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Abstract: The interaction between brain serotonin (5-HT) deficiency and environmental adversity may
predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding
tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive
aggressiveness in both male and female null mutant (Tph2−/−) mice. In heterozygous male mice
(Tph2+/−), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress,
they exhibit increased aggression. Here, we exposed female Tph2+/− mice to a five-day rat predation
stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors.
Tph2+/− females exhibited excessive aggression and increased dominant behavior. Stressed mutants
displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3
β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin
basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin
oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp)
and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were
affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/− mice showed signs of
enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together,
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the combination of a moderate reduction in brain 5-HT with environmental challenges results in
behavioral changes in female mice that resemble the aggression-related behavior and resilience
seen in stressed male mutants; additionally, the combination is comparable to the phenotype of
null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to
underpin the molecular mechanisms leading to aggressive behavior.

Keywords: tryptophan hydroxylase-2 (Tph2); female aggression; 5-HT receptors; glycogen synthase
kinase-3 β (GSK-3β); myelination; predation stress

1. Introduction

Aggression is a behavior that is frequently accompanied by violence, and, as such,
results in numerous social problems and adverse health events. The World Health Organi-
zation categorizes violent behavior, the incidence of which continues to increase, among the
top 20 causes of disability worldwide [1]. Although women are less aggressive than men,
female aggression is often expressed in more indirect forms [2]. Recently, an increased inci-
dence of female aggressive behavior in individuals with neuropsychiatric disorders [3] and
more frequent crime statistics involving women have been reported [4]. This rise demands
a better understanding of the molecular mechanisms that underpin female aggression,
but the neurobiology of female aggression is largely unstudied. The use of experimental
animal models to investigate the neurobiology of female aggression is limited, as this type
of behavior is usually excluded from the normal repertoire of mouse and rat behavioral
assessments, and, when it is evaluated, more commonly focuses on male aggression [5,6].

Female aggression can result from a decreased synthesis of neuronal serotonin (5-HT);
studies employing complete inactivation of the gene encoding tryptophan hydroxylase-2
(Tph2), a key enzyme of 5-HT synthesis in the brain, have revealed that there are higher
levels of aggression in female Tph2−/− mice [7–10]. In humans, the Tph2 gene polymor-
phism G703T was found to contribute to anger-related traits and the expression of anger in
women [11]. Other variants of the Tph2 gene were also associated with a higher incidence
of anxiety disorder in women and with peripartum major depression [12,13].

Accumulating evidence highlights the importance of gene × environment interaction
in neuropsychiatric conditions [2,14–17] and suggests that genetic factors and, for example,
a stressful experience, may interact or synergize at a molecular level in the neurobiology
of aggression. Mechanistic studies addressing this interaction in the context of female
aggression are scarce. Nevertheless, female aggression has been shown to be influenced
by environmental adversity, including stress, both in animal experiments [2,6,18] and in
clinical studies where verbal and physical aggression was associated with a traumatic stress
experience [19].

The relevance of gene × environment interaction in the manifestation of pathological
aggression is supported by studies in male mice heterozygous for Tph2 gene inactivation
which exhibits a moderate reduction in brain 5-HT levels of 15–20% [7,8]. Tph2+/− mice
showed unaltered social behavior at baseline, but, after sub-chronic rat exposure stress,
demonstrated markedly increased levels of aggression and dominancy and reduced so-
ciability compared to wild type controls [20,21]. These changes were accompanied by
profound alterations in the brain metabolism of 5-HT, dopamine, and norepinephrine.
Together, the phenotype of stressed Tph2+/− male mice is, therefore, very reminiscent of
naïve Tph2 null mutants.

The effects of environmental challenges and stress on aggression are known to be
gender-specific [6]. In rodents, a decrease in aggressive and dominant behaviors has been
reported in females subjected to a maternal separation paradigm in C57BL6 mice [22]
and in Wistar rats following social isolation stress [23]. Males, by contrast, exhibited
increased aggression in these studies. Here, we sought to clarify how gene × environment
interactions affect aggressive behavior in female Tph2+/− mice and whether aggression in
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stressed female Tph2+/− mice would display similarities to male mutants. Owing to sex
differences in the neurobiology of aggression under stressful conditions, we hypothesized
that female Tph2+/− mice would not demonstrate the abnormally elevated aggressive
behavior found in male mutants. We adopted a previously validated five-day rat exposure
paradigm, including an element of restraint by virtue of limiting the space available for the
free movement of the Tph2+/− female mice which has been shown to induce changes in
monoamine transmitters, neurogenesis, oxidative stress, as well as aggressive behavior in
male Tph2+/− mice. This exposure paradigm has been shown to generate similar behavioral
changes to those found in another stress protocol variant where animals were placed in
larger containers [24]. There is, however, no doubt that immobilizing the mice in the
plexiglass tubes will add to the stress experienced, but the approach we adopted reduces
the overall number of animals required. The rat exposure procedure applied here has
been shown to result in increases in blood levels of CORT in C57BL/6 mice at 6 and 24 h
post-stress [24].

In the current study, social interaction/aggression-like behaviors of stressed female mice
were scored using measures of home cage social interaction and food competition [25–27].
Based on previous findings in Tph2−/− males [7,28,29], we studied the gene expression
of 5-HT receptors Htr1a and Htr2a. We also examined the gene expression of glycogen
synthase kinase-3β (GSK-3β), a marker of distress and degeneration, where changes in
expression are known to accompany aberrant serotoninergic processes [30] and regulate
aggression and stress responses [31]. Expression of plasticity markers AMPA receptor
subunit GluA2, synaptophysin (Syp), brain-derived neuronal factor (Bdnf ), its receptor Trkb,
cAMP response element binding protein (Creb), post-synaptic density 95 protein (PSD95),
and a marker of neuronal activation c-fos were also measured [32–34]. Gene expression
relating to brain myelination was also examined based on our previous findings in stressed
male Tph2+/− mice [35] where established relationships between myelination and the 5-HT
system [36] and stress [37] are recognized. The gene expression of myelin basic protein
(Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin
oligodendrocyte glycoprotein (Mog) was also measured as clinical studies have suggested
that elevated aggression is associated with altered myelination in the cortical brain areas [38–
41]. Finally, we sought to determine whether female Tph2+/− mice resemble features of
Tph2+/− males in the broader context of emotional resilience to environmental challenges
found in the modified swim test (modFST) and in tests for anxiety-like behavior [20,
42] in naïve and stressed female Tph2+/− mutants. Potential molecular changes were
investigated in the prefrontal cortex, a region of the brain implicated in the mechanisms of
both aggression and the response to stress [43–47]. In addition, in the modified swim test,
individual predisposition to an enhanced response to adversity learning has been shown to
be correlated with molecular changes in the prefrontal cortex which were not observed in
the hippocampus [42,48].

2. Materials and Methods
2.1. The Animals and Housing Conditions

We used 12-week-old Tph2+/− female mice, and their wild type littermates, which were
bred and genotyped in the facilities at the Institute of Molecular Medicine, New University
of Lisbon, Portugal as previously described as controls [8]. Mice of the same genotype
were housed in standard cages in groups of five under controlled laboratory conditions
(22 ± 1 ◦C, 55% humidity) and maintained on a reversed 12-h light/dark cycle (lights on
at 19:00), with food and water provided ad libitum. All mice were tested during the dark
phase of the light/dark cycle. Laboratory housing conditions and experimental procedures
were set up and maintained in accordance with Directive 2010/63/EU of 22 September
2010 and had been approved by the Ethics Committee of the New University of Lisbon (No.
0421/000/000/2013). Given that the emotionality and aggression in rodent females are
dependent on the estrous cycle, we co-housed the female experimental mice for 4-weeks
prior to the start of the experiments with male littermates, which has been previously
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shown to result in synchronization of the estrous cycle in C57BL6 mice (Veniaminova and
Bonapartes, unpublished data). All efforts were undertaken to minimize the potential
discomfort of the experimental animals. Experimental protocols conformed to directive
2010/63/EU and were compliant with ARRIVE guidelines (https://arriveguidelines.org
accessed on 14 March 2022).

2.2. Study Design

Female Tph2+/− mice and their wild type littermates (Tph2+/+ controls) were studied
for baseline behavior in novel cage and dark-light box paradigms (Figure 1, Experiment 1).
Mice from four cages per genotype were studied: two cages per genotype per stress
condition. Thereafter, they were subjected to a five-day rat exposure predation stress model
and social behavior was evaluated in their home cages, in food competition tests, and on
the elevated O-maze. The sequence of the behavioral tests was designed in a manner to
minimize any potential effects of the testing procedure on the experimental animals and
the outcome of the subsequent tests [49,50]. In total, mice from four cages per genotype
were studied: two cages per genotype per stress condition. Mice were sacrificed 24 h after
the last behavioral test and their brains were dissected for qRT-PCR assay. During this
study, daily food intake was monitored (see below). A separate cohort of mice was studied
in the modFST in which the animals were exposed to three 6-min swim sessions on days
1, 2, and 5. The learning of adverse context is defined by an increase in floating behavior
from day 2 to day 5 (Figure 1, Experiment 2) [42]. On average, 7–10 animals per group were
used for behavioral and molecular assays, group sizes are indicated in figure legends.
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Figure 1. Experiment design. (Experiment 1) Female Tph2+/− mice and their wild type littermates
were studied for baseline behavior. Thereafter, they were subjected to a five-day rat exposure
predation stress model. Mice were studied in a battery of behavioral tests for aggression and anxiety-
like behavior before their brains were removed and dissected for qRT-PCR (Experiment 2). A separate
cohort of mice was used for the modFST. qRT-PCR—quantitative reverse transcription polymerase
chain reaction assay.

2.3. Novel Cage

The vertical exploratory activity of mice was studied in the novel cage test under a red
light as previously described [34,50,51]. Briefly, mice were placed into a plastic cage and
the number of exploratory rears was counted during a five-minute period under red light.

2.4. Dark-Light Box

The dark-light box (Open Science, Moscow, Russia) consisted of two plexiglass com-
partments, a dark box (15 × 20 × 25 cm) and a light box (30 × 20 × 25 cm), connected by
a tunnel. Mice were placed into the dark compartment, from where they could visit the
light compartment, illuminated by bright light (300 lx intensity). The total duration of time
spent in the light compartment was scored over 5 min [52].

https://arriveguidelines.org
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2.5. Rat Exposure Stress

Mice were introduced into a transparent glass cylinder (15 cm high × 8 cm diameter)
and placed into the rat cage between 18:00 and 9:00 for five consecutive nights as described
elsewhere [20,24]. Mice had free access to food and water in their home cages between the
stress sessions. The timing of the rat exposure model was designed to minimize the impact
of food and water deprivation, as the predation period overlaps with the light (inactive)
phase of activity of the mice when food and water consumption is minimal [53,54]. As the
analysis of aggressive behavior in Tph2+/− male mice that were exposed to a five-day
predation stress regimen only exhibited a significant increase of aggressiveness on day
5 [21], we considered the same five-day stress procedure as minimally sufficient for the
induction of aggression in the current study.

2.6. Home Cage Interaction

In all experimental groups, dominant, aggressive, and other social behaviors in a home
cage were assessed during a ten-minute period under low lighting (5 lx) after 16 hours of
food deprivation. In this study, daily food intake was measured three days prior to and one
day after the behavioral test. The top of a home cage was replaced by a transparent cover
and mice were scored for the latency, total duration and number of episodes of crawl-over,
following and agonistic (attacking) behaviors, and the number of mice expressing these
behaviors [25,26]. The social interaction behavioral parameters recorded and evaluated
here have been validated in previous studies on female mice [26].

The crawl-over behavior, considered as a manifestation of hierarchical dominance [55–57],
was defined as the movement of a mouse over the body of the partner; predominantly
headfirst crossing transversely from one side to the other [56,58]. Following behavior,
another sign of hierarchical dominance in female mice [59], was defined as the aggressive
and rapid chasing of a fleeing counter-partner where the maximum distance between
the animals was one body length (adapted from [57]). Agonistic (attacking) behavior
was defined by the occurrence of a physical attack of one mouse against another which
involved kicking, wrestling, biting, or rolling over the body of the counter-partner (adapted
from [60,61]).

2.7. Food Competition Test

The food competition test was carried out immediately after the recording of the home
cage behavior (see Section 2.6). Pairs of 16 h food-deprived mice from different cages
and the same experimental group were placed in a plastic observation cage (21 × 27 ×
14 cm) and allowed to compete for a piece of beef meat (2 g) for 10 min under low lighting
(5 lx). The number and duration of attacks were scored [25,26]. The same definitions of
social behavior as in the home cage interaction situation were used; these parameters were
validated in previous studies on female mice [25].

2.8. Elevated O-maze

The apparatus (Open Science, Moscow, Russia) consisted of a circular path (runway
width 5.5 cm, diameter 46 cm) that was placed 45 cm above the floor. Two opposing arms
were protected by walls (closed area, height 10 cm). The apparatus was placed on a dark
surface to maintain control over lighting conditions during testing, which was kept constant
at 25 lux. Mice were placed in one of the closed-arm areas of the apparatus. Behavior
was assessed using previously validated parameters during a 5-min observation period.
The latency to the first exit into the open arms of the maze, the number of exits into the
open arms, and time spent in the open arms were all recorded [62].

2.9. Modified Forced Swim Test

The modified forced swim test (modFST) was used here as a model that seeks to
mimic the neurobiological changes that involve the enhanced learning of adversities and
result in helplessness in a particular context [42]. Mice were subjected to two swimming
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sessions with an interval of 24 h. After the first two swim sessions, a third swim session
was carried out on day 5 as previously described [42,63,64]. All sessions were 6-min long
and were performed by placing a mouse in a transparent cylinder (∅ 17 cm) filled with
water (23◦C, water height 13 cm, the height of cylinder 20 cm). The floating behavior was
defined as the absence of any directed movements of the head or body and was scored by
an observer unaware of the identity of the animal with Noldus EthoVision XT 8.5 (Noldus
Information Technology, Wageningen, The Netherlands) as described elsewhere [65]. The
duration of floating behavior was assessed in 2-min intervals; the latency to float was
measured. It is of note that in this model, the increase in floating behavior, which is
observed on day 5 compared to day 2, is reversible by pre-treatment with antidepressant
compounds [48,64,66]. For this reason, the increase in day 5 floating is regarded as a
measure of excessive conditional learning and helplessness in an adverse context [63,64].
The increase in floating behavior during the first observation interval from day 2 to day
5 was expressed as a percentage and interpreted as a measure of learning in an adverse
context and helplessness [48,63,64].

2.10. Brain Dissection and Tissue Collection

Mice were terminally anesthetized with an intraperitoneal injection of sodium pen-
tobarbitone (Merck, Darmstadt, Germany); the left ventricle was perfused with 10 mL of
ice-cold saline [51]. The brains were removed and the prefrontal cortex was isolated and
stored at −80 ◦C as described elsewhere [21,67].

2.11. Quantitative Real-Time PCR (qRT-PCR)

RNA extraction and cDNA synthesis were performed as described elsewhere [68].
Total mRNA was isolated from each sample with TRI Reagent (Invitrogen, Carlsbad, CA,
USA). During first-strand cDNA synthesis, 1 µg total RNA was converted into cDNA using
random primers and Superscript III transcriptase (Invitrogen, Carlsbad, CA, USA). qRT-
PCR was performed using the SYBR Green master mix (Bio-Rad Laboratories, Philadelphia,
PA, USA). qRT-PCR was performed in a 10 µL reaction volume containing a SYBR Green
master mix (5 µL), RNase-free water (3 µL), specific forward and reverse primers used at
the concentration 20 pmol/µL (1 µL), and cDNA (1 µL). The initial denaturation step for
qRT-PCR was at 95 ◦C for 5 min followed by 40 cycles of denaturation at 95 ◦C for 30 s
and annealing at 60 ◦C for 30 s. The sequences of primers used are listed in Appendix A
Table A1; all primers were purchased from Life Technologies (Carlsbad, CA, USA). All
samples were run in triplicate. Relative gene expression was calculated using the ∆∆Ct
method and normalized to the expression of glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) as the housekeeping gene and the expression of the control sample as described
elsewhere [34,69]. For technical reasons, i.e., owing to the limited amount of cDNA that
was available for the PCR assays, the numbers of samples used in the RT-PCR assays are
variable, but the sample allocation was performed before any analysis was performed.

2.12. Statistical Analysis

Data analysis was performed using GraphPad Prism software version 8.3 (San Diego
CA, USA). Normally distributed data were analyzed using an unpaired Student’s t-test or
a two-way ANOVA test followed by the Tukey’s correction for the pairwise comparisons of
the group means of behavioral and molecular data. Specifically, the Tukey’s test was used
for the post-hoc analysis of gene expression results, as each RT PCR assay in this study was
carried out separately for each transcript and because the confidence intervals obtained for
the values of the mRNA concentrations and the fold changes of all investigated transcripts
do not include zero values. Nonparametric data were analyzed by Kruskal-Wallis test and
Dunn’s post-hoc test. Fisher’s exact test was performed for analysis of contingency tables.
Statistical significance was set at p < 0.05. Data are shown as mean ± SEM.
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3. Results
3.1. The Predation Stress Procedure Induces Aggressive and Dominant Behavior in
Tph2+/− Females

In the novel cage test, the number of exploratory rears did not differ significantly
between the Tph2+/+ and Tph2+/− mice (t = 0.6140, df = 22, p = 0.55, unpaired t-test.
Figure 2A). The time spent in the lit box of the dark-light box test was also not significantly
different between these groups (t = 1.378, df = 18, p = 0.19, unpaired t-test. Figure 2B).
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Figure 2. Behavioral features of naïve and stressed Tph2+/− female mice. (A) No alteration in the
exploratory behavior of naïve Tph2+/− mice was found in the novel cage test and (B) in the time
spent in the lit box (controls: n = 14, mutants: n = 10). (C) Significantly lower latency to crawl-over,
significantly elevated number of crawl-overs (D), and duration of crawl-over behavior (E) in the
social interaction in the home cage were present in the stressed Tph2+/− group. (F) There was no
significant group difference in the percentage of the animals exhibiting the following behavior in
social interactions in the home cage. (G) In social interactions in the home cage, agonistic behavior
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was displayed by a significantly higher percentage of animals in the stressed Tph2+/− group, in com-
parison with non-stressed Tph2+/− mice or stressed wild type animals. (H) In the food competition
test, a significantly greater number and (I) duration of attacks were observed in the stressed Tph2+/−

group. (J) No significant group differences in the time spent in the open arms were found in the
O-maze (C–J) (no stress: n = 9; stress, n = 7). WT—Tph2+/+, * p < 0.05 vs. same-genotype non-stressed
group, # p < 0.05 vs. stress-matched WT group.

The latency to crawl-over, number of crawl-overs, and total duration of this behavior,
as a measure of home cage dominance, were significantly different between the groups as
studied in the home cage (H = 15.14, p < 0.01, H = 17.73, p < 0.01 and H = 17.39, p < 0.01,
respectively; Kruskal-Wallis test. Figure 2C–E). The latency to crawl-over in the stressed
Tph2+/− group was significantly shorter in comparison to both non-stressed Tph2+/− and
stressed Tph2+/+ (wild type) animals (both p < 0.01, Dunn’s test). The number of episodes
and the duration of crawl-over behavior were significantly higher in the stressed mutant
mice in comparison to non-stressed Tph2+/− animals and stressed controls (all p < 0.01).
While there was no significant group difference in the number of animals displaying the
following behavior (all p = 0.07, Fisher’s exact test. Figure 2F), in comparison to both non-
stressed Tph2+/− and stressed Tph2+/+ mice, the number of animals displaying agonistic
(attacking) behavior was significantly higher in the stressed Tph2+/− group (both p = 0.02,
Figure 2G). None of the non-stressed mice exhibited following or attacking behaviors,
regardless of the genotype (Figure 2F,G).

In the food competition test, significant differences were found between the groups in
both the number and the duration of attacks (H = 14.57, p < 0.01, and H = 14.57, p < 0.01,
respectively. Figure 2H,I). Post-hoc analysis revealed that, in comparison to both non-
stressed Tph2+/− group and stressed Tph2+/+ mice, the number and duration of attacks
were significantly elevated in the stressed Tph2+/− group (both p = 0.01, Dunn’s test). In a
similar manner to the home cage assay, none of the non-stressed mice exhibited following
or attacking behaviors in the food competition test, regardless of the genotype (Figure 2H,I).
In the O-maze, Kruskal-Wallis testing showed a significant group difference in the time
spent in the open arms (H = 14.19, p < 0.01. Figure 2J). The only significant difference was
found between the non-stressed wild type mice and stressed mutants (p < 0.01); post-hoc
analysis did not show significant differences between genotype-matched or stress-matched
groups. The Kruskal-Wallis test did not demonstrate any significant group differences in
the food intake (H = 0.17, p = 0.99, Kruskal-Wallis test. Figure A1).

3.2. Altered Gene Expression of Selected Molecular Markers in the Prefrontal Cortex of Stressed
Tph2+/− Mice

Two-way ANOVA revealed a significant main effect of genotype (F1,21 = 21.40, p < 0.01)
and no significant stress × genotype interaction (F1,21 = 0.93, p = 0.35) in Htr1a expression.
Independent of stress, a significant decrease in the expression of the Htr1a was found in
Tph2+/− animals (Figure 3A). No significant stress× genotype interaction was shown in the
expression of Htr2a (F1,20 = 1.240, p = 0.28, two-way ANOVA. Figure 3B), though both main
effects of stress and genotype significant altered expression (F1,20 = 26.58, p < 0.01, and
F1,20 = 10.59, p < 0.01, respectively, two-way ANOVA). Htr2a expression was significantly
higher in the stressed animals, which was independent of genotype, but lower in the mutant
groups, independent of stress. These data suggest differential regulation of expression of
5-HT receptor subtypes by stress and partial Tph2 inactivation.
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Figure 3. Expression of 5-HT receptors, GSK-3β, GluA2, c-fos and Syp in the brain of stressed Tph2+/− 
mice. (A) Compared to control groups, Htr1a expression was significantly lowered in Tph2+/− ani-
mals. WT no stress (NS) n = 4, WT stress (S) n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 6. (B) In comparison 
to non-stressed animals, in stressed groups, Htr2a expression was significantly higher. Irrespec-
tively of stress, Htr2a expression was higher in wild type groups. WT NS n = 4, WT S n = 8, Tph2+/− 

Figure 3. Expression of 5-HT receptors, GSK-3β, GluA2, c-fos and Syp in the brain of stressed Tph2+/−

mice. (A) Compared to control groups, Htr1a expression was significantly lowered in Tph2+/− animals.
WT no stress (NS) n = 4, WT stress (S) n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 6. (B) In comparison to
non-stressed animals, in stressed groups, Htr2a expression was significantly higher. Irrespectively of
stress, Htr2a expression was higher in wild type groups. WT NS n = 4, WT S n = 8, Tph2+/− NS n = 6,
Tph2+/− S n = 6. (C) Significantly higher GSK-3β expression in both the stressed Tph2+/− group and
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non-stressed Tph2+/+ mice was observed in comparison to non-stressed Tph2+/− animals. WT NS
n = 4, WT S n = 6, Tph2+/− NS n = 6, Tph2+/− S n = 4. (D) A significant main effect of stress was
observed for the GluA2 subunit, where expression was elevated independent of the genotype in
stressed groups. WT NS n = 5, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 6. (E) Expression of the
c-fos was higher in Tph2+/− mice than in wild-type mice, irrespective of stress. WT NS n = 5, WT
S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 6. (F) In stressed animals, expression of Syp was higher
than in non-stressed animals, irrespectively of the genotype. WT NS n = 6, WT S n = 9, Tph2+/− NS
n = 5, Tph2+/− S n = 6. WT—wild type, * p < 0.05 vs. same-genotype non-stressed group, # p < 0.05 vs.
stress-matched WT group.

For GSK-3β expression, a significant stress × genotype interaction was observed
(F1,16 = 16.47, p < 0.01, two-way ANOVA. Figure 3C). In comparison to non-stressed
Tph2+/− animals, post-hoc analysis revealed significantly higher GSK-3β expression in
both the stressed Tph2+/− group and the non-stressed Tph2+/+ mice (both p < 0.01, Tukey’s
test). GluA2 expression was not significantly affected by stress × genotype interaction
(F1,22 = 0.248, p = 0.62. Figure 3D) and only a significant main effect of stress was observed
(F1,22 = 4.331, p = 0.05). Specifically, stress elevated GluA2 expression compared to non-
stressed animals irrespective of their genotype.

No stress × genotype interaction was found for either c-fos or Syp expression
(F1,22 = 0.437, p = 0.52, and F1,22 = 1.149, p = 0.30, respectively, two-way ANOVA), though
the main effects of genotype or stress on gene expression were observed. The expression
of c-fos was significantly higher in the Tph2+/− mice in comparison with control animals,
independent of stress (F1,22 = 6.63, p = 0.02, two-way ANOVA. Figure 3E). The expression
of Syp was significantly higher in stressed animals than in controls (F1,22 = 5.24, p = 0.03.
Figure 3F), independent of genotype.

Two-way ANOVA revealed significant main effects for genotype and stress
(F1,23 = 4.87, p = 0.04 and F1,23 = 10.38, p < 0.01, respectively, two-way ANOVA), but
there was no stress × genotype interaction (F1,23 = 1.46, p = 0.24) for Creb expression.
This measure was significantly higher in the stressed animals and was independent of
the genotype; in the mutant groups, it was independent of the stress (Figure A2A). These
data suggest the differential regulation of expression of Creb by stress and partial Tph2
inactivation.

There was no significant stress × genotype interaction and no significant main effects
of genotype or stress on Bdnf expression (F1,24 = 0.0047, p = 0.95; F1,24 = 0.28, p = 0.60 and
F1,24 = 2.29, p = 0.14, respectively; Figure A2B), Trkb expression (F1,24 = 0.868, p = 0.36;
F1,24 = 0.039, p = 0.85 and F1,24 = 0.76, p = 0.39, respectively; Figure A2C), or for the
expression of PSD95 (F1,24 = 0.106, p = 0.95; F1,24 = 0.018, p = 0.89 and F1,24 = 1.025,
p = 0.32, respectively; Figure A2D).

A stress × genotype interaction exists for Plp1 expression (F1,19 = 4.949, p = 0.04,
two-way ANOVA). Post-hoc analysis revealed significantly lower expression of Plp1 in
stressed Tph2+/− mice in comparison to non-stressed Tph2+/− mice (p = 0.02, Tukey’s
test, Figure 4A). No significant differences were observed between Tph2+/+ stressed and
naïve mice (p = 0.07). For Mbp and Mag expression, ANOVA revealed significant stress
× genotype interaction (F1,16 = 16.68, p < 0.01 and F1,18 = 7.610, p = 0.01 respectively,
Figure 4B,C). Compared to the non-stressed Tph2+/− group, the expression of Mbp and
Mag was significantly lower in both stressed Tph2+/− (p = 0.01 and p = 0.02, respectively,
Tukey’s test) and non-stressed Tph2+/+ mice (p < 0.01 and p = 0.03, respectively). ANOVA
revealed no significant interaction for Mog expression (F1,19 = 4.098, p = 0.06, two-way
ANOVA. Figure 4D), though a significant main effect of stress was observed (F1,19 = 10.08,
p < 0.01). In comparison to non-stressed mice, stressed animals had a significantly lower
expression level of Mog, irrespective of their genotype.
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Figure 4. Elevated expression of myelination-related genes in the prefrontal cortex of non-stressed 
Tph2+/− mice. (A) Significantly lower expression of Plp1 was observed in stressed Tph2+/− mice in 
comparison to the non-stressed Tph2+/− group. WT no stress (NS) n = 5, WT stress (S) n = 9, Tph2+/− 
NS n = 5, Tph2+/− S n = 4. (B,C) Compared to non-stressed Tph2+/− group, expression of Mbp and Mag 
was significantly lower in both stressed Tph2+/− and non-stressed Tph2+/+ mice. Mbp: WT NS n = 4, 
WT S n = 9, Tph2+/− NS n = 3, Tph2+/− S n = 4. Mag: WT NS n = 5, WT S n = 9, Tph2+/− NS n = 4, Tph2+/− S n 
= 4. (D) In comparison to non-stressed mice, stressed animals had a significantly lower expression 
level of Mog, irrespective of the genotype. WT NS n = 5, WT S n = 9, Tph2+/− NS n = 4, Tph2+/− S n = 5. 
WT—wild type, * p < 0.05 vs. same-genotype non-stressed group, # p < 0.05 vs. stress-matched WT 
group. 

3.3. Naïve Female Tph2+/− Mice Show Signs of Decreased Learning of Adverse Memories and 
Helplessness as a Manifestation of Stress Resilience 

In the modFST, in comparison to wild type mice, Tph2+/− mice demonstrated a sig-
nificantly smaller increase in floating duration in the first two minutes of the test session 
between days 2 and 5 (U = 15, p < 0.01, Mann-Whitney test; Figure A3A). In the latency to 
float and the duration of floating, there was no significant interaction between day and 
genotype, though a main effect of the test day was found (F1,14 = 91.79 and F1,12 = 89.22, 
respectively, both p < 0.01, repeated measures two-way ANOVA; Figure A3B,C). No sig-
nificant group differences in the latency and duration of floating were found on either 
day of the test. 

Figure 4. Elevated expression of myelination-related genes in the prefrontal cortex of non-stressed
Tph2+/− mice. (A) Significantly lower expression of Plp1 was observed in stressed Tph2+/− mice in
comparison to the non-stressed Tph2+/− group. WT no stress (NS) n = 5, WT stress (S) n = 9, Tph2+/−

NS n = 5, Tph2+/− S n = 4. (B,C) Compared to non-stressed Tph2+/− group, expression of Mbp and
Mag was significantly lower in both stressed Tph2+/− and non-stressed Tph2+/+ mice. Mbp: WT NS
n = 4, WT S n = 9, Tph2+/− NS n = 3, Tph2+/− S n = 4. Mag: WT NS n = 5, WT S n = 9, Tph2+/− NS
n = 4, Tph2+/− S n = 4. (D) In comparison to non-stressed mice, stressed animals had a significantly
lower expression level of Mog, irrespective of the genotype. WT NS n = 5, WT S n = 9, Tph2+/− NS
n = 4, Tph2+/− S n = 5. WT—wild type, * p < 0.05 vs. same-genotype non-stressed group, # p < 0.05 vs.
stress-matched WT group.

3.3. Naïve Female Tph2+/− Mice Show Signs of Decreased Learning of Adverse Memories and
Helplessness as a Manifestation of Stress Resilience

In the modFST, in comparison to wild type mice, Tph2+/− mice demonstrated a sig-
nificantly smaller increase in floating duration in the first two minutes of the test session
between days 2 and 5 (U = 15, p < 0.01, Mann-Whitney test; Figure A3A). In the latency
to float and the duration of floating, there was no significant interaction between day and
genotype, though a main effect of the test day was found (F1,14 = 91.79 and F1,12 = 89.22,
respectively, both p < 0.01, repeated measures two-way ANOVA; Figure A3B,C). No signifi-
cant group differences in the latency and duration of floating were found on either day of
the test.
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4. Discussion

Our study has revealed that aggressive and dominant behaviors are induced in female
Tph2+/− mice subjected to predation stress, resembling a behavioral profile reported for
stressed male Tph2+/− mutants and mice with complete inactivation of Tph2. Wild type
stressed controls did not show any of these changes. We also found a decrease in gene
expression of Plp1, Mbp, and Mag in the prefrontal cortex of stressed mutants, which
may reflect aberrant myelination processes which likely to contribute to stress-induced
aggression and dominance behavior. Baseline expression of GSK-3β was lower in the
non-stressed Tph2+/− mice than in the wild type animals. Unlike wild type mice, mutants
showed relatively increased GSK-3β expression under stress conditions. The lowered basal
expression of GSK-3β in female Tph2+/− mutants may also explain a diminished increase
in behavioral despair during repeated swimming in the modFST, a sign of stress resilience.

The increased aggression and dominance in stressed mutants were accompanied by
genotype effects on the prefrontal cortex expression of Htr1a and Htr2a. Both receptors
are known to modulate aggressive behavior [70–72]. The expression of Htr1a and Htr2a
were decreased in Tph2+/− females regardless of stress, which is also a feature of Tph2−/−

mutants; it might be explained by a higher sensitivity of this receptor, at a protein level,
to diminished levels of central 5-HT [73]. However, in the Tph2+/− males subjected to
predation stress there was no effect on Htr1a or Htr2a expression. For Htr1a, the sex-
dependent behavioral effects, which have been reported after the pharmacological targeting
of 5-HT1A receptor in rodents [74], suggest that there is likely to be a differential role for
this receptor in abnormal aggression in males and females.

The predation stress paradigm used in this work was previously shown to increase
5-HT turnover in the amygdala of male Tph2+/− mice [21]. Furthermore, significantly
elevated 5-HT turnover in the prefrontal cortex of stressed male Tph2+/− mice correlated
with measures of aggressiveness (Bazhenova and Lesch, unpublished results). Surprisingly,
stressed Tph2+/− males exhibited unaltered 5-HT levels in the prefrontal cortex, while
wild type mice showed significant increases in 5-HT levels under these conditions. These
abnormalities might arise from the compromised 5-HT metabolism in the prefrontal cortex
of stressed mutants that results in disrupted cortical top-down control of limbic structures
regulating aggression, including the amygdala, and thus, these changes could underpin
the social abnormalities observed in the stressed female Tph2+/− mice.

As compromised serotonin metabolism in the Tph2+/− mutants can independently
result in the altered regulation of appetite, satiety, and metabolic processes, in which
changes in monoamine levels and changes in the expression of their receptors can play a
major role [75], the excessive aggression in stressed mutants in our study might be food
deprivation-state-dependent. Preliminary studies on Tph2+/− stressed mice, housed under
normal conditions, did not reveal any changes in social behavior in the food competition
test (Strekalova and Costa-Nunes, unpublished results). In the present study, we used a
food deprivation challenge, a well-established inducer of aggression in male mice [76,77],
and hierarchical dominance behaviors in female mice [59]. Further studies are warranted
to address the issue as to how the changes in serotonin receptor expression and the effects
of food deprivation and aggression in stressed Tph2+/− mice are related.

Genetic deficits in 5-HT function are well-established to result in developmental abnor-
malities of brain connectivity [36,78–80]. Compromised frontostriatal white matter integrity
and connectivity are believed to underlie increased impulsivity and aggression [41,81,82].
Here, for the first time, we report the increased expression of genes encoding myelination-
related proteins in the prefrontal cortex of naïve Tph2+/− female mice and its significant
decrease following predation stress. Previous work has shown that there is decreased
expression of Mbp and Mag in naïve Tph2+/− males [35]. Thus, the present findings in
naïve Tph2+/− females may mirror compensatory effects such as the elevated expression
of myelin genes that is neutralized by stress, leading to impaired connectivity and mal-
adaptive aggression in these animals. The stress-induced decrease of myelination-related
marker expression was previously reported in other rodent models of stress, such as chronic
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unpredictable stress, social defeat and social isolation, immobilization stress, and early-life
stress [83,84].

Moreover, others have previously demonstrated a relationship between myelination in
the prefrontal cortex and aggression and emotional dysregulation. Reduced thickness of the
myelin sheath in the prefrontal cortex was reported to correlate with increased aggression
caused by juvenile isolation [85]. Group housing was shown to ameliorate both aggressive
behaviors and the myelination deficit in another study of social isolation in mice [37,86].
In rats, the overexpression of the myelin transcription factor 1 (MyT1) promotes differentia-
tion of oligodendrocytes, which is also regulated by Plp1 and Mbp [87], and ameliorates
anxiety-like and compulsive behaviors [88]. Aberrant myelination is believed to underlie
impaired brain connectivity and be associated with impulsive and aggressive behaviors,
contributing to neurodevelopmental disorders such as attention deficit hyperactivity dis-
order (ADHD), autism spectrum disorders (ASD), and schizophrenia [89,90]. We may
speculate that the changes observed in the expression of myelin associated transcripts
in stressed Tph2+/− mice may reflect developmental abnormalities of white matter and
brain connectivity and, though unlikely to be the sole cause of the excessive aggression
observed in these mice, may contribute to behavior. This view is further supported by
clinical evidence. For example, in women with ADHD and borderline personality disorder,
there are correlations between anger-hostility measures and impairments of inferior frontal
white matter connectivity [38]. Reduced white matter volume in the frontostriatal tracts,
particularly in medial prefrontal regions, was associated with increased impulsivity in
healthy subjects maturing from their adolescence to adulthood [41]. Aggression scores
correlated with fronto-accumbal white matter integrity and cortical thickness of the or-
bitofrontal cortex in children with ADHD [39]. In patients recovering from mild traumatic
brain injury, reduced fiber integrity in the white matter also correlates with higher measures
of aggression [40].

Other molecular processes may potentially contribute to the abnormal social behavior
of stressed Tph2+/− mice. Genotype differences in the expression of brain c-fos argue for
a role of this factor in the aggressive behavior of stressed female Tph2+/−mice. In males,
by comparison, c-fos expression was increased in the amygdala and prefrontal cortex of
stressed mice of both genotypes [21]. Over-expression of c-fos in the hippocampus of
Tph2−/− mice is accompanied by increased freezing in the fear conditioning paradigm;
a trend towards both molecular and behavioral changes was reported in the Tph2+/−

mutants [8,91]. It can be speculated that the increased expression of this immediate early
gene, as found in the stressed Tph2+/− groups 24 h after the last manipulation, might be
related to increased conditioning after the handling procedure. While chronic stress has
been reported to suppress the expression of Syp, a marker of neuronal plasticity [92,93],
here, Creb expression was elevated in female Tph2+/− mice regardless of stress exposure.
This may indicate compensatory plasticity processes related to the up-regulation of myeli-
nation in naïve mutants and may further contribute to their stress resilience as shown in
the modFST. Indeed, increased CREB activity was previously associated with elevated
aggression in female mice [94,95]. While the expression of Creb was shown to be related to
levels of BDNF and its receptor [96–98], mRNA levels of Bdnf and Trkb were unaltered in
this study, as well as gene expression of PSD95, which have been correlated with increased
aggression in female rodents in other studies [99]. These results suggest that more complex
regulatory interactions underpin emotional control than those described by these plasticity
markers alone in the prefrontal cortex.

Upregulated myelination markers may also relate to the decreased baseline expression
of GSK-3β, a key indicator of helplessness behavior in naïve mutants [42]. Previous studies
point to a reciprocal relationship between GSK-3β and myelination-related factors, e.g.,
Mbp [100,101], that is in keeping with our findings of increased gene expression of the latter
molecules found in naïve mutants. It is of note that decreased basal expression of GSK-3β
in the female Tph2+/− mutants may also contribute to the smaller increase in behavioral
despair during repeated swimming in the modFST. Previous studies have revealed an
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important role of increased brain GSK-3β activities in subgroups of mice that display
susceptible, but not resilient, responses in this model [42]. In effect, mice that display a
prolongation of the floating behavior from day 2 to day 5 above mean values for the group
exhibit increased mRNA concentration for GSK-3β, decreased levels of phosphorylated
GSK-3β at 9-serine, and a reduced ratio of phosphorylated GSK-3β to overall GSK-3β
content, i.e., increased GSK-3β activity, in the prefrontal cortex [42,48]. These behavioral
and molecular changes were reduced by pre-treatment with low doses of imipramine
or anti-oxidant compounds [48,63,64,68]. Therefore, the lowered baseline expression of
GSK-3β in the pre-frontal cortex of Tph2+/− mutants might explain the smaller increase in
behavioral despair observed during repeated swimming in the modified swim test. Notably,
a functional interaction was previously reported between decreased Tph2 enzymatic activity
and GSK-3β in male mice with knock-in of the human R439H mutation [102].

Concerning potential mechanisms for a lower stress/despair response of female
Tph2+/− mutants in the modified swim test, we hypothesize that this might also be due to
the suppression of the expression of 5-HT1A and 5-HT2A receptors in the brain, whose
roles in stress response, major depressive disorder, and consolidation of aversive memories
are well established [70,103–105]. Furthermore, it can be speculated that in a similar fashion
to male Tph2+/− mutants that exhibit ‘stress resilience’ in the modFST [20], female Tph2+/−

mice exhibit altered dopamine metabolism; turnover of dopamine in major mesocorticol-
imbic regions can govern individual susceptibility to stress [106,107] and was particularly
marked in female mice [108].

In the present study, stress-induced increases of expression of GSK-3β and GluA2 were
not affected by the mutation. Similar results were found in the brain of stressed Tph2+/−

males for GSK-3β, but GluA2 was upregulated selectively in the male mutants [21]. This
challenges the view that these transcripts play a pivotal role in the aggression elicited
in stressed Tph2+/− females [24,33] and further suggests that sex differences result in
the differential regulation of aggression ein Tph2+/− mice. For GSK-3β, given that the
level of the phosphorylated form of this kinase is the principal determinant of its activity,
activity has been shown to correlate with GSK-3β gene expression changes [109]. However,
further assessment of the level of GSK-3β phosphorylation might be useful to confirm this
association and its role in the behavioral abnormalities of the Tph2+/− females reported
here.

5. Conclusions

Taken together: our findings show that an interaction between partial genetic inactiva-
tion of neuronal Tph2 expression and environmental adversity results in aggressive and
dominant behaviors in female Tph2+/− mice. Naïve female Tph2+/− mice show decreased
learning of adverse memories and helplessness, a sign of stress resilience. These behaviors
are reminiscent of changes in Tph2+/− males and null mutants of both sexes lacking Tph2.
For the first time, we report the altered expression of myelination markers in naïve and
stressed female Tph2+/− mice. These data encourage speculation regarding impaired brain
connectivity in these mice, which likely contributes to the increased aggression and domi-
nance observed in the stressed Tph2+/− mice. Further studies are required to shed light
on the detailed mechanisms of the relationships between serotonin deficiency, stress, and
myelination in the context of gene × environment interaction and female aggression.
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Appendix A

Appendix A.1. Supplementary Methods

Table A1. Primer sequences for mRNA expression analysis.

Gene Primer Sequence

Htr1a
Forward 5′-GACAGGCGGCAACGATACT-3′

Reverse 5′-CCAAGGAGCCGATGAGATAGTT-3′

Htr2a
Forward 5′-TAATGCAATTAGGTGACGACTCG-3′

Reverse 5′-GCAGGAGAGGTTGGTTCTGTTT-3′

GSK-3β
Forward 5′-GCACTCTTCAACTTTACCACTCA-3′

Reverse 5′-CGAGCATGTGGAGGGATAAG-3′

GluA2
Forward 5′-GCGTGGAAATAGAAAGGGCC-3′

Reverse 5′-ACTCCAGTACCCAATCTTCCG-3′

c-fos
Forward 5′-CGGGTTTCAACGCCGACTA-3′

Reverse 5′-TTGGCACTAGAGACGGACAGA-3′

Syp
Forward 5′-TGTGTTTGCCTTCCTCTACTC-3′

Reverse 5′-TCAGTGGCCATCTTCACATC-3′

Plp1
Forward 5′-CCAGAATGTATGGTGTTCTCCC-3′

Reverse 5′-GGCCCATGAGTTTAAGGACG-3′

Mbp
Forward 5′-TCACAGCGATCCAAGTACCTG-3′

Reverse 5′-CCCCTGTCACCGCTAAAGAA-3′

https://arriveguidelines.org
https://www.sechenov.ru/univers/structure/nauchno-tekhnologicheskiy-park-biomeditsiny/instituty/institut-molekulyarnoy-meditsiny/laboratorii/psikhneiro
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Table A1. Cont.

Gene Primer Sequence

Mag
Forward 5′-GGTACATGGCGTCTGGTATTTC-3′

Reverse 5′-ACTTGTGTGCGGGACTTGAAG-3′

Mog
Forward 5′-TCATGCAGCTATGCAGGACAA-3′

Reverse 5′-TTTCGGTAGAGGTGAACCACT-3′

Creb
Forward 5′-CAGGGGTCGCAAGGATTGAAG-3′

Reverse 5′-ATCGCCTGAGGCAGTGTACT-3′

Bdnf
Forward 5′-TGGCTGACACTTTTGAGCAC-3′

Reverse 5′-AAGTGTACAAGTCCGCGTCC-3′

Trkb
Forward 5′-CCTCCACGGATGTTGCTGAC-3′

Reverse 5′-GCAACATCACCAGCAGGCA-3′

PSD-95
Forward 5′-GACGCCAGCGACGAAGAG-3′

Reverse 5′-CTCGACCCGCCGTTTG-3′

GAPDH
Forward 5′-ATGACCACAGTCCATGCCATC -3′

Reverse 5′-GAGCTTCCCGTTCAGCTCTG-3′

Appendix A.2. Supplementary Results

Daily Food Intake of Tph2+/− Mice

The Kruskal-Wallis test did not reveal significant differences in the average daily food
intake measured during the observation period (H = 0.17, p = 0.99, Kruskal-Wallis test.
Figure A1).
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intake during the observation period was observed. WT—wild type.

Appendix A.3. Expression of Neurotrophic Factors in the Prefrontal Cortex of Stressed Tph2+/−

The two-way ANOVA and post-hoc comparisons revealed group differences in the
expression of neurotrophic molecules in the brains of the experimental groups (see ms
main text; Figure A2).
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Figure A2. Expression of Creb, Bdnf, Trkb and PSD95 in the prefrontal cortex of Tph2+/− mice. (A) 
Creb expression was significantly higher in the stressed animals, independent of genotype (WT NS 
n = 6, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 6). (B) No significant differences were found for Bdnf 
expression (WT NS n = 6, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 7), (C) Trkb expression (WT NS n 
= 6, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 7), or for (D) PSD95 expression (WT NS n = 6, WT S n = 
9, Tph2+/− NS n = 6, Tph2+/− S n = 7). WT, wild type. 
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of floating on days 2 and 5 compared to day 1, irrespective of the genotype (both p < 0.01, 
Šídák’s multiple comparisons test). 
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latency to float on days 2 and 5 compared to day 1 was observed and was independent of genotype. 

Figure A2. Expression of Creb, Bdnf, Trkb and PSD95 in the prefrontal cortex of Tph2+/− mice. (A) Creb
expression was significantly higher in the stressed animals, independent of genotype (WT NS n = 6,
WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 6). (B) No significant differences were found for Bdnf
expression (WT NS n = 6, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 7), (C) Trkb expression (WT
NS n = 6, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 7), or for (D) PSD95 expression (WT NS n = 6,
WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 7). WT, wild type.

Appendix A.4. Tph2+/− Mice Display Reduced Potentiation of Floating in the modFST Paradigm

The change in floating duration in the first two minutes of the test session between
days 2 and 5 in Tph2+/− animals was significantly smaller than in wild type mice (see
ms text, Figure A3A). Concerning the latency to float and the duration of floating, only
the main effect of the test day was found (see ms text, Figure A3B,C). Post-hoc analysis
revealed a significant decrease in latency to float and a significant increase in the duration
of floating on days 2 and 5 compared to day 1, irrespective of the genotype (both p < 0.01,
Šídák’s multiple comparisons test).
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Creb expression was significantly higher in the stressed animals, independent of genotype (WT NS 
n = 6, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 6). (B) No significant differences were found for Bdnf 
expression (WT NS n = 6, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 7), (C) Trkb expression (WT NS n 
= 6, WT S n = 9, Tph2+/− NS n = 6, Tph2+/− S n = 7), or for (D) PSD95 expression (WT NS n = 6, WT S n = 
9, Tph2+/− NS n = 6, Tph2+/− S n = 7). WT, wild type. 
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Figure A3. Floating behavior in the modified swim test. (A) A smaller increase in floating duration
from day 2 to day 5 was observed in the Tph2+/− mice compared to WT. (B) A significant decrease in
latency to float on days 2 and 5 compared to day 1 was observed and was independent of genotype.
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(C) There was a significant increase in the duration of floating on days 2 and 5 compared to day 1,
independent of the genotype. WT—wild type, * p < 0.01 vs. wild type, # p < 0.01 vs. same genotype
on day 1. WT no stress n = 13, WT stress n = 13, Tph2+/− NS n = 11, Tph2+/− S n = 12.
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