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Abstract
Protothecosis is an infectious disease caused by organisms currently classified within the green algal genus Prototheca. The 
disease can manifest as cutaneous lesions, olecranon bursitis or disseminated or systemic infections in both immunocompetent 
and immunosuppressed patients. Concerning diagnostics, taxonomic validity is important. Prototheca, closely related to the 
Chlorella species complex, is known to be polyphyletic, branching with Auxenochlorella and Helicosporidium. The phylogeny 
of Prototheca was discussed and revisited several times in the last decade; new species have been described. Phylogenetic 
analyses were performed using ribosomal DNA (rDNA) and partial mitochondrial cytochrome b (cytb) sequence data. In 
this work we use Internal Transcribed Spacer 2 (ITS2) as well as 18S rDNA data. However, for the first time, we reconstruct 
phylogenetic relationships of Prototheca using primary sequence and RNA secondary structure information simultaneously, 
a concept shown to increase robustness and accuracy of phylogenetic tree estimation. Using encoded sequence-structure 
data, Neighbor-Joining, Maximum-Parsimony and Maximum-Likelihood methods yielded well-supported trees in agree-
ment with other trees calculated on rDNA; but differ in several aspects from trees using cytb as a phylogenetic marker. ITS2 
secondary structures of Prototheca sequences are in agreement with the well-known common core structure of eukaryotes 
but show unusual differences in their helix lengths. An elongation of the fourth helix of some species seems to have occurred 
independently in the course of evolution.
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Abbreviations
ITS2	� Internal Transcribed Spacer 2
ML	� Maximum Likelihood
NJ	� Neighbor-Joining
MP	� Maximum Parsimony

Introduction

According to Algaebase (Guiry and Guiry, 2021), organ-
isms, colorless and apochlorotic, without chloroplasts and 
pyrenoids, currently classified as Prototheca W.Krüger, 
1894 (Chlorophyta, Trebouxiophyceae) are widely distrib-
uted from temperate to tropical conditions in both fresh and 
marine waters. Prototheca, closely related to the Chlorella 
Beyerinck, 1890 species-complex, is polyphyletic with 

Helicosporidium D.Keilin, 1921 and Auxenochlorella (I.
Shihira & R.W.Krauss) T.Kalina & M.Puncochárová, 1987 
branching within clades of Prototheca species (e.g. Bakuła 
et al. 2020; Shave et al. 2021). Prototheca and Chlorella 
are the only known algal genera including disease-causing 
organisms in humans (Jagielski et al. 2019). Prototheca is 
associated with conditions termed protothecosis (Guiry and 
Guiry, 2021). Concerning diagnostics, taxonomic validity is 
important – in particular concerning the pathology associ-
ated taxa P. wickerhamii K.Tubaki & M.Soneda, 1959 and 
P. zopfii W.Krüger, 1894 (type species). Several species 
of Prototheca are rare opportunistic pathogens (Huerre 
et al. 1993) in humans (Lass-Flörl et al. 2007), other mam-
mals (e.g. Möller et al. 2007; Marques et al. 2008) and fish 
(Jagielski et al. 2017). Protothecosis is an infectious dis-
ease, which often spreads through contact with contami-
nated water (Jagielski and Lagneau, 2007). The first case 
of protothecosis in humans was described in 1964 (Davies 
et al. 1964). The disease manifests in three clinical forms: 
cutaneous lesions, olecranon bursitis and disseminated 
or systemic infections (Leiman et  al.  2004; Lass-Flörl 
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et al. 2007). Although protothecosis is considered a rare 
disease in humans with 105 of 211 published cases reported 
between 2000 and 2017 (Todd et al. 2018), it is likely that a 
large number of cases are unreported, undiagnosed or mis-
diagnosed (Masuda et al. 2021) since diagnostic methods 
as well as protocols for the treatment of protothecosis are 
not well established yet (Todd et al. 2018). Among other 
vertebrates, cattle are most commonly affected of protothe-
cosis (eg. Bueno et al. 2006; Marques et al. 2008; Jagielski 
et al. 2019), where the infection typically manifests as mas-
titis (Shave et al. 2021).

Fifteen Prototheca species are currently accepted (Jag-
ielski et al. 2019; Kunthiphun et al. 2019), split into two 
lineages, with a dominance of human- and cattle-associated 
species, respectively (Jagielski et al. 2019). In both line-
ages, altogether six species are known to cause infections 
in humans and other vertebrates: P. blaschkeae U.Roesler, 
A.Möller, A.Hensel, D.Baumann & U.Truyen, 2006, P. 
bovis Jagielski, 2019, P. cutis K.Satoh & Makimura, 2010, 
P. miyajii Masuda, Hirose, Ishikawa, Ikawa & Nishimura, 
2016, P. paracutis Khunthiphun, Endoh, Takashima, 
Ohkuma, Tanasupawat & Savarajara, 2019 and P. wick-
erhamii (Masuda et al. 2021). Phylogenetic relationships 
among Prototheca and their affiliated species (Tables S1, 
S2) have been investigated using ribosomal DNA (rDNA) 
(Suzuki et al. 2018; Jagielski et al. 2018; Masuda et al. 2016; 
Kunthiphun et  al.  2019) and/or partial mitochondrial 
cytochrome b (cytb) (Jagielski et al. 2019) sequence data. 
In this study, for the first time, using distance-, parsimony- 
and maximum likelihood-algorithms, we reconstruct the 
phylogeny of Prototheca and allies using rDNA (18S rDNA 
and ITS2) sequence- and secondary structure data simulta-
neously, an approach reviewed by Keller et al. (2010), Wolf 
et al. (2014) and Wolf (2015), increasing robustness and 
accuracy of phylogenetic tree estimation. The evolution of 
protothecean ITS2 secondary structures is discussed.

Material and methods

For a material and methods workflow, see Fig. 1. ITS2 and 
18S rDNA sequences of Prototheca and its affiliated spe-
cies (Tables S1, S2) were obtained from NCBI Nucleotide 
database (retrieved on 2021–04-26) (Benson et al. 2009). 
ITS2 sequences were annotated using the “annotate” 

option implemented in the ITS2 database which uses Hid-
den Markov Models to annotate eukaryote ITS2 (Eddy, 
1998; Keller et al. 2009; Schultz et al. 2006; Ankenbrand 
et al. 2015).

In ClustalX (Larkin et al. 2007), ITS2 as well as 18S 
rDNA sequences were aligned. Introns were removed from 
the 18S rDNA alignment with the help of the sequence edi-
tor Align (Hepperle et al. 2004).

Based on minimum free energy and constrained fold-
ing by using lower case letters, secondary structures of 
selected ITS2 (Tables S1, S2) sequences were predicted 
with RNAstructure (Reuter et al. 2010) which were then 
used as templates for homology modeling (Wolf et al. 2005; 
Selig et al. 2008) of the remaining secondary structures. 
Homology modeling was performed with the “model” 
option as implemented in the ITS2 database. Secondary 
structures of 18S rDNA sequences were also predicted via 
homology modeling using the ITS2 database. The template 
structure (Jaagichlorella luteoviridis (Chodat) Darienko & 
Pröschold, 2019) was obtained from the Comparative RNA 
Web Site (Cannone et al. 2002; Figure S1).

ITS2 and 18S rDNA sequence-structure datasets were 
each aligned using 4SALE (Seibel et al. 2006 and 2008). 
4SALE uses a 12-letter-alphabet consisting of the four 
nucleotides and their structural states (unpaired, paired left, 
paired right) to encode sequence and structure information 
simultaneously. 4SALE was also used to visualize a consen-
sus structure for Prototheca ITS2 sequences.

Sequence-structure alignments were exported from 
4SALE for further analysis. Specifically, a sequence-struc-
ture Neighbor-Joining (NJ) (Saitou and Nei, 1987) tree was 
calculated based on both ITS2 and 18S rDNA sequence-
structure alignments using ProfDistS (Friedrich et al. 2005; 
Wolf et al. 2008). For ITS2 sequence-structure data, Q_
ITS2, a sequence-structure specific General Time Reversible 
correction model (cf. Lanave et al. 1984) as implemented in 
ProfDistS, was used, while for 18S rDNA sequence-struc-
ture data a sequence-structure specific JC model (Jukes and 
Cantor, 1969) was used as distance estimation method.

From each dataset, a subset with less taxa was manually 
chosen (Tables S1, S2). For each subset, a sequence-struc-
ture NJ tree was calculated using ProfDistS. Maximum-Par-
simony (MP) and Maximum-Likelihood (ML) trees based on 
sequence-structure-data were calculated with PAUP (Swof-
ford, 2002) (using one-letter encoded sequence-structure 
data) and R (R Core Team, 2018), respectively. The R-script 
is available at http://​4sale.​bioap​ps.​bioze​ntrum.​uni-​wuerz​
burg.​de/​mlseq​str.​html. Additionally, ITS2 and 18S rDNA 
sequences were aligned in ClustalX and sequence-only NJ 
trees were calculated in ProfDistS. For all methods, due to 
the complexity of the sequence-structure approach, a boot-
strap support (Felsenstein, 1985) was estimated based on 
100 pseudo-replicates.

Fig. 1   Flowchart of all methods applied in this work. Sequences 
which could not be properly annotated or aligned were discarded, as 
well as Prototheca strains classified as “sp.”. For alignment editing, 
Align (Hepperle et al. 2004) was used (not shown). After reconstruc-
tion of Neighbor-Joining (NJ) overview trees using ProfDistS (Wolf 
et al. 2008) subsets were manually chosen for Maximum-Likelihood 
(ML), Maximum-Parsimony (MP) and Neighbor-Joining (NJ) analy-
sis. Further figures available with this manuscript are indicated

◂
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A third dataset was created consisting of combined ITS2 
and 18S rDNA sequence-structure alignments. For this data-
set, sequence-structure NJ, MP and ML trees were calculated 
with the programs and methods described above (for com-
parison reasons, additionally for this dataset, each marker 
was again handled separately, cf. Figures S4 and S5). All 
trees were rooted with Chlorella vulgaris Beyerinck, 1890 
and Parachlorella kessleri L.Krieniz, E.H.Hegewald, D.
Hepperle, V.A.R.Huss, T.Rohr & M.Wolf, 2004. All align-
ments are available on request.

Results and discussion

Taxon sampling

From NCBI, 192 ITS2 sequences of Prototheca and affili-
ated species could be obtained, as well as 165 18S rDNA 
sequences (Tables S1, S2). For ITS2 sequences, re-annota-
tion was performed using the “annotate” tool in the ITS2 
database with “Viridiplantae” as the model, inclusion of 
the proximal stem (last 25 nucleotides of 5.8S and first 25 
nucleotides of 28S rDNA) and an E-Value of < 0.01 or < 0.1.

For ITS2 and 18S rDNA, sequence alignments were cre-
ated using ClustalX. Sequences, which could not be anno-
tated or aligned, were discarded. The ITS2 sequence of Pro-
totheca wickerhamii was significantly longer than all other 
ITS2 sequences and could therefore not be properly aligned. 
The final alignments consist of 118 ITS2 sequences and 73 
18S rDNA sequences (cf. Figure 1).

For ITS2 sequences, six secondary structure templates 
were created using RNAstructure (P. blaschkeae, P. cutis, 
P. stagnorum W.B.Cooke, 1968, P. ulmea R.S.Pore, 1986, 
P. xanthoriae Jagielski, 2019, P. zopfii). With these tem-
plates, structures of all other sequences could be predicted 
using the “model” tool of the ITS2 database with at least 
70 percent transfer of the structure for most and 60 percent 
of the structure for three sequences (P. tumulicola Nagat-
suka, Kiyuna, Kigawa & J.Sugiyama, 2016). Structures of 
P. wickerhamii could not be predicted with the templates 
described and showed a significantly longer and bifurcated 
fourth helix when modeled with RNAstructure. This taxon 
is therefore missing in further analyses. Phylogenetic trees 
were calculated on sequence-structure alignments generated 
in 4SALE, consisting of 112 taxa and a subset with 30 taxa.

For 18S rDNA sequences, a structure template was 
obtained from CRW (Jaagichlorella luteoviridis, X73998, 
Figure S1). All 73 18S rDNA sequences could be predicted 
with at least 70 percent transfer of the structures, for all 
structures except Helicosporidium sp. (67.82%). Prototheca 
sequences classified as “sp.” were discarded. For 18S rDNA 
data, phylogenetic trees were calculated with 71 taxa and a 
subset of 26 taxa.

From ITS2 and 18S rDNA subsets, a combined sequence-
structure alignment of 15 strains / sequences was created.

Phylogeny of Prototheca based on ITS2 
sequence‑structure data

A Neighbor-Joining tree was calculated based on 112 ITS2 
sequence-structure pairs (Fig. 2). From the clades shown 
in this overview tree, 30 taxa were manually selected for 
NJ, MP and ML analysis (Fig. 3). Towards the root of this 
tree, a highly supported supergroup consisting of P. miya-
jii, P. cutis and P. paracutis finds itself with Jaagichlorella 
luteoviridis and Auxenochlorella protothecoides, showing 
the polyphyly of the Prototheca genus. Strains of P. xantho-
riae form a sister clade to all other Prototheca strains in the 
ML tree, although its position differs in the trees based on 
NJ and MP algorithms. P. moriformis W.Krüger, 1894 is 
very highly supported to be a sister group to the remaining 
taxa, which then are further divided into a P. tumulicola /P. 
stagnorum clade and a second clade, a supergroup consist-
ing of P. zopfii /P. bovis, P. ciferrii Negroni & Blaisten, 
1941, P. pringsheimii Jagielski, 2019, P. cerasi Jagielski, 
2019, P. cookei Jagielski, 2019, and P. blaschkeae. In this 
supergroup, P. ciferrii appears to be polyphyletic with P. 
pringsheimii sequences branching within the P. ciferrii 
clade. P. ciferrii /P. pringsheimii and their sister group P. 
cerasi appear to be a sister group to the P. zopfii /P. bovis 
clade. All of these strains form a sister group to P. cookei. P. 
blaschkeae appears to sister with just the P. zopfii /P. bovis 
clade in the overview NJ tree, but in trees calculated on 
the subset data the sister group also includes P. ciferrii, P. 
pringsheimii, P. cerasi, P. cookei and P. moriformis (only 
in the MP tree).

In general, the topology of the trees calculated on ITS2 
sequence-structure-data show similar topology to the trees 
calculated by Masuda et al. (2016) and Hirose et al. (2018), 
with the additional taxa proposed by Jagielski et al. (2019) 
and Kunthiphun et al. (2019). Auxenochlorella protothe-
coides and Jaagichlorella luteoviridis are sister groups 
in our tree based on ITS2 sequence-structure data with a 
bootstrap support of 100 and both clade with P. cutis / P. 
paracutis / P. miyajii with a bootstrap support of 81. Auxeno-
chlorella protothecoides branches with Prototheca wicker-
hamii (with a bootstrap support of 58) in the work of Hirose 
et al. (2018), and is sister group to all Prototheca sequences 
except P. wickerhamii in the tree proposed by Masuda et al. 
(2016) with a bootstrap support of 87. P. ulmea is poorly 
supported being a sister group to P. zopfii, P. moriformis and 
P. blaschkeae sequences in the same work whereas we show 
P. tumulicola / P. stagnorum as sister group to these species 
with a bootstrap support of 76.

The phylogenetic position of P. xanthoriae remains 
unresolved here as its position differs in all constructed 
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trees always with low bootstrap support. Several other 
relationships (e.g. the close relationship of P. miyajii + P. 
cutis /P. paracutis, P. tumulicola + P. stagnorum or P. mori-
formis + the supergroup consisting of P. zopfii /P. bovis, P. 
ciferrii, P. pringsheimii, P. cerasi, P. cookei, P. blaschkeae, 
P. tumulicola, and P. stagnorum) are very highly supported 
by bootstrap values > 90 in all (NJ, MP, ML) calculated 
trees. A single P. moriformis sequence (MK445153) was 

positioned within the P. zopfii /P. bovis clade in the ITS2 
sequence-structure overview tree (Fig. 2). This strain (SAG 
263–2) appears in the P. moriformis clade (cluster IX) in the 
phylogram based on the partial cytb sequences by Jagielski 
et al. (2019).

Comparing the sequence-structure tree to a tree based 
on sequence data only (Figure S2), it is apparent that the 
sequence-only tree is similar, sometimes lower supported 
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Fig. 2   ITS2 sequence-structure Neighbor-Joining tree obtained from 
ProfDistS (Wolf et  al.  2008). An alignment of 112 sequence-struc-
ture-pairs (x.fasta format) of Prototheca and affiliated species was 
created using 4SALE (Seibel et al. 2006 and 2008) and encoded by 
a 12-letter alphabet (Wolf et al. 2014) for reconstruction of this tree. 
GenBank accession numbers accompany each taxon name. Clades are 

alternately marked green and blue and are additionally named along-
side the tree in accordance with the clade names proposed in the phy-
logram by Jagielski et al. (2019). Taxa which were manually chosen 
for the subset are marked bold. The tree is rooted with Chlorella vul-
garis FM205854
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than the tree based on the sequence-structure alignment and 
shows several differences in the topology, e.g. the positions 
of the P. tumulicola / P. stagnorum clade or the P. mori-
formis clade. Auxenochlorella protothecoides and Jaagichlo-
rella luteoviridis branch inside the P. cutis / P. paracutis / 
P. miyajii clade in the sequence-only tree. This latter clade 
without A. protothecoides and J. luteoviridis is highly sup-
ported in the sequence-structure tree with a bootstrap value 
of 93.

Phylogeny of Prototheca based on 18S rDNA 
sequence‑structure data

Using the Neighbor-Joining algorithm, an overview tree 
based on 71 18S rDNA sequence-structure pairs was cre-
ated (Fig. 4). Here, as in several other trees based on rDNA 
data (e.g. Masuda et al. 2016; Hirose et al. 2018; Shave 
et al. 2021), P. wickerhamii appears to be polyphyletic with 
two strains (X56099, X74003) branching outside of the P. 
wickerhamii clade. Jagielski et al. (2019), reclassified these 
taxa as a new species, Prototheca xanthoriae. From the NJ 
overview tree, a subset was created by manual selection of 
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Fig. 3   ITS2 sequence-structure Maximum-Likelihood tree calculated 
with R (R Core Team, 2018) including a representative subset of 30 
sequence-structure pairs from Prototheca and its affiliated species 
which were manually selected from Fig. 2. Bootstrap values from 100 
pseudo-replicates mapped at the internodes are from Maximum-Like-
lihood (ML), Maximum-Parsimony (MP, obtained from PAUP (Swof-
ford, 2002)) and Neighbor-Joining (NJ, obtained from ProfDistS 
(Wolf et  al.  2008)) analyses. For NJ tree reconstruction the global 
multiple sequence-structure alignment (.xfasta format) as derived by 

4SALE (Seibel et al. 2006 and 2008) was automatically encoded by 
a 12-letter alphabet (Wolf et  al.  2014). For ML and MP tree recon-
struction the “one letter encoded” fasta format (12-letter alphabet) as 
derived by 4SALE (Seibel et al. 2006 and 2008) was used. GenBank 
accession numbers accompany each taxon name. Clades are alter-
nately marked green and blue and are additionally named alongside 
the tree in accordance with the clade names proposed in the phylo-
gram by Jagielski et al. (2019). The tree is rooted with Chlorella vul-
garis FM205854 and Parachlorella kessleri FM205885
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26 sequence-structure pairs. Trees calculated on this subset 
data (Fig. 5) show P. xanthoriae as the sister group to all 
strains except the outgroup. Auxenochlorella protothecoides 
and Jaagichlorella luteoviridis are sister group to all remain-
ing taxa, which are then further divided into a P. miyajii /P. 
cutis clade and a second clade, in which Helicosporidium 
sisters with P. wickerhamii and another supergroup of sev-
eral Prototheca species. This supergroup forms two clades, 
the first being P. ulmea /P. moriformis and their sister group 
P. tumulicola /P. stagnorum, the second divided into a P. 
blaschkeae clade and a second clade consisting of P. ciferrii, 

P. moriformis and P. zopfii /P. bovis. Bootstrap support of 
this tree is generally high as all but one external nodes are 
supported by a bootstrap value > 65. The trees calculated on 
18S rDNA sequence-structure data show similar topology 
to the trees based on LSU rDNA data proposed in literature 
(e.g. Masuda et al. 2016; Hirose et al. 2018), but differ from 
the phylogram based on partial cytb sequences by Jagielski 
et al. (2019) in several aspects. P. stagnorum, P. tumulicola 
and P. moriformis appear towards the root of the tree in 
the cytb sequence based phylogram, while our tree shows 
all three species distant to the root and forming the sister 
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Fig. 4   18S rDNA sequence-structure Neighbor-Joining tree obtained 
from ProfDistS (Wolf et  al.  2008). An alignment of 71 sequence-
structure-pairs (x.fasta format) of Prototheca and its affiliated species 
was created using 4SALE (Seibel et al. 2006 and 2008) and encoded 
by a 12-letter alphabet (Wolf et  al.  2014) for reconstruction of this 
tree. GenBank accession numbers accompany each taxon name. 

Clades are alternately marked green and blue and are additionally 
named alongside the tree in accordance with the clade names pro-
posed in the phylogram by Jagielski et  al.  2019. Taxa which were 
manually chosen for the subset are marked bold. The tree is rooted 
with Chlorella vulgaris FM205854 and Parachlorella kessleri 
FM205885
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group to P. zopfii / P. bovis, P. moriformis, P. ciferrii and P. 
blaschkeae. In the cytb sequenced phylogram, a multifur-
cation occurs including P. wickerhamii, the sister groups 
P. miyajii and P. cutis as well as a clade consisting of P. 
xanthoriae, Helicosporidium sp. and Auxenochlorella pro-
tothecoides. P. wickerhamii is shown to be the sister group 
of P. zopfii / P. bovis, P. ciferrii, P. blaschkeae, P. tumulicola, 
P. stagnorum and P. moriformis in our tree, although with 
low bootstrap support. Helicosporidium sp. is sister group 
to all of these species (with moderate bootstrap support) 
and P. miyajii / P. cutis sister with these species including 

Helicosporidium sp. with bootstrap values > 70 for all meth-
ods applied (NJ, MP, ML).

Comparing the sequence-structure tree to a tree based on 
sequence data only (Figure S3), it is apparent that the boot-
strap support is mostly higher although sometimes similar 
in the sequence-structure tree. The topology differs slightly, 
e.g. in the P. zopfii /P. bovis + P. ciferrii + P. moriformis 
clade, P. tumulicola + P. stagnorum clade or within the P. 
wickerhamii clade.
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Fig. 5   18S rDNA sequence-structure Maximum-Likelihood tree cal-
culated with R (R Core Team, 2018) including a representative sub-
set of 26 sequence-structure pairs from Prototheca and its affiliated 
species which were manually selected from Fig. 4. Bootstrap values 
from 100 pseudo-replicates mapped at the internodes are from Max-
imum-Likelihood (ML), Maximum-Parsimony (MP, obtained from 
PAUP (Swofford, 2002)) and Neighbor-Joining (NJ, obtained from 
ProfDistS (Wolf et  al.  2008)) analyses. For NJ tree reconstruction 
the global multiple sequence-structure alignment (.xfasta format) as 
derived by 4SALE (Seibel et  al.  2006 and 2008) was automatically 

encoded by a 12-letter alphabet (Wolf et al. 2014). For ML and MP 
tree reconstruction the “one letter encoded” fasta format (12-letter 
alphabet) as derived by 4SALE (Seibel et  al.  2006 and 2008) was 
used. GenBank accession numbers accompany each taxon name. 
Clades are alternately marked green and blue and are additionally 
named alongside the tree in accordance with the clade names pro-
posed in the phylogram by Jagielski et al. (2019). The tree is rooted 
with Chlorella vulgaris FM205854 and Parachlorella kessleri 
FM205885
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Phylogeny of Prototheca based on combined ITS2 and 18S 
rDNA sequence‑structure data

A combined ITS2 and 18S rDNA sequence-structure align-
ment was created from strains which appeared in both the 
ITS2 and 18S rDNA subset. NJ, MP and ML trees were 
calculated on this 15 taxa sequence-structure alignment 
(Fig. 6). This tree is highly supported by bootstrap val-
ues ≥ 70 at all nodes throughout the whole tree with most of 
them being > 95. P. cutis and P. miyajii form a clade outside 
all other Prototheca clades, which are then further divided 
into a P. moriformis clade and the sister group consisting of 
P. stagnorum, P. tumulicola, P. blaschkeae, P. ciferrii and 
P. zopfii /P. bovis. In this supergroup, P. stagnorum and P. 
tumulicola find themselves together against the remaining 
taxa which then have P. blaschkeae as sister group to P. 
ciferrii and P. zopfii /P. bovis clades.

Comparing the ITS2 and 18S rDNA subset trees to the 
tree based on the combined alignment, the trees show similar 

topology despite several species missing in the combined 
alignment. In all three trees, P. zopfii / P. bovis (and one P. 
moriformis strain in the 18S rDNA tree) is the sister group 
to P. ciferrii, forming a supergroup which then is sister group 
to P. blaschkeae.

While P. moriformis and P. tumulicola / P. stagnorum are 
sister groups in the 18S rDNA tree, P. moriformis is sister 
group to several more species in the ITS2 and the combined 
tree. P. cutis / P. miyajii form a sister group to all other 
Prototheca strains in the combined and the 18S rDNA tree 
(except P. xanthoriae, which sisters with all species except 
the outgroup in the 18S rDNA tree) but are more closely 
related to Auxenochlorella protothecoides and Jaagichlo-
rella luteoviridis in the tree based on ITS2 sequence-struc-
ture data. Accordingly, these nodes are the nodes showing a 
relatively low bootstrap support in the very highly supported 
tree based on the combined 18S rDNA and ITS2 alignment.

Calculating trees on ITS2 and 18S rDNA sequence-struc-
ture data of the 15 chosen taxa for the combined alignment 
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Fig. 6   Combined 18S and ITS2 sequence-structure Maximum-Like-
lihood tree calculated with R (R Core Team, 2018) including 15 
sequence-structure pairs from Prototheca and its affiliated species. 
Bootstrap values from 100 pseudo-replicates mapped at the inter-
nodes are from Maximum-Likelihood (ML), Maximum-Parsimony 
(MP, obtained from PAUP (Swofford, 2002)) and Neighbor-Joining 
(NJ, obtained from ProfDistS (Wolf et  al.  2008)) analyses. For NJ 
tree reconstruction the global multiple sequence-structure alignment 

(.xfasta format) as derived by 4SALE (Seibel et  al.  2006 and 2008) 
was automatically encoded by a 12-letter alphabet (Wolf et al. 2014). 
For ML and MP tree reconstruction the “one letter encoded” fasta 
format (12-letter alphabet) as derived by 4SALE (Seibel et  al. 2006 
and 2008) was used. Strain numbers accompany each taxon name. 
The tree is rooted with Chlorella vulgaris CCAP 211/81 and Para-
chlorella kessleri CCAP 211/11G
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separately, it is apparent that the combined ML tree shows 
more similarity to the 18S rDNA tree (Figure S4) than the 
ITS2 tree (Figure S5). Both separate trees show the super-
group consisting of P. moriformis, P. tumulicola, P. stagno-
rum, P. blaschkeae, P. ciferrii and P. zopfii / P. bovis with a 
bootstrap value of 100. The relationships between the Pro-
totheca strains in this supergroup varies; however the com-
bined tree and the 18S rDNA tree show P. blaschkeae being 
a sister group to P. ciferri and P. zopfii / P. bovis while in the 
ITS2 tree, P. blaschkeae is related to P. zopfii / P. bovis, but 
with low bootstrap support. The ITS2 tree shows P. miyajii 
/ P. cutis being sister group to Auxenochlorella protothe-
coides and Jaagichlorella luteoviridis, whereas this relation-
ship doesn’t appear in the 18S rDNA or combined ML tree. 
The bootstrap support of the 18S rDNA tree is overall high 
with all but one bootstrap value > 60. In the ITS2 tree, two 
bootstrap values are lower than 50 with the accompanying 
nodes being the ones where the ITS2 tree doesn’t show the 
same topology as either the 18S rDNA or combined tree.

Finally, if we compare ITS2 and 18S rDNA trees, we 
must not forget that we cannot include P. wickerhamii in the 
comparison. In order to deduce the phylogeny of the entire 
genus Prototheca, i.e., including P. wickerhamii, one always 
needs at least one additional marker gene beside ITS2.

Evolution of protothecean ITS2 secondary structures

ITS2 secondary structures of six Prototheca sequences were 
constructed using RNAstructure (Fig. 7). In general, these 
structures folded into the common core structure known for 
eukaryotes with four helices (Schultz et al. 2005). Proto-
thecean ITS sequences are known to vary in length (Marques 
et al. 2015). Prototheca sequences in this work were between 
269 (all three P. tumulicola strains) and 543 / 544 bp (P. 
moriformis MF163495 /P. ulmea MF163497) long. ITS2 
sequences of P. wickerhamii were significantly longer 
(1171–1358 bp). ITS2 structures from P. blaschkeae and P. 
cutis showed an exceptionally large fourth helix, while helix 
IV of P. stagnorum and P. zopfii was rather short. The third 
helix of P. ulmea appears to be bifurcated. Figure 8 visu-
alizes the sequence-structure alignment of all Prototheca 
strains in the subset by a 51% consensus structure. A few 
bindings in helix II, between helix II and III and at the end of 
helix III are shown to be 80% conserved where known ITS2 
structure motifs (the U-U mismatch in helix II, the triple A 
between helix II and III and the UGGU motif in helix III) 
are generally located.

Despite the differences in length in the Prototheca ITS2 
sequences, homology modeling of the secondary structures 
was possible with just three templates (P. zopfii, P. cutis, 
P. stagnorum) at 50% consensus level for all Prototheca 
sequences except P. blaschkeae and P. wickerhamii. The 
P. zopfii template could be used to model other P. zopfii 

structures and those of P. bovis, P. cerasi, P. ciferrii, P. 
cookei, one P. moriformis strain and P. pringsheimii. These 
species also form a supergroup in the ML sequence-structure 
tree (Fig. 3). With the P. cutis template, all strains of the 
P. cutis /P. paracutis + P. miyajii clade could be predicted. 
The P. stagnorum template could be used for prediction of 
the secondary structures of other P. stagnorum and the P. 
tumulicola sequences as well as P. ulmea, P. xanthoriae and 
P. moriformis sequences with a lower consensus. Therefore, 
three additional templates were created (P. blaschkeae, P. 
ulmea and P. xanthoriae).

Given their distant relationship in the pylogenetic trees 
based on ITS2 sequence-structure data, elongation of helix 
IV of the ITS2 in P. blaschkeae and P. cutis seems to have 
occurred independently in the course of evolution.

ITS2 is one of the most effective phylogenetic markers. 
The high variability allows to study closely related organ-
isms, the conserved structure reveals larger relationships. In 
most cases, the secondary structure helps to better align vari-
able sequences. Sometimes, however, the length variations 
and differences even within a genus are already so large that 
alignments (whether based only on sequence or on sequence-
structure information) should be viewed with caution. Pro-
totheca is such an example. Homology is difficult to discern 
and individual sequences are even impossible to align at all. 
On the other hand, if you take out only a few sequences (e.g. 
those with an extremely elongated fourth helix), the align-
ment quickly becomes much more compact. With this study, 
we reconstructed phylogenetic trees on extremely diverse 
Prototheca sequences—whose sequence-structure informa-
tion was encoded into a new alphabet; and indeed the results 
show robust trees similar to those based on other markers 
(e.g. 18S, LSU or cytb). We encourage the commuity to 
draw on additional markers and, by comparison and/or con-
catination, to better and better understand the phylogeny of 
Prototheca and related taxa.

To understand ITS2 length differences further research 
is needed. Compared to other genera, in terms of extreme 
sequence differences, it seems possible to discover addi-
tional species in the Prototheca species complex. Such spe-
cies will then put the sequence differences into perspective 
and/or significantly advance our understanding of length 
variation (e.g. by expansion, duplication, and/or alterna-
tive splicing), or more generally, our understanding of RNA 
sequence-structure evolution.

Conclusion

In this work, using sequence-structure information simul-
taneously, for two phylogenetic markers (ITS2 and 18S 
rDNA), we reconstructed generally well-supported phyloge-
netic trees that are in overall agreement with the trees based 
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on rDNA sequences (mainly LSU data) proposed in litera-
ture but show several topological differences to trees calcu-
lated on cytb sequences. Prototheca wickerhamii, the main 
causative for human protothecosis, could not be included in 
analysis based on ITS2 data since its ITS2 sequences were 
exceptionally long and could therefore not be aligned with 
other Prototheca sequences. The phylogenetic trees calcu-
lated on sequence-structure alignments of our subset data 
show Maximum-Likelihood support (> 50) for all but three 
branches in both the ITS2 and the 18S rDNA tree. Boot-
strap support values are generally higher than those from 

sequence-only analyses (in this study or in the available lit-
erature using RNA and/or protein data).

The ITS2 of Prototheca is known to vary in length. Our 
study shows that out of the Prototheca ITS2 structures we 
reconstructed, P. blaschkeae and P. cutis displayed an elon-
gated fourth helix. Helix III of P. moriformis (formerly P. 
ulmea) appears to be bifurcated. Despite the differences 
in length, a 51% consensus structure showing all but the 
fourth helix could be visualized with some nucleotide bonds 
being 80% conserved throughout all examined Prototheca 
structures.

a P. blaschkeae b P. cutis c P. stagnorum

d P. ulmea e P. xanthoriae f P. zopfii

helix III

helix IV

stem

5.8S 28S

helix I

helix II

Fig. 7   ITS2 secondary structure templates used for homology 
modeling of Prototheca sequences in the ITS2 database (Schultz 
et  al.  2006; Ankenbrand et  al.  2015). Templates were created in 
RNAstructure (Reuter et al. 2010) based on minimum free energy and 

constrained folding. The stem, consisting of the last 25 nucleotides of 
the 5.8S and the first 25 nucleotides of the 28S rDNA is highlighted 
in purple (5.8S) and blue (28S) using Varna (Darty et al. 2009)
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