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We study the topological properties of the generalized two-dimensional (2D) Su-Schrieffer-
Heeger (SSH) models. We show that a pair of Dirac points appear in the Brillouin zone (BZ),
consisting a semimetallic phase. Interestingly, the locations of these Dirac points are not
pinned to any high-symmetry points of the BZ but tunable by model parameters.
Moreover, the merging of two Dirac points undergoes a novel topological phase
transition, which leads to either a weak topological insulator or a nodal-line metallic
phase. We demonstrate these properties by constructing two specific models, which
we referred as type-I and type-II 2D SSH models. The feasible experimental platforms to
realize our models are also discussed.
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1 INTRODUCTION

Topological phases of matter have attracted tremendous research interests in recent decades [1, 2].
Among those famous topological models, the 1D Su-Schrieffer-Hegger (SSH) model provides a
prototype and simple model endowed with rich physics to investigate topological phenomena in
condensed matter physics [3]. It exhibits fascinating topological properties such as the topological
phase transitions associated with Zak phase and fractional fermions number at the ends of the sample
[3]. It also helps to clarify the theory of bulk polarization based on Berry phase [4], which has wide
and deep impacts on condensed matter physics in recent decades, especially on the development of
topological band insulators [5, 6].

Recently, the 1D SSH model has been extended to 2D on a square lattice. For instance, Liu
et al. found that the 2D SSH model shows nontrivial topological phases even the Berry
curvature is zero in the whole BZ [7]. Benalcazar et al. extended the 1D SSH model to two-,
and three-dimensional systems with a π-flux inserted at each plaquette of the lattice. The
proposed Benalcazar-Bernevig-Hughes (BBH) models hold quantized bulk quadrupole and
octupole moments in 2D and 3D, respectively [8, 9]. Similar to 1D SSH model, bound states
carrying fractional charges exist at the corners of the system. Thus the BBH provides a concert
example for the higher-order topological insulators (HOTIs). Such HOTIs generalize the
conventional bulk-boundary correspondence. Typically, a topological bulk state in d-
dimension has robust (d − 1)-dimensional boundary states. Nevertheless, HOTIs have
localized states at boundaries that are two or three dimensions lower than the bulk. The
HOTIs have consequently attracted both theoretical and experimental interest over past years
[10–31], and the higher-order topological protection has been extended to superconductors
[32–38] and semimetals [39–41].
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Since several types of 2D SSH models are possible when
generalizing the 1D SSH model, it is thus natural to ask
whether these models exhibit interesting topological
properties. In this work, we investigate the properties of
two typical kinds of 2D SSH models. Remarkably, we find
that these models have rich topological phases. In the
semimetallic phase, a pair of Dirac points appear in the BZ.
Interestingly, the locations of the Dirac points are not pinned
but can be easily tuned by continuous parameter modulations
without breaking any symmetries. The merging of two Dirac
points will experience a novel topological phase transition
which transform the system to either a weak topological
insulator or a nodal-line metallic phase. We demonstrate
the topological properties of these different phases by
employing two independent winding numbers together with
boundary signatures and symmetry arguments. We also
discuss how to realize our model experimentally based on
synthetic quantum materials.

The remainder of this paper is organized as follows. Section
2 introduces the type-I 2D SSH model and its band structure.
Section 3 presents the semimetallic phases of the type-I 2D
SSH model. Section 4 shows the anisotropic nature of type-I
2D SSH model. Section 5 considers properties of type-II 2D
SSH model. Finally, we conclude our results with a discussion
in Section 6.

2 TYPE-I TWO-DIMENSIONAL
SU-SCHRIEFFER-HEEGER MODEL

Let us focus on the type-I 2D SSH model first [42]. We consider a
type-I 2D SSH model as shown in Figure 1A, where the weak
(thin) bonds and strong (thick) bonds are alternately dimerized
along the two adjacent parallel lattice rows (x-direction) or
columns (y-direction). The four orbital degrees of freedom in
each unit cell are labeled as 1–4. For clarity, we consider spinless
fermions. The lattice Hamiltonian is

H1 � ∑
R

txC
†
R,1CR,3 + tC†

R,2CR,4 + h.c.( )
+∑

R

tC†
R,1CR,4 + tyC

†
R,2CR,3 + h.c.( )

+∑
R

tC†
R,1CR+x̂,3 + txC

†
R,4CR+x̂,2 + h.c.( )

+∑
R

tyC
†
R,1CR+ŷ,4 + tC†

R,3CR+ŷ,2 + h.c.( ),
(1)

where C†
R,i is the creation operator for the degree of freedom i in

the unit cell R with i = 1, 2, 3, 4, as shown in Figure 1A.
Transforming it into the reciprocal space, the effective Bloch
Hamiltonian describing the type-I 2D SSH model reads

H1 k( ) � 0 q1 k( )
q†1 k( ) 0

( ), (2)

q1 k( ) ≡ tx + teikx t + tye
iky

ty + te−iky t + txe
−ikx( ); (3)

where k = (kx, ky) is the 2D wave-vector; t and tx/y are the
staggered hopping amplitudes along x/y-directions. For
simplicity, we put the lattice constant to be unity and
assume t > 0 hereafter. From its off-diagonal form, the
Hamiltonian in Eq. 2 respects chiral (sublattice)
symmetry. Explicitly, the chiral symmetry is CH(k)C−1 �
−H(k) with the chiral-symmetry operator C � τ3 ⊗ σ0,
where τ and σ are Pauli matrices for different orbital
degrees of freedom in the unit cell. The energy bands and
corresponding wave functions can be obtained analytically.
The energy bands of Eq. 2 are

E±
η k( ) � ±

�����������
ξ2η k( ) + ζ2η k( )

√
� ±|εη k( )|, (4)

where we have defined ξη(k) ≡ (t + tx) cos kx
2 + η(t + ty) cos ky

2 ,
ζη(k) ≡ (t − tx) sin kx

2 − η(t − ty) sin ky
2 , and εη(k) ≡ ξη(k) + iζη(k)

with η = ±1. The convenient form of energy bands Eq. 4 will help
us to locate the Dirac points and identify the phase diagram of the
system.

FIGURE 1 | (A) Schematic of the type-I 2D SSH lattice. Blue (red) thick and thin bonds mark alternately dimerized hopping amplitudes in x(y)-direction. (B) The full
phase diagram of the type-I 2D SSHmodel in the parameter space (tx, ty). The shadowed region represents the semimetals (SMs) with a pair of Dirac points. The orange
dashed line at tx = ty corresponds to a nodal-line metallic phase. Other regions are the weak topological insulators.
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3 SEMIMETALLIC PHASES

The type-I 2D SSH model actually possesses three different
topological phases, as shown in the phase diagram Figure 1B.
Here we first discuss the semimetallic phase with a pair of Dirac
points within the region |tx + ty| < 2t and tx ≠ ty. Due to the
presence of chiral symmetry, the conduction and valence bands
touch at zero energy (Figure 2A). Thus, the existence of Dirac
points is constrained by the conditions ξη(k) = ζη(k) = 0.
Consequently, we find a pair of Dirac points located at K±

≡±(Kx, − Ky), where Kx/y are given by

Kx/y � 2 arccos

�������������������
t + ty/x( )2 2t − tx − ty( )

4t t2 − txty( )
√√

. (5)

Astonishingly, the Dirac points are not pinned to any high-
symmetry points but are highly tunable by parameter
modulations. If we consider a simple parameterization with tx
= s ∈ [0, t], ty = t − s, and t = 1, we find that the relation Kx + Ky =
2π/3 holds true. As a result, the Dirac points move along a line
segment when we vary the parameter s. Interestingly, no
symmetries are broken as we move around Dirac points by
variation of tx and ty. The Dirac points are topologically

protected by a quantized charge
QK± � 1

2πi∮ℓ
dk · Tr[q−1(k)∇kq(k)], where the loop ℓ is chosen

such that it encircles a single Dirac pointK± [43, 44]. In essence, it
is based on the π Berry phase, which is actually the same as in
graphene. The two Dirac points in the BZ have opposite
topological charges QK± � ± 1. They annihilate each other
when they meet in k-space.

Let us then turn to the nodal-line metallic phase under the
specific condition tx = ty [Figure 2B]. From Eq. 4, we find that the
system exhibits a gapless nodal line at

kx + ky � 0, if tx � ty ≠ t. (6)
The appearance of a gapless nodal line is a direct consequence

of accidental mirror symmetry along the line x + y = 0. In
momentum space, the mirror symmetry is expressed as MH(kx,
ky)M

−1 = H( −ky, − kx). Note that the Hamiltonian H(k)
commutes with the mirror operator M along the nodal-line kx
+ ky = 0. Therefore, we can label the eigen states of the
Hamiltonian H(k) by the eigen states of mirror operator M as

H k( )|±〉 � ± E|±〉,M|±〉 � ±|±〉. (7)
We further note that the mirror operator commute with the

chiral symmetry operator, i.e., [C,M] � 0. Therefore, we can

FIGURE 2 | Band structure in different phases of type-I 2D SSH model. (A) Band structure in the semimetallic phase with tx = 0.2t and ty = 0.8t. (B) Band structure
for the nodal-line metallic phase with tx = ty = 0.5t. (C) Band structure for a critical phase point with tx = 1.6t and ty = 0.4t. (D) Band structure for the weak topological
insulators with tx = 1.6t and ty = 1.2t.
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show that C| + 〉 is also an eigenstate of M with eigen value +1.
Moreover, C| + 〉 is eigenstate of H(k) with energy + E. Actually,
the chiral symmetry maps the state | + 〉 with energy + E to state
C| + 〉 with energy − E. This implies that those states are
degenerated states at energy E = 0.

4 WEAK TOPOLOGICAL INSULATING
PHASES

The merging of two Dirac points can transfer the system from
the semimetallic phase to a weak topological insulator, which
provides a novel type of topological phase transition. Figure 2C
presents the band structure at the critical merging points, at
which the spectrum stays linear along one direction while
becomes parabolic along another direction [45]. Specifically,
the weak topological insulators is located in the region |tx + ty| >
2t and tx ≠ ty. The weak topological insulators possess a direct
band gap, see Figure 2D. It is described by two winding
numbers (wx, wy) with one of them being one and the other
being zero. The winding number is defined as

wx/y � 1
2πi

∫2π

0
dkx/yTr q−11 k( )zkx/yq1 k( )[ ]

for arbitrary ky/x ∈ [0, 2π]. Actually, this weak topological
insulators can be further divided into two subphases: (i) wx =
1,wy = 0 (tx > ty and |tx + ty| > 2t) and (ii)wx = 0,wy = 1 (tx < ty and
|tx + ty| > 2t). When wx = 1, wy = 0 (wx = 0, wy = 1), the system is
nontrivial along x(y)-direction and trivial along y(x)-direction. It
is clear that once crossing the boundary tx = ty the systemwill shift
from subphase (i) to subphase (ii) or vice versa. Correspondingly,
a totally flat edge band exists in the gap of the energy spectrum of
a ribbon along x(y)-direction for the subphase (i) [subphase (ii)].
Figures 3A,B present the band structure of a ribbons along x- and
y -direction, respectively, for the subphase (ii). The flat edge
bands exist only in Figure 3A. Notably, neither the topologically
trivial insulator with wx = wy = 0 nor the nontrivial phase with wx

= wy = 1 appear in the inclined 2D SSH model.
Furthermore, the calculation of Wannier bands can also

provide consistent results with that of wx/y to identify the
topological properties. Specifically, the Wilson loop operator
parallel to y direction is constructed as [9, 46].

FIGURE 3 | (A) Energy spectrum of a ribbon along x-direction with widthWy = 20. Notice the flat band at zero energy. (B) Energy spectrum of the ribbons along y-
direction with width Wx = 20. (C) Wannier bands θy as a function of kx. (D) Wannier bands θx as a function of ky. The other parameters are tx = 1.2t and ty = 1.8t.
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P̂y,k � PNyδky+kyP Ny−1( )δky+ky . . . , Pδky+kyPky, (8)
where each projection operator is defined as
Pmδky+ky ≡ ∑n∈Nocc

|unkx,mδky+ky〉〈u
n
kx,mδky+ky | with |unkx,mδky+ky〉

being the n-th eigen state of occupied bands at point (kx, mδky
+ ky), and m is an integer taking values from {1, 2, . . ., Ny}. The
projection method can avoid the arbitrary phase problem in
numerical realizations. HereNy is the number of unit cells, n is the
band index, and Nocc is the number of occupied bands. Note that
P̂y,k has dimension of N now with N being the total bands
number. After projection onto the occupied bands at base
point k, there is Nocc × Nocc matrix Wy,k that defines a
Wannier Hamiltonian HWy(k) from the relation
Wy,k � exp[iHWy(k)]. The eigen values of HWy(k) give the
Wannier bands 2πθy(kx) associated with eigen states |θjy,k〉, j ∈
{1, 2, . . ., Nocc}. The Wannier bands plotted in Figures 3C,D are
corresponding to the cases in Figures 3A,B. It is clear the two
occupied bands in Figure 3C gives a quantized half-integer
polarization while the two occupied bands in Figure 3D gives
a zero polarization (mod 1). The quantized half-integer
polarization indicates the nontrivial topological properties.

5 TYPE-II TWO-DIMENSIONAL
SU-SCHRIEFFER-HEEGER MODEL

Now, let us consider another similar model: the type-II 2D SSH
model, in which the alternatively dimerization pattern is shown in
Figure 4A. The lattice Hamiltonian reads as

H2 � ∑
R

txC
†
R,1CR,3 + tC†

R,2CR,4 + h.c.( )
+∑

R

tC†
R,1CR,4 + tyC

†
R,2CR,3 + h.c.( )

+∑
R

tC†
R,1CR+x̂,3 + txC

†
R,4CR+x̂,2 + h.c.( )

+∑
R

tC†
R,1CR+ŷ,4 + tyC

†
R,3CR+ŷ,2 + h.c.( ).

(9)

The type-II model has many similarities with the type-I model,
thus we just focus on the semimetallic phase with Dirac points
here. The effective Bloch Hamiltonian describing the type-II 2D
SSH model has the same form as Eq. 2 but with the off-diagonal
parts replaced as

q2 k( ) ≡ tx + teikx t + teiky

ty + tye
−iky tx + te−ikx

( ). (10)

Its energy bands are

E±
η k( ) � ±

������������������
h0 k( ) + η

���������∑
j�x,y,z

h2j k( )
√√√

, (11)

where we have defined the functions as
h0(k) ≡ (t − tx)2 + 4txt cos2

kx
2 + 2(t2 + t2y)cos2ky2 , hx(k) ≡ 2 cos

ky
2 [t(tx + ty) cos(kx + ky/2) + (t2 + txty) cos ky

2 ], hy(k) ≡ 2 cos
ky
2 [t(tx + ty) sin(kx + ky

2 ) + (t2 + txty) sin ky
2 ], and hz(k) ≡ 2

(t2 − t2y)cos2ky2 . The type-II model has a glide-mirror symmetry:
performing a mirror symmetry Mx and then a half translation gy
along y-direction, the system goes back to itself.

Its Dirac points are located along kx = 0 (or kx = π) when ty >
0 (or ty < 0) (see Figure 4D). Explicitly, the Dirac points locate at

(0,± 2 arccos

�����
(t+tx)2
4tty

√
) for ty > 0 or (π, ± 2 arccos

�����
(t−tx)2
−4tty

√
) for ty <

0. Corresponding, the physical solutions hold under the
condition (t + tx)2 < 4tyt or (t − tx)2 < − 4tyt. The effective
Hamiltonian close to the Dirac points can also be obtained
analytically. For simplicity, let us focus on the case of ty > 0. To
this end, we need to get the two zero-energy eigen states at the
Dirac points as a basis and then project the full Hamiltonian to
the basis. Finally, the effective Hamiltonian is expressed as

Heff k( ) � vxκxσx − vyκyσy, (12)
where vx �

��
tyt

√ (t−tx)
t+ty , and vy � sgn(t + tx)

�����������
tyt(4tyt−(t+tx)2)

√
t+ty .

FIGURE 4 | (A) Schematic of the type-II 2D SSH lattice. Blue (red) thick and thin bonds mark alternately dimerized hopping amplitudes in x(y)-direction. (B) The
band structure with at pair of Dirac points. Her we take tx = 0.4t, ty = 1.2t.
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6 DISCUSSION AND CONCLUSION

Here we discuss how to realize our proposals experimentally. The
most important ingredient is the controllable nearest-neighbor
couplings between sites on the square lattice. Fortunately, such
techniques have been developed in synthetic quantum materials
such as photonic and acoustic crystals [14, 28, 47–49], electric
circuits [50], and waveguides [15, 51]. For instance, to realize our
model in an acoustic system, the 3D printed “atoms” can be
arranged to a square lattice with four contained in each unit cell
and the alternately dimerized couplings between neighbors can be
modulated the diameters that the sound wave go through.
Another feasible platform to realize our model is based on
ultracold gases in optical lattices [52, 53], in which the lattice
geometry and hopping strengths are adjustable.

Note that our results are distinctively different from recent
reports to realize Dirac states in square lattices [54–56]. These
proposals require necessary π fluxes on each plaquette, and the
Dirac points are pinned to boundaries of the BZ, which may
makes it more difficult to detect experimentally. While our 2D
SSH model does not require delicate manipulations of external
flux. Interestingly, our models even provide platforms to realize
the so called toric-code insulator [56].

In conclusion, we have proposed the 2D SSH models on a
square lattice to realize tunable Dirac states. We have found that
the locations of Dirac points are not pinned in the BZ but
movable by parameter modifications. The merging of two
Dirac points leads to a topological phase transition, which
converts the system from a semimetallic phase to either a
nodal-line metallic or a weak topological insulator. We expect

that our model can be realized in different metamaterial
platforms.
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