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Abstract

RNA sequencing (RNA-seq) has become a transformative method to profile

genome-wide gene expression and whole transcriptome analysis over the last decade.

In recent years, with the development of new technologies, it has become possible to

study gene expression at single-cell level. This new advances in single-cell

RNA-sequencing has revolutionized the way scientists study biological processes.

Single-cell RNA-sequencing has been used in different areas to better understand the

underlying mechanisms of biological processes.

In particular, single-RNA-sequencing is a suitable method to study infectious diseases.

Infection is composed of heterogeneous mechanisms on either the host or pathogen

side and the best way to understand the heterogeneity of these mechanisms and how

they interact with each other is to study infectious diseases at the single-cell level.

Studying infection processes at the single-cell level can reveal not only the

heterogeneity but also the dynamics of infection and the interplay between the host

and pathogen at the molecular level.

In this thesis, we implemented and applied different single-cell RNA-seq technologies

to better understand infectious diseases. In the present work, we conducted four

independent but related research works to shed light on different aspects of infection

biology:

● We took advantage of this novel technology to study the consequences of RSV

infection on primary human epithelial cells. The primary human epithelial cells

were collected from six donors and cultured in air liquid interface (ALI) cell

culture inoculated with respiratory syncytial virus (RSV). In this project, we

discovered ciliated cells as the susceptible cell types in RSV infection. We

applied viral load as an indicator of infection progression and used it to

reconstruct the dynamics of host response to RSV infection. Reconstruction of

the dynamics of infection revealed many host genes and pathways that were



suppressed or induced as a result of RSV infection. Pathways related to innate

immune response and interferon response were suppressed during the

progression of infection and on the other hand pathways like protein targeting

to endoplasmic reticulum and apoptosis were induced.

● We developed a new method which is capable of sequencing the

transcriptome of a bacterium at the single-cell level and potentially can help

us to characterize the bacterial heterogeneity during the course of infection. In

this research project, bacteria were cultured in three different culture

conditions namely Late stationary phase, Anaerobic shock and NaCl shock and

we used a poly(A)-independent single-cell RNA-sequencing protocol to

sequence bacteria at the single-cell level. In this work, we report the faithful

capture of growth-dependent gene expression patterns in individual

Salmonella and Pseudomonas bacteria. The results of our analysis showed that

not only we could capture transcripts across different RNA classes but also our

method is capable of discerning the transcriptome of bacteria across different

culture conditions.

● We used single-cell RNA-sequencing technology to characterize the immune

cells landscape over the course of atherosclerosis. Atherosclerosis is

considered a cardiac disease which is highly related to infections and previous

infections with bacteria or viruses is considered as a risk factor for

atherosclerosis. We performed single-cell RNA sequencing of aortic CD45+ cells

extracted from healthy and atherosclerotic aorta of mice. We managed to find

certain cell populations which were specifically present in atherosclerotic mice.

One of the atheroschelorotic populations was previously undescribed

TREM2high macrophages showing enrichment in Trem2 gene expression. This

population of macrophages seemed to be involved in functions like lipid

metabolism and catabolism and lesion calcification. This work revealed the

phenotypic heterogeneity and immune cells landscape of different immune cell

populations at different stages of atherosclerosis. Our work paves the way to



better describe the relation between different infectious diseases and

cardiovascular diseases.

● We developed a web-based platform called Infection Atlas to browse and

visualize single-cell RNA-sequencing data. Infection Atlas platform provides a

user-friendly interface to study different aspects of infectious diseases at the

single-cell level and can potentially promote targeted approaches to intervene

in infectious diseases. This platform which is available at infection-atlas.org in

the short term provides a user-friendly interface to browse and visualize

different aspects of infectious diseases and in the long-term is expected to be a

comprehensive atlas of infection in human and mouse across different tissues

and different pathogens.

Overall, in this thesis we provide a framework to study infectious diseases at the

single cell level with providing novel data analysis methods and this thesis paves the

way for future studies to study host-pathogen encounters at the single-cell level.



Zusammenfassung

RNA-Sequenzierung (RNA-Seq) ist in den letzten zehn Jahren zu einer revolutionären

Technik für genomweite Genexpressionsanalysen, sowie für

Gesamt-Transkriptom-Analysen geworden. In den letzten Jahren ist es mit der

Entwicklung neuer Technologien möglich geworden die Genexpression auf

Einzelzell-Niveau zu untersuchen. Diese Fortschritte in der Einzelzell-RNA-

Sequenzierung haben die Art wie Wissenschaftler biologische Prozesse betrachten

von Grund auf verändert. Einzelzell-Sequenzierung wird in unterschiedlichen

Bereichen angewendet, um die grundlegenden Mechanismen biologischer Prozesse

besser zu verstehen.

Besonders Einzelzell-Sequenzierung ist eine geeignete Methode, um

Infektionskrankheiten zu untersuchen. Infektionen sind durch heterogene

Mechanismen auf Wirts- und Erreger Seite gekennzeichnet. Der beste Weg die

Heterogenität dieser Mechanismen zu verstehen und wie sie interagieren ist die

Analyse von Infektionskrankheiten auf Einzelzell-Niveau.

Untersuchungen von Infektionsprozessen auf Einzelzell-Ebene können nicht nur die

Heterogenität, sondern auch die Dynamik einer Infektion und das Wechselspiel

zwischen Wirt und Pathogen auf molekularer Stufe aufzeigen.

In dieser Dissertation wurden unterschiedliche Einzelzell-RNA-Sequenzierung

Technologien implementiert und angewandt um ein besseres Verständnis von

Infektionskrankheiten zu erlangen. In der vorliegenden Arbeit haben wir vier

unabhängige, aber verwandte Forschungsarbeiten durchgeführt, um unterschiedliche

Aspekte von Infektionsbiologie näher zu betrachten.

● Wir nutzten die Vorteile dieser neuen Technologie, um die Konsequenzen einer

RSV Infektion bei primären humanen Epithelzellen zu untersuchen. Die



primären humanen Epithelzellen stammten von sechs Spendern und wurden in

Luft-Flüssigkeits-Grenzflächen (ALI) Zellkultur mit dem Respiratorischen

Syncytial-Virus (kurz RS-Virus) infiziert. In diesem Projekt konnten wir ciliierte

Zellen als anfällige Zelltypen einer RSV Infektion zeigen. Wir haben die

Viruslast als Indikator für den Fortschritt der Infektion herangezogen, als auch

für die Rekonstruktion der Wirtsantwort Dynamik gegenüber einer RSV

Infektion. Die Rekonstruktion der Infektionsdynamik zeigte viele Wirtsgene

und Signalwege, die durch die RSV Infektion unterdrückt oder induziert

wurden. Signalwege, die mit der angeborenen Immunantwort und der

Interferonantwort assoziiert waren, wurden durch die fortschreitende Infektion

unterdrückt und andererseits waren Signalwege, wie die Zielsteuerung von

Proteinen zum endoplasmatischen Retikulum und Apoptose induziert.

● Wir haben eine neue Methode entwickelt, die es ermöglicht das Transkriptom

eines Bakteriums auf Einzelzell-Niveau zu sequenzieren und potenziell helfen

könnte die bakterielle Heterogenität während des Verlaufs einer Infektion zu

charakterisieren. In diesem Forschungsprojekt wurden Bakterien unter

folgenden drei unterschiedlichen Konditionen angezogen: Späte stationäre

Phase, anaerober Schock und Natriumchlorid Schock. Anschließend wendeten

wir ein poly(A) unabhängiges Einzelzell-RNA Sequenzier-Protokoll an, um

Bakterien auf Einzelzell-Niveau zu sequenzieren. In dieser Arbeit berichten wir

die von wachstumsabhängigen Genexpressionsmustern in einzelnen

Salmonellen und Pseudomonaden. Das Ergebnis unserer Analyse zeigte, dass

wir nicht nur Transkripte unterschiedlicher RNA-Klassen, sondern auch das

Transkriptom von Bakterien in unterschiedlichen Wachstumsbedingungen

erfassen können.



● Wir haben Einzelzell-RNA Sequenzierungs-Technologien verwendet, um die

Immunzellen Zusammensetzung während des Verlaufs der Athereosklerose zu

betrachten. Die Atherosklerose wird als Herzkrankheit betrachtet, die eng mit

Infektionen in Zusammenhang gebracht wird. Vorherige Infektionen mit

Bakterien oder Viren werden als Risikofaktor für Atherosklerose angenommen.

Wir haben für aortische CD45 Zellen von der gesunden und atherosklerotischen

Aorta von Mäusen Einzelzell-RNA-Sequenzierungen durchgeführt. Hierbei

konnten wir bestimmte Zellpopulationen identifizieren, die spezifisch in

atherosklerotischen Mäusen vorkommen. Eine der athereosklerotischen

Populationen war eine zuvor unbeschriebene TREM2high Makrophagen

Population, die eine erhöhte Trem2 Genexpression zeigte. Diese Population

von Makrophagen schien in Funktionen wie Lipid Metabolismus, Katabolismus,

sowie Kalzifizierung von Verletzungen involviert zu sein. Diese Arbeit hat die

phänotypische Heterogenität und das Feld unterschiedlicher

Immunzellpopulationen in unterschiedlichen Stadien der Atherosklerose

aufgezeigt. Unsere Arbeit bereitet den Weg, um die Beziehung zwischen

unterschiedlichen Infektionskrankheiten und kardiovaskulären Krankheiten

besser zu beschreiben.

● Wir haben eine webbasierte Plattform namens „Infektionsatlas“ entwickelt, um

Einzelzell-RNA-Sequenzierungsdaten zu visualisieren und zu durchsuchen. Die

„Infektionsatlas“ Plattform stellt eine nutzerfreundliche Oberfläche zur

Untersuchung von unterschiedlichen Aspekten von Infektionskrankheiten auf

Einzelzell-Niveau bereit und kann möglicherweise zielgerichtete Ansätze

voranzutreiben, um Infektionskrankheiten zu verhindern. Diese Plattform, die

unter „infection-atlas.org“ verfügbar ist, bietet im Moment eine

nutzerfreundliche Oberfläche zum Durchsuchen und Darstellen

unterschiedlicher Aspekte von Infektionskrankheiten. Langfristig soll es ein



umfangreicher Atlas für Infektionen in Maus und Mesch in unterschiedlichen

Geweben und unterschiedlichen Pathogenen.

Insgesamt stellen wir in dieser Dissertation einen Rahmen zur Untersuchung von

Infektionskrankheiten auf Einzelzell-Ebene mit neuen Methoden für die Datenanalyse

zur Verfügung und bereiten den Weg für weitere Studien um Wirts-Pathogen

Interaktionen auf Einzellzell-Niveau zu untersuchen.
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Chapter 1: Introduction

From RNA-seq to single-cell RNA-seq

RNA sequencing

The RNA-seq method was developed more than a decade ago and ever since the

method has become a ubiquitous tool to study the molecular mechanisms underlying

many biological processes (Stark, Grzelak, and Hadfield 2019). The primary application

of RNA-seq is to study the differential expression of genes across different tissues

and treatment conditions. In an standard RNA-seq workflow, RNA is extracted and the

mRNA is enriched via depletion of ribosomal RNA. Then, reverse transcription is

applied to synthesize cDNA. Thereafter, adapters are added to the cDNA library and

the library is sequenced on a sequencing platform. After sequencing, different

bioinformatics methods are applied to detect genes that their expression changes

across different conditions.

Although analysis of differentially expressed genes is the primary application of

RNA-seq, several other methods are developed to study different aspects of RNA

biology. For instance, nowadays, RNA-seq methods are used to study mRNA splicing

and gene isoform expression, expression of non-coding RNAs and detection of

structural genomic changes like gene fusion (Stark, Grzelak, and Hadfield 2019).
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The most novel application of RNA-seq is to profile the transcriptome of tissues and

cell types at the single cell level which became possible with technological advances

over the last decade. Recent advances in application of single-cell RNA-seq

transcriptomics brings up a totally new opportunity to not only study the

heterogeneity but also the dynamics of different processes at the single cell level.

Single-cell RNA-sequencing technologies

The common single-cell RNA-sequencing technologies are composed of several steps

(usually similar to common RNA-seq methods) including cell lysis, reverse

transcription and synthesis of the first and the second cDNA strand followed by

amplification of cDNA (Hwang, Lee, and Bang 2018). After cell lysis, poly dT primers

are usually used to capture polyadenylated mRNA. Studies have shown that due to

technical difficulties, only 10-20 % of the transcripts are reverse transcribed at this

stage (Islam et al. 2014). Synthesis of the first strand of cDNA is usually carried out

with reverse transcriptase and afterwards the second strand synthesis can be

implemented by either poly-A tailing (Sasagawa et al. 2013) or template switching

mechanism (Ramsköld et al. 2012). Template switching ensures uniform coverage of

reads over the transcript length compared to poly-A tailing. After reverse

transcription, cDNA is PCR amplified.

SMART-seq2, one of the most widely used methods for sequencing cells at the

single-cell level, uses template switching to generate full-length transcripts and is

suitable for the discovery of alternative splicing and allele-specific expression using

single-nucleotide polymorphisms (Picelli et al. 2013). On the other hand, this method

is limited by the sequencing costs and the number of cells that can be sequenced in a

single run. This can be a major drawback for studies where an in depth profiling of

several different cell types is required.

To overcome these limitations, researchers have developed methods that are focused

on sequencing the 3’ or 5’ end of the transcripts. In these methods, usually unique

2
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molecular identifiers (UMIs) which are 4-8 base pair barcodes associated with each

transcript are incorporated during the reverse transcription step (Islam et al. 2014).

Using UMIs, each read can be assigned to its original cell by limiting PCR bias and

therefore improving accuracy. Overall, the main limitation of the current approaches

that sequence the 5’ or 3’ end of the transcript is the fact that they are not capable of

providing full-length gene coverage and therefore are not suitable to study allele

specific gene expression or isoform usage.

Exponential increase in the number of single-cells profiled per study over

the past decade

With the introduction of new technologies in the past few years, our ability to study

cells at the single-cell level has exponentially improved. After just a decade since the

first single-cell RNA-sequencing study was published, many sensitive and accurate

single-cell RNA-sequencing protocols have been introduced. The recent advances not

only improved the sensitivity and accuracy, but also the number of cells profiled per

study has also dramatically changed (figure 1) (Svensson, Vento-Tormo, and

Teichmann 2018). Nowadays, hundreds of thousands of single cells can be profiled in

parallel in a single study which increases our ability to catalog different cell types and

their corresponding signature. Modern advances in microfluidic technologies have

made a substantial contribution in the improvement of different single cell

sequencing technologies (Saliba et al. 2014). The commercial platform offered by 10x

Genomics allows every laboratory to generate single-cell RNA-seq in a

high-throughput manner (Zheng et al. 2017). Thanks to these advances in scRNA-seq

technology, researchers are taking steps toward more fully understanding what

people are made of, by reproducibly cataloging the diversity of cell types and gene

expression patterns within them.

3
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Figure 1. Exponential increase in the number of cells profiled per study as a result of technological

improvements. Figure reprinted from Svensson, Vento-Tormo, and Teichmann 2018.

Single-cell transcriptomics and infection

Understanding the molecular mechanisms underpinning infection is crucial to rational

design of therapeutics and to interfere with infectious disease progression.

Conventional infection biology studies have relied on population-based approaches

and important cell-to-cell variations which arise from both host and pathogen are

usually neglected (Bumann 2015; Cadena, Fortune, and Flynn 2017). There are many

different sources of heterogeneity in infection processes that could have an impact

on the outcome of the disease. For example, in viral infections, diversity can arise

from a mixture of mutated viral particles showing different infection abilities

(Cristinelli and Ciuffi 2018) or in bacterial infections, heterogeneity could be an

outcome of a population of cells showing different levels of resistance or tolerance to

antibiotics (Gollan et al. 2019). On the other hand, host cells can also show variation in

metabolism, cell cycle, activation status and infection history and a combination of

these different elements are contributing factors that determine infection outcome

(Cristinelli and Ciuffi 2018). Recent advances in single-cell transcriptomics methods

provide an approach to characterize the diversity in host-pathogen encounters and

the physiological outcomes of these diverse interactions (figure 2). Single-cell

4
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transcriptomics methods can potentially help to deepen our understanding of

heterogeneity in host and pathogen and it can contribute to clarify how the complex

immune system reacts to infectious diseases.

Figure 2. The history of RNA-seq-based infection research. Figure reprinted from Westermann and Vogel

2021.

Application of single-cell transcriptomics in infectious diseases

Single-cell transcriptomics has been already used in different experimental settings

and so far, it has proved to be a valuable method to expand our understanding about

infectious diseases at an unprecedented level. Using single-cell transcriptomics,

researchers have managed to shed light on several aspects of infectious diseases and

5



host-pathogen interactions (Luo et al. 2020; Lin et al. 2020; Saliba, C Santos, and Vogel

2017). A brief overview of the different applications of single-cell transcriptomics in

infection studies is detailed below.

Identification of susceptible cell types

Identification of susceptible cell types is crucial to understand the mechanism of

pathogenesis of different pathogens. Single-cell sequencing is particularly powerful in

identification of the cell types that are preferentially targeted by the pathogen. In

many cases, the pathogen transcripts are polyadenylated. Therefore, pathogen

transcripts could be detected by available single-cell RNA-sequencing methods and

these transcripts can be associated to the cell types that are susceptible to the

pathogen. For example, Angiotensin Converting Enzyme 2 (ACE2) has been

characterized as one important receptor for SARS-CoV-2 (Hoffmann et al. 2020) and

cell types with high expression of this receptor are more susceptible to SARS-CoV-2

infection (Shang et al. 2020; Wang et al. 2020). In a recent study, single-cell

RNA-sequencing showed that ACE2 is primarily expressed in several different cell

types with highest expression in lung alveolar type II (AT2) cells (Qi et al. 2020; Muus

et al. 2021). In another study, the atlas of influenza virus infection was studied in mice.

In this study, CD45+ and CD45- cells were isolated from the lung of mice infected with

influenza virus and it was shown that 5 types of immune cells and 4 types of

non-immune cells were targeted by influenza virus. Moreover, studies on these mouse

models showed that the viral mRNA content was significantly higher in airway

epithelial cells compared to other cell types (Steuerman et al. 2018). These examples

demonstrate the ability of single-cell RNA-seq not only to identify the susceptible cell

type but also to characterize key factors that are required for viral entry.

Characterizing infection dynamics

Understanding infection dynamics is crucially important because on the one hand,

helps to understand how a pathogen proliferates and spreads over the course of

6
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infection and on the other hand, shows how the host response changes over different

steps of infection progression. However, understanding the dynamics is hindered by

the heterogeneity in host-pathogen interaction (Bumann 2015) and this is the area in

which single-cell RNA-sequencing is particularly powerful. The spread of pathogens

between different cells and pathogen recognition by immune cells can be studied

through single-cell RNA-sequencing. For instance, the dynamics of interaction

between respiratory epithelial cells and influenza A virus (IAV) has been studied at the

single-cell level and in this research, single-cell level patterns of expression of

interferons and interferon stimulated genes provided a valuable resource of the

contribution of the infected and bystander cells to the host innate immune response

over the course of infection and highlighted the importance of early innate immune

response in virus spread inhibition (Ramos et al. 2019). In another study, the dynamics

of interaction between flavivirus and host cells was studied at the single-cell level and

results clarified the dynamics of many host factors specifically related to flavivirus

infection progression. For example pathways like membrane trafficking and signal

peptide processing were contributing to infection progression (Zanini et al. 2018).

Moreover, the dynamics of SARS-CoV-2 infection has also been recently studied via

single-cell RNA-sequencing. The studies showed the composition of immune cells in

patients at different stages of SARS-CoV-2 infection changes dramatically (Wen et al.

2020). Overall, these examples show the potential of single-cell RNA-sequencing in

reconstructing the dynamics of host-pathogen interaction.

Profiling immune response to infection

Characterizing the immune cells landscape not only helps to study the differences in

immune cell profile between healthy and infected persons but also provides a chance

to study changes in immune cells profile at different stages of infection. The immune

cells landscape provides key information to understand the pathogenic mechanisms

of infectious diseases. For instance, a recent study used single-cell RNA-sequencing to

characterize the immune cell profile of SARS-CoV-2 patients among 5 healthy donors

7
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and 13 patients including moderate, severe and convalescent cases. This study

showed that severe patients are marked with profound immune exhaustion, broad T

cell expansion, and profound interferon response. Moreover, most cell types were

characterized with interferon-⍺ response and acute inflammatory response (J.-Y.

Zhang et al. 2020). Overall, single-cell RNA sequencing can identify changes in

immune cell landscape during infection and reveal the unique role of these

populations to shed light on the mechanisms of pathogenesis.

Discovering novel immune cell subtypes

Diverse immune cell types are involved in different biological processes like, pathogen

recognition, antigen presentation and pathogen clearance. For instance, there are

several subtypes of tissue resident macrophages with significantly distinct

transcriptomes. Single-cell RNA-sequencing not only can facilitate the identification of

immune cell subgroups but also helps to characterize their kinetics and function. To

demonstrate, it has been shown that CD4+ T-cells infected with HIV could be

categorized into two distinct cell types. Interestingly, the transcript level of HIV virus

and the number of HIV genes in type I is significantly lower than type II cells.

Moreover, type I cells were more difficult to activate (Golumbeanu et al. 2018). This

example demonstrate that single-cell RNA-sequencing can significantly facilitate

identification of new immune cell subtypes.

In this thesis, we tried to fully take advantage of different capabilities of single-cell

RNA-sequencing to study infection:

● We took advantage of this novel technology to find the susceptible cell types in

respiratory syncytial virus (RSV) infection and to characterize the dynamics of

host cell response to RSV.

● We developed a new method which is capable of sequencing the transcriptome

of a bacterium at the single-cell level and can potentially help us to

characterize the bacterial heterogeneity during the course of infection.

8

https://paperpile.com/c/Bokldw/UV0ap
https://paperpile.com/c/Bokldw/UV0ap
https://paperpile.com/c/Bokldw/zrrYR


● We used single-cell RNA-sequencing technology to characterize the immune

cells landscape over the course of atherosclerosis. Characterizing the immune

cell landscape in cardiovascular diseases can potentially help us to better

understand their association with infectious diseases.

● We developed a web-based platform called Infection Atlas to browse and

visualize single-cell RNA-sequencing data. Infection Atlas platform provides a

user-friendly interface to study different aspects of infectious diseases at the

single-cell level and can potentially promote targeted approaches to intervene

infectious diseases.

In the following section, we provide an introduction to the different subjects

mentioned above.

Respiratory Syncytial Virus (RSV)

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease in

young children and elderly people and it is responsible for roughly 60,000 deaths

annually in children younger than 5 years of age. RSV is a pleomorphic enveloped virus

(120-300 nm diameter) with a negative sense, single stranded RNA genome (15.2 kb)

composed of 11 genes which 9 of them encode structural proteins and two genes

encode non-structural proteins (figure 3). The first two genes in the RSV genome are

NS1 and NS2 which code the non-structural proteins. These two proteins together are

active in modulation of host innate immune response and they inhibit apoptosis and

interferon response (Bitko, Shulyayeva, and Mazumder 2007; Spann, Tran, and Collins

2005).

The virion is covered by a lipid bilayer which is composed of F (fusion protein), G

(attachment protein) and SH (a small hydrophobic protein) proteins. These three

proteins are important for virus infectivity and the presence of all of them is

necessary for efficient fusion of the virus. G protein mediates the attachment of the

viral particle to the host cells by targeting airway ciliated cells. This further mediates
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the fusion of infected cells to neighboring uninfected cells which ultimately leads to

characteristic RSV synticia. The lipid bilayer is supported by two layers of M and M2-1

proteins. These two proteins are important for viral morphogenesis. Inside the viral

envelope, the ribonucleoprotein is located which is composed of genomic RNA

associated with nucleoprotein (N). RNA-dependent RNA-polymerase (RdRp) is another

complex inside viral envelope that is composed of a large polymerase subunit (L), a

phosphoprotein polymerase cofactor (P) and N (figure 3) (Nam and Ison 2019; Battles

and McLellan 2019).

RSV mainly infects ciliated airway epithelial cells. It has been proposed that RSV’s G

protein binds to CX3CR1 which is present on the surface of the ciliated cells and

especially on the cilia (Johnson et al. 2015). Other publications also proposed other

cell surface receptors which mediate RSV attachment to the cell surface including

annexin II, epidermal growth factor (EGF) receptor, Toll-like receptor 4 (TLR4),

intercellular adhesion molecule 1 (ICAM-1), nucleolin, and heparan sulfate

proteoglycans (HSPGs) (Griffiths, Drews, and Marchant 2017). After attachment of

viral particles to the cell surface, the entry of the virus depends on F protein and it’s

fusogenic capacity. The virus is weakly cytopathic and causes slight cell lysis in human

airway epithelial cells (Openshaw et al. 2017). However, the virus is transmitted from

cell to cell and fuses neighboring cells to form syncytia. The formation of syncytia is

mediated by F protein and a host GTPase called RhoA (Pastey, Crowe, and Graham

1999). It is worth mentioning that the ability of the virus to create syncytia is different

between variants and different viral strains show a diverse capacity to form syncytia in

epithelial airway.
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Figure 3. Schematic representation of Respiratory syncytial virus. Localization of different viral proteins on

the viral particle (top) and the genomic position of different genes on RSV genome (bottom). Figure

reprinted from Battles and McLellan 2019.

Host innate immune response to RSV

The innate immune response in the host cells is triggered after recognition of RSV

surface proteins, RSV RNA and proteins by pattern recognition receptors. The

TLR4/CD14 recognize extracellular RSV F protein and RIG-1, MDA5 and TLR3 receptors

mainly recognize the intracellular transcripts and viral replication intermediates (Troy

and Bosco 2016; Arruvito, Raiden, and Geffner 2015).

After recognition, a wide variety of transcription factors are activated which

subsequently leads to activation of transcriptional programs that activate the host

antiviral programs. Transcription factors like NF-kB, AP-1, JNK, JAK, p38 MAPK and

STAT are among the first transcription factors that are activated following RSV

recognition. The activation of these transcription factors is followed by expression of
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a variety of chemokines and cytokines and type-I and type-III interferons (Rossi and

Colin 2017).

Expression of TNF-α, ITAC/CXCL11 and CXCL8/IL-8 helps to recruit neutrophils and

other granulocytes to the site of infection to eliminate the infected cells. Expression

of type-I interferons results in decreased expression of host proteins and

upregulation of pro-apoptotic mediators. Apoptosis following RSV infection is an

efficient approach to control infection via decreasing viral replication and production

of proinflammatory factors (Bueno et al. 2008; Troy and Bosco 2016).

Interferons have long been known to actively restrict viral infection via induction of

expression of interferon stimulated genes (ISGs). Recognizing the viral antigens

triggers the expression of different types of interferons. Interferon type-I induces the

expression of gene programs which upregulates the expression of many ISGs in cells

which subsequently leads to inflammatory response after RSV infection by activation

of dendritic cells (DCs), natural killer (NK) cells, and T cells (Goritzka et al. 2015, 2014).

Type-I interferon IFN-β also induces the production of B cell survival factor (BAFF) by

the airway epithelium cells (McNamara et al. 2013). The production of interferons with

epithelial cells is crucial for the course of RSV infection. Interferon Type-III also

induces an antiviral program that limits RSV replication (Villenave et al. 2015).

RSV infection also leads to production of other chemokines that recruit monocytes

and memory T-cells (Ioannidis et al. 2012). However, secretion of chemokines is not

always protective. In RSV infection, secretion of a set of chemokines (RANTES/CCL5,

eotaxin-1/CCL11, IL-6, TSLP and IL-17C.) results in recruitment of eosinophils,

basophils and mast cells which have no protective role in RSV infection and

exacerbate airway damage (Rossi and Colin 2017).

Severe cases of RSV infection have been associated with single nucleotide

polymorphism (SNP) in genes related to host cell immune response. For instance

airway epithelium cells carrying TLR4 SNPs fail to activate NF-kB signaling pathway
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therefore decreased production of interferons leads to inefficient host response to

RSV infection (Tal et al. 2004).

RSV modulates innate immune response

RSV takes advantage of different mechanisms to control and inhibit innate immune

response. NS1, NS2 and G proteins are the main proteins used by RSV to control or to

inhibit host immune mechanisms (Troy and Bosco 2016). Here, a brief overview of how

viral proteins modulate the host cell environment in their advantage to evade innate

immune response is provided.

RSV interferes with interferon response via NS1 and NS2 proteins

As mentioned before, the type-I interferon response can be inhibited by NS1 and NS2.

These two proteins block interferon functions via inhibition of interferons or the

signalling pathways in infected cells (Spann, Tran, and Collins 2005). Studies showed

that in vitro infection with recombinant viruses which lack NS1 and NS2 leads to higher

expression of IFN-β (Spann et al. 2004). Moreover, in vitro studies also showed that

NS1 and NS2 enhance degradation of STAT2 protein (Whelan et al. 2016). These two

proteins also disrupt binding of IRF3 to IFN-β promoter (Ren et al. 2011) which results

in disruption in all the pathways controlled by type-I interferons. The effect of NS1

and NS2 on interferon response is not limited to the host cells. It has also been

suggested that this inhibition might also have a diverse effect on maturation of

monocyte derived dendritic cells (Munir et al. 2008). NS1 and NS2 also modulate TNF

receptor-associated factor-3 and inhibitor-κB kinase ε which ultimately lead to

decreased type-I interferon production (Swedan, Musiyenko, and Barik 2009). They

also affect the innate immune response via interaction with cytoplasmic pattern

recognition receptors like RIG-I and MDA5 (Lifland et al. 2012).
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The role of G protein in immune modulation

G protein is considered as the most antigenic protein in RSV viral particles. This

protein is highly glycosylated and shows an extensive level of variability. These

features are important for the virus to be able to escape immune recognition and to

neutralizing antibodies (Rossi and Colin 2015). This protein is also capable of

inhibiting the host cell innate immune response. G protein performs it’s

immunomodulatory activity via interfering with normal functions of microRNAs

(miRNAs). miRNAs are small single stranded RNA molecules with important functions

in determining host cell response to RSV infection (Rossi, Silvestri, and Colin 2015;

Bakre et al. 2012). Changes in miRNA synthesis has been linked to increased RSV

infection severity, decrease in apoptotic signal and disruption of TLR4 function

(Inchley et al. 2015; Liu et al. 2015). But modulation of miRNA activity is not the only

way that G protein affects the innate immune response. G protein also works as a TLR

antagonist and binds to RSV-specific antibodies to reduce their availability (Shingai et

al. 2008).

Sequencing bacteria at the single-cell level

Whereas single-cell transcriptomics have proved to be a valuable method in infection

studies and eukaryotic single-cell transcriptomics is revolutionizing the analysis of

cell-to-cell variation in infection context, technical limitations have restricted its

application to prokaryotes and due to these limitations most of the studies in

microbiology are still relied on analysis of bacterial transcriptome at the bulk level.

Currently, our understanding about the diversity inside microbial populations is

limited and a robust method that can faithfully capture the transcriptome of a single

bacterium can potentially bridge this gap (Imdahl and Saliba 2020).
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Phenotypic heterogeneity in bacterial pathogens

Using fluorescent reporters, major advances have been made to comprehend

bacterial phenotypic heterogeneity in the context of infection (Roche and Bumann

2021). Pathogens show an extraordinary level of variability within the same host

tissue site (Gollan et al. 2019). This variability can be either a consequence of

fluctuation in transcription factor expression and activity which leads to different

gene expression patterns or due to the subtle differences in tissue

microenvironments. As a result, pathogen and host encounters can potentially lead to

different outcomes in individual cells and have a major impact on antibiotic treatment.

For example, a subpopulation of non/slow-growing bacterial populations has a

transient resistance to antibiotics that is not genetically encoded (Ackermann 2015).

Diversity in the bacterial population is beneficial for pathogen species. In case of

sudden changes in environmental conditions, a subpopulation which has an

advantageous phenotype is able to survive and reproduce in the new environmental

condition. Bacterial pathogens are exposed to dramatic environmental changes

during the course of infection and they have to be able to survive in diverse host

niches. Therefore, they have adapted several mechanisms to generate and promote

phenotypic diversity (Weigel and Dersch 2018). The molecular mechanisms underlying

phenotypic diversity have been the subject of intense research over the past years

and scientists have tried to explain the mechanistic molecular events which lead to

pathogens phenotypic heterogeneity (Ackermann 2015).

Bacterial pathogens interact with different microenvironments in infection sites and

the response of different individual pathogens to environmental conditions is slightly

different and this leads to variable gene expression profile and phenotypic properties.

Even when the spatial distance between individual cells is decreased as much as

possible, they are still exposed to different gradients of concentration of metabolites,

ROS/NOS and immune response activities (Bumann 2015). Demonstrated examples
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of the effect of microenvironment on phenotype are Salmonella proliferating inside

macrophage cells (Helaine et al. 2014) and Yersinia replication inside microcolonies

nearby surrounding neutrophil cells (Davis, Mohammadi, and Isberg 2015).

Another source of diversity between individual pathogens is stochastic events and

fluctuations which normally originate from the small number of molecules inside a

single cell bacterium (Ackermann 2015; Ozbudak et al. 2002). Stochastic events can

potentially lead to different transcriptional signatures and subsequent diverse

phenotypes inside a genetically identical population even when cells are growing

inside an identical microenvironment (Bódi et al. 2017; Ackermann 2015; Nuss et al.

2016). Specific types of genes are more likely to have stochastic gene expression.

Studies showed genes involved in certain pathways like metabolic pathways and stress

response pathways are more susceptible to have fluctuation in their expression. On

the other hand, housekeeping genes and evolutionary conserved genes are less likely

to show this type of gene expression pattern (Ackermann 2015; Raj and van

Oudenaarden 2008). One of the best studied examples of fluctuation in gene

expression that leads to distinct phenotype is the process of sporulation in Bacillus

subtilis (Veening, Smits, and Kuipers 2008).

Although, Identification of the evolutionary benefits for pathogens phenotypic

heterogeneity is experimentally challenging, scientists have attributed two main

benefits to population heterogeneity named division of labor and bet-hedging.

In division of labor, bacteria cooperate with each other to increase the overall fitness

of the population to the environmental condition. In this strategy, each subpopulation

performs a particular function that is beneficial for the whole population and

increases the compatibility of the bacterial population to the environmental

condition. It is costly for a bacterium to perform the combination of these functions

therefore the labor is distributed among the bacterial individuals inside the bacterial

community (Z. Zhang, Claessen, and Rozen 2016). One example of division of labor

that promotes pathogenicity of bacteria is the association between pathogen inside
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micro colonies in infected tissue where different subpopulations perform specialized

tasks like defense against surrounding neutrophils or activation of certain metabolic

pathways and the combination of these distinct tasks increases the overall fitness of

the pathogens (Davis, Mohammadi, and Isberg 2015).

Bet-hedging is when bacterial individuals express phenotypes that have no immediate

benefit for them but this particular phenotype might be beneficial to the bacterium in

the later stages of infection or under stress conditions. Bet-hedging increases the

overall fitness of the population to sudden environmental changes. Examples of

bet-hedging have been reported for bacterial pathogens like Salmonella and Yersinia

which enter the host from the environment and during the process of infection have

to cross several host barriers and are exposed to host immune cells. Therefore,

bet-hedging allows a subpopulation of them to survive in different host

environmental conditions (Nuss et al. 2016; Stewart and Cookson 2012).

Challenges in studying RNA content of a bacterium

Bacterial heterogeneity has been mainly studied using fluorescence microscopy but

using fluorescently tagged bacteria (Roche and Bumann 2021) but this method can

only report the information for only few genes.. Furthermore, bacterial heterogeneity

can not be captured via conventional bulk RNA-seq that average information over

million of organisms. To better understand the heterogeneity inside a pathogen

population and to potentially develop mechanisms to interfere with pathogens' ability

to escape immune cells, one needs to study bacterial pathogens at the single-cell

level.

Several technical difficulties need to be elevated to to perform single bacteria

RNA-seq. First, one needs to first dissociate the cell wall via enzymatic digestion or

mechanical dissociation and the diversity of cell wall among bacterial species means

that different bacteria might require different cell wall dissociation methods and

unfortunately, there is no universal method that can be applied to every bacterial
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species. Secondly, a bacterium has very low RNA content. The size of a bacterium is

roughly 1 μm whereas the size of a mammalian cell is around 10-30 μm. It is estimated

that the total RNA content of a bacterium is around 10-100 fg whereas this number

for a eukaryotic cell is around 10 pg and last but not least, the estimate for the

average mRNA copies per bacterial cell is around 0.4 whereas this number is > 10 in a

mammalian cell. Therefore very sensitive methods with a low detection limit are

required to capture and amplify the RNA content of a single-cell bacterium. Third,

bacterial mRNA molecules are not poly-adenylated making it very challenging to

separate ribosomal RNAs which account for more than 90% of total RNA. Most of the

single sequencing methods that have been developed so far are dependent on the

poly-A tail to amplify mRNA and these methods are not applicable to sequence RNA

content of bacterial cells (Imdahl and Saliba 2020).

State-of-the-art methods to sequence bacteria at the single-cell level

In 2020, a substantial effort has been devoted to develop new methods to sequence

bacteria at the single cell level which overall lead to successful protocols that are

capable of capturing the transcriptional diversity inside a bacterial population. In a

research that was conducted in this thesis, using a poly(A)-independent single-cell

RNA-sequencing protocol, we report the faithful capture of growth-dependent gene

expression patterns in individual Salmonella and Pseudomonas bacteria across all RNA

classes and genomic regions. In parallel efforts were made by other research groups

to sequence bacteria at the single-cell level. Microbial split-pool ligation

transcriptomics (microSPLiT) (Kuchina et al. 2019) and prokaryotic expression profiling

by tagging RNA in situ and sequencing (PETRIseq) (Blattman et al. 2020) are two

successful methods that have been published recently. These two methods are based

on combinatorial indexing based single-cell RNA-sequencing methods (Rosenberg et

al. 2018). Therefore, they are considered as high-throughput methods which are able

to sequence the transcriptome of thousands of bacteria in a single run although the

number of genes detected per cell in both of these methods is relatively low
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compared to the work conducted in this thesis. In these methods, single-bacterium

RNA-sequencing was performed across a wide range of microorganisms including

both gram-negative and gram-positive bacterial pathogens.

Myocardial infarction and infection

The association between cardiovascular diseases and infection has long been a

subject of studies. A large number of Infectious diseases like influenza, pneumonia

and other chest infections have been associated with myocardial infarction (Kwong,

Schwartz, and Campitelli 2018; Clayton, Thompson, and Meade 2008). A recent study

revealed an increased risk of myocardial infarction during the week after infection

with influenza virus, respiratory syncytial virus and other respiratory viruses compared

to the risk in the first year before or after the onset of infection (Kwong, Schwartz,

and Campitelli 2018). Another study showed that the risk of myocardial infarction is

8% higher in patients who were hospitalized due to pneumococcal pneumonia

(Musher et al. 2007). Moreover, the link between myocardial infarction and

pneumonia was further verified in patients with Haemophilus influenzae infection

(Corrales-Medina et al. 2012) and studies showed that the risk of myocardial infarction

associated with pneumonia is correlated to the severity of infection (Corrales-Medina

et al. 2015). Respiratory infectious diseases are not the only type of infection that

increase the risk of myocardial infarction. Other types of infections like urinary tract

infection (Smeeth et al. 2004) and bacteremia (Dalager-Pedersen et al. 2014) are also

strong risk factors for myocardial infarction. Moreover, the advent of the new

SARS-CoV2

Potential mechanisms of association between myocardial infarction and

infection

Researchers have proposed a causal relationship between infection and myocardial

infarction (Musher, Abers, and Corrales-Medina 2019). As described before,
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myocardial infarction is associated with a variety of pathogens (including bacterial and

viral) and it is also linked to different infection sites. Moreover, more severe infections

have higher associations with myocardial infarction. So far, several different

mechanisms have been proposed to explain this association.

One possible mechanism which has been proposed is related to the existence of

inflammatory cells in athrosclerotic plaque. In this scenario, infection in the body

leads to generation of circulating cytokines like interleukin 1, 6 and 8 and tumor

necrosis factor ⍺ which subsequently causes activation of inflammatory cells in

athrosclerotic plaque (Brown et al. 2014). In this case, plaque inflammatory cells

up-regulate expression of enzymes like peptidase and metalloproteinase which leads

to oxidative burst. All of these factors subsequently contribute to destabilization of

the plaque (Libby 2013).

Moreover, studies have attributed a second possible mechanism to explain association

between myocardial infarction and infection. Myocardial infarction takes place when

myocardial cells demand more oxygen than what blood can possibly supply to the

cells. Infection can lead to inflammation and fever and subsequent increased

metabolic activity of peripheral organs. The resulting increase in heart rate shortens

the filling time during diastole, thereby compromising coronary perfusion. Also

pneumonia can cause decreased levels of oxygen in blood and subsequently limits the

myocardium oxygen supply. Moreover septic shock has a tremendous adverse effect

on coronary blood supply (Musher, Abers, and Corrales-Medina 2019).

Lastly, the risk of other cardiac disorders like arrhythmias, stroke and heart failure also

increase after different infectious diseases and therefore the underlying mechanisms

that increase the risk of cardiac disease needs to be characterized. This is particularly

important in the case of heart failure, because after pneumonia the risk of heart

failure is even higher than the risk of myocardial infarction. A detailed understanding

of the interaction between the cardiac disease and infection will help to reduce the

risk of heart diseases after infection. In this thesis we tried to explore the
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heterogeneity and dynamics of immune cells in cardiovascular diseases to pave the

way for a better understanding of the mechanisms underlying the correlation

between cardiac diseases and infection.

Aortic macrophages and atherosclerosis

Macrophages are the main immune cell type in atherosclerotic lesions and they play a

crucial role during all stages of plaque development. Lesional macrophages perform a

wide variety of different functions which controls or exacerbates lesion development

(Clement Cochain and Zernecke 2017). Therefore, understanding the role of

macrophages in vascular inflammation is required not only to develop new

therapeutics for atherosclerosis but also to better explain the association between

myocardial disorders and infectious diseases.

Diverse functions of macrophages in atherosclerosis

Several different roles have been attributed to aortic macrophages in the context of

atherosclerosis. Here we provide an overview of the different functions which have

been described for macrophages.

Production of inflammatory cytokines

Inside athrosclerotic lesions, macrophages contribute to the recruitment of immune

cells by producing chemokines and also participate in tissue inflammation via

secretion of proinflammatory cytokines. The role of athrosclerotic macrophages in

inflammation has been described in many researches. Deficiency in production of

IL-1⍺ and IL-1β in bone marrow derived cells has been associated with reduced

inflammation and plaque formation in Apoe -/- mice (Freigang et al. 2013). Moreover,

CCL2 over production in bone marrow cells results in higher levels of macrophage

recruitment to athrosclerotic plaque which suggests that chemokines produced by

leukocytes can increase lesion inflammation (Aiello et al. 1999). Aortic macrophages
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also produce anti-inflammatory cytokines and deficiency in IL-10 and IL-13 has been

linked to increased plaque formation and inflammation (Cardilo-Reis et al. 2012).

Forming foam cells

Foam cells in the aorta are one of the main hallmarks of atherosclerosis. Various cell

surface receptors in macrophages like CD36, scavenger receptor A1(SR-A1) and LDL

receptor-related protein 1 (LRP-1) have been associated with the ability of

macrophages to uptake LDL (Tabas and Bornfeldt 2016). Studies with mice deficient in

expression of these receptors have proved the role of foam cell forming macrophages

in atherosclerosis. Studies showed deficiency in LPR-1 receptors has a protective role

in Ldlr-/- mice against atherosclerosis (Makowski et al. 2001) and studies showed that

deficiencies in macrophage specific CD36 receptor leads to decreased foam cell

formation in athrosclerotic plaque (M. Febbraio et al. 2000; Maria Febbraio, Guy, and

Silverstein 2004).

Proliferation and senescence of macrophages in athroscelerotic lesion

The ability of plaque macrophages to proliferate is also considered an important

feature of these cells. It has been proposed that proliferation of macrophages take

place in more advanced athrosclerotic lesions. In addition, the athrosclerotic plaque

also contains macrophages which have lost their proliferative ability and are known as

senescent cells and these cells are considered to be pathogenic (Childs et al. 2015).

Studies showed that clearance of senescent cells from plaque lead to decrease in

lesion progression and results in stability of plaque (Childs et al. 2016). Overall, it is

not clear how macrophage survival impacts athrosclerotic progression and

contradictory results have been reported in different genetic mouse models (Clement

Cochain and Zernecke 2017).
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M1/M2 paradigm and its limitations to explain heterogeneity in

athrosclerotic macrophages

A classification that is commonly used in literature to categorize macrophages

phenotype is M1/M2 paradigm and its variants which is based on macrophages

phenotype in vitro. M1 phenotype is characterized by increased expression of

proinflammatory cytokines and chemokines, inducible nitric oxide synthase (iNOS) and

production of reactive oxygen species (ROS). Stimulation of macrophages with IFNγ

and LPS leads to M1 phenotype. On the other hand, stimulation of macrophages with

Th2 cytokines IL-4 and IL-13 leads to anti-inflammatory M2 phenotype which is

characterized with secretion of IL-10 and TGFβ. Using different stimulation methods,

the M2 phenotype has been further categorized into M2a, M2b and M2c subtypes

(Martinez and Gordon 2014).

Whereas the M1/M2 paradigm has been extensively used to define macrophage

phenotype in vivo but one needs to bear in mind that M1/M2 polarization represents

extremely artificial ends of the macrophage phenotype spectrum and could

potentially be misleading in certain circumstances. For example, in a research on an

obesity model adipose tissue, macrophages expressing the M2 marker CD301b were

associated with glucose intolerance and weight gain whereas this finding contradicts

with the beneficial role described for M2 macrophages in this setting (Knudsen and

Lee 2016). Although the M1/M2 paradigm has been proved to be useful in certain in

vivo circumstances like allergic reaction and parasite infection, it can not be readily

transposed to different disease specific contexts where macrophages are exposed to

more complex microenvironments (Sica and Mantovani 2012; Martinez and Gordon

2014). Due to this reason, it is very unlikely that the M1/M2 paradigm could be useful

to describe the heterogeneity of the macrophage population in a complex

microenvironment such as athrosclerotic plaque.
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Researchers in the field of atherosclerosis have tried to elaborate on the M1/M2

paradigm by characterizing several different macrophage polarization states which

are formed using different stimuli. For example, M4 induced by CXCL4, Mox induced

by oxidized phospholipids and Mheme induced by Heme (Chinetti-Gbaguidi, Colin, and

Staels 2015; Clément Cochain and Zernecke 2015). This type of categorization tries to

take into account the plaque specific stimuli and their role in the control of

macrophages function but they are not still sufficient to characterize the

heterogeneity of macrophages in the plaque because in these experiments,

macrophages from a single source have been studied with a limited number of stimuli

and it can not potentially reflect the diversity of plaque macrophages with multiple

origins and inside a complex microenvironment (Nahrendorf and Swirski 2016). On top

of that, the presence of resident macrophages in arteries adds another layer of

complexity to the study of macrophages in atherosclerosis because how they are

functionally different from recruited macrophages and how they contribute to

atherosclerosis is unknown (Ensan et al. 2016).

TREM2

Triggering Receptor Expressed on Myeloid cells-2 (TREM2) is a cell membrane

receptor composed of an extracellular immunoglobulin domain followed by a

transmembrane helix and a cytosolic tail. This receptor binds to a wide variety of

ligands that many of them are potentially related to diverse pathological states and

are markers of different types of tissue damage. These ligands include phospholipids,

sulfatides, bacterial lipopolysaccharide (LPS) and DNA (Kober and Brett 2017).

Surprisingly, TREM2 is inactive (or has severe restricted activity) in healthy tissues,

however, upon tissue damage, the TREM2 pathway plays a pivotal role in detecting

and restricting the spread of the damage (Deczkowska, Weiner, and Amit 2020).

Therefore, the scientific community has paid extra attention to this protein in recent

years due to its role in different disease contexts.
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TREM2 triggers a downstream signalling pathway and activation of this pathway can

lead to diverse cellular responses which are not necessarily similar in different cell

types. In fact, the downstream pathways that are activated upon TREM2 activation are

highly dependent on tissue context and cellular state and accessibility of different

elements of signalling pathway determines the outcome of signal transmission. On

top of that, binding of different ligands to the TREM2 receptor can lead to activation

of diverse biochemical pathways with diverse consequences for the cell fate

(Deczkowska, Weiner, and Amit 2020).

The importance of this signalling pathway has been identified in the recent years and

due to that our current knowledge about this cell surface receptor is limited. Most

studies that have been conducted to elucidate TREM2 function so far, are based on in

vitro and classic biochemical studies and generally it has been pointed out that in vivo

TREM2 signalling could be way more sophisticated.

Actually, the role of TREM2 in human health was first pointed out via genetic studies

on a rare and fatal disease named Nasu-Hakola disease (NHD) which is characterized

by progressive dementia and repeated pathological fractures during adolescence.

Genetic studies on patients showed that a loss of function mutation on TREM2 and

DAP12 (one of the proteins associated with TREM2 signalling pathway) leads to the

symptoms of NHD (Klünemann et al. 2005). These early studies pointed out that

TREM2 could potentially play a role in tissue development and maintenance whereas

later studies on NHD patients demonstrated, lack of functional TREM2 and DAP12

causes inability in development and survival of myeloid cells (Otero et al. 2009).

Studies in mice show TREM2 is associated with two other transmembrane

co-receptors, namely DAP10 and DAP12. Interaction of TREM2 with one of its ligands

leads to phosphorylation of DAP10 and DAP12 which subsequently triggers

recruitment of cellular signal transduction proteins. DAP12 activates a tyrosine kinase

named Syk whereas DAP10 triggers a cascade of signal transduction events by

activating PI3K (Ulland and Colonna 2018). As mentioned above, the downstream
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signalling is dependent on the intracellular state and type of tissue. For example, in

Macrophages, TREM2 has anti-inflammatory properties and limits inflammatory

cytokines production (Turnbull et al. 2006) whereas in brain, TREM2 expression is

restricted to microglia, and drives the acquisition of a protective disease-associated

microglia (DAM) state during neurodegeneration (Keren-Shaul et al. 2017). Finally,

cleavage of TREM2 receptor with two enzymes (ADAM17 and ADAM10) releases the

extracellular domain of TREM2 and this process contributes in blocking TREM2

pathway (Schlepckow et al. 2017) (figure 4).

Figure 4. TREM2 signalling pathway, associated proteins and different mediators involved in transferring

TREM2 signal. Figure reprinted from Deczkowska, Weiner, and Amit 2020.

Interestingly, studies on the expression of TREM2 in different human tissues using

single-cell RNA-sequencing has shown that the expression of this gene is limited to a
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small subset of the tissue specific macrophages. Based on these studies, TREM2

expression could be only found in microglia and macrophages in placenta, adrenal

gland and adipose tissue (Han et al. 2020). Although, due to the limitation of these

studies, it doesn't reflect the full spectrum of the functions TREM2 signalling involved

in, but it potentially could give an overview of the sites in the human body that TREM2

could play a role.

In conclusion, TREM2 seems to be an important signalling mediator that is involved in

many physiological roles and the cell response to the TREM2 activation is dependent

on many contributing factors. The affinity of ligand to TREM2 receptor, the expression

level of TREM2 and also the expression level of the downstream molecular machinery,

the epigenetic state of the cell, the antagonism of other cell signalling pathway are

just a few contributing factors to name and these factors coordinately determine the

phenotypic outcome of the TREM2 activation.

Physiological role of TREM2 signalling pathway

It seems, TREM2 signalling is responsible for significant changes in the gene

expression profile and function of the cells. This shows that TREM2 signalling is

capable of inducing different cellular pathways in different tissue contexts which

reflects several TREM2 dependent processes in the human body. Functions like

activating phagocytosis, lipid metabolism, restricting inflammation and promoting cell

survival have been attributed to the TREM2 signalling pathway (Deczkowska, Weiner,

and Amit 2020).

TREM2 deletion has an immediate effect on the phagocytic capability in mice

(Kleinberger et al. 2017; Takahashi, Rochford, and Neumann 2005) and interestingly,

overexpression of TREM2 in cells that are not phagocytic under normal circumstances

(like Chinese hamster ovary cells) can lead to phagocytosis of bacteria (N’Diaye et al.

2009). TREM2 seems to have a role in engulfment of the phagocytic particles as

particles attached to TREM2 ligands are more likely to be cleared by cells expressing
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this receptor (Kleinberger et al. 2017; Yeh et al. 2016). The mechanism which TREM2

contributes to phagocytosis is still poorly understood and needs to be further studied

but this function is likely to be dependent on other proteins that need to be available

in the cells. Whereas, TREM2 induces phagocytosis, it simultaneously turns off

immune activation in myeloid cells. It has been shown that expression of several

anti-inflammatory genes in mice macrophages are in correlation with TREM2

expression. Genes like interleukin 1 receptor antagonist (Il1rn), Galectin-1 (Lgals1),

Galectin-3 (Lgals3), progranulin (Gm) and many others which are modulators of the

inflammation are induced along with TREM2 (Jaitin et al. 2019).

Another function that has been attributed to TREM2 signalling pathway is promoting

cell survival. This pathway promotes macrophages survival under stress (like tissue

damage or inflammation) in vivo and also when the growth factor (CSF-1) has been

depleted from the culture media in vitro (Kleinberger et al. 2017; Ulland et al. 2017).

Also, it has been shown that TREM2 signalling pathway is required for osteoclasts

maturation and mice with deficient TREM2 pathway have decreased number of

osteoclasts (Otero et al. 2012). Another study propose that the differentiation

program between the myeloid cells lacking TREM2 signalling pathway and cells with

functional TREM2 pathway is fairly similar whereas, cells without deficiency in TREM2

are more likely to die shortly after differentiation which suggests that TREM2 could

play a role in maintaining the myeloid cells viability (Deczkowska et al. 2018).

However, it is worth mentioning that the function of TREM2 signalling is constrained

to specific niches in the body and the consequences of deficiency in this pathway can

not be seen in many organs in the human body. Most importantly, The pathway

becomes critically important under pathological conditions and the role of this

mediator has to be studied and explained in this context.
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TREM2 in diseases

Deficiencies in the function of TREM2 or the downstream signalling pathway have

been implicated to different kinds of diseases. The role of this protein in disorders like

neurodegeneration, fatty liver, obesity and cancer has been described and these

discoveries have proposed the potential of manipulating TREM2 signalling pathway as

a therapeutic measure. In the following section, we discuss some of the research

conducted so far on TREM2's role in different diseases.

Evidence showing the role of TREM2 in cancer has been increased in recent years. A

rather new study showed that TREM2 expression is substantially increased in

peripheral blood monocytes and tumor-associated macrophages in patients suffering

from lung cancer compared to healthy tissue and interestingly the expression of

TREM2 in macrophages had a positive correlation with tumor progression. This shift in

the signature of myeloid cells in lung cancer has been proved in both human patients

and mouse models (Yao et al. 2016). Another research showed that the expression of

TREM2 mRNA and protein is increased in gastric cancer tissue compared to the

healthy tissue (X. Zhang et al. 2018). These studies are, unfortunately, based on bulk

data analysis and they do not reveal which cell types are associated with higher levels

of expression of TREM2 But recent single-cell RNA-seq studies show that this

elevated expression is mainly within different subtypes of myeloid cells (Lavin et al.

2017) and surprisingly, expression of TREM2 in some subtypes of cancerous cells can

promote their survival (Duggan et al. 2018). Overall, an increasing number of

published papers are providing evidence about the role of this gene in cancer.

The TREM2 signalling pathway in macrophages is also related to some metabolic

disorders. For example, TREM2high macrophages can be found in adipose tissue in mice

treated with a high fat diet whereas this type of macrophage is absent in mice treated

with chow diet. Interestingly, the TREM2high macrophages could also be found in obese

human. Macrophages with a similar gene signature can also be found in fatty liver of
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mice treated with a high fat diet and also other mice models with liver injury (Jaitin et

al. 2019). This shows that TREM2 is also important in metabolism and metabolic

disorders.

Implication of TREM2 signalling pathway to neurodegenerative diseases has also been

extensively studied. Two independent studies in 2013 used whole exome and whole

genome sequencing and showed that variants of the TREM2 gene could increase the

risk of developing Alzheimer's Disease (Jonsson et al. 2013; Guerreiro et al. 2013).

This finding prompted further studies on TREM2 deficient mice. These studies

suggested that TREM2 is crucial in promoting microglial survival (Ulland et al. 2017). In

fact, TREM2 deficiencies can lead to several outcomes including impaired microglial

proliferation and inability of microglial cells to find lesions and migrate toward them.

TREM2 deficiencies also lead to downregulation of homeostatic microglia markers

(Ulland and Colonna 2018). Single-cell studies of TREM2 deficient mice demonstrates

that a small subset of activation genes like Dap12 and ApoE are upregulated whereas

the cells failed to upregulate the majority of activation genes like Spp1, Cst7, Axl and

Lpl (Keren-Shaul et al. 2017). It seems that these deficiencies in activation are

accumulated over the lifespan of individuals and they facilitate the development of

Alzheimer’s disease via uncharacterized mechanisms.

Infection atlas

Infection Atlas (infection-atlas.org) is a web-based platform which provides a simple

user interface to browse and visualize different aspects of single cell sequencing data.

In the short term, infection atlas is meant to be used by researchers who are not

familiar with bioinformatics tools to help them to access single cell sequencing data

with just a few mouse clicks! However, in the long term, it is aimed to represent a

comprehensive map of host-pathogen interaction at the single cell level in human and

mouse. In the following section, we briefly review the current ongoing efforts to

30

https://paperpile.com/c/Bokldw/FGxw1
https://paperpile.com/c/Bokldw/FGxw1
https://paperpile.com/c/Bokldw/K1DF4+Vi913
https://paperpile.com/c/Bokldw/UhL9V
https://paperpile.com/c/Bokldw/LXi5a
https://paperpile.com/c/Bokldw/6VZfM


create cell atlases based on single cell sequencing technologies and then we describe

our perspective about  infection atlas website.

Ongoing efforts to create cell atlases

Mouse was among the first organisms which was used to create a cell atlas and two

cell atlases named Mouse Cell Atlas (http://bis.zju.edu.cn/MCA/) (Han et al. 2018) and

Tabula Muris (https://tabula-muris.ds.czbiohub.org/) (Tabula Muris Consortium et al.

2018) were among the first attempts to create a partial global map of the cells in an

organism. In these two atlases more than 500,000 cells from 40 different mouse

tissues were sequenced. The Mouse Cell Atlas for the first time provided evidence for

bipotent progenitor cells in mouse lungs and Tabula Muris for the first time revealed

the functions of genes like Chodl in muscle and Neurog3 and Prss53 in pancreas.

However, the efforts to create a cell atlas has not been limited to mice. Malaria Cell

Atlas (Howick et al. 2019) tried to create a temporal atlas of malaria parasite

Plasmodium berghei across the complete life cycle. Currently, the function of around

40% of genes in P. berghei is unknown and Malaria Cell Atlas is hoped to be useful in

elucidating the function of these unknown genes which could potentially lead to new

therapeutics. Moreover, using this atlas the dynamics of gene expression of this

parasite over the full life cycle can be studied in more detail.

Nematode worm Caenorhabditis elegans is also extensively profiled at different life

stages and a report provides RNA expression profiles of more than 130,000 cells at

different stages of development (Packer et al. 2019). In this atlas, 27 different cell

types are identified including rare neuronal lineages and integrating data with

ChIP-seq has revealed many transcription factors which are playing a role in different

life stages.

Human Cell Atlas is probably the biggest ongoing effort to create a comprehensive

atlas of human cells in different organs (Regev et al. 2018). In this initiative, hundreds

of scientists from all over the world joint efforts to profile the heterogeneity of cells

31

https://paperpile.com/c/Bokldw/0Q8zS
https://paperpile.com/c/Bokldw/B9jNM
https://paperpile.com/c/Bokldw/B9jNM
https://paperpile.com/c/Bokldw/1pkzz
https://paperpile.com/c/Bokldw/jf5cI
https://paperpile.com/c/Bokldw/SC1Xt


in the human body. Samples from adults, pediatric samples and also developmental

samples are going to be profiled in this multinational initiative and healthy human

body along with some disease states (particularly in cancer) are going to be analyzed.

Moreover, many laboratories in the world are now devoted to creating atlases from

individual organs in the human body. For instance, LungMap (Ardini-Poleske et al.

2017) and Human Lung Cell Atlas (Schiller et al. 2019) are jointly working to create a

cell atlas of the human lungs at different developmental stages and in adults. The

BRAIN initiative is working to provide a profile of the central nervous system in

human.

Potential impact of cell atlases

One of the potential impacts of cell atlases is discovery of new cell types and cell

subtypes. Single cell atlases have already made a huge contribution in the discovery of

new cell types and their functional states. Pulmonary ionocytes with expression of

cystic fibrosis gene CFTR (cystic fibrosis transmembrane conductance regulator) are

already identified in respiratory airway (Vieira Braga et al. 2019). Rare progenitor

populations of cells have been identified in different organs like kidney (Menon et al.

2018) and lung (Reyfman et al. 2019). These studies show that there are still many cell

states and cell types that are not identified yet and cell atlases can facilitate their

discovery.

Another important aspect of life science that could be addressed via cell atlases is

transition of cells between different differentiation stages particularly during

development. Single-cell studies have already made a contribution in reconstructing

the developmental pathways of different tissues like kidney (Menon et al. 2018), heart

(Cui et al. 2019) and brain (Polioudakis et al. 2019).

Elucidation of disease mechanisms is another area of impact of cell atlases.

Reconstructing the developmental pathways that lead to a particular disease can be

used to do comparison between healthy and diseased tissue which can potentially
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help to infer the cell types in which the disease originates (Rajewsky et al. 2020). Cell

atlases provide a detailed map of the cells in tissue which can potentially help

scientists to understand the underlying mechanisms of disorders.

Why do we need an infection atlas?

Infection Atlas is a single cell based platform that in the long-term is expected to

create a harmonized representation of the heterogeneity, dynamics and topology of

the infection sites and their corresponding pathogens to facilitate biologists'

understanding of the fundamental molecular features that lead to infection

outcomes. This platform, in principle, sheds light on the intracellular and intercellular

molecular circuits that are involved in host’s response to a specific pathogen and the

intriguing mechanisms used by the pathogen to evade host’s response. Our focus will

be particularly on reconstruction of viral and bacterial infection progression and

characterizing changes in tissue and pathogen gene expression which ultimately leads

to resistance to treatment or chronic diseases. Infection Atlas is a complement of

other efforts to create a global map of human cells and is distinct in the respect that it

focuses on elucidating pathogen specific molecular and cellular features and the

particular immune responses that are activated upon pathogen encounter. Infection

Atlas missions can be categorized into three main parts:

● Infection Atlas provides an interactive interface to reconstruct heterogeneity,

spatial and temporal aspects of infection. Infection Atlas bridges the gap

between experimental infection biologists and computational biologists by

providing a user-friendly, interactive user interface that projects

high-dimensional single cell sequencing data into simple and intuitive

visualization graphs. Different features of infection and heterogeneity in

pathogen encounters can be examined via this platform without any prior

bioinformatics knowledge and high dimensional multi omics data can be

browsed with a few mouse clicks!
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● Infection Atlas promotes targeted approaches to intervene infectious diseases.

To find novel therapeutic approaches and new targets to intervene infection, a

global and comprehensive insight of underlying molecular features and the

dynamics of host and pathogen genetic circuits is required. Infection Atlas

promotes discovery of new therapeutics by in-depth study of different

bacterial and viral pathogen encounters at genomics and transcriptomics level

to unravel the ultimate molecular characteristics that define the outcome of

infection. These molecular profiles can potentially contribute to development

of new therapeutic measures.

● Infection Atlas provides a platform to study pathogen-specific immune

response. Recognition and clearance of bacterial and viral pathogens is a result

of the cross talk between a sophisticated and complex network of immune

cells. Infection Atlas provides an in-depth knowledge of major mechanisms

taken by different components of the immune surveillance system to

recognize, evade and clear specific microorganisms. This platform investigates

modulatory mechanisms that have a protective role against infectious diseases

and also sheds light on the interaction between immune cells and tissue within

infected organs.
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Chapter 2: Material and Methods

In this chapter, different methods used in this thesis to analyze and visualize

single-cell RNA-seq data are described. We outline different steps of data analysis

from pre-processing of raw data to more advanced steps like data integration and

gene regulatory network analysis.

Obtaining count matrix

During my PhD, we used illumina sequencing platform to sequence the sequencing

libraries produced in the lab. After sequencing, the data was converted to a matrix of

expression values where each column is a cell and each row is a gene. For 10X

Genomics data, we used the CellRanger pipeline to create the count matrix.

CellRanger uses STAR (Dobin et al. 2013) to align reads to the reference genome and

then counts the number of unique molecular identifiers aligned to each gene.

For read-based protocols, in principle a same pipeline for processing bulk RNA-seq

data was used. After demultiplexing, data quality was examined using FastQC

(v.0.11.7). Sequencing adaptors were removed using cutadapt (v.2.8) and trimmed

reads were mapped to the reference genome using STAR aligner (v.2.7.6a) with

default settings. Depending on the project, different reference genomes including

mouse (mm10), human (GRCh38), Salmonella enterica SL1344 (NCBI ASM21085v2) and
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Pseudomonas aeruginosa strain PAO1 (ASM676v1) were used. Read counts for each

gene were determined using the featureCounts (v.2.0.1) programme.

Quality control

Low quality libraries in single-cell RNA-seq experiments are quite common. These low

quality librarie are usually due to the failure during tissue dissociation or library

preparation and are marked by low number of expressed genes, high mitochondrial

proportions and low number of reads (or UMIs) per cell.

In general, low quality libraries should be removed from single-cell RNA-seq data

before performing data analysis. Otherwise, they would interfere with downstream

data analysis. For instance

● Low quality libraries can form their own distinct cell clusters after data analysis

which potentially makes data interpretation difficult. These low quality clusters

are mainly driven by increase in the expression of mitochondrial genes which is

a hallmark of dead cells.

● Low quality libraries can also distort the principal component analysis. The first

few principal components only capture the differences that are arising from

the quality of the data rather than the biology therefore the dimension

reduction of the data can be also distorted by low quality libraries.

● Low quality libraries can also have a detrimental effect on normalization of the

data. Due to the small library size of low quality libraries, small counts of the

transcripts are transformed to large normalized expression values which can

make the impression that these genes are upregulated in certain clusters.

To avoid these problems, we tried to select proper quality control measures before

performing data analysis which will be explained in the following section.
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Selection of quality control thresholds

In our data analysis pipeline, we selected different quality control metrics to identify

and remove low quality libraries. These metrics are described below and are general

between different projects that are conducted in this thesis.

● The library size is the total number of reads (or UMIs) uniquely aligned to

different features in each library. Cells with low library size are considered as

low quality libraries because the RNA of these cells has been probably lost

during the different steps of library preparation. On the other hand, high

library size can also be a sign of a library that is composed of two or more cells.

● The number of expressed genes in each library is also an important feature to

assess the quality of a library. In this case, again the libraries with very low or

very high number of expressed genes are considered as low quality cells due to

the same reason. Low number of genes can show that the RNA of the cell was

not properly captured and on the other hand, high number of genes is a sign of

doublets.

● The proportion of reads mapped to mitochondrial genes is another criteria that

can be used to assess the quality of a single-cell RNA-seq library. High

proportions are indicative of low quality cells. The rationale behind is that

modest damage to the cell membrane allows the transcripts to go out of the

cells but mitochondria is too big compared to the transcripts and it is preserved

inside the cells. Therefore, damaged cells have a high proportion of

mitochondrial genes.

In the experiments conducted here, we selected fixed thresholds for each one of

these quality control metrics and removed the cells that were outside of the selected

thresholds. The selection of the thresholds were based on visualization of quality

control metrics on diagnostic plots.
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Data normalization

In single-cell RNA-sequencing data, differences in sequencing depth between

different cells is quite common. These differences can potentially arise from different

sources like differences in cDNA capture and amplification and it is always very

difficult (or impossible) to achieve consistent libraries. Normalization of the data

helps to remove these differences in a way that they won’t interfere with downstream

data analysis and comparison of the gene signature of different cell types. Proper

data normalization ensures that the differences observed between different

populations is driven by biology and not technical biases.

In the projects conducted in this thesis, scaling normalization was the main approach

to normalize the data which is basically the most common method used to normalize

single-cell RNA-sequencing data. In this normalization method, all counts for each cell

is divided by a cell specific scaling factor named size factor. The size factor for each

cell is an estimate of bias in that cell and the assumption is that dividing the counts by

a size factor should remove this bias. The size factor for each cell is directly

proportional to its library size where the proportionality constant is defined such that

the mean size factor across all cells is equal to 1.

Log transformation

In the data analysis pipeline used in this thesis, we always log transformed the

expression values after data normalization and a pseudo-count was added before log

transformation. Log transformation is particularly important because in downstream

data analysis, the contribution of genes with strong relative difference is promoted.

For example, gene A with expression value of 1000 in cell 1 and 1100 in cell 2 has a

higher contribution compared to gene B with expression value of 10 in cell 1 and 50 in

cell 2.
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Feature selection

To perform tasks like clustering and dimension reduction, it is important to select

genes that contain information about the biology of the system. Clustering and

dimension reduction compare cells based on their expression profile and they try to

integrate differences between genes into a single metric. The genes that are selected

to perform these calculations have a fundamental impact on the outcome of the

analysis.

The goal of the feature selection is to preserve genes which contain biological

information and meanwhile reduce the size of the data set to increase the

computation efficiency and speed in downstream steps. The feature selection

assumes that biologically informative genes have a higher degree of variation among

cells compared to the baseline variation that might be due to the technical variation.

Several methods to select the highly variable genes (HVGs) are available. The most

basic way to select highly variable genes is to calculate the variance of the

log-normalized values for each gene across all cells and select the genes with the

highest variation across the population for downstream analysis. The advantage of

this method is that feature selection is performed on the same log transformed

values that are used in the downstream data analysis. Using log-values guarantees

that the quantitative definition of heterogeneity is consistent in the entire data

analysis pipeline.

To select the highly variable features in this thesis, we modelled the mean-variance

relationship. Here the motivation is the fact that the variance of a gene expression is

driven by its abundance rather than its biological heterogeneity. To address this

problem, we fitted the relationship between variance and gene abundance for every

single gene. The assumption is that for most genes, the variance is dominated by

technical variability and our fit actually models the technical noise as a function of

abundance. Then, the total variability of a gene can be divided into technical and
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biological variability and genes with highest biological variability are selected for

downstream data analysis.

Dimension reduction

Single-cell RNA-sequencing data is high dimensional data composed of expression

values for thousands of genes where each gene represents one dimension of the

data. Dimension reduction goal is to reduce the number of separate dimensions in

the single-cell RNA-sequencing data (Andrews and Hemberg 2018). In principle, many

genes in the data are correlated with each other therefore there is no need to store

the information of each gene separately and information related to multiple features

can be stored in a single dimension. Reducing the dimensions of the data reduces the

computational need in the downstream data analysis and enables us to visualize the

heterogeneity in the data in 2 or 3 dimensional plots. In this thesis, we took advantage

of different dimension reduction methods like principle component analysis (PCA),

t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold

approximation and projection (UMAP) which are briefly explained below.

Principal component analysis (PCA)

Principal component analysis finds axes in the high dimensional space that represent

the highest amount of variation in the data. In principal, if we draw a line in the high

dimensional space and then move all the cells on that line with the shortest path, the

variance across cells along that line is the variance captured by that particular axis. In

principal component analysis, the lines which represent the highest amount of

variation are discovered. In PCA, the first axis is selected in a way that it shows the

highest amount of variation among cells and the second axis is selected in a way that

is orthogonal to the first axis and also captures the highest remaining amount of

variation.
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In Practice, the top first axes in PCA are capable of representing the main elements of

heterogeneity in the data and it is possible to restrict the downstream data analysis to

the top PCs which makes computational data analysis even more efficient. When

applying PCA to single-cell RNA-sequencing data, the assumption is that the first PCs

contain most of the heterogeneity in the data and on the other hand the last PCs are

dominated by technical noise in the data and are unlikely to capture biological

variation. Due to this reason, in single-cell RNA-sequencing data, usually the first PCs

are selected and used in the downstream data analysis pipeline. In the projects

presented here, the PCA was either applied to log-normalized values or the scaled

expression values. In either case, we always performed feature selection before PCA

and used the highly variable genes as the input of our PCA.

Choosing the number of PCs

Choosing the number of PCs is one of the parameters that can potentially affect the

outcome of the downstream analysis. Using more PCs would retain the biological

signal at the cost of including more noise and it is always challenging to decide about

the optimal number of PCs that should be included in the downstream analysis. One

way to select the number of PCs is to use elbow plot. Elbow plot is a type of

visualization which shows the percentage of variance explained by successive PCs in

the data. As explained earlier, we assume that first PCs represent much more variance

in the data compared to remaining PCs and in the elbow plot, always there is a sharp

drop in the percentage of variance explained when we move towards last PCs. In this

thesis, we tried to select an arbitrary but reasonable number of PCs after the sharp

drop in the elbow plot which typically ranged from 10 to 30.

Visualization with PCA

The simplest approach to visualize single cell data is to plot top 2 PCs in the form of a

scatter plot. This approach usually works well for the data sets with low heterogeneity

where most of the variability in the data can be explained in the first two PCs but it is
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not usually very efficient for complex data sets. The problem is that if the first PC is

devoted to resolving the biggest difference between subpopulations, and the second

PC is devoted to resolving the next biggest difference, then the remaining differences

will not be visible in the plot. One solution is to plot different PCs against each other

in a pairwise manner and create multiple scatter plots but this approach is not always

desirable because these plots are usually difficult to interpret and some

subpopulations might remain undiscovered. In this thesis, we applied PCA for

visualization where the first two PCs were sufficient to explain the heterogeneity in

the data and for more complex data sets we used more advanced visualization

methods like t-stochastic neighbor embedding and uniform manifold approximation

and projection.

Visualization with t-stochastic neighbor embedding (t-SNE)

One of the most popular methods to visualize single-cell RNA-sequencing-data is

t-stochastic neighbor embedding (t-SNE). This method tries to find a two dimensional

representation of the data while preserving the distance between the point in the

high dimensional space. The algorithm is composed of two main steps. In the first

step, a probability distribution is assigned to pairs of high dimensional points in a way

that similar objects in the data have a higher probability and dissimilar objects have a

lower probability. In the second step, the algorithm assigns the same probability

distribution in the low dimensional space and then it minimizes the Kullback–Leibler

divergence (KL divergence) between the two distributions with respect to the

locations of the points in the map (van der Maaten and Hinton 2008).

In comparison to PCA, t-SNE is not limited to linear transformation and it doesn’t have

to precisely show the distance between the points. Therefore, it has more freedom to

organize the cells in the low dimensional space and it is able to successfully separate

the distinct clusters in the low dimensional space.
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t-SNE requires fine tuning some of the parameters. In the projects conducted in this

thesis, we always repeated the visualization via different parameters to ensure that

the projection of the data to low dimensional space is always representative. We also

set the seed in all cases to ensure that the results are reproducible. Furthemore, the

perplexity parameter was also adjusted several times to ensure that the choice of

perplexity doesn’t affect the interpretation of the data.

Visualization with uniform manifold approximation and projection (UMAP)

Uniform manifold approximation and projection (UMAP) (Becht et al. 2018) is an

alternative for t-SNE. It is more or less similar to a t-SNE and it also tries to find a two

dimensional representation of the data while preserving the distance between the

points in the high dimensional space but the two methods are based on different

graph weighting equations consequently the visualization from the two methods are

usually different. UMAP plots usually have more condensed clusters with more space

between the clusters. UMAP is also much faster than t-SNE which makes it a method

of choice for large single-cell RNA-seq data sets.

UMAP also requires fine-tuning of some parameters in order to have the best

visualization outcome. The number of neighbors and the minimum distance between

embedded points are among the most important parameters that need to be

fine-tuned in order to find the best visualization. In this report, we always tried a

range of different values for each one of these parameters to make sure that

changing them doesn’t make a substantial change in the overall visualization.

Clustering

The main clustering method used in the projects conducted in this thesis was

graph-based clustering which is the default clustering algorithm used by the Seurat

package. In nutshell, graph-based clustering builds a graph where each node is a cell

and each cell is connected to its nearest neighbor in the high dimensional space via an
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edge. In this method, edges are weighted based on the resemblance between the

cells and higher weights are given to cells with higher similarity. Then an algorithm is

applied that identifies cell communities that are more connected to the cells in the

same community compared to the cells in other communities.

In this clustering method, each single cell has to be connected to a minimum number

of neighboring cells which is useful because clusters with very low numbers of cells

are not allowed. Therefore, clusters consisting of one or two outlier cells wont shape.

One of the most important parameters in this type of clustering is the number of

nearest neighbors used to construct the graph. This parameter controls the resolution

of clustering and changing this parameter can change the number of clusters

identified by the algorithm. In this thesis, we always tested different resolutions and

therefore different numbers of clusters and then we tried to inspect the data to

select the optimal number of clusters that are meaningful from the biological point of

view.

Differential expression analysis

After clustering the data, it is necessary to find the genes that drive separation of the

clusters. Finding these genes enables us to biologically interpret the function and the

identity of the clusters in the data. Several different methods for differential

expression analysis are available. For single-bacterium RNA-seq, DESeq2 bioconductor

package (Love, Huber, and Anders 2014) was used to perform differential expression

analysis. For other datasets, we mainly used the default differential expression

analysis method integrated in the Seurat package. The Seurat package uses “Wilcoxon

rank sum test” as default method to perform differential expression analysis.

The statistics of Wilcoxon rank sum test corresponds to area under the curve (AUC)

which is basically a probability of a random cell in one cluster having a higher

expression of a certain gene than a random cell from another cluster. An AUC equal to
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0.5 means that the difference is completely random whereas AUCs equal to 0 and 1

means that the two clusters show completely different expression distributions.

One of the main advantages of Wilcoxon rank sum test is that the test takes the size

of the different groups of cells into account. This means that the results of the

differential expression analysis is independent of the size of the groups being

compared. On the other hand, a disadvantage of the test that should be taken into

account is that this test slightly favors the genes with lower abundance and it is

important to keep this in mind when interpreting the data (Lawlor et al. 2017).

Another disadvantage of Wilcoxon rank sum test is that it is more computationally

intensive and therefore slightly slower compared to other differential expression

methods available for single-cell RNA-sequencing data.

Gene set enrichment analysis

Gene set enrichment analysis was performed to identify classes of genes that were

over represented in a set of differentially expressed genes. Gene set enrichment was

generally used to achieve a functional profile of the gene set corresponding to a

specific cluster to better understand biological processes and underlying functional

states of cells. To Perform gene set enrichment analysis on the marker genes, we

mainly used clusterProfiler bioconductor package (Yu et al. 2012).

Data integration

In many projects that were conducted here, data was generated across multiple

batches. In principle, preparing libraries in multiple batches is prone to technical

differences. These differences lead to systematic differences in expression data which

is known as batch effect. Batch effect is particularly important in the downstream

data analysis because it can potentially be the main source of variability in the data

and therefore it masks the true biological variability.
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The batch effect should be computationally corrected before performing downstream

data analysis. Different methods for batch effect correction in single-cell RNA-seq

data have been developed so far and their cons and pros are extensively studied and

corresponding benchmarks have been documented (Luecken et al. 2020). In this

thesis, we mainly used Cellranger for batch correction between the data sets. The

cellranger aggr command was used to integrate data sets with default settings. This

method for integrating data sets, automatically equalizes the average read depth per

cell between groups before merging. Using this approach, artifacts that might be

introduced due to differences in sequencing depth are regressed out.

Single-cell regulatory network inference and clustering (SCENIC)

SCENIC is a computational method to infer gene regulatory networks and cell types

from single-cell RNA-seq data (Aibar et al. 2017). The gene regulatory networks in

this method are inferred based on co-expression and DNA motif analysis. In principle,

SCENIC first identifies the transcription factors and genes that their expressions are

correlated and considers them as candidate regulatory modules. Afterwards, SCENIC

looks for enrichment of DNA motifs belonging to the candidate transcription factor

nearby the genes inside the candidate regulatory module and in case the DNA motif

is enriched, that regulatory module is considered as a hit and reported in the output

of the program (figure 5). In this thesis, the SCENIC program was used to detect the

gene regulatory networks in single-cell RNA-seq data.

Deconvolution of single-cell RNA-seq data based on genotyping

Deconvolution of single-cell RNA-seq data is used for samples containing a mixture of

genotypes. By using variants detected in single-cell RNA-seq reads, it is possible to

assign cells to their donor of origin. In this thesis, sourporcell (v.2.0) (Heaton et al.

2020) was used to cluster mixed-genotype single-cell RNA-seq experiments by

individuals.

46

https://paperpile.com/c/Bokldw/i71Bg
https://paperpile.com/c/Bokldw/jq6DK
https://paperpile.com/c/Bokldw/ZPpDQ
https://paperpile.com/c/Bokldw/ZPpDQ


Figure 5. SCENIC workflow.  In SCENIC, first genes and transcription factors that are correlated are selected

as candidate regulons and then the regulons which the DNA motif corresponding to the transcription factor

is enriched are detected as hits. Figure reprinted from Aibar et al. 2017.

Development of interactive data visualization

To develop interactive data visualization in Infection Atlas website, shiny (v.1.5.0) R

package was used. Due to the difficulties in storing the full datasets in memory, we

used HDF5 data format which offers efficient, on-disk storage, that is scalable to

massive datasets. To develop HDF5 files, we used loompy (v.3.0) python package.

Loompy develops an HDF5-based data structure to easily store single cell genomics

datasets and corresponding metadata.
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Data availability

The GEO accession number of the data sets used in this thesis can be found here:

Single-bacterium RNA-sequencing: GSE119888

Heterogeneity of aortic macrophages in murine atherosclerosis: GSE97310

Moreover the scripts that were used to analyse the single-bacterium RNA-seq and

RSV infection are deposited on github in the following address:

https://github.com/saliba-lab
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Chapter 3: The heterogeneity and dynamics of RSV

infection in human respiratory tract

Experiment design

To study the heterogeneity and dynamics of RSV infection at the single-cell level,

human airway epithelial cells were isolated from six donors. The isolated cells were

cultured in air liquid interface (ALI) cell culture with two different treatment

conditions. In one condition, cells were cultured without infection and in the second

condition cell culture was inoculated with hRSV-GFP virus. This virus carries gfp gene

and in principle, the infected cells would express GFP protein. This enables us to

isolate the infected GFP+ cells from GFP- bystander cells. Cells were harvested at four

different time points (1, 3, 5 and 8 days post infection) and fluorescent activated cell

sorting (FACS) was used to isolate the GFP+ infected cells from GFP- bystanders. After

that, cells from different time points were tagged with hashtag antibodies which

enables us to backtrack the time point of origin of each single cell after sequencing.

After tagging, cells were subjected to single-cell RNA-sequencing (figure 6). Due to

the fact that the RSV transcripts are poly-adenylated, our sequencing protocol is

capable of capturing and measuring the expression level of the viral transcripts along

with the host transcriptional profile.

49



Figure 6. Schematic representation of experiment design.

Single-cell RNA-sequencing is able to discover all major cell types in

human lung epithelium

After sequencing, the data from three treatment conditions (mock, bystander and

infected) were integrated. Based on the expression of the hashtag antibodies,

doublets and negative cells were excluded from the analysis. The common quality

control metrics (number of UMIs, number of detected features and the percentage of

mitochondrial genes) for each single cell were calculated and low quality cells were

removed from the analysis. To remove low quality cells, the following thresholds were

selected:

● 1500 < number of genes < 10,000

● 5000 < number of UMIs < 100,000

● Mitochondrial percentage < 30% (figure 7)

Moreover, in this analysis, we examined different treatment conditions for the

number of viral UMIs in each single cell (figure 8) and the bystander cells with high

number of viral UMIs (more than 50) and the infected cells with low number of viral

UMIs (less than 100) were also removed from the data analysis.

After removal of low quality cells, overall 12967 cells (6837 mock, 4067 bystander,

2063 infected) passed our quality control criteria (figure 9).
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Based on the expression of hashtag antibodies, cells were assigned to their time point

of origin. The number and ratio of cells from different time points were calculated

and the results showed that the ratio of cells from different time points was fairly

similar between mock, bystander and infected condition (figure 9).

Figure 7. Common quality control metrics (mitochondrial percentage, number of UMIs and number of

genes) in mock, bystander and infected cells. The selected thresholds are shown by dashed lines.
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Figure 8. Number of viral UMIs detected per treatment condition. Bystander cells with more than 50 viral

UMIs and infected cells with less than 100 viral UMIs were excluded from the downstream data analysis.

Figure 9. Number and ratio of cells assigned to each time point of origin in mock, bystander and infected.
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The integrated data was subjected to dimension reduction and clustering and was

projected on two dimensional space. Based on the expression of the canonical

markers, all the major cell types in the lung epithelium including basal cells (KRT5,

TP63), ionocytes (CFTR, FOXI1), ciliated cells (FOXJ1, TP73, CCDC78), mucous cells

(MUC5B) and goblet and club cells (SCGB3A1, SCGB1A1, SPDEF) were identified. We

also singled out a NOTCH3+ population of cells which is probably an intermediate cell

type which gives rise to other epithelium cell types from basal cells (Gomi et al. 2015).

We also found two other unassigned populations which didn’t express any of the

known canonical marker genes (figure 10).

Figure 10. Single-cell RNA-sequencing captures all the major cell types in lung epithelium. a) UMAP

visualization of the different clusters identified based on the expression of canonical marker genes. b) Dot

plot showing the expression level of canonical marker genes in lung epithelium. Size of the dots

corresponds to the number of cells expressing the marker gene.
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RSV preferentially targets ciliated cells

To visualize the distribution of viral transcripts on different cell types, the normalized

expression values of viral genes were pooled and log transformed. Then, the log

transformed values were projected on the UMAP (figure 11). The distribution of viral

transcripts on different cell types showed that ciliated cells are the main targets of

RSV and the highest amount of viral load could be observed in this cell type. Other

than that, the populations annotated as mixed goblet and club cells and one

unassigned population were also, to a lower extent, infected with the virus.

Figure 11. Ciliated cells are the main targets of RSV. a) color code showing different treatment conditions

of cells. b) The viral load projected on the umap.

Cells from different time points showed relatively similar gene signature

To examine if the cells from different time points after RSV infection have a different

expression profile, the time point of origin of each single cell was projected on the

UMAP (figure 12). Overall, cells from different time points showed an even

distribution on the UMAP plot. The localization of cells from different time points on
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the UMAP suggests that the cells harvested from 1, 3, 5 and 8 days post RSV infection

have relatively similar gene expression signatures.

Figure 12. Cells from different time points don’t show different gene expression profiles. a) color code

presenting the time point of origin assigned to each cell based on the expression of hashtag antibodies. b)

the expression value of each hashtag antibody projected on the UMAP. (Hashtag1 = day1, Hashtag2 = day3,

Hashtag3 = day5 and Hashtag4 = day8)
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Differential expression analysis between ciliated cells

To examine the genes that are up-regulated under different treatment conditions, we

performed differential expression analysis between ciliated cells from mock,

bystander and infected conditions. Top 20 differentially expressed genes between

these cells are shown in figure 13.

Figure 13. Violin plot showing the top 20 genes differentially expressed in mock, bystander and infected

ciliated cells.
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As expected, interferon stimulated genes (ISGs) like IFIT1, IFIT2, IFIT3, MX1 and MX2,

ISG15 and ISG20, IFI6 and IFI27 were among the top differentially expressed genes in

bystander cells. Although the expression of interferon stimulated genes was

particularly prominent in bystander cells, their expression was also high (slightly lower

than bystanders) in infected cells. On the other hand, genes like TNFRSF12A and SFN

that are implicated in apoptosis and IER3 that corresponds to cell stress response

were particularly upregulated in infected ciliated cells.

Certain pathways were specifically induced in infected ciliated cells

We noticed a certain set of genes which were specifically expressed in the infected

cells and were neither expressed in mock nor in bystander cells. These genes were

extracted via defining a set of stringent thresholds. These thresholds select genes

that their median is 2 times higher than bystander cells AND 2 times higher than mock

cells (figure 14a) (for a full list of genes please see Appendix 1). A gene set

enrichment analysis was performed to find the pathways that were enriched in these

genes. Important pathways like regulation of calcineurin-NFAT signaling, ERBB

signaling pathway and phosphatidylinositol 3-kinase signaling were among the

enriched pathways (figure 14b).

Interferons are specifically produced by ciliated cells (B) population

The expression of different interferon genes were examined in our data set and

overall, four type-I interferon genes (IFNB1, IFNL1, IFNL2, IFNL3) were expressed in

our single-cell RNA-seq data. The expression of interferon genes were cluster specific

and their expression was only detected in ciliated cells (B) population in our data

(figure 15). Among the receptors of interferons, the expression of IFNLR1, IFNGR1,

IFNGR2, IFNAR1 and IFNAR2 were detected with no cluster specific expression

pattern.
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Figure 14. Genes and pathways specifically induced under the infected condition. a) Genes that were

upregulated in the infected condition with their corresponding expression level in mock, bystander and

infected conditions (for a full list of genes please see Appendix 1). b) Gene set enrichment analysis of the

upregulated genes in infected condition.

Infected population

To better understand the heterogeneity and dynamics of viral infection, in the next

steps, we focused on the infected population. The infected cells were extracted and

dimension reduction and clustering was performed again on the infected data. The

expression of canonical markers was used to assign the identity of each cluster. Inline

with integrated data, three populations of ciliated cells (namely ciliated cell (A),

ciliated cell (B) and ciliated cells (C)), a mixed club and goblet cell population and an
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unassigned population were among the cells that were targeted by RSV virus (figure

16).

Figure 15. The expression of interferon genes is cluster specific. The expression of interferons was only

detected in ciliated cells (B) population.

The infection load for each single cell was calculated and the corresponding load for

each population was shown in the form of a box plot (figure 16c). Moreover, The

infection load was also projected on the UMAP to have a better visualization of the
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severely infected cells (figure 16d). Analysis of the viral load in each population

showed again that the ciliated cell (A) was the main target of RSV (figure 16).

Figure 16. Heterogeneity in the infected population. a) UMAP visualization of different clusters identified in

infected data. b) violin plot showing the expression of canonical marker genes. c) boxplot showing the

infection load for each population. d) infection load of each cell projected on the UMAP.
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Cell surface receptors

Receptors that viruses bind to trigger entry into the host cell are one of the

candidates that can be used to develop therapeutics. Many candidate proteins have

been introduced to have a role in RSV entry into the host cell, including annexin II, CX3

chemokine receptor 1 (CX3CR1), epidermal growth factor (EGF) receptor, Toll-like

receptor 4 (TLR4), intercellular adhesion molecule 1 (ICAM-1), nucleolin, and heparan

sulfate proteoglycans (HSPGs). We examined the coefficient of correlation between

the corresponding gene of each one of the above mentioned receptors and infection

load. Except for ANXA2 which codes annexin II cell receptor, none of the genes

showed a positive coefficient of correlation with RSV infection load. ANXA2 showed a

coefficient of correlation of 0.64 whereas this value for other suggested receptors

was below 0.1 (figure 17).

Expression of viral genes gradually decrease from 3’ to 5’ end of viral

genome

We also measured the relative abundance of different viral genes in the RSV genome.

The abundance of each RSV gene in each single cell was calculated and was shown in

the form of a box plot. Our results showed the expression of different viral genes is

related to their localization on the viral genome and genes close to the 3’ end of the

genome show the highest abundance whereas genes close to the 5’end have the

lowest abundance. The analysis showed, the relative abundance of RSV genes

gradually decreases from 3’ end to 5’ end with one exception in the abundance of the

gene coding the G protein (figure 18).
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Figure 17. The correlation of different cell surface receptors with viral load.
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Figure 18. The relative abundance of different viral genes. Schematic presentation of RSV genome (top)

and the relative abundance of different genes in our data (bottom).

Infected cell clusters are not patient specific

As mentioned before, the airway epithelial cells were isolated from six different

donors. To examine whether different individuals show a specific response to

infection, we assigned each single cell in our data to an individual based on their

genotype (Heaton et al. 2020) (also see material and methods). The cell assignment

showed that the expression profile of infected cells was not patient specific and

different patients in this analysis showed relatively similar responses to infection.

Overall, we didn’t identify any patient specific cluster of cells in our data (figure 19).
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Figure 19. Response to RSV is not patient specific. Number 0 to 5 corresponds to the six donors that were

used in this experiment. Doublet corresponds to the droplets that were identified as doublets based on the

genotyping.

Infection load as an indicator of infection progression

To see if viral load can be a measure of infection progression, the coefficient of

correlation of host genes with viral load was calculated. Certain host genes showed a

particularly strong correlation (positive or negative) with the viral load (figure 20).

These strongly correlated genes can be an indicator of the genes that their expression

increases or decreases over the course of infection.

The expression of highly correlated genes was visualized in a heatmap where the cells

were ordered based on their infection load (figure 21). Interestingly, typical interferon

stimulated genes like MX1, MX2, interferon induced IFIT family genes and STAT1 were

among the genes which their expression decreased as a function of infection load. On

the other hand, genes like HSPA8 and HSP90AA1 which are chaperons required for
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protein folding and many ribosomal proteins such as RPL3, RPS6, RPL9 which might be

implicated in viral mRNA translation showed a positive correlation with viral load.

Figure 20. The coefficient of correlation between host genes and viral load. Genes with strong coefficients

of correlation (positive or negative) are highlighted in red.

Gene set enrichment analysis reveals the early and late response of host

to RSV infection

To see the functional pathways that were enriched at the two ends of the spectrum of

viral load, the genes with an absolute coefficient of correlation higher than 0.3 were

selected and used for gene ontology enrichment analysis (figure 22).

As expected, the ontologies related to host innate immune response like response to

type-I interferon (GO:0034340), type-I interferon signaling pathway (GO:0060337) and

negative regulation of viral life cycle (GO:1903901) were among the gene ontologies

enriched at low viral load.

On the other hand, a different set of gene ontologies were enriched at high viral load.

Ontologies such as protein targeting to ER (GO:0045047), protein refolding

(GO:0042026), cellular heat acclimation (GO:0070370), establishment of protein

localization to membrane (GO:0090150) were among the most important enriched

gene ontologies.
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Figure 21. heatmap showing the scaled expression values of strongly correlated genes. The heatmap is

ordered according to infection load (annotation bar).
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Figure 22. Gene ontology enrichment analysis of strongly correlated genes with viral load. The blue bars

show the gene ontologies enriched in negatively correlated genes and brown color represents the

pathways enriched in positively correlated genes.

Pseudo-bulk analysis finds the intermediate host responses

As mentioned earlier, analysis of the correlation of host genes with infection load can

give us information about the potential early and late responses of the host to RSV

infection but doesn’t provide any information about the intermediate pathways that
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might be activated during the course of infection. To detect the intermediate

pathways, we performed pseud-bulk data analysis. In this analysis, the single cells

were ordered according to their infection load and then the cells were divided into 20

parts with equal number of cells (~50 cells) on the infection axis. In the next step, cells

in each part were pooled to create 20 pseudo-bulk samples. Subsequently, we

performed principal component and differential expression analysis on pseudo-bulk

samples. A schematic presentation of the workflow is shown in figure 23.

Figure 23. Schematic framework of pseudo-bulk sample preparation and analysis.

After preparing pseudo-bulk samples, principal component analysis was performed on

the data. The results of pseudo bulk analysis revealed a trajectory of pseudo-bulk

samples where the trajectory starts with pseudo-bulk data with low viral load and it

ends with pseudo-bulk samples with high viral load and the samples with relatively

close viral load were localized close to each other on the PCA plot (figure 24).
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Figure 24. Principal component analysis on pseudo-bulk samples

Principal component analysis suggested a gradual change in the gene expression

profile of pseudo-bulk samples over the course of infection. To address this gradual

change in gene expression profile, the pseudo-bulk samples were divided into six

different groups composed of pseudo-bulk samples that were close to each other on

the PCA plot (two groups composed of the samples at the two ends of the trajectory

and 4 intermediate groups). Then iterative differential expression analysis was

performed between the intermediate groups versus the two end point groups. The

differentially expressed genes from each comparison were pooled and used to create

a heatmap of pseudo-bulk samples (figure 25). This heatmap is ordered based on the

infection load. The heatmap showed five waves of transcription (wave A-E) that were

activated sequentially one after each other over the course of RSV infection. To see a

complete list of genes in each wave of transcription, please see Appendix 3.
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Figure 25. Heatmap showing the dynamics of host response to RSV infection. The heatmap is ordered based

on viral load from low to high (annotation bar). Six waves of transcription are labeled with a capital letter

(A-F). The heatmap shows the scaled expression values in each pseudo-bulk sample.
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Gene regulatory networks over the course of RSV infection

We then tried to identify transcriptional regulators which modulate gene expression

in ciliated cells and underlie their temporal heterogeneity. Single-cell regulatory

network inference and clustering (SCENIC) analysis (Aibar et al. 2017) (also see

methods) was used to find potential regulators of host response to RSV infection.

SCENIC infers activity of gene regulatory networks based on co-expression of

transcription factors and their putative target genes and also looks for enrichment of

corresponding DNA motifs in proximity of genes inside a regulatory network. SCENIC

identified several gene regulatory networks.

Figure 26. Gene regulatory networks detected in ciliated cells. The cells are ordered based on infection load

(annotation bar). The heatmap shows the scaled AUC values calculated by SCENIC.
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As expected, transcription factors controlling the innate immune response and

interferon response were dominated at low infection loads. For instance, transcription

factors like STAT1, STAT2, IRF2 and IRF7 control the early response of infected ciliated

cells to infection. On the other hand, transcription factors such as MYC, NFKB1 and

NFKB2 which control cell stress response and apoptosis were dominant at high viral

loads (figure 26).

Discussion

Using single-cell RNA-sequencing to unbiasedly investigate the heterogeneity and

dynamics of RSV infection, we profiled the gene expression signature of primary

human airway epithelial cells and uncovered all the major cell types that are targeted

by RSV. The interaction between the host and virus was investigated and we managed

to reconstruct the dynamics of host gene expression profile in response to RSV

infection. We further established a new framework to study infectious diseases at the

single-cell level where infection load can be an indicative of infection progression and

the host response can be analysed in the context of infection load.

Our results showed that ciliated cells were the main target of RSV infection and the

infection load in this population of cells was prominently higher than any other cell

type. This is inline with previous studies which showed RSV replicates almost

exclusively in the highly differentiated ciliated cells in human airway (L. Zhang et al.

2002). We also observed the replication of RSV in club and goblet cells and in an

unassigned population of cells although the infection load in these cell types was

significantly lower compared to ciliated cells.

Overall, three subtypes of ciliated cells were present in our data set named ciliated

cell A, B and C. Whereas all the ciliated cells were targeted by RSV, the three

populations seemed to show different responses to the infection. Whereas ciliated

cell A was the main target of RSV infection, ciliated cell B seemed to be involved in the
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expression of interferons and the expression of interferon genes was specific to this

population. On the other hand, ciliated cell C showed a strong innate immune

response and in the global data, they clustered with bystander cells which suggests

that their response to infection is very much similar to the bystander cells and

upregulation of interferon stimulated genes and genes related to host innate immune

response was particularly strong in ciliated cell C. Moreover the infection load in

ciliated cell C was significantly lower than other ciliated cell subtypes which suggests

that probably this population is more successful in taking RSV infection under control.

Differential expression analysis between mock, bystander and infected ciliated cells

revealed several interesting genes and pathways that were induced upon RSV

infection. As expected, in bystander cells, interferon stimulated genes (ISGs) like IFIT1,

IFIT2, IFIT3, MX1 and MX2, ISG15 and ISG20, IFI6 and IFI27 were among the top

differentially expressed genes. The expression of ISGs was also relatively high in

infected cells (although it was lower than bystanders). On the other hand, genes like

TNFRSF12A and SFN that are implicated in apoptosis and IER3 that corresponds to cell

stress response were particularly upregulated in infected ciliated cells. Strikingly, we

observed a set of genes that their expression was specific to the infected cells and

they were neither induced in mock nor in bystander cells. We argued that these genes

are part of the programs which are induced by the virus to proceed the infection

process and they can potentially be targets for therapeutics (for a full list of the

infected specific genes please check Appendix 2). A gene set enrichment analysis was

performed on these genes and pathways like regulation of calcineurin-NFAT signaling,

ERBB signaling pathway and phosphatidylinositol 3-kinase signaling were among the

enriched pathways. For instance calcineurin-NFAT signaling has already been

implicated in the context of different diseases (Park et al. 2020) and several inhibitors

of this pathway are already accessible (Martínez-Martínez and Redondo 2004) which

based on this study they might also be potentially useful to control RSV infection.

Further studies are required to show if inhibition of these pathways can be an

approach to control RSV infection.
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Different cell surface proteins have been suggested to be involved in RSV entry into

the host cell, including annexin II (Malhotra et al. 2003), CX3 chemokine receptor 1

(CX3CR1) (Battles and McLellan 2019), epidermal growth factor (EGF) receptor

(Currier et al. 2016), Toll-like receptor 4 (TLR4) (Marchant et al. 2010), intercellular

adhesion molecule 1 (ICAM-1) (Behera et al. 2001), nucleolin (Tayyari et al. 2011), and

heparan sulfate proteoglycans (HSPGs) (Krusat and Streckert 1997). We examined the

expression of the corresponding gene related to each one of the above mentioned

receptors at the RNA level. Results showed that among these genes, only ANXA2

showed a positive correlation with viral load and none of the other receptors were

correlated with RSV infection at the mRNA level. This suggests that ANXA2 might be

an important cell surface receptor which mediates the entry of RSV into the host cells.

Further experiments can indicate the potential role of this cell receptor and whether

it can be a candidate target protein for development of therapeutics which inhibit

RSV entry into the host cell.

Host response to infection might be affected by several factors including genetic

diversity, age, sex etc. (Jones, Le Sage, and Lakdawala 2020) and based on these

factors individuals might respond to viral infection differently. In the case of RSV,

variations in genes like SFPA/D, VDR, IL8, IL4, IL13, IL10 and IL4RA have been

associated with different host responses to infection (Kenney et al. 2017). To assess

whether we have an individual specific response to RSV infection, the cells were

assigned to different individuals based on their genotype (Heaton et al. 2020). We

couldn’t identify any individual specific clusters in our data although the number of

participants in the experiment was low and a higher number of participants are

required to detect this kind of individual specific responses.

Next we tried to understand the dynamics of host response to RSV infection via

analysis of the correlation of host genes with viral load. We selected a set of genes

with strong correlation (positive or negative) and examined their expression over the

course of infection. Interestingly, typical interferon stimulated genes like MX1, MX2,
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interferon induced IFIT family genes and STAT1 were among the genes which their

expression decreased as a function of infection load. This is inline with previous

findindings which showed after RSV recognition in the host cell, a wide variety of

transcription factors including STAT, are activated which subsequently leads to

activation of host antiviral programs (Rossi and Colin 2017). On the other hand, RSV

has developed mechanisms to modulate the host innate immune response. NS1, NS2

and G proteins are the proteins used by RSV to control or to inhibit host immune

mechanisms (Troy and Bosco 2016). Therefore, the expression interferon stimulated

genes decreases as RSV infection progresses. On the other hand, genes like HSPA8

and HSP90AA1 which are chaperons required for protein folding and many ribosomal

proteins such as RPL3, RPS6, RPL9 which might be implicated in viral mRNA translation

showed a positive correlation with viral load. This implies the ability of RSV to hijack

transcription and translation machinery of the host for production of viral

components (Battles and McLellan 2019).

We reconstructed the dynamics of host response to RVS infection via pseudo-bulk

analysis. Pseudo-bulk analysis revealed five transcriptional waves (wave A-E)

sequentially activated over the course of RSV infection. The details of the genes in

each one of these transcriptional waves can be found in Appendix 2. Overall this

analysis reveals the dynamics of host response to RSV infection at an unprecedented

level.

Analysis of gene regulatory networks dynamics in ciliated cells supported our previous

findings that interferon stimulated programs are activated at the beginning of

infection and their activity gradually decreases as infection proceeds. For instance,

gene programs controlled by transcription factors like STAT1, STAT2, IRF2 and IRF7

were active at the beginning of infection and their activity decreased as a function of

infection progression. On the other hand, transcription factors such as MYC, NFKB1

and NFKB2 which control cell stress response and apoptosis were dominant at high

viral loads.
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Chapter 4: Single-bacterium RNA-sequencing

Experiment design

As discussed in the introduction, the sequencing of bacterial transcriptome at the

single-cell level is hindered by several difficulties such as low copy number of bacterial

transcripts, lack of poly-A tail and low RNA content of a bacterial cell compared to

eukaryotic cells. To overcome these barriers, we used a highly sensitive protocol with

low detection limit called multiple annealing and dC-tailing-based quantitative

scRNA-seq (MATQ-seq) amenable to capture non polyadenylated transcripts (Sheng et

al. 2017). MATQ-seq was reported to have very low detection limits and we reasoned

that it would be able to perform single-bacterium RNA-sequencing. In our

experiment, we analysed Salmonella enterica serovar Typhimurium (hereafter,

Salmonella) which is a well studied model pathogen with a wealth of resources on the

transcriptional response to different environmental stimuli (Kröger et al. 2013). To

examine if our single-cell RNA-sequencing method is capable to correctly capture the

transcriptional response of a single bacterium to different stimuli, Salmonella was

grown in three different culture conditions:

1. Late stationary phase reflecting the transcriptional profile of resting cells.
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2. Anaerobic shock which resembles the transcriptional status of bacteria in

intestine

3. NaCl shock which shows the transcriptional response of bacteria to the

increased concentration of NaCl in growth medium

Samples of either ten (10-pooled) or single bacteria were sorted using

fluorescence-activated flow cytometry (FACS) and after cell lysis, reverse transcription

and amplification, libraries were sequenced (figure 27). The libraries were sequenced

to a depth of 62.4±20.9 million reads per library. Whereas this depth of sequencing is

relatively high for an RNA-sequencing experiment, it guarantees that after removal of

reads aligned to rRNA and tRNA, sufficient reads are available for downstream data

analysis. Overall, 60 samples of 10-pooled and 71 samples of single bacteria were

sequenced in this experiment.

Figure 27. Schematic representation of experiment design
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Quality assessment of sequencing data

To examine the quality of the sequenced libraries, a series of different quality control

assessments were performed. In the following section, different aspects of quality of

10-pooled and single-bacterium RNA-sequencing data have been described and where

relevant, it has been compared to bulk RNA-seq libraries.

Libraries were dominated by rRNA and tRNA

The number of reads aligned to different RNA species was counted in order to

examine the percentage of reads associated with each RNA type. As expected for a

random hexamer priming protocol, the cDNA libraries were dominated by rRNA and

tRNA which on average accounted for ~93% of all mapped reads. On the other hand,

mRNA and small non-coding RNA genes were represented by ~5 and ~1.2% of mapped

reads and there was no significant difference between single and 10-pooled libraries

(figure 28). We also compared the proportion of different RNA classes in our single

and 10-pooled libraries to a previously published bulk RNA-seq library (Westermann et

al. 2016) and noticed that the proportion of different RNA classes are fairly similar

between the two experiments (figure 28).
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Figure 28. The percentage of different RNA species in single-cell and 10-pooled libraries along with the

percentage of RNA species in bulk RNA-seq data (Westermann et al. 2016) as a benchmark.

Library size and number of genes detected per library

The library size of each one of the single-cell and 10-pooled samples were calculated

by counting the sum of uniquely aligned reads in each library. We observed

discrepancy regarding library size between different culture conditions where

libraries cultured in late stationary phase showed lower library size compared to NaCl

shock and Anaerobic shock (figure 29). Overall, on average, we had ~1,500,000 (for

10-pooled) and ~800,000 (for single bacteria) uniquely mapped reads per library. This

number of uniquely aligned reads is commonly used in single-cell RNA-sequencing

experiments to study the identity and functional state of a eukaryotic cell (Picelli et al.

2013) therefore is sufficient to study a bacterial cell which basically expresses less

number of genes and has lower RNA content.
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Figure 29. The library size of single-cell (left) and 10-pooled (right) libraries cultured under three different

growth conditions.

Overall, our sequencing method on average detected 413±237 and 170±81 genes per

library in 10-pooled and single-cell libraries respectively (genes with more than 10

unique reads aligned to them were considered as detected genes). The difference

between the culture conditions was also observed regarding the number of detected

genes and cells cultured under late stationary phase expressed lower number of

genes and the number of genes detected in NaCl shock and anaerobic shock was

relatively higher (figure 30).

The relation between the library size and the number of detected genes was also

visualized in the form of scatter plot and in general the number of detected genes and

the library size showed a positive correlation (figure 31).

Saturation analysis

To ensure that our libraries were sequenced to a sufficient sequencing depth, we

performed saturation analysis. The count table related to each library was randomly

down sampled and the number of detected genes for each round of down sampling

was calculated. The analysis showed that the libraries were saturated approximately
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at a sequencing depth of 200,000 reads per library and increasing the sequencing

depth beyond this value only marginally increases the number of detected genes

(figure 32).

Figure 30. Number of detected genes in 10-pooled (top) and single-cell (bottom) libraries.
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Figure 31. The relation between the number of detected genes and library size in single-cell (left) and

10-pooled (right) libraries

Figure 32. Saturation analysis of 10-pooled (left) and single-cell (right) libraries.
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Reads coverage on the reference genome

To examine the distribution of reads on the reference genome, coverage plots for

highly expressed genes and also genes with differential expression between the

culture conditions were created. The read densities on the coverage plots showed

that the uniquely aligned reads only covered the transcribed regions of the genes and

were hardly detectable in intergenic regions. This shows that we sequenced cDNA

derived from RNA and not genomic DNA. For instance, the coverage plots related to

ssrA, fliC, 23S ribosomal RNA and rrsH 16SrRNA which were among the highly

expressed genes and also sodA, yadF, ompD and ansB which were differentially

expressed in 10-pooled bacteria are shown in figure 33.

Measuring variability in 10-pooled and single-cell data

To have an estimate of technical and biological variability in the data, the coefficient

of variation (CV) of 10-pooled and single-cell libraries were calculated. In variability

analysis, the assumption is that the majority of the genes show a basic level of

technical variability and the technical variability can be modelled by fitting the

variability among all the genes. On the other hand, we also assume that a small

minority of the genes in the data show the interesting biological variability. Therefore,

the biological variability can be perceived from the certain genes that their variability

deviates from the fit. For each gene we plotted the coefficient of variation against the

average expression level in each culture condition and obtained a profile similar to

that for conventional single-cell eukaryotic transcriptomes. The resemblance between

the profiles in our single-cell and 10-pooled libraries and eukaryotic cells profile is

another layer of evidence that shows the data obtained from prokaryotic cells have

acceptable quality. As expected, we observed that the technical variability is

significantly lower for genes with high expression and on the other hand, genes with

low expression show a relatively high technical variability (figure 34).
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Figure 33. Coverage plots showing read densities on highly expressed genes (a) and differentially expressed

genes (b). The library ID indicates the arbitrary names given to different libraries.
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10-pooled and single-cell libraries are highly correlated

To measure the (dis) similarities between the 10-pooled and single-cell libraries, the

correlation between the data from the same culture condition was calculated.

Ten-pooled and single-cell libraries showed Spearman’s correlation ρ = 0.5 in

anaerobic condition and NaCl shock and ρ = 0.42 in late stationary phase. Also, a

high-level of zero value could be observed in single-cell libraries compared to the

10-pooled libraries (figure 35).

Figure 34. Coefficient of variation as a function of the level of gene expression in 10-pooled bacteria (a)

and single bacterium (b)
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Figure 35. The correlation between the expression level of 10-pooled and single-cell libraries in three

different culture conditions.

Principal component analysis (PCA)

To determine if the transcription profile of libraries faithfully reflects their culture

condition, principal component analysis was performed on 10-pooled and single-cell

libraries. Our PCA analysis showed that the three culture conditions were successfully

delineated on the PCA plot and the first and the second principal components could

successfully distinguish between libraries cultured under late stationary phase,

anaerobic shock and NaCl shock in both 10-pooled and single-cell libraries (figure 36).

Overall, in 10-pooled libraries, PC1 and PC2 explained 13.8% and 7.3% of variance

respectively and in single-cell libraries, PC1 represented 12.9% and PC2 showed 8.5%

of variance (figure 36).

To prove that the principal component analysis is not driven by the differences in the

library size and the number of genes, we projected these variables on the PCA plot.

Moreover, to show the main genes driving the PCA analysis, the top 15 genes with the

highest contribution to principal component analysis were also selected and their

related loading vectors showing how the original variables contribute to creating the

principal component were shown on the PCA plot (figure 37).
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Figure 36. Principal component analysis faithfully delineates the libraries from different culture conditions

in both 10-pooled (top) and single-bacteria (bottom) libraries.
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Figure 37. Library size and number of detected genes projected on PCA plot along with the top 15 genes

with the highest contribution to principal components in single-cell libraries (a) and 10 pooled libraries (b).
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Differential expression analysis (10-pooled bacteria)

Differential expression analysis between different culture conditions was performed

to find out if our method is capable of finding genes that their expression changes

under each treatment condition. First, we performed differential expression analysis

in 10-pooled libraries using DESeq2 (Love, Huber, and Anders 2014). Overall, we

identified 274 upregulated genes in NaCl shock and 101 upregulated genes in

anaerobic shock. Differential expression analysis revealed important upregulated

genes like ompD, glpA, tdcC, ansB and ompD in anaerobic condition and rpsJ, groEL,

sodA, ydgl, yadF, sopA, hilC, iacP in NaCl shock treatment condition (figure 38). For the

full list of differentially expressed genes, please see Appendix 3.

Figure 38. Heatmap showing the expression of differentially expressed genes in 10-pooled libraries in

different culture conditions.

We benchmarked the list of differentially expressed genes based on a published bulk

RNA-seq data (Kröger et al. 2013). For each gene found to be differentially expressed

between NaCl and anaerobic shock, the log10-transformed ratio of expression values
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measured in bulk RNA-seq study was calculated and is represented in histograms and

boxplots (figure 39). The results of the benchmark showed that roughly 75% of the

genes upregulated in our 10 pooled libraries were also up-regulated in bulk RNA-seq

data.

Figure 39. Benchmarking differentially expressed genes in 10-pooled libraries. The histogram shows the log

transformed ratio of anaerobic and NaCl shock expression values in the benchmark study (colour coding

represents whether the log-transformed ratio is >1 or <1). The boxplot shows the distribution of the log

transformed ratios.

Differential expression analysis (single-cell bacteria)

Then we examined the expression of differentially expressed genes in the single-cell

libraries. Single-cell libraries were also capable of identifying the differential

expression of 63 and 131 genes in anaerobic and NaCl shock respectively. In the

single-cell data again a set of biologically relevant genes for each culture condition

were identified. In anaerobic shock genes like ompD, tdcC, uvrD, glpA and frdA were

upregulated whereas in NaCl shock, genes like groEL, rpsJ, sodA, yadF, ygdL and sopA

were upregulated  (figure 40) (for a full list of genes, please see Appendix 4).
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Figure 40. Heatmap showing the expression of differentially expressed genes in single-cell libraries in

different culture conditions.

We benchmarked the list of differentially expressed genes in single-cell libraries

based on a published bulk RNA-seq data (Kröger et al. 2013). The same approach with

10 pooled libraries was also used here. For each gene found to be differentially

expressed between NaCl and anaerobic shock, the log10-transformed ratio of

expression values measured in bulk RNA-seq study was calculated and was

represented in histograms and boxplots (figure 41). The results of the benchmark

showed that roughly 75% of the genes upregulated in our 10 pooled libraries were

also up-regulated in bulk RNA-seq data.

Overall, the fact that a big fraction of upregulated genes in either 10-pooled or

single-cell libraries were also upregulated in bulk RNA-seq experiments is an

indicative of the robustness of our approach and shows it is capable of recapitulating

biologically relevant features.
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Figure 41. Benchmarking differentially expressed genes in single-cell libraries. The histogram shows the log

transformed ratio of anaerobic and NaCl shock expression values in the benchmark study (colour coding

represents whether the log-transformed ratio is >1 or <1). The boxplot shows the distribution of the log

transformed ratios.

Pseudomonas aeruginosa

To show that our method can be generalized to other bacterial species, libraries of the

important pathogen Pseudomonas aeruginosa, whose genome has a much higher GC

content than that of Salmonella (>67% versus ~50%) was prepared and the same data

analysis procedure was conducted on the libraries. We prepared 10-pooled and

single-cell libraries and examined the library size and the number of genes expressed

in each library. In Pseudomonas we detected on average 284 genes in 10-pooled

libraries and 102 genes at the single cells level which is comparable to the number of

genes detected in salmonella libraries. As expected the Pseudomonas data was also

dominated by rRNA and tRNA. Around 97% of the reads were aligned to these RNA

species. Moreover, all other RNA species were also detected in this data. We also

examined the distribution of the reads on the reference genome and noticed that
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most of the uniquely aligned reads were aligned to the genes whereas the reads

aligned to intergenic regions were relatively rare (figure 42).

Figure 42. MATQ-seq captures the transcriptome of Pseudomonas aeruginosa. a) the relation between the

library size and number of detected genes in Pseudomonas data. b) violin plot showing the number of

detected genes in 10-pooled and single-bacterium libraries. c) the percentage of reads aligned to different

RNA species. d) coverage plot showing the reads densities of the uniquely aligned reads mapped to ssrA

gene.

Overall, In this research, we managed to adopt the MATQ-seq method to sequence

low abundant transcripts down to single bacteria. More importantly, we managed to
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infer the corresponding growth condition according to the transcriptional profile. This

method is capable of detection of hundreds of genes per single bacteria which allows

to study the physiological state of single cell bacteria. This work can potentially pave

the way for the study of more complicated microbial communities like microbiome

and sophisticated microbial interactions like host-pathogen interactions. In principal

developing methods to deplete ribosomal RNA can considerably decrease the cost of

running such experiments therefore making the analysis of single bacteria available

for further studies.
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Chapter 5: Heterogeneity of aortic macrophages in

murine atherosclerosis

To study the diversity and transcriptional landscape of aortic macrophages, we sorted

total viable CD45+ leukocytes from the aortas of Ldlr-/- mice (LDL receptor deficient

mice). To obtain CD45+ cells, we conducted two separate experiments. In the first

experiment, two groups of mice were treated with either a high fat diet (HFD) or a

chow diet for 11 weeks. Treatment with chow diet was considered as a control

condition in this experiment and HFD treatment was representative of the

intermediate stages of aortic plaque development. In this experiment, data from two

treatment conditions (chow diet and HFD) were aligned and analysed together to

compare the diversity of macrophages in healthy and athrosclerotic aorta. In the

second experiment, a group of mice were treated with HFD for 20 weeks and were

considered as representative of advanced stages of atherosclerosis and the data

obtained from this experiment was analysed separately to understand the diversity of

macrophages at more advanced stages of atherosclerosis (figure 43). Overall, in this

experiment design, not only the heterogeneity of CD45+ cells can be studied in

healthy aorta versus intermediate and advanced stages of atherosclerosis but the

dynamics of cells in different stages of atherosclerosis can also be examined.
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Figure 43. Schematic diagram of experimental design.

Heterogeneity of immune cells in healthy and diseased aorta

First we tried to compare the diversity of immune cells in healthy and atherosclerotic

aorta after 11 weeks of treatment. After sequencing, the data from two treatment

conditions were integrated. The quality of the data was examined based on the

common quality control metrics and after removal of low quality cells, 372 cells in the

control condition and 854 cells in diseased aorta were included for further data

analysis. The gene expression of the integrated data was subjected to dimension

reduction and clustering and was projected on two dimensional space. Based on the

alignment of the two data sets and expression of the canonical markers,

atherosclerosis-associated immune cells were identified. Overall, we identified 13

transcriptionally distinct clusters in the data which some of them were only

atherosclerosis specific (figure 44).
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Figure 44. t-SNE visualization of aggregated data after 11 weeks of chow diet (n = 372) or high fat diet

(n=854) treatment A. cells color represents the treatment condition. B. cells colored according to the 13

distinct clusters which were identified based on the expression of canonical markers.

Non macrophage populations were present in both healthy and diseased libraries.

These populations were composed of B cells (Cd79a, Cd79b, Ly6D and Mzb1), CXCR6+

T cells (Cxcr6, Icos, Cd3g and Il7r), mixed cells / mast cells (Calca, Furin and Il1rl1),

granulocytes (S100A8, S100A9, Ngp and Camp), natural killer cells (Klrb1c, Ncr1, Klra8

and Klrc1) and 2 clusters with a T cell phenotype.
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Figure 45. Expression pattern of canonical marker genes. A. expression of Adgre1, Cd14, Csf1r, Itgax,

Cd209a, Ly6c2 projected on two dimensional space. B. Heatmap showing the top 20 differentially

expressed genes in each cluster. Canonical marker gene in each cluster is highlighted on the right.

In addition, one single cluster of macrophages (Adgre1, Csf1r, Fcgr1 and Cd68) was

identified that was composed of both healthy and diseased libraries. This population
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showed the gene signature of resident macrophages (F13a1, Lyve1 and Gas6). We

tried to find the difference in gene expression signature of the cells from healthy and

diseased libraries in this particular population. The results of differential expression

analysis pointed out that cells from healthy aorta had higher expression of Lyve1

whereas cells from diseased aorta showed higher expression of Ccr2. Overall, the

results of differential expression analysis suggests that atherosclerotic aortas contain

both resident macrophages and recruited cells that adopt a similar gene signature

when infiltrated in the aorta. Therefore, this macrophage population is hereafter

referred to as Res-like macrophages.

Five clusters could only be identified in atherosclerotic aorta and represented the

atherosclerosis-associated immune cell populations. These five clusters consist of

CD8+ T cells (Cd8a, Cd8b1 and Nkg7), MoDCs / dendritic cells (Cd209a, Cd74, Flt3 and

H2-Eb1), monocytes (Ly6c2, Ccr2 and Csf1r) and two population of

atherosclerosis-associated macrophages.

Heterogeneity of macrophage populations in atherosclerotic aorta

Overall, we detected three populations of macrophages in atherosclerotic aorta

namely Res-like, Inflammatory and TREM2hi macrophages (figure 46). Population of

macrophages had the highest proportion of cells in the atherosclerotic aorta. In total,

28.8% of cells in the diseased condition were macrophages which was composed of

Inflammatory macrophages with 47%, Res-like with 34.4% and TREM2hi with 18.6% of

cells (figure 46).
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Figure 46. The ratio of different cell types in athrosclerotic aorta. The ratios are shown for total CD45+

cells (right) and all macrophage populations (left).

Next we tried to better understand the gene signature specific for each one of these

groups of macrophages. To do that, we performed differential expression analysis

between the groups of macrophages to see what are the genetic programs that

discern these groups of cells from each other. We used single-cell differential

expression (SCDE) analyses in each group versus the 2 other groups. Our analysis

showed Inflammatory macrophages have higher expression of genes which are

associated with proatherogenic roles (Ccl3, Il1b, Il1a, Nlrp3, Cebpb, Egr1, and Phlda1).

Res-like macrophages expressed genes related to aortic resident macrophages (F13a1

and Lyve1) and genes associated with M2-like macrophages (Folr2, Cbr2, and Mrc1).

TREM2hi macrophages, not only expressed Trem2 at a higher level but also genes like

Cd9, Spp1 (encoding osteopontin), Hvcn1, and several cathepsins (Ctsd, Ctsb, and Ctsz)

were enriched in this group of cells (figure 47a).

To see the functional state of each one of these groups of cells, we performed gene

set enrichment analysis. Res-like and inflammatory macrophages shared several gene

ontologies like processes related to inflammation and myeloid leukocyte activation.

On the other hand, TREM2hi cells had a unique profile associated with organic

substance and cellular catabolic processes, lipid metabolic processes, regulation of

cholesterol efflux and oxidative stress (figure 47b).
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Figure 47. The gene profile of three macrophage populations. A. Violin plots showing the expression level

of selected genes differentially expressed in inflammatory Mφ (left), Resident-like Mφ (center) and

TREM2hi Mφ. B. Gene ontology enrichment analysis on three macrophage populations.

Gene signature of Aortic MoDC/DC

It has been assumed that Dendritic cells (DCs) and macrophages have many functions

in common in atherosclerotic aorta and how to discern dendritic cells from

macrophages in the plaque and what are the phenotypic markers that can be used to

differentiate between these two population of cells is a long-standing question in the

field of atherosclerosis research (Zernecke 2015). In our data, we could identify a

major population of MoDC/DC which in total 14.9% of the cells in the data set belongs

to this population (figure 48a).
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We performed gene ontology enrichment of the genes expressed in this group of

cells and the results showed that expected ontologies like antigen processing and

presentation through MHCII or positive regulation of T cell activation were enriched in

this group of cells. Interestingly, some of the gene ontologies were overlapping with

inflammatory and Res-like macrophages (figure 48b).

Figure 48. Gene signature of monocyte derived dendritic cells / dendritic cells in atherosclerotic aorta. A.

Gene ontology enrichment analysis showing biological processes activated in MoDC/DC. Size of the circles

shows the fold enrichment. B. Heatmap of differentially expressed genes between macrophages and

MoDC/DC. C. Violin plots showing the expression level of selected differentially expressed genes in

macrophages and MoDC/DC populations.
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To further characterize the gene expression signature that differentiates between

macrophages and MoDC/DC, we performed a differential expression analysis

between the MoDC/DC population and total macrophages (including Res-like,

inflammatory and TREM2hi macrophages). Using differential expression analysis, we

managed to find several genes that were exclusively expressed in one or another

population. Overall, 531 genes were upregulated in MoDC/DC compared to 845 genes

which were upregulated in macrophages. Genes such as Apoe and genes encoding

complement C1q chains (C1qa, C1qb, and C1qc) were expressed in macrophages and

on the other hand, genes like Flt3, Ifi30 (γ-interferon-inducible lysosomal thiol

reductase), Napsa (Napsin A), Itgb7 (integrin β7), Syngr2 (synaptogyrin-2) were

expressed in M0DC/DC population (figure 48c).

MoDC/DC and macrophage cells populate aorta after 20 weeks of high fat

diet treatment

To study if three populations of macrophages and MoDC/DC also populate the aorta

plaque at more advanced stages of atherosclerosis, we repeated our experiment after

20 weeks of high fat diet treatment. We sorted CD45+ cells isolated from Ldlr-/- mice

aorta after 20 weeks and performed single-cell RNA-seq on them. After performing

common data analysis procedure, dimension reduction and clustering, we could again

identify the three populations of macrophages (Res-like, inflammatory and TREM2hi)

and a group of cells with a transcription profile similar to MoDC/DC. Our data showed

that the proportion of macrophages among the CD45+ cells increased after 20 weeks

of high fat diet treatment and macrophages represented 49.6% of leukocytes. The

macrophage population was composed of 46.3% Res-like macrophages, 13.4%

TREM2hi macrophages and 40.3% inflammatory macrophages (figure 49). Comparison

of the proportion of the macrophages after 11 and 20 weeks of treatment showed

that the level of TREM2hi macrophages changed slightly (from 5.4% to 6.6%) whereas

level of inflammatory macrophages (from 13.6% to 20%) and Res-like macrophages
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(from 9.9% to 23%) experienced a substantial increase. Overall, this data shows that

the three populations of macrophages also populate the lesion in aorta in more

advanced stages of the disease.

Figure 49. Immune cells population in advanced atherosclerosis. A. t-SNE visualization of 9 distinct clusters

of immune cells. B. proportion of different cell types within CD45+ cells (left) and proportion of different

macrophage subpopulations (right). C. Heatmap showing the expression of top 20 differentially expressed

genes between identified clusters. D. Expression of Adgre1, Cd209a, Cxcl2, Il1b, Trem2, Cd9, Pf4 and Txnip

genes projected on t-SNE.
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Discussion

We applied single-cell RNA-sequencing to measure the heterogeneity and landscape

of the leukocytes infiltrating the athrosclerotic aorta and we managed to discover

three populations of macrophages associated with atherosclerosis. One population

with resident-like gene expression profile and two other populations of macrophages

named inflammatory macrophages and TREM2hi macrophages. We also managed to

discriminate the expression profile of MoDC/DC from macrophages and showed the

differences in the expression profile of these populations. In our analysis, we showed

that three populations of macrophages and MODC/DC cells were populating the

athrosclerotic aorta at different stages of atherosclerosis progression and they were

present in the intermediate and advanced stages of atherosclerosis.

All of the three types of macrophages discovered in this analysis showed high

expression of Apoe and complement C1q genes. These genes are involved in pathways

like reverse cholesterol transport and restricting inflammation which can be

associated with the protective role of macrophages (Bhatia et al. 2007; Shi et al. 2004;

Zanotti et al. 2011). Another gene with common expression between the three

populations of macrophages was Mafb which controls the survival of macrophages in

plaque (Hasegawa et al. 2016; Hamada et al. 2014).

According to the results of this analysis, the relative proportion of macrophages in

CD45+ increased in advanced stages of atherosclerosis. This trend is inline with

previous reports (Galkina et al. 2006). We showed that this increase is mainly due to

the increase in the number of Res-like and inflammatory macrophages and suggests

that a shift in macrophage population may occur in advanced stages of

atherosclerosis.

The role of MoDC/DC in plaque formation is unclear. This is to some extent because

dissecting MoDC/DC from macrophages and monocytes via flow cytometry or
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immunohistochemistry is difficult (Zernecke 2015). The power and resolution of

single-cell RNA-sequencing enabled us to compare the transcriptional profile and

function of MoDC/DC and macrophages. Interestingly, the enriched pathways were

quite similar between the two populations but they showed a clearly different gene

expression profile. Further experiments are needed to characterize the functional

consequences of the difference in gene expression to elucidate the precise role of

these cell subsets in atherosclerosis.

Inflammatory macrophages showed a gene signature which is prototypical of

proinflammatory plaque macrophages. Expression of genes like Il1b and Nlrp3 shows

that these subsets of cells are capable of expression of IL-1β. It has been shown that

IL-1β cytokine has a crucial proatherogenic role in aorta (Kamari et al. 2011). This

subset of cells also expressed chemokines and cytokines like Cxcl2 and Tnf. Expression

of NF-κB (nuclear factor κB) inhibitors like Nfkbia, Nfkbiz, Nfkbid was also a prominent

feature of these cells. Inflammatory macrophages also expressed Zpf36 which is

shown to be able to limit atherosclerosis (Kang et al. 2011).

Res-like macrophages showed a gene expression profile that is similar to M2

macrophages. These cells expressed genes such as Folr2, Mrc1. On the other hand the

expression of Tnf and Il1b was downregulated. This expression profile suggests an

antiatherogenic phenotype among Res-like macrophages. However, Res-like

macrophages also expressed genes that were associated with proatherogenic activity.

For example, expression of Txnip and Pf4 which were highly upregulated in Res-like

macrophages, has been previously linked to promotion of atherosclerosis (Byon et al.

2015).

In healthy aorta, macrophages with expression of Lyve1 and F13a1 can also be found.

In our data analysis, some of the macrophages from the healthy aorta are also

clustered as Res-like macrophages which means that these cells share a similar gene

expression profile. Although genes like CCr2 and Lyve1 were differentially expressed
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between healthy and diseased conditions. Further studies and development of

lineage tracing models are required to accurately bactrack these populations.

The third population of atherosclerotic macrophages were a novel population which

we called TREM2hi macrophages. This population of cells showed very distinct

functional features based on the gene ontology enrichment analysis and they seemed

to be involved in tasks like lipid handling and catabolic pathways. The gene signature

of these macrophages is surprisingly similar to other macrophage lineages like

osteoclasts and disease associated microglia. Differentiation of macrophages into

osteoclasts in chronic inflammatory conditions has already been reported (for

example in rheumatoid arthritis (Adamopoulos and Mellins 2015)) and it might also

take place in the case of atherosclerosis. In advanced atherosclerosis, calcification

occurs in lesions (Nakahara et al. 2017) and the osteoclast like phenotype of TREM2hi

macrophages suggest that this population might play a role in atherosclerotic plaque

calcification.

The gene signature of TREM2hi macrophages also resembles TREM2-dependent

disease-associated microglia in Alzheimer’s disease. TREM2 was shown to be required

to maintain microglia and macrophage metabolic fitness and to preserve their

function in Alzheimer’s disease, which could also be relevant for macrophages in the

atherosclerotic plaque microenvironment (Ulland et al. 2017).

Whereas the origin of TREM2hi macrophages could not be determined based on this

experiment and requires further investigation but the origin of disease associated

microglia might give some ideas about the origin of TREM2hi cells. Disease associated

microglia are proposed to differentiate locally from microglia (Keren-Shaul et al.

2017). Microglia are self-renewing tissue resident myeloid cells which originate from

yolk sac (Prinz, Erny, and Hagemeyer 2017).

It has already been suggested that Alzheimer's disease and atherosclerosis share

important underlying mechanisms (Lathe, Sapronova, and Kotelevtsev 2014).

Therefore, regardless of their origin, TREM2hi myeloid cells might arise in response to
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microenvironments that are shared between atherosclerosis and Alzeihmer’s disease.

Microenvironments like local inflammation, unfolded protein, metabolic stress and

altered lipid metabolism might be the contributing factors which lead to this

phenotype.

The concept of polarized M1/M2 macrophages seemed to be insufficient to describe

the heterogeneity of macrophages in our in vivo model. Although one could argue

that Res-like macrophages and inflammatory macrophages are similar to the polarized

M1/M2 phenotype, we noticed that the expression of markers that are commonly

used to describe M1/M2 states are overlapping between the two populations. On top

of that, the phenotype of TREM2hi macrophages could not be associated with any of

the polarized phenotypes that are described in vitro. These findings once again show

that the previously defined nomenclature to describe macrophages in vitro is

insufficient to characterize the diversity of these cell types in an in vivo model.

In conclusion, based on an unbiased single-cell RNA-sequencing, we here established

the transcriptional profile of 3 major macrophage populations and MoDC in mice

atherosclerotic aorta. We demonstrated the existence of a novel atherosclerosis

associated, TREM2hi macrophage population with distinct gene profile and highly

specific functions.
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Chapter 6: Infection Atlas

Infection Atlas is a web based platform to browse and visualize single-cell RNA-seq

data across different technologies with a focus on infection studies. The platform was

developed based on the shiny R package and generates a number of diagnostic plots

for visual inspection of single-cell sequencing data. To date, five different data sets

have been published via this platform that can be accessed via the links below:

● https://infection-atlas.org/6970782209/

Description: Blood and heart monocyte/macrophage and neutrophils post
myocardial infarction

Chemistry: Cell Hashing + CITE-seq + 10X Single Cell 3' v3

Reference Genome: Mus musculus - mm10

● https://infection-atlas.org/4099491356/

Description: Heart monocyte/macrophages, days 0, 1, 3, 5 and 7 post
myocardial infarction

Chemistry: 10X Single Cell 3' v2

Reference Genome: Mus musculus - mm10

● https://infection-atlas.org/1760719889/

Description: Heart neutrophils, days 1, 3 and 5 post myocardial infarction

Chemistry: Cell Hashing + CITE-seq + 10X Single Cell 3' v3
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Reference Genome: Mus musculus - mm10

● https://infection-atlas.org/4629609923/

Description: Heart CD11b+ cells, days 1, 3 and 5 post myocardial infarction

Chemistry: Cell Hashing + CITE-seq + 10X Single Cell 3' v3

Reference Genome: Mus musculus - mm10

● https://infection-atlas.org/9074526738/

Description: Heart monocyte/macrophages, days 1, 3 and 5 post myocardial
infarction

Chemistry: Cell Hashing + CITE-seq + 10X Single Cell 3' v3

Reference Genome: Mus musculus - mm10

A set of data visualization plots were implemented in the website. In principle, these

plots can be expanded or modified in case new visualizations are required for a

specific data set. Overall, the platform is composed of five different tabs. Each tab

provides a set of data visualizations which covers a certain aspect of the data. Basic

information, dynamics, gene expression, differentially expressed genes and SCENIC

are the five tabs that were implemented in the platform and they can also be

expanded if required. In the following section, a description of the visualizations

available in each tab along with the related screenshots are provided.

Basic information

In the basic information tab, a brief description of the data like the type of cells under

investigation, the chemistry of sequencing run and the reference genome used in the

study were provided. A set of drop down menus, allow the user to simultaneously

visualize different aspects of the data. For instance, the UMAP plots can be color

coded via these drop down menus to see the cells corresponding to different cell

populations or time points. The expression of hashtag antibodies used in the

experiment can also be projected on the UMAP and drop down menus allow users to

switch between the expression level of different hashtag antibodies. Moreover, the
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common quality control metrics are also available for visualization in the basic

information tab (figure 50).

Figure 50. Screenshot of basic information tab.
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Dynamics

The dynamics tab is devoted to visualize the temporal aspects of the data. A

histogram is provided which shows the ratio of each cell type in each time point that

study was conducted. In principal, increase or decrease in the abundance of different

cell types over time can be investigated via the histogram. Moreover, a cell specific

line graph which shows the change in abundance of cells over time was also

implemented in the dynamics tab. The user can use the drop down menu in this tab to

switch between cell types on the line graph (figure 51).

Figure 51. Screenshot of dynamics tab.

Gene expression

In the gene expression tab, different graphs to show the expression level of a gene in

different cell subsets is provided. The drop down menu can be used to search for a
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gene name. After selecting a gene, the graphs in this tab are updated to show the

expression level of the gene in cell subsets. The expression level of the gene of

interest is projected on the UMAP or it can be visualized via ridges plot or a violin plot

(figure 52).

Figure 52. Screenshot of gene expression tab.
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Differentially expressed genes

This tab provides a list of upregulated genes in each cell subset along with

corresponding statistics. A radio button on the left side of the page was implemented

that can be used to select a certain subset of cells. After selecting a cell subset, the

list of upregulated genes is updated to show the differentially expressed genes in

that subset. Moreover, a search button is provided that can be used to find the gene

of interest in the list (figure 53).

Figure 53. Screenshot of differentially expressed genes tab.
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SCENIC

This tab is designed to interactively show the results of single-cell regulatory network

inference and clustering (SCENIC) (Aibar et al. 2017). It provides a drop down menu

where different regulons detected by SCENIC can be selected. By selection of

regulons on the drop down menu, all the figures in this tab are updated to show the

information related to that particular regulon. Overall four different figures are

shown in this tab and each one of them show different information related to the

chosen regulon. “AUC histogram” shows the overall distribution of AUC values in the

data and frequency of each value can be visualized in the form of a histogram. A

dashed vertical line on the histogram shows the value of the selected AUC threshold

on the histogram. This threshold can be modified via the slider button on the top of

the page and according to the selected threshold, the cells with AUC values higher

than the threshold are considered ON for that regulon and all the other cells are

considered OFF. On the UMAP in the upper right corner of the page, the ON and OFF

assignments of different cells can also be visualized which helps the user to

understand which clusters in the data are ON regarding that gene program. In this

UMAP the cells that are ON based on the threshold are in blue whereas the other cells

are in grey color. This UMAP is also updated while the value on the slider button

changes. In the “Gene set activity (AUC)” plot, the AUC values corresponding to each

single cell is projected on the UMAP and the “Expression of transcription factor” plot

simply shows the RNA expression level of the transcription factor related to the

selected regulon. Overall this tab provides an easy to use interface to browse and

visualize SCENIC results which otherwise would be challenging for biologists with no

bioinformatics skills to access (figure 54).

115

https://paperpile.com/c/Bokldw/jq6DK


Figure 54. Screenshot of SCENIC tab.
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Discussion

Technological advances have made single-cell sequencing affordable and a routine

task in many laboratories. This technique has proved to be a valuable tool to study

infection. Different aspects of infectious diseases like heterogeneity, dynamics and

topology of infection can be studied via single-cell sequencing methods. Here, we

provided a user-friendly interface that can be used to browse and visualize different

aspects of single-cell sequencing data.

Whereas the current version of Infection Atlas website provides an interface to

visualize single-cell RNA-seq data, it is not limited to this type of data and in principle

any kind of -omics data can be loaded and visualized via this platform. Also the

visualization methods can be expanded if required for a particular data. The

corresponding scripts automates loading the data on the website and makes it easy to

administer the web server and to add new data sets to the website. Once the data

sets have been annotated by experts, they can be easily loaded on the server and

used by biologists to further explore the infection process.

The data on the website is implemented and structured on a HDF5 file format. This

file format offers efficient, on-disk storage of the data. Therefore, deploying and

accessing data on the server is not computationally demanding and in principle, many

datasets can be added to the web server without increasing the computational

capacity of the machine.

Infection Atlas will expand in the future to include a greater number of normal and

diseased cell types. Platforms to visualize sequencing data other than single-cell

RNA-sequencing data will be added to the website to provide a global and

comprehensive map of host-pathogen encounters and the outcomes of this

interaction.
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Infection Atlas is a complement of other efforts to create a global map of human cells

and is distinct in the respect that it focuses on elucidating pathogen specific

molecular and cellular features and the particular immune responses that are

activated upon pathogen encounter.
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Appendix 1: List of genes specific to infected ciliated cells

After performing differential expression analysis between mock, bystander and

infected ciliated cells, upregulated genes in infected condition were selected. Then, a

set of stringent thresholds were defined to select the genes that are specific to

infected ciliated cells (genes that were neither highly expressed in bystander nor in

mock). These thresholds select genes that their median is 2 times higher than

bystander cells AND 2 times higher than mock cells. With these thresholds, we try to

find genes that are not a part of the host innate immune response therefore are

solely induced by RSV virus. Overall, 89 genes were identified that passed these

thresholds. Here, the full list of genes is provided:

Median infected Median bystander

Median

mock

HLDA2 "2,009" "0,476" "0,515"

LAMB3 "1,222" "0,163" "0,301"

FGFBP1 "1,231" "0,152" "0,36"

SFN "1,548" "0,357" "0,624"

TNFRSF12A "1,231" "0,355" "0,334"

EMP3 "0,71" "0,026" "0,03"

TPM4 "1,353" "0,469" "0,661"

ANXA3 "1,1" "0,377" "0,35"

FLNA "0,642" "0,02" "0,06"

PHLDA1 "0,737" "0,117" "0,123"

EMP1 "0,653" "0,056" "0,095"

ITGA6 "0,728" "0,127" "0,111"

HBEGF "0,611" "0,06" "0,086"

SDR16C5 "0,821" "0,208" "0,2"

SCEL "0,489" "0,023" "0,043"

ENC1 "0,568" "0,129" "0,116"

LAMA3 "0,327" "0,04" "0,051"

ELOVL6 "0,339" "0,051" "0,056"

GJB3 "0,377" "0,051" "0,074"

GJB4 "0,505" "0,121" "0,105"

PRKCDBP "0,817" "0,171" "0,165"

PTAFR "0,379" "0,078" "0,061"

FHL2 "0,543" "0,107" "0,167"

SEPT11 "0,797" "0,317" "0,313"
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ECE1 "0,584" "0,184" "0,172"

RHOD "0,691" "0,255" "0,247"

HMOX2 "0,771" "0,337" "0,291"

IER3 "1,048" "0,207" "0,473"

PDLIM7 "0,441" "0,087" "0,093"

SDCBP2 "0,591" "0,131" "0,169"

BIRC3 "0,765" "0,261" "0,166"

AQP5 "0,652" "0,082" "0,205"

TIMP1 "1,278" "0,54" "0,604"

SRPX2 "0,607" "0,237" "0,198"

UXS1 "0,435" "0,151" "0,118"

DUSP6 "0,44" "0,093" "0,109"

HDAC9 "0,601" "0,247" "0,159"

LAMC2 "0,777" "0,307" "0,293"

CTSV "0,278" "0,045" "0,039"

IL1RN "0,343" "0,067" "0,083"

CD44 "0,305" "0,016" "0,095"

TUBA1C "0,885" "0,44" "0,431"

HOMER3 "0,411" "0,056" "0,132"

ITGA3 "0,765" "0,34" "0,313"

TM4SF1 "1,081" "0,409" "0,482"

SLC9A1 "0,327" "0,093" "0,096"

PKP3 "0,619" "0,28" "0,271"

PLK3 "0,388" "0,1" "0,111"

PLEC "0,823" "0,39" "0,348"

SLC12A2 "0,508" "0,125" "0,207"

RP11-445L6.3 "0,405" "0,14" "0,091"

PPL "0,726" "0,324" "0,318"

ELL2 "0,537" "0,191" "0,237"

CAV2 "0,569" "0,124" "0,248"

BCR "0,467" "0,182" "0,182"

SERPINB8 "0,393" "0,132" "0,107"

VCL "0,57" "0,209" "0,254"

LRRC8A "0,493" "0,117" "0,194"

EHD1 "0,362" "0,119" "0,094"

CKAP4 "0,408" "0,104" "0,163"

TIMP2 "0,352" "0,089" "0,113"

BID "0,619" "0,26" "0,275"

MALL "0,314" "0,068" "0,082"

GLUD1 "0,526" "0,234" "0,234"

HMGA1 "0,657" "0,2" "0,312"

HEXIM1 "0,589" "0,278" "0,247"

CTNNBIP1 "0,41" "0,156" "0,172"

TNIP1 "0,492" "0,213" "0,208"

TMEM63A "0,457" "0,215" "0,184"
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PLAUR "0,38" "0,059" "0,15"

EHBP1L1 "0,375" "0,126" "0,147"

TMEM61 "0,364" "0,159" "0,106"

BCAR1 "0,393" "0,147" "0,168"

IL32 "0,423" "0,07" "0,129"

TUBB6 "0,229" "0,014" "0,052"

AREG "0,619" "0,19" "0,294"

MGLL "0,448" "0,22" "0,144"

SEMA3A "0,457" "0,196" "0,205"

KRT80 "0,417" "0,176" "0,175"

VASP "0,441" "0,213" "0,205"

NEDD9 "0,414" "0,153" "0,173"

CAMK2N1 "0,259" "0,019" "0,056"

INTS6 "0,453" "0,198" "0,192"

MYL9 "0,455" "0,183" "0,135"

LINC00152 "0,457" "0,195" "0,219"

C8orf4 "0,313" "0,074" "0,094"

PDE4C "0,38" "0,158" "0,15"

LINC00326 "0,395" "0,197" "0,156"

G0S2 "0,202" "0,024" "0,039"
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Appendix 2: The list of genes in each wave of transcription

The list of genes in each wave of transcription upon RSV infection is provided below.

Wave A:

SCGB1A1, CDC20, NEK2, CCNO, STC1, CENPW, CDC20B, SGOL2, C2orf74, MT1G,

HIST1H2BJ, ANLN, AKR7A2, PTTG1, HIST1H2BC, HIST1H2AC, TMEM106C, CKS2,

HTATIP2, PRR32, HIST1H1C, CDK1, TOP2A, SPAG5, MAD2L1, CROCC2, SMC4, RIBC2,

TACC3, YPEL1, IL5RA, BBOX1, GJB7, RP3-467N11.1, GAS6-AS1, PWWP2B,

RP11-872J21.3, CKS1B, CCDC60, HAGH, RNF32, BPIFB1, HLA-DRB5, MARCKSL1, VMO1,

RP11-60L3.6, USP13, BRCA2, LINC00240, REEP1, MROH9, ISYNA1, NOS3, WBP5,

LINC01091, HIST1H2BD, AC195454.1, WIPI1, MYD88, PBXIP1, C16orf71, LPCAT1,

C2orf76, ZBTB21, FANCI, OASL, MT1E, PSIP1, SLF2, CEACAM1, BISPR, AC009133.12,

ACSL1, BTG1, MEIG1, TECR, YPEL2, ANKRD65, METRNL, CDKN1B, TGIF1, SHISA8, CEP78,

RP11-297N6.4, CALM3, STIL, TXLNB, CCDC18, WFDC6, REC8, AURKA, RP11-166P13.3,

KIAA1841, OSBPL1A, STAU2

Wave B:

GSTA2, GSTA1, CEL, ALDH3A1, AKR1B10, HRASLS2, ISG15, GPX2, ADH7, ALDH1A1,

ISG20, IFI35, APOL1, IRF7, PPM1K, LAMP3, LAP3, GBP1, IFITM2, SLC15A3, UBE2L6,

SHISA2, TFRC, FAM3D, CYP4B1, FAM46A, PLSCR1, AKR1C2, CRYM, CTGF, RABAC1,

CCDC88A, IQGAP2, CNKSR3, ENDOD1, CYP2J2, HAS3, DMRTA2, HLA-E, FAM184A,

LYPD1, RP11-902B17.1, LGALS9, LIFR, PALLD, LGMN, RASSF6, HEXIM1, SLFN12, FMN1,

GDAP1, F2RL1, C21orf91, BTC, TP53INP2, CTTNBP2NL, ATP13A3, ZNF22, PIK3R1, GLTP,

PLS1, BDP1, MRPL17, DTX3L, MUCL1, LY6E, RDH10, ITPRIPL2, ADAM28, RAI14, DDT,

EML4, TM7SF2, ZNF37A, IFIT2, RSAD2, HERC5, DHX58, MUC13, IFIT1, IFIT3, TNFSF10,

CNTD1, MT1M, LINC01207, OAS1, IFIH1, EPSTI1, USP18, GBP6, TCHP, SOX4, SECTM1,

PTPRT, SLC7A2, USP30-AS1, KDELC2, RNF213, SPRY1, CASP1, TRIM38, TCEAL8, SYNPO2,
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GALM, JMY, SMIM1, NUDT14, ZNF292, ANKRD13A, TMEM37, PRR15L, CBX1, BARD1,

SMIM19, SCLT1, LRMP, FAM111A, ANKIB1, RIN2, GRAMD1A

Wave C:

PCDH11Y, MMP1, HBB, PSCA, ATP12A, C2orf40, CX3CL1, GABRB3, NQO1, CKB, ID4,

CCL15, MCTP1, KCTD12, PLEKHO1, SLC12A2, GSDMB, EGLN3, SLC16A9, ARHGAP29,

INHBB, CAPS, TRNP1, CD55, FXYD3, ZBTB38, GATA6, PSMB10, PPP3CA, VCL, SLC30A1,

GBP3, UBA6, SCD5, FABP5, TRIM31, XIST, CES1, AQP5, SPON2, MYL9, BIRC3, CITED4,

THBS1, SCPEP1, ARL4C, CEBPA, FERMT1, PSTPIP2, PTMS, CCDC181, ZBED2, C11orf85,

RAB30, MAP2, ENC1, RARRES3, SLC16A5, SLC16A2, GLUL, RP5-1185I7.1, ATP2B1,

TMEM61, GCNT1, PAQR8, PDP1, PPP1R3B, TNFRSF10A, CLDN1, A4GALT, ADGRF1,

ATP5G1, AGO2, MFSD2A, TAP2, GPATCH4, LPCAT4, WNT7B, FBLIM1, STK17B, PTPN12,

RAB31, COX7A1, PEG10, LY6D, UNC5B-AS1, MTRNR2L8, STATH, RASGRP3, CENPM,

TRIM7, RIN1, CCDC173, ANKRD66, SRM, LINC01513, SLC16A1, NOP56, HSPA12A, GNL3,

RBM41, CKLF, LGALS9B, NOP14, RP11-766F14.2, PSMB9, HAUS2, MZF1-AS1, CYP2S1,

PALMD, CCDC190, SLC25A5, ARHGAP18, RP11-489E7.4, RRS1, MT-CO3, DIAPH2,

TMEM41A, ZP3, SIPA1L2, AP3M2, PLEKHG3

Wave D:

G0S2, S100A2" "SCGB3A1, KRT6A, SPRR1B, CXCL10, IGFBP6, CCL5, HSPA1A, IL32,

IFNL3, LGALS7B, LGALS7, DDIT4, KLK7, CAMK2N1, DDIT3, KRT13, LAMB3, PLAU, RHOF,

SERPINB4, C11orf96, KRT7, HSPA1B, S100A14, TUBB6, IL23A, RBP1, PRKCDBP, TIMP1,

C3, TRIB3, UPK1B, IL11, MUC5AC, KLF2, KLK6, CCNA1, RRAD, RP13-463N16.6, MT-ATP8,

PTRF, RPS4Y1, CRABP2, RHOB, HMGA1, TNC, TRIM55, IL20RB, CASC8, BCL2A1, FXYD5,

WNT4, MT-ND4L, COL17A1, CDK2AP2, JUN, HES1, HOMER3, MT-ND5, MKNK2,

RP11-21B23.2, LMTK3, MALL, KCP, NT5E, BBC3, KLK11, LY6G6C, PYCARD, ATF3,

CORO1A, HERPUD1, NEAT1, AP000769.1, CHAC1, FASN, FAM83A, CAV2, RP4-666F24.3,
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RFX8, LINC00342, AKAP14, COX6B2, TMEM132A, LAMA3, ZFP36, RP11-284F21.10,

RP11-263K19.4, CLDN9, RPS27L, KYNU, VIM-AS1, S100A13, AHNAK, LYPD3, SEMA3B,

WNT7A, HOMER2, LETM2, ZFAS1, ZNF487, KCTD11, ADGRF4, NGEF, PORCN, ITGAE,

OVOL1, TNFRSF10D, S100A6, SLC31A2, PIM3, CSRP2, BID, TMSB4X, CALR" ADAM8,

PRR34-AS1, ERCC3, NRP1, ITGB1BP1, MMP28, CAPG, UBE2V2, MFGE8, TNS3, C15orf52,

PPID, CRELD2, LINC00704, PPP1R14C, FBN2, IFT20, RHEBL1, PNRC1, MRVI1-AS1, CD9,

PIEZO1, RAC2, ANXA2, CFAP126, NFIL3, SNX3, DUSP8, JUND, RP5-875H18.9, BAD,

NCK1, HSP90AA1, LTBP3, RP11-465N4.4, ARL16, TMEM14B, TAGLN2, P4HA2,

RP11-660L16.2, NECAP2, TMA7, MAPK8IP1, AKNA, CCDC167, ADTRP, PSAT1, SERPINA1,

GPX8, LLNLR-245B6.1, LINC00920, XBP1, CEP19, EIF5, ERICH2, PPP1R1C, MAFG, TTC29,

RRAGD, CBX4, TTLL10, FRMPD2

Wave E:

MUC12, SYT5, HES6, RP11-620J15.3, TPPP3, CDKN2D, MYLK, PARD6G-AS1, PPP1R7,

ZMYND10, CBY1, AC007405.6, IFT22, DTNA, EFCAB1, FAM46B, TEKT1, LRRC10B,

HIST1H4H, DYNC2H1, TMEM99, ZDHHC1, PSMC3, FAM227A, BPIFA1, LYPD2,

RP11-356K23.1, ZC3HAV1, CCDC74B, CCDC74A, RP11-60L3.1, SRGAP3-AS2, FAM92B,

FAM216B, FAM229B, ERCC1, FHL1, LINC01571, MRLN, CARS, CFAP36, CTXN1, FAM183A,

ATG9B, FAM104B, PPP1R42, C1orf141, PCAT6, ARL3, C11orf74, RP11-1223D19.1,

DENND6B, IRF2BPL, PNMA1, PMM1, DGUOK-AS1, CFAP45, KNDC1, GTPBP2, SHFM1,

CCDC114, TCTN1, C14orf1, EXOC5, ST8SIA1
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Appendix 3: list of differentially expressed genes in 10-pooled

bacteria

Differentially expressed genes for 10-pooled bacteria and comparison of our study

with the reference bulk RNA-seq dataset from Kröger et al. 2013. Gene ID and gene

name of differentially expressed genes of 10-pooled bacteria in the three growth

conditions are listed in column 1 and 2, respectively (color code in Column 2: blue:

‘Late Stationary Phase’; green: ‘Salt (NaCl) shock’; red: ‘Anaerobic shock’). For each

gene differentially expressed between Salt (NaCl) and Anaerobic shocks, column 3

and 4 recapitulate the gene expression extracted from Kröger et al. under Salt (NaCl)

shock and Anaerobic shock, respectively. The ratio and log10 transformed ratio of

(NaCl/Anaerobic) of the latter expression values from bulk-RNA-seq from Kröger et al.

2013 are calculated in columns 5 and 6, respectively.

Gene ID Gene name
Expression values Salt (NaCl)

Shock (Kröger et al) (TPM)

Expression values Anaerobic

Shock (Kröger et al.) (TPM)

Ratio Salt(NaCl)

/Anaerobic

Ratio Salt(NaCl)

/Anaerobic (Log10)

SL1344_1619 pspB

SL1344_2376 mntH

SL1344_1618 pspC

SL1344_0462 rpmE2

SL1344_3761 ilvN

SL1344_2773 csiD

SL1344_P1_0022 traC

SL1344_1620 pspA

SL1344_P2_0074 traJ

SL1344_0649

SL1344_1063 putP

SL1344_P2_0081 shfB

SL1344_2756 fljB

SL1344_3300 arcB

SL1344_P2_0082 shfB2

SL1344_1223

SL1344_0899 lolA

SL1344_1006 rmf

SL1344_2287 nuoL

SL1344_3936 fadB

SL1344_0936 ompF

EBG00001133906 Bacteria_small_SRP

SL1344_1409 pntA

SL1344_4056 katG

SL1344_4487 yjjG

SL1344_1763 yebN

SL1344_4180 pspG

SL1344_2131 mrp

SL1344_2860 iacP
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SL1344_1148 ndh

SL1344_2059 rfbP

SL1344_3301 yhcC

SL1344_4216 nrfD

SL1344_0573 fepA

SL1344_2239 rcsB

SL1344_3106

SL1344_4465

EBG00000241440 IsrM

SL1344_1616 pspE

SL1344_2731

SL1344_3746

SL1344_1415 asr

SL1344_2847 hilC

SL1344_2838 hypE

SL1344_1828 ruvB

SL1344_4499 stjB

SL1344_2043 sopA

EBG00001133739 tmRNA

SL1344_4346

EBG00001133849 RNaseP_bact_a

SL1344_4217 nrfE

SL1344_1508 narZ

SL1344_1696 ychP

SL1344_4507 nadR

SL1344_0348

SL1344_4520 sthB

SL1344_2786 ygaM 367 73.3 5.0068 0.6996

SL1344_1915 gcpA 7.9 6.9 1.1449 0.0588

SL1344_4224 phnO 42.7 13.5 3.163 0.5001

SL1344_3030 gcvH 107.1 524.4 0.2042 -0.6899

SL1344_0818 ybiV(1) 139.7 21.1 6.6209 0.8209

EBG00001133861 P26 NA NA NA NA

SL1344_2297 nuoA 228 109.9 2.0746 0.3169

SL1344_P1_0080 ccdA NA NA NA NA

SL1344_0081 444.8 11.7 38.0171 1.58

SL1344_2792 nrdE 29.6 2.3 12.8696 1.1096

SL1344_4228 basS 18 25.9 0.695 -0.158

SL1344_0354 690 16.8 41.0714 1.6135

SL1344_1914 mngB 4.6 2.3 2 0.301

SL1344_0431 23.7 4.6 5.1522 0.712

SL1344_2304 yfbU 75 102.1 0.7346 -0.134

SL1344_1019 yccV 596.4 80.8 7.3812 0.8681

SL1344_0426 phnX 1 2.3 0.4348 -0.3617

SL1344_3471 yhgF 32 10.1 3.1683 0.5008

SL1344_1288 ydiQ 0 0.6 0 -Inf

SL1344_3397 rplN 1856.6 405.5 4.5785 0.6607

SL1344_1202 1183.3 62.5 18.9328 1.2772

SL1344_2370 yfdZ 56 51.7 1.0832 0.0347

SL1344_2796 proX 762 3.3 230.9091 2.3634

SL1344_2625 pheA 54.3 11.9 4.563 0.6593

SL1344_2436 tal 38.3 8.4 4.5595 0.6589

SL1344_0433 cyoE 232 43.9 5.2847 0.723

SL1344_0459 ybaY 266.1 44.8 5.9397 0.7738

SL1344_4369 cybC 539.4 225 2.3973 0.3797

SL1344_0461 ylaB 23.5 38.7 0.6072 -0.2166

SL1344_1732 ycgB 42.3 28.5 1.4842 0.1715

SL1344_1304 sufB 18.2 5.3 3.434 0.5358

SL1344_2660 smpB 240.3 106.4 2.2585 0.3538

SL1344_0868 ybjP 59.8 45.6 1.3114 0.1177
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SL1344_2182 fruK 3 8.5 0.3529 -0.4523

SL1344_3472 feoA 52.3 15 3.4867 0.5424

SL1344_0212 yaeH 363.7 1003.5 0.3624 -0.4408

SL1344_3202 yqjE 159.7 200 0.7985 -0.0977

SL1344_1132 fabG 358.4 225.1 1.5922 0.202

SL1344_2648 rimM 523 175.2 2.9852 0.475

SL1344_3492 glpE 242.8 82.5 2.943 0.4688

SL1344_0386 yaiE 185.4 223.4 0.8299 -0.081

SL1344_0763 ybhC 17.5 16.8 1.0417 0.0177

SL1344_2183 fruB 2.3 3.5 0.6571 -0.1823

SL1344_0737 aroG 67.3 71.6 0.9399 -0.0269

SL1344_2108 baeR 8.5 9.3 0.914 -0.0391

SL1344_2486 yfgA 111.2 71 1.5662 0.1948

SL1344_3237 yraM 28.9 46 0.6283 -0.2019

SL1344_4456 hsdM 7.4 36.8 0.2011 -0.6966

SL1344_4450 13.3 8.8 1.5114 0.1794

SL1344_3955 typA 75.3 40 1.8825 0.2747

SL1344_3282 yrbC 89.5 58.6 1.5273 0.1839

SL1344_1245 nadE 139.7 81.4 1.7162 0.2346

SL1344_2464 ppk 70.5 56.8 1.2412 0.0938

SL1344_3396 rplX 3303.7 608.5 5.4293 0.7347

SL1344_4503 lplA 22.3 15.7 1.4204 0.1524

SL1344_4227 proP 1160.2 58 20.0034 1.3011

SL1344_0498 ybbO 24.8 21.7 1.1429 0.058

SL1344_3394 rpsN 1616.8 309 5.2324 0.7187

SL1344_2747 24.7 34.9 0.7077 -0.1501

SL1344_2118 fbaB 24 12.2 1.9672 0.2939

SL1344_2811 mltB 49.2 25.1 1.9602 0.2923

SL1344_2938 rumA 61.3 113.3 0.541 -0.2668

EBG00000241426 STnc700 NA NA NA NA

SL1344_1774 prc 59.7 51.1 1.1683 0.0676

SL1344_P1_0055 parA NA NA NA NA

SL1344_4230 yjdB 65.6 23.2 2.8276 0.4514

SL1344_3838 atpB 208.8 211.6 0.9868 -0.0058

SL1344_P2_0010 yafB NA NA NA NA

SL1344_0871 13.3 15.5 0.8581 -0.0665

SL1344_1496 sfcA 20.8 23.6 0.8814 -0.0548

SL1344_0866 artI 32.1 46 0.6978 -0.1563

SL1344_3452 damX 63.6 72.6 0.876 -0.0575

SL1344_3505 glgB 38.5 45.7 0.8425 -0.0745

SL1344_3494 4.4 22.7 0.1938 -0.7126

SL1344_4076 yijC 158.9 144.3 1.1012 0.0419

SL1344_0089 apaH 51.8 38.7 1.3385 0.1266

SL1344_1537 33.1 125.7 0.2633 -0.5795

SL1344_0047 ileS 69.4 62.4 1.1122 0.0462

SL1344_1243 84.5 10.6 7.9717 0.9016

SL1344_3041 yggE 106.1 50.8 2.0886 0.3199

SL1344_3034 pepP 59.2 64.4 0.9193 -0.0366

SL1344_2280 elaB 254.5 147.8 1.7219 0.236

SL1344_3890 hemY 59.8 67.1 0.8912 -0.05

SL1344_2607 srmB 42 27.9 1.5054 0.1776

SL1344_3201 yqjC 788.3 229 3.4424 0.5369

SL1344_3708 spoT 86.3 74.3 1.1615 0.065

SL1344_1666 ispZ 49.9 44.7 1.1163 0.0478

SL1344_3393 rpsH 1802.1 318.1 5.6652 0.7532

SL1344_3523 ugpB 39.3 29.6 1.3277 0.1231

SL1344_1767 yobF 2068.5 2360.9 0.8761 -0.0574

SL1344_0044 rpsT 3440.4 967.7 3.5552 0.5509

SL1344_1493 osmC 260.7 25.4 10.2638 1.0113

SL1344_3029 gcvP 24.8 114.2 0.2172 -0.6632

SL1344_2290 nuoI 85.7 88.6 0.9673 -0.0145
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SL1344_3875 trxA 1663.3 477 3.487 0.5425

SL1344_0442 clpP 509.3 218.4 2.332 0.3677

SL1344_4013 cdh-a 134.8 23.6 5.7119 0.7568

SL1344_0045 yaaY 86.8 50.9 1.7053 0.2318

SL1344_4008 cpxR 56.3 46.8 1.203 0.0803

SL1344_1237 xthA 21.1 26 0.8115 -0.0907

SL1344_0187 dksA 412.6 225 1.8338 0.2633

SL1344_1887 fliB 35.5 24.7 1.4372 0.1575

SL1344_0658 phoL 223 82.1 2.7162 0.434

SL1344_2273 pmrD 1077.3 329.7 3.2675 0.5142

SL1344_0627 mrdB 22.8 19.5 1.1692 0.0679

SL1344_3462 igaA 72.4 56.5 1.2814 0.1077

SL1344_3419 yheO 114.1 85.4 1.3361 0.1258

SL1344_0937 asnCa 80.5 87.9 0.9158 -0.0382

SL1344_0192 fhuA 49.5 7.9 6.2658 0.797

SL1344_2649 rps16 779.5 143.9 5.417 0.7338

SL1344_1196 52 6.7 7.7612 0.8899

SL1344_2267 pmrF 49 17.7 2.7684 0.4422

SL1344_0225 yaeT 181.2 134.8 1.3442 0.1285

SL1344_3184 dnaG 113.2 46.3 2.4449 0.3883

SL1344_1646 topA 87.8 32.6 2.6933 0.4303

SL1344_1633 rnb 36.9 24.8 1.4879 0.1726

SL1344_0436 cyoB 185.5 21.4 8.6682 0.9379

SL1344_3667 secB 451.1 348.6 1.294 0.1119

SL1344_2203 yejK 20.3 19.8 1.0253 0.0108

SL1344_3410 bfr 420.1 228.3 1.8401 0.2648

SL1344_0434 cyoD 333.1 49.7 6.7022 0.8262

SL1344_0172 yadF 468.8 89.8 5.2205 0.7177

SL1344_2483 yfgM 76 51 1.4902 0.1732

SL1344_2245 ubiG 96.5 49.1 1.9654 0.2934

SL1344_1577 ldhA 108.1 42.7 2.5316 0.4034

SL1344_4311 yjfN 20.7 249.9 0.0828 -1.0818

SL1344_3501 glgP 13.9 97.9 0.142 -0.8478

SL1344_3382 pez 994 310.2 3.2044 0.5057

SL1344_1755 sdaA 20.7 46.6 0.4442 -0.3524

SL1344_3938 yigZ 93.4 67.1 1.392 0.1436

SL1344_3862 ilvM 137.1 43.2 3.1736 0.5016

SL1344_1571 hrpA 24.5 20 1.225 0.0881

SL1344_3947 polA 31.9 48.6 0.6564 -0.1828

SL1344_2289 nuoJ 45.1 53.2 0.8477 -0.0717

SL1344_4325 priB 496.6 145.9 3.4037 0.532

SL1344_0191 mrcB 45.3 38.5 1.1766 0.0706

SL1344_4489 osmY 2451.9 88.2 27.7993 1.444

SL1344_2937 relA 34.8 79.9 0.4355 -0.361

SL1344_0656 ybeX 129.7 67.7 1.9158 0.2824

SL1344_2963 ygdI 1685.4 492.6 3.4214 0.5342

SL1344_1396 ydgA 44.6 17.8 2.5056 0.3989

SL1344_0119 mraZ 405 288.2 1.4053 0.1478

SL1344_1220 yeaG 25.4 28.6 0.8881 -0.0515

SL1344_0444 lon 358 118.8 3.0135 0.4791

SL1344_3391 rl18 1798.9 388.7 4.628 0.6654

SL1344_1226 yeaA 290.2 98.7 2.9402 0.4684

SL1344_0788 ybhO 10.2 2.6 3.9231 0.5936

SL1344_3277 ispB 116.2 92.8 1.2522 0.0977

SL1344_0170 gcd 60.9 7.5 8.12 0.9096

SL1344_4181 qor 31.5 36.7 0.8583 -0.0664

SL1344_1422 162.3 2.2 73.7727 1.8679

SL1344_2482 yfgL 154.9 114.4 1.354 0.1316

SL1344_1863 otsB 130.6 5.9 22.1356 1.3451

SL1344_2296 nuoB 156.3 117.5 1.3302 0.1239

SL1344_3463 yrfG 118.2 43.3 2.7298 0.4361
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SL1344_1876 uvrC 26.7 44.9 0.5947 -0.2257

SL1344_1253 katE 23.5 20.3 1.1576 0.0636

SL1344_1982 15 2.6 5.7692 0.7611

SL1344_1753 pabB 32 24.7 1.2955 0.1125

SL1344_0443 clpX 611 318.7 1.9172 0.2827

SL1344_2068 rfbG 311.5 129.1 2.4129 0.3825

SL1344_3587 yhjS 88 49.2 1.7886 0.2525

SL1344_0808 ompX 2073.6 547.7 3.786 0.5782

SL1344_0997 pepN 28.6 59.2 0.4831 -0.316

SL1344_3676 rfaD 167.1 137.4 1.2162 0.085

SL1344_3668 grxC 362.5 285.4 1.2701 0.1039

SL1344_1394 ydgJ 22.8 33.7 0.6766 -0.1697

SL1344_4312 yjfO 100.1 999.5 0.1002 -0.9993

SL1344_2232 eco 214.5 37.2 5.7661 0.7609

SL1344_2393 cysK 184.8 64 2.8875 0.4605

SL1344_0468 acrB 69.6 42.3 1.6454 0.2163

SL1344_3199 yqjA 69.7 73.6 0.947 -0.0236

SL1344_P1_0072 NA NA NA NA

SL1344_2190 yeiU 118.6 24.2 4.9008 0.6903

SL1344_4060 ptsA 18 23.3 0.7725 -0.1121

SL1344_4005 yiiM 22.7 52.7 0.4307 -0.3658

SL1344_3614 yiaG 218.4 180 1.2133 0.084

SL1344_2048 hisG 18.6 4.9 3.7959 0.5793

SL1344_2381 gltX 42.5 41.6 1.0216 0.0093

SL1344_3112 164 134.2 1.2221 0.0871

SL1344_3696 dfp 75.5 56.8 1.3292 0.1236

SL1344_3191 oat 7.3 4.6 1.587 0.2006

SL1344_2932 pyrG 177.8 188.8 0.9417 -0.0261

SL1344_1737 1090 871.1 1.2513 0.0974

SL1344_4040 hslU 485.8 74.1 6.556 0.8166

SL1344_1131 fabD 109.8 52.3 2.0994 0.3221

SL1344_0659 miaB 44.5 25.7 1.7315 0.2384

SL1344_0714 sdhC 413.3 62.6 6.6022 0.8197

SL1344_0384 yaiA 564.5 104.1 5.4227 0.7342

SL1344_1489 5.3 2.4 2.2083 0.3441

SL1344_1683 galU 112.1 70.3 1.5946 0.2027

SL1344_3196 ygjR 7.7 47.7 0.1614 -0.792

SL1344_0469 acrA 97.6 52.8 1.8485 0.2668

SL1344_1057 yccJ 153.2 770 0.199 -0.7012

SL1344_3707 rpoZ 450.1 157.2 2.8632 0.4569

SL1344_2437 tktB 22.5 9.5 2.3684 0.3745

SL1344_4041 hslV 670.4 57.5 11.6591 1.0667

SL1344_0467 ybaJ 901.6 399.2 2.2585 0.3538

SL1344_2105 yegO 3 3.4 0.8824 -0.0544

SL1344_4326 rpsR 562.8 86.4 6.5139 0.8138

SL1344_0529 ppiB 575.3 169.3 3.3981 0.5312

SL1344_1733 fadR 80.9 141.1 0.5734 -0.2416

SL1344_3453 aroB 74 72.5 1.0207 0.0089

SL1344_0616 pagP 593.3 74.7 7.9424 0.9

SL1344_2594 926.6 729 1.2711 0.1042

SL1344_2391 zipA 381.2 307.6 1.2393 0.0932

SL1344_3276 rplU 1855.4 443.3 4.1854 0.6217

SL1344_1062 putA 9.9 3.5 2.8286 0.4516

SL1344_2515 csiE 16.3 43.4 0.3756 -0.4253

SL1344_4029 15.6 21.8 0.7156 -0.1453

SL1344_1377 slyB 628.1 272 2.3092 0.3635

SL1344_1372 sodCb 39.8 58 0.6862 -0.1635

SL1344_P2_0012 cib NA NA NA NA

SL1344_3053 yggG 29 28.8 1.0069 0.003

SL1344_3161 ygiB 152.4 107.3 1.4203 0.1524

SL1344_2241 gyrA 127.6 60.4 2.1126 0.3248
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SL1344_4190 uvrA 35.2 18.5 1.9027 0.2794

SL1344_1820 zwf 34.4 38.3 0.8982 -0.0466

SL1344_1058 wrbA 101.3 216.8 0.4673 -0.3304

SL1344_4004 sodA 468.1 123.2 3.7995 0.5797

SL1344_3554 pitA 19.8 43.4 0.4562 -0.3408

SL1344_0480 htpG 1057.3 109.6 9.6469 0.9844

SL1344_3454 aroK 171.1 165.1 1.0363 0.0155

SL1344_0160 783.7 104.5 7.4995 0.875

SL1344_3353 accC 94 71.7 1.311 0.1176

SL1344_1490 8.5 2.3 3.6957 0.5677

SL1344_3407 rplC 1142 208 5.4904 0.7396

SL1344_2615 yfiQ 14.4 53.4 0.2697 -0.5692

SL1344_2292 nuoG 86.1 104.3 0.8255 -0.0833

SL1344_2628 aroF 75.4 26.9 2.803 0.4476

SL1344_1384 tppB 49.2 26.6 1.8496 0.2671

SL1344_3346 mreB 76.9 81.5 0.9436 -0.0252

SL1344_3255 pnp 80.4 79.7 1.0088 0.0038

SL1344_3392 rplF 1327.5 290.3 4.5729 0.6602

SL1344_0617 cspE 2444.1 5682.8 0.4301 -0.3664

SL1344_0879 ybjX 306.5 63.5 4.8268 0.6837

SL1344_4496 deoB 150.1 89.9 1.6696 0.2226

SL1344_1905 fliM 32.4 30.4 1.0658 0.0277

SL1344_3596 dppA 40.8 98.4 0.4146 -0.3823

SL1344_0715 sdhD 299.7 64.8 4.625 0.6651

SL1344_0446 cypD 63.7 56.4 1.1294 0.0529

SL1344_4463 cstAb 41.4 83.5 0.4958 -0.3047

SL1344_0312 pepD 46.8 127.8 0.3662 -0.4363

SL1344_2266 yfbE 43.1 12.9 3.3411 0.5239

SL1344_2785 ygaC 289.8 11.8 24.5593 1.3902

SL1344_0235 ldcC 23.7 25.6 0.9258 -0.0335

SL1344_4177 zur 60.4 57.5 1.0504 0.0214

SL1344_3473 feoB 24 14.7 1.6327 0.2129

SL1344_0152 aceE 283.1 41.1 6.8881 0.8381

SL1344_3383 rpsD 1077.6 414.4 2.6004 0.415

SL1344_4260 dipZ 27.4 11.3 2.4248 0.3847

SL1344_1002 uup 22.9 13.3 1.7218 0.236

SL1344_4044 priA 42.9 26.9 1.5948 0.2027

SL1344_4267 groEL 1361.7 282.1 4.827 0.6837

SL1344_3015 idi 88.9 47.1 1.8875 0.2759

SL1344_3720 rhuM 28.2 24.7 1.1417 0.0576

SL1344_3385 rpsM 1974.7 530.9 3.7195 0.5705

SL1344_0802 ybiO 14.7 3.5 4.2 0.6232

SL1344_2237 ompC 739 835 0.885 -0.053

SL1344_4030 tpiA 247.6 647.8 0.3822 -0.4177

SL1344_3806 rpmH 7727.5 849.3 9.0987 0.959

SL1344_3876 rho 276.8 158.2 1.7497 0.243

SL1344_4405 valS 57.7 32.3 1.7864 0.252

SL1344_4157 pgi 69.2 105.9 0.6534 -0.1848

SL1344_4069 ppc 43.4 66.7 0.6507 -0.1866

SL1344_0918 rpsA 698.5 237.6 2.9398 0.4683

SL1344_2067 rfbH 421.7 130.1 3.2414 0.5107

SL1344_3984 fdoG 86 65.4 1.315 0.1189

SL1344_4090 rplJ 1267.1 576.3 2.1987 0.3422

SL1344_3408 rpsJ 1883.8 302.8 6.2213 0.7939

SL1344_1680 adh 21.2 435.8 0.0486 -1.313

SL1344_2395 ptsI 170.9 386.3 0.4424 -0.3542

SL1344_3412 tufA 441.9 129.7 3.4071 0.5324

SL1344_0005 yaaA 62.3 50.7 1.2288 0.0895

SL1344_3675 kbl 52.8 143.3 2.7140 0.4336

SL1344_0910 pflB 47.5 439.7 9.2568 0.9665
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SL1344_1429 dmsA1 4.1 15.1 3.6829 0.5662

SL1344_1503 ompD 1394.7 1950.4 1.3984 0.1456

SL1344_4348 fbp 126.9 69.3 0.5461 -0.2627

SL1344_3310 nanT 4 234.3 58.5750 1.7677

SL1344_0596 ahpC 341.4 166.5 0.4877 -0.3118

SL1344_0136 secA 66.8 73.7 1.1033 0.0427

SL1344_3850 rbsC 13.8 22.9 1.6594 0.2200

SL1344_4169 malM 17.3 176 10.1734 1.0075

SL1344_4405 valS 57.7 32.3 0.5598 -0.2520

SL1344_4166 malE 16.9 175.1 10.3609 1.0154

SL1344_4168 lamB 15 179.9 11.9933 1.0789

SL1344_4457 hsdR 11.1 75.1 6.7658 0.8303

SL1344_0752 galT 9 55.6 6.1778 0.7908

SL1344_3265 glmM 28.3 55.5 1.9611 0.2925

SL1344_3848 rbsD 46.3 29.6 0.6393 -0.1943

SL1344_4263 aspA 188.7 2469.5 13.0869 1.1168

SL1344_3081 ansB 21 1041.3 49.5857 1.6954

SL1344_P2_0049 nikB NA NA NA NA

SL1344_1025 yccA 84.5 35 0.4142 -0.3828

SL1344_3450 rpe 18.1 20.2 1.1160 0.0477

SL1344_4108 yjaG 163.2 100.5 0.6158 -0.2106

SL1344_3217 tdcA 20.9 1556.3 74.4641 1.8719

SL1344_0666 nagB 35.1 86.1 2.4530 0.3897

SL1344_0487 ushA 44.6 56.7 1.2713 0.1042

SL1344_1592 ydaA 110 243.6 2.2145 0.3453

SL1344_1224A 9.4 61 6.4894 0.8122

SL1344_3851 rbsB 71.1 368.1 5.1772 0.7141

SL1344_2306 ackA 149.2 143.4 0.9611 -0.0172

SL1344_4280 frdA 10 460.4 46.0400 1.6631

SL1344_0309 dbh 37.6 15 0.3989 -0.3991

SL1344_3256 rpsO 4654.6 518 0.1113 -0.9536

SL1344_0751 galK 24.2 80.1 3.3099 0.5198

SL1344_3110 uxuB 6.4 45.6 7.1250 0.8528

SL1344_2458 yfgD 41.2 44 1.0680 0.0286

SL1344_1822 pykA 23.3 202.3 8.6824 0.9386

SL1344_2041 phsA 3.4 146 42.9412 1.6329

SL1344_1056 agp 9.5 106.6 11.2211 1.0500

SL1344_2950 sdaC 43.9 292 6.6515 0.8229

SL1344_4221 SC4B5,11c 7 69.2 9.8857 0.9950

SL1344_4186 yjbQ 65.8 64 0.9726 -0.0120

SL1344_2003 cbiH 1.2 81.2 67.6667 1.8304

SL1344_2255 glpC 11.6 579.4 49.9483 1.6985

SL1344_1582 ynaF 142.2 1095.5 7.7039 0.8867

SL1344_2347 fabB 129.9 316.5 2.4365 0.3868

SL1344_0557 ybdG 89.2 22.2 0.2489 -0.6040

SL1344_2521 cadA 7.7 782.2 101.5844 2.0068

SL1344_2098 dcd 29.6 22.6 0.7635 -0.1172

SL1344_P2_0006 yadA NA NA NA NA

SL1344_4164 malF 3.1 18.6 6.0000 0.7782

SL1344_3215 tdcC 7.8 1264.6 162.1282 2.2099

SL1344_4361 iolC 4.6 2.9 0.6304 -0.2004

SL1344_4079 btuB 44.4 55.2 1.2432 0.0946

SL1344_2663 0.7 1 1.4286 0.1549

SL1344_2254 glpB 6 435.9 72.6500 1.8612

SL1344_2253 glpA 7.4 526.2 71.1081 1.8519

SL1344_3852 rbsK 17.4 67.4 3.8736 0.5881

SL1344_4279 frdB 16.2 570.7 35.2284 1.5469

SL1344_0162 kdgT 48.2 90.8 1.8838 0.2750

SL1344_0683 speF 1.9 626.6 329.7895 2.5182

SL1344_3309 nanE 3.2 165.7 51.7813 1.7142

SL1344_1073 ycdX 61 34 0.5574 -0.2539
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SL1344_2644 31.4 164.4 5.2357 0.7190

SL1344_2314 11.5 84.7 7.3652 0.8672

SL1344_0625 dacA 87.3 39.7 0.4548 -0.3422

SL1344_2307 pta 68 69.6 1.0235 0.0101

SL1344_1368 nemA 31.3 27.7 0.8850 -0.0531

SL1344_3652 mtlR 11.8 42.7 3.6186 0.5585

SL1344_2014 pduA 0 296.5 inf inf

SL1344_2311 6.5 557.3 85.7385 1.9332

SL1344_4278 frdC 16.4 475.7 29.0061 1.4625

SL1344_0902 dmsA 1.7 241.1 141.8235 2.1517

SL1344_3859 yifE 293.6 836.1 2.8478 0.4545

SL1344_1428 dmsA2 0.8 7.2 9.0000 0.9542

SL1344_2831 hycC 1.1 2.1 1.9091 0.2808

SL1344_2011 cbiA 1.7 105.9 62.2941 1.7944

SL1344_3212 tdcG 5.5 571.4 103.8909 2.0166

SL1344_2310 4.1 406.2 99.0732 1.9960

SL1344_3299 yhbL 101.6 87.9 0.8652 -0.0629

SL1344_2312 8.7 444.9 51.1379 1.7087

SL1344_4382 nrdD 4.8 270.2 56.2917 1.7504

SL1344_2016 dhaB 0 156.3 inf inf

SL1344_0019 3.1 2.7 0.8710 -0.0600

SL1344_3222 garL 6.9 221.2 32.0580 1.5059

SL1344_4237 fumB 6.9 183.7 26.6232 1.4253

SL1344_3208 yhaK 12.9 24.6 1.9070 0.2803

SL1344_4238 dcuB 3.9 249 63.8462 1.8051

SL1344_3124 hypO 13.1 162.1 12.3740 1.0925

SL1344_0750 galM 30.1 133.5 4.4352 0.6469

SL1344_3213 tdcE 4.5 792.4 176.0889 2.2457

SL1344_3120 hybD 11.7 200.4 17.1282 1.2337

SL1344_3674 tdh 98.2 280.9 2.8605 0.4564

SL1344_1761 22.4 489.5 21.8527 1.3395

SL1344_2260 yfaW 5.5 12.9 2.3455 0.3702

SL1344_3216 tdcB 16.7 1611.5 96.4970 1.9845

SL1344_3214 tdcD 9.7 974.6 100.4742 2.0021

SL1344_0805 glnH 154.2 86.6 0.5616 -0.2506

SL1344_2529 yfhD 12.6 8.8 0.6984 -0.1559

SL1344_0682 potE 1.7 751.9 442.2941 2.6457

SL1344_0118 fruR 38.3 128.1 3.3446 0.5244
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Appendix 4: list of differentially expressed genes in single-cell

bacteria

Differentially expressed genes for single bacteria and comparison of our study with

reference bulk RNA-seq dataset from Kröger et al. 2013. Gene ID and gene name of

differentially expressed genes of single bacteria in the three growth conditions are

listed in column 1 and 2, respectively (color code in Column 2: blue: ‘Late Stationary

Phase’ ; green: ‘Salt (NaCl) shock’; red: ‘Anaerobic shock’). For each gene differentially

expressed between Salt (NaCl) and Anaerobic shocks, column 3 and 4 recapitulate the

gene expression extracted from Kröger et al. under Salt (NaCl) shock and Anaerobic

shock, respectively. Missing values in the benchmark dataset (Kröger et al. 2013) are

indicated with 'NA'. The ratio and log10 transformed ratio of (NaCl/Anaerobic) of the

latter expression values from bulk-RNA-seq from Kröger et al. 2013 are calculated in

columns 5 and 6, respectively.

Gene ID Gene name
Expression values Salt (NaCl)

Shock (Kröger et al) (TPM)

Expression values Anaerobic Shock

(Kröger et al.) (TPM)

Ratio Salt(NaCl)

/Anaerobic

Ratio Salt(NaCl)

/Anaerobic (Log10)

SL1344_3301 yhcC

SL1344_3356 prmA

SL1344_2860 iacP

SL1344_2847 hilC

SL1344_1508 narZ

SL1344_2650 ffh

EBG00000241440 IsrM

SL1344_4123 metH

SL1344_3746

SL1344_1948

SL1344_2043 sopA

SL1344_3106

SL1344_2795 proW

SL1344_4520 sthB

SL1344_4217 nrfE

SL1344_3709 spoU 44.2 49.6 0.8911 -0.0501

SL1344_3574 yhjE 13.5 6.5 2.0769 0.3174

SL1344_2963 ygdI 1685.4 492.6 3.4214 0.5342

SL1344_0002 thrA 34.6 13.2 2.6212 0.4185

SL1344_3843 asnCb 102.5 30.8 3.3279 0.5222

SL1344_3390 rpsE 1034.9 199.1 5.1979 0.7158

SL1344_0172 yadF 468.8 89.8 5.2205 0.7177

SL1344_4004 sodA 468.1 123.2 3.7995 0.5797

SL1344_3408 rpsJ 1883.8 302.8 6.2213 0.7939

SL1344_4093 rpoC 91 71 1.2817 0.1078

EBG00001133793 t44 NA NA NA NA
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SL1344_0718 sucA 73.2 75.1 0.9747 -0.0111

SL1344_3894 cyaA 155.3 92.2 1.6844 0.2264

SL1344_3890 hemY 59.8 67.1 0.8912 -0.05

SL1344_0217 rpsB 1213 178.7 6.7879 0.8317

SL1344_4172 plsB 56.2 73.3 0.7667 -0.1154

SL1344_2295 nuoC 120.4 106.2 1.1337 0.0545

SL1344_1581 nifJ 13.4 6.8 1.9706 0.2946

SL1344_4348 fbp 126.9 69.3 1.8312 0.2627

SL1344_1170 purB 17.2 7 2.4571 0.3904

SL1344_4285 psd 53.5 28.4 1.8838 0.275

SL1344_1442 dcp 10.3 19.2 0.5365 -0.2705

SL1344_2280 elaB 254.5 147.8 1.7219 0.236

SL1344_0134 lpxC 528.9 347 1.5242 0.183

SL1344_3668 grxC 362.5 285.4 1.2701 0.1039

SL1344_3833 atpG 131.9 175.4 0.752 -0.1238

SL1344_1441 ydfG 135.3 124.2 1.0894 0.0372

SL1344_0417 ispA 47.9 66.3 0.7225 -0.1412

SL1344_3932 yigC 136.3 89.6 1.5212 0.1822

SL1344_2293 nuoF 71.1 93.1 0.7637 -0.1171

SL1344_3581 yhjL 35.1 18.9 1.8571 0.2688

SL1344_4177 zur 60.4 57.5 1.0504 0.0214

SL1344_0972 1.7 3.9 0.4359 -0.3606

SL1344_0437 cyoA 448.4 37.3 12.0214 1.08

SL1344_4301 rnr 59.1 82.1 0.7199 -0.1428

SL1344_3669 yibN 280.5 195.9 1.4319 0.1559

SL1344_1323 orf319 37.6 28.1 1.3381 0.1265

SL1344_3393 rpsH 1802.1 318.1 5.6652 0.7532

SL1344_1856 cheA 228 174.7 1.3051 0.1156

SL1344_1121 flgL 272.4 227.3 1.1984 0.0786

SL1344_3392 rplF 1327.5 290.3 4.5729 0.6602

SL1344_2068 rfbG 311.5 129.1 2.4129 0.3825

SL1344_3401 rpsC 1473 206.8 7.1228 0.8527

SL1344_2267 pmrF 49 17.7 2.7684 0.4422

SL1344_4092 rpoB 94 71.9 1.3074 0.1164

SL1344_0012 dnaK 1100.5 157.9 6.9696 0.8432

SL1344_4343 ytfN 77.9 58.3 1.3362 0.1259

SL1344_0441 tig 328.9 115 2.86 0.4564

SL1344_3160 tolC 130.9 96.8 1.3523 0.1311

SL1344_3350 11 15.2 0.7237 -0.1405

SL1344_0154 lpdA 471.4 88.5 5.3266 0.7264

SL1344_0566 nfnB 75.8 47.8 1.5858 0.2002

SL1344_3196 ygjR 7.7 47.7 0.1614 -0.792

SL1344_3317 rplM 1220.7 212.6 5.7418 0.759

SL1344_0160 783.7 104.5 7.4995 0.875

SL1344_0152 aceE 283.1 41.1 6.8881 0.8381

SL1344_3405 rplW 1435.2 242.6 5.9159 0.772

SL1344_P2_0096 pilK NA NA NA NA

SL1344_2563 gipA 370.8 525.9 0.7051 -0.1518

SL1344_1057 yccJ 153.2 770 0.199 -0.7012

SL1344_2649 rps16 779.5 143.9 5.417 0.7338

SL1344_P1_0072 NA NA NA NA

SL1344_P1_0055 parA NA NA NA NA

EBG00001133868 StyR-44 NA NA NA NA

SL1344_4167 malK 5.2 63.4 0.082 -1.0861

EBG00000241426 STnc700 NA NA NA NA

SL1344_3394 rpsN 1616.8 309 5.2324 0.7187

SL1344_2395 ptsI 170.9 386.3 0.4424 -0.3542

SL1344_3891 hemX 103.7 89.3 1.1613 0.0649

SL1344_3596 dppA 40.8 98.4 0.4146 -0.3823

SL1344_3069 yggJ 38.5 45.7 0.8425 -0.0745

SL1344_3505 glgB 38.5 45.7 0.8425 -0.0745
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SL1344_1240 astD 2.2 1.7 1.2941 0.112

SL1344_3413 fusA 767.4 204.3 3.7562 0.5748

SL1344_3395 rplE 3185.3 609.7 5.2244 0.718

SL1344_0214 dapD 186.5 190.1 0.9811 -0.0083

SL1344_3045 pgk 113.8 324.6 0.3506 -0.4552

SL1344_4085 tufB 388.3 310.6 1.2502 0.097

SL1344_4347 ppa 964 526 1.8327 0.2631

SL1344_4324 rpsF 330.1 84.7 3.8973 0.5908

SL1344_3694 rpmB 3495.1 595.6 5.8682 0.7685

SL1344_1680 adh 21.2 435.8 0.0486 -1.313

SL1344_2464 ppk 70.5 56.8 1.2412 0.0938

SL1344_1168 phoQ 143.1 57 2.5105 0.3998

SL1344_1732 ycgB 42.3 28.5 1.4842 0.1715

SL1344_0802 ybiO 14.7 3.5 4.2 0.6232

SL1344_0480 htpG 1057.3 109.6 9.6469 0.9844

SL1344_3984 fdoG 86 65.4 1.315 0.1189

SL1344_3926 aarF 101.2 86.7 1.1672 0.0672

SL1344_3387 prlA 1823 486.1 3.7503 0.5741

SL1344_0868 ybjP 59.8 45.6 1.3114 0.1177

SL1344_3391 rl18 1798.9 388.7 4.628 0.6654

SL1344_1234 gdhA 48.2 39.4 1.2234 0.0876

SL1344_0866 artI 32.1 46 0.6978 -0.1563

SL1344_1245 nadE 139.7 81.4 1.7162 0.2346

SL1344_2183 fruB 2.3 3.5 0.6571 -0.1823

SL1344_1253 katE 23.5 20.3 1.1576 0.0636

SL1344_2698 511.9 620.4 0.8251 -0.0835

SL1344_0653 gltJ 22.3 3.9 5.7179 0.7572

SL1344_0712 gltA 638.9 108.2 5.9048 0.7712

SL1344_1813 opdB 21.3 17.8 1.1966 0.078

SL1344_0808 ompX 2073.6 547.7 3.786 0.5782

SL1344_P1_0084 repA2 NA NA NA NA

SL1344_3876 rho 276.8 158.2 1.7497 0.243

SL1344_0617 cspE 2444.1 5682.8 0.4301 -0.3664

SL1344_0918 rpsA 698.5 237.6 2.9398 0.4683

SL1344_0459 ybaY 266.1 44.8 5.9397 0.7738

SL1344_3493 glpD 1131.1 698.3 1.6198 0.2095

SL1344_2300 yfbQ 9.4 16.4 0.5732 -0.2417

SL1344_3478 yhgI 435.5 43.6 9.9885 0.9995

SL1344_0929 mukF 43.4 29.3 1.4812 0.1706

SL1344_4267 groEL 1361.7 282.1 4.827 0.6837

SL1344_2268 yfbG 25.4 12.5 2.032 0.3079

SL1344_1328 ssaC 7.1 0.2 35.5 1.5502

SL1344_4339 ytfK 6191.4 1596.9 3.8771 0.5885

SL1344_2436 tal 38.3 8.4 4.5595 0.6589

SL1344_4526 yjjY 8.5 26.3 0.3232 -0.4905

SL1344_1267 thrS 222.2 198.1 1.1217 0.0499

SL1344_3312 yhcK 43.5 56.2 0.774 -0.1112

SL1344_0792 ybhS 69.5 32.2 2.1584 0.3341

SL1344_0159 acnB 190.3 69.2 2.75 0.4393

SL1344_0336 99.8 25.4 3.9291 0.5943

SL1344_3824 pstS 481.4 12.6 38.2063 1.5821

SL1344_4069 ppc 43.4 66.7 0.6507 -0.1866

SL1344_0735 ybgR 18.5 22.8 0.8114 -0.0908

SL1344_3412 tufA 441.9 129.7 3.4071 0.5324

SL1344_2364 pgtA 5.2 15.1 0.3444 -0.463

SL1344_0005 yaaA 62.3 50.7 1.2288 0.0895

SL1344_0149 4.6 4.3 1.0698 0.0293

SL1344_2641 1.1 0.9 1.2222 0.0872

SL1344_3675 kbl 52.8 143.3 0.3685 -0.4336

EBG00001133739 tmRNA NA NA NA NA
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SL1344_1888 fliC 2532.9 3334 1.3163 0.1193

SL1344_3556 uspA 1048.7 1147 1.0937 0.0389

SL1344_2394 ptsH 200.1 399.4 1.9960 0.3002

SL1344_2756 fljB 29.9 34.1 1.1405 0.0571

SL1344_4168 lamB 15 179.9 11.9933 1.0789

SL1344_2237 ompC 739 835 1.1299 0.0530

SL1344_2785 ygaC 289.8 11.8 0.0407 -1.3902

SL1344_2246 nrdA 66.5 102.6 1.5429 0.1883

SL1344_0753 galE 23.8 73.4 3.0840 0.4891

SL1344_3875 trxA 1663.3 477 0.2868 -0.5425

SL1344_3850 rbsC 13.8 22.9 1.6594 0.2200

SL1344_3223 garD 1.4 42.7 30.5000 1.4843

SL1344_3625 xylB 3.9 11.8 3.0256 0.4808

SL1344_2283 230.3 527.6 2.2909 0.3600

SL1344_2517 glyA 72.3 156.7 2.1674 0.3359

SL1344_0997 pepN 28.6 59.2 2.0699 0.3160

SL1344_3023 ygfY 99.6 126.2 1.2671 0.1028

SL1344_3403 rpsS 2990.4 1010.8 0.3380 -0.4711

SL1344_2521 cadA 7.7 782.2 101.5844 2.0068

SL1344_0752 galT 9 55.6 6.1778 0.7908

SL1344_1113 flgD 52.4 27.8 0.5305 -0.2753

SL1344_2252 glpT 63.7 535.1 8.4003 0.9243

SL1344_1854 cheM 264.7 267.8 1.0117 0.0051

SL1344_2105 yegO 3 3.4 1.1333 0.0544

SL1344_0654 gltI 59.4 12.5 0.2104 -0.6769

SL1344_4090 rplJ 1267.1 576.3 0.4548 -0.3422

SL1344_1707 ipk 69.2 64.7 0.9350 -0.0292

SL1344_0209 dgt 34.5 21.8 0.6319 -0.1994

SL1344_4221 SC4B5,11c 7 69.2 9.8857 0.9950

SL1344_2310 4.1 406.2 99.0732 1.9960

SL1344_0529 ppiB 575.3 169.3 0.2943 -0.5312

SL1344_0751 galK 24.2 80.1 3.3099 0.5198

SL1344_4237 fumB 6.9 183.7 26.6232 1.4253

SL1344_2931 eno 215.7 300.7 1.3941 0.1443

SL1344_3467 pckA 77.6 476.5 6.1405 0.7882

SL1344_3169 yqiC 167.6 163.2 0.9737 -0.0116

SL1344_4238 dcuB 3.9 249 63.8462 1.8051

SL1344_0193 fhuC 11.1 3.6 0.3243 -0.4890

SL1344_4263 aspA 188.7 2469.5 13.0869 1.1168

SL1344_3031 gcvT 53.4 174.7 3.2715 0.5148

SL1344_3112 164 134.2 0.8183 -0.0871

SL1344_1902 fliJ 13.4 23.1 1.7239 0.2365

SL1344_3066 galP 35.8 170.6 4.7654 0.6781

SL1344_4280 frdA 10 460.4 46.0400 1.6631

SL1344_1114 flgE 72.7 28.1 0.3865 -0.4128

SL1344_4262 dcuA 23.7 353 14.8945 1.1730

SL1344_3577 kdgK 39.2 120.3 3.0689 0.4870

SL1344_1537 33.1 125.7 3.7976 0.5795

SL1344_1708 prs 50.9 48.2 0.9470 -0.0237

SL1344_2311 6.5 557.3 85.7385 1.9332

SL1344_0683 speF 1.9 626.6 329.7895 2.5182

SL1344_0612 citC 0.3 1.9 6.3333 0.8016

SL1344_2253 glpA 7.4 526.2 71.1081 1.8519

SL1344_3851 rbsB 71.1 368.1 5.1772 0.7141

SL1344_3905 uvrD 41.8 31.6 0.7560 -0.1215

SL1344_3215 tdcC 7.8 1264.6 162.1282 2.2099

SL1344_2041 phsA 3.4 146 42.9412 1.6329

SL1344_3124 hypO 13.1 162.1 12.3740 1.0925

SL1344_3121 hybC 14.3 131 9.1608 0.9619

SL1344_1503 ompD 1394.7 1950.4 1.3984 0.1456

SL1344_0610 citE 0 1.1 inf inf
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SL1344_3214 tdcD 9.7 974.6 100.4742 2.0021
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