x − x̂τ )| · |Gτ (x̂τ ) − yτ |

(5.3)

using the Cauchy–Schwarz inequality. For the log-prior density, we have

DR(x̂τ )(x − x̂τ ) = (x̂τ − m0, x − m0)Σ0 − ‖x̂τ − m0‖2Σ0

for all x ∈ R
d , and thus

R(x) − R(x̂τ ) − DR(x̂τ )(x − x̂τ ) = 1

2
‖x − x̂τ‖2Σ0

. (5.4)

Now, adding up (5.3) and (5.4) multiplied with ε yields the proposition. �
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Proposition 5.6 Suppose that Assumption 5.2 holds. Then there exists τ0 > 0, such
that Iτ satisfies

Iτ (x) ≥ δτ

2
‖x − x̂τ‖2Στ

for all x ∈ R
d and τ ∈ [0, τ0], where

δτ := γ1(τ ) − γ2(τ )|Gτ (x̂τ ) − yτ | > 0

with

γ1(τ ) := 1
∥
∥
∥
∥Σ

− 1
2

τ (ATA + εΣ−1
0 )− 1

2

∥
∥
∥
∥

2 − C2
1τ

2 and γ2(τ ) := C2τ

for all τ ∈ [0, τ0]. Furthermore, limτ→0 δτ > 0.

Proof Let x ∈ R
d be arbitrary. Then, there exists z1 ∈ R

d such that F(x) − F(x̂τ ) =
DF(z1)(x − x̂τ ). Therefore,

|F(x) − F(x̂τ )| ≤ ‖DF(z1)‖Στ
‖x − x̂τ‖Στ

≤ C1‖x − x̂τ‖

by Assumption 5.2. Moreover, we have

‖x − x̂τ‖Στ ≤
∥
∥
∥
∥Σ

− 1
2

τ

(
ATA + εΣ−1

0

)− 1
2

∥
∥
∥
∥ ·
∣
∣
∣
∣

(
ATA + εΣ−1

0

) 1
2
(x − x̂τ )

∣
∣
∣
∣ ,

and hence

1

2
|Gτ (x) − Gτ (x̂τ )|2 + ε

2
‖x − x̂τ‖2Σ0

≥ 1

2
|A(x − x̂τ )|2 − τ 2

2
|F(x) − F(x̂τ )|2 + ε

2
‖x − x̂τ‖2Σ0

≥ 1

2

((
ATA + εΣ−1

0

)
(x − x̂τ ), x − x̂τ

)
− τ 2C2

1

2
‖x − x̂τ‖2Στ

≥ 1

2
γ1(τ )‖x − x̂τ‖2Στ

for all τ ≤ τ0. There also exists z2 ∈ R
d such that

Gτ (x) − Gτ (x̂τ ) − DGτ (x̂τ )(x − x̂τ ) = 1

2
D2Gτ (z2)(x − x̂τ , x − x̂τ ),
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and D2Gτ = τD2F . By Assumption 5.2, we thus have

|Gτ (x) − Gτ (x̂τ ) − DGτ (x̂τ )(x − x̂τ )| ≤ τ

2
‖D2F(z2)‖Στ

‖x − x̂τ‖2Στ

≤ τC2

2
‖x − x̂τ‖2Στ

= 1

2
γ2(τ )‖x − x̂τ‖2Στ

for all τ ≤ τ0. Now, Lemma 5.5 yields that

Iτ (x) ≥ 1

2
γ1(τ )‖x − x̂τ‖2Στ

− 1

2
γ2(τ )‖x − x̂τ‖2Στ

|Gτ (x̂τ ) − yτ | = δτ

2
‖x − x̂τ‖2Στ

.

It remains to show that limτ→0 δτ > 0. The convergence of yτ and x̂τ yields

Gτ (x̂τ ) − yτ → Ax̂ − y.

Now, it follows from limτ→0 γ2(τ ) = 0 and the convergence of Στ that

lim
τ→0

δt = lim
τ→0

γ1(τ ) = 1
∥
∥
∥Σ− 1

2 (ATA + εΣ−1
0 )− 1

2

∥
∥
∥
2 > 0.

�

5.2 Verifying Assumption 3.2

Now, we verify that Assumption 3.2 holds for small τ . The following proposition also
describes how the nonlinearity of the forwardmapping translates into non-Gaussianity
of the likelihood, as quantified by the costant Kτ .

Proposition 5.7 Suppose that Assumption 5.2 holds. Then Φτ and R satisfy Assump-
tion 3.2 for all τ ∈ [0, τ0] with

Kτ := τ

(

C3 (‖A‖M + |yτ |) + 3C2

∥
∥
∥
∥AΣ

1
2
τ

∥
∥
∥
∥

)

+ τ 2

2
(C3C0 + 3C2C1) .

Proof We express the scaled negative log-likelihood for all x ∈ R
d as

Φτ (x) = 1

2
|Ax + τ F(x) − yτ |2

= 1

2
|Ax − yτ |2 + τ(Ax − yτ , F(x)) + τ 2

2
|F(x)|2

= Φ0(x) + τΨ1(x; τ) + τ 2Ψ2(x),
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where Ψ1(x; τ) := (Ax − yτ , F(x)) and Ψ2(x) := 1
2 |F(x)|2. For the first term, we

have D3Φ0(x) = 0 for all x ∈ R
d due to the linearity of A. The third differentials of

Ψ1, Ψ2 can be stated explicitly as

D3Ψ1(x; τ)(h1, h2, h3) = (D3F(x)(h1, h2, h3), Ax − yτ ) + (D2F(x)(h1, h2), Ah3)

+ (D2F(x)(h2, h3), Ah1) + (D2F(x)(h1, h3), Ah2),

and

D3Ψ2(x)(h1, h2, h3) = 1

2
(D3F(x)(h1, h2, h3), F(x)) + 1

2
(D2F(x)(h1, h2), DF(x)h3)

+ 1

2
(D2F(x)(h2, h3), DF(x)h1) + 1

2
(D2F(x)(h1, h3), DF(x)h2)

for all x, h1, h2, h3 ∈ R
d and τ ≥ 0. Therefore, we have

‖D3Ψ1(x; τ)‖Στ
≤ ‖D3F(x)‖Στ

|Ax − yτ | + 3‖D2F(x)‖Στ

∥
∥
∥
∥AΣ

1
2
τ

∥
∥
∥
∥

≤ C3 (‖A‖M + |yτ |) + 3C2

∥
∥
∥
∥AΣ

1
2
τ

∥
∥
∥
∥

for all x ∈ R
d and τ ≤ τ0 by Assumption 5.2. Moreover, we obtain

‖D3Ψ2(x)‖Στ
≤ 1

2
‖D3F(x)‖Στ

|F(x)| + 3

2
‖D2F(x)‖Στ

‖DF(x)‖Στ

≤ 1

2
C3C0 + 3

2
C2C1

for all x ∈ R
d and τ ≤ τ0. Now, it follows that

‖D3Φτ (x)‖Στ
≤ τ‖D3Ψ1(x; τ)‖Στ

+ τ 2‖D3Ψ2(x)‖Στ

≤ τ

(

C3 (‖A‖M + |yτ |) + 3C2

∥
∥
∥
∥AΣ

1
2
τ

∥
∥
∥
∥

)

+ τ 2

2
(C3C0 + 3C2C1)

for all x ∈ R
d and τ ≤ τ0. �

5.3 Proof of Theorem 5.3

Proof of Theorem 5.3 First of all, we note that Assumption 3.1 holds for all τ ≤ τ0 by
definition ofGτ , R and byAssumption 5.1. Second of all, we note that Assumption 3.3
holds for all τ ≤ τ0 by Proposition 5.6 with δτ as defined in Proposition 5.6, and that
δ0 = limτ→0 δτ > 0. This allows us to choose τ1 ≤ τ0 such that δτ ≥ 1

2δ0 =: δ

for all τ ∈ [0, τ1]. Third of all, we note that Assumption 3.2 holds for all τ ≤ τ0 by
Proposition 5.7 with Kτ as defined in Proposition 5.7, and that limτ→0 Kτ = 0.
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Since {δτ }τ∈[0,τ1] is bounded from below, the left hand side of condition (4.1) from
Theorem 4.1 is bounded from below by κ1/Kτ for some κ1 > 0, and the right hand
side of condition (4.1) is bounded from above by (8 ln κ2/Kτ )

3/2 for small enough
τ and some κ2 > 0. Therefore, we can choose τ2 ≤ τ1 such that condition (4.1) is
satisfied for all τ ∈ [0, τ2]. Now, Theorem 4.1 yields that

dTV
(
μyτ ,Lμyτ

) ≤ 2

3

√
2e(1 + ε)ε

1
2
Γ
( d
2 + 3

2

)

Γ
( d
2

)

·
[(

C3 (‖A‖M + |yt |) + 3C2

∥
∥
∥
∥AΣ

1
2
τ

∥
∥
∥
∥

)

τ + 1

2
(C3C0 + 3C2C1) τ2

]

for all τ ∈ [0, τ2]. By the convergence of yτ andΣτ , we can, moreover, choose τ3 ≤ τ2

such that both {|yτ |}τ∈[0,τ3] and {‖AΣ
1/2
τ ‖}τ∈[0,τ3] are bounded. �

6 Outlook

In this paper we prove novel error estimates for the Laplace approximation when
applied to nonlinear Bayesian inverse problems. Here, the error is measured in TV
distance and our estimates aim to quantify effects independent of the noise level.
Our central error estimate in Theorem 3.4 is of particular use for high-dimensional
problems because it can be evaluated without integrating inRd . Our estimate in Theo-
rem 4.1makes the influence of the noise level, the nonlinearity of the forward operator,
and the problem dimension explicit. Our estimate for perturbed linear problems in
Theorem 5.3, in turn, specifies in more detail how the properties of the nonlinear
perturbation affect the approximation error.

We point out that our central estimate diverges with an increasing dimension for
a fixed noise level and forward mapping, and therefore such asymptotics does not
provide any added value compared to the trivial TV upper bound of 1. This unsatis-
factory observation is natural since the limiting posterior and Laplace approximation
(if well-defined) are singular with respect to each other and, consequently, the TV
distance is maximized. Future study is therefore needed to establish similar bounds
with distances that metrize the weak convergence such as the 1-Wasserstein distance.
Such effort would be aligned with recent developments in BvM theory that extend to
nonparametric Bayesian inference and, in particular, Bayesian inverse problems.
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