
Veronika Lesch

Self-Aware Optimization
of Cyber-Physical Systems
in Intelligent Transportation
and Logistics Systems

Dissertation, Julius-Maximilians-Universität Würzburg
Fakultät für Mathematik und Informatik, 2021
Gutachter: Prof. Dr. Samuel Kounev, Julius-Maximilians-Universität Würzburg

Prof. Dr. Sven Tomforde, Christian-Albrechts-Universität zu Kiel

Datum der mündlichen Prüfung: 28.04.2022

This document—excluding the cover—is licensed under the
Creative Commons Attribution-ShareAlike 4.0 DE License (CC BY-SA 4.0 DE):
http://creativecommons.org/licenses/by-sa/4.0/deed.d

ii

http://creativecommons.org/licenses/by-sa/4.0/deed.d

Abstract

In today’s world, circumstances, processes, and requirements for systems in
general—in this thesis a special focus is given to the context of Cyber-Physical
System (CPS)—are becoming increasingly complex and dynamic. In order
to operate properly in such dynamic environments, systems must adapt to
dynamic changes, which has led to the research area of Self-adaptive Systems
(SASs). These systems can deal with changes in their environment and the
system itself. In our daily lives, we come into contact with many different SASs
that are designed to support and improve our way of life. In this work we focus
on the two domains Intelligent Transportation Systems (ITS) and logistics as
both domains provide complex and adaptable use cases to prototypical apply
the contributions of this thesis. However, the contributions are not limited to
these areas and can be generalized also to other domains such as the general area
of CPS and Internet of Things (IoT) including smart grids or even intelligent
computer networks. In ITS, real-time traffic control is an example adaptive
system that monitors the environment, analyzes observations, and plans and
executes adaptation actions. Another example is platooning, which is the
ability of vehicles to drive with close inter-vehicle distances. This technology
enables an increase in road throughput and safety, which directly addresses
the increased infrastructure needs due to increased traffic on the roads. In
logistics, the Vehicle Routing Problem (VRP) deals with the planning of road
freight transport tours. To cope with the ever-increasing transport volume
due to the rise of just-in-time production and online shopping, efficient and
correct route planning for transports is important. Further, warehouses play
a central role in any company’s supply chain and contribute to the logistical
success. The processes of storage assignment and order picking are the two
main tasks inmezzaninewarehouses highly affected by a dynamic environment.
Usually, optimization algorithms are applied to find solutions in reasonable
computation time. SASs can help address these dynamics by allowing systems
to deal with changing demands and constraints.

For the application of SASs in the two areas ITS and logistics, the definition
of adaptation planning strategies is the key success factor. A wide range of
adaptation planning strategies for different domains can be found in the litera-
ture, and the operator must select the most promising strategy for the problem

iii

at hand. However, the No-Free-Lunch theorem states that the performance
of one strategy is not necessarily transferable to other problems. Accordingly,
the algorithm selection problem, first defined in 1976, aims to find the best
performing algorithm for the current problem. Since then, this problem has
been explored more and more, and the machine learning community, for ex-
ample, considers it a learning problem. The ideas surrounding the algorithm
selection problem have been applied in various use cases, but little research
has been done to generalize the approaches. Moreover, especially in the field
of SASs, the selection of the most appropriate strategy depends on the current
situation of the system. Techniques for identifying the situation of a system can
be found in the literature, such as the use of rules or clustering techniques. This
knowledge can then be used to improve the algorithm selection, or in the scope
of this thesis, to improve the selection of adaptation planning strategies. In
addition, knowledge about the current situation and the performance of strate-
gies in similar previously observed situations provides another opportunity
for improvements. This ongoing learning and reasoning about the system and
its environment is found in the research area Self-aware Computing (SeAC).
In this thesis, we explore common characteristics of adaptation planning

strategies in the domain of ITS and logistics presenting a self-aware optimiza-
tion framework for adaptation planning strategies. We consider platooning
coordination strategies from ITS and optimization techniques from logistics
as adaptation planning strategies that can be exchanged during operation to
better reflect the current situation. Further, we propose to integrate fairness
and uncertainty handling mechanisms directly into the adaptation planning
strategies. We then examine the complex structure of the logistics use cases VRP
and mezzanine warehouses and identify their systems-of-systems structure.
We propose a two-stage approach for vertical or nested systems and propose
to consider the impact of intertwining horizontal or coexisting systems. More
specifically, we summarize the six main contributions of this thesis as follows:

• First, we analyze specific characteristics of adaptation planning strate-
gies with a particular focus on ITS and logistics. We use platooning and
route planning in highly dynamic environments as representatives of ITS
and we use the Rich Vehicle Routing Problem (rVRP) and mezzanine
warehouses as representatives of the logistics domain. Using these case
studies, we derive the need for situation-aware optimization of adaptation
planning strategies and argue that fairness is an important consideration
when applying these strategies in ITS. In logistics, we discuss that these
complex systems can be considered as systems-of-systems and this struc-

iv

ture affects each subsystem. Hence, we argue that the consideration of
these characteristics is a crucial factor for the success of the system.

• Second, we design a self-aware optimization framework for adaptation
planning strategies. The optimization framework is abstracted into a third
layer above the application and its adaptation planning system, which
allows the concept to be applied to a diverse set of use cases. Further, the
Domain Data Model (DDM) used to configure the framework enables
the operator to easily apply it by defining the available adaptation plan-
ning strategies, parameters to be optimized, and performance measures.
The framework consists of four components: (i) Coordination, (ii) Situa-
tion Detection, (iii) Strategy Selection, and (iv) Parameter Optimization.
While the coordination component receives observations and triggers
the other components, the situation detection applies rules or clustering
techniques to identify the current situation. The strategy selection uses
this knowledge to select the most promising strategy for the current situ-
ation, and the parameter optimization applies optimization algorithms
to tune the parameters of the strategy. Moreover, we apply the concepts
of the SeAC domain and integrate learning and reasoning processes to
enable ongoing advancement of the framework. We evaluate our frame-
work using the platooning use case and consider platooning coordination
strategies as the adaptation planning strategies to be selected and opti-
mized. Our evaluation shows that the framework is able to select the
most appropriate adaptation strategy and learn the situational behavior
of the system.

• Third, we argue that fairness aspects, previously identified as an impor-
tant characteristic of adaptation planning strategies, are best addressed
directly as part of the strategies. Hence, focusing on platooning as an
example use case, we propose a set of fairness mechanisms to balance
positive and negative effects of platooning among all participants in a
platoon. We design six vehicle sequence rotation mechanisms that con-
tinuously change the leader position among all participants, as this is the
position with the least positive effects. We analyze these strategies on
roads of different sizes and with different traffic volumes, and show that
these mechanisms should also be chosen wisely.

• Fourth, we address the uncertainty characteristic of adaptation planning
strategies and propose a methodology to account for uncertainty and also
address it directly as part of the adaptation planning strategies. We ad-
dress the use case of fueling planning along a route associatedwith highly

v

dynamic fuel prices and develop six utility functions that account for
different aspects of route planning. Further, we incorporate uncertainty
measures for dynamic fuel prices by adding penalties for longer travel
times or greater distance to the next gas station. Through this approach,
we are able to reduce the uncertainty at planning time and obtain a more
robust route planning.

• Fifth, we analyze optimization of nested systems-of-systems for the use
case rVRP. Before proposing an approach to deal with the complex struc-
ture of the problem, we analyze important constraints and objectives
that need to be considered when formulating a real-world rVRP. Then,
we propose a two-stage workflow to optimize both systems individually,
flexibly, and interchangeably. We apply Genetic Algorithms (GAs) and
Ant Colony Optimizations (ACOs) to both nested systems and compare
the performance of our workflow with state-of-the-art optimization algo-
rithms for this use case. In our evaluation, we show that the proposed
two-stageworkflow is able to handle the complex structure of the problem
and consider all real-world constraints and objectives.

• Finally, we study coexisting systems-of-systems by optimizing typical
processes in mezzanine warehouses. We first define which ergonomic
and economic constraints and objectives must be considered when ad-
dressing a real-world problem. Then, we analyze the interrelatedness of
the storage assignment and order picking problems; we identify oppor-
tunities to design optimization approaches that optimize all objectives
and aim for a good overall system performance, taking into account the
interdependence of both systems. We use the Non-dominated Sorting
Genetic Algorithm II (NSGA-II) for storage assignment and ACO for
order picking and adapt them to the specific requirements of horizontal
systems-of-systems. In our evaluation, we compare our approaches to
state-of-the-art approaches in mezzanine warehouses and show that our
proposed approaches increase the system performance.

Our proposed approaches provide important contributions to both academic
research and practical applications. To the best of our knowledge, we are the
first to design a self-aware optimization framework for adaptation planning
strategies that integrates situation-awareness, algorithm selection, parameter
tuning, as well as learning and reasoning. Our evaluation of platooning coordi-
nation shows promising results for the application of the framework. Moreover,
our proposed strategies to compensate for negative effects of platooning rep-
resent an important milestone, which could lead to higher acceptance of this

vi

technology in society and support its future adoption in the real world. The
proposed methodology and utility functions that address uncertainty are an
important step to improving the capabilities of SAS in an increasingly turbulent
environment. Similarly, our contributions to systems-of-systems optimization
are major contributions to the state of logistics and systems-of-systems research.
Finally, we select real-world use cases for the application of our approaches
and cooperate with industrial partners, which highlights the practical rele-
vance of our contributions. The reduction of manual effort and required expert
knowledge in our self-aware optimization framework is a milestone in bridging
the gap between academia and practice. One of our partners integrated the
two-stage approach to tackling the rVRP into its software system, improving
both time to solution and solution quality. In conclusion, the contributions
of this thesis have spawned several research projects such as a long-term in-
dustrial project on optimizing tours and routes in parcel delivery funded by
Bayerisches Verbundforschungsprogramm (BayVFP) – Digitalisierung and further
collaborations, opening up many promising avenues for future research.

vii

Deutsche Zusammenfassung

In der heutigen Welt werden die Umstände, Prozesse und Anforderungen
an Systeme im allgemeinen—in dieser Arbeit wird der Fokus besonders auf
cyber-physische Systeme (engl. CPS) gelegt—immer komplexer. Um in solch
dynamischen Umgebungen ordnungsgemäß zu funktionieren, müssen sich
diese Systeme an Veränderungen anpassen. Diese Herausforderungen führten
zu der Entstehung des Forschungsbereichs selbst-adaptiver Systeme (engl. Self-
adaptive System (SAS)). Diese Systeme können mit Veränderungen in ihrer
Umgebung, als auch in sich selbst umgehen und sich an geänderte Gegebenhei-
ten anpassen. In unserem alltäglichen Leben kommen wir daher zunehmend
mit SAS in Berührung, welche unsere Lebensqualität unterstützen und ver-
bessern sollen. In dieser Arbeit konzentrieren wir uns auf die beiden Bereiche
Intelligenter Transportsysteme (engl. Intelligent Transportation Systems (ITS))
und Logistik, da beide Bereiche komplexe und anpassbare Anwendungsfälle
bieten, um die Beiträge dieser Arbeit prototypisch anzuwenden. Die vorge-
stellten Beiträge sind jedoch nicht auf diese Bereiche beschränkt und können
auch auf andere Bereiche wie den allgemeinen Bereich von cyber-physischen
Systemen und dem Internet der Dinge einschließlich intelligenter Stromnetze
oder intelligenter Computernetze verallgemeinert werden. Als ein Beispiel
für adaptive Systeme in der realen Welt kann die Echtzeit-Verkehrssteuerung
genannt werden. Diese Systeme überwachen die Umgebung, analysieren Be-
obachtungen und planen Anpassungsmaßnahmen um den Verkehrsfluss zu
regulieren. Ein weiteres Beispiel ist das sogenannte Platooning, welches die
Fähigkeit beschreibt, in Gruppen mit geringen Abständen zwischen den be-
teiligten Fahrzeugen zu fahren. Das stetig wachsende Verkehrsvolumen auf
den Straßen führt automatisch zu einem erhöhten Infrastrukturbedarf, den
Behörden derzeit durch Neubau und Erweiterung der existierenden Infrastruk-
tur begegnen. Platooning ist eine vielversprechende Technologie, die durch
die Reduzierung der Mindestabstände von Fahrzeugen und Kommunikation
zwischen diesen, automatisch zu einer Erhöhung des Verkehrsdurchsatzes
sowie der Sicherheit auf der verwendeten Infrastruktur führt. Auch im Be-
reich der Logistik finden sich diverse Beispiele für SAS, wie zum Beispiel die
Tourenplanung (engl. Vehicle Routing Problem (VRP)) welches sich mit der
Planung von Touren für den Straßengütervekehr befasst. Zur Bewältigung

ix

des ständig steigenden Transportaufkommens aufgrund zunehmender Just-
in-Time-Produktion und erhöhter Nachfrage durch Online-Shopping ist eine
effiziente und korrekte Routenplanung für Warentransporte besonders wichtig.
Üblicherweise werden Optimierungsalgorithmen angewandt, um sinnvolle
Lösungen in angemessener Rechenzeit zu finden. Durch die Anwendung von
Konzepten der SAS kann die Dynamik des Problems berücksichtigt werden,
indem es den Umgang mit sich ändernden Anforderungen, Einschränkungen
und spontan eingehenden Aufträgen ermöglicht. Darüber hinaus spielen La-
gerhäuser eine zentrale Rolle in der Lieferkette von Unternehmen und tragen
maßgeblich zum logistischen Erfolg bei. Fachbodenregallager (engl. mezzanine
warehouses) sind laut Expertenschätzung die am häufigsten verwendeten La-
ger wennMitarbeiter die eingelagerten Güter manuell ein- und auslagern (engl.
picker-to-part). Die Prozesse der Lagerzuweisung und der Kommissionierung
sind die beiden Hauptaufgaben in Fachbodenregallagern, welche ebenfalls
häufig mit Optimierungsalgorithmen gelöst werden. Beide Prozesse müssen in
einer dynamischen Umgebung ablaufen, für die SAS einen vielversprechenden
Lösungsansatz darstellt.

Für die Anwendung von SAS in diesen beiden Bereichen ist die Definition
von Anpassungsplanungsstrategien (engl. adaptation planning strategies) der
Schlüsselfaktor für den Erfolg des Gesamtsystems. In der Literatur finden sich
zahlreiche Anpassungsplanungsstrategien für verschiedene Anwendungsbe-
reiche, was dazu führt, dass der Anwender die vielversprechendste Strategie
für das jeweilige Problem auswählen muss. Das No-Free-Lunch-Theorem be-
sagt jedoch, dass die Leistung einer Strategie nicht direkt auf andere Probleme
übertragbar ist. Dementsprechend zielt das 1976 erstmals definierte Problem
der Algorithmenauswahl darauf ab, den leistungsfähigsten Algorithmus für
das aktuelle Problem zu finden. Seitdem wurde diese Problemstellung immer
weiter erforscht, und wird beispielsweise von der Forschungsgemeinschaft,
welche sich mit maschinellem Lernen beschäftigt, als Lernproblem angesehen.
In der Literatur lassen sich vielfältige Ideen finden, welche auf die Algorith-
mentauswahl in verschiedenen Anwendungsfällen abzielen. Jedoch wurde
bisher nur wenig Forschung betrieben, um diese Ansätze zu verallgemeinern
und auf andere Anwendungsfälle zu übertragen. Darüber hinaus hängt beson-
ders im Bereich der SAS die Auswahl der am besten geeigneten Strategie von
der aktuellen Situation des Systems ab. In der Literatur finden sich Techniken
zur Identifizierung der Situation eines Systems, z. B. durch Anwendung von
Regeln oder Clustering-Techniken. Dieses Wissen kann dann verwendet wer-
den, um die Auswahl der Algorithmen, oder im Rahmen dieser Arbeit, die
Auswahl der Anpassungsplanungsstrategien zu verfeinern. Darüber hinaus

x

bietet die Kenntnis über die aktuelle Situation und die Leistung von Anpas-
sungsplanungsstrategien in ähnlichen, zuvor beobachteten Situationen eine
weitere Möglichkeit für Verbesserungen. Dieses Lernen und Nachdenken (engl.
reasoning) über das System und seine Umgebung ist Kernbestandteil des For-
schungsbereichs der sich selbst bewusster Computer Systeme (engl. SeAC).

In dieser Arbeit untersuchenwir gemeinsameMerkmale vonAnpassungspla-
nungsstrategien in den Anwendungsbereichen ITS sowie Logistik und stellen
ein sich seiner selbst bewusstes (engl. self-aware) Rahmenkonzept zur Optimie-
rung dieser Strategien vor. Wir betrachten Platooning-Koordinations-strategien
aus dem Bereich ITS und Optimierungstechniken aus der Logistik als Anpas-
sungsplanungsstrategien, die unter Berücksichtigung der aktuellen Situation
ausgetauscht und optimiert werden können. Darüber hinaus schlagen wir vor,
die Aspekte Fairness und Unsicherheit direkt in solche Strategien zu integrie-
ren. Anschließend untersuchen wir die komplexe Struktur der logistischen
Anwendungsfälle VRP und Fachbodenregallager und identifizieren ihre Struk-
tur bestehend aus Systemen von Systemen (engl. System-of-Systems). Wir
entwerfen einen zweistufigen Ansatz für vertikale oder verschachtelte Systeme
und schlagen vor, die Auswirkungen der Verflechtung horizontaler oder ko-
existierender Systeme zu berücksichtigen. Im Einzelnen fassen wir die sechs
Hauptbeiträge dieser Arbeit wie folgt zusammen:

• Zu Beginn analysieren wir die spezifischen Merkmale von Anpassungs-
planungsstrategien mit besonderem Augenmerk auf ITS und Logistik.
Wir verwenden Platooning und Routenplanung in hochdynamischen
Umgebungen als Repräsentanten für ITS und rVRP sowie Fachboden-
regallager als Vertreter der Logistikdomäne. Anhand dieser Fallstudien
leiten wir die Notwendigkeit einer situationsgerechten Optimierung von
Anpassungsplanungsstrategien ab und argumentieren, dass Fairness ein
wichtiger Aspekt bei der Anwendung dieser Strategien in ITS ist. Im Be-
reich der Logistik erörtern wir, dass diese komplexen Systeme als System
von Systemen betrachtet werden können und dass diese Struktur die
Leistung der einzelnen Teilsysteme beeinflusst. Daher argumentieren wir,
dass die Berücksichtigung dieser Merkmale ein entscheidender Faktor
für den Erfolg des Gesamtsystems ist.

• Zweitens entwerfen wir ein sich seiner selbst bewusstes Rahmenwerk zur
Optimierung von Anpassungsplanungsstrategien. Wir abstrahieren den
Rahmen für dieOptimierung der Strategien auf eine dritte Ebene oberhalb
des Anwendungsfalls und seinem Anpassungsplanungssystems, was die
Übertragung der Konzepte auf eine Vielzahl von Anwendungsfällen er-

xi

möglicht. Darüber hinaus schlagen wir ein Domänendatenmodell (engl.
DDM) für die Konfiguration des Rahmenwerks vor, so dass derAnwender
durch die Definition von verfügbaren Anpassungsplanungsstrategien,
der zu optimierenden Parameter und der Leistungsmaße das Rahmen-
werk individuell anwenden kann. Der Rahmen besteht aus vier Kompo-
nenten: (i) Koordination, (ii) Situationserkennung, (iii) Strategieauswahl,
und (iv) Parameteroptimierung.Während die Koordinationskomponente
Beobachtungen empfängt und die anderen Komponenten aufruft, wendet
die Situationserkennung Regeln oder Clustering-Techniken an, um die
aktuelle Situation zu identifizieren. Die Strategieauswahl nutzt dieses
Wissen, um die vielversprechendste Strategie für die aktuelle Situation
auszuwählen, und die Parameteroptimierung wiederum wendet Opti-
mierungsalgorithmen an, um die Parameter der Strategie einzustellen.
Darüber hinaus wenden wir die Konzepte aus dem Bereich des SeAC
an und integrieren Schlussfolgerungs- und Lernprozesse, um eine kon-
tinuierliche Weiterentwicklung des Rahmenwerks zu ermöglichen. Wir
evaluieren unser Rahmenwerk anhand des Anwendungsfalls Platooning
und wählen dynamisch Platooning-Koordinationsstrategien aus und op-
timieren deren Parameterbelegung. Unsere Evaluation zeigt, dass das
Rahmenwerk in der Lage ist, die am besten geeignete Anpassungsstrate-
gie auszuwählen und das situative Verhalten des Systems zu erlernen.

• Drittens argumentieren wir, dass der Aspekt Fairness am besten direkt
in den Strategien berücksichtigt werden sollte. Daher schlagen wir eine
Reihe von Fairness-Mechanismen vor, um positive und negative Aus-
wirkungen des Platooning zwischen allen Teilnehmern eines Platoons
auszugleichen. Wir entwerfen sechs Mechanismen zur Rotation der Fahr-
zeugreihenfolge im Platoon, die die Führungsposition unter allen Teil-
nehmern kontinuierlich wechseln, da dies die Position mit den geringsten
positiven Auswirkungen ist. Wir analysieren diese Strategien auf Straßen
unterschiedlicher Größe sowie mit unterschiedlichem Verkehrsaufkom-
men und zeigen, dass auch diese Mechanismen mit Bedacht gewählt
werden sollten.

• Viertens befassen wir uns mit Unsicherheit und schlagen eine Metho-
dik vor, um Unsicherheit zu berücksichtigen und sie auch direkt in den
Anpassungsplanungsstrategien zu behandeln. Wir befassen uns mit der
optimierten Auswahl von Tankstellen entlang einer Route, die mit hoch-
dynamischen Treibstoffpreisen einhergeht, und entwickeln sechs Nut-
zenfunktionen, welche verschiedene Aspekte der Routenplanung berück-

xii

sichtigen. Darüber hinaus integrieren wir Unsicherheitsmaße für dynami-
sche Kraftstoffpreise, indem wir Strafen für längere Fahrtzeiten oder eine
größere Entfernung zur nächsten Tankstelle hinzufügen. Durch diesen
Ansatz sind wir in der Lage, die Unsicherheit zum Planungszeitpunkt zu
reduzieren und erhalten so eine robustere Routenplanung.

• Fünftens erforschen wir die Optimierung von verschachtelten System
von Systemen für den Anwendungsfall rVRP. Bevor wir einen Ansatz
zur Bewältigung der komplexen Struktur des Problems vorschlagen, ana-
lysieren wir wichtige Einschränkungen und Ziele, die bei der Erstellung
eines realen rVRP berücksichtigt werden sollten. Dann schlagenwir einen
zweistufigen Arbeitsablauf (engl. Workflow) vor, mit dem beide Systeme
individuell, flexibel und austauschbar optimiert werden können. Wir
wenden einen genetischen Algorithmus (engl. GA) und einen Amei-
senalgorithmus (engl. ACO) auf beide Systeme an und vergleichen die
Leistung unseres Arbeitsablaufs mit weit verbreiteten Optimierungsalgo-
rithmen für diesen Anwendungsfall. In unserer Bewertung zeigen wir,
dass der vorgeschlagene zweistufige Arbeitsablauf in der Lage ist, die
komplexe Struktur der Problemstellung zu bewältigen und alle realitäts-
nahen Einschränkungen und Ziele zu berücksichtigen.

• Schließlich untersuchen wir koexistierende Systeme von Systemen, in-
dem wir typische Prozesse in Fachbodenregallager optimieren. Zunächst
definieren wir, welche ergonomischen und wirtschaftlichen Randbedin-
gungen sowie Ziele bei der Erstellung eines realen Problems berück-
sichtigt werden müssen. Dann analysieren wir die Wechselbeziehung
zwischen Lagerzuordnungs- und Kommissionierproblemen und zeigen
Möglichkeiten auf, Optimierungsansätze zu entwerfen, die alle Ziele
optimieren sowie eine gute Gesamtsystemleistung anstreben, während
gleichzeitig die gegenseitige Abhängigkeit beider Systeme berücksich-
tigt wird. Wir verwenden NSGA-II für die Lagerbelegung und ACO für
die Kommissionierung und passen beide an die spezifischen Anforde-
rungen horizontaler Systeme von Systemen an. In unserer Evaluierung
vergleichen wir unsere Ansätze mit State-of-the-Art-Ansätzen in Fachbo-
denregallagern und zeigen, dass die von uns vorgeschlagenen Ansätze
die Systemleistung erhöhen.

Die von uns vorgeschlagenenAnsätze liefern sowohl für die akademische For-
schung, als auch für praktische Anwendungen wichtige Beiträge. Wir sind, un-
seresWissens nach, die Ersten, die ein sich seiner Selbst bewusstes Rahmenwerk

xiii

zurOptimierung vonAnpassungsplanungsstrategien entwerfen, das Situations-
bewusstsein, Algorithmenauswahl, Parameteroptimierung sowie Lernen und
Schlussfolgern integriert. Unsere Evaluierung der Platooning-Koordination
zeigt vielversprechende Ergebnisse für die Anwendung des Rahmenwerks,
da es in der Lage ist, die am besten geeignete Anpassungsplanungsstrategie
auszuwählen und situatives Verhalten zu erlernen. Darüber hinaus stellen die
von uns vorgeschlagenen Strategien zur Kompensation negativer Auswirkun-
gen des Platooning einen wichtigen Meilenstein für die weitere Forschung im
Bereich der Platooning-Koordination dar, was zu einer höheren Akzeptanz in
der Gesellschaft und einer wahrscheinlicheren Übernahme der Technologie
in der realen Welt führen könnte. Die vorgeschlagene Methodik und die Nut-
zenfunktionen, die sich mit Unsicherheit befassen, sind ein wichtiger Schritt
zur Verbesserung der Fähigkeiten von SAS in einer zunehmend turbulenten
Umgebung. In ähnlicher Weise sind unsere Beiträge zur Optimierung von
Systemen bestehend aus weiteren Systemen wichtige Beiträge zum Stand der
Logistik- und System-of-System-Forschung. Schlussendlich haben wir für die
Anwendung unserer Ansätze reale Anwendungsfälle ausgewählt und mit In-
dustriepartnern zusammengearbeitet, was die praktische Relevanz unserer
Beiträge unterstreicht. Die Reduzierung des manuellen Aufwands und des
erforderlichen Expertenwissens in unserem selbstlernenden Rahmenwerk ist
ein Meilenstein in der Überbrückung der Kluft zwischen Wissenschaft und
Praxis. Einer unserer Partner hat den zweistufigen Ansatz zur Bewältigung
des rVRP bereits in sein Softwaresystem integriert, was sowohl die Zeit zur
Lösungsfindung als auch die Lösungsqualität verbessert. Zusammenfassend
führten die Beiträge dieser Arbeit zu weiteren Forschungsprojekten, zum Bei-
spiel einem Industrie-Projekt zur Optimierung von Paketzustellungen gefördert
vom Bayerischer Verbundforschungsprogramm (BayVFP) - Digitalisierung, sowie
weiteren Kooperationen, die vielversprechende Perspektiven für die künftige
Forschung eröffnen.

xiv

Acknowledgements

This thesis would not have been possible without the inspiration, support, and
guidance of a significant number of people. I want to thank every one of them.

First of all, I would like to thank Prof. Dr.-Ing. Samuel Kounev, who inspired
me to start my Ph.D. I am grateful for the opportunity to be part of his Descartes
Research Group, for his constant trust and support, as well as the freedom to
pursue my interests. I would also like to thank Prof. Dr.-Ing. Sven Tomforde
for being my second reviewer and for his openness to all my questions.
I would like to thank my former and current colleagues with whom I had

the pleasure of working with throughout the years, namely Dr. Simon Spinner,
Dr. Nikolas Herbst, Dr. Jürgen Walter, Dr. Jóakim von Kistowski, Dr. Lukas
Iffländer, Dr. André Bauer, Dr. Marwin Züfle, Dr. Johannes Grohmann, Dr. Nor-
bert Schmitt, Lukas Beierlieb, Vanessa Borst, Bohdan Dovhan, Simon Eismann,
Marius Hadry, Stefan Herrnleben, Dennis Kaiser, Robert Leppich, Maximilian
Meißner, Thomas Prantl, Maximilian Schwinger, Florian Spieß, and Martin
Sträßer. Additionally, I would like to thank all my student and research assis-
tants who supported my research in diverse work-packages. Further, I would
like to thank Susanne Stenglin, Erika Littmann, and Fritz Kleemann for their
administrative support at the Chair of Computer Science II.
Especially, I would like to thank Jun.-Prof. Dr. Christian Krupitzer for join-

ing the Descartes Research Group as Post-Doc, for always having an open ear,
understanding, and good advices for me. Through his support I have made
it through the difficult times of the Ph.D. for which I am very grateful. Fur-
ther, I would like to express my special thanks to my dearest colleagues and
friends Dr. Marwin Züfle and Stefan Herrnleben, who have accompanied and
supported me since the beginning of my computer science studies. You have
enriched my studies and Ph.D. time as best friends and gave me the confidence
and courage to pursue my goals. Last, I would like to thank my colleagues
from the Kaffeekränzchen group. Together we have spent difficult times of the
pandemic with many hours of laughter and fruitful discussions.

Further, I would like to thank all of my co-authors that are not part of the
Descartes ResearchGroup, of which I can only name a few: Prof. Dr.-Ing. Sergio
Montenegro, Prof. Dr. Christian Becker, Prof. Dr. Michele Segata, Jun.-Prof.
Dr. Anthony Stein, Martin Breitbach, Johannes Hefter, Elia Henrichs, Nico Keil,

xv

Maximilian König, Tanja Noack, and Kevin Stubenrauch. Additionally, I would
also like to thank all my industry partners for the good cooperation as well as
the insights into practice that were granted.

I would like to thank my family for always being there for me. To my parents
Frank and Gudrun for givingme the opportunity to followmy path and achieve
my dreams. To my sister Elisabeth for always believing in me.

Last but not least, to the love of my life Tobias for your unconditional love, for
being my inspiration, for the heated while fruitful discussions, and for always
being by my side. Without you by my side, I would not be in this place today.

xvi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement and Shortcomings of Existing Approaches . 4
1.3 Research Questions . 7
1.4 Contributions . 9
1.5 Outline . 13

I Foundations 15

2 Self-aware Computing 17

3 Optimization 19
3.1 Optimization Problems . 19
3.2 Multi-objective Optimization . 20
3.3 Quality Indicators for Multi-objective Optimization 21
3.4 Optimization Algorithms . 23

4 Intelligent Transportation Systems 27
4.1 Platooning . 29

4.1.1 Levels of Platooning . 29
4.1.2 Platooning Control . 30

4.2 Platooning Coordination . 34
4.2.1 Taxonomy . 34
4.2.2 Concept . 37
4.2.3 Strategy . 43

4.3 Platooning Coordination Simulation 46

5 Logistics 49
5.1 Traveling Salesman Problem . 50
5.2 Vehicle Routing Problem . 50
5.3 Mezzanine Warehouses . 52

5.3.1 Warehouse Layout . 52
5.3.2 Storage Assignment . 54

xvii

Contents

5.3.3 Order Picking . 56

6 Selected Motivating Scenarios 59
6.1 Intelligent Transportation Systems 60

6.1.1 Situation-dependency . 60
6.1.2 Fairness . 66
6.1.3 Uncertainty . 71

6.2 Logistics . 73
6.2.1 Storage Assignment and Order Picking 74
6.2.2 Vehicle Routing Problem 76

6.3 Summary . 78

II Self-aware Optimization 79

7 Self-aware Optimization Framework 81
7.1 Assumptions . 83
7.2 Terminology . 84
7.3 System Model . 86
7.4 LRA-M Loop Adoption . 88
7.5 Framework Composition . 90

7.5.1 Coordination . 94
7.5.2 Domain Data Model . 98
7.5.3 Situation Detection . 103
7.5.4 Strategy Selection . 107
7.5.5 Parameter Optimization 110

7.6 Use Case-specific Adapter of the Framework 112
7.7 Fairness-Ensuring Adaptation Planning Strategies 113

7.7.1 Drafting a Single Vehicle to the Front (DtF) 115
7.7.2 Drafting a Single Vehicle to the Back (DtB) 115
7.7.3 Belgian Tourniquet (BT) 116
7.7.4 Belgian Tourniquet Jump-start (BTJS) 117
7.7.5 Reversed Belgian Tourniquet (RBT) 117
7.7.6 Reversed Belgian Tourniquet Jump-start (RBTJS) 118

7.8 Addressing Uncertainty in Adaptation Planning Strategies . . . 119
7.8.1 CostSAVeR . 120
7.8.2 Utility Functions . 122

7.9 Summary . 125

xviii

Contents

8 Optimization of Vertical Systems-of-Systems 127
8.1 Problem Statement . 129
8.2 Approach . 131

8.2.1 Two-staged Strategy . 131
8.2.2 Cost Function . 132
8.2.3 Timeline Algorithm . 134

8.3 Genetic Algorithm . 136
8.3.1 VRP-stage . 136
8.3.2 TSP-stage . 139

8.4 Ant Colony Optimization . 141
8.4.1 VRP-stage . 142
8.4.2 TSP-stage . 145

8.5 Summary . 146

9 Optimization of Horizontal Systems-of-Systems 147
9.1 Meta-Model of Considered Mezzanine Warehouses 148
9.2 Storage Assignment . 152

9.2.1 Constraints and Assumptions 152
9.2.2 3-Phase Storage Assignment Algorithm 153

9.3 Genetic Algorithm for Storage Assignment 154
9.3.1 Chromosome Encoding 154
9.3.2 Objective Functions . 154
9.3.3 Genetic Operators . 161
9.3.4 NSGA-II Algorithm . 163

9.4 Order Picking . 164
9.4.1 Constraints . 165
9.4.2 Graph Representation . 166
9.4.3 Pick Route Construction 167
9.4.4 Heuristic Function . 168
9.4.5 Objective Functions . 168
9.4.6 ACO Algorithm Procedure 169
9.4.7 ACO3 Variant . 171
9.4.8 ACO4 Variant . 172

9.5 Summary . 173

III Evaluation 175

10 Self-aware Optimization Framework 177
10.1 Methodology . 177

xix

Contents

10.2 Evaluation of the Situation Detection Component 182
10.3 Evaluation of the Strategy Selection Component 184
10.4 Evaluation of the Parameter Optimization Component 188
10.5 Evaluation of the Entire Framework 190
10.6 Threats to Validity . 193
10.7 Summary . 194

11 Vertical Systems-of-Systems Workflow 195
11.1 Problem Instances . 195
11.2 Alternative Algorithms for Comparison 197
11.3 Evaluation Procedure . 199
11.4 Results and Interpretation . 200

11.4.1 TSP-I . 201
11.4.2 TSP-II . 204
11.4.3 TSP-II-P . 206
11.4.4 VRP-I . 208
11.4.5 VRP-I-P . 210
11.4.6 VRP-II . 212
11.4.7 TSP-PD . 213
11.4.8 VRP-PD . 215

11.5 Threats to Validity . 216
11.6 Summary . 217

12 Horizontal Systems-of-Systems Approach 219
12.1 Mezzanine Warehouse Models 219
12.2 Alternative Strategies . 221
12.3 Algorithm Parameter Settings . 222
12.4 Evaluation of the Storage Assignment Approach 223
12.5 Evaluation of the Order Picking Approach 228
12.6 Evaluation of Interacting Processes in Mezzanine Warehouses . 230

12.6.1 Storage Assignment Approaches combined with ACO3 . 233
12.6.2 Storage Assignment Approaches combined with ACO4 . 234
12.6.3 Order Picking Approaches combined with NSGA-II . . . 236

12.7 Threats to Validity . 239
12.8 Summary . 240

xx

Contents

IV Conclusions 241

13 Related Work 243
13.1 Self-aware Optimization Framework 243
13.2 Systems-of-Systems Integration 249
13.3 Optimization of the Rich Vehicle Routing Problem 251
13.4 Optimization of Warehouse Processes 254

14 Conclusion 257

15 Outlook 261

Appendices 265

A Appendix 267
A.1 Full Specification of the Domain Data Model of the Self-Aware

Optimization Framework . 267

List of Figures 271

List of Tables 274

Acronyms 277

Bibliography 281

xxi

Publication List

Peer-Reviewed Journal Articles

[LKK+21a] Tackling the Rich Vehicle Routing Problem with Nature-Inspired
Algorithms; Veronika Lesch, Maximilian König, Samuel Kounev, Anthony
Stein, Christian Krupitzer; in Applied Intelligence; Springer; 2021; Accepted -
In Press, Impact Factor (2020): 5.086.

[LBS+21] An Overview on Approaches for Coordination of Platoons; Veronika
Lesch, Martin Breitbach, Michele Segata, Christian Becker, Samuel Kounev,
Christian Krupitzer; in IEEE Transactions on Intelligent Transportation Sys-
tems; 2021; Impact Factor (2020): 6.492.

[LKS+21] A Comparison of Mechanisms for Compensating Negative Impacts
of System Integration; Veronika Lesch, Christian Krupitzer, Kevin Stubenrauch,
Nico Keil, Christian Becker, Samuel Kounev, Michele Segata; in Future Genera-
tion Computer Systems (2021); 116 117–131. Impact Factor (2020): 7.187.

[ZML+21] A Machine Learning-based Workflow for Automatic Detection of
Anomalies in Machine Tools; Marwin Züfle, Felix Moog, Veronika Lesch, Chris-
tian Krupitzer, Samuel Kounev; in ISA Transactions; Elsevier; 2021; Impact
Factor (2020): 5.468.

[KLR+20] Towards Self-Aware Multirotor Formations; Dennis Kaiser, Veronika
Lesch, Julian Rothe, Michael Strohmeier, Florian Spiess, Christian Krupitzer,
Sergio Montenegro, Samuel Kounev; in Computers (2020); 9(7).

Journal Articles Under Review or in Preparation

[LHKK21c] A Self-Aware Optimization Framework for Adaptation Planning
Strategies; Veronika Lesch, Marius Hadry, Christian Krupitzer, Samuel Kounev;
in ACM TAAS; 2021 Under Review, Impact Factor (2022): 2.47.

xxiii

Contents

[LMK+21a] Optimizing Storage Assignment, Order Picking, and their Interac-
tion in Mezzanine Warehouses; Veronika Lesch, Patrick B. M. Müller, Moritz
Krämer, Samuel Kounev, Christian Krupitzer; in Applied Intelligence; Springer;
2021; Under Review, Impact Factor (2020): 5.086.

[HLS+21] A Literature Review on Optimization Techniques for Adaptation
Planning in Adaptive Systems: State of the Art and Research Directions; Elia
Henrichs, Veronika Lesch,Martin Straesser, SamuelKounev, ChristianKrupitzer;
in Information and Software Technology; Elsevier; 2021;Under Review (Minor
Revision), Impact Factor (2020): 2.73.

Peer-Reviewed Conference Papers

[LNH+21] Towards Situation-Aware Meta-Optimization of Adaptation Plan-
ning Strategies; Veronika Lesch, Tanja Noack, Johannes Hefter, Samuel Kounev,
Christian Krupitzer; Proceedings of the 2nd IEEE International Conference on
Autonomic Computing and Self-Organizing Systems (ACSOS 2021) Best Paper
Candidate.

[LBHK18] FOX: Cost-Awareness for Autonomic Resource Management in Pub-
lic Clouds; Veronika Lesch, André Bauer, Nikolas Herbst, Samuel Kounev; in
Proceedings of the 9th ACM/SPEC International Conference on Performance
Engineering (ICPE 2018) (2018).

[HLL+21] ComBench: A Benchmarking Framework for Publish/Subscribe
Communication Protocols under Network Limitations; StefanHerrnleben, Max-
imilian Leidinger, Veronika Lesch, Thomas Prantl, Johannes Grohmann, Chris-
tian Krupitzer, Samuel Kounev; in Proceedings of the 14th EAI International
Conference on Performance Evaluation Methodologies and Tools (VALUE-
TOOLS); 2021.

[HGR+21] A Simulation-based Optimization Framework for Online Adap-
tation of Networks; Stefan Herrnleben, Johannes Grohmann, Pitor Rygielski,
Veronika Lesch, Christian Krupitzer, Samuel Kounev; in Proceedings of the
12th EAI International Conference on Simulation Tools and Techniques (SIMU-
tools), H. Song, D. Jiang (Hrsg.) (2021); 513–532.

xxiv

Contents

[ISR+19] Performance Oriented Dynamic Bypassing for Intrusion Detection
Systems; Lukas Iffländer, Jonathan Stoll, Nishant Rawtani, Veronika Lesch,
Klaus-Dieter Lange, Samuel Kounev; in Proceedings of the 2019 ACM/SPEC
International Conference on Performance Engineering (2019); 159–166.

[BLV+19] Chamulteon: Coordinated Auto-Scaling of Micro-Services; André
Bauer, Veronika Lesch, Laurens Versluis, Alexey Ilyushkin, Nikolas Herbst,
Samuel Kounev; in Proceedings of the 39th IEEE International Conference on
Distributed Computing Systems (ICDCS) (2019).

[ZBL+19] Autonomic Forecasting Method Selection: Examination and Ways
Ahead; Marwin Züfle, André Bauer, Veronika Lesch, Christian Krupitzer, Niko-
las Herbst, Samuel Kounev, Valentin Curtef; in Proceedings of the 16th IEEE
International Conference on Autonomic Computing (ICAC) (2019).

Peer-Reviewed Workshop Papers

[LHKK21b] Utility-based Vehicle Routing Integrating User Preferences; Vero-
nika Lesch, Marius Hadry, Samuel Kounev, Christian Krupitzer; in Proceedings
of 3rd International Workshop on Pervasive Computing for Vehicular Systems
(PerVehicle), 2021 (2021).

[LKT19b] Multi-objective Optimisation in Hybrid Collaborating Adaptive Sys-
tems; Veronika Lesch, Christian Krupitzer, Sven Tomforde; in Proceedings
of the 7th edition in the Series on Autonomously Learning and Optimising
Systems (SAOS), co-located with 32nd GI/ITG ARCS 2019 (2019).

[LKT19a] Emerging Self-Integration through Coordination of Autonomous
Adaptive Systems; Veronika Lesch, Christian Krupitzer, Sven Tomforde; in
Proceedings of the 4th IEEE International Workshops on Foundations and
Applications of Self* Systems, FAS*W@ICAC/SASO 2019 (2019).

[KLP+19] A Modular Simulation Framework for Analyzing Platooning Coor-
dination; Christian Krupitzer, Veronika Lesch, Martin Pfannemüller, Christian
Becker, Michele Segata; in Proceedings of the 1st ACM Workshop on Tech-
nologies, mOdels, and Protocols for Cooperative Connected Cars (TOP-Cars),
Colocated with ACMMobiHoc 2019 (2019).

xxv

Contents

Book Chapters

[Les20] Toward a Framework for Self-Learning Adaptation Planning through
Optimization; Veronika Lesch; in Organic Computing: Doctoral Dissertation
Colloquium 2020 (2020).

Technical Reports

[LKK+21b] A Case Study of Vehicle Route Optimization; Veronika Lesch,
Maximilian König, Samuel Kounev, Anthony Stein, Christian Krupitzer; (2021).

[LHKK21a] A Case Study on Optimization of Platooning Coordination; Vero-
nika Lesch, Marius Hadry, Samuel Kounev, Christian Krupitzer; (2021).

[LMK+21b] A Case Study on Optimization of Warehouses; Veronika Lesch,
Patrick B. M. Müller, Moritz Krämer, Samuel Kounev, Christian Krupitzer;
(2021).

[KML+20] A Survey on Human Machine Interaction in Industry 4.0. Christian
Krupitzer, Sebastian Müller, Veronika Lesch, Marwin Züfle, Janick Edinger,
Alexander Lemken, Dominik Schäfer, Samuel Kounev, Christian Becker; (2020).

[KWZ+20] A Survey on Predictive Maintenance for Industry 4.0. Christian
Krupitzer, TimWagenhals, Marwin Züfle, Veronika Lesch, Dominik Schäfer,
Amin Mozaffarin, Janick Edinger, Christian Becker, Samuel Kounev; (2020).

xxvi

Chapter 1

Introduction

The introduction of this thesis motivates the research field addressed and in-
troduces the three use cases from the domains of Intelligent Transportation
Systems (ITS) and logistics as well as describes how Self-adaptive Systems
(SASs) can be used in this context. It discusses shortcomings of existing ap-
proaches, and summarizes the problem statement. Then, it defines the research
goals and research questions and presents the contributions of the thesis.

1.1 Motivation

In a world as dynamic as we find it today, where circumstances, processes,
and requirements for systems—in this thesis a special focus is given to Cyber-
Physical Systems (CPSs)1—are becoming increasingly complex, the challenges
for these systems to be able towork in dynamic environments are also increasing.
One of the most critical challenge for these systems is to analyze their envi-
ronment and to adapt to changes accordingly. The SAS [CdLG+09,KRV+15]
research area attempts to address this challenge. SASs can change their behav-
ior and deal with changes in their environment and the system itself [Les20].
The trend towards SAS has given rise to several research communities, such
as Organic Computing (OC) [MST17], Autonomic Computing (AC) [KC03],
and Self-aware Computing (SeAC) [KLB+17]. OC, for example, envisions
to “enable future [Information and Communications Technology (ICT)] sys-
tems to carry out certain tasks on their own” [MST17, p.6] and thereby to “be
able to adapt reasonably to changing requirements of their operating environ-
ment” [MST17, p.6]. This definition implies that OC systems are trying to shift

1We define CPSs as follows: CPSs are systems consisting of tightly integrated physical and
cyber components interconnected through one or more networks. The cyber components consist
of computing and communication facilities (local or remote, e.g., embedded systems or cloud
services) used for monitoring, automating and controlling physical systems and processes. CPSs
are normally based on complex feedback and control loops, where the physical components
affect the cyber components and vice versa.

1

Chapter 1: Introduction

design time decisions to run time, putting the systems themselves in charge.
Similar ideas drive the SAS and SeAC communities, as well as several further
research directions. Most of these systems incorporate control loop mecha-
nisms that allow one to react to changes in the environment or the system itself
and adapt the behavior of the system accordingly. An example of a specific
control loop concept from the SAS community is the Monitor Analyze Plan Ex-
ecute Knowledge Control Loop (MAPE-K Control Loop) [KC03], while the OC
and SeAC community introduced the Observer/Controller concept [TPB+11]
and the Learn-Reason-Act-Model Loop (LRA-M Loop) [KLB+17], respectively.
Since all of these concepts target similar goals, most of them can be transferred
into each other [LKT19b].
In our daily lives, we are constantly in contact with SAS that aim to sup-

port and improve our way of life without us directly noticing it. Two example
domains that directly influence our life are ITS and logistics that both are mean-
ingful domains for the application of SAS and experience an increasing interest
in the research community [GP19, JCS+19,BGT+19,MKPG19,SLHB21, JCS+19,
FVDW21, BBD+21]. Hence, both domains provide complex and adaptable
use cases to prototypical apply the contributions of this thesis. However, the
contributions are not limited to these areas and can be generalized also to other
domains such as the general area of CPSs and Internet of Things (IoT)2 includ-
ing smart grids or even intelligent computer networks. ITS encompasses all
technological advances associated with sensors, communication and control
of road traffic and transportation [Sus08], whereas we consider technological
advances in logistics related to the processes for the efficient and effective trans-
portation and storage of goods [oSCMP13]. For example, the first electric traffic
signals in the domain of ITS is one use case for SASs that has led to the develop-
ment of real-time traffic control in urban areas [XSBC14]. Another promising
example use case in the domain of ITS is platooning, which targets addressing
the challenge of rising infrastructure needs due to the constantly increasing
traffic on roads. In Germany, for example, an increase in the total vehicle stock
of about one million vehicles is observed from 2018 to 2019 [bus]. Authorities
are trying to address the rising infrastructure demands by expanding the road
network, but this leads to increased costs [FJM+01] as well as critical issues
for the environment and climate change. The demands on the infrastructure
can be reduced through platooning, which is the ability of vehicles to travel
with very close inter-vehicle distances, enabled by communication [RCC10].

2We define IoT as follows: The IoT consists of physical entities (things) that were not
originally intended for communication with each other and with the environment. In IoT,
these things are able to identify themselves, communicate, and interact via a network, based on
Internet technologies. They can act depending on external triggers or local logic.

2

1.1 Motivation

The use of platooning increases road throughput [Ala11], safety [RCC10] as
well as reduces emissions and, hence, provides the possibility to reduce the
environmental footprint [PD21]. While the feasibility of platooning has been
demonstrated in diverse projects, the problem of platooning coordination still
exists. Platooning coordination is the process of assigning vehicles to platoons
and controlling the platooning activities. The platooning coordination problem
is a multi-objective problem with several dimensions, such as objectives of the
drivers, aspects of the platoon, and global traffic situation [SKSB21]. Further,
fairness between participants must be ensured as the leading vehicle benefits
less from slipstream effects [LKS+21]. Platoons are usually coordinated us-
ing platooning coordination strategies implemented as part of a platooning
coordination system. The latter is an example of SASs in the domain of ITS, as
the coordination strategies can be considered as adaptation planning strategies
that adapt the platoons, which together with the coordination system can be
seen as comprising a CPS. We use platooning coordination as example for a
prototypical case study to validate our contributions as it is a complex system,
which consists of a set of autonomous entities that have individual objectives
and requirements, and the application of SAS is particularly useful [LKT19b].
Still, the contributions of this thesis can also be applied to other use cases from
the ITS domain for which the application of SAS appears meaningful. Further,
the contributions can be generalized and applied also in other domains to
which the application of SAS are meaningful such as in the management and
control of smart grids.

Besides the prototypical application of SASs in the ITS domain, its concepts
can be found in a variety of domains from which we focus on the logistics do-
main as it lately experiences an increased research interest [JCS+19,FVDW21,
BBD+21]. This domain also provides complex use cases that can be enhanced
using SAS concepts. Similarly, use cases from the logistics domain serve as a
prototype to apply the proposed contributions of this thesis which can also
be applied in other domains such as intelligent computer networks. An ex-
ample in the logistics domain is the Vehicle Routing Problem (VRP), which
deals with the planning of tours of road freight transport [LKK+21a], while
the Rich Vehicle Routing Problem (rVRP) addresses a variety of constraints
to model a real-world problem. Over the past two decades, the demand for
road freight transport has increased worldwide; in Germany, for example, it
has increased by 150 billion ton kilometers to about 500 billion ton kilome-
ters [Kor21]. Developments such as increased just-in-time production and
online shopping (especially during the Covid-19 pandemic) will further push
these numbers up in the coming years. To handle such a transport volume,

3

Chapter 1: Introduction

efficient and correct route planning for transports is important. Therefore, fast
and reliable solutions to the rVRP are required, which are difficult to compute
as it is an NP-complete problem. A second example from the field of logistics
is warehousing [LMK+21a]. Warehouses play a central role in a company’s
supply chain and contribute to its logistical success. When humans are involved
in warehousing, a distinction is made between picker-to-parts and parts-to-
picker methods [DK07]. Experts estimate the picker-to-parts system to be the
most widespread in Western Europe, accounting for over 80% [DKLDR07]. A
well-known picker-to-parts system is the mezzanine warehouse. The work in a
mezzanine warehouse consists of twomain tasks: (i) filling the warehouse with
goods (storage assignment) and (ii) picking items from the warehouse (order
picking). Due to the NP-hardness and, thus, the complexity of the storage as-
signment and the order picking problem, efficient optimization algorithms are
required to find adequate solutions in acceptable times. The two examples rVRP
and mezzanine warehouses have in common that optimization algorithms are
usually used to find solutions. In the context of SAS, these algorithms can also be
considered as adaptation planning strategies. They optimize the tours, storage
assignment, and order picking paths, and they usually have to handle changing
demands, added orders, or changing environmental parameters. When using
anytime optimization algorithms, such changes can be integrated at run time
adapting the solutions accordingly. Therefore, optimization algorithms can be
considered as adaptation planning strategies. Still, the contributions of this
thesis can also be applied to other use cases from the logistics domain for which
the application of SASs appears meaningful. Further, the contributions can be
generalized and applied also in other domains to which the application of SASs
are meaningful such as, for example, in the packet routing within intelligent
computer networks.

1.2 Problem Statement and Shortcomings of Existing
Approaches

In line with the No-Free-Lunch theorem [WM97]3, the proper selection of
adaptation planning strategies is a key factor for the success of any SAS, as
the performance of one strategy in a given context may not necessarily be
transferable to other application scenarios. For example, one strategy might

3The No-Free-Lunch theorem states that “if an algorithm does particularly well on average
for one class of problems then it must doworse on average over the remaining problems” [WM97,
p.70]. This indicates that there is no single algorithm that performs best for all class of problems
and, hence, a selection is required to match the algorithm to the problem class.

4

1.2 Problem Statement and Shortcomings of Existing Approaches

work well for platooning coordination in an urban scenario, while another
strategy might work better in a highway scenario. In the year 1976, John R.
Rice defined the algorithm selection problem, which involves finding the best
performing algorithm for a given scenario [Ric76]. From then on, more and
more research was done on algorithm selection, for example, in the field of
machine learning, which describes this problem as a learning problem [SM09].

The idea of automatic algorithm selection has been transferred and
used in a variety of applications, but little research has been done to
generalize the approaches [SM09].

The observation from [FGKV19] that the choice of the strategy for adapta-
tion planning in self-adaptive systems [CdLG+09,KRV+15] depends on the
situation of the system opens up a wide set of applications where such a mech-
anism can be applied. Hence, a selection mechanism for adaptation planning
strategies can be designed to be situation-aware, which turns out to be the
main driver for the development of SASs [CMPPW20]. In the literature, clus-
tering techniques are often applied to identify the current situation [FGKV19].
However, it is not enough to just recognize the situation. It is of utmost impor-
tance to use this knowledge and learn from it. This knowledge can be used
to apply different strategies in different situations or to adjust the parame-
ters of a strategy. Furthermore, it can be used in combination with previous
experiences to learn in which situation which strategy and which parameter
configuration work best. This combined learning and reasoning can be found
in the SeAC research area, which has inspired the algorithms and mechanisms
developed in this thesis. The literature provides diverse approaches to situ-
ation detection [CMPPW20,End17,LKPA15,RRFS07,HS19a,PRF16,KCP20],
algorithm selection [SM09,KHNT19,KT19,KKHT15,BKK+16], and parameter
optimization [NSW+12,FSH15,ZHO+18,CVV13,VCIC15].

However, no approach exists that combines situation detection, algo-
rithm selection, parameter optimization into a learning and reasoning
mechanism that is applicable to various use cases.

Up to this point, only systems as a whole have been considered. However,
there are many systems that consist of several subsystems, which leads to the
research area systems-of-systems or interwoven systems [BTW14]. For exam-
ple the classical VRP specifies the assignment of customer orders to vehicles
and the optimization of their tours [GRW08], commonly referred to as Travel-
ing Salesman Problem (TSP). Hence, it can be classified as vertical or nested
system-of-systems, which refers to a specific class of systems-of-systems. There

5

Chapter 1: Introduction

are a variety of approaches that attempt to solve the VRP but do not consider
two issues: (i) transferability of the solution to real-world applications under
realistic assumptions and (ii) awareness of the system-of-systems structure
of the problem. Regarding the first issue, Tim Pigden stated that the origi-
nal model of the VRP does not match real-world applications since it does
not include concepts of order, separate resources for the driver, tractor, and
trailer [Pig13]. The rVRP extends this classical VRP with additional constraints
required for a real-world application, such as Pickup and Delivery (P&D),
Time Windows (TW), pause times, trailer capacities, and driver assignments.
With respect to the second issue, considering the system-of-systems structure
offers the advantage of designing approaches that take into account mutual
effects of the nested VRP and TSP and adapt the choice of the appropriate
algorithms to the current problem, situation, and objectives. Another example
is the application of optimization algorithms to warehouse processes such as
storage assignment and order picking. Numerous approaches to optimizing
both of these warehouse problems can be found in the literature. Most ap-
proaches usually target one of them. Some works target both problems but
view each problem separately and fail to integrate the interrelation between
them [vGRCdK18]. However, [GGM10] has noted that both problems are
strongly coupled. Therefore, optimizing each warehouse problem separately
can lead to suboptimal solutions. Contrary to the VRP use case, the mezzanine
warehouse use case can be considered as a representative of the horizontal
system-of-systems class. An approach that takes into account this interrelated-
ness could provide various advantages, such as optimizing storage assignment
regarding expected travel time for order picking.

The consideration of both classes of systems-of-systems is a critical
factor for the performance of optimization approaches. These charac-
teristics must be addressed at design time, but should also be taken
into account when improving optimization techniques during lifetime.

In this thesis, we make contributions addressing the above described chal-
lenges We address the problem of self-aware optimization of adaptation plan-
ning strategies by developing a framework that includes situation detection,
strategy selection, and parameter optimization of the selected strategies. The
framework applies concepts from SeAC and is able to learn from previous deci-
sions. To address the systems-of-systems optimization problem, we propose
two approaches for vertical and horizontal systems-of-systems. We apply the
approaches to the platooning use case and the rVRP and mezzanine warehouse
use cases, and we evaluate the positive impact of the contributions.

6

1.3 Research Questions

1.3 Research Questions

Based on the problem statement and shortcomings of existing approaches dis-
cussed above, we now define research goals and research questions. The first
goal addresses the design of a self-aware optimization framework for adap-
tation planning strategies. The second goal focuses on improving the quality
of optimization strategies when applied to complex systems-of-systems. In
addition, we define a set of specific research questions per goal, which we
address in the individual chapters. At the end of each chapter, we summarize
the proposed approach and indicate which research questions were answered.

Goal A: Self-aware optimization of adaptation planning strategies with particular
attention to the field of ITS and logistics.

This goal focuses on the design of a self-aware optimization framework and
the implementation of a prototype concept, which we structure into six research
questions. The first research question is concerned with identifying specific
properties of the strategies under consideration and is answered in Chapter 6.
The next four research question focus on the design of the framework as well
as the consideration of the specific properties of strategies identified in the first
research question, addressed in Chapter 7. The last research question focuses
on the performance evaluation of the framework presented in Chapter 10.

RQ A.1: What are the specific characteristics of adaptation planning strategies
in ITS and logistics?

RQ A.2: How can we design a self-aware optimization framework for adap-
tation planning strategies that reduces the manual effort for algorithm
selection and parameter optimization?

RQ A.3: How can the framework support situation-awareness?

RQ A.4: How to design adaptation planning strategies to support fairness in
systems with autonomous entities focusing on the platooning use case?

RQ A.5: How to address uncertainty in adaptation planning strategies to cope
with dynamics of the environment focusing a route planning use case?

RQ A.6: How does the proposed framework compare to state-of-the-art adap-
tation planning strategies from the ITS domain?

7

Chapter 1: Introduction

Goal B: Improving the quality of optimization strategies in complex systems-of-systems
with a special attention to the field of logistics.

The second goal of this thesis focuses on the optimization of complex systems-
of-systems in the field of logistics. It is divided into twomain research questions,
the first of which addresses the class of vertical system-of-systems applied on
the rVRP use case and the second of which addresses the class of horizontal
system-of-systems applied on the mezzanine warehouse use case. The first
and second subordinate research questions of the first main research question
cover the discussion and integration of constraints and objectives in flexible
optimization workflows for nested systems and are answered in Chapter 6 and
Chapter 8. The third subordinate research question addresses the evaluation
of the proposed approach and is answered in Chapter 11. The first and second
subordinate research questions of the second main research question address
the constraints and objectives as well as the design of optimization procedures
in coexisting systems and are answered in Chapter 6 and Chapter 9. The
third subordinate research question concerns the evaluation of the proposed
approach and is answered in Chapter 12.
RQ B.1: How to optimize nested systems-of-systems considering their interde-

pendence using rVRP as an example?
RQ B1.1: How can real-world constraints and objectives be integrated

into an optimization approach using the example of the rVRP?
RQ B1.2: How can a workflow be designed that enables flexible opti-

mization of nested systems?
RQ B1.3: To what extent do the proposed optimization approaches out-

perform the state-of-the-art in the example use cases VRP and TSP?
RQ B.2: How can coexisting systems-of-systems be optimized considering the

influence of their interaction usingmezzanine warehouses as an example?
RQ B2.1: How can domain constraints be considered in the optimization

of real-world problems consisting of coexisting systems-of-systems
taking the example of mezzanine warehouses into account?

RQ B2.2: How can multi-objective optimization approaches be designed
that aim at good overall system performance rather than optimizing
a single system?

RQ B2.3: Considering existing optimization algorithms for the indepen-
dent systems, to what extent do the proposed approaches improve
the solution quality for horizontal systems-of-systems optimization?

8

1.4 Contributions

1.4 Contributions

This section presents the core contributions of this thesis and maps them to the
research questions in Section 1.3. The first contribution focuses on the analysis
of adaptation planning strategies in the targeted domains.The following three
contributions deal with the design of a self-aware optimization framework and
how to consider the specific characteristics of adaptation planning strategies as
part of it. The last two contributions aim at optimizing problems with a system-
of-system structure including both vertical and horizontal systems-of-systems.

Contribution 1: Analysis of Specific Characteristics of Adaptation Planning
Strategies

This contribution addresses the research question RQ A.1 of Goal A and
is part of our papers [LNH+21,LHKK21b,LKS+21,LKK+21a,LMK+21a].
By conducting a set of case studies in the ITS and logistics domain and
analyzing which specific characteristics are present. For this purpose, we
select platooning and route planning problems in highly dynamic envi-
ronments from the ITS domain and the rVRP and mezzanine warehouse
optimization problem from the logistics domain. Using these case studies,
we derive the need for situation-aware optimization of adaptation plan-
ning strategies and argue that fairness is an important considerationwhen
applying adaptation planning strategies in ITS. We also observe that it is
important to consider uncertainties in the environment when planning
adaptations. Furthermore, we analyze the system-of-systems structure
of the case studies rVRP and mezzanine warehouses and identify the
nested and coexisting system-of-systems structure in these studies.

Contribution 2: Component-based Framework for Self-Aware Optimization
of Adaptation Planning Strategies

This contribution focuses on the research questions RQ A.2, RQ A.3, and
RQ A.6 of Goal A. This contribution is addressed in our papers [Les20,
LHKK21a,LHKK21c]. Here, we propose a novel self-aware optimization
framework for adaptation planning strategies that is designed to be gener-
ically applicable. That is, the framework can be applied to a wide range of
use cases because it abstracts adaptation planning strategy selection and
parameter optimization into a separate layer placed above the application
and the adaptation planning system. We propose a three-layer system
model in which the framework operates in the top layer. The framework

9

Chapter 1: Introduction

offers use case independent interfaces defined by a Domain Data Model
(DDM), which an operator can use to apply the framework by defining
available adaptation planning strategies, parameters to be optimized,
and performance measures. These inputs are then used by the frame-
work to automatically select and optimize adaptation planning strategies.
The framework is composed of four main components: (i) Coordina-
tion, (ii) Situation Detection, (iii) Strategy Selection, and (iv) Parameter
Optimization. While the coordination component receives observations
from the application and triggers the other components, the situation
detection component is responsible for applying a rule base or clustering
techniques to identify the current application situation. The strategy
selection uses the identified situation and combines it with learned best
practices from previous decisions, selecting an adaptation planning strat-
egy that is expected to work best in the current situation. Finally, the
parameter optimization component receives the current and all historic
observations of the identified situation and selected strategy, and it opti-
mizes the parameters of the latter. We evaluate all components and the
overall performance of the framework on the platooning coordination
use case and compare it with state-of-the-art mechanisms.

Contribution 3: Fairness-Ensuring Adaptation Planning Strategies

This contribution focuses on research question RQ A.4 of Goal A and is
addressed in our paper [LKS+21]. The self-aware optimization frame-
work proposed in the previous contribution encompasses the situation-
dependent behavior of adaptation planning strategies and, hence, this
aspect does not need to be addressed separately. However, we propose
fairness-ensuring adaptation planning strategies to address fairness is-
sues at the application level using platooning as example scenario. To
this end, we analyze the uniform distribution of positive and negative ef-
fects for platooning participants and design six different vehicle sequence
rotation strategies for platoons that compensate for these effects.

Contribution 4: Addressing Uncertainty in Adaptation Planning Strategies

This contribution addresses research question RQ A.5 of Goal A and is
part of our paper [LHKK21b]. Similar to the previous contribution, we
propose to address uncertainty explicitly as part of the adaptation plan-
ning strategies using route planning as example scenario. We analyze

10

1.4 Contributions

the existence of uncertainties in a highly dynamic use case by planning
refueling along a route. We propose a methodology to account for this
uncertainty and incorporate uncertainty measures in the utility func-
tions used for fueling planning. Further, we design six utility functions
that consider different aspects of route planning such as the distance,
expected costs, and duration. For two of these functions, we incorporate
uncertainty measures for dynamic fuel prices by adding penalties for
longer travel time or longer distance to the next gas station.

Contribution 5: Optimization of Nested Systems-of-Systems

This contribution addresses research question RQB.1 and its subordinate
research questions of Goal B. This contribution is addressed in our pub-
lications [LKK+21a,LKK+21b]. We explore the optimization of nested
systems-of-systems. We first define our use case rVRP and analyze the
constraints and objectives that must be considered when formulating a
real-world rVRP and how they can be integrated into a solution approach.
Then, we analyze the nested structure of rVRP and design an integrated
workflow that allows for individual but also flexible and interchangeable
optimization of both systems. The workflow consists of two stages and
addresses specific constraints such as time windows and pause times.
We apply a Genetic Algorithm (GA) and an Ant Colony Optimization
(ACO) algorithm to both the VRP and TSP stages and compare their
performance with state-of-the-art algorithms for this use case.

Contribution 6: Optimization of Coexisting Systems-of-Systems

The last contribution addresses the research question RQ B.2 and its
subordinate research questions of Goal B. This contribution is addressed
in our publications [LMK+21a,LMK+21b]. Here, we study coexisting
systems-of-systems and define our use case in mezzanine warehouses. In
this type of warehouses, the processes of storage assignment and order
picking form the two main tasks. We first analyze which ergonomic and
economic constraints and objectives apply for a real-world optimization
problem and how they can be integrated into an optimization approach.
Then, we design an integrated approach that simultaneously optimizes
several ergonomic and economic constraints and aims for a good overall
system performance, taking into account the interdependence of both
systems. For this purpose, we use Non-dominated Sorting Genetic Al-

11

Chapter 1: Introduction

gorithm II (NSGA-II) for storage assignment and ACO for order pick-
ing, and adapting them to the specific requirements of the horizontal
system-of-systems structure. We evaluate the proposed approach against
state-of-the-art approaches for these processes and show the positive
impacts of our integrated approach.

The presented contributions represent an important advance for both the
academic research community and practical applications leading to a major
advancement in the field of SASs and systems-of-systems applied on CPSs. To
the best of our knowledge, we are the first to design a self-aware optimization
framework for adaptation planning strategies integrating situation-awareness,
algorithm selection, parameter tuning, as well as learning and reasoning. The
promising results of the framework, which performs close to the gold standard
in our evaluation, demonstrate the importance of this contribution and offer
new opportunities to address the underlying problems from a software engi-
neering perspective. In addition, our proposed adaptation planning strategies
to compensate negative effects of platooning provide an important contribution
and starting point for further research in platooning coordination, which could
lead to higher acceptance in society and more likely adoption of the technol-
ogy in the real world. Our mechanism and utility functions for coping with
uncertainty are an important step to improving the capabilities of SASs in an
increasingly turbulent environment. Moreover, our contributions to nested
and coexisting systems-of-systems optimization in logistics provide a major
contribution to research and practical applications.

Finally, we select real-world use cases for our approaches and cooperated
with industrial partners, highlighting the practical relevance of our contribu-
tions. Considering real-world use cases and reducing expert knowledge and
manual effort in selecting the most appropriate strategy and its parameters is a
major step in bridging the gap between academia and practice. For example,
our approach on the rVRP is already integrated into our partner’s software and
improves both time to solution and solution quality. In conclusion, the contribu-
tions of this thesis have spawned several research projects such as a long-term
industrial project on optimizing parcel deliveries funded by Bayerisches Ver-
bundforschungsprogramm (BayVFP) – Digitalisierung and further collaborations,
opening up many promising avenues for future research.

12

1.5 Outline

1.5 Outline

The remainder of this thesis is divided into three parts. Part I introduces the
background and foundations necessary to understand this work and is com-
posed of five chapters. Chapter 2 presents the concept of Self-aware Computing
(SeAC), Chapter 3 introduces the field of optimization, Chapter 4 presents
platooning and its coordination as part of ITS, and Chapter 5 introduces foun-
dations of the addressed VRP and mezzanine warehouse problems. Chapter 6
presents selected motivating scenarios and analyzes specific properties of the
addressed use cases. Part II contains three chapters and presents the main
approaches of this work. Chapter 7 presents the concept of a self-aware opti-
mization framework and addresses situation-awareness, fairness, and uncer-
tainty. Chapter 8 proposes a workflow to address vertical systems-of-systems
while Chapter 9 introduces the integrated approach on optimizing horizontal
systems-of-systems. Part III presents the evaluation of the proposed approaches
and consists of three chapters. Chapter 10 evaluates the proposed self-aware
optimization framework on the platooning use case. Chapter 11 analyzes
the workflow on vertical systems-of-systems while Chapter 12 discusses the
approach on horizontal systems-of-systems. Finally, Part IV concludes this
work and is composed of three chapters. Chapter 13 presents related work,
Chapter 14 summarizes the thesis, and Chapter 15 outlines future work.

13

Part I

Foundations

Chapter 2

Self-aware Computing

The SAS [CdLG+09,KRV+15] research area seeks to address challenges that
arise from dynamic environments and changing demands on the system. The
SAS can change their behavior and deal with changes in their environment and
the system itself [Les20]. The trend toward SAShas given rise to several research
communities, such as OC [MST17], AC [KC03], as well as SeAC [KLB+17].
According to [KLB+17, p. 5] SeAC can be defined as follows.

“Self-aware computing systems are computing systems that:

1. learn models capturing knowledge about themselves and their environ-
ment (such as their structure, design, state, possible actions, and runtime
behavior)
2. reason using the models (e.g., predict, analyze, consider, and plan) en-
abling them to act based on their knowledge and reasoning (e.g., explore,
explain, report, suggest, self-adapt, or impact their environment)

in accordance with higher-level goals, which may also be subject to change.”

These systems observe their environment and attempt to learn models about
themselves and the characteristics of the environment. Then, SeAC systems
use these models to reason about their current state and their interaction with
their surroundings to plan adaptation actions aimed at better performance
in the specific environment. Thus, the two major distinctive characteristics
of a SeAC system are learning and reasoning. These processes are executed
continuously, enabling the system to operate in dynamic environments and
adapt to a changing environment without the need for human interaction.

Most of the above mentioned research areas proposedmechanisms or control
loops to react to changes in the environment or the system itself and adapt
the behavior of the system. A representative of the SAS community is the
MAPE-K Control Loop [KC03], while the OC community introduced the Ob-
server/Controller concept [TPB+11]. The SeAC domain defined the LRA-M

17

Chapter 2: Self-aware Computing

Model

Empirical Observations

Learn Reason Act

Actions

Goals

Self

Phenomena

Figure 2.1: Concept of the LRA-M Loop as used by the SeAC research commu-
nity [KLB+17]. The main components of this loop are the Empirical Observations, the
learned Models as well as the ongoing Learn and Reason processes.

Loop [KLB+17]. Since all of these concepts aim at the same vision, most of
them can be transferred into each other [LKT19b]. Figure 2.1 represents the
LRA-M Loop loop as used by the SeAC research community. The system re-
ferred to by the word Self receives higher level goals that guide the direction
of adaptation decisions. The self perceives phenomena such as characteristics
of the environment, as well as information about itself, and stores them in the
component Empirical Observations. This component is updated with each new
observation and serves as data base for the ongoing Learn and Reason processes.
The Learn process attempts to abstract perceived behavior of the environment,
as well as effects of one’s decision on the environment, into models and updates
them as new phenomena are sensed. The Reason process also bases on the
Empirical Observations and aims to analyze the sensed phenomena to explore
and explain its environment. It also plans adaptations of the system, which are
passed to the Act component. This component executes the given Actions to
fulfill planned adaptations.

18

Chapter 3

Optimization

“Optimality is a fundamental principle, establishing natural lows, ruling bio-
logic behaviors, and conducting social activities. Therefore, optimization
started from the earliest stages of human civilization.” [DPW09, p.1539]

Optimization has emerged into an important interdisciplinary research area
including mathematics, computer science, industrial engineering, and manage-
ment science [DPW09]. Optimization can be defined as “the act of obtaining
the best result under given circumstances” [Rao19] with the goal of minimizing
the required effort or maximizing the desired gain. Years of research in this area
have led to various contributions, from the definition of optimization problems
to the design and development of diverse algorithms and the evaluation of
found solutions. The purpose of this chapter is to provide a brief introduction
to the topic of optimization and to point the reader to literature that can be
used for further familiarization. It is based on our publication [LMK+21b].
Therefore, Section 3.1 gives an overview of the formal definition of optimiza-
tion problems, objectives and constraints as well as a classification of these
problems. Furthermore, Section 3.2 summarizes the concepts of multi-objective
optimization and Pareto dominance. Then, Section 3.3 presents quality indica-
tors for assessing solutions of multi-objective optimization problems. Finally,
Section 3.4 categorizes optimization algorithms and presents the approaches
used in this thesis.

3.1 Optimization Problems

Mathematically, an optimization problem can be defined as [Rao19]:

Find X =


x1

x2
...
xn

 which minimizes f(X) (3.1)

19

Chapter 3: Optimization

subject to the constraints

gj(X) ≤ 0, j = 1, 2, . . . ,m (3.2)
lj(X) = 0, j = 1, 2, . . . , p (3.3)

where X is the design vector with n dimensions comprising the variables to
be determined by the optimization process. f(X) is the objective function and
gj(X) and lj(X) are inequality and equality constraints, respectively. Con-
straints limit the range of values to which the design variables can be set, and,
thus, represent functional and other requirements on the solution. Constraints
can be classified into two types: (i) hard constraints and (ii) soft constraints.
While hard constraints must be satisfied to find a feasible solution, the soft
constraints should be satisfied, and any failure to satisfy with this constraint is
penalized in the objective function. A feasible solution is called locally optimal
if the neighborhood of this solutions does not contain solutions with better
objective function values. A feasible solution is called globally optimal if all
possible solutions in the design space achieve lower objective function values.
The goal of optimization processes and optimization algorithms is to find the
globally optimal solution. When the complexity of an optimization problem
does not allow finding the globally optimal solution, an optimization algorithm
returns the best solution found so far. According to [Rao19], optimization
problems can be classified into several categories: based on the existence of
constraints, based on the nature of design variables, based on the physical
structure of the problem, based on the nature of equations involved, based
on the permissible values of the design variables, based on the deterministic
nature of variables, based on the separability of the functions, and based on
the number of objective functions.

3.2 Multi-objective Optimization

When considering optimization problems, multiple and even conflicting objec-
tives must often be considered [NZES05]. Traditionally, these objectives are
integrated into a single objective function by aggregating all objectives with pre-
defined weights or converting them into constraints. According to [NZES05],
this leads to four limitations. First, defining the aggregated objective function
requires a priori knowledge about the importance of each objective. Second,
aggregating the objectives into a single function leads to a single solution. Third,
this leads to the impossibility to balance the objectives in a set of solutions.
Fourth, it is possible that a solution cannot be obtained unless the search space is
convex. Therefore, this process of objective reduction is not feasible for complex

20

3.3 Quality Indicators for Multi-objective Optimization

multi-objective optimization problems, leading to the concept of Pareto fronts.
Pareto optimality theory aims to balance a set of possibly conflicting objectives
to find a number of solutions that perform equally well [WAY+16, p.632]:

“Pareto optimality defines dominance to compare solutions, i.e., a solution A
is said to dominate another solution B, if for all objectives, A is no worse
than B at the same time at least one objective exists that A is better than
B.”

The resulting set of solutions that cannot be dominated by other solutions is
called Pareto front. The set of all non-dominated solutions that exist in a design
space are called optimal Pareto front, while the Pareto front determined by an
optimization algorithm is called computed Pareto Front [WAY+16,NZES05].

3.3 Quality Indicators for Multi-objective Optimization

To assess the quality of a Pareto front, we summarize the following performance
indicators as introduced by [WAY+16]. These metrics use the concept of a
reference Pareto front (PFref) or an optimal Pareto front. The performance
indicators can be categorized into four categories: (i) the Coverage aspect
evaluated using Coverage (C), (ii) Convergence evaluated using Generational
Distance (GD) and Euclidean Distance (ED), (iii) Diversity evaluated using
Pareto Front Size (PFS) and Generated Spread (GS), and (iv) Combination
evaluated by Inverted Generational Distance (IGD) and Hypervolume (HV).
First, the C performance indicator defined in Equation (3.4) quantifies the

extent to which a computed Pareto front (PFc) covers the reference Pareto
front, i.e., the number of solutions (s) of the computed Pareto front that are
also part of the reference Pareto front divided by the number of solutions in the
reference Pareto front. The best value for this metric is one since this indicates
that the computed Pareto front covers the whole reference Pareto front which
represents the best known solutions.

C =
|∪s∈PFcs ∈ PFref |

|PFref |
(3.4)

Second, the GD performance indicator measures the Euclidean distance
from each solution in the computed Pareto front to the nearest solution in the
reference Pareto front (d(si, PFref)) and is defined in Equation (3.5). Hence,
it provides a measure to judge how much distance is present between the
computed and the best known solution. The best possible result for this metric

21

Chapter 3: Optimization

is zero, as it indicates that the computed Pareto front directly covers the whole
reference Pareto front without any distances.

GD =

√∑|PFc|
i=1 d(si, PFref)2

|PFc|
(3.5)

Third, the ED performance indicator defined in Equation (3.6) measures
the Euclidean distance from a reference solution to its closest solution in the
computed Pareto front (d(sref , PFc)). The reference solution is defined similar
to the reference Pareto front and selects the best known values among all
retrieved solutions for each objective and combines them into one solution
value. The best possible value for this metric is zero, indicating that the best
solution of the computed Pareto front matches the reference solution.

ED = d(sref , PFc) (3.6)

Fourth, the PFS performance indicator measures the number of solutions
in the computed Pareto front as defined in Equation (3.7). A larger PFS value
indicates a higher diversity of the computed solutions and, hence, the user has
more options to choose from.

PFS(PFc) = |PFc| (3.7)

Fifth, the GS performance indicator defined in Equation (3.8) measures
the diversity of the solutions that exist in the computed Pareto front. There-
fore, we calculate a set of extreme solutions from the reference Pareto front
called e1, . . . , em where ei has the best value for the i-th objective function (fi).
d(ek, PFc) refers to the Euclidean distance from extreme solution ek to its
nearest solution in PFc. d(s, PFc) calculates the Euclidean distance from the
solution s ∈ PFc to its nearest solution in PFc and d̄ represents the mean of
these distances over all solutions in PFc. This performance indicator measures
how even the solutions in PFc are spread, where a lower GS value indicates a
more even distribution.

GS(PFc, PFref) =

∑m
k=1 d(ek, PFc) +

∑
s∈PFc

∣∣d(s, PFc)− d̄
∣∣∑m

k=1 d(ek, PFc) + |PFc|·d̄
(3.8)

Sixth, the IGD performance indicator combines convergence and diversity
aspects of PFref and is defined in Equation (3.9). Again, we use the Euclidean
distance of a solution si inPFref to its closest solution inPFc whichwe define as
d(si, PFc)). We set the sum over all solutions in the reference Pareto front in the

22

3.4 Optimization Algorithms

ratio to the size of the reference Pareto front. We use this value to compare two
computed Pareto fronts where the computed Pareto front with the lowerIGD
value is closer to the reference Pareto front, and hence, we consider it better
than the other computed Pareto front.

IGD(PFc, PFref) =

√∑|PFref |
i=1 d(si, PFc)2

|PFref |
(3.9)

Finally, the HV performance indicator defined in Equation (3.10) also deals
with the combination of convergence and diversity aspects of the computed
solutions. It measures the volume in the objective space that the PFc covers
with respect to a given reference point. Thus, it computes the volume of the
hypercube resulting from the diagonal corners vi between the solutions si
in the PFc and the reference point Pref having the worst objective function
values. The reference point must not overlap with the values of PFc, and can
therefore be defined outside the range of values of the objective functions—
below the value range of values for a maximization problem and above the
range for a minimization problem. A higher HV value in general indicates a
better performance of the PFc.

HV (PFc, Pref) = volume(∪PFc
i=1 vi) (3.10)

3.4 Optimization Algorithms

Research in the field of optimization algorithms is a very old discipline and,
accordingly, has already developed a wide range of techniques. Following
the structure of [Rao19] and [Bro11], optimization algorithms can be divided
into the following categories: exact algorithms, mathematical programming
techniques, stochastic algorithms, physical algorithms, probabilistic algorithms,
evolutionary algorithms, swarm algorithms, immune algorithms and neural
algorithms. For a comprehensive overview of common algorithms from these
categories, we refer the reader to [Rao19,Bro11]. In the following, we limit the
discussion of optimization algorithms to those used in this thesis.
The first category of optimization algorithms are exact algorithms with the

most general brute-force algorithm [PK87]. This algorithm does not require
any domain-specific knowledge, but operates on a set of states, starting from an
initial state and using legal operators. Breadth-first search or depth-first search
are two specific examples of brute-force algorithms. The brute-force algorithms
perform an exhaustive search and explore the entire design space, which is the

23

Chapter 3: Optimization

reason for their exponential time complexity. However, the advantage of these
algorithms is that they are guaranteed to find the best solution.
Local Search (LS) is an example algorithm from the category of stochastic

algorithms [Bro11,LMS01]. This algorithm starts from an initial constructed
solution and explores the direct neighborhood of that solution. Usually, the
neighborhood can be found by replacing one decision variable of the current
solution. If the neighboring solution has better objective function values, the
algorithm uses it as the next starting point. If the neighbor solutions do not lead
to better values, LS terminates and returns the solution. If the LS examines all
neighboring solutions and selects the one that maximizes the objective function
value, this variant is called Hill Climbing.

From the category of probabilistic algorithms, we consider Bayesian Opti-
mization [PGCP00,Bro11]. This algorithm builds a probabilistic model of the
joint distribution of promising solutions using Bayesian networks. At each
iteration, the algorithm queries one observation point from the objective func-
tion and updates its model accordingly. An additional acquisition function
defines the most promising candidate for the next observation. The algorithm
terminates after a number of iterations and returns the current best solution.

Simulated Annealing is one of the physical optimization algorithms [KGV83,
Bro11]. It was inspired by the physical process of annealing in metallurgy and
involves heating and coolingmetal to increase the strength and durability of the
material. The idea is that as the temperature of a material increases, the degrees
of freedom within the system also increase and more changes are possible. As
the temperature decreases, the possibility of changes to the system becomes
smaller. The algorithm starts with an initial solution and changes it iteratively.
Therefore, two functions are relevant: a temperature function and the objective
function. As long as the temperature is still high, the objective function has
less influence on the selection of the next candidate solution. With decreasing
temperature, the objective function gets more weight and the algorithm only
considers solutions with better objective function values.
From the category of evolutionary algorithms, we consider the GA [Hol92,

Bro11]. It is inspired by the process of natural selection and the evolution of
a population by recombination and mutation of individuals representing a
solution encoded as a genome. The algorithm starts with an initial set of solu-
tions, called the population, and performs selection, crossover, and mutation
in each iteration. Selection uses the objective function to evaluate the fitness of
individuals and select the individuals for recombination. Then, the crossover
procedure combines the genomes of the selected individuals to breed a new
individual as part of the offspring. Each new individual is then mutated to

24

3.4 Optimization Algorithms

increase the diversity of the population. Finally, as the population increases
in each iteration, the individuals with the lowest fitness value are discarded
in each iteration to achieve the predefined population size. A multi-objective
version of the GA is the NSGA-II, which computes a Pareto front and aims at a
good distribution of solutions by considering the crowding distance as density
estimate of the solutions in the front [DPAM02].

Finally, ACO is a representative of swarm algorithms [DMC96,Bro11]. ACO
is inspired by the behavior of ants in search of food and uses the concept of
pheromones that ants leave on a good path between their colony and food
sources. The algorithm first simulates a random movement of ants in the
environment. Once an ant discovers a good food source, it begins emitting
pheromones along the path back to the colony. When other ants notice the
pheromone trail, they follow it and increase the concentration of pheromones
along the way. However, some of the ants do not follow the path and keep
exploring new paths to find better routes and create new pheromone trails.
As the pheromone in the environment decreases, the shortest path is receives
the highest pheromone concentration during the optimization process. After
a predefined period of time, the algorithm terminates with the shortest path
represented by the pheromone trail with the highest concentration.

25

Chapter 4

Intelligent Transportation Systems

The concept of ITS arose in the early 20th century with the first electric traffic
signals being considered as the original ITS in 1928 [FJM+01]. Since then,
the interest has spread to the whole world and the main contributions have
been produced by Europe, U.S., and Japan [FJM+01]. In the 1970s, the U.S.
introduced the Electronic Route Guidance System (EGRS) as initial stage of
ITS [ALS11]. In Europe, the countries Germany, United Kingdom, and France
began to thoroughly study the ITS technology in the 1980s, founded the Euro-
pean Road Transport Telemetric Implementation Coordination Organization
(EUREKA) in 1985, and started the PROMETHEUS project in 1986 [ALS11]. In
the year 1986, an informal group of academics, federal and state transportation
officials as well as people from the private sector started a discussion on the
road infrastructure and current challenges in traffic, which lead to the group
“Mobility 2000” that produced a landmark document in 1990 [Sus08]. Also
Japan started ITS development in the 1980s such as the Japanese projects Road
Automobile Communication System (RACS) and Advanced Mobile Traffic
Information and Communication System (AMTICS) [FJM+01].

Diverse definitions of ITSs can be found in the literature. Sussman provides a
very broad definition in his article of 2008 Perspectives on Intelligent Transportation
Systems [Sus08, p.3]:

“ITS combines a high technology and improvements in information systems,
communication, sensors, and advanced mathematical methods with the
conventional world of surface transportation infrastructure.”

The EU defines ITS in the directive 2010/40/EU [EU221]:

“Intelligent Transport Systems or ITSmeans systems inwhich information and
communication technologies are applied in the field of road transport,
including infrastructure, vehicles and users, and in traffic management
and mobility management, as well as for interfaces with other modes of
transport.”

27

Chapter 4: Intelligent Transportation Systems

While the first definition is very broad and names some involved technologies,
the second definition offers more application scenarios and appears more
specific. In this work, we consider both definitions as relevant and fitting for
the use case scenarios we discuss.

In addition to the definition of ITS, Sussmann also identified the need for
the “ITS-4” technologies [Sus08]: (i) the ability to sense, (ii) the ability to
communicate, (iii) the ability to process, and (iv) the ability to use this infor-
mation properly and in real-time. He states that this technological innovation
is required for the development of future ITS. Further, he defines six areas of
application for ITS: (i) Advanced TrafficManagement Systems (ATMS), (ii) Ad-
vanced Traveler Information Systems (ATIS), (iii) Advanced Vehicle Control
Systems (AVCS), (iv) Commercial Vehicle Operations (CVO), (v) Advanced
Public Transportation Systems (APTS), and (vi) Advanced Rural Transporta-
tion Systems (ARTS). For this work, the AVCS are especially important as they
can be regarded as a further development of the driver’s control of a vehi-
cle such as collision detection and warning [MKES21]. Further, automatic
breaking systems are relevant in this area. Additionally, Sussman mentions
the term platooning, where cars drive in groups of ten or more vehicles with
close inter-vehicle gaps at normal highway speed under automatic control.
The development of autonomous vehicles in the last decades enables the de-
velopment and deployment of platooning in the real world. While SAS can
be applied to all the mentioned areas of ITS and could further develop the
respective systems, in this work we use platooning as example for a prototypi-
cal case study. Platooning provides a meaningful opportunity to validate the
contributions of this thesis as it is a complex system, which consists of a set of
autonomous entities that have individual objectives and requirements, and the
application of SAS is particularly useful [LKT19b]. Still, the contributions of
this thesis can also be applied to other use cases from the ITS domain for which
the application of SAS appears meaningful such as traffic management using
traffic lights [PRT+08] or traffic cameras [VWMA11].We refer the interested
reader to a survey by Malik et al. [MKES21] in which solution approaches and
future research directions on collaborative autonomous driving are discussed.

In the following, Section 4.1 introduces the concept of platooning including
the different levels of platooning as well as platooning control. Then, Section 4.2
presents platooning coordination applies a taxonomy and classifies existing
platooning coordination approaches. Finally, Section 4.3 introduces simulators
that can be used for platooning and its coordination.

28

4.1 Platooning

4.1 Platooning

Similar to the research in the general ITS domain, the research on platooning
became more and more important in the literature. Platooning describes a
cooperative driving technologies of automated vehicles to travel with small
inter-vehicle distances of 5–10 meters [RCC10]. Those vehicles benefit from
slipstream effects due to air drag reduction resulting in energy savings [Seg16].
However, the lead vehicle experiences reduced fuel savings and, in some pla-
tooning approaches, its driver has to drive manually, whereas other vehicles
can follow in a self-driving mode; hence, those drivers do not have to control
their vehicles. Besides these advantages for individual vehicles, further ad-
vantages for the overall traffic can be observed such as increased traffic flow,
increased capacity of the existing road infrastructure, safety, and comfort ben-
efits [TJS16, RCC10]. According to Sturm et. al [SKSB21], the objectives of
platooning participants are spread among individual vehicles, the platoon, and
the global system. They assign the following objectives to the individual vehi-
cles: energy efficiency, vehicle safety, velocity, time, user comfort, destination
and distance, balance of individual objectives, and cost balancing. The objec-
tives of the platoon consist of energy efficiency, platoon safety, and the balance
of platoon objectives. Finally, the global system aims at energy efficiency, global
safety, traffic flow and road capacity, and a balance of global objectives. Con-
sequently, the coordination of platooning, that is, the assignment of vehicles
to platoons, is a challenging task as it represents a multi-level, multi-objective
optimization problem [KSB+18].
The research on platooning already started in the early 1970s and since the

1980s, several projects described platooning concepts. The research focus of
these platooning projects shifted over time from enabling autonomous driv-
ing capabilities and communication-supported cooperative driving behavior
towards platooning coordination and, more recently, multi-brand platooning
and real-live demonstrations. We refer the interested reader to our survey on
platooning coordination, where we summarize all relevant platooning coordi-
nation projects [LBS+21].

4.1.1 Levels of Platooning

In this work, we distinguish two levels of platooning similarly to our definition
in [LBS+21]: (i) platooning control, and (ii) platooning coordination. We
define both terms, delineate them by explaining our understanding of both
levels, and clarify the level on which this work focuses.

29

Chapter 4: Intelligent Transportation Systems

PlatooningControl is the control of a single vehicle on the lowest possible level
including maintaining the distance, sending braking signals or signaling
platoon members to overtake another vehicle.

Platooning Coordination includes the management of (i) the composition
of a platoon, (ii) inter-platoon interactions as well as (iii) interactions
between other vehicles and platoons.

Hence, we refer to all actions performed by a Cooperative Adaptive Cruise
Control (CACC) controller, including longitudinal control, lateral control, and
string stability, as platooning control. In contrast, platooning coordination
operates at a higher level and coordinates the composition of platoons as well
as intra-platoon and extra-platoon maneuvers. Hence, coordination regarding
platooning is possible on two levels: (1) between platoons and other platoons or
vehicles as well as (2) within a platoon. For both types, we assume the presence
of a platooning control approach to maintain the distances between vehicles
in a platoon at any time. Platooning coordination typically incorporates for
instance (i) finding a suitable platoon for a vehicle, (ii) managing inter-platoon
interactions, such as merging platoons or (iii) routing platoons.

4.1.2 Platooning Control

Realizing platooning in practice requires a set of technologies, including control
and communication systems. Control systems for platooning have two compo-
nents: longitudinal control—accelerating and braking the vehicle to maintain a
target distance to the front vehicle— and lateral control—steering the vehicle.
Further, communication is a fundamental component of platooning as it is
(i) useful for lateral control, (ii) essential for longitudinal control, and (iii) re-
sponsible for coordinating platooning activities. This section is taken from
our paper [LBS+21], in which we provide a brief overview of some concepts
required for realizing platooning on the lowest possible level, i.e., the control of
single vehicles within a platoon. We do not review the literature in all its depth,
as the focus of this work is on the higher levels. Still, this section can be useful
to the reader to grab a general understanding of the application. In addition,
we mention relevant literature at appropriate passages for the interested reader
in order to enable an in-depth acquaintance with this topic.
A fundamental part is the longitudinal control, which is realized through

a control system computing acceleration commands to maintain a desired
inter-vehicle gap. This control system is named CACC, which derives from
the standard Adaptive Cruise Control (ACC) [Raj12]. The term cooperative

30

4.1 Platooning

indicates that vehicles, together with data coming from radars, lidars, and
cameras [UAB+08,LAB+11], exchange state information used to compute the
control action by means of communication. In contrast, ACC only takes locally
sensed data into account to make decisions. The introduction of communica-
tion brings several benefits, including reduced inter-vehicle spacing and faster
reaction to changes in dynamics [Raj12]. There is a vast literature of approaches
targeting the design of a CACC system, which differ by control technique and
assumptions on input data.

Regardless of the technique, all control algorithms must ensure a fundamen-
tal property called string stability, meaning that errors occurring at the head of
the platoon must not be amplified but be dampened towards the tail. More for-
mally, let δi be the spacing error (i.e., the difference between the target distance
and the actual one) between vehicle i and its predecessor and letH(s) = δi

δi−1

be the transfer function relating spacing errors between consecutive vehicles.
A CACC is said to be string-stable [Raj12] if the following conditions hold:

||H(s)||∞≤ 1 h(t) > 0, ∀t ≥ 0. (4.1)
The left condition ensures that themagnitude of the errors is attenuated towards
the tail, while the second (h(t) is the impulse response of H(s)) ensures that
the errors must have the same sign. It is not sufficient to dampen the magnitude
towards the tail, but we must also avoid a vehicle being too close to its predeces-
sor (negative error) and its follower being too far (positive error) and vice versa.
This is one of the possible definitions of string-stability but it might need to be
adapted to the control system being proposed [FZL+19,PSvdWN14,XPN16].
As we will briefly describe, different CACC have different string-stability prop-
erties depending to the inputs they consider.
As an example, in the 2000s the PATH project [RTLZ00] defined a CACC

which is still commonly considered by researchers in the field. The control
formula for the vehicle in position i is defined as

ui = (1− C1)ai−1 + C1a0

−
((

2ξ − C1

(
ξ +

√
ξ2 − 1

))
ωn

)
(vi − vi−1)

−
(
C1

(
ξ +

√
ξ2 − 1

)
ωn

)
(vi − v0)

− ω2
n(xi − xi−1 + li−1 + dd)

(4.2)

In Equation (4.2), ui indicates the control input (i.e., the desired acceleration
that should be sent to engine/brakes for actuation), ai, vi, xi, li indicates the
current acceleration, the speed, the position, and the length of vehicle i, respec-
tively, while dd indicates the desired inter-vehicle gap. C1, ξ, and ωn are control

31

Chapter 4: Intelligent Transportation Systems

parameters regulating the weight between leading and preceding vehicle accel-
erations, the damping ratio, and controller bandwidth, respectively. The control
algorithm considers data received from the leader and the preceding vehicle in
the platoon, plus the gap to the preceding vehicle measured by the radar. This
particular type of algorithms are defined as leader- and predecessor-following
CACC and are proven to be string-stable under a constant spacing policy, which
means that the inter-vehicle distance is fixed regardless of the cruising speed.
The work in [PSvN+11] instead defines a CACC that implements a prede-

cessor-following control, meaning that a vehicle considers only information
received by its predecessor. The control law, which is defined in terms of the
derivative of the desired acceleration (u̇), is the following:

u̇i =
1

H
(−ui + kp (xi−1 − xi − li−1 −Hvi)

+ kd (vi−1 − vi −Hai) + ui−1) (4.3)
In Equation (4.3), which is defined as a Proportional Derivative (PD) controller,
H indicates the time headway, while kp and kd are control gains for the propor-
tional and the derivative part of the law, respectively. The control law has three
components. The first one is the distance error (proportional term) and in this
case the desired distance depends on speed (Hvi). H is indeed the amount
of time elapsing between two consecutive vehicles: the higher the speed, the
higher the actual distance. This spacing policy is known as constant time headway
and it guarantees string-stability for CACC considering the preceding vehicle
information only: for these CACC string-stability under a constant gap cannot
be guaranteed [Raj12]. The second one is the derivative of the first one (deriva-
tive term), which basically minimizes the speed error between consecutive
vehicles. The last one (ui−1) is the desired acceleration of the preceding vehicle.
For the first two components of the law, the information about distance and
relative speed can be obtained through the radar. The last one, instead, can
only be obtained by means of communication, because the desired acceleration
cannot be measured: it is an acceleration the vehicle will implement after a
certain amount of delay due to actuation lags (engine and braking dynamics).
This “knowledge of the future” enables to drastically reduce the time headway
compared to a standard ACC while still guaranteeing string-stability.
In the literature, we find several other control techniques employed in the

design of CACC. One example is Model Predictive Control (MPC) [KFF11].
This method solves an optimization problem on a future time horizon with the
aim of minimizing certain quantities which include, for example, spacing and
speed errors. Differently from the previous approaches, as this method relies
on optimization, it is possible to define further constraints such as maximum

32

4.1 Platooning

and minimum acceleration for passengers’ comfort. Without going too much
into details, a typical MPC problem is defined as

min
u̇

z⊺Qz (4.4)

subject to certain constraints, which include initial state, state evolution ac-
cording to the applied control input, limits on acceleration and jerk, etc. In
Equation (4.4), z might be defined as

z = [e,u, u̇], (4.5)

where e, u, and u̇ are the vectors of all the spacing errors, the control inputs,
and the derivative of the control inputs over the prediction horizon, respectively.
The matrix Q, instead, is used to weight the minimization terms. This problem
is solved using standard mathematical solvers, with the result being a vector of
jerk values (control input derivatives) u̇. Of this vector, the first value is the
one being sent for actuation.
Still another type of approaches take a completely different perspective.

While the majority of the control systems are defined in time domain, we
find some approaches defined in space domain. As an example, the works
in [BJ15,BJ17] define the spacing policy to be

(4.6)xi(t) = xi−1(t−∆t).

The policy indicates that a vehicle should track a delayed version of the trajectory
of its predecessor. The authors prove that this can be achieved if and only if
all the vehicles are capable of tracking a reference speed signal defined in the
spatial domain, i.e.,

vi(x) = vi−1(x) = ṽ(x), (4.7)

which is solved by defining a control law of the form ui(x), i.e., the acceleration
a vehicle should apply depending on its position rather than the current time.

The list of approaches we mentioned is a minimal subset of the vast literature
on the topic which include consensus control, event-triggered control, artifi-
cial potential field control, and many more [SSV+15,MSS+14,AGM15,TBJ17,
SSV+19,SKVPA16,DPH17,GSBLC19]. This also includes the issue of lateral
control, i.e., how vehicles should steer in order to follow their predecessors,
for which the same string-stability property of longitudinal control must be
guaranteed [KAFF14,SIS13]. The interested reader can refer to [DYW+16] for
an in-depth view of CACC systems.

33

Chapter 4: Intelligent Transportation Systems

4.2 Platooning Coordination

This section is based on our paper [LBS+21], in which we conduct a systematic
literature review to analyze existing platooning coordination approaches. A
systematic literature review was first introduced by [WW02] and consists of
four steps: (i) search engine-based identification of possibly relevant literature
using predefined keywords, (ii) filtering of the papers based on the title and
abstract, (iii) detailed analysis of the approach sections of the papers, (iv) ex-
traction of relevant approaches and classification into a taxonomy. We applied
this technique for our literature review. In step 1, we use the search engine
Google Scholar and predefined keywords to guide our search process. Thus,
we use the following keywords for search: “platoon”, “platooning”, “platoon
coordination”, “platoon assignment”, “platoon management”, “platoon forma-
tion”, “platoon formation strategy”, “platoon algorithm”, and “platoon multi
objective”. We consider the first 90-110 hits for each keyword, which results
in a total of 1,630 papers. In step 2, we filter the papers based on the title and
the preview in Google Scholar. For this filtering process, we rely on different
assumptions to guarantee a consistent choice of literature. First, we do not
restrict our analysis to a specific type of vehicle. Most of the approaches in the
literature target platoons of trucks, as the potential for saving fuel seems to be
the highest. However, we also include platoons composed of only cars as well
as mixed platoons. Second, we focus on platooning coordination rather than
platooning control. Hence, we excluded approaches that only target control as-
pects, such as communication/security mechanisms in platoons, inter-vehicular
distance control, or string stability. Last, when focusing on platooning coordi-
nation, literature provides two types of approaches we include in our overview:
(i) high-level approaches and (ii) focused approaches. High-level approaches
mainly focus on assigning vehicles to platoons but support all phases of pla-
tooning. Focused approaches target specific aspects of platooning control, e.g.,
focusing on which position in a platoon a vehicle should join or the merge of
platoons that drive close to each other. After this step, 155 papers are consid-
ered potentially relevant. In step 3, we perform a detailed analysis of those
papers by assessing their abstract and parts of the sections that present the
approach. In step 4, we extract the approaches of the remaining 40 papers.

4.2.1 Taxonomy

This section presents a taxonomy of platooning coordination composed of
two categories concept and strategy. Both categories have several dimen-
sions with various characteristics and handle individual conceptual levels. The

34

4.2 Platooning Coordination

concept category describes the basic design of the coordination approach. It de-
scribes which entity performs the coordination, which actions the coordination
includes, and how the coordination is triggered in time. The strategy category
describes the strategy that is applied within the presented concept, i.e., the
exact way to determine coordination actions from an algorithmic perspective.
Hence, the strategy category describes how to formulate the research issues
defined using the aspects of the concept category. We use this distinction
into concept and strategy to emphasize that—in theory—different strategies
could be applied in the same concept. Figure 4.1 illustrates our defined taxon-
omy including the categories and their dimensions and Table 4.1 presents the
characteristics for each dimension.

Platooning Coordination

StrategyConcept

Architecture
Decision Making
Optimization Level
Geographical Scope
Coordination Triggers
Planning Horizon
Coordination Actions

Objectives
Input
Constraints
Algorithm

Figure 4.1: Illustration of the proposed taxonomy of platooning coordination ap-
proaches with eleven dimensions clustered into the two categories concept and strategy.

The concept category contains dimensions that describe the principle type
of organization for the coordination procedure. In total, we identify seven
dimensions: architecture, decision making, optimization level, geographical
scope, coordination triggers, planning horizon, and coordination actions. First,
the coordination process follows different fundamental design aspects. The
architecture ranges from a central control unit for platooning coordination to
decentralized coordination performed by each vehicle, including approaches
in-between both extremes. The coordination processes can support different
types of decision making w.r.t. the dimensionality of the decisions, i.e., the
number of considered objectives. Further, those coordination decisions can
target different optimization levels; we distinguish here between individual,
platoon, and global. Additionally, platooning coordination has a spatial aspect.

35

Chapter 4: Intelligent Transportation Systems

Table 4.1: Overview of the taxonomy including both categories, their dimensions, and
characteristics.

Category Dimension Possible Characteristics

Concept

Architecture Control unit, individual vehicle, collective of ve-
hicles

Decision Making Single-objective, multi-objective, many-objective
Optimization Level Global, platoon, individual
Geographical Scope Global, regional, local
Coordination Triggers Pre-trip coordination, event-based coordination,

ongoing coordination
Planning Horizon Scheduled planning, real-time planning, oppor-

tunistic platooning
Coordination Actions Join, split, route, merge, leave, platoon parameter

change, lane change

Strategy

Objectives Energy efficiency, cost minimization, common
distance, travel time, schedule miss penalties,
comfort, road capacity, speed, profit, fleet uti-
lization, failed actions, consistency of controllers,
trust in leader, departure time

Input Destination, location, speed, time, route, vehicle
characteristics, vehicles within horizon, road net-
work, headway to vehicles, user preferences, fuel
consumption models, departure, weather, traffic
situation, platoon length

Constraints Deadlines, speed limit, platoon size, timing,
speed, max. road capacity, lanes, distance

Algorithm Optimization-based, rule-based, heuristic-based,
graph-based, iterative, greedy, game theory

The coordination could be employed by a central coordination unit that per-
forms a global optimization. When mentioning a central coordination unit we
refer to a central authority that is responsible for the decisions. Nevertheless,
the calculation of the decisions can be distributed to several instances that ex-
change all existing information in order to handle the amount of instances. Still,
the amount of required data might overwhelm the coordination process and
heavily slow down the decision making. Hence, approaches may operate on
different geographical scopes. Further, the coordination approaches differ
in time aspects. The coordination triggers dimension refers to the triggers

36

4.2 Platooning Coordination

for the coordination process, i.e., the point in time when the coordination takes
place. We distinguish pre-trip coordination (triggered by the driver before
starting the journey), event-based coordination (triggered by events such as
the split of a platoon during the journey), and on-going coordination trig-
gered regularly. Related to that, we distinguish different planning horizons.
Approaches either plan the whole journey in advance (scheduled planning),
plan the rest of the journey based on real-time input (real-time planning) or
spontaneously evaluate coordination actions without a particular planning
horizon (opportunistic platooning). Last, coordination processes can support
different types of coordination actions, e.g., joining a platoon, merging of
platoons or adjusting parameters of a platoon (e.g., its speed).

While the first category depicts the general design of the coordination process,
the strategy category focuses on how the coordination actions are determined.
Hence, it describes how to formulate concrete research issues and contains the
dimensions objectives, input, constraints, and algorithm. As captured in the
dimension decision making of the concept category, platooning coordination
follows one or several objectives. The dimension objective provides a list of
possible objectives for the coordination. This list is based on [SKSB21]; how-
ever, we adjust the objectives to better reflect platooning coordination since the
mentioned publication targets platooning in general. Obviously, one important
characteristic of the platooning coordination strategy is the input. For instance,
some strategies expect the specification of the route as a given input, while oth-
ers calculate the best possible route as a part of the coordination strategy. Most
of the platooning coordination approaches operate within specific constraints.
These constraints include, for example, an intended speed range or specific
vehicle types. Additionally, it is possible to define constraints to improve the
coordination process, i.e., to avoid having unrealistic solutions (e.g., a speed of
300 km/h) or to limit the solution space for parameters to accelerate decision
making. For making a strategy usable by ICT systems, we need to codify it in
an algorithm. We identify several types of algorithms in the literature review,
which use, e.g., optimization procedures, rules, heuristics or game theory.

4.2.2 Concept

In this section, we provide an overview of existing literature for the concept
category. Therefore, we categorize them based on the dimensions and highlight
the relevant details of the papers for this dimension1. The Figures 4.2 and 4.3
provide literature statistics on this classification.

1All analyzed approaches and their classification can be found at https://doi.org/10.5
281/zenodo.4267685

37

https://doi.org/10.5281/zenodo.4267685
https://doi.org/10.5281/zenodo.4267685

Chapter 4: Intelligent Transportation Systems

79.1%

18.6%

2.3%

Architecture

Control Unit (34)
Ind. Vehicle (8)
Collective of
Sev. Vehicles (1)

62.8%

32.6%

2.3%
2.3%

Decision Making

Single-objective (27)
Multi-objective (14)
Many-objective (1)
Unknown (1)

51.2%

44.2%

4.7%

Optimization Level

Individual (22)
Global (19)
Platoon (2)

48.8%

25.6% 23.3%

2.3%

Geographical Scope

Global (21)
Regional (11)
Local (10)
Global &
Regional (1)

39.5%

32.6%

25.6%

2.3%

Coordination Triggers

Pre-trip (17)
Event-based (14)
On-going (11)
Iterative &
Event-based (1)

53.5%

41.9%

4.7%

Planning Horizon

Real-time (23)
Scheduled (18)
Opportunistic (2)

Figure 4.2: Results of the literature review on platooning coordination approaches.
Relative and absolute frequency of the different platooning coordination characteristics
in the 6 dimensions of the concept category.

4.2.2.1 Architecture

The majority of the approaches uses a dedicated control unit for platooning
coordination. The control unit is able to make well-informed decisions for mul-
tiple vehicles simultaneously. Thus, this architecture is used for approaches
that optimize a metric such as fuel efficiency or traffic flow on a whole high-
way, highway segment or across a region. For instance, [VJD15] propose an
algorithm to find fuel-efficient routes and speeds for truck platoons before the
start of their journey. A centralized control unit receives transport assignments
by trucking companies and minimizes the aggregated fuel consumption of
the whole fleet. In contrast, several approaches allow the individual vehicle

38

4.2 Platooning Coordination

Jo
in

Le
av

e
Merg

e
Rou

te
Spli

t

Para
m C

ha
ng

e

La
ne

 C
ha

ng
e

0

5

10

15

20

25

30

Figure 4.3: Results of the literature review on platooning coordination approaches.
Absolute frequency of the actions that existing approaches are able to coordinate.

to plan actions. [HS19a] present an algorithm for platoon formation at ur-
ban intersections where vehicles communicate in a peer-to-peer fashion via
beacons. Based on the transmitted positions of potential platoons, vehicles
decide which platoon to join without communicating with any kind of con-
trol unit. We observe that—even though platooning is a cooperative driving
technology—only [DCH08] introduce an approach where a collective of several
vehicles coordinates the platooning process together. All vehicles on a certain
highway segment collectively decide on platoon formation and lane assignment
to maximize the distance that platoons stay intact.

4.2.2.2 Decision Making

We differentiate between single-objective, multi-objective, and many-objective deci-
sion making in platooning coordination. Single-objective approaches optimize
a single parameter such as fuel efficiency or traffic flowunder certain constraints.
More than 60 percent of the approaches—including the large body of research
on fuel-optimal route planning such as [VJD15,LSL15], and [VJD18]—apply
this type of decision making. Multi-objective approaches optimize multiple,
potentially conflicting objectives simultaneously. [MSH08]’s work from the
KONVOI project is a prominent example for a multi-objective approach. They
identify the savings through improved energy efficiency in platoons, the in-
surance savings through fewer accidents, and the wage costs for waiting times

39

Chapter 4: Intelligent Transportation Systems

as relevant objectives. To balance these conflicting objectives, the approach
combines them in a single profit function that is optimized by the coordination
algorithm. Many-objective approaches also consider multiple objectives, but do
not necessarily optimize all of them simultaneously. Based on user preferences
or the current context, the approaches adjust the weighting of the objectives or
choose, for instance, a different cost function. Many-objective optimization is
rarely applied in platooning coordination research so far. Only [KB05] allow
individual vehicles to maximize a custom utility function that may be different
for each vehicle and that may change over time.

4.2.2.3 Optimization Level

Existing approaches either coordinate platoons to optimize their objective(s) on
global, platoon or individual level. Global optimization encompasses approaches
that maximize the objective for a larger group of vehicles. Thus, platooning
coordination actions by these approaches may increase the fuel consumption
of one vehicle to decrease the total fuel consumption of all vehicles in a high-
way segment. Often, such approaches still consider individual constraints of
drivers. For instance, [LMS16] present a coordination approach that considers
individual travel deadlines while minimizing the total fuel consumption of
all vehicles. Only [BTV+16] and [RLR18] describe approaches that optimize
objectives on a platoon level. Much more common are approaches that choose
the best action for each vehicle independently and thus optimize objectives
on an individual level. [VWHK13a] present a system for each vehicle that
autonomously decides to create, join or leave a platoon based on the current
context and user preferences.

4.2.2.4 Geographical Scope

As far as the geographical scope is concerned, we distinguish between global,
regional, and local platooning coordination. Global approaches coordinate all
vehicles in the area under consideration and account for 49% of all approaches.
A global geographical scope is especially prominent in routing approaches
for truck platooning such as [VJD15] and [LSL15]. Regional coordination
approaches divide the area under consideration in several regions that are
managed separately. The coordination approach of the COMPANION project—
presented in [LLJ15]—places control units at highway intersections. These
control units manage the respective surrounding area by assigning approaching
vehicles to platoons. The authors state the absence of a central unit which has
sufficient knowledge and authority as well as the computational complexity of

40

4.2 Platooning Coordination

global optimizations as reasons for implementing a regional approach. More-
over, 23% of the approaches perform local coordination. These approaches
coordinate vehicles in proximity without defining distinct regional borders.
The majority of the local coordination approaches (9 out of 10) optimize the
objective on an individual or platoon level, which shows that a local coordi-
nation is particularly useful when vehicles or platoons autonomously decide
on their actions by considering only the situation in their immediate vicin-
ity. [BTV+16] propose a three-layered approach for controlling each vehicle,
a platoon or a fleet in one approach. Hereby, they perform both global and
regional coordination.

4.2.2.5 Coordination Triggers

Platooning coordination approaches use pre-trip coordination, event-based coordi-
nation or on-going coordination. Pre-trip coordination happens before the start of
the journey and is applied by 40% of all approaches. Drivers or trucking com-
panies submit plans that contain, e.g., destination, deadline, and speed options.
These plans are then leveraged by the platooning coordination approach to
determine routes (e.g., in [SBH17,VJD15,NH16]) or coordinate platoon forma-
tion (e.g., in [MSH08,ZMJ16,SLM+17]). Event-based coordination approaches
are triggered when certain events occur. An example for such an approach
is [HC05]. The authors develop several heuristics for the formation of platoons
on highway entry ramps. The coordination algorithm runs every time a new
vehicle reaches the entry ramp and chooses an action such as joining a platoon,
waiting for potential following vehicles or entering the highway. On-going
platooning coordination approaches apply an algorithm periodically or even
continuously. [BDSH13], for instance, periodically re-plan the current routes
of platoons to optimize the traffic flow. Thus, the approach takes up-to-date
traffic information into account and is able to react to unforeseen changes. The
planning effort, however, is considerably higher and frequent plan changes may
occur. [VMDJ19] propose an approach that works on-going and event-based.
Monitoring and coordination run continuously while an additional event-based
coordination is triggered in case of unexpected plan changes.

4.2.2.6 Planning Horizon

We observe different planning horizons in the platooning literature. Whereas
some approaches plan the whole journey in advance, others evaluate pla-
tooning options spontaneously. We therefore distinguish scheduled planning,
real-time planning, and opportunistic platooning. Scheduled planning takes place

41

Chapter 4: Intelligent Transportation Systems

before the journey and plans the whole trip. It is used by 42% of the ap-
proaches. Scheduled planning is especially prominent in truck platooning
where departure times, destinations, and deadlines are known in advance.
Of the 18 approaches that apply scheduled planning, 15 work with trucks
only and do not consider cars. Real-time planning organize the remaining
journey while the vehicles are already on the road. More than half of all ap-
proaches (54%) use this type of planning horizon. The focus is on the formation
of platoons on the road with some approaches even planning routes in real-
time (e.g., [BDSH13,VMDJ19]). [VJD18] present a coordination approach that
plans fuel-optimal routes for trucks. Whereas the core idea is similar to many
scheduled planning approaches, the paper explicitly states that the proposed
algorithm can be used during the journey if deviations occur or new informa-
tion becomes available. Only two existing approaches, namely [KB05,FN15],
apply opportunistic platooning. Instead of planning the remaining journey, the
opportunistic approaches spontaneously evaluate platooning options. [FN15],
present spacing policies for platoons to maximize the road capacity. Vehicles
entering the road are able to spontaneously join platoons that drive nearby.

4.2.2.7 Coordination Actions

The broad range of platooning coordination algorithms in the literature is also
reflected in the variety of actions that the individual approaches plan and coor-
dinate. Figure 4.3 depicts the number of existing approaches that cover certain
actions. Most platooning coordination approaches coordinate the platoon for-
mation process by suggesting a suitable platoon for a new vehicle. About half
of these approaches also coordinate the process of vehicles leaving the platoon
to, for example, join another platoon or take a different route. The others do
not explicitly advice vehicles to leave a platoon, but, for instance, assume that
vehicles stay in the platoon until they reach their destination as in [HC05].
Apart from coordinating single vehicles to join or leave a platoon, several ap-
proaches are able to merge two or more platoons or split a platoon in multiple
platoons. A considerable body of research also proposes routing algorithms
for platoons, which is especially attractive for trucking companies with fixed
deadlines. Platoon parameter changes or lane changes are only coordinated
by a small subset of existing approaches. We observe that platooning coordi-
nation mostly happens on a high level of abstraction, leaving the execution
of the suggested actions to a platooning control approach (cf. Section 4.1.2).
Platoon parameter changes encompass the adjustment of a platoon’s speed
(coordinated by five approaches), inter-platoon positioning (two approaches),
and inter- or intra-platoon spacing (two approaches).

42

4.2 Platooning Coordination

Ene
rgy

 Effic
ien

cy

Cos
t M

ini
miza

tio
n

Com
mon

 D
ist

an
ce

Trav
el

Tim
e

Sch
ed

ule
 M

iss
 Pen

alt
ies

Com
for

t

Roa
d C

ap
ac

ity
Spe

ed
Prof

it

Flee
t U

tiliz
ati

on

Fail
ed

 Acti
on

s

Con
sis

ten
cy

 of
 C

on
tro

lle
rs

Trus
t in

 Le
ad

er

Dep
art

ure
 Tim

e
0

10

20

Objectives

Des
tin

ati
on

Lo
ca

tio
n
Spe

ed
Tim

e
Rou

te

Veh
icle

 C
ha

rac
ter

ist
ics

Veh
icle

s w
ith

in
Hori

zo
n

Roa
d N

etw
ork

Hea
dw

ay
 to

 Veh
icle

s

Use
r P

ref
ere

nc
es

Fue
l C

on
su

mpti
on

 M
od

els

Dep
art

ure

Wea
the

r
Traf

fic

Plat
oo

n L
en

gth
0

5

10

15

20

Input

Dea
dli

ne
s

Spe
ed

 Li
mit

Plat
oo

n S
ize

Tim
ing

Spe
ed

Max
 R

oa
d C

ap
ac

ity
La

ne
s

Dist
an

ce
0

2

4

6

8

Constraints

Opti
miza

tio
n

Rule
-ba

se
d

Heu
ris

tic

Ite
rat

ive

Gree
dy

Gam
e T

he
ory

0
3
6
9

12
15
18
21
24

Algorithm

Figure 4.4: Results of the literature review on platooning coordination approaches.
Overview of the strategy category with the objectives, inputs, algorithms, and con-
straints found in platooning coordination literature.

4.2.3 Strategy

Similar to the previous section, this section provides a broad overview of
existing literature for all dimensions of the strategy category. Again, we
decided not to discuss the papers individually but to categorize them based on
the dimensions and highlight relevant details. Figure 4.4 provides literature
statistics on this classification and we refer to it in the following sections.

4.2.3.1 Objectives

Our literature review reveals that energy efficiency is the dominating objective
in platooning coordination. Closely related to this, five approaches minimize
the overall cost of a journey which may—in addition to fuel costs—include

43

Chapter 4: Intelligent Transportation Systems

wages [MSH08] or monetary penalties for missed deadlines [ZSK17]. Further
objectives are only considered by three or less approaches. Several approaches
define custom objectives that are only applicable to the respective approach.
[VWHK13b], for instance, minimize failed actions. A feedback loop in the
algorithm monitors which actions such as joining a platoon were successful.
This metric is then used to evaluate different controllers that coordinate the
driving process. A high consistency of these controllers is another objective
mentioned in this work. The authors use different controllers in simulations,
compare their consistency across several simulation runs, and prefer more
consistent controllers.

4.2.3.2 Input

Input factors for a coordination strategy can be categorized in characteristics of
the:

• drive (e.g., destination, current location or time deadline),

• user preferences (e.g., speed, route or optimization goals),

• vehicle characteristics (e.g., braking/acceleration coefficient, vehicle shape
or fuel consumption model),

• platooning factors (intra-platoon position, time as leader or platoon size),

• traffic situation (e.g., traffic flow, headway to platoons or vehicles within
horizon), and

• environment characteristics (e.g., road network, topography, weather or
street condition).

We observe that information about the destination of a vehicle and its current
location are themost frequent input for platooning coordination in the literature.
This geographical information is not only relevant for routing approaches but
also for a well-informed platoon formation decision that allows vehicles to stay
in a certain platoon for as long as possible. Many approaches also require the
speed of a vehicle, the time, and the route as an input. Surprisingly, we observe
that information about the individual vehicle such as the vehicle characteristics
(considered in four approaches) and the user preferences (one approach) are
only used by a small subset of approaches. The same applies to important
context information about the weather and the traffic situation that are both
considered by only one existing approach.

44

4.2 Platooning Coordination

4.2.3.3 Constraints

Platooning coordination strategies have to take constraints into account. The
choice of the algorithms is limited by, e.g., the maximum size of a platoon or
the maximum road capacity. In truck platooning, deadlines of transport assign-
ments are frequently used as constraints. This ensures that, e.g., fuel-optimal
routing does not lead to detours that prolong the journey excessively. In some
approaches, e.g., in [Eil15,LMJ16], this is generically extended to more sophis-
ticated timing constraints, which may include departure times, intermediate
stops or rest periods. Several approaches limit the possible coordination actions
by considering a speed limit. [Eil15] and [XSJ21] go beyond this and consider
general speed constraints, for instance, in form of multiple, predefined speed
options for each vehicle. [HS19a] formulate the constraint that the coordina-
tion algorithm only considers vehicles driving on the same lane as potential
platooning partners.

4.2.3.4 Algorithm

The algorithm is the core of the coordination approach. It selects platooning
actions such as joining or leaving based on the input information to achieve
a certain objective under the specified constraints. Most approaches use op-
timization algorithms to evaluate different options. Here, (non-)linear pro-
gramming (e.g., in [BDSH13,LSL15,VJD15]) is frequently applied to optimize
an objective function. In addition, several approaches perform optimization
with bio-inspired algorithms such as genetic algorithms (e.g., in [NH16]),
ant colony optimization (e.g., in [NH19]) or grey wolf optimization (e.g.,
in [DRTR+19,DRTRS20]). The computational complexity of the optimization
algorithms may render them infeasible for an application in practice. Fuel-
optimal routing of vehicles, for instance, is proven to be NP-hard [LSL15].
Thus, several approaches operate based on rules or develop heuristics to elim-
inate the need for an exact optimization. Less common are iterative algo-
rithms (all three approaches in [Lia14]) or the greedy choice of coordination
actions [BTV+16,RLR18]. [JNJM18] apply a game-theoretic approach that mod-
els the strategic interactions between vehicles owned by different companies.
This coordination approach assigns trucks with different departure times to
platoons and shows that this cooperative behavior has its benefits.

45

Chapter 4: Intelligent Transportation Systems

4.3 Platooning Coordination Simulation

This section presents our simulation framework we published in [KLP+19].
The framework integrates the platooning simulator Platooning Extension for
Veins (PLEXE) [SJB+14], which is based on Vehicles in Network Simulation
(Veins) [SGD11] (including Simulation of Urban MObility (SUMO) and OM-
NeT++) with the Platooning Coordination System (PCS) for platooning co-
ordination [KSB+18]. The simulation framework integrates two components
for (i) a simplified definition of the platooning coordination strategies and the
configuration of the simulation as well as (ii) a web interface based analysis of
the simulation results. This enables user without experience in programming /
simulation to use it.
Following the MAPE-K approach [KC03], the PCS is structured into the

four key functionalities of monitoring the vehicles, analyzing which platooning
actions are necessary (e.g., join requests of vehicles or inter-platoon actions),
planning necessary actions, and controlling the execution of these adaptations.
The monitor and the executor elements communicate with the vehicles (or the
a platooning simulation) using a JSON-based protocol for collecting data and
sending instructions, respectively. For analyzing and planning of the platooning
behavior using the collected data, the PCS can integrate different coordination
strategies to comply with individual objectives of drivers, e.g., travel as fuel-
efficient as possible versus travel as fast as possible while keeping the benefits
of platooning. These functions are supported by a shared knowledge repository
that represents a typical self-adaptive systems approach [KRV+15] and enables
adaptations of platooning behavior of vehicles at any time.
To simplify simulations with the PCS, we build a simulation framework

connecting the PCS with PLEXE that includes a configuration tool and a web
interface for the analysis of simulation runs. The PCS is well integrated into
our simulation framework. Accordingly, users do not have to implement their
strategies directly into the PCS to test new platooning coordination strategies.
Users are rather able to just implement the algorithms of their strategies in
a common Java class and export them as jar-files. We offer a development
environment which supports an API for interacting with the PCS, such as
accessing collected information or abstracting the commands of the JSON
protocol. Accordingly, users can just implement their platooning coordination
strategies, load them into the simulation tool and evaluate them.

We implemented the simulation tool using Python that invokes all required
components of the simulation. A Graphical User Interface (GUI) permits the
users to quickly setup a simulation, run it, and import the simulation outcome
into a separateweb interface for the visual analysis. Users can choose the PLEXE

46

4.3 Platooning Coordination Simulation

subsystem to be used, which can either be the version of PLEXE installed on
the host machine or Instant-Plexe, i.e., a Linux-based Virtual Machine (VM),
which comes with all the required software pre-installed. In addition, it permits
the user to choose the installation location of the web analyzer for importing
simulation results into the analysis tool.
Once the user chooses the subsystem to use, it presents a window enabling

the quick creation of a simulation by entering some basic information such
as the duration. The user can then choose the SUMO map and a traffic flow
configuration. Currently, the tool offers two sample maps and a couple of pre-
configured flow files, but the user can integrate additional ones. Next, the user
chooses the coordination strategy. The different algorithms of the coordination
strategies are loaded from a jar-file and displayed as a choice to the user. This
will tell the PCS which coordination logic to load and to employ during the
simulation. Finally, the tool creates a new PLEXE simulation folder includ-
ing all the required configuration files. These files are standard OMNeT++
configuration files, as the ones included in any Veins or PLEXE tutorial. The
experienced user can thus also generate a basic simulation and then manually
tune additional parameters (e.g., IEEE 802.11p network parameters). The final
tab permits the user to run a simulation and, at the end, to extract the data
from the simulation and import it into the web analyzer tool.

The web interface for providing the graphical qualitative analysis of platoon-
ing coordination simulations was implemented using the Symfony Framework
for PHP and JavaScript. It is composed of two web pages. The first one lists
the simulations that have been run and permits either to analyze one or to
choose two of them for comparison. The list of simulations is retrieved from a
database which, in turn, is populated by the GUI interface. Once a simulation
(or a pair) is chosen, the second page of the interface displays the SUMO map
associated with the simulation and permits to re-play it. Each vehicle is dis-
played as a rectangle, and the color can either identify the vehicle type or the
association to a platoon. Hence, vehicles belonging to the same platoon can be
displayed using the same color. In addition, by clicking on a vehicle, the inter-
face shows additional information such as current speed and its time evolution,
platoon id, position, distance or relative speed to the front vehicle. Currently, we
are developing a dashboard that shows the aggregated results of simulation
runs w.r.t. platooning compositions, velocity, environmental pollution, energy
consumption, and time spent in platoons.

47

Chapter 5

Logistics

According to the Council of Supply Chain Management Professionals, logistics
can be defined as [oSCMP13, p.117]:

“The process of planning, implementing, and controlling procedures for the
efficient and effective transportation and storage of goods including ser-
vices, and related information from the point of origin to the point of
consumption for the purpose of conforming to customer requirements.
This definition includes inbound, outbound, internal, and external move-
ments.”

This definition mentions two central processes in the field of logistics, namely
the transportation and storage of goods. The transportation of goods refers
not only to the actual transport, but also includes the planning of delivery
routes. This planning process is mathematically defined as the well-known TSP
and VRP. Warehousing of goods, in addition to actual storage, refers to other
processes such as warehouse planning, storage assignment, and order picking.
In addition to these two general processes, the logistics domain encompasses a
broader variety of processes [MKS10,KT05,LR98]. While the concepts of SAS
can be applied to many of these processes and could enhance the respective
system, we put special focus on the processes of transportation and storage of
goods. These processes are meaningful case studies for the application of our
contributions as they are complex systems with high requirements and provide
adaptation possibility. Still, the contributions of this thesis can also be applied
to other use cases from the logistics domain for which the application of SAS
appears meaningful. Further, the contributions can be generalized and applied
also in other domains to which the application of SAS are meaningful such
as, for example, in the packet routing within intelligent computer networks.
However, the focus of this thesis is on the transportation and storage of goods,
so this chapter only provides background information on the TSP and VRP, as
well as on mezzanine warehouses.

49

Chapter 5: Logistics

5.1 Traveling Salesman Problem

The TSP is a highly researched optimization problem, first mentioned in the
1830s [Voi31]. It deals with the problem of finding the shortest possible route
from a given initial city that visits all other cities exactly once and then returns
to its initial city. This problem is known to be NP-hard and, hence, there is
probably no algorithm that solves this problem in polynomial time.

The first philosophical mentions of the TSP are found in a literary magazine
as a book advertisement in the 1830s [Voi31]. The advertised book describes
the daily life of a traveling salesman and gives instructions on how to do the
job, hints on good routes through Germany and Switzerland, and suggests
places to stay. The first mathematical focus is found in the 1950s with the
definition proposed by Merrill M. Flood [Flo56]. Later, it was implicitly proven
that the TSP is NP-hard when Richard M. Karp proved the NP-hardness of
the Hamiltonian cycle [Kar72]. The TSP has been and is still being extensively
researched, as it can be used for a variety of real-world applications.
The TSP aims to find minimal routes within a network of cities and can

therefore be represented by graphs. This graph consists of nodes representing
cities and edges representing paths between nodes. The distances between
nodes are represented by the weights of edges. The TSP is a minimization
problem where the goal is to find a path that visits all existing nodes. This
path must start from a particular node, which serves as the start and end
node. In addition, the TSP can also be modeled mathematically by Integer
Linear Program (ILP) formulations first proposed by Dantzig, Fulkerson, and
Johnson [DFJ54] and Miller, Tucker, and Zemlin [MTZ60].

Exact approaches to solving the TSP include brute-force algorithms, branch-
and-bound techniques [BT83], and linear programming [DFJ54,MTZ60]. Since
the TSP is provably NP-hard, its complexity does not allow the computation
of exact solutions for large problem spaces. Therefore, the focus has shifted to
heuristic approaches that compute feasible solutions in a short time. David S.
Johnson and Lyle A. McGeoch provide a comprehensive overview of heuristic
approaches, including greedy algorithms, nearest neighbor, k-opt, Tabu Search,
Simulated Annealing, GA, and Neural Networks, in their book chapter [JM03].
Besides, ACO are also commonly applied to the TSP [DG97].

5.2 Vehicle Routing Problem

The VRP is a generalization of the previously introduced TSP, which was first
introduced in 1959 [DR59]. While the TSP considers a single vehicle for which

50

5.2 Vehicle Routing Problem

a route must be planned, the VRP considers multiple vehicles for which routes
must be planned taking into account a number of customers and orders. The
goal is to reduce the total driving distance for all vehicles while serving all
customers. Since it is a generalization of the NP-hard TSP, the VRP is also an
NP-hard problem [Kar72]. In 1964, Geoff Clarke and John W. Wright proposed
the first effective greedy heuristic for computing solutions for the VRP [CW64].

Similar to the TSP, the VRP can also be represented as a graph consisting
of nodes and edges modeling customers and paths between customers, re-
spectively. Again, the edge weight represents the distance between two nodes,
and the goal is to minimize travel distances. However, unlike planning a sin-
gle route with all nodes in the TSP, the VRP must compute a set of routes
that consider all customers. The number of routes to be planned equals the
number of vehicles. Three mathematical models for the VRP are proposed
according to [LSG06]: (i) Vehicle flow formulation [Lap92], (ii) Commodity
flow formulation [GG78], and (iii) set partitioning formulation [LSG06].

The survey by Gilbert Laporte and Yves Nobert categorizes exact solution
approaches to the VRP into three groups [LN87]: (i) Direct tree search, (ii) dy-
namic programming, and (iii) ILP. However, the VRP is an NP-hard problem
and, so there is no algorithm that finds an exact solution in polynomial time.
This is the reason why researchers and practitioners use heuristic approaches
such as Savings Algorithm, Tabu Search, Simulated Annealing, GA, ACO, and
hybrid approaches [TV14].

The basic definition of the VRP is often extended by further constraints,
which are necessary for the application to real use cases [TV14]. The capac-
itated VRP considers capacities of vehicles that must not be exceeded. This
leads to the assumption of homogeneous or heterogeneous fleets, where in the
homogeneous case all vehicles are assumed to have the same capacity, which
is not the case in the heterogeneous instances. While the standard variant of
VRP considers only one depot, the pickup and delivery variant (P&D) of VRP
allows considering multiple pickup and delivery locations. This means that
the delivery of a good must be scheduled with the same vehicle that picks up
the good. This constraint leads to the consideration of multiple depots within
one VRP, while the base version considers exactly one depot that is both the
origin and destination. In addition, uncertainty can be part of the definition of
VRP, since parts or all of the input may be unknown at the time of planning.
This leads to dynamic VRPmodels that are able to handle uncertainty at design
time [PGGM13].

51

Chapter 5: Logistics

5.3 Mezzanine Warehouses

Warehouses play a central role in the supply chain of a company and con-
tribute to its logistical success. When employing humans, picker-to-parts and
parts-to-picker methods are differentiated [DK07]. Experts estimate the picker-
to-parts system to be the most common in Western Europe with a share of
over 80% [DKLDR07]. A well-known picker-to-parts system is the mezzanine
warehouse which we address in this work. Working within a mezzanine ware-
house consists of two main tasks: (i) filling the storage with goods (storage
assignment) and (ii) picking items out of the storage (order picking). The stor-
age assignment problem defines the task of selecting storage locations to put a
product into storage. The order picking problem defines the task of computing
a pick route that collects the requested products of a customer order. Finding
suitable storage allocations is important, as the allocation of products affects
the travel distances during order picking. Due to the NP-hardness and, hence,
the complexity of the storage assignment and the order picking problem, effi-
cient optimization algorithms are required to find satisfying solutions within
acceptable times. This section is based on our publication [LMK+21b] and first
introduces the mezzanine warehouse layout in Section 5.3.1 and presents state-
of-the-art mechanisms for storage assignment and order picking in Section 5.3.2
and Section 5.3.3, respectively.

5.3.1 Warehouse Layout

Mezzanine warehouses usually store small-sized products that need to be
picked by employees traveling through the warehouse. This type of warehouse
consists of one or multiple floors to store goods using racks. Roodbergen and
De Koster [RdK01] provide a general layout of such a mezzanine warehouse
floor in their work from top-down view from which the following illustration
in Figure 5.1 is derived.
Each floor consists of a predefined number of storage racks illustrated as

white squares arranged in blocks, each consisting of three storage racks. The
racks can be identified by their rack id depicted as the top number inside the
rack, while the bottom number indicates the bay number. While the rack id
uniquely identifies a rack within a floor, the bay number indicates the ordering
of the racks within each block and, hence, is unique solely within a block. The
blocks are separated by aisles of different sizes and directions: (i) horizontal
cross aisles and (ii) pick aisles. While the horizontal cross aisles do not provide
access to the racks, these are used to change the pick aisles from which the
employee can access the racks. The cross aisles are wide enough to travel using

52

5.3 Mezzanine Warehouses

Figure 5.1: Example floor layout of a mezzanine warehouse (c.f. [RdK01]) consisting
of blocks, storage racks, cross and pick aisles, and p/d-points.

picking carts. The pick aisles can be grouped into two types: narrow and
wide pick aisles. Picking carts can be carried only in wide pick aisles and the
employee needs to park the cart at a wide aisle to pick goods within narrow
pick aisles. The part of an aisle within a block is called sub aisle of the according
block, and, hence, a pick aisle consists of multiple sub aisles. The black dot at
the left bottom of the figure indicates a p/d-point where employees need to
deliver the picked goods or pickup the next set of goods to be stored in the
warehouse. Finally, the employees are able to change the floor of the warehouse
by using stairs or lifts.

The considered racks are identical in terms of their height, width, and depth
within the warehouse. However, each rack can be configured individually with
respect to the needs of the currently stored goods. Figure 5.2 shows possible
configurations of the considered racks in this work depicted from the front. The

53

Chapter 5: Logistics

rack configuration determines the number of shelves, that is, number of levels
within a rack, and the number of compartments per shelf. Configuration 1
in the figure depicts three shelves each divided into two parts that represent
compartments. Hence, this configuration offers six storage locations. Con-
figuration 2 offers twelve storage locations by applying six shelves with two
compartments each, and Configuration 3 offers 24 storage locations by dividing
the six shelves into four compartments each.

Figure 5.2: Example rack configurations that can be individualized with respect to
the requirements of the stored goods. The configurations differ in the structure by the
number of shelves as well as the number of compartments within a shelve.

5.3.2 Storage Assignment

The storage assignment problem defines the task of selecting storage locations
to put a product into storage. Since mezzanine warehouses usually provide
a large number of storage racks, it is difficult to find the optimum storage
allocation that fulfills all custom constraints as well as ergonomic and economic
objectives defined for the problem. The following sections introduce a subset
of the most common storage assignment strategies present in the literature and
applied in real-world warehouses.

The simplest storage policy is called dedicated storage policy [BIH19] in which
each product is assigned to a dedicated and exclusive storage location. Using
this policy, no changes in the warehouse need to be made and employees

54

5.3 Mezzanine Warehouses

get to know the locations over time. However, the warehouse utilization is
comparably low with a value of half of the storage capacity on average.
The random storage policy [BIH19] does not exclusively reserve locations for

specific products but assigns incoming products randomly to unoccupied racks.
This policy usually achieves better utilization values but comes with a higher
administrative effort since the product locations change over time.

The closest open location storage policy [DKLDR07] reduces the randomness of
the random storage policy by letting the employees select the storage location
which results in selecting the first empty location the employee encounters.
This leads to a higher utilization in the neighborhood of the p/d-points while
racks that are farther tend to be empty.
The rank-based storage policy removes the randomness completely and ranks

each incoming product based on a predefined rule set. These rules could
contain but are not limited to [PSH05,Fra02,Hes63]: popularity, turnover, that
is, the requested quantity by customers, the volume, the pick density, or the
cube-per-order index.

Figure 5.3 illustrates four additional rank-based storage assignment policies
introduced by [PS99]. This policy assigns storage locations based on the best-
and worst-ranked products illustrated by black and white squares in the figure
determined by their distance to the next p/d-point. The diagonal strategy (1)
assigns incoming products according to their Euclidean distance to the next
p/d-point, best ranked close and worst ranked further away from the p/d-point.
The within-aisle strategy (2) assigns the best-ranked incoming products within
the same aisle of the p/d-point. The across-aisle strategy (3) assigns the best-
ranked incoming products to the entrance of all aisles that is nearest to the
p/d-point. Finally, the perimeter strategy (4) assigns the best-ranked incoming
products around the perimeter of the warehouse assuming that these are the
most traveled aisles of the floor.
Class-based storage assignment strategies [DKLDR07] are a combination of

the previously mentioned strategies as they include the following three tasks:
(i) grouping of products into classes, (ii) definition of class regions within the
warehouse, (iii) assign products to the defined region. Usually, the grouping
is done using three classes (A-, B-, and C-class) that distinguish between fast-
and slow-moving products.
Further, De Koster et al. [DKLDR07] take another factor into account for

determining the optimal storage locations for products in their family grouping
strategy. They include the correlation of products into account and propose to
store products close to each other that often need to be picked in combination.
They differentiate two types of strategies: complimentary-based and contact-

55

Chapter 5: Logistics

Figure 5.3: Illustration of rank-based storage assignment strategies (c.f. [PS99]). The
storage locations are assigned based on the best- and worst-ranked products illustrated
by black and white squares.

based, which measure joint demand or contact frequencies of the correlated
products, respectively.

Besides the assignment of products to racks, the golden zone assignment strate-
gies [PSH05] focus on the assignment of products into compartments. With
golden zone these strategies refer to compartments located at grip height, that is
between waist and shoulders of the picker. These strategies assign fast-moving
products exclusively to the golden zones of racks and disregard the travel
distance to the according rack.

5.3.3 Order Picking

The order picking problem defines the task of constructing pick routes within
a warehouse that include all products of a pick list derived by a customer order.
State-of-the-art routing heuristics are able to construct these routes fast and try
to minimize the travel distance per route. They model the problem as TSP and
start and end the route at a specific p/d-point.

56

5.3 Mezzanine Warehouses

Figure 5.4: Illustration of five state-of-the-art order picking strategies and the optimal
strategy based on dynamic programming (c.f. [Pet97, RR83]). Racks that contains
items to be picked are marked in blue, the planned route is depicted as blue dotted
line and starts at the p/d-point depicted as black dot.

Petersen [Pet97] proposes five routing strategies applicable for mezzanine
warehouses andwhich are illustrated in Figure 5.4. The S-Shape strategy defines
the route inside the warehouse to completely traverse all aisles that contain
required products. It alternates the traversing direction so that a shape similar
to the letter S is created as depicted in the figure. When applying the Return
strategy, the picker enters the pick aisles in which required products are stored
but always returns to the entrance of this aisle. Hence, in the worst case, an
aisle might be traversed two times in case the product to be picked is stored
in the last rack. In the Mid-Point strategy, the picker passes through each aisle
at most to the middle of the aisle and then returns to the entrance through
which he entered the aisle. In case a product is located further within the
aisle, that is, behind the mid-point, the picker needs to enter the pick aisle
from the other entrance again. The Largest Gap strategy adapts the idea of the
Mid-Point strategy but dynamically sets the point that should not be traversed
based on the largest gap between two products in the aisle. In this way, this

57

Chapter 5: Logistics

strategy attempts to minimize travel distance by avoiding passing shelves that
are not needed. Finally, the Combined strategy combines the S-Shape and Return
strategies. It selects the pick aisle entry based on the current location of the
picker and after all products are picked, the strategy decides to either complete
this aisle and use the other entrance or to return to the initial entrance. In
addition to these five strategies, Ratliff and Rosenthal [RR83] present another
strategy called Optimal strategy where they apply dynamic programming to
find the shortest route. For small problem instances, this method can be used
to determine the optimum solution that can be used as gold-standard.

58

Chapter 6

Selected Motivating Scenarios

The central goal of this thesis is the design, prototypical implementation, and
evaluation of a generally applicable self-aware optimization framework with a
special focus on use cases in the ITS and logistics domain. The selection of these
two domains was done due to their increasing research interest especially for
the application of SAS to enable adaptability within a highly dynamic environ-
ment. Still, we are convinced that the motivating scenarios and the prototypical
application of our contributions can be generalized and transfered to other
domains besides ITS and logistics. In order to gain a deeper understanding of
these use cases, we perform a set of case studies and further analyze important
properties of the use cases. These case studies and analyses should be seen as
motivating scenarios that will be further addressed in the course of this thesis
and are one contribution of this thesis.
First, we analyze the form in which optimizations are useful in adaptation

planning systems in order to define the general direction of the framework.
Therefore, we use platooning coordination as representative for the ITS do-
main where the platooning coordination algorithm is the adaptation planning
strategy that decides on adaptations of the entities in the system. Using this
case study, we analyze in Section 6.1.1 how the adaptation planning strategy
perform in different situations and how the current situation affects the optimal
strategy and its parameterization. Our results show that the situation highly
affects the adaptation planning strategy performance and that the strategy
should be dynamically selected and tuned to the current state of the system
and the environment.
Second, motivated by the findings of the literature on the advantages and

disadvantages of platooning, such as the lower slipstream benefits for vehicles
at the front (c.f. Section 4.1, [BSC+12]), we analyze fairness aspects for pla-
tooning participants. Therefore, we performed a case study in Section 6.1.2
on adaptation planning strategies that manage the sequence of vehicles of a
platoon. We designed six rotation strategies for platoons with the aim to equally
distribute benefits and disadvantages while driving in a platoon. Our study

59

Chapter 6: Selected Motivating Scenarios

utilizes different platoon sizes, platoon speeds, as well as traffic and road con-
ditions to analyze how well they distribute the benefits and which mechanism
performs best in which situation. The results show that all strategies distribute
the benefits but have their individual sweet spot with respect to the traffic and
road conditions.
Third, as the targeted use cases operate in dynamic environments to which

they need to adapt, uncertainty is another important characteristic. In our
third case study in Section 6.1.3 we analyze aspects of a proactive adaptation
planning system for route planning. We study uncertainty in the use case of
fuel price volatility and integrate uncertainty aspects into utility functions. Our
case study shows that uncertainty is an important property of the targeted use
cases and need to be addressed when applying adaptation planning strategies.
Analogous to the ITS domain, we argue that these properties can also be

transferred to the logistics domain. We discuss two further use cases called
(i) storage assignment and order picking in Section 6.2.1, and (ii) vehicle routing
in Section 5.2 for this domain and highlight important challenges these use cases
add to this thesis. The common challenge of both is their systems-of-systems
structure and, hence, the inter-relatedness of the handled problem statements.
While we classify the storage assignment and order picking problem as hori-
zontal systems-of-systems, we call the VRP a vertical systems-of-systems.

6.1 Intelligent Transportation Systems

The ITS domain is the first domain we address in this thesis including three
case studies on platooning coordination, platoon vehicle sequence, and route
planning. All use cases aim at a specific challenge faced by adaptation planning
strategies in dynamic environments. Nevertheless, all challenges can be found
in all mentioned use cases. We first analyze the situation-dependency of adap-
tation planning strategies to motivate the meaningfulness of our framework
on the platooning coordination use case. Afterward, we study fairness aspects
within the platoon as the benefits and disadvantages of platooning are not
equally distributed among all participants. Finally, we discuss the uncertainty
challenge in highly dynamic environments in the example of route planning
with volatile fuel prices.

6.1.1 Situation-dependency

To analyze the meaningfulness of a self-aware optimization framework, we con-
ducted a study on the situational behavior of platooning coordination strategies

60

6.1 Intelligent Transportation Systems

as a representative of ITS and presented the results in [LNH+21]. This section
aims tomotivate the self-aware optimization framework by presenting the study
results. Therefore, we provide only the most important details of the study
design and omit some details as they would unnecessarily lengthen this section.
Nevertheless, all details of the study can be found in our paper [LNH+21].

In the aforementioned study, we analyzed the situation dependence of three
platooning coordination strategies by applying them to twenty different traffic
scenarios and optimizing their input parameters using four optimization tech-
niques. We define four baseline traffic scenarios with the parameters platoon
percentage, car spawning rate (car/h), truck spawning rate (truck/h), and
speed limit (km/h). Then, we combine these base scenarios with five variations
using the parameters maximum platoon size, allowed overtaking, and number
of lanes. This combination results in a total of 20 traffic scenarios.
For the coordination of platoons, we use the following three well-known

platooning coordination strategies [KLP+19]: (i) best velocity, (ii) closest
distance, and (iii) closest distance and lane. The best velocity strategy defines
the bestmatching platoon by calculating the velocity difference between platoon
and vehicle and selecting the platoon with the lowest positive speed delta. The
closest distance strategy analyzes the distance between vehicle and possible
platoons and selects the platoon with the lowest longitudinal distance. The
closest distance and lane strategy not only calculates the longitudinal distance
of vehicle and platoon but incorporates the number of lanes between them.
We use four optimization techniques to adapt the input parameters of the

platooning coordination strategies to the current traffic situation: (i) NSGA-
II [DPAM02], (ii) a modified NSGA-II version using Novelty Search [LS10],
(iii) Bayesian Optimization [BCDF10], and (iv) Simulated Annealing [KGV83].

As target metrics for the optimization algorithms, we define four objectives
with corresponding metrics to analyze the currently selected input parameters’
performance. The metric throughput analyzes the number of arriving vehicles
per hour compared to the number of starting vehicles per hour and covers
platooning goals for traffic flow and road capacity. The time loss metric cal-
culates the average time in seconds lost by all vehicles on the road compared
to their expected travel time and covers velocity and time goals of platooning
and vehicle-specific objectives for platooning coordination. The platoon utiliza-
tionmetric measures the average platoon size, that is, the average number of
vehicles in the platoon, compared to the maximum platoon size and covers
platoon-specific goals of platooning coordination. Finally, the platoon time met-
ric compares the time traveled in a platoon in seconds to the total travel time
and covers time and user comfort metrics of platooning.

61

Chapter 6: Selected Motivating Scenarios

6.1.1.1 Situation-Dependent Behavior of the Coordination Strategies

In this experiment, we compare the strategies in 20 traffic scenarios and analyze,
which strategy optimizes which metric as displayed in Figure 6.1. The x-axis
displays the different platooning coordination strategies; the y-axis shows the
number of best solutions each strategy has for each metric. Since 20 different
traffic situations exist, a coordination strategy can have 20 best solutions at
maximum. To have the best solution for a given metric and traffic situation, a
coordination strategy needs the best score for the metric and scenario variation.
As can be seen, none of the strategies performs best for each metric. Conse-
quently, the relevant metrics drive the choice of the platooning coordination
strategy and, hence, this choice is objective-dependent. Further, as each strategy
optimizes the throughput metric in a specific scenario, even for a dedicated
metric, a specific strategy might be superior in a specific traffic scenario. There-
fore, the choice is also situation-dependent which leads to the conclusion that
adapting to the traffic situation by switching the strategy is beneficial.

Best velocity Closest distance Closest distance & lane0

5

10

15

20

Nu
m

be
r o

f b
es

t s
ol

ut
io

ns

Time loss metric
Throughput metric
Platoon time metric
Platoon utilization metric

Figure 6.1: Comparison of the three platooning coordination strategies over all 20
traffic situations. The metrics are depicted as blue bars representing the number of
best solutions identified by the particular strategy.

6.1.1.2 Situation-Dependent Behavior of the Strategy Configuration

We now focus on one specific strategy and analyze the relevance to take various
configurations into account. The experiment focuses on the metric platoon uti-
lization and the best velocity strategy as this strategy shows the best solutions
in all of the 20 traffic scenarios. We define three configurations for the best
velocity strategy and group the traffic scenarios by the base scenarios. Each of
the three defined strategy configurations might be superior depending on the
traffic condition. Figure 6.2 shows how many best solutions each configuration

62

6.1 Intelligent Transportation Systems

of the best velocity strategy has for every scenario. The maximum number of
best solutions per scenario is five. The figure shows that Configuration 2 only
has the best solutions in Scenario 2 and 3. The other configurations have best
solutions in every scenario. Furthermore, there is no scenario with only one
configuration having the best platoon utilization solution for every variation.
Consequently, the results demonstrate the benefit of adapting the platooning
coordination strategy’s configuration to the specifics of the current traffic situa-
tions as even slight changes in the conditions need to be coped in the parameters.

Figure 6.2: Analysis of the velocity based strategy for the four base scenarios. The
three different configurations are depicted as colored bars which represent the number
of best solutions identified by the configuration in each scenario.

6.1.1.3 Unique Contribution of the Optimization Algorithms

First, we compare the optimization algorithms using only the concept of Pareto
dominance. Figure 6.3 combines the solutions of all Pareto fronts produced
by every optimization algorithm into one front. First, it displays the size of
the final Pareto fronts in green. Additionally, the plot contains the number
of contributions and unique contributions for every optimization algorithm.
The contribution indicates the number of solutions in the final front produced
by an optimization algorithm which are not dominated by solutions in the
combined front. A unique contribution is a contribution that was only made
by one optimization algorithm. Ranking the optimization techniques, Bayes is
first in terms of contributions, followed by Simulated Annealing and NSGA-
II, which provide comparable results, and finally Novelty Search with low
amounts of contributions. However, every optimization technique—except for

63

Chapter 6: Selected Motivating Scenarios

Novelty Search with a novelty weight of 0.3—contributes unique solutions to
the combined Pareto front. Thus, no algorithm dominates another one entirely.

Bay
es

hv

Bay
es

do
m

Sim
An h

v

Sim
An d

om
NSG

A-II

Nov
Se

a 0
.1

Nov
Se

a 0
.2

Nov
Se

a 0
.3

0

50

100

150

200

250

Nu
m

be
r o

f s
ol

ut
io

ns

Unique Contribution
Contribution
Total solutions

Figure 6.3: Analysis of the contribution to the best-known front for each optimization
algorithm. The colors represent the number of total solutions, contributions and unique
contributions per algorithm.

6.1.1.4 Objective Score Dependent Performance of the Optimization
Algorithms

Now, we analyze the final Pareto fronts of every optimization algorithm based
on the objective scores as summarized in Table 6.1. The table highlights the
best average value per objective. Taking all platooning coordination strategies
into account, the evaluation calculates the average and standard deviation over
the final fronts of all strategies. Overall, Bayes has great results for every metric,
especially when taking both algorithm versions into account. NSGA-II and
Simulated Annealing show average values overall. Novelty Search is below
average, except for the platoon utilization metric of versions 0.2 and 0.3 as well
as the time loss metric for Novelty Search 0.1. Furthermore, there is a tendency
for the HV and dominance rank versions of Simulated Annealing and Bayes.
The solutions produced by the dominance rank show high scores for time
loss and throughput while the HV versions dominate the platooning-specific
metrics. The HV based approaches may focus onmore fluctuating metrics since
a greater increase in metric score leads to better HV values. This complies with
the findings in this table, showing a higher standard deviation in the platoon

64

6.1 Intelligent Transportation Systems

metrics. Additionally, the high standard deviation of Bayes with dominance
rank is another interesting aspect. The observations in Figure 6.3 show a high
Pareto front size of Bayes with dominance rank combined with higher standard
deviation indicate that this optimization algorithm findsmore diverse solutions
providing opportunity for adaption to user preferences.

Table 6.1: Average objective score and standard deviation for every optimization
algorithm and objective.

Time loss Throughput Platoon time Platoon util.

mean std mean std mean std mean std

Bayes hv 0.887 0.015 0.732 0.007 0.475 0.159 0.572 0.115
Bayes dom 0.907 0.016 0.737 0.005 0.402 0.175 0.486 0.128
SimAn hv 0.890 0.014 0.733 0.007 0.461 0.142 0.559 0.087
SimAn dom 0.902 0.013 0.736 0.006 0.400 0.140 0.505 0.104
NSGA-II 0.905 0.015 0.737 0.006 0.390 0.137 0.502 0.124
NovSea 0.1 0.900 0.014 0.734 0.006 0.379 0.132 0.500 0.114
NovSea 0.2 0.897 0.014 0.734 0.006 0.396 0.143 0.517 0.121
NovSea 0.3 0.893 0.013 0.732 0.006 0.405 0.127 0.526 0.105
Default 0.897 0.009 0.735 0.003 0.363 0.033 0.494 0.034

6.1.1.5 Relation of Optimization, Adaptation Planning, and Objectives

The following Figure 6.4 contains boxplots for showing the relation between
optimization algorithms, platooning coordination strategies, as well as objec-
tives. As it can be seen, to optimize different objectives, not only a specific
planning strategy is superior, also for the optimization different algorithms
might improve the planning strategies differently. As one specific example,
for the objective platooning utilization, it can be seen that for the strategy best
velocity NSGA-II performs best. However, it performs worst for the closest
distance; contrary behaves Simulated Annealing. Also, it can be seen that for a
specific planning strategy, not a single optimization algorithm performs best.
For example, for the closest distance and lane strategy, the Simulated Annealing
algorithm performs worst when targeting the objective time loss. However, it
is superior for the platoon utilization objective. Finally, it can be concluded
that the choice of the adaptation planning strategy but also the optimizer to
improve the strategy’s parameters is not a “one fitting all” choice, especially

65

Chapter 6: Selected Motivating Scenarios

in multi-objective scenarios. Still, it can be visible that in most scenarios, the
application of any of the three considered optimization techniques still out-
performs the default parameters of the adaptation planning strategies’ default
parameters, which has been already defined by domain experts.

0.86
0.88
0.90
0.92

Ti
m

e
lo

ss

Best velocity Closest distance Closest distance and lane

0.72

0.74

Th
ro

ug
hp

ut

0.20

0.40

0.60

Pl
at

oo
n

tim
e

Bay
es

do
m

NSG
A-II

Sim
An h

v

Defa
ult

 pa
ram

ete
rs

0.40

0.60

Pl
at

oo
n

ut
iliz

at
io

n

Bay
es

do
m

NSG
A-II

Sim
An h

v

Defa
ult

 pa
ram

ete
rs

Bay
es

do
m

NSG
A-II

Sim
An h

v

Defa
ult

 pa
ram

ete
rs

Figure 6.4: Comparison of optimized and default solutions for platooning coordination
strategies shown in the columns for the four metrics shown in the rows.

6.1.2 Fairness

As a second aspect, a self-aware optimization framework should address, we
propose to incorporate the fairness of adaptation actions. Similar to Rescher,
we see fairness as “dividing goods or bads on the basis of general principles
that pertain to everyone alike” [Res02, p.13]. We again analyze fairness in

66

6.1 Intelligent Transportation Systems

the platooning domain as one example of ITS. Vehicles driving in a platoon
benefit from slipstream effects due to air drag reduction resulting in energy
savings [Seg16, Joo12, BSC+12]. Additionally, the global traffic flow is opti-
mized by the homogenization of velocities as well as increased traffic through-
put [BSC+12]. However, the vehicles in such a platoon experience unequal
benefits depending on their position in the platoon. Especially the lead vehicle
experiences reduced fuel savings of around 5% while follower vehicles experi-
ence fuel savings of up to 15% [BSC+12]. Additionally, in some approaches,
the driver of the lead vehicle has to drive manually whereas other vehicles can
follow in a self-driving mode.

In [LKS+21], we analyze compensation-centered incentives for platooning to
enable the platooning technology to become more fair and incentivize vehicles
to take part of it. We propose a taxonomy of these incentives and further design
six indirect compensation mechanisms. These mechanisms base on the idea to
equally distribute negative effects of platooning similar to the fairness definition
of Rescher [Res02] to create a more fair platoon composition and hence, aim at
a broader acceptance of platooning in the real-world.
As the benefits and drawbacks in the platooning domain depend on slip-

stream effects, wind and/or vehicle model, and all these impact factors cannot
be simulated within one simulation, we focus on the intra-platoon position
each vehicle takes during the trip. Hence, we track the time driven at a certain
position inside the platoon relative to the time overall spent in the platoon, for
all cars belonging to a platoon. Ideally, to distribute benefits and drawbacks
equally over the platoon members, every vehicle should have spent an equal
amount of time in the leading and tail position respectively.
As already mentioned, we design six mechanisms to compensate for less

positive effects in platooning: (i) Drafting a Single Vehicle to the Front (DtF),
(ii) Drafting a Single Vehicle to the Back (DtB), (iii) Belgian Tourniquet (BT),
(iv) Belgian Tourniquet Jump-start (BTJS), (v) Reversed Belgian Tourniquet
(RBT), and (vi) Reversed Belgian Tourniquet Jump-start (RBTJS). All mecha-
nisms are designed to be run during the whole journey within a platoon, that
is, whenever one round of the mechanism has finished, the next round starts
immediately. In DtF, one of the following vehicles, for instance, the last vehicle
of the platoon, overtakes the platoon and takes over the lead. In DtB, the lead-
ing vehicle will leave the platoon, switch lanes and then let the platoon pass
before queueing up behind it as the new tail of the platoon. The BT mechanism
originates from professional cycling, where the platoon is separated into two
groups across two lanes and a constant rotation takes place. The mechanism
is similar to DtF, however, the next vehicle starting an overtake is always the

67

Chapter 6: Selected Motivating Scenarios

Platoon size = 4 Platoon size = 6 Platoon size = 8

80 100 120 80 100 120 80 100 120
0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

Platoon speed (km/h)

D
ur

at
io

n
(%

)

Time spent in position: Lead Middle Back Transition

Figure 6.5: Time spent in different intra-platoon positions for each platooning vehicle
with regards to three different platoon sizes in the three plots shown for DtF. The
different colors represent the positions in the platoon and the stacked bars per platoon
speed represent the individual vehicles.

last one of the original platoon. In the jump-started version of BT, called BTJS,
uses a modified start-sequence for the rotation: The trailing half of the platoon
switches lane synchronously once enough space is available to jump-start the
rotation and falls back to queue up behind the platoon. In the reversed version
of BT, that is RBT, the leading vehicle is next to switch lanes and fall back once
enough space is provided to queue up behind the platoon. Similar to BTJS, we
also examine an alternative version to the RBT, jump-started by the preceding
half of the platoon switching lane simultaneously.
First, we discuss the fairness of our proposed mechanisms, i.e., how well

the compensation inside the integrated subsystem performs, by inspecting
the time each platoon vehicle spends in the different intra-platoon positions.
Since we want to analyze the behavior of the isolated methods and do not
want to measure the influence of the surrounding traffic, lane count, and speed
limits have on our methods, we fix these parameters to: no traffic, three lanes,
and no speed limit. Figures 6.5 and 6.6 depict the time spent in the according
position inside the platoon for each vehicle in percent. The x-axes show the
platoon speed and a vertical bar for each vehicle is depicted for each speed
scenario. The y-axes depict the duration in seconds. The colors represent the
different positions inside the platoon, where orange depicts the time at the lead,
yellow the time inside the platoon between the leader and back vehicle, that is
presented in light blue, and the time spent for overtaking or falling back, i.e.,
during the transition, is depicted in dark blue.

68

6.1 Intelligent Transportation Systems

Figure 6.5 compares the time spent in the different positions using the DtF
mechanism for different platoon sizes, four vehicles on the left, six vehicles in
the middle, and eight vehicles on the right. For all scenarios, it can be seen that
all bars for each platoon speed and platoon size show similar color distributions,
i.e., the time in the various intra-platoon positions is spread equally among all
vehicles of the platoon. The small deviations between single vehicles inside a
platoon can be explained by the timing the simulation has ended, as can be
retraced due to the consistent ordering of bars. For example, for a platoon size
of six and a velocity of 100 km/h, the vehicles reached the end of the road
while the vehicle starting in the second position was overtaking or has only
freshly taken over the lead. Thus, all vehicles have similar times in each intra-
platoon position regardless of the initial position at platoon formation time.
For a platoon size of four, it is also visible how the travel time of each vehicle
splits into four equally sized portions representing the different positions. The
reason for this is that a new overtaking maneuver is started when the previous
ended. Hence, one vehicle is situated in transition at all times. With increasing
platoon sizes, this pattern is not present anymore because now multiple cars
are positioned between the leader and tail of the platoon. Thus, the larger the
platoon size, the longer the time in the favorable middle of the platoon while
the position with negative effects are distributed equally over all participating
vehicles of one platoon.

Figure 6.6 shows the same kind of diagrams for all six mechanisms but a
platoon size of eight only. We decided to show the results for a platoon of
eight vehicles as the characteristic effects of the different intra-platoon positions
become most visible there. When comparing the DtF and DtB, the figure shows
that also in the DtF method, all eight bars for each platoon speed show nearly
the same color distribution, i.e., all vehicles have similar times in each position
regardless of the initial platoon formation. The pattern of this distribution is
similar to the one for DtF and the cars are situated in the middle, i.e., the most
favorable position, most of the time. The patterns of color distribution of the
BT variants differ from the ones before, as the dark blue bars are significantly
higher. This means that the cars spend more time in transition. As this lies
in the nature of the BT, this shows that the desired effects occur and constant
rotation is performed. However, when a vehicle is not in transition, it still drives
most of the time in the middle of the platoon. Additionally, a notable difference
can be seen for the first and the last four cars of the platoon, as the first car is
the leader of the platoon for a longer time and the last vehicles have increasing
time at the back and in transition.

69

Chapter6:
Selected

M
otivating

Scenarios

DtF DtB BT BTJS RBT RBTJS

80 100 120 80 100 120 80 100 120 80 100 120 80 100 120 80 100 120

0

25

50

75

100

Platoon speed (km/h)

D
ur

at
io

n
(%

)

Time spent in position: Lead Middle Back Transition

Figure 6.6: Time spent in different intra-platoon positions for each platooning vehicle shown for all methods and a platoon
size of eight. The different colors represent the positions in the platoon and the stacked bars per platoon speed represent the
individual vehicles.

70

6.1 Intelligent Transportation Systems

This can be explained by the characteristics of the BT as it requires some
time to get the rotation going. This effect can be explained by the overtaking
platoon that needs to be formed on the left lane from scratch at the beginning
of the rotation. The jump-started version of this mechanism shows similar
behavior. However, more vehicles have the effect of increasing time in the back
and transition, as multiple cars switch to the left lane for overtaking at the same
time in the beginning. In the reversed versions of the BT, the cars spend more
time in transition than in all other mechanisms. Besides, the time in transition
decreases with regards to the initial position in the platoon, so that the first car
spends most of the time in transition and the last car the least. This lies in the
nature of these mechanisms as the fallback procedure requires more time for
the fallback as we implemented the mechanisms to minimize the disturbance of
other traffic. However, these mechanisms distribute the time as leader equally
among all cars and no negative effects happen for the initial leader as in the
other two BT versions. In summary, for the DtF and DtB mechanisms, the time
spent in positions with negative effects is split equally among all vehicles and
they drive in the middle of the platoon most of the time. The BT versions show
negative effects for the initial leader and the cars drive more time in transition,
while the reversed BT mechanisms do not show the negative effects for the
initial leader but the cars spend the most time in transition.

6.1.3 Uncertainty

Additionally to situation-dependency and fairness aspects of adaptation plan-
ning, uncertainty is a further important aspect for this work. Ramirez, Johnson,
and Cheng define the term uncertainty in the context of Dynamically Adaptive
System (DAS) as follows [RJC12, p.101]:
“Uncertainty is a system state of incomplete or inconsistent knowledge such

that it is not possible for a DAS to know which of two or more alternative
environmental or system configurations hold at a specific point. ”

According to Esfahani and Malek “Uncertainty can be observed in every facet
of adaptation, albeit at varying degrees” [EM13, p.2]. Mahdavi-Hezavehi,
Avgeriou, and Weyns describe a set of aspects that induce uncertainty into self-
adaptive systems such as “the dynamicity and unpredictability of a variety of
factors existing in software systems” [MHAW16, p.4] as well as “consequences
of self-adaptation in a software system” [MHAW16, p.4]. Hence, we conducted
a third study in the domain of ITS and analyzed uncertainty aspects of a proac-
tive adaptation planning system that plans routes and incorporates refueling
if required [LHKK21b]. Bousonville et al. [BHMK11] identified that German

71

Chapter 6: Selected Motivating Scenarios

fuel prices vary across geographical regions. Additionally, it can be observed
that fuel prices in some countries are highly volatile throughout one day.We
study those claims in CostSaVeR [LHKK21b], a self-adaptive navigation system
that applies multi-criteria optimization for cost-aware routing. The application
includes a decision logic to analyze possible routes using utility functions and
proposes the best found route option. Using our evaluation testbed, we assess
the performance of our utility functions as well as the importance of reasoning
on the uncertainty of price stability with travel distance or time.
As already mentioned, we introduce six different utility functions as a rep-

resentative set of three categories: (i) integrating measures of the gas price,
distance, and duration; (ii) coping with the uncertainty of volatile gas prices;
and (iii) selecting either the nearest or completely random gas stations. The
price-aware utility function summarizes the already paid costs of the remaining
amount of fuel and the new refueling costs for the remainder of the journey.
The duration-/distance-aware utility function (Dur/Dist) calculates a weighted
sum of the duration and distance of the journey into one utility value. Based
on the assumption that the probability of a change of the price at a gas sta-
tion increases with a larger distance towards the gas station, the idea of the
volatility-aware utility function is to reward closer gas stations with a utility
bonus. Therefore, the price-aware utility function is calculated and a bonus
is added concerning the distance of the station from the distance to the des-
tination. The penalty-aware utility function also tries to minimize unforeseen
changes in prices. In contrast to the volatility-aware utility function, it penalizes
required time to reach the gas station instead of rewarding closer distances. The
nearest station utility function models user behavior that refuels at the closest
gas station. Finally, the random utility function selects a gas station among the
identified gas stations within the search radius randomly.
To evaluate the performance of the different utility functions, we aimed at

defining a representative data set concerning different routes all over Germany
and several dates during the year 2018. The 22 selected routes cover Germany’s
roadside to a large extent and show differing route lengths (between 50 km
and 900 km) and used road types. The 18 dates are chosen with regards to
vacations or holidays, regular weekdays, and weekends. For each date, three
different timestamps are used as the start time of the journey: 6:00AM, 12:00 PM,
and 4:00 PM. The average cost per route is around 25 e. Our hypothesis of
increasing uncertainty with a longer planning horizon implies that the longer
the planning horizon, i.e., the longer the route, the larger the difference between
estimated and actual costs. Therefore, we categorized the routes into three
categories: (i) shorter than 100 km, (ii) between 100 km and 400 km, and

72

6.2 Logistics

0.0

0.2

0.4

Price DurDist Volatility Penalty Nearest Random

C
os

t D
iff

er
en

ce
 (

E
U

R
)

Route Length

< 100 km

100 − 400 km

> 400 km

Figure 6.7: Difference between estimated and actual costs for each utility function with
regards to three categories of route lengths. The colors represent the differing route
lengths, and the bars show the cost difference in EUR per utility function.

(iii) longer than 400 km. We calculate the mean difference between estimated
costs at planning time and the actual total costs for each category and utility
function. Figure 6.7 visualizes the difference between estimated and actual
costs for each utility function with regards to the three categories of route
lengths. The gray bars (< 100 km) show for all utility functions except the
nearest station the smallest difference between estimated and actual costs of
around 0.03 e and 0.09 e. The orange bars (100 - 400 km) show a noticeable
increase in cost difference between 0.09 e and 0.22 e. The blue bars (> 400 km)
show especially for the duration-/distance and random utility function strong
increases in cost differences between 0.52 e and 0.56 e while the cost increase
for the other utility functions is less significant. The nearest station utility
function does not reflect these characteristics as only a slight increase can be
shown between short and medium route lengths, and is even reduced slightly
for long routes. This can be explained by the selection criterion since the travel
time to the gas station is short and price changes occur very rarely. These results
indicate that the size of the planning horizon and that integrating uncertainty
parameters into utility functions is necessary to handle unforeseen situations.

6.2 Logistics

Analogous to the ITS domain, the discussed aspects of adaptation planning can
also be transferred to diverse other domains. According to the No-Free-Lunch
theorem for optimizations [WM97], there is no single algorithm that performs

73

Chapter 6: Selected Motivating Scenarios

best on all optimization problems and their cost functions. It is rather the case
that if an algorithm works well for one problem, it will securely perform worse
for other problems1. Hence, the situation and problem dependent behavior of
adaptation planning systems can also be transferred to other domains. Further,
fairness of the selected methods and determined actions as well as uncertainty
in the environment need to be addressed in adaptation planning systems in
general. To demonstrate the applicability of the mentioned aspects and the
performance of our concepts, we selected logistics as second use case domain.
In the following sections, we present two use cases from the logistics domain:
(i) storage assignment and order picking, and (ii) vehicle routing. For both
domains we introduce the basic problem statements, discuss how already
mentioned adaptation planning aspects transfer to it, and highlight important
challenges these use cases add to this work.

6.2.1 Storage Assignment and Order Picking

This section introduces the storage assignment and order picking problem as
introduced in our publications [LMK+21a, LMK+21b]. Warehouses play a
central role in the supply chain of a company and contribute to its logistical
success. When employing humans, picker-to-parts and parts-to-pickermethods
are differentiated [DK07]. Experts estimate the picker-to-parts system to be the
most common inWestern Europe with a share of over 80% [DKLDR07]. A well-
known picker-to-parts system is the mezzanine warehouse. Working within a
mezzanine warehouse consists of two main tasks: (i) filling the storage with
goods (storage assignment) and (ii) picking items out of the storage (order
picking). The storage assignment problem defines the task of selecting storage
locations to put a product into storage. Since mezzanine warehouses usually
provide a large number of storage racks, it is difficult to find the optimum
storage allocation that fulfills all custom constraints defined for the problem.
The order picking problem defines the task of computing a pick route that
collects the requested products of a customer order. Finding suitable storage
allocations is important, as the allocation of products affects the travel distances
during order picking. Due to theNP-hardness and the complexity of the storage
assignment [RSCMT19] and order picking problem [ÇS19], efficient algorithms
are required to find satisfying solutions within acceptable time.

In our paper [LMK+21a], we analyzed existing literature in this domain and
showed that many approaches exist for optimizing both warehouse problems.
Further, each approach focuses on a specific detail of these warehouse problems

1We refer the reader to [WM97] for a mathematical definition of assumptions and theorems
as well as for a mathematical proof.

74

6.2 Logistics

and according to the No-Free-Lunch theorem for optimizations [WM97], there
is no single algorithm that performs best on all problems. The theorem also
states that the algorithm’s observed behavior to date does not necessarily repre-
sent a good prediction for future behavior. Hence, the optimization technique
needs to be selected based on the exact problem definition and its parameters
need to be tuned to fit the current situation.

The second aspect of our work, that is fairness, can also be transferred to this
domain. As already stated, mezzanine warehouses are picker-to-parts systems
where human workers need to fill the storage with goods and pick items out
of the storage. Order picking is known to be the most labor-intensive and
costly task in which the employees account for a large part of the warehouse
performance. The fairness of the work compared to other employees or other
shifts is a central factor to achieve a good acceptance of the planning system,
and employee engagement and performance [HRMS98,HRFA19]. Hence, an
adaptation planning system needs to keep track of the fairness of determined
actions that impact the work of employees.

Uncertainty as third aspect of this work can also be applied in the warehouse
domain. Since amezzanine warehouse is a highly dynamic warehouse in which
a continuous flow of goods needs to be maintained, uncertainty exists in the
stability of the current status of the warehouse. In particular, the planned
storage location for one item is determined based on the already stored items.
However, the next item to be stored might influence the goodness of the storage
rack for the last items. Additionally, since the warehouse is operated by people,
the work pace is not deterministic. Some employees might require more time
to walk to a specific location or to find the determined rack position. Hence,
some uncertainties occur in this problem statement and need to be taken into
account while planning the next adaptations.

The most important research challenge this use case adds to this work is the
inter-relatedness of the handled problem statement. In the literature, many
approaches exist for optimizing both warehouse problems. However, most
approaches usually target either of the warehouse problems; some works
target both problems, however miss to integrate the interrelation between
them and view each problem separately [vGRCdK18]. However, as identified
by [GGM10], warehouse problems are strongly coupled. Thus, optimizing
each warehouse problem individually may yield sub-optimal solutions, harm-
ing the overall warehouse performance. Hence, we postulate the need for an
integrated approach that handles the storage assignment as well as the order
picking problem. This approach should be aware of the impact of decisions
in one problem on the other problem and act accordingly to address both

75

Chapter 6: Selected Motivating Scenarios

problems simultaneously. This research challenge is related to research in the
systems-of-systems domain [Mai98].

6.2.2 Vehicle Routing Problem

This section presents the rVRP as introduced in our publication [LKK+21a] and
our technical report [LKK+21b]. In the last two decades, the demand for road
freight transport increased worldwide; for example, in Germany it increased by
150 billion ton kilometers to around 500 billion ton kilometers [Kor21]. Devel-
opments as increased just-in-time production and online shopping will further
increase those numbers in the next years. A key success factor for this trend
is the efficient and correct planning of tours for transports which means to
solve the VRP. The classical VRP specifies the assignment of customer orders
to vehicles and the optimization of their tours [GRW08], which refers to solv-
ing the underlying TSP. In contrast, the rVRP includes additional constraints
required for a real-world application, such as P&D behavior, TW, pause times,
trailer capacities, and driver assignments. Tim Pigden stated that the original
model of the VRP does not match real-world applications since it does not
include concepts of order, separate resources corresponding to the driver, the
tractor unit, and the trailer [Pig13]. Therefore, this model leads to inaccurate
results when applied in practice and new approaches to address the various
aspects of the rVRP are required. Since the rVRP is an NP-complete problem,
exact solutions are hard to calculate in reasonable time and, hence, logistic
companies often use meta-heuristics to find so-called good enough solutions
in a reasonable time.

In our paper, we analyzed the existing literature capturing diverse problem
variations of the VRP. Table 6.2 provides an excerpt of the literature on VRP
such as the Capacitated Vehicle Routing Problem (C-VRP), Vehicle Routing
Problemwith TimeWindows (VRP-TW), Vehicle Routing Problemwith Pickup
and Delivery (VRP-PD), and Vehicle Routing Problem with Time Windows
and Pickup and Delivery (VRP-TW-PD). As can be easily seen, great interest
in researching solutions for all kinds of the VRP. Similar to all previously
discussed use cases, the No-Free-Lunch theorem for optimizations also applies
to these problem statements and the selection of the best performing algorithm
and its parameterization is situation and problem dependent.
The fairness aspect can also be transferred to the VRP domain. Once again,

the human factor comes into play for this aspect. As the tours and routes
computed by the optimization algorithms need to be driven by human beings,
the fairness aspect is highly relevant. Within a company, no differences should
be made when it comes to the physical stress during loading and unloading

76

6.2 Logistics

Table 6.2: Excerpt of the related work covering diverse VRP problems classified by
their algorithm type. (EA = Exact algorithm, SA = Swarm algorithm)

C-VRP VRP-TW VRP-PD VRP-TW-PD

EA [FTV94,AHM13,
CLSV07,FLL+05,
LN87,QTY10]

[HI20] - -

LS [GC09,WZZL18,
RSM20]

[CC02,Ski11,
CM12]

[MJMBMD17,
Aa06]

[LL02,WZW+16]

SA [SWH11,
lCkYmW06,BM04,
DX06,YYY09]

[BS03,RMLG07,
FMP07]

[WS03,CHD07,
CEE16,Çat09]

[DHR00,TYA+17]

GA
[BA03,BB03,GLP02,
VCG+12,CM13]

[GG10,KTSA14,
ENOBTMG16]

[PDG96,TG10,
SR16]

[Pan05,WC12,
CMMF17]

of a truck, but also to the required driving time. Similar to the balanced work
within a warehouse, also the balanced workload for each driver is important
for the engagement and performance of employees. Hence, the adaptation
planning instance should be aware of the impact the adaptation decision has
on the individuals within the system.
Since trucks are part of the road traffic, the planning of tours and routes is

subject to great uncertainties in multiple dimensions. As already introduced in
Section 6.1.3, fuel prices are highly volatile and the costs per route are therefore
very dynamic. Furthermore, traffic on the road adds uncertainties in terms of
travel time, as it is extremely dynamic due to road works, accidents and conges-
tion. All these aspects of the VRP in the real world complicate the computation
process of reasonable tours and routes and influence the performance of the
whole company. Hence, these aspects should be integrated into an adaptation
planning system and should be considered when planning the tours.

Similar to the most important challenge of the storage assignment and order
picking use case, namely the system of systems optimization, this challenge
also applies to the introduced VRP. Due to the high complexity of the problem,
and inspired by [CT10], we divide the problem into two stages. First, we
address the problem of distributing all orders, including pickup and delivery
options, to the available vehicles (VRP-stage). In this step, several assignment-
related constraints such as ordered quantity, weight, and size or forbidden
co-located products are addressed. However, many of the constraints are
sequence-dependent, such as driving, and service time, planned pause times
or driven kilometers, and, hence, a nested TSP instance for each vehicle needs

77

Chapter 6: Selected Motivating Scenarios

to be solved. The solved TSP instances are then sent back to the VRP-stage that
performs an additional step to determine time windows and pause stops for
each tour. In contrast to the warehouse example where both systems inside
the overall system run in parallel, the systems within this problem statement
are nested and the inner TSP instance needs to be solved to compute the final
solution of the VRP. Hence, this use case presents another challenge in the
systems-of-systems research direction.

6.3 Summary

In this chapter, we proposed our first main contribution, which focuses on
Goal A: Self-aware optimization of adaptation planning strategies with particular
attention to the field of ITS and logistics. Therefore, we answer RQ A.1 by an-
alyzing a set of use cases from the field of ITS and logistics and identifying
important characteristics of adaptation planning strategies. Based on these
findings, we design our component-based self-aware optimization framework
and the optimization of systems-of-systems approaches in the following parts
of the thesis.

78

Part II

Self-aware Optimization

Chapter 7

Self-aware Optimization Framework

Motivated by the No-Free-Lunch theorem for optimizations [WM97], which
indicates that there is no single algorithm that performs best for all classes of
problems, and the property study for the scenarios in the foundations, this thesis
aims at designing andprototypical implementing of a generically applicable self-
aware optimization framework. This framework optimizes the decision making
of use caseswith self-adaptation properties. It should receive information about
the application and the adaptation planning strategy, such as the performance
of the system, and should adjust the parameters of the adaptation planning
strategy or replace the strategy with a more promising one. The framework
should be generically applicable in a variety of use cases while reducing the
manual effort as well as required expert and domain knowledge.

In addition, these general goals for the framework, Section 6.1.1, Section 6.1.2,
and Section 6.1.3 motivated the meaningfulness of the framework by studying
three properties of targeted systems: (i) Situation-dependency, (ii) Fairness,
and (iii) Uncertainty. In our studies, we were able to show the situation de-
pendence of SAS, with the conclusion that the choice of the adaptation plan-
ning strategy, but also of the optimizer to improve the strategy parameters, is
not a one fitting all choice, especially in multi-objective scenarios. The second
property concerns fairness which we define similarly to Rescher as “divid-
ing goods or bads on the basis of general principles that pertain to everyone
alike” [Res02, p.13]. In our case study of platooning coordination, we showed
that it is important to ensure a fair distribution of benefits and disadvantages
resulting from participation in a platoon. The third property is about uncer-
tainty of a self-adaptive system operating in dynamic environments which we
define similar to Ramirez, Johnson, and Cheng [RJC12, p.101]: “Uncertainty
is a system state of incomplete or inconsistent knowledge such that it is not
possible for a DAS to know which of two or more alternative environmental
or system configurations hold at a specific point.” Our uncertainty study is
related to fuel price trends that affect the performance of proactive adaptation
planning systems for route planning.

81

Chapter 7: Self-aware Optimization Framework

In our proposed framework, we directly incorporate the situation dependent
property of adaptation planning systems anddevelop a component for situation-
awareness. This component is responsible for determining the current situation
of the system and its environment to identify the most promising strategy and
parameter setting. Further, we propose to address fairness for the participating
entities by designing a specific set of adaptation planning strategies that ensure
a fair distribution of advantages and disadvantages between all entities. Finally,
we propose to address uncertainty by proactively integrating an uncertainty
measure into cost functions that are used to determine the most promising
adaptation plan. This way, we propose to incorporate uncertainty measures
already at design time to anticipate possible negative effects of the uncertainty.
In line with our property studies discussed in the foundation part, we also

use the platooning coordination use case as representation for ITS and running
example in this chapter. We prototypically apply our concept of a self-aware
optimization framework on the platooning coordination strategies andhighlight
how the concepts can be transferred to any other meaningful use case. Then, we
explain abstract concepts of the framework using examples in this use case and
show how the framework can be applied to it to illustrate the effort required to
transfer it to other use cases.
We begin this chapter by first defining a set of assumptions that we specify

for the design of our framework in Section 7.1. Afterwards, we define the
Terminology of this chapter in Section 7.2. In Section 7.3 we introduce our
system model, for which we use the layer architecture proposed by Kramer
and Magee [KM07]. Section 7.4 discusses the concept of the framework from
the point of view of a control loop and adapts the LRA-M Loop introduced
by Kounev et al. [KLB+17]. Afterwards, Section 7.5 presents the architecture
of the framework and provides an overview of the designed components and
their interaction, consisting of a Coordination, the Domain Data Model (DDM),
the Situation Detection, the Strategy Selection, and the Parameter Optimization
components. Section 7.6 is the final section addressing the design and concept
of the framework by introducing a use case-specific adapter for the framework
used in our running example of platooning coordination. Afterwards, we
present our fairness-ensuring adaptation planning strategies for platooning in
Section 7.7 that indirectly compensate negative effects for platooning members
by distributing them equally among all members. We address uncertainty in
Section 7.8, which presents our methodology in proactive adaptation planning
strategies. We conclude this chapter in Section 7.9 and answer the correspond-
ing research questions for this chapter. The content of this chapter is based on
our publications [Les20,LHKK21a,LHKK21c].

82

7.1 Assumptions

7.1 Assumptions

In this section, assumptions are made for the design of the framework to ensure
broad applicability in various use cases. The following assumptions ensure
the proper operation of the framework as well as the use case and define the
interactions between both systems. At the same time, they point out limitations
that can be addressed in future work.
First, we assume that the use case for which the framework is to be used

consists of two parts. One part is the environment in which entities operate
based on their individual goals and actions. The second part is an adaptation
planning system that monitors the entities and decides upon adaptation actions
based on global goals. We assume that the operating entities adhere to the
given plan of the adaptation planning system and execute all given adaptations.
If they cannot implement these instructions, they report this to the adaptation
executor, who then decides on further actions that should be taken by the
entities. Further, we assume that the communication between entities in the use
case and adaptation planning system is flawless and that the entities regularly
report measurement and observation values to the adaptation planning system.
Additionally, we assume that the strategy of the adaptation planning system is
interchangeable and has the possibility to change its parameters at runtime.

Second, we assume that the use case to which the framework is to be applied
is digitized, meaning that performance and monitoring data are captured
and stored digitally—typically centrally in the adaptation planning system.
Further, the adaptation planning system is able to transmit relevant data to a
defined management entity—in this work the framework—where higher level
optimizations take place. We assume that the interaction between framework
and adaptation planning system of the use case is always successful. Therefore,
we exclude any case where the connection between the two systems fails or the
computed changes cannot be transmitted to the adaptation planning system
due to other failures - resilience management of both systems is part of the
future work of this thesis.

Third, we assume that the adaptation planning system works independently
of a higher-level optimization, i.e., the framework, and can be used with a
previously defined strategy algorithm and parameter set. Thus, it remains
functional regardless of whether the framework determines an optimization
adjustment. This is especially important in the startup phase of the framework,
when optimization adjustments have not yet been determined. We also assume
that this adaptation planning algorithm works independently and flawlessly
and does not need to be monitored for failures.

83

Chapter 7: Self-aware Optimization Framework

Finally, we assume that the framework provides optimized decisions to the
adaptation planning system without explicit request. Furthermore, we assume
that the adaptation planning system regularly retrieves and successfully imple-
ments these changes. We assume that the adaptation planning system reports
its current configuration along with other monitoring data to the framework
to execute the optimizations based on the current state at given time intervals.
Based on this data, future work can extend the framework to include a mech-
anism to ensure successful implementation of new strategies and parameter
settings in the adaptation planning system.

7.2 Terminology

In this section, we define the terminology used in the following chapters to avoid
misunderstandings and imprecise expressions. We start with the definition of
the use case as well as the entities and their actions in the use case, continue
with the definition of an observation, a context, and a situation, and finally
define the term framework.

Use Case: We define a use case as a group of entities operating in a particular
environment, pursuing their own goals. Entities in the use case can
be linked to an adaptation planning system that helps them achieve
their goals more efficiently, or that adapts the entity’s actions to achieve
global, regional, or local goals. The complexity and abstraction level of a
particular use case are irrelevant as long as a adaptation planning system
is in place. This adaptation planning system must provide multiple
adaptation planning strategies and can provide configuration options.
With respect to the running example platooning coordination, the use case
could be defined at the regional level, e.g., as coordination of platooning
of vehicles on a road segment with a central PCS fulfilling the role of the
adaptation planning system. The use case could also be defined at a lower
level, such as optimizing the inner platoon structure, i.e., the order of
vehicles within the platoon (cf. to Section 6.1.2 for a motivating example).

Entity in a Use Case: An entity within a use case is a machine, human, or
other object that can receive and execute instructions from an adaptation
planning system. Entities may have the ability to make decisions for
themselves according to their individual goals and do not necessarily
need to receive instructions from the adaptation planning system. En-
tities may also work with coarse-grained instructions or work toward
individual goals. The entities within the use case are expected to follow

84

7.2 Terminology

the adaptation actions they receive from an adaptation planning system,
even if their individual goals dictate a different direction. For a discussion
of research challenges related to coordinating global, regional, and local
goals, we refer the interested reader to our publication [LKT19b].

Actions of an Entity: Entities of a use case have a given set of possible actions
that they can execute to accomplish certain tasks or achieve their in-
dividual goals. The actions to be taken can either be specified in fine-
grained terms by an adaptation planning system, or entities can work
autonomously toward a coarser-grained goal. The second case alsomeans
that entities can operate without an adaptation planning system if the
entities’ goals are defined and the available actions enable the entities to
achieve that goal.

Observation: An observation contains information about the use case at a par-
ticular point in time. This includes details about the entities, their sensed
data from the environment as well as the current configuration of the
adaptation planning system and its performance. These performance
indicators must be defined individually for each use case. Using expert
knowledge, the performance of the adaptation planning system can be
evaluated based on these indicators. We define each observation as a
triple (context, input,metrics) at a given point in time that is sent to the
system on a regular basis. The context represents a set of values used to
determine the current situation of the use case. The input parameters
are the configuration parameters of the adaptation planning system. The
metrics are a set of indicators that represent the current performance of
the adaptation planning system.

Adaptation Planning System: An adaptation planning system is a mechanism
that uses the retrieved observations from a use case in order to plan
adaptations within a SAS. These systems aim to identify changes in the
environment and the system itself and to react accordingly and apply
adaptation planning strategies to plan adaptations. The strategies are
exchangeable within a SAS and require the configuration of parameters.
These properties can be used to tune the performance of SAS by an opti-
mized selection of adaptation planning strategies and parameter tuning.

Situation: We define a situation as a set of observed contexts that have similar
values. This means that environmental factors, entities, and entity behav-
ior occur in a similar combination to previous context data. We use the
term situation from a technical point of view, following Cámara’s defi-

85

Chapter 7: Self-aware Optimization Framework

nition, “where a situation includes at least the elements of the situation
[...], and environmental factors and their current states” [CBK+17, p. 38].
We use the context data to determine the situation the system is in. The
knowledge of the current situation is then used to adjust the adaptation
planning strategy and its parameters to optimize the overall performance
of the system. We also use this information to learn good strategies for
each situation and improve system performance for future situations.

Framework: We consider a framework as an abstract modular application that
defines a specific process structure, pursues a specific goal, and pro-
vides generic functionality by combining components. We assume that
these components have well-defined interfaces through which they can
communicate with other components to ensure smooth integration into
the overall framework. As part of this work, we have implemented all
relevant components of our framework. In addition, we have designed
the framework to provide the ability to extend it by adding new compo-
nents or customizing existing components. Furthermore, the user of the
framework has to define a configuration for the specific use case, which
defines the composition, setup and configuration of the framework and
the components used.

7.3 System Model

This section introduces the systemmodelwe use for defining the self-aware opti-
mization framework. The systemmodel is presented in Figure 7.1 and integrates
three layers following the three layer architecture proposed by Kramer and
Magee [KM07] to incorporate the principles of maintainability and separation
of concerns: (i) Application, (ii) Adaptation Planning, and (iii) Self-Aware Op-
timization. In the following, we explain the details of each layer and introduce
the core contribution of this chapter: the self-aware optimization framework.
We refer to the bottom layer ➀ of the system model as the application layer

and consider real-world use cases from ITS and logistics, as discussed earlier in
Chapter 6. Entities of the use case monitor themselves and their environment.
The collected data is sent to the upper layer where the adaptation planning
system receives the data. After an adaptation planning cycle, the use case
entities can receive adaptation actions to follow and execute. If the entities
fail to carry out these instructions, we assume that they will report this to the
adaptation planning system, which will decide on further action.
The middle layer ➁, called adaptation planning, includes the adaptation

planning system, which receives observations from the use case. The adaptation

86

7.3 System Model

Veronika Lesch 1

The Vision

Data

Data

Exec

Self-Aware
Optimization

Adaptation Planning

Exec

Strategy A
Strategy B
Strategy C
Strategy D

Parameter Setting 1
Parameter Setting 2
Parameter Setting 3

Figure 7.1: Multi-layer architecture of the self-aware optimization framework. Layer 1
represents an adaptive system, the adaptation planning system is shown in Layer 2,
and Layer 3 shows the core contribution of this chapter, the self-aware optimization.

planning system applies a strategy that uses the received observations to plan
adaptations for the managed system. These strategies are selected from various
existing strategies in the adaptation planning system. The adaptation planning
strongly depends on the use case and is therefore out of scope of this work
The strategies can range from simple rule-based algorithms to complex (multi-
objective) optimization algorithms. Furthermore, we assume that the user of
the framework will provide multiple strategies per use case, customized for the
particular use case, to provide the possibility of strategy exchangewhen needed.
The performance data of the selected strategy is collected and—together with
the use case’s monitoring data—transferred to the next layer, which performs a
self-aware optimization. After one self-aware optimization cycle, the adaptation
planning layer may receive instructions to change the strategy parametrization
or even to replace the strategy. As mentioned earlier, we assume that the
adaptation planning layer executes these commands without interference.
Finally, the third layer ➂ is called self-aware optimization. This layer is

responsible for optimizing the parameters of the selected strategy in the adap-
tation planning layer as well as for the selection of strategies for the ➁ layer and,
therefore, integrates several components: (i) situation detection, (ii) algorithm
selection, and (iii) parameter optimization. The situation detection compo-

87

Chapter 7: Self-aware Optimization Framework

nent receives the monitoring data, that is, the use case observations, and the
performance data from the adaptation planning system and categorizes the ob-
servation into a currently present situation. The algorithm selection component
uses the information about the current situation, combines it with experience
from similar situations in the past and selects the most appropriate adaptation
planning strategy. Finally, the parameter optimization component also receives
monitoring data and tunes the parameters of the adaptation planning strategy.
All decisions—including the situation, the selected strategy, and the parameter
settings—are used in combination with monitoring and performance data to
learn from previous decisions. A knowledge base manages the set of known
situations as well as corresponding decisions and continuously learns which
parameter and algorithm combination fits best for the situations already expe-
rienced. In addition, it is possible to develop another component that includes
prediction and forecasting mechanisms to enable proactive adaptation of the
system. Finally, the third layer passes the decisions to the adaptation planning
layer ➁, which executes them.

7.4 LRA-M Loop Adoption

In this section, we present our concept of a self-aware optimization framework
from the control loop point of view. This perspective allows us to elaborate on
the idea of the framework and explain the interplay between ongoing learning
and reasoning in the framework. Sincewe use the terminology of self-awareness
in this work, we focus this section on the corresponding LRA-M Loop. The
LRA-M Loop was first introduced by Kounev et al. in 2017 [KLB+17] in his
work on Self-aware Computing Systems. This loop is quite similar to other
concepts like the MAPE-K Control Loop [KC03] or the Observer/Controller
concept [TPB+11] and most of these concepts can be transformed into each
other [LKT19b]. However, the LRA-M Loop explicitly includes a Learn and
a Reason component. Learning allows the system to learn models of the sys-
tem itself and the environment, while reasoning uses these models to trigger
adaptation actions that modify the system and affect the environment. These
components are essential parts of the framework because learning enables the
framework to form models of the environment, i.e., the two lower levels of the
system model (c.f. Section 7.3) and to recognize new situations. Reasoning
gives the framework the ability to consider which adaptation actions might
be beneficial in a given situation based on the knowledge of recent decisions
or decisions in similar situations. This combination of ongoing learning and
model-based reasoning forms the basis for the proposed framework, which

88

7.4 LRA-M Loop Adoption

Model

Act

Actions

Goals

Self

Phenomena

ReasonLearn

Empirical Observations

Situation
Detection

Strategy
Selection

Parameter
Optimization

Figure 7.2: Modified Learn-Reason-Act-Model Loop (LRA-M Loop) based on
Kounev et al. 2017. The basic LRA-M Loop is extended to include analysis and the
meta-optimization in the Learn module and planning through optimization in the
Reason module.

is why we chose to use the LRA-M Loop. Since the LRA-M Loop is a general-
purpose concept applicable to diverse systems, we modify the control loop to
explicitly include the functionalities of our framework, as shown in Figure 7.2.

The loop displays the system, also called the self, and its interfaces with the
environment. It interactswith the environment by (i) perceiving Phenomena and
storing them as Empirical Observations, (ii) receiving Goals to be achieved, and
(iii) executingActions based on the decisionsmade. The Empirical Observations
are captured in the use case, i.e., the application layer of the system model,
and used in the Learn and Reasonmodules. Furthermore, the decisions of the
adaptation planning layer are part of the captured phenomena since they are
needed as additional sources of information for the third layer. In the ongoing
learning process, the observations are abstracted into models that contain
knowledge about the environment and the system itself. We add the Situation
Detection component into the Learn module, which enables to interpret the
observations and updates the models to persist all gathered information. So far,
we use clustering algorithms in the Situation Detection component to determine
the current situation. However we have built each component in a modular
fashion so that it is easy to extend the techniques used. Further, the learning

89

Chapter 7: Self-aware Optimization Framework

component receives performance data of the managed use case with periodic
observations and learns the impacts of the actions taken based on the current
situation. This enables the system to continuously improve its reasoning and
acting, and to keep the system’s models of itself and the environment up-to-
date. These models serve as the basis for the reasoning process that determines
actions to be taken in response to a changing environment. The reason module
determines actions for the adaptation planning system to adapt to changes in
the environment or to deteriorated performance values. Hence, we assign the
two components (i) Strategy Selection, and (ii) Parameter Optimization to this
module. The Strategy Selection component combines the information from
Situation Detection, the current use case performance with the learned models
about the use case and determines whether to keep the current strategy or
switch to another existing strategy. The Parameter Optimization component
applies optimization techniques to tune the parameters for the selected strategy.
So far, we use known, well-performing parameter settings as initial values for
the optimization process to achieve a faster convergence of the optimization.
The Situation Detection, Strategy Selection, and Parameter Optimizations in
the modified LRA-M Loop are newly introduced components and not part of
the original definition of the LRA-M Loop. These three components build the
main contribution in terms of the proposed framework and are meant to be
generically applicable to a wide range of suitable use cases.

7.5 Framework Composition

This section presents the composition of the generically applicable self-aware
optimization framework. The framework consists of several components that
configure the framework, store its observations, and execute the desired func-
tionality, that is, to determine which strategy algorithm and parameters to
use in the adaptation planning system. Figure 7.3 provides a comprehensive
overview of the framework’s structure. In the following, we briefly introduce
each component and state its main contribution to the framework. All details
of the components can be found in the following sections.

First of all, the user of the framework can use the Domain Data Model (DDM)
to configure the entire framework and all its components. The DDM is the only
part of the framework that the user needs to configure with use case specific
information. Therefore, the framework considers the two lower layers from
Figure 7.1 as a black box, of which it only knows the information defined in
the DDM. In the DDM, relevant information about the use case such as the
name and existing strategies in the adaptation planning system are defined.

90

7.5 Framework Composition

The context part of the DDM defines what sensor data the adaptation planning
system sends to the framework with respect to the context of the system. With
regards to the platooning coordination use case, this sensor data could be
the number of cars and trucks on the road, the platooning percentage, or the
average speed of the vehicles. The parameter options of the DDM specify which
configuration parameters exist for the strategy of the second layer and which
values they can accept. Finally, the DDM contains a definition of metrics used
to assess the performance of the use case.

Domain Data Model

Coordination

Fallback Rules

Empirical Observations

Situation Detection Parameter OptimizationStrategy Selection

Strategy A
Strategy B
Strategy C
Strategy D

Use
Case

Parameter
Options

Performance
MetricsContext Performance

MeasuresEntities Parameter
SettingsStrategy

Figure 7.3: Composition of the self-aware optimization framework. The framework
contains the Domain DataModel (DDM) for configuration, the Empirical Observations
as a repository, a Coordination component that manages the workflow, and the three
main components Situation Detection, Strategy Selection, and Parameter Optimization.

The second component of the framework manages all sensor data received
from the use case and is called Empirical Observations. This component processes
incoming data and provides an interface for the other components to retrieve
the relevant data for the according computation step of the framework. For
example, it maintains information about the entities of the framework such as
the number of vehicles, the platooning percentage, and the vehicle speed. It also
obtains information about the currently executed adaptation planning strategy,
its parameter settings, and performance metrics. This enables the framework
to reflect on previous adaptation decisions and learn which combination of
strategy and parameter settings works best in a given situation.

91

Chapter 7: Self-aware Optimization Framework

The central component of the framework is the Coordination, which is respon-
sible for retrieving the required data from the observation storage and passing
them to the next component whose execution it triggers. This component is
constantly active and regularly invokes the other components of the framework,
namely the Situation Detection, the Strategy Selection, and the Parameter Optimiza-
tion, in this predefined order. In the event that one of the other components
fails, the coordination component can fall back to user-defined fallback rules
from the DDM to remain functional. These fallback rules can be simple if-then-
else rules, but since we provide the possibility to load arbitrary Python code
into the fallback rules, the user could also extend the framework with a more
sophisticated fallback mechanism.

The Situation Detection component of the framework receives the observation
data of the use case, such as the entities and their current state, and determines
the situation the use case is currently in. So far, we only use clustering algo-
rithms for this purpose. However, it is easy to extend the component with
other approaches, as we have designed the framework to be modular and the
approach used is configured in the DDM. The identified situation is then re-
turned to the Coordination component, which forwards this information to the
Empirical Observations component.
After the Situation Detection completes its computation, the Coordination

invokes the Strategy Selection component. This component combines knowl-
edge about the current situation with experience from previous decisions in
similar situations and determines which adaptation planning strategy is most
appropriate for this situation. This decision is returned to the Coordination
component that triggers the next component.
The last component of the framework is the Parameter Optimization compo-

nent. This component receives the current parameter settings as starting point,
historical data for the current situation, the corresponding adaptation planning
algorithm, and performance measures. It then performs an optimization pro-
cess to tune the parameter setting for this adaptation planning strategy to the
current situation. It then returns the settings to the Coordination component,
which stores all the collected information of this round of execution from the
components, updates the system models, and sends adaptation actions to the
adaptation planning system in layer two.
In addition to the general composition of the framework, we illustrate the

workflow of the framework as a sequence diagram in Figure 7.4. The user
is shown on the left side of the sequence diagram. He configures and starts
the framework using the DDM, sets up the use case and configures it. The
use case then starts its execution and sends the defined observations to the

92

7.5 Framework Composition

Framework

Coordination

CoordinationUse Case Situation
Detection

Strategy
Selection

Parameter
Optimization

Domain Data Model

Configuration

Model
Learning

Observation

...

Xth Obs. Get Situation

...

Update
Get Strategy

Get Parameters

Adaptations

Update

Update

...

Model-based Reasoning ProcessModel Learning ProcessProcess

Figure 7.4: Sequence diagram of the workflow of the self-aware optimization frame-
work. The user configures the framework and the use case sends observations. The
framework processes the observations, identifies the current situation, selects the strat-
egy and parameter setting, and continuously learns and updates its models.

framework in regular intervals, regardless of the current computational state of
the framework. The Coordination component of the framework processes the
incoming observations and forwards them to the Empirical Observations. After
a certain number of received observations, the Controller component triggers
the first execution of the Situation Detection component and forwards relevant
observation data to this component. In the meantime, the Coordination com-
ponent receives further observations from the use case, which are stored but
not used until the next round of execution. After the situation is detected, this

93

Chapter 7: Self-aware Optimization Framework

component returns the situation ID to the Coordination, which updates the
system model of the environment. Then, the Coordination component triggers
the Strategy Selection component with filtered observation data containing only
observations of the identified situation. This component applies model-based
reasoning based on this data to determine the most promising adaptation plan-
ning strategy. Again, this decision is fed back to the Coordination component
which again updates the system model. Finally, the observed data is filtered
again to include only data for the current situation and the adaptation planning
strategy determined by the Strategy Selection. With this data, the Coordination
triggers the model-based reasoning of the Parameter Optimization, which per-
forms an optimization process to find the best parameter setting for the current
situation and the selected strategy. After the Coordination component obtains
this parameter setting, it updates the system model and sends adaptation tasks
to the adaptation planning system, which executes them. This step completes
one round of execution in the framework and after a predefined waiting time,
the Coordination starts the next round.

7.5.1 Coordination

This section provides a more technical view of the Coordination component
depicted in Figure 7.3 and extends the descriptions of the previous sections.
We further summarize the workflow of the Coordination component using
Pseudocode in Algorithm 1. The Coordination is responsible for initializing and
invoking all other components of the framework. It also processes incoming
observations and updates the system models based on observations and the
framework’s adaptation decisions. It is triggered at the start of the framework
and instantiates all components of the framework (lines 1-2). To do so, the
Coordination receives the DDM specified by the user, in which he defines the
configuration of all components. It parses the DDM and instantiates the other
components which completes the setup process of the framework.
The use case that the framework is intended to optimize is responsible for

sending observations on a regular basis. Each observation consists of the use
case entities, the currently active adaptation planning strategy, its parameter
settings, and the use case performance metrics. Each new observation received
triggers a new round of execution in the Coordination component. As a first
step, the component uses the received data to compute additional important in-
formation relevant to subsequent processing (line 3): the time that the currently
active parameter setting was active and the HV of the use case performance
metrics. We require a user-defined waiting time in the DDM to allow adjust-
ments to take effect. Thus, the framework calculates the time that the current

94

7.5 Framework Composition

Algorithm 1: Pseudocode workflow of the Coordination component.
Input :DDM, new observation, existing observations

1 if start of framework then
2 initialize components defined in the DDM
3 derive additional information from the observation
4 save new observation
5 situation← invoke Situation Detection on all observations
6 if situation could not be determined then
7 adaptations← apply fallback rules to all observations
8 update system model with current adaptation decision
9 send adaptations

10 else
11 update system model with current situation
12 if waiting time after previous adaptation action is over then
13 if same situation as before AND number of optimization attempts not

met then
14 parameter setting← invoke Parameter Optimization on

observations of current situation and strategy
15 else
16 strategy← invoke Strategy Selection on observations of current

situation
17 parameter setting← invoke Parameter Optimization on

observations of current situation and strategy
18 update system model with current adaptation decision
19 send adaptation decision to use case

configuration is active in the use case and waits a predefined amount of time
before evaluating the performance of the latest adaptation decisions to reduce
unstable effects after recent changes. This also prevents too many adaptation
actions from being sent to the use case without enough time for implementa-
tion. The HV measure is a widely used quality indicator for multi-objective
optimization, especially in evolutionary optimization (c.f. Section 3.3). We
use the HV to reduce the observed performance indicators of the use case to a
single performance value. This allows us to use any single-objective optimiza-
tion technique in the Parameter Optimization component without requiring
multi-objectiveness for this technique. Afterwards, the component forwards the
observation and derived information to the Empirical Observations component
(c.f. Figure 7.3) that stores the incoming data (line 4).

Then, the Coordination passes the new observation to the Situation Detection

95

Chapter 7: Self-aware Optimization Framework

component (line 5). Since the Situation Detection component applies clustering
algorithms for identifying the current situation, it needs all the observation
data collected from the use case for each execution. Therefore, we decided to
implement an additional internal data management for the Situation Detec-
tion component to reduce the communication and data transfer between the
components. After the Situation Detection identified the current situation, it
returns the situation to the Coordination. If the available observation data is
not sufficient for the clustering algorithm or the current situation is clustered
as noise, the Situation Detection does not return a situation.
The Coordination component checks whether the situation detection was

successful and returned a situation (line 6). If the situation detection did not
return a situation due to insufficient data or classification as noise, the Coordi-
nation component applies the fallback rules to the current observations (line 7).
Then, the Coordination updates the system model with the most recent adap-
tation decision and sends the adaptations to the use case (lines 8-9). In case
the Situation Detection returned a valid situation (line 10), the Coordination
adds information about the current situation to the system model. Since we
apply a clustering algorithm in the Situation Detection that always clusters
all observation data, it could restructure the whole data and find different
clusters compared to the clustering of previous executions. In this case, the
Coordination updates the system model and reclassifies the already clustered
observation data to match the latest clustering (line 11).
After successfully updating the system model with respect to the current

situation, the Coordination checks whether the waiting time after a previous
adaptation action has expired (line 12). This waiting time is defined by the
user in the DDM and serves as a cool-down period for use case adaptations to
take effect. By doing this, we ensure that the transient phase of the use case
is waited for and performance measures are retrieved that evaluate only the
most recent adaptations. If the waiting time is still active, the current round
of execution has ended and the Coordination waits for the next observations
of the use case. When the waiting time has expired, new adaptation deci-
sions can be send to the use case. In the next step, the Coordination requires
another user-defined parameter from the DDM: the number of optimization
attempts for the Parameter Optimization. This parameter specifies how many
optimization cycles are performed per situation before a change in strategy is
considered. This definition of optimization attempts per situation provides
sufficient time to tune the parameters and avoids a hasty change of the selected
strategy. The Coordination first checks if the current situation is the same as in
the previous execution. Then, based on the user-defined parameter, it checks

96

7.5 Framework Composition

whether the necessary number of optimization attempts for this situation has
already been executed (line 13). If this is the case, the Coordination requests
all observations of the current situation and strategy combination and passes
them to the Parameter Optimization. The Parameter Optimization computes
a new set of parameters and returns it to the Coordination (line 14). How-
ever, if the number of optimization attempts has been exceeded this indicates
poor performance of the currently used strategy which the framework uses to
search for a new, better fitting strategy. In this case, or whenever the situation
changed (line 15), the Coordination requests all observations of the current
situation and passes them to the Strategy Selection component (line 16). This
component uses this information to reason about the most promising strategy
for adaptation planning. After the computation, this component returns the
selected strategy to the Coordination. Then, the Coordination requests all ob-
servations of the current situation and the selected strategy to pass them to
the Parameter Optimization (line 17). Using this information, this component
performs an optimization task to select the most promising parameter settings
for this strategy and returns the results to the Coordination. The Coordination,
in turn, uses the strategy decision and its parameterization to update the system
model (line 18). Finally, it sends the adaptation decisions including the strategy
and the parameter setting to the use case (line 19).

To better understand the timing within the framework, we present an exam-
ple timescale for invoking the three components Situation Detection, Strategy
Selection, and Parameter Optimization in Figure 7.5. All timing values can be

0 ... 120057030 60 600

Start

Receive Observations

Situation Detection

Strategy Selection

Parameter Optimization

... 3600...Time (sec)

Coordination

Figure 7.5: Timescale of the components and their computations the Coordination
invokes. Observations arrive every 30 seconds and triggers an execution of the Coordi-
nation which then decides which other components to invoke.

97

Chapter 7: Self-aware Optimization Framework

defined by the user with respect to the use case. Therefore, the timing presented
here should only be considered as an example for demonstration and not as the
fixed timing of the framework for all use cases. For simplicity, we assume that
no situation changes occur in this example. The figure shows time in seconds
along the x-axis as a time scale, arranges the components above the time scale,
and received observations are shown as arrows pointing to a specific time
on the time scale. The use case in this example is configured to send current
observations at a regular interval of 30 seconds. Each incoming observation
triggers the Coordination that decides which other components are required
at that time. At the beginning of the framework execution, the Coordination
stores the received observations and forwards them to the Situation Detection.
However, since there is not enough data at the beginning of the execution, the
Situation Detection does not provide a situation and the Coordination applies
the fallback rules. Once there is enough data (at second 600), the Coordination
component triggers the Situation Detection that returns a specific situation ID.
The situation identification then triggers the Parameter Optimization for the
first time. Strategy Selection is omitted at this point because we decided to first
optimize the parameters of the current strategy to see if the performance of
the strategy can be sufficiently improved by an optimized parameter setting.
Therefore, the user defines a number of optimization attempts that must be
computed before the Strategy Selection can be triggered. This parameter is
situation dependent and the number of optimization attempts is executed as
long as the situation remains the same. If the Situation Detection component
identifies a different situation than the last one, the Coordination triggers the
Strategy Selection and Parameter Optimization regardless of whether the re-
quired number of optimization attempts is reached, which is set to five for the
presented example. Thus, after 3600 seconds execution time, the Coordination
has triggered five optimization attempts and triggers the Strategy Selection.

7.5.2 Domain Data Model

The DDM is a representation of the use case for the framework and serves as
configuration file for the framework as depicted in Figure 7.3. It contains all
use case-specific information to optimize the use case and thus enables the
generic applicability of the framework for a variety of use cases. This means
that these settings strongly depend on the chosen use case and can be enriched
by use case specific parameters. Further, the DDM provides configuration
information for the components that the Coordination component uses to
instantiate the components. The DDM is defined using YAML Ain’t Markup
Language (YAML) and comprises four main parts: (i) use case, (ii) context,

98

7.5 Framework Composition

(iii) parameter_options, and (iv) performance_measures. In the following, we
describe each of these parts separately and provide a short example YAML file
for this part. Since these examples cannot reflect every configuration option of
the DDM, we provide the full specification in Section A.1.

We name the first part of the DDM use case (Listing 7.1, line 1) which contains
general information about the use case. The name (Listing 7.1, line 2) of the use
case is the first key of this part, which is used to identify all information collected
during the execution. The second key is called available_strategies (Listing 7.1,
line 3) and consists of a list of available adaptation planning strategies in the
use case. The Strategy Selection component of the framework uses this list to
determine themost promising strategy for the current situation. The framework
refers to them as black-box strategies and sends the name to the second layer
which is able to select the appropriate strategy identified by its name. This
list of possible strategies does not need to be exhaustive and the user can omit
strategies he does not want to be executed. The last key of this part is the
fallback_rules key (Listing 7.1, line 4), which defines a path to a Python file
that contains fallback rules for the framework. These fallback rules should
reflect expert knowledge from the use case and are used by the framework
in case the situation detection is not possible due to insufficient data or the
current situation is identified as noise. Listing 7.1 presents the first part of
the YAML file of an example use case called platooning_coordination. In
this use case, two adaptation planning strategies s_1 and s_2 are available.
Finally, the path to the predefined fallback rules is defined as Path.To.Rules.

Listing 7.1: Example for the use case part of the DDM YAML.
1 use_case:
2 name: pla tooning_coordinat ion
3 av a i l a b l e _ s t r a t e g i e s : ["s_1" , "s_2"]
4 f a l l b a ck_ ru l e s : "Path.To.Rules"

The second part of the DDM is called context (Listing 7.2, line 5) and specifies
what data (Listing 7.2, line 6), i.e., observations, the use case sends to the
framework. Furthermore, it defines the configuration of the Situation Detection
component with the key situation_detection_settings (Listing 7.2, line 13). The
data key of this part contains any number of context parameters from the
use case, which can be named arbitrarily, but must be unique (Listing 7.2,
lines 9-11). The framework will use these keys as identifiers when logging
information to a database. Further, each context parameter requires a data_type
specification (Listing 7.2, line 10,12) defined using int and double values.

99

Chapter 7: Self-aware Optimization Framework

Listing 7.2: Context part of the YAML definition of the DDM.
5 contex t :
6 data:
7 # any number of context parameters
8 # with unique names
9 context1 :
10 data_type: i n t
11 context2 :
12 data_type: double
13 s i t u a t i on _de t e c t i on _ s e t t i n g s :
14 # available algorithms: RuleBased , kMeans,
15 # DBSCAN, OPTICS
16 algorithm: "DBSCAN"
17 s e t t i n g s :
18 min_samples: 120
19 eps: 34

The situation_detection_settings key describes the configuration of the Situation
Detection component and consists of the two keys algorithm and settings (List-
ing 7.2, lines 16-17). The algorithm key expects the definition of an available
situation detection algorithm. So far, four algorithms are available which we
describe inmore detail in the next section: RuleBased, K-Means, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN), and Ordering
Points To Identify the Clustering Structure (OPTICS). We include the
clustering technique K-Means in this set as it is the most common technique
in machine learning. However, it requires the definition of k representing
the number of clusters to be identified which increases the required domain
knowledge and configuration overhead. This led to the idea to use density-
based algorithms DBSCAN and OPTICS which do not require a predefined
number of clusters but cluster the observations based on their density. Hence,
they are able to identify any meaningful amount of situations observed from
the use case environment. We selected DBSCAN as it is a commonly used
density-based clustering technique. However, it also requires a parametrization
which increases the required domain knowledge. The decision to use OPTICS
addressed the requirement of reduced domain knowledge best as it operates
with the least configuration overhead. Still, this set of clustering techniques
should be considered as prototypical implementation and this list can easily be
extended whenever another algorithm might perform better. Each algorithm
requires additional configuration parameters that are part of the settings key.
Listing 7.2 provides a short YAML example for the context part. It defines two
context parameters context1 and context2 for the data key with data_type

100

7.5 Framework Composition

int and double. For the situation_detection_settings it is specified that the
algorithm DBSCAN should be used and the required settings for this algorithm
min_samples = 120 and eps = 34 are defined (Listing 7.2, lines 18-19).

The third part of the DDM is called parameter_options (Section 7.5.4, line 20).
It defines input parameters of the adaptation planning strategy that can be
tuned by the framework and provides configuration information for the Strat-
egy Selection component. This part consists of the options for the input pa-
rameters and the strategy_selection_settings (Section 7.5.4, lines 21-34). The
options key contains an arbitrary number of input parameter options for strate-
gies and the key is in turn used as identifier for this parameter (Section 7.5.4,
lines 24-28). Thus, it can be named arbitrarily but must be unique within
this DDM. Each input parameter option further consists of three mandatory
keys: data_type, min, and max and an optional key strategies. The data_type
key defines the data type of the input parameter option, where we accept
int and double (Section 7.5.4, lines 25,29). The min and max keys allow the
user to specify the value range the input parameter can take (Section 7.5.4,
lines 26,27,30,31). Finally, the strategies key allows the user to define for which
adaptation planning strategy this input parameter is meaningful by defining a
list of strategies (Section 7.5.4, line 33). This key is optional and the absence of
this key leads to the conclusion that this parameter applies to all strategies. The
second key of this part is the strategy_selection_settings key, which configures
the Strategy Selection component. This key consists of five mandatory keys:
observations_between_adaptations, min_optimization_attempts, window_size, thresh-
old_exceeds, and method and one optional key called hypervolume_threshold. The
key observations_between_adaptations defines the number of observations the
framework must receive before new adaptation actions can be performed (Sec-
tion 7.5.4, line 35). This property allows the user to define the transient phase
for the use case where measurement data might be unreliable due to recent
changes in the system. Themin_optimization_attempts key defines the number of
parameter optimization attempts for a situation before the Coordination com-
ponent considers computing a new adaptation planning strategy (Section 7.5.4,
line 36). The window_size and threshold_exceeds keys determine whether a new
strategy should be chosen (Section 7.5.4, lines 37-38). For a detailed explanation
of these keys, please refer to Section 7.5.4. Listing 7.3 provides a short YAML
example for the parameter_options part of the DDM. It defines two options
param1 and param2, where the first one is of type int, accepts values in [0, 100],
and applies to all strategies. The second parameter option is of type double,
accepts values in [0.0, 2.0], and is applicable for the strategy s_1. Furthermore,
it specifies the minimum number of optimization attempts to five.

101

Chapter 7: Self-aware Optimization Framework

Listing 7.3: Parameter options part of the YAML definition of the DDM.
20 parameter_options:
21 opt ions :
22 # any number of context parameters
23 # with unique names
24 param1:
25 data_type: i n t
26 min: 0
27 max: 100
28 param2:
29 data_type: double
30 min: 0 . 0
31 max: 2 . 0
32 # optional definition of relevant strategies
33 s t r a t e g i e s : ["s_1"]
34 s t r a t e gy _ s e l e c t i o n _ s e t t i n g s :
35 observat ions_between_adaptat ions : 1
36 min_optimization_attempts: 5
37 window_size: 5
38 threshold_exceeds : 3
39 # available methods: hypervolume , threshold
40 method: "hypervolume"
41 hypervolume_threshold: 3 . 4

The last part of the DDM is called performance_measures (Listing 7.4, line 42)
and defines indicators of the performance of the defined use case. This part
contains any number of performance measures from the use case, which can
be named arbitrarily (Listing 7.4, lines 43,47). Since these names are used
as identifiers in the framework, they need to be unique. Each performance
measure consists of three mandatory keys data_type, higher_is_better, and refer-
ence_value, and an optional key called threshold_value. The data_type specifies the
performance measurement data type, which can be either int or double (List-
ing 7.4, lines 44,48). The higher_is_better key defines whether a higher or a
lower value of this metric is better for this use case, and is of type Boolean (List-
ing 7.4, lines 45,49). The reference_value key specifies a reference value for
the calculation of the HV, which needs to be of the same type as specified in
data_type (Listing 7.4, lines 46,50). Finally, the threshold_value key is only re-
quired if the threshold method is selected in the strategy_selection_settings
of the parameter_options part and defines a threshold value that cause the
Strategy Selection component to compute a new strategy. Listing 7.4 pro-
vides a YAML example for the performance_measures part of the DDM and
defines two performance measures pm1 and pm2. The first is of type int, where

102

7.5 Framework Composition

higher values represent a better use case performance and a reference value
of -1. The second performance measure is of type double, with lower val-
ues representing better use case performance and a reference value of 100.0.

Listing 7.4: Performance measures part of the YAML definition of the DDM.
42 performance_measures:
43 pm1:
44 data_type: i n t
45 h ighe r _ i s _be t t e r : True
46 re ference_va lue : −1
47 pm2:
48 data_type: double
49 h ighe r _ i s _be t t e r : False
50 re ference_va lue : 100 .0

7.5.3 Situation Detection

The Situation Detection component is responsible for identifying the current
situation the use case is currently experiencing as depicted in Figure 7.3. The
use case periodically sends observation data to the framework, as defined
in the context part of the DDM. The frameworks’ Coordination component
forwards this data to the Situation detection. So far, this component provides
four methods for detecting the current situation: (i) rule-based, (ii) K-Means,
(iii) DBSCAN, and (iv) OPTICS. As already mentioned, we provide this set of
clustering techniques including K-Means as the most basic clustering technique
requiring the definition of a number of cluster to be identified. Further, we
select the density-based clustering techniques DBSCAN and OPTICS to reduce
this requirement. While DBSCAN still requires manual configuration effort,
OPTICS fits best to the requirement of the reduction of domain and expert
knowledge. Still, this set of clustering techniques should be considered as
prototypical implementation and this list can easily be extended whenever
another algorithm might perform better. All methods operate on all context
data available in the system. To reduce the communication overhead within
the framework, the Situation Detection contains a duplicated set of received
observation data within the component, and the Coordination only needs to
forward the current observation. The Situation Detection component computes
the current situation and returns a situation ID to the Coordination component.
This ID is further used in the Strategy Selection and Parameter Optimization
components to find appropriate adaptation decisions for this specific situation
and to learn from previous decisions in this situation.

103

Chapter 7: Self-aware Optimization Framework

The situation detection process can be defined as a mathematical function
that maps observation data from the use case to an integer value. This value
represents the situation ID as defined in Equation (7.1). We define the value
interval of this function as [−1,∞), where the value −1 indicates that the
situation could not be detected. This could be the case for two reasons: First,
the amount of available data is insufficient to determine the situation. Second,
the observation data is classified as noise, meaning that the currently observed
values cannot be classified as a specific situation. This could be due to a novel
situation for which these is not enough data, or measurement inaccuracies
in the use case. In the case that the Situation Detection classified the current
situation as −1, the framework does not invoke any further computational
processes, such as Strategy Selection or the Parameter Optimization. However,
the Coordination component uses the user-defined fallback rules from the
DDM (Listing 7.1, line 4) to determine any adaptation actions that may be
required. If the returned situation ID is equal to or greater than zero, the
Situation Detection component has determined a valid situation. Therefore,
the Coordination component can invoke the Strategy Selection and Parameter
Optimization components. The actual value of the situation ID does not allow
for further interpretation regarding the similarity of situations. For example, if
the component identified three situations s1 = 0, s2 = 1, s3 = 10, it means that
these three situations exist and are all different from each other. Moreover, the
proximity of the values 0 and 1 does not mean that the situations s1 and s2 are
more similar to each other than the situation s3.

sit_det(context) =
{
−1, if situation is classified as noise
>= 0, otherwise (7.1)

Due to the ongoing nature of the framework, the use case regularly sends
new observation data. Therefore, the amount of observation data grows as
the framework is executed and the Situation Detection component receives
more and more data to improve decision making. However, this could lead to
a changed in the assignment of context data to situations during the execution
time. This means, the situations identified during the last Situation Detection
process may not be the same as those identified in the current process. Com-
pletely new situations or a change in assignment from an already assigned
observation could lead to inconsistencies in the data. For example, a context ob-
servation classified as situation s1 in the last process could now be classified as
s2 when more data is available. Therefore, the Situation Detection component
updates its learned models after each execution to match the latest findings to
the observation data.

104

7.5 Framework Composition

We provide two types of situation detection mechanisms, one rule-based
mechanism and four clustering algorithms that can be selected and configured
by the user in the DDM. Since we designed the framework to be modular, it is
easy to extend the framework with additional components or to further develop
individual components with additional techniques. The following Algorithm 2
summarizes the workflow behavior of the Situation Detection component.
The component receives the DDM and the new observation and selects the
configured algorithm for the Situation Detection. In all cases, the component
retrieves required parameters for the selected technique from the DDM and
invokes the configured technique. All techniques return the situationIDs for
all observations, that is, the cluster to which each observation in the data set
is assigned. The component then update its situation model of all observed
data with the latest classification and returns the situationID of the new
observation to the Coordination component.

Algorithm 2: Pseudocode workflow of the Situation Detection compo-
nent.
Input :DDM, new observation

1 switch DDM.situation_detection_settings.algorithm do
2 case RuleBased do
3 retrieve path to fallback rules from DDM
4 situationID← execute fallback rules
5 case kMeans do
6 retrieve K-Means parameters from DDM
7 situationID← invoke K-Means
8 case DBSCAN do
9 retrieve DBSCAN parameters from DDM
10 situationID← invoke DBSCAN
11 case OPTICS do
12 retrieve OPTICS parameters from DDM
13 situationID← invoke OPTICS

14 update situation model with latest classifications
15 return situationID of new observation

The rule-based situation detection offers the possibility to integrate domain
knowledge in the identification process of this component. For example, in the
platooning use case, the user could specify frequent traffic volumes for which
he knows the best performing configuration of the adaptation planning system.
The user defines the rules in form of a Python file that is loaded and executed

105

Chapter 7: Self-aware Optimization Framework

by the component. As the simplest option, the user can define Event-Condition-
Action rules to specify known, well-performing configurations. However, since
the user describes the fallback rules in a Python file, he can also construct
arbitrarily complex functions to identify situations. Still, the user must provide
a script that matches our definition of the situation detection function in Equa-
tion (7.1). The user can adapt these rules for future executions of the framework
as he gains new domain knowledge from running the framework and analyzing
its decisions. In the context of this thesis, we omit updating the user-provided
rule set with new knowledge from previous executions of the Situation Detec-
tion. This also results in the framework being unable to react to new situations
in the fallback case, since they are not present in the rules. In this case, the new
situation must be classified as noise. However, there are several approaches to
automatically update rule sets during execution [NZJT12,CHS+18,GMS+09].
In addition to the static rule-based situation detection, we provide three

clustering-based situation detection methods. Advantage of these methods are
that they can automatically detect new situations due to their unsupervised
learning approach, and that they do not require domain knowledge [ATL14,
FGKV19]. One clustering algorithm we integrate into our framework is K-
Means in two versions. The first version works with a predefined parameter
k that specifies the number of clusters to identify. In the second version, the
algorithm can determine the parameter k automatically by applying the concept
of gap statistics [TWH01]. This method requires the definition of a minimum
and a maximum value for k but no further interaction with the user is required.
The gap statistics estimates the best value for k by applying K-Means to different
values of k and analyzing the quality of the clustering. Another method for
automatically defining k could be the elbowmethod [Gov]. In this method, the
user must plot various possible values of k and their performance with regards
to the resulting clustering. Then, the user identifies the elbow of the resulting
line that represents the best value for k. Due to the mandatory user interaction,
we decided to omit the elbow technique. The performance of the K-Means
algorithm depends heavily on the definition of k and the user may not have
the expertise to determine the number of distinct situations a priori. Further,
the K-Means algorithm always assigns all observations to an existing cluster
and cannot identify noise, which could negatively affect the performance of the
framework. Therefore, we additionally integrate two density-based clustering
algorithms into the Situation Detection component to reduce these drawbacks.
We select DBSCAN and OPTICS as density-based clustering approaches.

Neither method requires a number of clusters as input. Instead, DBSCAN
requires the definition of min_samples, which specifies theminimumnumber of

106

7.5 Framework Composition

observation samples to form a cluster. Additionally, an ϵ (eps) value is required
that defines the neighborhood of a data point in which at least min_samples
must be found to classify that data point as core-point. For the definition of ϵ the
user needs domain knowledge and it has a great impact on the identified cluster
structure. OPTICS needs the parameter min_samples which is the number
of data points in a neighborhood, to consider this point as core-point. Also
required is the parameter min_cluster_size, which is the minimum number
of data points required to form a cluster. The user can determine both values
by considering how long a situation is usually active in the use case and how
many observations are sent to the framework. Both density-based clustering
algorithms can classify observations as noise, which could happen when the
use case observes a new situation for a short time.
One important point that the user of the framework must keep in mind is

data management. Since the use case continuously sends observation data,
the amount of data is constantly increasing. So far, we have not implemented
any feature to reduce the amount of considered data in the decision making,
which may lead to errors due to memory limitations. To reduce the amount
of considered and stored data, the framework needs to determine what infor-
mation will be important in the future and what information can be omitted
without negatively impacting the future performance of the framework. One
option is to set a maximum number of data points considered, but this could
result in sparse situations being forgotten. Techniques for reducing an ever-
increasing amount of observation data can be found in the literature. For
example, Kang et al. [KCP20] research on the required knowledge of robots
about their environment to reduce the probability of collisions due to estima-
tion errors regarding other robots. Such a technique could be easily added to
the Situation Detection component as future work to prepare the framework
for long-term executions as well.

7.5.4 Strategy Selection

The Strategy Selection is the second component of the framework, that is in-
voked by the Coordination component as depicted in Figure 7.3. This com-
ponent is responsible for selecting the most promising adaptation planning
strategy for the use case with respect to the current situation. This assumes,
of course, that the use case supports different strategies and that the user con-
figured them for selection. This functionality is based on the No-Free-Lunch
Theorem for optimizations [WM97] and the idea of situation-dependent be-
havior of adaptation planning systems. Hence, the goal is to select the strategy
that seems most promising for the current situation. To do this, the framework

107

Chapter 7: Self-aware Optimization Framework

uses the experience gained from previous executions of the strategies in similar
situations. However, which algorithm performs best in a new situation is not
known a priori. Therefore, the framework must test the available strategies
and start a new round of learning for that situation. A general definition of
the algorithm selection problem can be found in [SM09]. In the following, we
explain the general workflow of the Strategy Selection and refer to Algorithm 3.

Algorithm 3: Pseudocode workflow of the Strategy Selection component.
Input :DDM, current strategy, number of optimization attempts already

performed, all observations for the current situation
1 strategy← current strategy
2 if number of optimization attempts < DDM.min_optimization_attempts then
3 return strategy
4 else
5 exceed_counter← 0
6 for observation within DDM.window_size do
7 if thresholds exceeded then
8 exceed_counter++

9 if exceed_counter >= DDM.threshold_exceeds then
10 if all strategies already executed for this situation then
11 strategy← best performing strategy in history
12 else
13 strategy← next strategy determined in DDM

14 return strategy

Similar to the Situation Detection, this component also receives the DDM as
input. Additionally, the Coordination component sends the currently active
adaptation planning strategy, the number of optimization attempts already
performed for this strategy, and all available observations for the current situa-
tion. These observations contain the performance measures of the adaptation
planning strategy and form the basis for the decision logic. First, the Strat-
egy Selection sets the currently active strategy as the selected strategy since it
assumes that no changes need to be made by default (line 1). Then, the compo-
nent checks whether enough optimization attempts have been made to decide
whether the strategy should be changed. We decided to provide a fixed initial
period during which multiple optimizations of the parameters are performed
before considering a strategy infeasible for this situation. If the actual number
of optimization attempts has not reached the minimum number of optimiza-

108

7.5 Framework Composition

tion attempts defined in the DDM, it means that the Parameter Optimization
component might need more time to optimize the parameters of this strategy,
this component then returns the currently active strategy (lines 2-3). If the
required number of optimization attempts has already been reached (line 4),
this component can select another strategy if the current strategy does not meet
the performance expectations (lines 5-8). To do this, the component analyzes
the performance of the strategy in the last observations with respect to a de-
fined threshold and counts the number of times the threshold is exceeded. The
actual number of analyzed observations is determined using the window_size
in the DDM. The component provides two ways to define these threshold:
(i) hypervolume threshold and (ii) individual value thresholds. Full details
of both methods are provided later in this section. After the component de-
termines the number of threshold violation in the last observations, it checks
whether this number is above the predefined maximum allowed threshold
violations (line 9). If this holds, the component proceeds and selects a new
strategy (line 10). It then checks to see if all strategies for that situation have
already been executed and if so, it selects the strategy that resulted in the best
performance measurements (line 11). Thus, the component computes the HV
of performance measurements for each observation within the window_size and
all strategies and selects the strategy that yields the highest average HV. In
the event that at least one strategy defined in the DDMwas not executed for
this situation, the Strategy Selection retrieves one of these strategies from the
DDM (line 13). This triggers a trial-and-error phase in this component, since
the decision cannot be based on experience and the component is forced to try
new combinations. Finally, the component returns the selected strategy to the
Coordination component (line 14).

The Strategy Selection component provides two possibilities to determine
whether an algorithm meets the performance expectations or should be mod-
ified. In both mechanisms, the component counts the number of threshold
violations and compares them to the allowed threshold violations specified
by the user. The first method the component offers so far is the HV threshold
method which reduces the performance measures to a single score. In this
case, the component computes the HV metric (c.f. Section 3.3) and compares
its value to a user-defined threshold. To calculate the HV, the user must specify
reference values for each performance measure in the DDM. These reference
values can either be defined out of range for the performance measure in ques-
tion, or set to a value within the range that should never be dropped below.
If the reference value is defined within the value range and the actual value
falls below this value, the HV is defined as zero regardless of the other per-

109

Chapter 7: Self-aware Optimization Framework

formance measures. However, the downside of this method is that it weights
measures with a larger value range more heavily, so the user should apply a
normalization mechanism before sending the performance measures to the
framework. Still, the advantage of this method is that the performance of the
overall adaptation planning system is condensed into one metric and the user
only needs to specify one threshold value.
The second possibility to determine whether to change the currently active

adaptation planning strategy is to set individual value thresholds. This method
requires the user to define individual thresholds for each performance measure
of the DDM that should never be fallen below. Whenever one of the perfor-
mance measures falls below this threshold, the Strategy Selection component
counts this as a threshold violation, regardless of any possibly perfect per-
formance of the other measures. This method allows the user to have more
impact on the individual performance measures and value ranges of these
measures are less important. The user can even rule out performance measures
having an impact on the strategy selection by setting the threshold out of the
value ranges. Similar to the other components of the framework, the user can
develop a customized version of the methods used in this component. Addi-
tionally, the user can easily extent the functionality of this component due to its
modular design. For instance, Machine Learning techniques such as Random
Forests [GBBGP21] can be integrated to learn a model for the Strategy Selection.
This learning could use historical observation data to computes features as
basis for the learned model. As the framework detects new situations, the
model should be retrained to also cover decisions for the new situation once
sufficient observation data has been collected.

7.5.5 Parameter Optimization

The last component to be presented is the Parameter Optimization component
depicted in Figure 7.3. The Coordination component invokes this component
when a new strategy is determined, the situation changes, or the performance of
the strategy decreases with respect to the performance measures of the use case.
This component uses optimization techniques to determine the best performing
parameter setting for the selected strategy. According to the No-Free-Lunch
Theorem [WM97], the choice of the optimization algorithm depends heavily
on the use case being optimized. At the moment, this component uses Bayesian
Optimization to optimize the parameter setting as it performed best in our
preliminary study on situation-aware optimization of platooning coordination
strategies in Chapter 6. However, the desired technique can be easily replaced
due to the modular nature of the framework. The decision to use the Bayesian

110

7.5 Framework Composition

Optimization is based on our platooning coordination use case, as our study of
situation-dependency showed that Bayesian Optimization is best s best for this
use case [LNH+21].

So far, the Parameter Optimization component applies Bayesian Optimiza-
tion to determine a new set of parameters for the current strategy. For this
computation, the component uses historical observation data of the same situ-
ation and strategy combination. The Coordination component is responsible
for providing only relevant data to this component. If the situation-strategy
combination has not changed since the last invocation of this component, the
Bayesian Optimization integrates only the last observation into the optimiza-
tion model to computer new parameters. If either the situation or the selected
strategy has changed since the last invocation, the optimization model must
be re-trained using historical data of the new situation-strategy combination,
if available. This allows the Parameter Optimization to react to the current
situation and strategy and learn from previous decisions.

The Parameter Optimization component returns the new parameter set for
the strategy to the Coordination component which forwards the adaptations
to the use case. The use case executes these adaptations and collects new
observations, that is, performance data for the new parameter settings, and
sends them to the framework. In the next round of execution by the framework,
the optimization technique receives this performance data and performs the
next optimization step to further optimize the strategy parameters.

When choosing which optimization technique to use, the user of the frame-
work must keep in mind that the algorithmmust be able to learn from previous
decisions. It should also be noted that the algorithm must process new in-
coming observations on the fly and does not need to be fully trained for every
new observation. Finally, the overhead to completely retrain the model when
a new situation occurs or the selected strategy changes should be kept to a
minimum. In the best case, the user should choose an optimization technique
whose optimization model can be extracted and reloaded when the component
needs to handle a new situation and strategy combination. This would limit
the time required to completely re-train the model for each change in situation
and strategy. For future extension of the framework, the general meta-heuristic
search algorithm Stepwise Sampling Search (S3) [Noo15] could be tested for
faster optimized parametrizations.

111

Chapter 7: Self-aware Optimization Framework

7.6 Use Case-specific Adapter of the Framework

All the components of the framework are designed to be generically applicable
to a variety of use cases enabled by the DDMdefinition of use-case specific char-
acteristics and an adapter that manages the connection between use case and
framework as described in the following. As mentioned earlier, the framework
is modular and consists of components that users can adapt to the use case
depending on their requirements. Nevertheless, all components are designed
to handle any kind of data from a use case as long as the data and optimization
goals are defined in the DDM. This section briefly summarizes the required
user actions to apply the framework for any use case.

Figure 7.6 provides an overview of the architecture of the adapter required to
connect the framework to any use case. The self-aware optimization framework
is shown at the top, while the use case consisting of the two lower levels (see Sec-
tion 7.3) is shown at the bottom of the figure. The center of the figure presents
two adapter components which are used to connect the framework and the
use case: (i) Data Preprocessing and (ii) Adaptation Executor. The framework
provides two interfaces that enable general applicability of the framework as
they are implemented with Representational State Transfer (REST) Applica-
tion Programming Interface (API)s. Further, the DDM defines the data sent
through these APIs and provides all the necessary information to interpret the
parameters, make adaptation decisions, and send adaptation actions. The API
on the left receives the observation data, while the API on the right provides
the possibility to retrieve adaptation decisions for the use case. We decided to
further abstract the data handling from the use case and include an additional
Data Preprocessing component. This component receives raw monitoring data
from the use case, preprocesses this data, and potentially calculates additional
aggregate metrics that may be required to assess the performance of the use
case. Due to the REST API, the whole component can be replaced with a cus-
tomized version to fit the desired use case. TheAdaptation Executor component,
depicted on the center right of the figure, retrieves the adaptation decisions
from the framework and converts these into specific adaptation actions for the
use case. This component also depends on the use case and the user must
customize the component to the requirements of the new use case. Since both
adapter components handle data transfer to and from the framework, the use
case dependent implementation effort should be minimal. If the use case al-
ready provides the possibilities to sendmonitoring data and retrieve adaptation
decisions, these adapter components may not be necessary. However, we have
chosen to provide a template for such components as they represent another
level of abstraction and, thus, reduce the computational effort in the use case.

112

7.7 Fairness-Ensuring Adaptation Planning Strategies

Adapter

Data Preprocessing Adaptation Executor

Self-Aware Optimization Framework

DDM
DDM

Use Case
Layer 2 (Adaptation Planning)

Layer 1 (Adaptive System)

Figure 7.6: Use case adapter for the generic self-aware optimization framework. The
use case with its two layers adaptive system and adaptation planning are depicted
at the bottom. It communicates with the Framework by sending observations and
retrieving adaptation actions. Additional Data Preprocessing and Adaptation Executor
components can provide a further abstraction level.

7.7 Fairness-Ensuring Adaptation Planning Strategies

In the previous sections, we defined our self-aware framework for optimizing
adaptation planning strategies. In the Foundations part of this thesis, we
motivated this framework and our selected use cases by several properties of
applied strategies such as the situation-dependence, fairness, and uncertainty
in adaptation planning. Motivated by the No-Free-Lunch Theorem [WM97],
our framework directly integrates situation-awareness as part of its workflow.
The remaining properties are fairness and uncertainty from which we address
fairness in this section. Similar to Rescher, we see fairness as “dividing goods
or bads on the basis of general principles that pertain to everyone alike” [Res02,
p.13]. We address properties in another way, that is, by introducing specialized
fairness-enabling adaptation planning strategies as introduced in this section,
or the definition of utility functions to address uncertainty. These proposed
strategies form a contribution in SAS on addressing fairness aspects in such
systems and can be used by the framework by selecting the most appropriate
fairness mechanism according to the current situation.
In this section, we still focus on the ITS domain and address the fairness of

113

Chapter 7: Self-aware Optimization Framework

positive effects when driving in a platoon. However, the contribution proposed
in this section to address fairness within adaptation planning strategies can
also be generalized to other domains. We propose six mechanisms to enable
a fair intra-platoon positioning, which is an important aspect of platooning
coordination as the diverse positions inside a platoon formation are directly
related to the advantages that can be drawn from driving in a platoon. For
instance, the lead vehicle experiences reduced fuel savings of around 5% while
follower vehicles experience fuel savings of up to 15% [BSC+12]. We address
these unfair circumstances of platoon participation by proposing approaches
for indirect compensation of negative effects between platoon members. As
already mentioned, these mechanisms refer to the proposed framework, as they
can be applied in a use case to address fairness aspects and themost appropriate
mechanism for the current situation can be selected using the framework. This
section is based on our publication “A Comparison of Mechanisms for Com-
pensating Negative Impacts of System Integration” in the Future Generation
Computer Systems Journal [LKS+21].

The use case for the mechanisms pictures a road with at least two lanes and
one-way traffic flow. On the road, only one platoon and non-platooning traffic
are simulated. Even if there are more than two lanes, the mechanisms only
occupy the right lane and the lane left to it at times. The latter will be referred
to as the left lane even though there could be additional lanes left of it. On top
of that, we state the following simplifying assumptions to limit the complexity:

• All non-platooning cars drive faster than the platoon and no overtaking
of traffic cars is considered.

• All vehicles inside the platoon have the same vehicle type. Otherwise,
differing acceleration or braking performances would lead to delays or
make adaptations of the inter-vehicle spacing inevitable.

• We dismiss all kinds of limitations stemming from currently prevailing
legal norms. Not only is the concept of platooning not yet legally enforce-
able in most jurisdictions given the low inter-vehicle spacing required for
it, but also overtaking on the right lane as utilized by some strategies is
forbidden in countries such as Germany.

• We assume that the vehicle to vehicle communication works flawlessly
and explicitly exclude safety considerations as these are usually part of
the communication and lower layers of platooning technology.

In the following, we introduce sixmechanisms that rotate the position inside the
platoon among all platoon members to equally split possible negative effects.

114

7.7 Fairness-Ensuring Adaptation Planning Strategies

V6 V5 V4 V3 V2 V1
DtF

V6 V5 V4 V3 V2 V1
DtB

Right Lane
Left Lane

Left Lane
Right Lane

Figure 7.7: Illustration of the Drafting to Front (top) and to Back (below) mechanisms
for addressing fairness within a platoon. The first or the last vehicle, respectively, leave
the platoon to overtake or fall back and proceed as leader or at the back of the platoon.

The first two methods handle a single vehicle at a time while the last four
methods establish a constant rotation of all vehicles which is inspired by the
Belgian Tourniquet.

7.7.1 Drafting a Single Vehicle to the Front (DtF)

In this method, one of the following vehicles, for instance, the last vehicle (V6)
of the platoon, overtakes the platoon and takes over the lead (see Figure 7.7).
Therefore, it temporarily leaves the platoon and switches lanes once it is safe
to do so. After the lateral movement is completed, the car overtakes and
increases its desired speed. When the overtaking car is in front of the platoon,
it decelerates again. Once the leader (V1) has been passed by a safe margin,
the overtaking car (V6) switches back to the right lane. Finally, the overtaking
car (V6) establishes itself as the new leading vehicle. With this maneuver, it is
possible to either always rotate the last vehicle to the front or select a specific
vehicle to become the new leader if there is a compensation model that tracks
leading time over multiple platoons. The strengths of this method lay in a low
disturbance of other traffic vehicles, as overtaking is performed rather quickly.

7.7.2 Drafting a Single Vehicle to the Back (DtB)

In this method, depicted at the bottom of Figure 7.7, the leading vehicle (V1)
leaves the platoon, switch lanes and then let the platoon pass before queueing
up behind it as the new tail of the platoon. First, the second car (V2) in the
platoon is assigned the lead role. Then, the previously leading car (V1) switches
to the left lane as soon as safely feasible. Once it has completed the lane switch,
it will start to fall back by reducing the desired speed. After the overtaking
car (V1) has fallen behind half of the platoon, it picks up pace again to rejoin the
platoon with similar speed to the rest of the platooning vehicles. This prevents

115

Chapter 7: Self-aware Optimization Framework

the creation of a large gap at the end of the platoon. When the drafted back
vehicle has the desired distance behind the tail of the platoon (V6), it switches
back to the right. Beneficially the singled out vehicle (V1) will not have to use
more fuel by increasing its speed and overtaking; instead, it can coast until the
platoon has passed. However, we expect that the utilization of a slowing car on
the left lane will force traffic vehicles to brake more often.

7.7.3 Belgian Tourniquet (BT)

This technique originates from professional cycling, where usage of the slip-
stream effect is essential to save energy. To apply this technique for platoons,
we separate into two groups across two lanes and establish a constant rotation.
The method is similar to DtF; however, the next vehicle starting an overtake
is always the last one of the original platoon, that is, V3 in Figure 7.8. It starts
the overtake whenever there is enough space on the next lane, i.e., it does not
wait until the currently overtaking vehicle (V6) is deployed as the new leader.
The leader of the overtaking platoon (V6) is meant to overshoot the leader of
the overtaken platoon (V1) and reduces its speed after it has rejoined the right
lane. As soon as the switch to the right lane is finished, this car (V6) becomes
the new leader as long as no other car switched to the right lane in front of it.
This behavior is favorable for this approach because the following cars on the
overtaking lane would be forced to brake and accelerate once again otherwise.
Using this method, the cars on both lanes make use of platooning and because
of the constant rotation, the benefits are approximately equally distributed at
all times. Though, one possible drawback of this method is the starting se-
quence. As the initial situation includes a platoon driving on the right lane, the
overtaking platoon needs to be formed from scratch. First, the last vehicle (V6)
starts its overtaking maneuver before the next vehicles follow (V5) and (V4).

V6 V5 V4 V3 V2 V1
BTJS

V6 V5 V4

V3 V2 V1
BT

V5 V6V4

Right Lane

Left Lane

Right Lane

Left Lane

Figure 7.8: Illustration of the Belgian Tourniquet (top) and Belgian Tourniquet with
Jump-start (below) mechanisms for addressing fairness within a platoon. These
mechanisms are inspired by professional cyclingwhere the so called Belgian Tourniquet
is often applied.

116

7.7 Fairness-Ensuring Adaptation Planning Strategies

7.7.4 Belgian Tourniquet Jump-start (BTJS)

Since it takes a while to get the continuous rotation of the BT properly running,
we also consider an alteration of it with an improved starting procedure. In
this instance, the trailing half, that is vehicles (V4) to (V6) in Figure 7.8 of
the platoon, switches lane synchronously once enough space is available to
jump-start the rotation. Afterward, the performed actions are the same as in
the standard version of the BT as long as the flow is not interrupted. If traffic
interferes such that no overtaking car remains, the rotation restarts with the
same multi-car switch strategy. This alternative option should allow for an
accelerated start to the platooning on the faster lane since the platoon is instantly
split in half with the vehicles switching lanes already having a short gap to
each other. Consequently, it should also lead to more overtaking maneuvers
being performed in higher traffic densities as interruptions of the procedure
will not be as costly given the rotation’s faster restart. On the downside, it can
not be guaranteed that the benefits are always distributed equally anymore
because the timing of perturbing traffic determines when the strategy switches
from the last vehicle of the platoon starting the overtake to a full restart with
multiple vehicles. In the second scenario, the vehicle at the back of the original
platoon, e.g., (V6), only takes the leading position after the vehicles in front
of it, switching lane at the same time, e.g., (V4) and (V5), have done so, even
though those have already led.

7.7.5 Reversed Belgian Tourniquet (RBT)

Akin to the distinctionmade between themethodsDtF andDtF,we also propose
a reversed version of the BT, depicted in Figure 7.9. Instead of the last vehicle
of the platoon being the next to start an overtake, the leading vehicle (V1) is
the next to switch lanes and fall back once enough space is provided. Now, the
second car in the platoon (V2) is the leader as long as it drives on this lane. If
this car starts its fall back procedure and switches to the left lane, the leader
role is assigned to the next car in the platoon (V3). From there on, the rotation
continues as the new leader of the original platoon (V3) will also follow suit
once safely possible and so on. We hope this results in a more energy-efficient
procedure since acceleration actions will only be performed while driving in
the slipstream of a car in front. However, this also makes the implementation
a bit more complicated. A vehicle falling back will have to pick up the pace
again once it is getting close to the end of the platoon in order to adapt speed
and assure the maintenance of a close gap after rejoining the platoon. For
this process not to impact the smooth flow, it is critical to pick the speed and

117

Chapter 7: Self-aware Optimization Framework

V4V6 V5
RBT

V2 V3V1

V6 V5 V4 V3 V2 V1
RBTJS

V3 V2 V1

Right Lane

Left Lane

Right Lane

Left Lane

Figure 7.9: Illustration of the Reversed Belgian Tourniquet (top) and Belgian Tourni-
quet with Jump-start (below) mechanisms for addressing fairness within a platoon.
These mechanisms are inspired by professional cycling where the so called Belgian
Tourniquet is often applied.

the gap distance for the vehicles dropping back carefully. After all, it is a lot
easier to maintain safe distances by braking of trailing vehicles rather than
acceleration of preceding ones, as braking is more instant. However, suppose
additional braking maneuvers have to be performed by a vehicle falling back.
This vehicle cannot adapt its speed accordingly before reentering the platoon
lane. Therefore, it will create a bigger gap at the end of the platoon that will
also further complicate the rejoining of subsequent vehicles.

7.7.6 Reversed Belgian Tourniquet Jump-start (RBTJS)

Similar to BTJS, we also examine an alternative version to the RBT, jump-
started by the preceding half of the platoon, that is vehicles (V1) to (V3) in
7.9, switching lane simultaneously. The switched vehicles will first take a short
time to increase their inter-vehicle gaps before starting the usual procedure of
the RBT. If the rotation is blocked by non-platooning traffic, and no platooning
car is overtaking, the jump-start procedure re-starts.

Discussion of the Relation to the Framework

In the Foundations part of this thesis, we motivated the proposed framework
by several properties of applied adaptation planning strategies such as the
situation-dependence, fairness, and uncertainty aspects. Fairness is an im-
portant aspect in the platooning use case as the diverse positions inside a
platoon formation are directly related to the advantages that can be drawn
from driving in a platoon. For instance, the lead vehicle experiences reduced
fuel savings of around 5% while follower vehicles experience fuel savings of up
to 15% [BSC+12]. In this section, we proposed six mechanisms that address
fairness in the platooning use case by switching the different positions inside a

118

7.8 Addressing Uncertainty in Adaptation Planning Strategies

platoon and by this balancing negative and positive effects of platooning among
all participants. We consider these strategies as adaptation planning strategies
that—according to the No-Free-Lunch Theorem [WM97]—need to be selected
carefully with considering the current situation. Hence, our framework can
be used to automatically select the most promising fairness mechanism and
enhance the fairness of the overall use case. We consider the direct integration
of fairness mechanisms within the framework as not meaningful as fairness
aspects of different use cases are too diverse. Hence, the contribution of this
section is the definition of adaptation planning strategies ensuring fairness to
show the possibility of addressing fairness in such mechanisms.

7.8 Addressing Uncertainty in Adaptation Planning Strategies

Similar to the previous fairness aspects in self-adaptive systems, we also moti-
vated the ITS domain using uncertainty aspects in such systems in Chapter 6.
Again, we apply our contribution of this section prototypical in the ITS domain
but are convinced, that the approach can also be transferred to other domains.
As already mentioned in the previous section, we now propose a methodology
to address uncertainty in adaptation planning strategies. In line with the pre-
vious proposed fairness mechanisms, also the proposed contributions of this
section relate to the framework as they can be selected and exchanged using
the framework. Further, their parameters can be tuned using the parameter
optimization component. We solely focus on an isolated view on uncertainty
aspects in SAS and, hence, the integration of these aspects within the framework
remain a main challenge for future work.
We still apply this methodology in the ITS domain and specifically study

vehicle navigation problems in the presence of a dynamic environment and
present CostSAVeR that plans routes for vehicles and incorporates the current
traffic situation and refueling requirements. As CostSAVeR operates in a highly
dynamic environment in which (i) the fuel prices are highly volatile and (ii) the
traffic conditions vary spontaneously due to accidents, construction works or
variability in the traffic volume, we are faced with high uncertainty in the
planning of trips. To handle those circumstances, we design our system as a
SAS [KRV+15]. Hence, the system is able to modify its parameters and utility
functions at run-time to adapt to the changes in its environment. In our case, we
focus on an adjustment of the route for re-directing a vehicle (i) to a gas station
and (ii) as a reaction to changing traffic conditions. This section is based on our
paper “Utility-based Vehicle Routing Integrating User Preferences” which we
published at the International Workshop on Pervasive Computing for Vehicular

119

Chapter 7: Self-aware Optimization Framework

Systems in Conjunction with IEEE PerCom 2021 [LHKK21b]. We now present
CostSAVeR and propose utility functions that measure the cost-awareness of a
route and model uncertainty that comes from changes in fuel prices especially
for increased planning horizons, i.e., longer trips.

7.8.1 CostSAVeR

We designed our system as a self-adaptive system composed of a managing
subsystem, called adaptation logic, which controls and adapts a managed
subsystem [KRV+15]. The adaptation logic integrates a MAPE-K Control
Loop [KC03] for controlling the adaptation. It incorporates the functional-
ity for monitoring the environment, i.e., fuel prices, the current traffic flow,
as well as possible traffic congestion, and the managed subsystems, for ana-
lyzing the situation, for planning the route, and for outputting the result to
the user interface or an interface for autonomous vehicles. This procedure
is performed in an iterative way to ensure an optimized route at any point
in time. Adaptations in our use case depend on the route, on user-specified
optimization constraints, or the dynamics of the traffic circulation. We integrate
cost-efficiency as such constraint, hence, adaptations can be caused by changes
in current fuel prices. However, for future work, it might be possible to add
other factors for personalized routing.
We implemented CostSAVeR as a web-based prototype. As frontend client,

an Android application1 supports our adaptive navigation. It further supports
real-time navigation based on theGoogleMaps navigation service. The backend
receives the requests from the frontend, calculates the utility functions, and
returns a ranked list of alternative routes to the frontend. In case of the web
frontend, the calculation is performed once before the start of the journey. The
Android app is able to adjust the route while driving. As the backend delivers
a set of possible assessed routes so that the user can decide according to his
preferences, e.g., using a specific route or focusing on gas station brands, our
approach integrates the users in the loop.

In the following, we describe the self-adaptive route calculation systemmodel
based on the MAPE-K Control Loop, which is also depicted in Figure 7.10.
Monitor: In the monitoring phase, the required input is collected from the

connected interfaces2: preference of the user (i.e., the goal of the user), origin
and destination of the trip, average fuel consumption, price of the last filling,

1We published a running version of the Android app including a user guide on Zenodo:
https://doi.org/10.5281/zenodo.4067966.

2We focus on the collection of data from the user interface and omit the integration of the
On-Board Diagnostics (OBD)-II interface to collect data from the car.

120

https://doi.org/10.5281/zenodo.4067966

7.8 Addressing Uncertainty in Adaptation Planning Strategies

Monitor
- User Goals

- Origin & Destination
- Vehicle Characteristics

Analyze
- Current Situation

- Alternative Routes

Plan

- Route Optimization
- Refueling Stop

Execute
- Result Transformation

- Transmission of InformationKnowledge

Figure 7.10: Model of our self-adaptive route calculation system CostSAVeR based
on the MAPE-K Control Loop that integrates information from two sources: the
standardized OBD-II interface for accessing the data interface of a vehicle and a user
interface of a web/mobile application.

vehicle type, fuel type, and remaining driving range. Besides the user-related
data, the system collects data about its environment, that is, alternative routes,
traffic information, and fuel prices. Here, we use the Google Maps API for
requesting routes, the Here WeGo API for retrieval of gas stations, and the
Tankerkoenig API3 for requesting current gas prices.

Analyze: Next, the system uses the collected data to identify the current
situation and to analyze if the current situation requires an update of the route.
Among others, triggering changes can be a new selection of user preferences,
an unintentional change of the route by the driver during the trip, or a change
in the current traffic situation. We analyze a form of proactive adaptation
by planning refueling in advance, i.e., at the beginning of the trip, and omit
run-time adaptation as a reaction to changes in the fuel prices. The following
reasons motivate this decision. First, we want to avoid information overload,
which occurs when constantly requesting up-to-date information of the routes
or gas prices and the overhead of continually computing new routes due to
the fuel prices’ volatility. Second, as we assume uncertainty in the fuel prices
of stations that are far away, an adaptation at run-time based on the current
prices does not seem to make sense. This could cause the route calculation to
constantly change the route and, in the worst case, introduces more detours
than a decreased fuel price could compensate. Finally, a reliable evaluation of
adaptive behavior at run-time and the integration of all the uncertainty factors,
among others real traffic flow, volatile gas prices, and individual goals of the
driver, inside a simulation are hardly feasible.

Plan: Afterwards, the system performs the calculation of the possible routes
and the optimization by determining the quality of the routes. Therefore, the
planning component uses the information retrieved in the monitoring step
combined with the determined situation of the analyze step. In case the desti-

3https://www.tankerkoenig.de/

121

Chapter 7: Self-aware Optimization Framework

nation is reachable with the remaining fuel, no refueling is scheduled. Using
the information about the remaining driving range, the algorithm checks if
the destination is reachable with the remaining fuel considering an additional
safety margin. If this is not the case, the route is updated with gas station loca-
tions and additional station information, such as brand and prices. We assume,
that one refueling stop is enough to reach the destination. The combination
of information about routes and gas stations forms new routes with potential
detours for reaching a gas station. Each of these routes is assessed using utility
functions and the planning component returns a ranked list of routes.
Execute: The main objective of the execution component is the transforma-

tion of the list with alternative routes such that the user is able to understand
the information. Further, the transmission of information is the second respon-
sibility. The transmitted information includes the following parameters: route,
travel time in minutes, distance in kilometers, total costs, utility value, gas
station information (brand, location, price, distance to the station).
Knowledge: Finally, the knowledge base contains all monitored informa-

tion such as user goals, environment observations, and vehicle characteristics.
Further, it stores the analyzed situations, planned routes, and utility functions
used for assessing possible routes.

7.8.2 Utility Functions

Utility functions represent one way to evaluate which adaptation from a search
space fits best to perform self-optimization [WTKD04]. Compared to advanced
machine learning-based procedures or approaches that integrate mathematical
or statistical optimization algorithms, the decision making process using utility
functions is more lightweight and can be calculated faster. We introduce six dif-
ferent utility functions as a representative set of three categories: (i) integrating
measures of the gas price, distance, and duration; (ii) coping with uncertainty
of volatile gas prices; and (iii) selecting the nearest or completely random gas
stations. Each utility function calculates a value per route.
Price-aware: The first utility function integrates the already paid costs for

the remaining amount of fuel and the new refueling costs. Equation (7.2)
presents the calculation of the estimated costs using the price per liter of the
last refueling (plast), the number of liters remaining (lremaining), the current
price per liter (pcur) at the desired station, and the number of liters required
(lnew) for the planned tour.

costest = plast · lremaining + pcur · lnew (7.2)

122

7.8 Addressing Uncertainty in Adaptation Planning Strategies

For using the estimated costs as utility, we define a vector presentation of the
estimated costs for all routes costest[i]with i being the index of the i-th route.
We use a modified version of the min-max scaling formula [ZC18] to calculate
a ranking. Thus, Equation (7.3) normalizes the values to the bounds [0, 1] so
that the highest costs have a utility of 0 and the smallest costs a utility of 1, with
x being a variable for the estimated costs:

x[i]reversed =
x[i]−max(x)

min(x)−max(x)
(7.3)

By integrating the described cost calculation and the min-max scaling, the
price-aware utility function is defined as:

UPr =
costest[i]−max(costest)

min(costest)−max(costest)
(7.4)

Duration-/Distance-aware: This utility function (Dur/Dist) also uses min-
max scaling and includes the duration anddistance into one function by forming
aweighted sum as defined in Equation 7.5. Again, the reversedmin-max scaling
of Equation (7.3) is used. The developer defines the weights wi, which must
sum up to one. Considered attributes i might be costs or duration.

UDD =
∑
i

wi · x[i]reversed (7.5)

Since the other utility functions mainly focus on the cost attribute, weighting
every attribute equally in this work will show the other attributes’ impact on the
solutions. These weights can be changed in the future to get different solutions
but are fixed for our work.
Volatility-aware: Since gas prices are highly volatile, the volatility-aware

utility function tries to minimize the uncertainty of price changes. Based on
the assumption that the probability of a change of the price at a gas station
increases with a larger distance towards the gas station, the idea is to reward
closer gas stations with a utility bonus. The price-aware utility function defined
in Equation (7.6) is calculated and a bonus is added concerning the distance of
the station (dstation) from the distance to the destination (ddest). We introduce
the weights are called α for weighting the utility of the price-aware utility
function and β for weighting the added bonus.

UV = UPr ∗ α+

(
1− dstation

ddest

)
∗ β (7.6)

123

Chapter 7: Self-aware Optimization Framework

We set the parameter α to 3
4 and the parameter β to 1

4 . The reason for this
weighting is to still let the cost factor dominate the function. Otherwise, only
gas stations that are very close to the origin might be chosen.
Penalty-aware: The penalty-aware utility function tries to minimize unfore-

seen changes in prices. In contrast to the volatility-aware utility function, it uses
the required time it takes to reach the gas station (tstation) instead of rewarding
closer distances. A punishment p is added to the price-aware function for each
period (period) it takes to reach the station as defined in Equation (7.7).

UPen = UPr −
⌊
tstation
period

⌋
∗ p (7.7)

We set the period to a value of 1800 seconds and the value of p to 0.05.
Nearest Station: With this utility function, we model behavior to refuel

at the closest gas station. Therefore, we use the start location for a distance-
based search for the closest gas station and calculate the costs according to
Equation (7.2). In the evaluation, this utility function serves as a comparison for
the other utility functions as it does not consider any route or cost-awareness.

Random: This utility function selects a gas station among the identified gas
stations within the search radius randomly. This process is performed 30 times
to receive average costs for comparison.

Discussion of the Relation to the Framework

Similar to the motivation of fairness aspects, we also discussed uncertainty
aspects in SAS in our foundations and addressed the ITS domain by integrating
refueling into vehicle navigation tasks in this section. Since our use case covers a
highly dynamic environment in which (i) the fuel prices are highly volatile and
(ii) the traffic conditions vary spontaneously we are facedwith high uncertainty
in the planning of trips. To handle those circumstances, we propose a SAS for
vehicle navigation that integrates refueling actions. We address the mentioned
uncertainty by the definition of utility functions hat measure the efficiency and
cost-awareness of a route and model uncertainty. The proposed approaches
of this section are part of the SAS research and the framework can be applied
to enhance the overall use case. We consider the propose utility functions
as adaptation planning strategies from which the framework can select the
most promising ones for the current situation. Further, the framework is able
to perform parameter tuning on the input parameters of the utility functions
which is a promising advancement for handling uncertainty. Similar to the
fairness aspects, we consider the direct integration of uncertainty aspects within
the framework unfeasible as these are too diverse in various use cases. Hence,

124

7.9 Summary

the contribution of this section is the design of a SAS addressing uncertainty
and the definition of adaptation planning strategies to show the possibility of
addressing uncertainty in such mechanisms.

7.9 Summary

In this chapter, we have proposed our main contributions, which focus on
Goal A: Self-aware optimization of adaptation planning strategies with particular
attention to the field of ITS and logistics. We answered RQ A.2 and proposed a
component-based self-aware optimization framework for adaptation planning
strategies. With this framework, we reduce the manual effort required to opti-
mize these strategies and developed a system that is generically applicable. We
have also addressed RQ A.3 by incorporating a situation-detection component
directly into the framework. In contrast, we argue that fairness and uncertainty
issues should be directly addressed in adaptation planning strategies. There-
fore, we propose a set of adaptation planning mechanisms ensuring fairness for
the platooning coordination use case to answer RQ A.4. We then design a set
of utility functions, which can also be viewed as adaptation planning strategies,
used by the framework to address uncertainty and answer RQ A.5.

125

Chapter 8

Optimization of Vertical Systems-of-Systems

In the previous chapter, we introduced a generally applicable self-aware op-
timization framework for self-adaptive systems. For this framework, we de-
fined some restrictions such as the focus on an optimization of single sys-
tems. However, many application use cases can be classified as part of the
systems-of-systems research area. Maier proposed a definition for the term
systems-of-systems in his work from 1998 [Mai98, p. 271]:

“A system-of-systems is an assemblage of components which individuallymay
be regarded as systems, and which possesses two additional properties:
Operational Independence of the Components [...], [and] Managerial
Independence of the Components[...].”

Operational independence of the components defines that the components
when disassembled remain useful and can operate on their own even without
the other components of the systems-of-systems (c.f. [Mai98, p. 271]). Manage-
rial Independence of the components means that the components not only can
operate on their own but do operate individually and remain operational no
matter what the other components do (c.f. [Mai98, p. 271]). Hence, a system-
of-systems consists of multiple complex components that collaborate to achieve
a common goal and in its entirety forms an overall system. One example for
a system-of-systems of the logistics domain is the VRP. As part of the VRP
several TSP instances need to be solved to find a solution of the overall VRP.
However, both parts of the overall problem remain functional even without
the other components, since the VRP can also be solved with a random tour
sequence, and the TSP does not have a direct backwards loop to the VRP. Hence,
we consider this problem as a kind of vertical system-of-systems where the
overall system triggers subsystems that feed back their solution to optimize the
overall problem statement even further. We address the VRP in this section as
prototypical use case for a complex system-of-systems in the logistics domain.
Still, the contribution of this chapter can be generalized to other domains such
as smart grid or intelligent computer networks.

127

Chapter 8: Optimization of Vertical Systems-of-Systems

In this chapter, we apply optimization techniques to tackle the VRP and study
the effects of the system-of-system. With regards to the presented layered archi-
tecture in Section 7.3, we consider the approaches proposed in this chapter to be
part of the second layer (adaptation planning layer) as they aim at optimizing
the use case and, hence, plan adaptations for it. The proposed approaches
can be applied once for each problem statement to find a valid solution, but
are also able to be applied as part of a feedback loop that adapts the use case
system in a possibly changing environment. With the knowledge about these
kind of vertical systems-of-systems, the proposed framework from Chapter 7
can be extended to also cope with such complex systems and to be applicable
to a broader range of use cases. However, we aim at handling the effects of
optimization of systems-of-systems but the actual adaptation of our proposed
framework is out of scope of this thesis. Hence, in this chapter, we address
a particular type of the VRP called rVRP that integrates a large and diverse
amount of real-world restrictions such as, besides others, capacities, pickup
and delivery, and time windows. In cooperation with a logistics company, we
define the specific problem statement to be as realistic as possible. Our scientific
contributions in this chapter are two-fold:

• We define a two-stage strategy for tackling the systems-of-systems struc-
ture of the formulated rVRP including a (i) VRP-stage that assigns orders
to vehicles and a (ii) TSP-stage that optimizes the tour for each vehicle.

• We propose a timeline algorithm within the workflow that modifies the
planned tours in order to handle time windows and fixed pause stops to
tackle additional constraints of the rVRP.

Further, we do not aim at planning the rVRP once at the beginning of the day,
contrary we aim to be adjustable at any time to represent adaptive behavior
using feedback loops and, hence, require algorithms having a fast time-to-
result. This chapter is based on our paper [LKK+21a] which is accepted for
the Springer Applied Intelligence Journal and our technical report [LKK+21b].
In the following, we first define the actual problem statement we derived in
cooperation with a logistics company in Section 8.1. Afterwards, in Section 8.2
we propose our approach for the vertical systems-of-systems consisting of a
VRP and a TSP stage. Section 8.3 presents our GA version and Section 8.4
proposes our customized ACO for both stages.

128

8.1 Problem Statement

8.1 Problem Statement

In close exchange with our cooperation company, we defined the following
real-world requirements for the rVRP we address in this chapter. Figure 8.1
illustrates the considered version of a rVRP as domain model. We define a
tour tj as the assignment of customer orders o ∈ O to vehicles v ∈ V and
drivers d ∈ D: tj = (vi, Dj , Oj)with a set of driversDj ⊆ D and a set of orders
Oj ⊆ O assigned to tour tj driven with vehicle vi. The central goal is to find
a set of tours T = {tj} so that all orders are assigned while minimizing the
cost function defined in Section 8.2.2. A tour has a tour start and a tour end,
each specified by a time and a location. The tour start time window defines the
range in which the tour must start.

Vehicle v

Capacity

Costs

Dimensions

Max tour duration

Tour start/end locations

Trailer capacity

Hazardous goods

Seat for co-driver

Fast loading

Can wait for time windows

Can return to location

Driver d

Firearm certificate

Pause times

Rest in SPLIT-Mode

Order o

List of products and amounts

List of pickup locations

Req. co-driver

Specific driver

(Non-) Co-located orders

Max. vehicle dimensions

Specific vehicle group

Lorry-only

Stop s

Type (pickup/delivery)

Location

Service/setup duration

Speed modifier fast loading

Time window

Arrival constraint

Tour t

Tour start (time/location)

Tour end (time/location)

Tour start time window

1

1...*

1
1...*

1...21
1

1

Figure 8.1: Domain model of the rVRP addressed in this chapter. The addressed rVRP
consists of a set of tours as solution where orders are assigned to vehicles. Each order
consists of at least one pickup and one delivery stop. Further, one or two drivers are
assigned to a tour.

A vehicle vi is always assigned to one tour tj . Each vehicle has a capacity,
defined by the number of pieces, volume (m3), or weight (kg). The costs for
using a vehicle are defined per hour, per kilometer, per tour, or per stop on the
tour. The height, width, length (m), and weight (kg) of a vehicle define its
dimensions. Each vehicle has a maximum tour duration, after which it must

129

Chapter 8: Optimization of Vertical Systems-of-Systems

be at the tour end location. The tour start/end locations represent a list of
locations at which the tour can start and a list at which locations the tour can
end. The option for a trailer specifies whether the vehicle can carry a trailer.
Since special properties of a vehicle are required for carrying hazardous goods,
we integrate the possibility to specify whether a vehicle is able to carry those
goods or not. This enables a valid assignment of orders to vehicles even for
hazardous goods. Every vehicle may have a single seat for the driver or it may
offer an additional seat for a co-driver. The fast-loading property states whether
the vehicle can load and unload faster compared to other vehicles and contains
a speed modifier representing the saved time. This property influences the
required service and setup time and, hence, the time required at a specific stop.
It provides the possibility to switch to a vehicle with fast-loading property. A
vehicle might provide the possibility to wait for a specific time window at a
given stop and might be allowed to return to a stop multiple times.

Besides, up to two drivers Dj for each tour tj are determined. For some
orders, a co-driver is required for loading and unloading bulky goods. Drivers
might require a special training or certificate, for example a firearm certificate
required for cash transports. By specifying the required certificates for drivers
with regards to a specific order, a valid assignment of drivers to tours is possible
within the optimization, making an additional post-processing step unneces-
sary. The legislation might prescribe a fixed set of pause times for each driver.
Sometimes it may be possible to schedule pause times within a service, such as
during a pickup or a delivery (called SPLIT-Mode). Otherwise, the pause time
needs to be scheduled while driving between two stops.

Additionally, customer orders Oj need to be serviced during a tour tj . Each
order contains a list of products with the amount specified by quantity in pieces,
weight (kg), or volume (m3). For each order, one can specify one or more
pickup locations, a co-driver requirement, or the assignment of a specific driver
are possible. Orders that should or should not be delivered in the same tour can
be defined as a list of (non-) co-located orders. Maximum vehicle dimensions,
a vehicle from a specific vehicle group, or a lorry-only service can be required.

For each order, at least one stop s needs to be scheduled. Each stop is either
a pickup or a delivery stop and has a specific location. The setup/service
duration contains the time the vehicle stands still while loading or unloading.
The speed modifier for fast loading vehicles defines the saved time during the
setup/service duration if this stop is assigned to a vehicle with this property.
Each stop has a time window that specifies at which interval the driver needs
to arrive or finish the service.

130

8.2 Approach

8.2 Approach

This section describes our approach for tackling the rVRP. We introduce our
two-stage strategy to address the systems-of-systems nature of the problem
statement and present the cost function. Further, we propose a timeline ap-
proach to match given time windows and pause stops for each planned tour.

8.2.1 Two-staged Strategy

Due to the high complexity of the problem, and to address the systems-of-
systems nature of the problem statement, we divide our approach into two
stages as inspired by [CT10] and depicted in Figure 8.2. Hence, we propose
to use one stage for the overall VRP and a second stage for the contained TSP.
The VRP-stage cannot be solved without solving the TSP-stage which is the
special characteristic of this vertical system-of-systems structure. First, we
address the problem of distributing all orders, including pickup and delivery
options, to the available vehicles which we refer to as VRP-stage. In this step,
several assignment-related constraints such as order restrictions are addressed.
However, many of the above mentioned constraints are sequence-dependent
and, hence, the nested TSP instance for each vehicle needs to be solved. In
the TSP-stage, the TSP-solver starts and solves an individual TSP instance
for each vehicle. This stage computes the optimal sequence of stops of one
tour with regards to the tour specific constraints. Therefore, we retrieve the
actual stop-to-stop route from a route planning service and optimize the cost
function by changing the sequence of stops. The solved TSP instances are then
sent back to the VRP-stage that performs our Timeline algorithm presented in
Section 8.2.3. The Timeline algorithm matches the predefined time windows
and schedules required pause stops for each tour. Finally, the distribution can
be rated with regards to the cost function explained in the next section and the
algorithm decides whether the current distribution should be kept or discarded.
Depending on the size of the VRP and the nested TSP instances, either exact (for
smaller problem spaces) or heuristic approaches (for large problem spaces) can
be used to solve the stages. Since we do not want to restrict applicability of our
proposed system to only work for small TSP instances, we propose our heuristic
approaches based on GA and ACO for both stages. We select these algorithms
as they are nature-inspired heuristic algorithms which are commonly used
to tackle the class of TSP and VRPs. Still, also other heuristic optimization
techniques could be applied in the future to assess their performance.

131

Chapter 8: Optimization of Vertical Systems-of-Systems

Order to Vehicle
Assignment Timeline Score

VR
P

TS
P Ordering of

Stops (TSP)

For each
vehicle

Figure 8.2: Overview of the two-staged strategy consisting of a VRP and a TSP-stage
addressing the vertical system-of-systems structure. TheVRP-stage assigns all orders to
available vehicles and triggers a TSP-stage for each vehicle. Afterwards, the Timeline
algorithm matches time windows and pause times before the VRP-stage rates the
solution by calculating the score.

8.2.2 Cost Function

Since the rVRP addressed in this chapter exhibits a high diversity of constraints
and restrictions, we propose to use a priority cost function for the evaluation of
the generated solutions. We define this cost function using six priority scores
as a classification of constraints and objectives discussed with our partnered
logistics company resulted in six groups. Priority score means in this context
that the first score value has a higher priority for the optimizer and will be
minimized first, before the optimizer even recognizes the other following scores.
The six scores are divided into three hard scores [H1, H2, H3] and three soft
scores [S1, S2, S3]. The hard scores assess the solution’s feasibility and are
handled as hard constraints, while the soft scores represent the solution’s
quality. The scores form a minimization goal for the optimization process.

In case the planned tour exceeds the capacity of vehicles and trailers, the
first hard score H1 sums up the exceeded capacity by subtracting the actual
vehicle capacity (vcap) from the planned vehicle capacity (vpcap). Further, it
adds a value of 100 score points for each fault in existing order restrictions such
as a co-driver requirement (for) and a violation in order dependencies like
co-located orders (fod) where the operator # indicates the number of violations.
We decided to use the multiplier 100 for the order restriction violation to be
able to integrate the number of violations and capacity exceeds into one score.
This is required as the order restrictions are counted as number of violations
and the capacity exceeds are counted as difference of weights, volume, or the
like, which naturally results in higher values and reduces the mathematical
impact of comparatively low amounts of violations.

H1 =
∑
v∈V

max((vpcap − vcap), 0) + 100 ·#for + 100 ·#fod (8.1)

132

8.2 Approach

The secondhard scoreH2 dealswith the pickup anddelivery of orders (P&D),
the entry order, and the vehicle assignment. First, the score checks whether the
pickup is done prior to the corresponding delivery with 100 score points for
each fault (fpd). Afterward, the vehicle-specific tour start and end locations are
examined and one score point is added for each fault (fse). Here, a fault means
that the vehicle is planned to start or end at another location than specified in
the domain model. Finally, this score evaluates whether all stops that require a
specific vehicle are serviced by such a vehicle (fsv) and whether all planned
returns to stops, that is, multiple stops at the same location, are allowed (fsr).
Any fault adds one score point to H2.

H2 =
∑
v∈V

100 ·#fpd +#fse +#fsv +#fsr (8.2)

The hard score H3 sums the seconds the tour duration (tdur) exceeds the
maximum duration (tmaxdur) and the planned tour end (tpend) exceeds the
end constraint (tend). Since this score summarizes deviations from the plan in
seconds and, hence, a plan miss by one minute already increases the score by
60 score points, we omit to add a further multiplier.

H3 =
∑
v∈V

max((tdur − tmaxdur), 0) +max((tpend − tend), 0) (8.3)

The soft scores evaluate the quality of the determined solutions. The first
soft score S1 assesses how good the solution matches each time window (tw)
in the set of predefined time windows (TW). Since pause times can also be
reduced to time windows that need to be met, we decided to handle pause
times similar to time windows. Hence, when talking about time windows with
regards to the score S1, we always refer to the time windows that need to be
met at the customer locations as well as the predefined pause times that need
to be scheduled for the driver. This score sums up how many seconds the
planned time window (twp) exceeds the given time window (twg). Therefore,
the seconds the planned time window starts (twp,s) ahead of the given time
window (twg,s) are calculated and added to the seconds the planned time
window ends (twp,e) after the given time window ends (twg,e).

S1 =
∑
v∈V

∑
tw∈TW

max((twg,s − twp,s), 0) +max((twp,e − twg,e), 0) (8.4)

The second soft score S2 summarizes driven kilometers (dist), waiting
times (timewait), driving times (timedrive), and service times (timeservice).
Since these objectives form the main goal of the defined VRP in this work, we

133

Chapter 8: Optimization of Vertical Systems-of-Systems

decided to integrate them into one score and, hence, assign the same priority
to these objectives. Again we avoid to add a multiplier to these values since
they are measured in km and seconds that tend to grow very quickly.

S2 =
∑
v∈V

dist+ timewait + timedrive + timeservice (8.5)

The last soft score S3 refers to the delay of a driver starting its tour (tpstart)
after the defined start (tstart), the number of visited locations (loc), and the
chain length (cl), that represents the number of stops to be serviced during the
tour. This score integrates further soft constraints that are less important than
the main objective goals in S2 and is only assessed if several solutions perform
equally well on S2. Hence, this score is used to decide which solution performs
best, if multiple solutions perform equally well in our main objective score S2

and, hence, serves as tiebreaker.

S3 =
∑
v∈V

max((tstart − tpstart), 0) + #loc+ cl (8.6)

An example score value for a VRP solution that meets all capacity constraints,
breaks one order restriction and sticks to all entry order and location-specific
constraints can look like: Hard [100, 0, 0], Soft [120, 2919200, 1235]. The H1-
value of 100 represents the order restriction fault of this solution, while H2

and H3 have a value of 0 indicating, that these constraints are all met. The
S1-value of 120 means that the vehicles of this solution break time windows
by 120 seconds. The S2-value 2919200 is the sum of all service, driving, and
waiting times, while the last score (S3) refers to the delay of starting times and
the number of visited tours.
In contrast to the given example and in order to save computation time, we

only calculate scores with lower priority (H3, S1, S2, and S3) if the previous
hard scores are down to zero. Otherwise, the solution is considered to be
infeasible if the hard constraints are not fulfilled, i.e., the hard scores are not
reduced to zero. Since we implemented our score system as priority scores that
need to be minimized, the first smaller value of a score level—starting at H1

and ending at S3—decides which of the two solutions performs better.

8.2.3 Timeline Algorithm

In this section, we introduce the Timeline algorithm to match the pause times
and fit as many time windows of stops as possible (see Algorithm 4). Please
keep in mind that we handle both, time windows at customers and pause times

134

8.2 Approach

for drivers, equally in this algorithm and, for the sake of simplicity, call both of
them time windows. This algorithm fits all pause times first and then tries to
fulfill all time window requirements. All stops are shifted to fulfill all pause
times and no pause time violations will be present after its execution.

Algorithm 4: Pseudo-code for the Timeline Algorithm.
Input: Sequence of stops seq

1 Initialize timeline twith required pause times and customer time windows
2 Buffer = tour start interval
3 Penalty = 0
4 foreach s in seq do
5 Add s as early as possible on t
6 if TW not yet reached then
7 Shift to right until TW is met or buffer is empty
8 Reduce buffer by shifted seconds
9 if (buffer is empty AND TW not yet reached) then
10 Add waiting time to t until TW starts
11 else if TW already passed then
12 Increase penalty by missed seconds

13 return Penalty

This algorithm iterates over each sequence of stops, i.e., once per vehicle and
tour, and calculates a penalty for the score. It first initializes the timeline with
given start and end times of a tour, pause times, and time windows. Then,
it iterates over the sequence of stops and places all stops as early as possible
taking into account the sequence retrieved from the TSP-stage, its tour start
interval, and its time windows. If the current timestamp is too early for the
time window’s starting time, the algorithm shifts the whole chain of stops
(excluding the pauses) to a later starting point while keeping all previous time
windows and the tour start interval. This also includes a recalculation of all
previously placed stops by a defined amount of time regarding the start time
of each stop. In case a shift is not possible, the algorithm adds a waiting time
for the vehicle at this stop to meet the time windows. In case a pause time is
reached while driving from one stop to another, the algorithm adds a pause
on the route. If the SPLIT mode is activated and the algorithm schedules a
pause time next to a service, the pause time is added to the service time. If it is
deactivated, the full service is shifted after the pause. After the placement of
all stops with time windows and pause times on the timeline, the scores are
recalculated and feed back to the VRP-stage to judge the quality of the solution.

135

Chapter 8: Optimization of Vertical Systems-of-Systems

8.3 Genetic Algorithm

As part of our contribution to the systems-of-systems research regarding rVRP,
we apply a customized GA on both stages of our approach. In the following,
we describe the customized GA, that was originally proposed by [Hol92].
Figure 8.3 presents an object oriented illustration of the genome we used for
our GA. Each genome contains a set of vehicles each representing a TSP instance.
Each vehicle holds a list of orders. Each list is passed to the TSP-stage that
determines the most beneficial sequence of this list.

TSP
Veh. 1

VR
P Order 1

Order 2
Order 3
...

TSP

Order 4
Order 5
Order 6
...

TSP

Order 7
Order 8
Order 9
...

TSP
...Veh. 3Veh. 2

Figure 8.3: Illustration of an object-oriented genome representation of the GA. The
VRP consists of multiple vehicles, each representing an individual TSP instance. The
TSP instance further contains a sequence of orders assigned to a vehicle.

8.3.1 VRP-stage

Each GA starts with an initialization phase of the population from which the
evolutionary process starts. These primal individuals form the population
that is progressed in iterations, also called generations, by the execution of
the algorithm by applying crossover and mutation operators. Hence, after
an initialization phase for the population, each iteration of the GA performs
four steps: (i) breed new individuals, (ii) solve the TSP-stage for each vehicle,
(iii) calculate the score, and (iv) maintain population size. These steps are
repeated until either a predefined number of unimproved iterations or a given
computation time is reached as summarized in Algorithm 5.

Instead of initializing the population purely at random, we decided to create
an initial individual by assigning orders to vehicles with regards to vehicle
restrictions or co-location requirements. This allows the algorithm to form
a meaningful initial population and provides a good starting point to kick-
off the optimization process. Afterwards, the algorithm matches remaining
orders to the vehicles based on stop-to-stop distances, that is, a stop that has
the minimum distance to already assigned stops of a vehicle is assigned to this

136

8.3 Genetic Algorithm

Algorithm 5: VRP-stage pseudo-code for the GA.
Input: Orders o, vehicles v, max. iterations imax, population size, mutation

probability, crossover probability
1 Create initial individual and mutate it to initialize population
2 while unimproved iterations (ui) < imax AND current runtime <max.

runtime do
3 while population size < 2 · initial population size do
4 Select two individuals
5 Apply a random crossover operator
6 Apply a random mutation operator with probability p
7 foreach v do
8 Solve TSP-stage for offspring
9 Apply Timeline algorithm to match time windows
10 Add offspring to the population
11 Sort population by score and remove worst half
12 if improved best score then
13 ui = 0
14 else
15 ui++

16 return population

vehicle. Then, the algorithm improves this solution iterating over all stops and
moving them to other vehicles in order to improve the average stop-to-stop
distances for all vehicles. Then, for each required individual as specified in the
population size, the GA selects one mutation operator from the list of available
operators randomly and applies it to the individual to create the whole initial
population. For each individual in this population and for each vehicle, the
TSP-stage solves the stop sequence. Then, the Timeline algorithm is applied
and the score per individual is used as its fitness value.

After the initialization phase—the creation of the initial population (line 1)—
the VRP-stage GA iterates until one of the above mentioned termination criteria
is met (line 2). Each iteration, that is, each generation, breeds new individu-
als until the population size has doubled (line 3). Therefore, the algorithm
randomly selects uniformly distributed from three possible selection opera-
tors (that are introduced later) to breed a new individual from two parent
individuals (line 4): (i) select two individuals randomly based on a uniform
distribution; (ii) select two individuals randomly based on a predefined prob-
ability, where the individual with the best score has the highest probability;
and (iii) a tournament selection where ten solutions compete pair-wise and the

137

Chapter 8: Optimization of Vertical Systems-of-Systems

winner is selected for recombination. Then, the algorithm randomly selects a
crossover operator from the set of provided operators and applies it on this pair
of individuals (line 5). Afterwards, the algorithm mutates the new individual
with a typical value in the literature for the mutation probability of pvrp = 0.5
using a randomly selected mutation operator (line 6). With defining a set of
selection andmutation operations and their random selection, we cope with the
variety of constraints and aim at a higher diversity in the population. For each
created individual, the algorithm forwards the TSP instances to the TSP-stage
(described in Section 8.3.2) that solves this instance and returns ordered lists
of stops (lines 7 and 8). Then, the algorithm applies the Timeline algorithm
to match the given time windows (line 9). Finally, the algorithm calculates
the score of the new individual and adds it to the current population (line 10).
Since, the population size doubled during this iteration, half of the population
needs to be discarded to match the predefined population size (line 11). There-
fore, the algorithm sorts the population according to the achieved score and
removes the worst half of individuals. This affects the next generation as only
the best performing individuals are kept for recombination in the next iteration
and therefore accelerates the convergence of the GA.
The crossover operators use two individuals for breeding a new offspring.

Therefore, chains or parts of chains are copied from the parent individuals to the
new individual. The remaining stops, that is, the sub chains that are not copied
to the new individual, are assigned based on the stop-to-stop distance of each
vehicle regarding already assigned stops. This means, for each stop that needs
to be assigned evaluate the fit accuracy of the new stop by summarizing all stop
to stop distances from the stop to be assigned to all stops already assigned to a
vehicle. Then we select the vehicle with the lowest summarized stop-to-stop
distances as we hope to achieve the least increase in the second soft score S2

that incorporates driving distance and driving time, by this criteria. Since
our problem definition includes diverse constraints, we define the following
three crossover operators to breed new individuals. We explicitly avoid the
selection of one best performing crossover operator as, in this way, we are
able to maintain a higher diversity of the population and, hence, enhance the
convergence speed of the algorithm:

1. The OverlapCrossover operator copies stops located on both parents to the
new individual. Remaining stops are added to the vehicle of the new
individual with lowest distance to existing stops of this vehicle.

2. The ScoreBasedCrossover operator copies the chain of the parent with lower
costs to the new individual. The remaining stops from the other parent
are added similar to the first crossover.

138

8.3 Genetic Algorithm

3. The SelectionCrossover operator selects one of the parents randomly and
assigns the chain to the new individual. The remaining stops from the
other parent are added similar to the other crossovers.

Mutation operators are used for breeding new individuals from a single
parent individual and increasing the diversity of the population. For each
individual that should be mutated, we select one mutation operator randomly.
Since it is not guaranteed that a mutation operator produces a valid individual,
we restart the mutation with another randomly selected operator in case the
individual is invalid. Since our problem definition includes diverse constraints,
we define the following mutation operators, each modifying the genome in a
different way, aiming at a specific constraint. By providing this diverse set of
mutation operators, we deal with the variety of constraints and are able to keep
the diversity of the population as high as possible rather than focusing on a
single mutation operator.

1. The ClearVehicleMutator removes all stops of a random vehicle and assigns
them to other vehicles, based on a location and distance-based rating.

2. The SwapVehicleMutator swaps chains of two different vehicles, excluding
the vehicle’s start and end locations. Since we apply this operator at the
VRP-stage consisting of multiple vehicles and their assigned orders, we
consider it a mutation.

3. The OutlierMutator iterates through every vehicle’s stop chain, select-
ing the stop pair that contributes most to the distance-based rating and
moving it to another vehicle.

4. The MoveOrderMutator takes up to three orders of one vehicle and moves
them to another vehicle, based on the distance rating. This behavior is
repeated for a random number of times with a maximum of four times.

5. The CloseToOtherVehicleChainMutator selects a stop from a chain close to
another chain, and moves the order for this stop to the nearby chain.

6. The SavingsMutator iterates over all stops of every vehicle and computes
the highest saving in driving distance when moving one order to another
vehicle. Additionally, predecessors and successors are moved to another
vehicle if this reduces the distance. This avoids overlapping tours.

8.3.2 TSP-stage

The TSP-stage of the algorithm calculates the sequence and selects options,
i.e., the list of possible locations, for each vehicle independently. Hence, the

139

Chapter 8: Optimization of Vertical Systems-of-Systems

following description always captures performed steps for the tour of a single
vehicle. At the beginning, the algorithm creates the initial population similar
to the initialization of the VRP-stage by calculating a first valid individual.
For this individual, the algorithm starts with a random stop and assigns the
remaining stops based on the stop-to-stop distances, that is, the algorithm
selects always the nearest stop compared to the last assigned stop. Then, the
algorithm mutates this individual by applying randomly selected mutation
operators to create the required amount of individuals for the initial population.

After the initialization phase, the TSP-stage GA performs similar steps com-
pared to the VRP-stage GA. It iterates until the maximum amount of unim-
proved iterations are executed and breeds new individuals until the population
size has doubled in each iteration. For the new individuals, the algorithm se-
lects and recombines two randomly chosen parent individuals using a random
crossover operator. Afterwards, the algorithm mutates the individual with a
typical value in the literature for the mutation probability of ptsp = 0.5 and a
randomly selected operator and adds it to the population. As the population
size doubled, the algorithm omits the worst half to accelerate convergence.

Again, the crossover operators combine two parents into one new individual.
We define the following three crossover operators to breed new individuals in
different ways and keep the diversity of the population high. The crossover
operators in the TSP-stage are inspired by [HMS+17]:

1. The RandomCrossover randomly chooses the next possible stop from the
beginning of the parents’ chain while removing stops already contained
in the population.

2. The OrderedCrossover performs a classical two-point crossover and com-
bines the genome of both parents.

3. The PartiallyMappedCrossover works similar to the OrderedCrossover but
assigns the remaining stops outside the interval at the beginning of the
chain based on the indices of their parents which is the main difference
to the one in the literature.

Additionally, we define the following mutation operators concerning the
TSP-stage, inspired by related work [HMS+17]. Again, we decided to provide
a diverse set of mutators and select random ones in each iteration to increase
the diversity of the population.

1. The ReverseMutator reverses the sequence of all successive pickup and
delivery pairs.

140

8.4 Ant Colony Optimization

2. The SimpleMoveMutator moves one stop to another feasible position in
the chain, taking into account the constraint of pickup-delivery order.
The TourBegin and TourEnd nodes are protected and omitted from this
mutation.

3. The SimpleSwapMutator swaps the positions of two stops on the chain.
4. TheMultiOptMutator combines the previous two mutators and applies

the SimpleMoveMutator or the SimpleSwapMutator up to three times.
5. The NeighbourhoodSwapMutator is similar to the SimpleSwapMutator, but

it works based on distance improvement when swapping stops. It tries
all possible swaps in the chain for one random stop and performs the
swap with the highest distance improvement.

6. The SavingsTSPMutator selects the stop that produces the highest saved
distance when moving it in the chain. The mutator calculates the delta of
the distance concerning the whole chain and executes the move with the
highest distance savings.

7. The OptionsMutator selects a random stop with at least one option and
randomly replaces it with one of the other possible options.

8. The OptionsChainMutator rotates the options for the whole chain and
replaces all stops with a possible option of this stop.

In summary, this section introduced our domain-adapted GA. First, we pre-
sented our object oriented genome presentation used and proposed two stages
of this algorithm. Then, for each stage of the algorithm, we provide a domain-
specific set of crossover and mutation operators that are randomly chosen in
each offspring computation. These operators enable the algorithm to cope with
the various constraints included in this work and aim at maintaining a high
diversity of the population and a fast convergence speed.

8.4 Ant Colony Optimization

This section explains the two-staged ACO algorithm inspired by [DMC96]. We
modified the classical ACO algorithm for both stages to accommodate for the
complexity of the rVRP:

• We replaced the pheromone initialization by a heuristic concerning the
actual stop-to-stop distances to kick-off the optimization from the first
step onward.

141

Chapter 8: Optimization of Vertical Systems-of-Systems

• We use a deterministic ACO in the VRP-stage, this means that we start
with an assignment of stops to vehicles based on the pheromone matrices.
This helps to decrease the possibility of bad performing solutions at the
start of the algorithm.

• The stops for pickups and deliveries are assigned in pairs, so that one
vehicle needs to serve both stops in one tour. This prevents creating
invalid solutions if pickup and deliveries would be assigned to different
vehicles.

8.4.1 VRP-stage

Similar to the VRP-stage of the GA, the VRP-stage of the ACO algorithm assigns
stops to vehicles and optimizes the solutions. The assignment of stops to
vehicles and its optimization works with two pheromone matrices as illustrated
in Figure 8.4, where each ant represents one vehicle. The vehicle-to-stop matrix
represents the occupied capacity of vehicles so that ants select the vehicles
with enough free space first for representation. The algorithm updates this
matrix after each assignment with the current available space of the according
vehicle. We performed preliminary tests using a single pheromone matrix
which showed us that this value is not enough to determine a good order to
vehicle distribution. Instead, the stops that are already assigned to a vehicle
have further influence on the final solution as a good clustering of stops per
vehicle seems to be advantageous. Hence, we introduce the stop-to-stop matrix
that covers the distance of stops to stops and is used to determine the next stop
to be assigned to a vehicle. By implementing the second matrix, stops with a
close distance to each other are more likely to be assigned to the same vehicle:
First, an ant selects a stop based on stop-to-stop matrix that is reachable from
its current location and has the shortest distance. Then, the ant searches for
vehicles that have enough space for this order. We then assign a probability
of selecting each of these vehicles by adding the vehicle-to-stop pheromone
value (available space) and the stop-to-stop pheromones to all already assigned
stops of this vehicle (stop-to-stop distances). Based on these probabilities, the
ant selects a vehicle randomly. Thismeans, the higher the amount of aggregated
pheromones, the better the vehicle fits for this order, and thus, the higher the
probability to select this vehicle.

Algorithm 6 summarizes the behavior of the ACO algorithm using the two
pheromone matrices in the VRP-stage. First, the pheromone matrices are
initialized with the a priori knowledge of vehicle capacities and stop-to-stop
distances (line 1). Additionally, an empty set of solutions is initialized in which

142

8.4 Ant Colony Optimization

s2

s1

s3

s4

 Veh. 1 Veh. 2

Stop s1 0 1
Stop s2 1 0
Stop s3 2 3
Stop s4 3 2

s1 s2
s1 1 2
s2 2 0
s3 2 1
s4 1 2

s3 s4
2 1
1 2
0 2
2 1

Vehicle-to-Stop Matrix Stop-to-Stop Matrix

Figure 8.4: Graph representation of the VRP problem for the ACO algorithm. The
representation contains a vehicle-to-stop matrix that represents occupied capacity
of vehicles, and the stop-to-stop matrix that covers the distance between stops. The
illustrated graph only depicts possible paths and the stop-to-stopmatrix further defines
the weights of each edge.

the best solutions are stored. The number of stored solutions is defined as twice
the number of vehicles of a specific problem instance. We decided to double the
vehicle number to have at least one ant per vehicle and a second ant for a further
optimization round. Then, a loop starts iterating until a maximum number of
iterations thatwere not able to improve the solution quality are executed (line 2).
In each iteration, one ant is placed at the graph and assigns all stops to the
vehicles with regards to both pheromone matrices (line 3). In order to keep the
idea of Novelty Search [LS08] and avoid getting stuck in local optima, a small
amount of distributions are created probabilistic. Afterwards, the algorithm
passes a TSP instance per vehicle to the TSP-stage of the ACO which optimizes
its sequence (lines 4 and 5). The returned TSP instances are then passed to the
Timeline algorithm to match time windows (line 6). Afterwards, the algorithm
calculates the final scores for this solution (line 7). Then, the algorithm updates
the pheromonematrices using the scores of the solutions in the set and performs
a pheromone evaporation step with a probability of 5% which we identified in
a preliminary parameter study (lines 9 and 10). If the found solution is better
than the worst one in the solution set, or the solution set is not yet full, the
solution is added to this set (lines 11 to 14). If the solution is better than the
best solution so far, the number of unimproved iterations is reset to zero, else it
is incremented. Afterward, the next iteration starts, another ant is placed at the
graph and assigns stops to vehicles.

The matrix update in this stage works with a comparison of the score value
to the last best and worst scores. Due to the fact, that the algorithm deals
with a multi-level priority score, that is any broken constraint in level i is more
important than any improvement in level i + 1, we decided to include this
knowledge in the pheromone update strategy. This way, we want to provide

143

Chapter 8: Optimization of Vertical Systems-of-Systems

Algorithm 6: VRP-stage pseudo-code of the ACO.
Input: Stops s, Vehicles v, max. iterationsmi

1 Initialize pheromone matrices
2 while unimproved iterations (ui) < mi AND current runtime <max. runtime

do
3 Assign s to v based on matrices
4 foreach veh in v do
5 Solve TSP-stage
6 Apply Timeline algorithm to match time windows
7 Calculate score of this solution
8 Try add it to set of best solutions
9 Update pheromones

10 Evaporate pheromones
11 if current solution better than best solution then
12 ui = 0
13 else
14 ui++

15 return best solutions

more weight for higher score levels than to lower score levels and direct the
search of the algorithm to improve the convergence speed. As summarized
in Equation (8.7), the new pheromones for every score level i are calculated
by multiplying the score factor fi with a pheromone base value pi, divided by
the score level (one for H1, two for H2, and so on) to give more weight to the
more important scores. We distinguish two cases to set pi: if the current score
is better than the worst score ever found, we set pi = 1; if the current score is
worse than the worst score, we set pi = 0.25. By this, we give the pheromones
of reasonable solutions more weight than of bad ones and hope to gain a faster
improvement of the found solutions since many more non-feasible solutions
exist. The already mentioned idea of integrating Novelty Search brings the
possibility of worse solutions than the currently worst one.

pheromones =
∑
i

fi · pi
i

(8.7)

Equation (8.8) shows the calculation of the score factor fi. The variable wsi
refers to the current worst score, bsi to the current best score, and si to the
current score value of the respective level i. By using this formula, we decrease

144

8.4 Ant Colony Optimization

the pheromone amount of solutions with lower scores than the current worst
score and exponentially award better solutions.

fi =

∣∣∣∣ (wsi − si)
3

(wsi − bsi)3

∣∣∣∣ (8.8)

8.4.2 TSP-stage

The TSP-stage works with a single stop-to-stop pheromone matrix as depicted
on the right side of Figure 8.4 representing the probabilities, that is the distance
to move from one stop to another. The diagonal values refer to the probability
of a stop to be the first stop taking the vehicle’s start locations into account.
The other values represent the probabilities to move from one stop to another.
We initialized this matrix again with knowledge about the stop-to-stop dis-
tances and hence, represent the actual distance between the stops from the
first iteration onward instead of an equal initialization which would require
some time to converge to the actual distances. However, it might happen that
order dependencies, order restrictions, or time windows require another stop
sequence than shortest first, so we decided to maintain a small probability for
every stop. The algorithm starts iterating and places one ant at any location in
the graph in every iteration. The ant then decides—depending on the column
for the current stop containing the values to every other stop—which stop to
visit next. We add a visibility feature to the matrix to guide the ant in a way
to first select the pickup stop and afterwards the delivery stop. Hence, we set
the visibility of a delivery stop to false if the ant did not pickup the products
for this order beforehand and the ant cannot see this stop. This aims at further
reducing the convergence time of the algorithm. After one ant finished its walk
and returned with a sequence of stops, the algorithm calculates the score for
this sequence. Afterwards, the algorithm updates the pheromones similar to
the update procedure in the VRP-stage and evaporates the pheromones with a
probability of 5%. Further, we apply the principle of Elitism, i.e., the matrix
is additionally updated with the current and global best solutions so far, to
improve the solution quality even more (cf. [Çat09]). This behavior guides the
algorithm to search for better solutions in the neighborhood of already good
solutions. The TSP-stage iterates until a maximum number of unimproved
iterations occurred, the maximum runtime is exceeded or the path of the ants
converged, that is, all ants select the same path.

145

Chapter 8: Optimization of Vertical Systems-of-Systems

8.5 Summary

In this chapter, we proposed our main contributions focusing on Goal B: Im-
proving the quality of optimization strategies in complex systems-of-systems with a
special attention to the field of logistics. We answer RQ B.1 and its subordinate
questions RQ B.1.1 and RQ B.1.2 by proposing an optimization workflow to
deal with the rVRP, which we consider a vertical system-of-systems due to its
nested optimization tasks. Besides executing the proposed approaches once,
they can also be integrated into a feedback loop to adapt the solution to a
changing environment. Therefore, in terms of the terminology of the proposed
framework from Chapter 7, we consider the proposed optimization approaches
as adaptation planning strategies. With the knowledge of this kind of vertical
systems-of-systems, the proposed framework can be extended to cope with
such complex systems and be applicable to a wider range of use cases.

146

Chapter 9

Optimization of Horizontal
Systems-of-Systems

The previous chapter proposed approaches for a kind of vertical systems-of-
systems [Mai98] where the overall problem statement can be divided into two
subsystems handling nested problem statements while still remaining func-
tional as individual components. In the following, we address another kind of
systems-of-systems consisting of two components that coexist and cooperate
next to each other and influence the output quality of each other. The use case of
this chapter is part of the logistics domain and handles the optimization of mez-
zanine warehouses. Working within a mezzanine warehouse consists of two
main tasks: (i) filling the storage with goods (storage assignment) and (ii) pick-
ing items out of the storage (order picking). The storage assignment problem
defines the task of selecting storage locations to put a product into storage. On
the contrary, the order picking problem handles the task of computing a pick
route that collects the requested products of a customer order. Finding suitable
storage allocations is important, as the allocation of products affects the travel
distances during order picking. Thus, optimizing each warehouse problem
individually may yield suboptimal solutions, harming the overall warehouse
performance. Hence, these warehouse problems coexist and influence each
other in parallel [GGM10] and, thus, we consider this problem statement to
be a horizontal system-of-system. We address the optimization warehouses
in this section as prototypical use case for a complex system-of-systems in the
logistics domain. Still, the contribution of this chapter can be generalized to
other domains such as smart grid or intelligent computer networks.
In this chapter, we propose an integrated approach for combined storage

assignment and order picking that simultaneously optimizes multiple eco-
nomic and ergonomic constraints in mezzanine warehouses. Regarding the
already presented layered architecture in Section 7.3, we consider the proposed
approaches of this chapter as part of the adaptation planning layer. Besides
the single execution of the proposed approaches for each problem statement,

147

Chapter 9: Optimization of Horizontal Systems-of-Systems

the approaches can also be applied regularly using a feedback loop to adapt
the solution to a possibly changing environment. In this chapter, we aim at
handling the effects of optimization of horizontal systems-of-systems. However,
the actual adaptation of our proposed framework introduced in Chapter 7 is
out of scope of this thesis. Still, the lessons learned from this chapter will be
useful for adapting the framework to handle not only a single adaptive system
but also systems-of-systems. Hence, in this chapter, we apply optimization
techniques on the parallel warehouse problem statements order picking and
storage assignment with a special focus on their interaction. To solve these
problems, we integrate economic as well as ergonomic criteria. Expert inter-
views have shown that in practice, the following set of economic criteria is
important and, hence, supported by our approach: products should be spread
equally among each floor, fast-moving products should be easily accessible,
correlated products should be stored in proximity of each other, and the storage
space should be used as efficiently as possible. Further, we integrate ergonomic
constraints such as storing heavy products and fast-moving products at grip
height or reducing the requirement to switch a mezzanine floor. Hence, the
contributions of this chapter are two-fold.

• Design of storage allocation and order picking algorithms that incorporate
the interdependence of both tasks.

• Integration of diverse economic and ergonomic constraints.
This chapter is based on our paper [LMK+21a,LMK+21b], which is currently

under review in the Springer Applied Intelligence Journal. In the following,
we first propose our meta-model of considered mezzanine warehouses in
Section 9.1. Afterwards, we provide an overview of the goal and a 3-phase
algorithm of our storage assignment approach in Section 9.2 and present the
details of the proposed GA in Section 9.3. Finally, we introduce our order
picking approach based on an adapted ACO algorithm in Section 9.4 and
summarize the chapter in Section 9.5.

9.1 Meta-Model of Considered Mezzanine Warehouses

The storage assignment and order picking algorithms require information on
the warehouse layout, the product assortment, the products’ storage locations,
and the current state of the warehouse. This state represents the already as-
signed products and their location. Figure 9.1 illustrates our meta-model.
The mezzanine warehouse consists of multiple floors but we consider only

one floor in the meta-model. To model multiple floors multiple instances of

148

9.1 Meta-Model of Considered Mezzanine Warehouses

Figure 9.1: Themeta-model describes the structure and state of mezzanine warehouses.
It consists of information about the floor layout (blue classes), configuration of a
rack (yellow classes), the contained products (red class), the product assignment
(green class), a set of orders (orange classes), and a set of association rules for the
products (purple class).

the presented model can be combined. The blue box describes the floor layout
defining the arrangement of racks within one floor of the mezzanine ware-
house (FloorLayout). Each floor consists of the classes, P&D-Point, WidePick-
Aisle, and Rack. A p/d-point is the pickup and delivery point where personnel
needs to collect items to be stored in the warehouse or deliver items of a cus-
tomer order that were collected. Regarding the class WidePickAisle, two types
of pick aisles exist: wide and narrow ones. In wide aisles, pickers can take
along their cart to cross the aisle while it needs to be parked at the aisle entry for
narrow aisles. A floor can be illustrated as a two-dimensional map as depicted
in Figure 9.2: The racks with their unique identifiers r3 and r4 are assigned the
floor coordinates x = 1 and y = 2 since their access points are both located at
(1|2). The vertical aisles located at x = 0 and x = 4 in combination with the
horizontal cross aisles at y = 0, y = 4, and y = 7 form the periphery of the floor.
Periphery aisles usually contain the p/d-points, e.g., at (2|0)). A wide aisle is
depicted at x-coordinate two and two narrow aisles are shown at x-coordinates
one and three, where the picker needs to park his cart. Real-world mezzanine
warehouses may apply different layouts on each floor; however, we assume

149

Chapter 9: Optimization of Horizontal Systems-of-Systems

that each floor in the mezzanine warehouse applies the same layout.
Since diagonal movements are not possible in this grid layout, we apply the

Manhattan distance function to calculate the distance between two locations p
and q defined by distance(p, q) =| xp − xq | + | yp − yq |.
The classes inside the yellow box (Compartment and RackConfiguration)

define the configuration of a rack, referring to its size, the number of shelf
levels, the number of compartments per shelf level, and the size of the compart-
mens. The Compartment class includes an identifier and a three-dimensional
vector specifying the compartment’s dimensions. The shelf level and shelf
level position define the compartment’s location within the rack. The class
Product (red box) defines the products with five properties: product number,
size, weight, rank, and order frequency. The rank (≥ 1) allows identifying fast
and slow-moving products by the frequency at which the product appears in
recent customer orders. The product of rank 1 represents the most frequently
ordered product. The order frequency describes the frequency to which a
product is usually ordered using a Gaussian distribution. Both properties are
derived from recent customer orders and represent redundant information
which prevents the algorithms from recalculating this information in every
computation step it is needed. Further, these properties are later used in the
storage assignment optimization to find better racks regarding their frequency
and usual ordered amount. The class ProductAssignment (green box) specifies
the quantity of which a product is assigned to a specific compartment. The
classes Order and OrderLine of the orange package define the structure of a
customer order consisting of a unique order number and multiple order lines.
An order line specifies the quantity to which a product is ordered. The class
AssociationRule (purple box) defines association rules derived by the Apriori
algorithm [ICMPG16]. The confidence ranges from 0 to 1 and expresses the
strength of the correlation between the left-sided and the right-sided set of
products. In this thesis, we limit our approach on positive correlations but the
integration of negative correlations can also be realized with minimum over-
head in the assignment process. These rules are used in the storage assignment
algorithm later on to store correlated products close to each other which may
increase the order picking performance.

150

9.1 Meta-Model of Considered Mezzanine Warehouses

Figure 9.2: Example mezzanine floor layout from top-down view. We structure the
floor layout using two-dimensional coordinates and consider narrow (at x = 1 and
x = 3) and wide pick aisles (at x = 2) as well as cross aisle (at y = 0, 4, 6). Further
we show P&D-points for example at (2|0). We assign rack ids to the shown racks and
define rack access points from the aisle.

151

Chapter 9: Optimization of Horizontal Systems-of-Systems

9.2 Storage Assignment

The overall goal of the storage assignment algorithm is to select a set of compart-
ments for storing an incoming product by considering multiple economic and
ergonomic constraints simultaneously. In the following, we first introduce the
defined constraints and assumptions for the storage assignment approach. Af-
terwards, we present the general structure of the storage assignment algorithm
consisting of three phases.

9.2.1 Constraints and Assumptions

In expert interviews, we identified multiple hard constraints that should be
covered in the proposed approaches. These hard constraints specify whether a
storage allocation is considered feasible. Such a feasible solution never violates
any of the following constraints. Each incoming item must be assigned to
a compartment (HC1). The selected compartment must either be empty or
partially occupied by items of the same product (HC2). Each item has to fit
in the remaining free space of its assigned compartment (HC3). Furthermore,
we define multiple soft constraints that measure the extent to which a storage
allocation fulfills economic criteria: The products should be evenly spread
on each floor (SC1). Fast-moving products should be assigned close to a
P&D-point (SC2). The mean ordered quantity of a product should be locally
available (SC3). Correlated products should be stored close to each other (SC4).
The storage space should be used as efficiently as possible (SC5). Finally, we
define two ergonomic soft constraints: Heavy products should be stored at grip
height (SC6). Fast-moving products should be assigned at grip height (SC7).
Further, we state the following assumptions for our approach: The state

of the warehouse does not change while the storage assignment algorithm is
running. Thus, the products are neither re-positioned nor removed, and the
racks’ configurations do not change. Further, the algorithm allocates only one
product at a time. The storage racks may apply different rack configurations
and products may only be assigned to fitting compartments. A compartment
is allowed to store multiple items of the same product but may not store two
different products at the same time. Finally, we assume that one execution of the
storage assignment plans locations for a single product type and an assignment
task for other product types requires an additional run of the algorithm.

152

9.2 Storage Assignment

9.2.2 3-Phase Storage Assignment Algorithm

Our storage assignment algorithm consists of three phases that intend to reduce
the complexity of the optimization problem: (i) assignment of products to
floors, (ii) assignment to racks w.r.t. economic criteria, and (iii) assignment to
compartments w.r.t. ergonomic criteria. Keep in mind that we only consider
feasible solutions which fulfill all hard constraints.

In the first phase, the incomingproduct quantity is split among themezzanine
floors (SC1) so that each floor provides the same quantity of the product. This
way, we try to reduce the required floor changes during a pick route to a
minimum. Thus, we first determine the total quantity of the incoming product
that is already available in each floor, calculate the ideal quantity for each
floor after storage assignment, and assign the missing quantity to each floor.
Remaining items, due to rounded results, are allocated to a random floor.
The second phase addresses the economic soft constraints SC2 to SC5 and

aims to reduce the walking distances during order picking. This phase assigns
the incoming products to racks on a specific floor. Since this phase requires op-
timizing a set of constraints, we apply a multi-objective optimization algorithm
which we describe in Section 9.3.

The third phase aims to satisfy the ergonomic soft constraints SC6 and SC7.
We classify a product p into three weight classes: light (up to 3 kg), medium
(between 3 kg and 7kg), and heavy (over 7 kg). We set the grip height from
0.75m to 1.25m and refer to compartments below/above the grip height as
low/high zone compartments, respectively. Additionally, we distinguish fast-
moving, moderately-moving, and slow-moving products by their relative rank.
The relative rank of a product p calculated as rankp/|P |, where rankp denotes
the rank of product p, and |P | the size of the product assortment, that is the
set of unique products. In the first step, we assign the incoming items to the
rack’s compartments that already provide items of the same product. In the
second step, we assign the remaining incoming items to the rack’s unoccupied
compartments based on predefined penalty values. The penalty values range
from zero to three and the more a compartment is unsuited for storing the
product, the more penalty points are given (see Table 9.1 and Table 9.2).

153

Chapter 9: Optimization of Horizontal Systems-of-Systems

Table 9.1: Penalties for assigning a prod-
uct to a specific compartment with re-
gards to the product weight.

Zone
Weight heavy medium light

high 3 2 0
grip height 0 0 1
low 1 1 0

Table 9.2: Penalties for assigning a prod-
uct to a specific compartment with re-
gards to the product rank.

Zone
Rank fast moderate slow

high 2 0 0
grip height 0 1 3
low 2 0 0

9.3 Genetic Algorithm for Storage Assignment

This section presents our custom version of the NSGA-II algorithm that was
originally proposed by [DPAM02]. We select the GA as it is a nature-inspired
heuristic algorithm which is commonly used to tackle such complex problems.
Still, also other heuristic optimization techniques could be applied in the future
to assess their performance. The algorithm receives the current state of a floor,
that is, instances of the meta-model for the addressed floor, and assigns the
incoming items to a set of racks on this floor. Note that we execute the NSGA-II
once for each floor and, hence, solve the optimization problem for each floor
individually considering economic constraints.

9.3.1 Chromosome Encoding

Since the NSGA-II algorithm is a genetic algorithm, we propose to use a cus-
tomized chromosome encoding as depicted in Figure 9.3. The figure illustrates
an example allocation task where ten items of product p1 must be assigned to
the racks on f1. Black numbers written within the racks indicate existing items
of product p1, while red numbers indicate incoming items of product p1. The
right side shows the chromosome that encodes the storage allocation depicted
on the left side by specifying the racks selected for storing each incoming item.
Since ten items of product p1 are assigned, the chromosome’s length equals 10.

9.3.2 Objective Functions

A set of objective functions guides the NSGA-II algorithm to find good storage
allocations. We propose four domain specific objective functions, which we

154

9.3 Genetic Algorithm for Storage Assignment

8

(3)
2

(4)

3

5
(2)(1)

4

Figure 9.3: Illustration of the chromosome representation and the reference to the
warehouse layout. The chromosome on the right encodes the racks selected for storing
the incoming items inside the warehouse depicted on the left. Black numbers indicate
existing items of a product, while red numbers indicate incoming items of product.

call scores, for our maximization problem: (i) spread score, (ii) distance score,
(iii) quantity score, (iv) correlation score.

9.3.2.1 Spread Score

This score addresses constraint SC1 and aims to equally spread the incoming
quantity of product p1 across the entire floor. Hence, we divide the floor fj
into multiple areas A of equal size. To calculate the spread score, we use the
total (totalQ) and ideal quantity (idealQ) of a product in each area of a floor.
The totalQ is the sum of the existing and incoming items in an area, while we
calculate the idealQ by dividing the sum of the existing and incoming quantity
of product p1 on the floor by the number of defined areas. The aim of this
calculation is to balance the amount of products in all areas and, hence, achieve
a good spread of products within the entire floor. We define the final spread
score for chromosome C to be the sum of differences between the total and the
ideal quantity for all areas multiplied with minus one (see Equation 9.1).

spreadScorep1,fj = (−1)
|A|∑
o=1

|idealQp1,fj ,o − totalQp1,fj ,o| (9.1)

9.3.2.2 Distance Score

This score addresses constraint SC2 and aims to allocate slow-moving products
to racks further away from the P&D-points. Hence, the distance score quantifies
the extent to which the walking distances (distri) of the selected racks match

155

Chapter 9: Optimization of Horizontal Systems-of-Systems

the ideal distance (idealDistp,fj). For calculating the idealDist, we perform the
following steps: We determine the relative rank of the incoming product p by
dividing the rank of the product (rankp) by the size of the product assortment
P : relRankp = rankp/|P |. We map the relative rank to a rack index:

rackIdxp,fj = ⌊relRankp · |Rfj |⌋

withRfj being the list of racks of floor fj sorted by the racks’ walking distances
to their closest P&D-point. The rack in Rfj at index rackIdx represents the
best-suited rack for storing product p with regard to constraint SC2. Finally,
we define the idealDist to be:

idealDistp,fj = distance(Rfj [rackIdxp,fj]) (9.2)

The overall distance score is calculated as the sum over all racks in Chromo-
some (C) of absolute differences between the walking distances of the racks
selected for storing product p and the idealDist (see Equation 9.3).

distanceScorep,fj ,C = (−1)
∑
n∈C
|idealDistp,fj − distn| (9.3)

Further, we provide an example of the procedure to calculate the optimum
walking distance in Figure 9.4. The left side depicts the floor layout with already
existing products within racks of the floor depicted as black number and black
points representing P&D-points. First of all, we classify all racks of the floor
with regards to their walking distance to the next P&D-point, which results in
eight, twelve, twelve, and four racks with a walking distance of one, two, three,
and four, respectively. This classification of racks is also depicted at the top
of the right illustration. Now, we analyze the rank of the product to be stored
and calculate the relative rank. As an example, we assume the product to have
a rank of 98 and a product assortment size of 160 what results in a relative
rank of 0.61 for the product to be stored. Then, we map this rank to the rack
indices that can be illustrated as an ordered list of racks. In our example, as
we assume to have 36 racks at the floor, the relative rank of 0.61 maps to a rack
index 23, which again maps to the ordered list of classified racks with regards
to their walking distance. Since we identified the optimum rack index to be
23, we select the 23rd rack in the classified ordered list. The selected rack is
classified as a rack with walking distance three, which defines the optimum
walking distance for this product as three. This value is then used in the above
mentioned calculation to identify the distance score.

156

9.3 Genetic Algorithm for Storage Assignment

10

10
(10)

20

10

(5)

10
(10)

20

1

2

3

3

2

1

2

3

4

4

3

2

2

3

3

2

1

1

(5)

1 2 3 4

(10)

Figure 9.4: Calculation of the ideal distance for storing the incoming product p98. The
left side illustrates the floor layout with P&D-points, 36 racks, the walking distances for
each rack and already assigned products as black numbers inside the racks. The right
side illustrates the process to determine the optimum walking distance for a product
regarding its rank.

9.3.2.3 Quantity Score

This score assessesSC3 and ensures that themean ordered quantity of a product
is locally available. With the term locally, we refer to a predefined area within
a floor, which we specify in the following using four masks. Therefore, the
target quantity defines the quantity to which the product p should be locally
available based on a set of recent customer orders calculated using mean (µ)
and standard deviation (σ): tqp = ⌈µp + 2σp⌉. In the following, we refer to
a pick aisle within one block in a floor as sub aisle. Further, we define four
masks and a modifier for each mask to measure the density to which the tqp
is locally available: M1 equals the size of a rack (maskMod = 1), M2 equals
the size of two facing racks (maskMod = 0.75),M3 is a sliding window with
half the sub aisle’s length (maskMod = 0.5), andM4 covers an entire sub aisle
(maskMod = 0.25). We define the mask modifier in the range between one
and zero with decreasing values to give less impact of smaller masks to the
mask score. In this thesis, we use these predefined values but they can be
tuned in future work to find the optimal configuration. Using these masks, we

157

Chapter 9: Optimization of Horizontal Systems-of-Systems

calculate a quantity factor for each sub aisle (sa) of a floor and each mask (Mk).
Therefore, we select the quantity (q) of products inside a mask divided by the
target quantity:

qFactorp,fj ,sal(Mk) = max
Mk

(qp,fj ,sal(Mk)/tqp)

This results in a value of one or higher if the target quantity is met and a value
of zero if no products can be found within this mask. We then multiply this
quantity factor by themaskMod to calculate the mask score:

maskScorep,fj ,sal(Mk) = min(maskModMk
· qFactorp,fj ,sal(Mk), 1)

We define the mas score in the range between zero and one with a value of one
indicating that the target quantity is available in a single rack of the sub aisle.
From these we select the maximum value to assign a score to each sub aisle:

subAisleScorep,fj ,sal = max
M

maskScorep,fj ,sal(Mk)

The final quantity score computes as the sum of all subAisleScores:

quantityScorep,fj ,C =

|SA|∑
o=1

subAisleScorep,fj ,sao (9.4)

Figure 9.5 illustrates the idea of using masks of different sizes to measure the
density to which the target quantity tqp of product p is locally available. The left
side shows the storage locations of existing and incoming items of product p in
a specific sub aisle sa. The center of the figure depicts the four masks Mk that
iterate over the racks of the sub aisle. During this process, the masks count the
existing and incoming quantities of product p that can be found in the covered
regions. The right side shows the regions where the masks find the largest
quantity of product p in the sub aisle sa.

9.3.2.4 Correlation Score

This score relates toSC4 and describes the extent towhich the incoming product
is stored close to its correlated products. Association rules describe correlations
between products and can be derived from recent customer orders. We consider
association rules of the form rule = {p} conf−−−→ {cp}, where p denotes the
incoming product, cp the correlated product, and conf a confidence value.

158

9.3 Genetic Algorithm for Storage Assignment

8
(5)

5

2 2

(2)

(5)
5

(5)
5

(2) (2)

8 8 8

(2)

(5)
5

2 2

8

2

(5)
5
(2)

Figure 9.5: Illustration of the workflow for calculating the quantity score. The left
side depicts a sub aisle layout with existing and incoming items. The center of the
figure depicts the defined masks. The masks Mk count the quantities of product p in
the covered regions which results in the right of the figure where the masks find the
regions with the largest quantity of a product.

We first calculate the number of possible clusters of target quantities of the
incoming product:

qClustersp,fj = ⌊totalQp,fj/tqp⌋

We use this value to define the ideal quantity to which the correlated product
should be available in the vicinity of the incoming product:

idealCorrQrule,fj = ⌈qClustersp,fj · tqcp · conf(rule)⌉

In the next step, we determine the quantity of cp already available in the vicinity
of p. For this task, we use the previously introduced masksMk and place them
directly on top of the racks containing cp. We again calculate the qFactor to
capture the extent to which the target quantity of p is available in the region
covered byMk placed on top of rack r:

qFactorp,r(Mk) = qp,r(Mk)/tqp

Then, we calculate the fraction towhich the items of cp stored in r are considered
to be in the vicinity of p:

corrQrule,r(Mk) = exQcp,r · qFactorp,r(Mk) ·maskModMk

159

Chapter 9: Optimization of Horizontal Systems-of-Systems

exQcp,r refers to the existing quantity of the correlated product cp in rack r.
Afterward, we select the corrQwith the highest value representing the mask
with the largest amount of p in the vicinity of cp:

corrQrule,r = max
M

corrQrule,r(Mk)

The sum of all corrQrule,r over all racks on this floor denotes the quantity of
the cp on this floor that is considered as being in the vicinity of p:

corrQrule,fj =
∑

r∈Rfj ,cp

corrQrule,r

Now, we calculated the quantity of the correlated product that is in the vicinity
of the incoming product and the difference of this value to the ideal quantity.
Based on this difference, the correlation score is calculated as:

correlationScorep,fj ,C = (−1)
∑

rule∈Ap

idealCorrQrule,fj − corrQrule,fj (9.5)

The correlationScorep,fj ,C is the correlation score awarded to a storage alloca-
tion encoded as chromosome C that assigns items of product p to racks on fj .
Ap represents the set of association rules that have the incoming product p on
the left side.
Again, we illustrate the calculation of the correlation quantity for the cor-

relation score in Figure 9.6. The top of the figure presents given information
required for the calculation, such as existing and incoming quantities for the
example product p1 as well as the existing quantity of product p2. Further,
one association rule and two target quantities are specified. The left box of
the figure illustrates the warehouse situation on the example floor f1 where
existing quantity of p1 is written in black numbers, incoming quantity of this
product is written in red, and existing quantity of p2 is indicated using the
purple color. The right box of the figure illustrates the mask placement on
the existing quantity of p1, and counts the existing quantity of p1 inside of the
mask in the colored circles below this illustration. The table at the bottom of
the figure illustrates the calculation of the correlation quantity for each mask.
For example, considering maskM1 depicted in blue, the correlation quantity
is calculated by multiplying the existing quantity of p2 (= 20) by the qFactor,
that is, existing quantity of p1 divided by the target quantity which results in 3

10 .
Finally, we multiply this by the mask modifier of mask M1, which we define to
be one. We apply this process to all masks and select the maximum correlation
quantity for the further calculation of the correlation score.

160

9.3 Genetic Algorithm for Storage Assignment

10

20

20
5

20

(5)

(10)

10
5

(10)

(5)

(15)

15

20

(5)

10

32

10
10

10

(5)

10
10

(5)

10
10
10

20

1010

2 3 2
20
3

(5) (5)

20 20

10 10

2 3 2 3

10
10

Figure 9.6: Illustration of the calculation of the correlated product p2 available in the
vicinity of the incoming product p1. The left side depicts the warehouse situation on
the first floor with existing and incoming quantities of p1 as well as existing quantities
of p2. The right side depicts the placed masks on this sub aisle and the correlation
quantity calculation is depicted at the bottom.

9.3.3 Genetic Operators

The NSGA-II is a generally applicable genetic algorithm but provides the possi-
bility to define use case specific selection, crossover, and mutation operators. A
customized use case specific definition of these operators might help the NSGA-
II to find better solutions in a smaller amount of iterations and, thus, decreases

161

Chapter 9: Optimization of Horizontal Systems-of-Systems

the convergence speed. Hence, these operators need to be defined carefully so
that the algorithm constructs solutions that achieve good objective function
values. We apply selection and crossover operators that are well-established in
the literature and focus on use case specific mutation operators.

Selection. We apply a binary tournament selection operator where two ran-
dom parent individuals compete against each other [DPAM02]. The individual
with the higher Pareto rank is the winner and is allowed to participate in the
crossover procedure. In case both parents are of equal Pareto rank, the individ-
ual with the larger crowding distance, i.e., the higher diversity, wins the round.
We apply these rounds until only two individuals remain in the finals of the
tournament. On these two individuals, we breed new individuals by applying
the crossover operator.
Crossover. Since all chromosomes created during a run of the NSGA-II

algorithm are of equal length, we use the traditional single-point crossover
operator. It selects a random crossover point on both parents’ chromosomes,
splits them, and recombines them cross-wise to obtain two new children.
Mutation. We define the following mutation operators that incorporate

domain-specific knowledge to guide the search process and achieve faster
convergence speed while maintaining a high diversity of the population:

1. The FillRack mutator selects a random rack and fills it with incoming
items from the same sub aisle.

2. The MoveRack mutator selects a random rack containing at least one
incoming item and moves them to a different rack within the same sub
aisle.

3. The FillSubAisle mutator selects a random sub aisle and fills it with
incoming items from other sub aisles until it provides the product’s target
quantity.

4. The ClearSubAislemutator selects a random sub aisle and moves any
incoming items to a different sub aisle.

5. The RedistributeExceedingQuantities mutator redistributes incoming
items of racks that provide more items than the target quantity to racks
that require only a few items to provide the target quantity.

6. The ShiftRacks mutator shifts all incoming items towards a randomly
selected direction: left, right, up, or down.

7. The SwapSubAisles mutator first groups the sub aisles into pairs and
swaps incoming items randomly within each pair.

162

9.3 Genetic Algorithm for Storage Assignment

8. The SwapRacksmutator is similar to (7) but swaps items within pairs of
racks instead of sub aisles.

9.3.4 NSGA-II Algorithm

We summarize the overall procedure of our NSGA-II algorithm in Algorithm 7.
The algorithm receives the product to be stored and its quantity as well as the

Algorithm 7: Proposed NSGA-II Algorithm.
Input: product, quantity, fittingRacks
Parameter :parentPopSize, mutProb, L, δlim, maxGen
Output: paretoFront

1 popparent = initParentPopulation(product, quantity, fittingRacks,
parentPopSize)

2 gen = 0
3 historyOfMaxCD = new List()
4 while gen < maxGen && std(L) > δlim do
5 gen++
6 popchildren = createChildrenPopulation(popparent)
7 popcombined = popparent ∪ popchildren

8 popparent = createNextParentPopulation(popcombined, parentPopSize)
9 paretoFront = calculateParetoFront(popparent)
10 maxCD = calculateMaxCD(paretoFront)
11 historyOfMaxCD.add(maxCD)
12 return calculateParetoFront(popparent)

list fittingRacks as input parameters. Further, the parentPopSize defines the
size of the parent population, the mutation probability is given by mutProb,
the number of generations to be used when calculating the standard deviation
of the maximum crowding distance std(L) is called L, the threshold for the
standard deviation of the crowding distance is δlim, and the maximum number
of generations is called maxGen. In the end, the algorithm returns a paretoFront
of the best storage assignments.
In the first step, the algorithm initializes the population by randomly cre-

ating the required amount of chromosomes in line 1. Therefore, the algo-
rithm selects fitting racks for the product randomly which might produce
invalid solutions due to exceeded rack spaces. Each invalid chromosome is
then repaired by moving the amount of exceeding products to another avail-
able rack. Then, the generation counter gen in line 2 and the history of ob-
served maximum crowding distances in line 3 are initialized. Afterwards,
the while loop starts and iterates using the two following stopping criteria

163

Chapter 9: Optimization of Horizontal Systems-of-Systems

in line 4: (i) the number of maximum generations (maxGen) is executed, or
(ii) the standard deviation of observed crowding distances (std(L)) falls be-
low the given threshold (δlim). Inside the while loop, the algorithm incre-
ments the generations counter (line 5), and breeds a complete new children
population in the size of the parent population using the proposed selection,
crossover, and mutation operators (createChildrenPopulation() in line 6).
The algorithm adds this set to a combined population of existing parent indi-
viduals (line 7) and selects the best individuals to fill the new parent popu-
lation (createNextParentPopulation() in line 8). Afterwards, the algorithm
calculates a Pareto front from this parent population (calculateParetoFront()
in line 9) and calculates the maximum crowding distance of this front in line 10.
This value is added to the history of maximum crowding distances in line 11.
In case the while loop stops, the algorithm returns the current Pareto front.

Since the NSGA-II algorithm returns a Pareto front, a user is usually required
to identify the most valuable trade-off solution. However, we automate this
step by applying the following procedure. For each of the four objective func-
tions (ofi), we select the solution (sj) of the Pareto front with the highest
value (ofi(sj)) for this function. We then use these values as a 4-dimensional
reference point (pref = [e1, e2, e3, e4]). Based on the Euclidean distance, the
solution that is closest to the reference point is automatically selected as the
most valuable trade-off solution.

9.4 Order Picking

This section introduces our order picking approach that is based on ACO. We
selected this algorithm as it is a nature-inspired heuristic algorithm which is
commonly used to tackle these complex problem statements. Still, also other
heuristic optimization techniques could be applied in the future to assess their
performance. The overall goal of this algorithm is to construct a pick route
for a given customer order. Since the travel distance is an essential economic
goal, the pick route should be as short as possible. Additionally, the pick
route should also be ergonomically favorable. The need for changing floors
should be minimal to reduce the order picker’s physical stress. Further, the
product picking sequence is relevant since if light products are picked first,
the order picker might need to rearrange the already picked products so that
light products are placed on top of heavy products. Hence, the algorithm aims
to construct a short pick route that collects heavy products first and changes
floors as little as possible to address economic and ergonomic criteria.

164

9.4 Order Picking

The main idea of this approach is to represent a mezzanine warehouse as a
graph and let ants search for satisfactory order picking sequences. We make
the following assumptions to better deal with the complexity of the problem:

• The state of thewarehouse does not changewhile the algorithm is running,
that is, no re-positioning or removal of products is performed.

• The start and ending P&D points of a pick route may differ.

• Narrow sub aisles may only be traversed to the sub aisles’ midpoint, as
the picker always must go back to the cart in the wide pick aisle.

• The order pickers visit only one rack each time they enter a sub aisle.

• Picking carts withstand infinite loads and can carry any number of items.

9.4.1 Constraints

For the order picking algorithm, we define a set of hard and soft constraints.
The hard constraints assess the feasibility of a solution, while the soft constraints
measure the extent to which the solution fulfills economic and ergonomic goals.
We define the following hard constraints:

• HC1: The pick route must start and end at a P&D point.

• HC2: The pick route must collect the requested quantities of the products
specified in the pick list.

• HC3: After entering a narrow sub aisle, the route must always return to
the sub aisle’s entrance.

Further, we define economic and ergonomic soft constraints:

• SC1: The travel distance should be minimal (economic).

• SC2: The need for changing floors should be minimal (ergonomic).

• SC3: Heavy products should be picked first, followed by lighter prod-
ucts (ergonomic).

165

Chapter 9: Optimization of Horizontal Systems-of-Systems

3
1
1

3

1

4

4

3

8

2

5

4

Figure 9.7: Illustration of the graph representation for one exemplary floor. The floor
is divided into multiple market zones using different colors. Each market refers to one
node in the graph that connects to the nearby markets using the travel distances as
weights for each edge.

9.4.2 Graph Representation

We propose the following procedure for transferring a mezzanine warehouse
into a graph representation as required by the ACO. Figure 9.7 illustrates the
procedure of dividing the warehouse into multiple zones called market zones.
Eachmarket zone is represented by amarket, and thus, a node in the graph. The
figure depicts the state of floor f1 that consists of three cross aisles, three wide
(pick) aisles, and two p/d-points. We define six market zones (illustrated using
different colored areas) obtained by dividing the floor along the wide (pick)
aisles into multiple vertical lanes. In the depicted example, lane1 refers to the
area from aisle0 to pickAisle3, and lane2 refers to the area from pickAisle3 to

166

9.4 Order Picking

aisle6. A crossLane(c,l) refers to the part of the cross aisle c that lies within
the lane l. For each cross lane, we define a market zone that comprises the
storage racks that can be visited from the respective cross lane up to their
midpoints. For example, the red market zone includes the racks that can be
visited if the order picker is located at the crossLane(1,1). The market zones
are limited to the midpoints of the corresponding sub aisles, which prevents
the ants from constructing pick routes that entirely traverse the pick aisles. A
market is referred to asmarket(f,c,l), where f denotes the floor, c the cross aisle,
and l the lane. For each market, we define three attributes: (1) the market’s
coordinates, (2) the market’s closest p/d-point, and (3) the market’s supply that
specifies which products are available at which quantity. After defining all
markets, they are connected via edges to create a complete directed graph. The
edges’ weights represent the Manhattan distances between the markets. If the
warehouse consists of a second floor f2, the markets on f1 are also connected
to the markets on f2 and vice versa, with an extra floorPenalty added to the
edges’ weights. An adjacency matrix A represents the complete directed graph.

9.4.3 Pick Route Construction

An ant colony explores the created graph to construct a set of pick routes, i.e.,
a sequence of markets that provide the products, for a given pick list. Hence, a
pick route is a path within the graph visiting a series of markets that provide the
requested product quantities. A pick route consists of two layers: (i) sequence
of visited markets, and (ii) rack sequences. Figure 9.8 depicts an example pick
route created by a single ant of the colony. The market sequence (layer one)
of a pick route is computed by an ant that is placed on a market within the
graph. Guided by the pheromone trails, the ant visits neighboring markets
until it collected the requested product quantities specified in the pick list.
The ant manages a purchasing list that specifies the missing items. The pick
route is complete after the ant’s purchasing list is empty. Further, each ant
must decide whether it enters the market zone from the left or from the right
side. The left/right entrance is located at the position where the cross lane
has its lowest/highest x coordinate value. The decision from which side the
ant enters the market zone depends on the position of the previously visited
market. While constructing pick routes, the ant applies a heuristic function to
identify the markets within its vicinity that seem attractive to visit next.

The second layer represents the rack sequence, i.e., the racks the ant visited
in each market. We use one ant for both layers, that is, the ant the identifies
the market sequence also defines the rack sequence according to the following
priority rules: (1) Racks that provide heavy products should be visited first.

167

Chapter 9: Optimization of Horizontal Systems-of-Systems

Figure 9.8: Illustration of the two layered pick route determined by one ant of the
algorithm. A pick route consists of a market sequence and a rack sequence. The market
sequence stores a list of visited markets while the rack sequence stores the rack id in
combination with the picked amount of the product from this rack.

(2) Racks located closer to the sub aisle’s entrance should be visited second.
(3) Racks that provide the largest quantities should be visited third.

9.4.4 Heuristic Function

To identify the most promising paths and assess the attractiveness of a market,
the ants apply a heuristic function. We base the attractiveness of a market on
two factors: (i) the closeness of the market to the ant’s current location, and
(ii) the availability of required items. Thus, we define the heuristic function as
follows:

ηkm,n =

(
1

dm,n

)(
Ikn

)
, where n ∈ Uk (9.6)

where ηkm,n is the heuristic value that the ant k currently located at marketm
associates with the edge (m,n) leading to market n. Uk is the set of markets the
ant has not visited yet and dm,n > 0 refers to the Manhattan distance between
the markets. Ikn ∈ [0, 1] denotes the percentage to which the required items
of ant k are available at market n. The higher the heuristic value, the more
attractive is the market for the ant.

9.4.5 Objective Functions

After retrieving possible pick routes from the algorithm, we use two objective
functions to asses the quality of the route.

168

9.4 Order Picking

9.4.5.1 Travel Distance

This objective function calculates the travel distance of a pick route and mea-
sures the extent to which the soft constraints SC1 and SC2 are satisfied. We
define a pick route P to be P = (M,R) where M = (m1, ...,mk) refers to the
market sequence andR = (r1, ..., rl) refers to the rack sequence. We then define
the objective function as follows:

travelDistance(P) = dpdm1
+

l∑
i=1

dsubri +

k∑
i=1

dcrossmi
+

k−1∑
i=1

dmarket
(mi,mi+1)

+ dpdmk
(9.7)

where we sum up the distance from the start p/d-point to the first market (dpdm1),
the sum of the distances within each entered sub aisle (dsubri), the sum of the
distances within the cross lanes (dcrossmi

), the distances between the visited
markets (dmarket

(mi,mi+1)
), and the distance from the last visited market to its closest

p/d-point (dpdmk).

9.4.5.2 Weight Violation

The second objective functionmeasures the extent to which a pick route satisfies
the soft constraint SC3 and counts the number of weight violations in the
product picking sequence. A weight violation occurs if a heavy product is
collected after a much lighter product. In this case, the order picker must
rearrange the lighter products already placed on the picking cart to prevent
damage. The user-specified threshold allowedWeightDifference defines the
acceptable weight difference between the heavier and the lighter products.
Using this threshold, we count the number of weight violations in a product
picking sequence.

9.4.6 ACO Algorithm Procedure

This section presents our proposed ACO algorithm and shows the pseudo-code
in Algorithm 8. The algorithm receives the state of the warehouse as well
as the pick list as input parameters. Further parameters are the maximum
number of iterations without improvements (maxIterWoImpr), the maximum
number of cataclysms (maxCataclysms), and the maximum number of iter-
ations (maxIter). After the computation, the algorithm returns a list of op-
timized pick routes (pickRoutes). First of all, the algorithm constructs the
graph (line 1) and initializes the pheromones (line 2). The algorithm initializes
pheromones with their maximum possible value determined by τmax. Addi-
tionally, a minimum pheromone can be specified by using the value τmin in

169

Chapter 9: Optimization of Horizontal Systems-of-Systems

the parametrization of the algorithm. Then, a while loop starts and uses the
concept of cataclysms [CWQX13] and a maximum number of iterations as stop-
ping criterion (line 3): The parameter maxCataclysms specifies the maximum
number of cataclysms that may occur. The parameter maxconsIterWoImpr de-
fines the time window in which the ACO algorithm must improve the current
Pareto front to prevent the cataclysm operator from being applied. The param-
eter maxIter defines the maximum allowed number of iterations regardless of
happened cataclysms.

Algorithm 8: Proposed ACO Algorithm.
Input: warehouseState, pickList
Parameter :maxIterWoImpr, maxCataclysms, maxIter
Output: pickRoutes

1 graph = constructGraph()
2 pheromones = initializePheromones()
3 while cataclysms <maxCataclysms || iter < maxIter do
4 iter++
5 pickRoutes = constructPickRoutes()
6 pickRoutesib = selectParetoPickRoutes(pickRoutes)
7 pickRoutesmerged = pickRoutesib ∪ pickRoutesgb
8 nextPickRoutesgb = selectParetoPickRoutes(pickRoutesmerged)
9 updatePheromones()

10 if isParetoFrontImproved() then
11 pickRoutesgb = nextPickRoutesgb
12 consIterWoImpr = 0
13 else
14 consIterWoImpr++
15 if consIterWoImpr >= maxIterWoImpr then
16 pickRoutescataclysm = pickRoutescataclysm ∪ pickRoutesgb
17 resetPheromonesOnGlobalBestRoutes()
18 cataclysms++
19 consIterWoImpr = 0

20 pickRoutescataclysm = pickRoutescataclysm ∪ pickRoutesgb
21 return selectParetoOptimalPickRoutes(pickRoutescataclysm)

Inside the loop, the algorithm increases the number of current iterations
(line 4) and constructs pick routes (line 5). The general idea is to place one ant
on each market of the graph from which the ant starts to create a pick route.
The next market is selected based on the pheromone values and the heuristic
function. We propose two different versions of the ACO to combine these
values as explained later. For each found pick route, the algorithm computes

170

9.4 Order Picking

the reverse pick route by reversing the market sequence, toggling the sides
from which the ant entered the markets, and recalculating the rack sequence.
We store the pick routes the ants construct in each iteration in the variable
pickRoutes. In the next step, the algorithm selects the Pareto-optimal pick
routes of this iteration by calculating the objective function and the Pareto rank
of all routes. Afterward, the iteration-best (pickRoutesib in line 6) and the
global-best pick routes (nextPickRoutesgb in line 7) are merged into a single
set and the Pareto-optimal pick routes in this set represent the next set of global-
best pick routes. The algorithm then uses the iteration-best pick routes and
the global-best pick routes to perform the pheromone update in line 9, which
we explain later in Section 9.4.7 and Section 9.4.8. In the further course of the
iteration, the ACO algorithm checks whether the cataclysm operator must be
applied and compares the global best pick routes of the last and the current iter-
ation (line 10). If the ACO algorithm succeeded in improving the Pareto front,
the algorithm updates the set pickRoutesgb in line 11, and resets the counter
variable consIterWoImpr to 0 in line 12. However, if no improvement was made
(line 13), the algorithm increments this counter variable (line 14). If multiple
consecutive iterations fail to achieve an improvement (line 15), the search is
considered stuck, and the cataclysm operator is applied. In case the cataclysm
is applied, the algorithm includes global-best pick routes pickRoutesgb into
the set pickRoutescataclysm (line 16), resets the pheromones on the edges rep-
resenting the pick routes in pickRoutesgb to the lowest possible value (line 17),
and empties the set pickRoutesgb. Then, the algorithm increments the number
of cataclysms in line 18 and resets the counter variable consIterWoImpr to 0 in
line 19. After the main loop terminates, the algorithm includes the global-best
pick routes pickRoutesgb of the last iteration into the set pickRoutescataclysm
in line 20 and returns the Pareto-optimal pick routes in this set (line 21).

9.4.7 ACO3 Variant

Since the handling of multi-objective problem statements using ACO is non-
trivial, we introduce two variants of our algorithm that handle pheromone
updates distinctly. Both variants are inspired by [ASG07] who propose four
different variants to handle multi-objective problems with an ACO. We select
the two best performing variants (ACO3 and ACO4) and integrate them in
our approach to compare which variant produces the best results in our prob-
lem domain. This section introduces the ACO3 variant, which applies one
ant colony using a single pheromone matrix τ for optimizing both objectives

171

Chapter 9: Optimization of Horizontal Systems-of-Systems

simultaneously. In each construction step, the probability of selecting an edge
is defined as:

probkm,n =
(τm,n)

α(ηkm,n)
β∑

n∈Uk

(τm,n)α(ηkm,n)
β
, where n ∈ Uk (9.8)

where probkm,n denotes the probability of ant k located at market m to select
the edge (m,n) leading to market n. τm,n refers to the pheromone value of
edge (m,n). ηkm,n denotes the heuristic value (see Formula 9.6) that the ant
associates with the edge (m,n). The parameters α and β control the importance
of the pheromone and heuristic values. Lastly, Uk represents the set of markets
that ant k has not visited yet.
When performing the pheromone update, the ACO3 variant rewards the

iteration-best pick routes in 90% of the time and the global-best pick routes
(found since the last cataclysm) in 10% of the time to update the pheromone
matrix τ . We update the values according to the following rule [ASG07]:

τm,n = (1− ρ) · τm,n +∆τm,n (9.9)

∆τm,n =

{
1, if (m,n) belongs to a pick route in PF

0, otherwise (9.10)

where ρ refers to the evaporation factor and∆τm,n is the amount of pheromone
that will be added to the edge (m,n). PF refers to the Pareto front containing
the solutions to be rewarded.

9.4.8 ACO4 Variant

The ACO4 variant also applies one ant colony but a pheromone matrix τ1 for
optimizing the first objective function, and another pheromone matrix τ2 for
optimizing the second objective function. When decidingwhich edge to explore
next, an ant randomly selects a pheromone matrix using a uniform distribution.
In each construction step, we calculate the probability of selecting an edge
as [ASG07]:

pkm,n =
(τ im,n)

α(ηkm,n)
β∑

u∈Uk

(τ im,n)
α(ηkm,n)

β
, where n ∈ Uk and i ∈ {1, 2} (9.11)

where τ im,n refers to the pheromone value of edge (m,n) with regards to the
pheromone matrix τ i. At the end of an iteration, the ACO4 variant updates

172

9.5 Summary

the pheromone matrix τ i by rewarding the iteration-best pick route PRi
ib that

minimizes the objective function ofi [ASG07]:

τ im,n = (1− ρ) · τ im,n +∆τ im,n (9.12)

∆τ im,n =

{
1

1+ofi(PRi
ib)−ofi(PRi

gb)
, if (m,n) belongs to PRi

ib

0, otherwise
(9.13)

where ρ refers to the evaporation factor and ∆τ im,n represents the pheromones
added to the edge (m,n) in pheromonematrix τ i. PRi

gb refers to the global-best
pick route minimizing the ith objective function of all pick routes constructed
since the last cataclysm occurred.

9.5 Summary

In this chapter, we proposed our main contributions focusing on Goal B: Im-
proving the quality of optimization strategies in complex systems-of-systems with a
special attention to the field of logistics. We answer RQ B.2 and its subordinate
questions RQ B.2.1 and RQ B.2.2 by proposing an integrated approach to op-
timize horizontal systems-of-systems. By applying the approach to the use
case of storage assignment and order picking in mezzanine warehouses, we
analyze the interrelation of the two parallel processes. In addition to executing
the proposed approaches once, they can also be integrated into a feedback loop
to adapt the solution to a changing environment. Therefore, we consider the
approaches proposed in this chapter as part of the adaptation planning layer.
The findings of this chapter can be used in the future to adapt the framework
from Chapter 7 to cope with horizontal systems-of-systems and to be applicable
to a wider range of use cases.

173

Part III

Evaluation

Chapter 10

Self-aware Optimization Framework

In this chapter, we evaluate our self-aware optimization framework introduced
in Chapter 7. This chapter is based on our publications [LHKK21a,LHKK21c].
In linewith the running example of this chapter, we also evaluate the framework
on the prototypical use case platooning coordination. Still, the contribution
of this chapter can be transferred to other domains where the application of
SAS concepts appears meaningful. We simulate a real road section of the
German A8 highway and use real traffic observed by the Federal Highway
Research Institute to apply scenarios that are as realistic as possible. We apply
the framework to two scenarios covering a weekday and a weekend day to
analyze performance under different circumstances.
In this chapter, we first define the applied evaluation methodology with

scenarios, simulation setup, and configurations in Section 10.1. Then, we
evaluate the situation detection, strategy selection, and parameter optimization
component in Section 10.2, Section 10.3, and Section 10.4, respectively. In
Section 10.5, we assess the performance of the entire framework against the
platooning metrics and analyze the performance over the course of simulation.
Finally, Section 10.7 summarizes our results and refers to the research questions.

10.1 Methodology

In this work, we use the platooning coordination use case as a running example
of our self-aware optimization framework. In this context, we also evaluate our
framework in this use case. We first define the applied scenarios, then summa-
rize the testbed and specify the framework configuration for our evaluation
before proposing our baseline approaches.

We use a simulated road section of the German highway A8, which extends
from the Stuttgart interchange to the Stuttgart-Degerloch exit. According to
Süddeutsche Zeitung, this section is one of the busiest highway sections in
Germany [dpa]. In addition to the realistic model of this highway section, we
use real traffic data provided by the Federal Highway Research Institute of

177

Chapter 10: Self-aware Optimization Framework

0 2 4 6 8 10 12
Simulation Time (h)

0

1000

2000

3000

4000

5000

6000

7000

8000

Sp
aw

n
Ra

te
/h

Cars & Trucks Cars Trucks

(a)Wednesday

0 2 4 6 8 10 12
Simulation Time (h)

0

1000

2000

3000

4000

5000

6000

7000

8000

Sp
aw

n
Ra

te
/h

Cars & Trucks Cars Trucks

(b) Saturday

Figure 10.1: Considered traffic scenarios of the framework evaluation for Wednesday
on the left and Saturday on the right. Total number of spawning vehicles is depicted
as blue dashed line, cars are depicted as solid orange line, and trucks are depicted as
dotted green line.

Germany [bas] to define the vehicle spawn rates for our simulation. After a
detailed analysis of the traffic values for each day of the week with the goal of
selecting two distinct days with individual traffic volume profiles, we selected
Wednesday as the representative weekday, and Saturday as the representative
weekend day. Figure 10.1 shows the traffic volume for the selected days between
12:00 AM and 2:00 PM. As the simulation of such high traffic volume requires
high computational power and a long computation time, we decided to simulate
the first 14 hours of a day. This time interval contains a typical traffic volume
profile for weekdays and weekends and, therefore, provides a good balance
between long runtime and comprehensive simulation. We set the platooning
percentage of all vehicles to 70% as we assume that not every vehicle is capable
of platooning or drivers choose not to participate. Furthermore, we set the
maximum speed limit of cars to 120km/h, which corresponds to the actual
speed limits on this section [Bre]. In our evaluation, we use two types of
situation detection—OPTICS and rule-based situation detection—and two
types of triggers for strategy selection—HV- and threshold-based triggers—
which results in four simulations per traffic profile. Since our approach involves
Bayesian Optimization that incorporates randomness, we run three different
random seeds in the traffic simulator SUMO for each simulation. We set the
number of seeds, that is, the number of repetitions for each configuration, to
three as the runtime for a single scenario is around 9 days.

We perform our simulations in the cloud of the Chair of Computer Science II

178

10.1 Methodology

at the University of Würzburg. This cloud consists of 18 hosts, each running
RHEL-7-8.2003.0.el7.centos and oVirt Node 4.3.10 with Kernel-based Virtual
Machines (KVM) version 2.12.0. The cloud contains one large ProLiant DL380
Gen9 host with two Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz CPU sockets
and eight cores per socket. The remaining hosts are ProLiant DL160 Gen9 type
with two CPU sockets of type Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60 GHz,
eight cores per socket, and two CPU threads per core. We use three identical
virtual machines for the simulations, which are deployed in our private cloud.
Each virtualmachine has twoCPU sockets, eachwith 4 cores running at 2.6 GHz
and 32 GB available RAM.Wemeasure the simulation runtime of our scenarios,
resulting in an average runtime of 9.5 days for the Wednesday scenarios and
9 days for Saturdays. Since the traffic volume on Saturdays is lower than on
Wednesdays, these simulations require less runtime. Due to the long duration
of a single scenario run of about nine days and the limited time for evaluation,
we only performed three replicates per scenario, which unfortunately does
not allow for statistical significance tests. However, additional runs may be
conducted in the future to confirm the results presented.
We test two situation detection approaches and two triggers for strategy

selection, which we now define. For the situation detection, we use a rule-based
approach as well as OPTICS, which we have already presented in Section 7.5.
As data input for the situation detection we use the amount of vehicles on the
road. We derived the rules for the rule-based approach by taking definitions
for peak hours, medium, and low traffic volumes from the German city of
Rostock [AG]. This study states that peak hours occur from Monday to Friday,
which led us to the decision to use the highest traffic volume on Saturday as the
upper limit for off-peak hours. This results in the following rules: We consider
the first situation with lowest traffic volume, where the maximum number of
vehicles on the road section is 120. We define the medium traffic volume from
121 to 280 vehicles and define the peak traffic volume above 280 vehicles on
the road segment. OPTICS requires the definition of the minimum number of
points and the minimum cluster size, both of which we set to a value of 45. We
determined this value in a preliminary study with different parameters, which
showed that this configuration is best suited for our use case.

Similar to the situation detection, we also evaluate two triggers for the strategy
selection component: HV and individual thresholds. Bothmethods incorporate
the four objective metrics introduced in Section 6.1.1 to assess the performance
of the currently active strategy: (i) throughput, (ii) time loss, (iii) platoon
utilization, and (iv) platoon time. The HV requires the definition of a reference
value which we set to -0.1, which is outside the range of values of all considered

179

Chapter 10: Self-aware Optimization Framework

platoon metrics. We set the HV threshold to 0.3 and consider a time window
size of five, in which the HV must fall below the threshold at least three times
to trigger the strategy selection. The threshold-based trigger requires the defi-
nition of an individual threshold per platoon metric, which we set as follows.
We set the throughput metric threshold to 0.5, since we assume that platooning
coordination strategies have little impact on this metric. Furthermore, we set
the threshold for the time loss metric to 0.9, since our preliminary study showed
that the time loss metric was always above 0.85 for all runs, so we need a very
strict threshold to have any effect at all. We set the platoon utilization metric
to 0.62, which is also close to the defined platoon percentage and should lead
the system to high platoon utilization. The threshold for the platoon time is
0.3, a comparatively low value that provides the framework with a large mar-
gin for testing different strategies. The strategy selection component requires
specifying the number of optimization cycles for each strategy as initial trial
phase in which no other strategy can be selected. We set this value to ten.
Finally, we specify the order in which the platooning coordination strategies
are selected: Best Distance (BD), Best Velocity (BV), as well as Best Distance
and Lane (BDL). In our study regarding the situation-awareness of platooning
coordination strategies [LNH+21] we analyzed that the BV strategy is the most
appropriate for this use case. This would mean that this strategy should to
be tested first. However, we decided to start with the BD strategy to force the
framework to select another strategy.
To evaluate the performance of our framework against a set of baseline

approaches, we apply the BD, BV, and a rule-based strategy to the two sce-
narios. Table 10.2 summarizes the configurations of our baseline strategies.
We derived the rule-based strategy from our study of the self-awareness of
strategies [LNH+21]. Since the BV strategy performs by far the best in this
study, we distinguish two cases in which we change the configuration depend-
ing on the number of vehicles on the road and the average car speed. The
rule-based strategy uses the first configuration when the number of vehicles is
below 500 and the average car speed is above 125 km/h. It applies the second
configuration when the number of vehicles is higher than 500 and the aver-
age car speed is lower than 125 km/h. We also apply the same set of rules as
fallback-mechanism in our framework when the applied situation detection
cannot detect the current situation.

180

10.1 Methodology

Table 10.1: Configuration of the framework and tested strategies, algorithms, and
methods used in the evaluation. The HV trigger of the strategy selection component
require definitions of further parameters such as reference values, thresholds, time
windows, and threshold exceeds. The individual threshold trigger requires the defini-
tion of thresholds for all used metrics.

DDM Part Parameter Value

Use Case Available strategies BD, BV, BDL
Situation Detection Algorithm RuleBased, OPTICS
Strategy Selection Method HV, threshold

Min. opt. attempts 10
HV Reference values -0.10

Threshold 0.30
Time window size 5
Threshold exceeds 3

Thresholds Throughput 0.50
Time loss 0.90
Platoon utilization 0.62
Platoon time 0.30

Table 10.2: Configurations of the baseline approaches used in the evaluation. All
strategies require the definition of advertising duration and lane speed thresholds.
The BD strategy requires the maximum speed difference, BV and both rule-based
configurations require the search distance front and back.

Parameter Name BD BV Rules I Rules II

Advertising duration [m] 10 10 10 5
Search distance front [m] - 600 600 400
Search distance back [m] - 250 250 200
Max. speed difference [km/h] 35 - - -
Speed threshold lane 2 [km/h] 100 100 100 100
Speed threshold lane 3 [km/h] 130 130 130 130
Speed threshold lane 4 [km/h] 160 160 160 160

181

Chapter 10: Self-aware Optimization Framework

10.2 Evaluation of the Situation Detection Component

In line with the workflow of our optimization framework, we start our evalua-
tionwith the situation detection component. Keep inmind, that this component
uses the current amount of vehicles on the road to identify a situation. There-
fore, we analyze the detected situations during the simulation for both scenarios
and compare the rule-based and OPTICS approaches to the ground truth. Fig-
ure 10.2 shows the ground truth for situation detection and the results of the
component applied to the Wednesday scenario. The orange line represents the
vehicle spawn rate, while the blue dots represent the cluster ID, that is, the
detected situation, at a given time. A feature of clustering algorithms such as

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(a) Ground truth for the situation detection.

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(b) Detected situations when applying rule-
based situation detection.

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(c) Detected situations when applying OPTICS
situation detection.

Figure 10.2: Actual situations of the ground truth and detected situations of the rule-
based and OPTICS approach for Wednesday traffic data. The orange line represents
the vehicle spawn rate at a specific point in time. The blue dots represent the detected
situation at the current point in time incorporating all previously observed data points.

182

10.2 Evaluation of the Situation Detection Component

OPTICS is that the identified clusters and observations assigned to them might
change as new measurements considered. This can cause the cluster IDs for
an observation to change over time, which is the motivation of our ongoing
model learning approach in the situation detection component (c.f. Section 7.5).
However, this behavior is not part of the illustration in Figure 10.2. The figure
shows the cluster numbers assigned when the observation first occurred. This
represents the situation based onwhich the frameworkmakes its decisions. The
figures 10.2a and 10.2b show that the rule-based situation detection component
is close to ground truth, as it identifies all three situations, but assigns fewer ob-
servations to the peak traffic cluster. In addition, the rule-based approach does
not detect the start of the second peak traffic cluster. The good performance of
this approach was expected since the rules were derived from the ground truth.
The situation detection using OPTICS, as shown in Figure 10.2c, identifies the
situations using clustering mechanisms and identifies four different situations,
but is not able to cluster all observations denoted by cluster ID -1. The four
identified situations are less evenly distributed in terms of the observations they
contain, as cluster number one contains only a few observations. Nevertheless,
this mechanism is able to distinguish different situations even if they do not
completely consistent with the ground truth.

The results of the situation detection component applied to the Saturday sce-
nario are depicted in Figure 10.3. Again, the orange line represents the vehicle
spawn rate and the blue dots represent the identified cluster ID. Similarly to
the Wednesday scenario, the rule-based approach is close to the ground truth,
which is not surprising since the rules were derived from the ground truth.
However, the OPTICS approach shows a different behavior as it is not able to
identify at least two different situations and combines all observations into one
situation. The poor performance of this approach could be due to an unfavor-
able parameter configuration resulting from our preliminary parameter study.
Another factor could be the lower number of vehicles on the road compared to
the Wednesday scenario, which could lead to similar observation data. Further
evaluation using more extensive scenarios and additional parameter studies
may provide more insight in the future.
In summary, this evaluation shows that the rule-based approach performs

well against the defined ground truth for both scenarios. The OPTICS approach
identifies distinct situations in the Wednesday scenario, but only a single situa-
tion for the Saturday scenario. The ground truth derived rules work predictably
well, but are a very rigid approach and do not provide flexibility for future
changes. A rule set must be defined at design time using expert knowledge
and will not be further adapted. On the other hand, the clustering approach

183

Chapter 10: Self-aware Optimization Framework

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(a) Ground truth for the situation detection.

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(b) Detected situations when applying rule-
based situation detection.

0 5 10 15
Simulation Time (h)

0

100

200

300

400

Nu
m

be
r o

f V
eh

icl
es

1

0

1

2

3

Si
tu

at
io

n

Vehicles Situation

(c) Detected situations when applying OPTICS
situation detection.

Figure 10.3: Actual situations of the ground truth and detected situations of the rule-
based and OPTICS approach for Saturday traffic data. The orange line represents the
vehicle spawn rate at a specific point in time. The blue dots represent the detected
situation at the current point in time incorporating all previously observed data points.

OPTICS provides more flexibility, but does not find the situations defined in
the ground truth as reliably. For the future, extended simulations with, for
example, several days could reveal more potential for improvements. In ad-
dition, rule learning methods could be used to adapt the rule-based situation
detection during runtime.

10.3 Evaluation of the Strategy Selection Component

The second component of the framework, the strategy selection component,
receives the detected situation and selects the most promising strategy to be ap-
plied in the adaptation planning system. In this section, we analyze the proper

184

10.3 Evaluation of the Strategy Selection Component

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(a) Selected Strategies when using the OPTICS
situation detection and HV trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(b) Selected Strategies when using the OPTICS
situation detection and individual threshold
triggers.

Figure 10.4: Strategy selection on Wednesday traffic data. Blue points represent the
detected situation at a specific point in time. The red line represents the selected
adaptation planning strategy at a specific point in time. (R = Rules, BD = BestDistance,
BV = BestVelocity, and BDL = BestDistanceAndLane)

operation and performance of the strategy selection component. Therefore,
Figure 10.4 shows the selected strategies for the Wednesday scenario using OP-
TICS as the situation detection mechanism and the HV trigger in Figure 10.4a
as well as the individual thresholds as trigger in Figure 10.4b. We decided to
use continuous line charts with vertical lines representing a strategy change to
better visualize the changed strategies especially in cases where the selection
changes back and forth frequently. We base this evaluation solely on OPTICS,
as it identifies different situations for the Wednesday scenario and is able to
handle new situations not defined in a rule set.
The blue points represent the determined situation, while the red line illus-

trates the selected strategy at a certain point in time, that is, the height of the
line represents the selected strategy. The left figure shows that the strategy
selection component selects a strategy and switches to the next one if the perfor-
mance metrics fall below the thresholds and the triggers activate the selection.
When using the HV trigger, the strategy selection remains at the BV and does
not switch to the BDL within the first six simulation hours compared to the
individual threshold trigger. After this time, the observations are classified as
noise by the situation detection, which causes the strategy selection to revert to
the rule-based strategy. Whenever new situations occur, the strategy selection
starts with the BD and tests its performance before switching to the BV strategy.
The results show that the individual thresholds trigger the strategy selection
more often than to the HV trigger because the selection component examines

185

Chapter 10: Self-aware Optimization Framework

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(a) Selected Strategies when using the OPTICS
situation detection and HV trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(b) Selected Strategies when using the OPTICS
situation detection and individual threshold
triggers.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(c) Selected Strategies when using the rule-
based situation detection and HV trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(d) Selected Strategies when using the rule-
based situation detection and individual thresh-
old triggers.

Figure 10.5: Strategy selection on Saturday traffic data. Blue points represent the
detected situation at a specific point in time. The red line represents the selected
adaptation planning strategy at a specific point in time. (R = Rules, BD = BestDistance,
BV = BestVelocity, and BDL = BestDistanceAndLane)

the BDL twice. This is the intended behavior of the framework and tells us that
it is working properly. Also, this may indicate that the individual thresholds
are too restrictive and could be relaxed to avoid jitters between strategies.
Figure 10.5 shows the results of the strategy selection component for the

Saturday scenario using OPTICS and rule-based situation detection in combi-
nation with the HV and individual threshold triggers. The reason for using the
rule-based situation detection in this evaluation is that OPTICS situation detec-
tion was not able to identify more than one situation for the Saturday scenario.
Figure 10.5a presents the OPTICS and HV evaluation, Figure 10.5b presents
the OPTICS and individual threshold evaluation, Figure 10.5c illustrates the

186

10.3 Evaluation of the Strategy Selection Component

rule-based and HV evaluation, and Figure 10.5d shows the rule-based and
individual threshold evaluation. Again, the blue points represent the identified
situation, and the red line represents the selected strategy at a given time. All
figures show the desired exploratory behavior of the strategy selection when a
new situation occurs due to the step-wise strategy change at the beginning. If
a strategy performs well, it is not replaced and remains active until the triggers
indicate a performance degradation. Since the OPTICS situation detection
identifies only one situation and classifies some observations as noise, it shows
a clear step-wise strategy change and a reversion to the rule-based strategy
when the situation detection reveals noise. When using the rule-based situation
detection, the strategy selection is more stable since no fallback mechanisms
are required. However, Figure 10.5c shows an anomaly in the strategy selection
behavior, as the detection of a new situation does not trigger a new exploration
of strategies after around eight hours. A detailed analysis of this behavior led
us to the conclusion that the detection of a situation change was not perfectly
aligned with the strategy selection component and, hence, resulted in a lost
situation change. Thus, the currently active strategy, that is, the BV, remains
active until about eleven hours of simulation time. At this point, the HV trigger
indicates a performance degradation of the current strategy and the strategy
selection selects the BD strategy. However, it is discarded after the initial trial
period and the strategy selection switches to the BDL strategy. The same lost
update of a new situation can be observed in Figure 10.5d. However, this figure
shows a faster discarding of the currently active strategy, similar to the behavior
in Figure 10.5b. This also indicates that the individual thresholds might be too
restrictive and could be relaxed in the future to produce a more stable result.

In summary, this evaluation shows that both algorithm selection triggermeth-
ods work properly and activate the algorithm selection when the performance
of the currently active strategy deteriorates. While the HV threshold provides
a more stable result, the individual thresholds appear to detect performance
degradation earlier. Therefore, the individual thresholds explore more possible
strategies, but also result in higher jitter compared to the HV. However, the
definition of the individual thresholds can be adjusted in future evaluation stud-
ies to achieve a trade-off between detecting performance degradation quickly
and reducing jitter. All in all, both methods work properly and are capable of
triggering the algorithm selection.

187

Chapter 10: Self-aware Optimization Framework

10.4 Evaluation of the Parameter Optimization Component

We evaluate the performance of our optimization component by analyzing the
course of the HVmetric used by this component to optimize the parameter con-
figuration of the current adaptation planning strategy. The HV metric (c.f. Sec-
tion 3.3) accumulates the platooning metrics into one objective metric that
can be used by the single-objective Bayesian Optimization. Figure 10.6 shows
evaluations of the Saturday scenario using rule-based situation detection and
HV as trigger for the strategy selection component on the left (Figure 10.6a and
Figure 10.6c). The right side of the figure shows measurements for the Satur-
day scenario using OPTICS as situation detection mechanism and individual
thresholds as triggers for strategy selection (Figure 10.6b and Figure 10.6d).
The top figures show the identified situations in blue in combination with
the selected strategies in red. The lower figures summarize the course of the
HV metric, that is, the performance indicator of the platooning coordination
strategy. The course of the HV metric appears to be very fluctuating for both
configurations during the simulation time. This was to be expected, since the
optimization component needs some time to learn which parameter setting
works well for which strategy and situation. Therefore, it makes most sense to
analyze timewindows of the HV progressionwhere the identified situation and
strategy remain stable. This is also a reason for choosing Saturday scenarios
for this evaluation, as traffic volumes do not fluctuate as much as in Wednes-
day scenarios, which allows for longer time frames per situation and strategy.
When analyzing the first stable phase on the left between 2.5 and 7.5 hours of
simulation time, the HV starts with a value of about 0.5 HV points and drops
to 0.3 HV points. Then, it stabilizes back to about 0.5 HV points, indicating
that the optimization component has explored different parameter settings
and stabilized to a well performing set of parameters. As discussed earlier, the
change in the situation is lost at about 7.5 hours of simulation time, resulting in
a sharply decreasing trend in the HV. This leads to the extended HV threshold
that triggers the strategy selection at about 11 hours of simulation time. The
other configuration, depicted on the right of the figure, captures OPTICS and
individual thresholds. In this evaluation, we can analyze the HV score for the
simulation period starting at four hours up to eight hours of simulation time.
The HV score shown on the bottom right starts at a low value of around 0.2
score points, but quickly increases to a value of 0.4 score points. This low start
value is due to the recent strategy change from the BDL strategy which was
discarded in favor of the BV strategy after its initial trial phase. After that, the
HV score shows a slight increase to a value of about 0.58 score points, but then
decreases again to values between 0.4 and 0.5 score points. This indicates, that

188

10.4 Evaluation of the Parameter Optimization Component

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(a) Selected Strategies when using the rule-
based situation detection and HV trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

1

0

1

2

3

Si
tu

at
io

n

R

BD

BV

BDL

St
ra

te
gy

Situation Strategy

(b) Selected Strategies when using the OPTICS
situation detection and individual threshold
triggers.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hy
pe

rv
ol

um
e

(c)HV score of the selected strategy when
using the rule-based situation detection and
HV trigger.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Simulation Time (h)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Hy
pe

rv
ol

um
e

(d)HV score of the selected strategy when
using the OPTICS situation detection and
individual threshold triggers.

Figure 10.6: Evaluation of the optimization component on the Saturday scenario. The
left side represents configurations using rule-based situation detection andHV triggers.
The right side illustrates OPTICS situation detection and individual threshold triggers
(R = Rules, BD = BestDistance, BV = BestVelocity, and BDL = BestDistanceAndLane).

the Optimization component finds better parameter settings for the selected
strategy and then explores new parameter settings that unfortunately lead to
worse HV values. This triggers the strategy selection, and since all existing
strategies have already been explored, the fallback rules take place.

In summary, this evaluation shows us that the Optimization component has
the potential to optimize the parameter settings of the adaptation planning
strategies, as the HV score remains stable and shows slight increases in stable
situations for situation and selected strategy. However, negative effects also oc-
cur when the Optimization component explores new parameter settings, which

189

Chapter 10: Self-aware Optimization Framework

may lead to worse results compared to the previous settings that performed
well. This indicates that the stable phases of identified situations and selected
strategies, that is, the time for the Optimization component to optimize the
parameter settings, may be too short to find stable configurations with good
performance. Extended evaluations over several days or even weeks could pro-
vide more insight into the required amount of experience for the Optimization
component and increase the overall performance of this component.

10.5 Evaluation of the Entire Framework

In our final evaluation, we analyze the overall performance of the framework.
First, we compare the four defined configurations of the framework with the
three baselines in terms of the four platooning metrics of throughput, time
loss, platoon utilization, and platoon time. Table 10.3 presents the mean and
standard deviation results for these metrics for both scenarios. We highlight the
best values of each platooning metric for the baseline group and the framework
group in bold. In both evaluation scenarios, the throughput metric results for
all baselines and framework configurations are very close, with values between
0.9943 and 0.9952 and low standard deviations. In the Wednesday scenario, the
BD baseline and rule-based situation detection combined with HV thresholds
perform best on the throughput metric with values of 0.9952 and 0.9946, respec-
tively. In the Saturday scenario, all configurations of the framework perform
equally well, while the BV baseline performs best on the throughput metric
with values of 0.9950 and 0.9951, respectively. All applied configurations and
baselines show higher diversity for the time loss metric, ranging from 0.8992
to 0.9122 for Wednesday and from 0.9255 to 0.9411 for Saturday. Rule-based
situation detection combined with individual thresholds performs best for this
metric among all configurations tested, with a value of 0.9122 and 0.9333, but
achieves a lower value compared to the BV baseline, with a value of 0.9199 and
0.9411 forWednesday and Saturday, respectively. Results for the platoon utiliza-
tionmetric range from 0.6251 to 0.7176 and from 0.5999 to 0.7101 forWednesday
and Saturday, respectively. For this metric, the fallback rule baseline among
the baselines and the OPTICS situation detection in combination with HV and
individual thresholds perform best. Finally, the results for the platoon time
metric range from 0.4908 to 0.6518 and from 0.4182 to 0.6199 for Wednesday
and Saturday, respectively. Again, the fallback rules baseline performs best for
both scenarios, and the OPTICS situation detection with HV and individual
thresholds performs best among the framework configurations.

190

10.5
Evaluation

oftheEntireFram
ew

ork

Table 10.3: Evaluation summary of the average and standard deviation for performance metrics throughput, time loss,
platoon utilization, and platoon time for both scenarios. We compare four different configurations of the framework to
three baseline mechanisms. The baseline mechanisms perform deterministic. The best values are shown in bold. (Hv =
Hypervolume, Th = Threshold)

Scenario Configuration Throughput Time Loss Platoon Utilization Platoon Time

mean std mean std mean std mean std

Wednesday

Best Distance 0.9952 0.0 0.8992 0.0 0.6251 0.0 0.4908 0.0
Best Velocity 0.9942 0.0 0.9199 0.0 0.6973 0.0 0.6109 0.0
Fallback Rules 0.9950 0.0 0.9198 0.0 0.7176 0.0 0.6518 0.0

OPTICS & Hv 0.9943 0.0003 0.9122 0.0022 0.6690 0.0030 0.5442 0.0090
Rule-based & Hv 0.9946 0.0004 0.9102 0.0011 0.6647 0.0039 0.5302 0.0076
OPTICS & Th 0.9945 0.0003 0.9110 0.0014 0.6566 0.0072 0.5275 0.0119
Rule-based & Th 0.9943 0.0003 0.9108 0.0003 0.6343 0.0109 0.5005 0.0083

Saturday

Best Distance 0.9945 0.0 0.9255 0.0 0.5999 0.0 0.4522 0.0
Best Velocity 0.9951 0.0 0.9411 0.0 0.6942 0.0 0.5833 0.0
Fallback Rules 0.9950 0.0 0.9401 0.0 0.7101 0.0 0.6199 0.0

OPTICS & Hv 0.9949 0.0001 0.9309 0.0004 0.6360 0.0019 0.4918 0.0022
Rule-based & Hv 0.9950 0.0001 0.9297 0.0013 0.6367 0.0087 0.4880 0.0137
OPTICS & Th 0.9950 0.0000 0.9323 0.0012 0.6511 0.0065 0.5169 0.0159
Rule-based & Th 0.9950 0.0001 0.9333 0.0024 0.5677 0.0504 0.4182 0.0520191

Chapter 10: Self-aware Optimization Framework

0 2 4 6 8 10 12 14
Simulation Time (h)

0
1
2
3
4
5
6
7
8
9

Hy
pe

rv
ol

um
e

Au
C

Rule-based & Th
OPTICS & Th
Rule-based & Hv
OPTICS & Hv

Best Velocity
Best Distance
Rules Baseline

Figure 10.7: Mean area under curve evaluation over time for the HV score of all tested
configurations and the baselines on the Wednesday scenario. The different colors
represent the tested configurations, the x-axis shows the simulation time, and the area
under curve is depicted on the y-axis.

The combination of the close average values for all metrics and the small
standard deviations does not suggest significant advantages for some config-
urations. However, this indicates that the framework performs comparably
well when considering the results of the baseline, which was designed and
configured with complete prior knowledge based on the preliminary situation-
dependency study we published [LNH+21].
In the following, we analyze the progression of the performance over the

simulation time. Therefore, Figure 10.7 and Figure 10.8 present the mean
HV area under curve over simulation time for all configurations and baseline
strategies for Wednesday and Saturday. The baseline strategies are depicted
as gray lines with a dotted line for the BV, a dashed line for BD and a dashed
and dotted line for the rules baseline, while colors represent the configurations.
Both plots show a similar result: The BV and rules baseline perform best, with
a stable increasing gradient of the area under curve, while the BD baseline
performs worst. The curves of the framework configurations do not increase at
a constant rate, but show more fluctuations in the gradient. All lines are close
to each other, but more differences appear as the simulation progresses. The
OPTICS and rule-base situation detection with the HV trigger perform best for
Wednesday. For the Saturday scenario, both configurations perform well, but
OPTICS with individual thresholds outperforms them slightly beginning at ten
hours simulation time. For both scenarios, the rule-based situation detection
with individual thresholds performs worst.

192

10.6 Threats to Validity

0 2 4 6 8 10 12 14
Simulation Time (h)

0
1
2
3
4
5
6
7
8
9

Hy
pe

rv
ol

um
e

Au
C

Rule-based & Th
OPTICS & Th
Rule-based & Hv
OPTICS & Hv

Best Velocity
Best Distance
Rules Baseline

Figure 10.8: Mean area under curve evaluation over time for the HV score of all
tested configurations and the baselines on the Saturday scenario. The different colors
represent the tested configurations, the x-axis shows the simulation time, and the area
under curve is depicted on the y-axis.

It is not surprising that the BV and the rules baseline perform best, since our
use case study published in [LNH+21] extensively examined existing baseline
strategies, their configuration, and their performance in various situations. Us-
ing this information, we then defined these baseline strategies to represent the
best possible performance when complete knowledge of situations, strategies,
and configurationwas available at design time. However, such intensive studies
are not feasible, especially in such dynamic, adaptive use cases. Moreover, it is
in the nature of the framework to perform worse than the gold standard, since
it needs some time to explore possible strategies and configurations before it
can learn and profit from earlier decisions. The better performance of all frame-
work configurations compared to the BD baseline shows that the framework is
able to identify and select a strategy that works well. This reduces the need of
expert knowledge or extensive case studies for a use case and, hence, provides
a valuable contribution to self-aware optimization.

10.6 Threats to Validity

We identified the following threats to validity of our evaluation. First, the
proposed framework and its components are evaluated on one road segment
of the German highway which limits the transferability of our results. How-
ever, we used a real-world road segment with real-world traffic volumes to

193

Chapter 10: Self-aware Optimization Framework

simulate challenges for the framework when applying it in reality as good as
possible. Second, we simulated the traffic of the first fourteen hours of a day
on Wednesday and Saturday. As discussed earlier we made this selection to
limit the simulation time to around nine days but still keep the typical traffic
profile for weekdays and weekends. Third, the small amount of repetitions per
scenario due to the long simulation times do not allow for statistical tests to
show the significance of our results. However, we presentedmean and standard
deviations of all scenarios and examine the performance from various points of
view and compared it against a gold standard as well as typical strategies from
the use case. We are convinced that this evaluation provides a first insight into
the feasibility of the framework and its components and additional evaluation
runs can be conducted in the future to validate the results. Finally, we decided
to evaluate the framework in the platooning coordination use case as it provides
a real-world example of SAS operating in a highly dynamic environment from
the domain ITS. We are convinced that this use case is a meaningful selection
to show the feasibility of the proposed framework. Still, the generalizability
and transferability of the framework to other use cases in the ITS domain and
also beyond needs to be assessed by applying it to other real-world use cases
from other domains in future work.

10.7 Summary

In this chapter, we evaluated our main contribution, which focused on Goal A:
Self-aware optimization of adaptation planning strategies with particular attention to
the field of ITS and logistics. We answered RQ A.6 and analyzed the component-
based self-aware optimization framework for adaptation planning strategies
on the use case of platooning coordination. First, we present the methodology
of the evaluation, followed by an in-depth evaluation of the components of the
framework. Then, we analyze the performance of the entire framework and
show that it is able to analyze observations to identify the current situation and
automatically select the most promising adaptation planning strategy. This
reduces the need for expert knowledge and extensive case studies to configure
an adaptation planning system for a specific use case.

194

Chapter 11

Vertical Systems-of-Systems Workflow

In this chapter, we evaluate our approach for tackling the rVRP from Chapter 8.
This chapter is based on our accepted paper in the Springer Applied Intelligence
Journal [LKK+21a] and on our technical report [LKK+21b]. Since our approach
focuses on rVRP including a diverse set of constraints and requirements, we
evaluate our approach on a set of real-world data. We retrieved this data from
our cooperation company that provides intelligent logistic solutions for their
customers, for example to plan routes for logistic service providers. In our
evaluation we analyze the mean solution quality after the execution and the
course of solution quality of our approaches and compare them to a set of state-
of-the-art optimization techniques. We use the defined scores from Section 8.2.2
to assess the quality of computed solutions.
To this end, we first define the used data set as well as the defined problem

instances on which we apply our approaches in Section 11.1. Afterward, we
introduce the set of state-of-the-art optimization techniques we use for compar-
ing our approaches in Section 11.2. Then, we discuss the evaluation procedure
as well as the algorithm parametrizations in Section 11.3. We present our eval-
uation results separated by the problem instance in Section 11.4 and discuss
threats to validity in Section 11.5. Finally, we summarize our findings and refer
to the research questions posed in Section 11.6.

11.1 Problem Instances

Since we handle a real-world rVRP, we decided to use a real database for our
evaluation instead of a benchmark instance as we require a huge level of detail
for each order, vehicle, and driver. This would force us to adjust the available
benchmark instances which would reduce the comparability of the results what
is the main advantage of these instances. Therefore, our cooperation partner
provided a database of real VRPs containing 30 vehicles with costs, capacities,
and capabilities, 15 matching trailers with their specifications, and 30 drivers
that can be assigned to vehicles with their individual capabilities. Further,

195

Chapter 11: Vertical Systems-of-Systems Workflow

the database contains three depots and 450 orders with locations around the
German city Stuttgart. Unfortunately, we are not allowed to make this dataset
publicly available since it is part of a non-disclosure agreement.

From this set of data, we define eight different problem instances for evaluat-
ing our proposed algorithms. In line with our separated handling of TSP and
VRP instances—which refers to our solution for the vertical systems-of-systems
structure of the problem—we decided to first evaluate the TSP-stage isolated
and, afterwards, apply the algorithms on the VRP-stage that includes solving
nested TSP instances. Instances without P&D behavior assume the pickup
at the depot and only include the delivery planning at customers. For the
evaluation of the TSP-stage, we define three problem instances:

1. A small problem instance of ten orders without P&D and without pause
times (TSP-I),

2. a large problem instance of 30 orders without P&D and without pause
times (TSP-II),

3. and a large problem instance of 30 orders without P&D but with pause
times (TSP-II-P).

Similarly, we define three problem instances for evaluating the VRP-stage:
1. A small problem instance of 53 orders and five vehicles without P&D and

pause times (VRP-I),

2. a small problem instances combined with pause times (VRP-I-P),

3. and a large problem instance of 100 orders, 13 vehicles without P&D and
pause times (VRP-II).

Since we did not include P&D behavior, that is, each order has differing pickup
and delivery stops, in the previous problem instances, we add two further
instances that require P&D behavior:

1. A TSP problem instance with ten orders, one vehicle with P&D but with-
out pause times (TSP-PD)

2. and a VRP problem instance with 62 orders, seven vehicles with P&D
and pause times (VRP-PD).

We summarize all problem instances in Table 11.1. In all problem instances, the
algorithms need to handle time windows for all orders. Using the real-world
data explains the unusual amount of orders and vehicles since the minimum

196

11.2 Alternative Algorithms for Comparison

required vehicles depend on the characteristics of the orders. However, we only
integrate pause times if we explicitly stated it, that is, in the problem instances
TSP-II-P, VRP-I-P, and VRP-PD. The extension P of the problem instance label
indicates that for this problem instance we add the following pause times: 9:30-
10:00 AM, 11:30 AM-12:00 PM, and 2:30-3:00 PM.We consider static pause times
to evaluate the ability of our algorithms to fulfill this requirement. However,
also flexible pause times can easily be included to replace the static ones.

Table 11.1: Overview of the evaluated problem instances. We define three problem
instances for the TSP and three for the VRP without P&D behavior. Finally, we define
two problem instances covering P&D behavior.

Problem Instance Orders Vehicles P&D Pause Times

TSP-I 10 1 ✗ ✗

TSP-II 30 1 ✗ ✗

TSP-II-P 30 1 ✗ ✓

VRP-I 53 5 ✗ ✗

VRP-I-P 53 5 ✗ ✓

VRP-II 100 13 ✗ ✗

TSP-PD 10 1 ✓ ✗

VRP-PD-P 62 7 ✓ ✓

11.2 Alternative Algorithms for Comparison

We compare the performance of our algorithms (GA, ACO) against four alter-
native algorithms (Brute Force, Blackbox-I, Blackbox-II, and LS) from which
the two Blackbox algorithms are provided from our cooperation partner. Since
their provided algorithms are already implemented in OptaPlanner, we de-
cided to also use OptaPlanner for an easy comparison of our new implemen-
tations. Hence, we implement our algorithms in the OptaPlanner Framework
(cf. https://www.optaplanner.org/) using version 7.31.0.Final. Of course it
is possible to implement our approach without loss of functionality in other
frameworks or, alternatively, completely independently.
Table 11.2 provides essential information on the functional requirements

supported by each compared algorithm. First, we apply a deterministic Brute
Force algorithm provided by OptaPlanner that supports all requirements of our

197

https://www.optaplanner.org/

Chapter 11: Vertical Systems-of-Systems Workflow

Table 11.2: Overview on the applied algorithms and their capabilities with respect to
the requirements of the rVRP. We compare our algorithms to a standard Brute Force
algorithm from OptaPlanner, two Blackbox algorithms provided by our cooperation
partner, and a standard Tabu Search representative for Local Search.

Capabilities Brute Force Blackbox-I Blackbox-II LS GA ACO

Capacities ✓ ✓ ✓ ✓ ✓ ✓

Setup Times ✓ ✗ ✗ ✓ ✓ ✓

Time Windows ✓ ✓ ✓ ✓ ✓ ✓

Tour Start Time Window ✓ ✓ ✓ ✓ ✓ ✓

Order Restrictions ✓ ✓ ✓ ✓ ✓ ✓

Fixed Pause Times ✓ (✓) ✓ ✓ ✓ ✓

Heterogeneous Fleet ✓ ✗ ✗ ✓ ✓ ✓

Multiple Depots ✓ ✗ ✓ ✓ ✓ ✓

Pickup/Delivery ✓ ✗ (✓) ✓ ✓ ✓

Stop Options ✓ ✗ ✗ ✓ ✓ ✓

Allow Return ✓ ✗ ✗ ✓ ✓ ✓

scenario. Since this complete and optimal algorithm requires high computation
time, it is only applied to the smallest test instance. The second algorithm is
based on a Savings algorithm [CW64] that can handle cases with a homoge-
neous vehicle fleet, a single depot, and no pickup and delivery problem. Even
if we know on which approach this algorithm is based, we call it Blackbox-I as
we have no insight into the details of the implementation. The third algorithm
(Blackbox-II) is an extension to the above mentioned Blackbox-I algorithm
covering a multi-depot problem and more complex pause time rules. Both
Blackbox algorithms are proprietary algorithms developed by our cooperation
partner. The fourth algorithm supports all features required for our rVRP as it
uses our model of the problem inside OptaPlanner and is an implementation
of Tabu Search [Glo86] provided by the OptaPlanner’s LS algorithms.
Since we modeled the rVRP inside OptaPlanner additional optimization

could be applied such as exhaustive search, hyper-heuristics or partitioned
search. However, we decided to use the Tabu Search implementation as promis-
ing representative of LS algorithms. Further, other optimization techniques
could be applied on the rVRP such as exact algorithms by using an adjusted
penalty function. However, several restrictions of our problem statement pre-
vented us from using these as for example we retrieve the stop-to-stop distance

198

11.3 Evaluation Procedure

from a service of our cooperation partner and this information is not available
as fixed adjacency matrix that could be transferred to other algorithms easily.
Further, the integration of all handled constraints into one penalty function is
problematic since diverse constraints need to be reduced to one value. This
single value is not a well fitting indicator which of the constraints is violated
and therefore a directed search towards an optimum is hardly possible.

11.3 Evaluation Procedure

We evaluate our proposed approaches against the alternative four algorithms
on all problem instances defined in Section 11.1. We execute the probabilistic
algorithms (LS, GA, ACO) 30 times with different random seeds to retrieve
representative results for comparison. We summarize the parametrization of
our GA in Table 11.3. For defining the population size of the genetic algo-
rithm, we use statistics of the problem instance to be solved. Therefore, we

Table 11.3: Parametrization of our proposed GA approach.

Parameter Value

Population size 0.1·#o+#v1.25+#(PD-orders)+
2 ·#(multi-option stops)

Mutation probability (pvrp, ptsp) 0.5
Max. unimproved iterations 500

use 10% of the number of orders, add the number of vehicles to the power
of 1.25, add the number of pickup delivery orders and twice the number of
stops containing multiple options. We derived these values in a preliminary
parameter study and focused on providing a reasonable number of individuals
regarding the complexity of the problem. We set the mutation probability to be
50%, hence, on average half of the newly created individuals are mutated and
set the termination criterion to a maximum iterations without improvement
to be 500. For the ACO we use an evaporation factor of 0.05, the size of the set
of best solutions so far to ten, and the maximum number of iterations without
improvement to 500. For the evaluation runs, we used a server exclusively
for our measurements with the following specifications: Two Intel(R)Xeon(R)
CPU E5-2667 v4 processors with 3,20 GHz each with 16 GB of RAM. Windows
Server 2012 R2 Datacenter runs as a 64-bit operating system on the server.

199

Chapter 11: Vertical Systems-of-Systems Workflow

Table 11.4: Parametrization of our proposed ACO approach.

Parameter Value

Evaporation factor 0.05
Size set of best solutions (N) 10
Max. unimproved iterations 500

11.4 Results and Interpretation

In the following we discuss the results of the algorithms on all defined problem
instances. Since we use the ranked score for measuring the quality of the solu-
tions, all hard scores need to be reduced to zero to consider a solution feasible.
In case the hard scores (H1, H2, H3) are not down to zero, the algorithm does
not find a feasible solution, which we indicate with dashes (-) in our results
table (Table 11.5). Further, the soft scores aim at the matched time windows in
the first soft score (S1) and the tour length in the second soft score (S2) that
both need to be minimized. The optimization considers the third soft score (S3)
only if the previous scores are reduced to zero. As this is not the case in any of
our evaluation results, we do not discuss this score in our evaluation. However,
it is important to have a score definition for the addressed objectives as it could
be required as tie breaker if previous soft scores are exactly the same. Keep in
mind, that even if pause times and time windows are handled in the Timeline
algorithm, no pause time violations can occur as ensured by our algorithm
and we only include the time window violations in the score S1. For better
readability, we re-scaled all values by dividing them by 10,000 in our result
presentation. To sum up the evaluation results of all problem instances, we
provide Table 11.5 that states whether time windows are met (S1) as well as
mean and standard deviations of the tour length (S2) over 30 runs for prob-
abilistic algorithms, that is, the LS, GA, and ACO. Ticks (✓) indicate, that all
time windows are met in all runs of the algorithm, crosses (✗) show that these
are not met. A value of 19/30 for the S1 score shows that in 19 from 30 runs,
all time windows are met. We report the results of the brute force algorithm
exclusively for the TSP-I problem instance since it already took the algorithm
7 hours and 15 minutes to find a solution for this problem instance. For larger
problem instances, for example the TSP-II problem instance, the algorithm
has to assess 33!= 8, 6 · 1036 possible solutions of sequences and, hence, was
not able to calculate the optimum solution within feasible time. Further, we

200

11.4 Results and Interpretation

consider a maximum calculation time for all algorithms which we examined
in cooperation with our partner to have representative real-world results. We
define this maximum calculation time to stay within a practical applicable
runtime of the algorithms between 60 and 300 seconds. We decided to set these
time limits as we want to be able to react to changes in the orders, vehicles,
and stops at any point in time. Hence, we do not aim at planning the rVRP
once at the beginning of the day, contrary we aim to be adjustable at any time
to represent adaptive behavior using feedback loops. We calculate the mean
and standard deviation values in the table using the final score values of the
solutions provided after the execution time. We test both Blackbox algorithms
for all problem instances except for the pickup and delivery instances since
they are not designed to handle pickup and delivery problems. Additionally,
we provide line charts and box plots for all problem instances. The line charts
represent the course of the mean values over 30 repetitions of the S2 score
throughout the optimization. For non-deterministic algorithms (LS, GA, ACO)
we further show the standard deviations as error bars. The box plots represent
the final S2 results of the algorithms after the execution time is over. To make
statements on statistical significance of the results we performWilcoxon signed
rank tests for the non-deterministic algorithms in all relevant comparisons. We
define the null hypotheses to be that the mean values are drawn from the same
distribution and, hence, have no statistical significant difference. Further, we
define the significance level to be α = 0.05. In the following, we first present
the results for the TSP instances, than the ones for the VRP instances and finally
discuss our findings of the P&D instances.

11.4.1 TSP-I

The table shows that for the TSP-I problem instance, the LS and GA are able
to fulfill all time windows and find the best possible score value (determined
by the result of the brute force algorithm). The Blackbox-II algorithm finds a
solution with a reduced score value of around 2.6 score points less but was not
able to fit the time windows. The Blackbox-I and ACO algorithms are able to fit
all time windows but they find only solutions with higher score value, that is,
around 1.00 and 2.35 score points above the optimal score value, respectively.

201

Chapter11:
VerticalSystem

s-of-System
sW

orkflow
Table 11.5: Summary of the evaluation results for S1 (time windows = TW) and S2 (tour length score) for all algorithms and
problem instances. For probabilistic algorithms, the mean and standard deviation values over 30 runs are listed (P = with
pause times, P&D = with pickup and delivery). From all solutions that were able to match all time windows represented in
the first soft score the best values for the second soft score are shown in bold.

Algorithm Brute Force Blackbox-I Blackbox-II LS GA ACO

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

mean std mean std mean std

TSP-I ✓ 91.52 ✓ 92.55 ✗ 90.95 ✓ 91.52 0 ✓ 91.52 0 ✓ 93.87 2.06
TSP-II - ✓ 161.87 - ✓ 157.62 5.68 ✓ 156.74 0.89 ✗ 222.00 7.50
TSP-II-P - ✗ 161.87 - 19/30 207.41 30.50 25/30 190.53 20.26 ✗ 217.74 7.58
VRP-I - ✓ 187.14 ✓ 185.71 ✓ 186.56 8.25 ✓ 177.19 1.22 ✓ 201.81 8.85
VRP-I-P - ✗ 187.14 ✗ 177.82 ✓ 194.10 5.84 ✓ 179.81 0.67 -
VRP-II - ✓ 396.21 ✓ 373.05 28/30 299.03 60.95 ✓ 292.86 14.60 -
TSP-PD - - - 21/30 108.50 2.00 27/30 104.89 17.76 -
VRP-PD - - - ✓ 337.80 18.40 ✓ 332.39 13.96 -

202

11.4 Results and Interpretation

0 5 10 15 20 25 30 35
Time (s)

90

92

94

96

98

100

S2
 /

10
,0

00

Brute Force
Blackbox-I
Blackbox-II

LS
GA
ACO

Figure 11.1: Mean and standard deviations of the tour length score (S2) to be mini-
mized for the TSP-I problem instance for all algorithms in the course of their execution.
Mean and standard deviations are calculated for the algorithms LS, GA, and ACO.

Figure 11.1 shows the mean and standard deviation values of the S2 score for
all algorithms during the course of optimization. We limit the depicted time
scale to 35 seconds for better identification of differences in the early stage of
computation between zero and five seconds. The x-axis shows execution time
in seconds while the y-axis presents the S2 score value divided by 10.000 to
achieve better visibility of the values. The Brute Force algorithm is depicted as
constant black line at 91 score points for better comparability with the other
algorithms even if it took more than seven hours to return the result. Both
Blackbox algorithms (depicted in purple and yellow) do not provide the possi-
bility to show the course of optimization but provide a final result after their
calculation. The result of the Blackbox-I depicted in purple is returned after
five seconds with a higher value of 92.55 than the optimal one of 91.52, while
the Blackbox-II algorithm depicted in yellow requires 30 seconds calculation
time and returns a lower score of 90.95 while failing to match the time windows.
The LS in red and GA in blue show very fast convergence towards the opti-
mum solution in all repetitions, and, hence, show small standard deviations.
Contrary, the ACO algorithm depicted in green is not able to achieve the best
solution and shows comparably high standard deviations of two score points.
We analyzed this behavior of the ACO to identify possible issues that prevent
the algorithm from better and more stable results. One possible issue could
be the use of a priority score system with three hard and three soft scores to
cover the multi-objectiveness of the problem statement. The design of the ACO,
however, requires to reduce this score to a single pheromone matrix to guide
the optimization process. Hence, we first decided to focus the pheromone
matrix on the S1 score, that is, the time window compliance. However, this

203

Chapter 11: Vertical Systems-of-Systems Workflow

BF BB-I BB-II LS GA ACO90

92

94

96

98

100

S2
 /

10
,0

00

Figure 11.2: Box plot of the tour length score (S2) to be minimized for the TSP-I
problem instance for all algorithms. The box plot is calculated with the final solutions
the algorithms return after their execution finished or the maximum computation time.

resulted in solutions with matched time windows but non-competitive tour
lengths as the algorithmwas not able to turn the focus of the pheromone matrix
on the S2 score after fulfilling all time windows to optimize the tour length.
Then, we experimented on the current status of the ACO and its pheromone
handling to always compare the current solution with the global worst score
to handle this problem. However, as the results of this evaluation show, this
approach was not able to fix both problems. Hence, we identified the need for
further research in the future on this problem to address a multi-object priority
score when applying ACO algorithms. This comparably bad performance of
the ACO can also be observed in the box plot in Figure 11.2 where the ACO
is the only algorithm that shows a large box and even outlier with up to 100
score points. Again, it can be seen that the Blackbox-I is not able to compute
the optimal solution while the Blackbox-II algorithm is not able to match all
time windows and cannot compete with the other algorithms. Since LS and
GA computed the optimal solutions in all repetitions without any deviations,
we did not perform statistical tests on this problem instance. In summary, LS
and GA were able to achieve the best possible solution after only a few seconds
and in all runs while the Blackbox algorithms produce worse solutions and the
ACO cannot compete with the other algorithms.

11.4.2 TSP-II

In the following, we analyze the larger TSP instance consisting of 30 orders,
one vehicle without P&D and pause times. Table 11.5 shows that for the TSP-
II instance, the Brute Force algorithm was not able to calculate the optimal

204

11.4 Results and Interpretation

0 5 10 15 20 25 30 35
Time (s)

140

150

160

170

180

190

S2
 /

10
,0

00

Blackbox-I
LS

GA

Figure 11.3: Mean and standard deviations of the tour length score (S2) to be mini-
mized for the TSP-II problem instance for all algorithms in the course of their execution.
Mean and standard deviations are calculated for the algorithms LS, and GA.

solution, while Blackbox-II and ACO were not able to match the time windows.
The Blackbox-I, LS, and GA find solutions that match all time windows and
comparable S2 score values of around 160 score points with GA showing the
lowest score with 156.74. Figure 11.3 shows the mean and standard deviation
values of the S2 score for the algorithms that were able to match all time
windows during the course of optimization, that is, Blackbox-I, LS, and GA
depicted in purple, red, and blue, respectively. Again, we limit the depicted
time scale to 35 seconds for better identification of differences in the early
stage of computation between zero and ten seconds. While the LS starts at a
comparably high score value above the depicted scale, the GA starts with an
already good value of around 170 score points. Both algorithms are able to
drastically reduce the mean and standard deviation score values to around
160 score points after ten seconds of execution time. The Blackbox-I again
delivers its solution of 161.87 after it finishes its calculation after ten seconds.
In the course of the execution, the LS and GA alternate with the best value,
however, remain at a comparable level especially considering the standard
deviation. Figure 11.4 shows the results for the three algorithms as box plot
calculated using their final score values after 30 repetitions. The result of the
previous evaluation is also reflected in this plot as the Blackbox-I shows a higher
score than the mean scores of the LS and GA. The LS shows the larger box
and, hence, a wider variety of solution with outliers that even range up to a
score value of around 180. In contrast, the GA shows stable behavior with
a slightly lower mean value with a difference of 0.9 score points compared
to the LS. We performed Wilcoxon signed rank tests to check for statistical
significance in the test results between the non-deterministic LS and GA. We

205

Chapter 11: Vertical Systems-of-Systems Workflow

Blackbox-I LS GA ACO
160

180

200

220

240

260

280

S2
 /

10
,0

00

Figure 11.4: Box plot of the tour length score (S2) to be minimized for the TSP-II
problem instance for all algorithms that matched the time windows. The box plot is
calculated with the final solutions the algorithms return after their execution finished
or the maximum computation time was reached.

define the H0 hypotheses to be that the mean values are drawn from the same
distribution and calculated a p-value of 0.185. Hence, we were not able to reject
our hypotheses with a significance level of α = 0.05. In summary, the LS and
GA calculate best solutions after ten seconds and perform equally well.

11.4.3 TSP-II-P

When looking at the next problem instance, we evaluate the performance
of the algorithms using the TSP-II instance and additionally include pause
times. As can be seen in the overview in Table 11.5 the Blackbox-I, Blackbox-
II, and ACO algorithm were not able to match all time windows in any of
the proposed solutions. Contrary, the LS was able to match time windows in
19 from 30 solutions and the GA in 25 of 30 solutions. Additionally, the GA
produces results with lower S2 score of 190 score points compared to 207 score
points (LS) and lower standard deviation (20 score points for GA and 30 score
points for LS). Again, Figure 11.5 provides the mean and standard deviation
values of the S2 score for the Blackbox-I, LS, GA, and ACO algorithms during
the course of execution. We limit the depicted time scale to 35 seconds for better
identification of differences in the early stage of computation between zero and
ten seconds. Since no algorithm was able to match all time windows in all runs,
we present the results of all algorithms returning a value for S2 and keep the
performance regarding the time windows in mind. The Blackbox-I algorithm
depicted in purple returns its solution of 161 score points after ten seconds
and has a lower S2 score compared to the other algorithms. However, as this
solution does not match any time window, we consider it worse than the other

206

11.4 Results and Interpretation

0 5 10 15 20 25 30 35
Time (s)

160
180
200
220
240
260
280

S2
 /

10
,0

00

Blackbox-I
LS

GA
ACO

Figure 11.5: Mean and standard deviations of the tour length score (S2) to be mini-
mized for the TSP-II-P problem instance for all algorithms that returned a result for S2

in the course of their execution. Mean and standard deviations are calculated for the
algorithms LS, GA, and ACO.

algorithms. The course of optimization of the LS depicted in red, GA in blue,
and ACO in green show, that the GA already starts with a better value (230
score points) than both other algorithms (higher than 280 score points) and
continues to decrease the score slightly during runtime. However, we observe
a small increase in mean score points after four seconds which might be due to
our diverse set of crossover and mutation operators that might decrease the
overall quality of the solutions in trade for a higher diversity of the population.
Still, from five seconds of execution time onward, the GA reduces the mean
score value continuously. The LS is also able to decrease its score but a high
standard deviation of 30 score points compared to 20 score points for the GA
can be observed while the ACO seems to show no improvement at all with a
very low standard deviation of 8 score points. This can be explained by the
fact that the ACO was not able to match the time windows in any run and
hence, does not focus on optimizing the S2 score. The box plots in Figure 11.6
show similar results with a high mean value for the LS and the ACO and a low
mean for the GA. As the ACO was not able to match the time windows in any
run, we consider its performance worse than the ones from LS and GA. After
the execution time, the GA shows a lower score compared to the LS which we
check for significance using a statistical test. We again performed a Wilcoxon
signed rank test to compare LS and GA and calculated a p-value of 0.082 and
were not able to reject our hypotheses with a significance level of α = 0.05.
This means, that we cannot state that the calculated mean values are drawn
from distinct distribution and no statement can be made regarding statistical
significance of the result differences. In summary, all algorithms were not able

207

Chapter 11: Vertical Systems-of-Systems Workflow

Blackbox-I LS GA ACO
160

180

200

220

240

260

280

S2
 /

10
,0

00

Figure 11.6: Box plot of the tour length score (S2) to be minimized for the TSP-II-
P problem instance for all algorithms that returned a result for S2. The box plot is
calculated with the final solutions the algorithms return after their execution finished
or the maximum computation time was reached.

to find solutions with matching time windows in all repetitions. However, the
LS and GA were able to match time windows in some of the repetitions and,
hence, we consider them as best performing in this problem instance.

11.4.4 VRP-I

We now analyze the results of the algorithms in the VRP-I instance that ad-
dresses both components of the vertical systems-of-systems and consists of
53 orders that need to be scheduled using five vehicles. The results using the
first VRP problem instance (VRP-I) summarized in Table 11.5 show, that all
tested algorithms are able to match the time windows. While the ACO provides
solutions with a high S2 score of around 200 score points, the scores of the other
algorithms are comparable low around 186 score points with the GA showing
the lowest value of 177 score points. The line chart in Figure 11.7 shows the
course of optimization for all algorithms during the execution time. We limit
the depicted time scale to 120 seconds for better identification of differences
in the early stage of computation in the first 60 seconds. The Blackbox-I algo-
rithm delivers its result of 187 score points after around 18 seconds while the
Blackbox-II algorithm requires 65 seconds calculation time with a score value
of 186 score points. Both algorithms deliver results with higher S2 score value
compared to the GA with the lowest score of 177. The GA already starts with a
good initialized value of around 185 and continues reducing the S2 score over
time with small standard deviations of around 1 score point. The LS algorithm
starts with a high mean value outside the depicted scale but reduces the score
to the level of the Blackbox algorithms in the first 20 seconds but is not able to

208

11.4 Results and Interpretation

0 20 40 60 80 100 120
Time (s)

160
170
180
190
200
210
220
230
240
250

S2
 /

10
,0

00

Blackbox-I
Blackbox-II
LS

GA
ACO

Figure 11.7: Mean and standard deviations of the tour length score (S2) to be mini-
mized for the VRP-I problem instance for all algorithms that returned a result for S2

in the course of their execution. Mean and standard deviations are calculated for the
algorithms LS, GA, and ACO.

reach the level of the GA and shows larger standard deviations of around 8
score points. The ACO algorithm shows higher score values of around 208 score
points compared to the other algorithms but slightly reduces the score over
time with standard deviations of around 6 score points. A similar result can
be seen in Figure 11.8 where the GA shows the lowest values and the smallest
box indicating a very stable low score value. The mean of the LS is similar to
the values for the Blackbox algorithms but has a larger box and hence, shows a
larger diversity in the results and an outlier that reaches up to 220 score points.
Finally, the ACO has a higher mean value and a larger variety in the results
that spans from 190 to 220 score points. As the ACO algorithm was not able to
compete with the other algorithms in the previous problem instances due to
the discussed issues in relation to the multi-objective problem statement, we
omit to report results for this algorithm in the even more complex scenarios
following in the next section. To check the statistical significance of these results,
we again perform the Wilcoxon singed rank test. Since this test assesses pairs of
algorithms to be compared, we apply it pairwise on all possible combinations
between LS, GA, and ACO. Using this test we are able to reject the hypotheses
with p-values of 0.001 and a significance level of α = 0.05, whichmeans that the
mean values are drawn from different distributions and hence the difference
between all algorithms is statistically significant. In summary, the GA shows
significant improvements over the LS and ACO algorithms in this instance.

209

Chapter 11: Vertical Systems-of-Systems Workflow

Blackbox-I Blackbox-II LS GA ACO

180

190

200

210

220

S2
 /

10
,0

00

Figure 11.8: Box plot of the tour length score (S2) to be minimized for the VRP-I
problem instance for all algorithms that returned a result for S2. The box plot is
calculated with the final solutions the algorithms return after their execution finished
or the maximum computation time was reached.

11.4.5 VRP-I-P

The problem instance we evaluate in the following bases on the previous VRP-I
problem instance and adds pause times to the problem statement. Table 11.5
shows for the VRP-I-P problem instance with pause times that both Blackbox
algorithms are not able to match the time windows. Contrary, the LS and
GA solutions match all time windows with GA having the lowest mean of
180 score points and standard deviation of 0.7 score points. The course of the
optimization is depicted in Figure 11.9 for all algorithms regardless whether
they matched all time windows. We limit the depicted time scale to 120 seconds
for better identification of differences in the early stage of computation in the
first 80 seconds. However, we keep in mind that both Blackbox algorithms did
not match the time windows. The figure shows that the Blackbox-I delivers its
result of 187 score points after around 18 seconds while Blackbox-II algorithm
requires 80 seconds calculation time with a final score of 177. Again, the GA
starts with a already good solution of around 185 score points and further
reduces the score value throughout the calculation time while the LS starts
with a very high score larger than 250 score points. Additionally, the GA
shows a very small standard deviation and, hence, produces very stable results
while the LS shows comparably large standard deviations. The LS is able to
reduce its score within the first 30 seconds but still has a difference of around
15 score points to the GA. The box plot in Figure 11.10 supports this finding,
as the GA has a low score value and produces very stable results with only a
few variations, while the LS shows worse results and high variability in the
solution quality ranging from 187 to 207 score points. The Blackbox-I algorithm

210

11.4 Results and Interpretation

0 20 40 60 80 100 120
Time (s)

160
170
180
190
200
210
220
230
240
250

S2
 /

10
,0

00

Blackbox-I
Blackbox-II

LS
GA

Figure 11.9: Mean and standard deviations of the tour length score (S2) to be mini-
mized for the VRP-I-P problem instance for all algorithms that returned a result for S2

in the course of their execution. Mean and standard deviations are calculated for the
algorithms LS and GA.

Blackbox-I Blackbox-II LS GA

180

185

190

195

200

205

S2
 /

10
,0

00

Figure 11.10: Box plot of the tour length score (S2) to be minimized for the VRP-I-
P problem instance for all algorithms that returned a result for S2. The box plot is
calculated with the final solutions the algorithms return after their execution finished
or the maximum computation time was reached.

shows a larger value compared to the GA and a lower mean value compared to
LS while the Blackbox-II algorithm shows a lower score value than the other
algorithms. Still, we consider both Blackbox algorithms worse than LS and
GA as they are not able to match time windows in this problem instance. We
again performed a Wilcoxon signed rank test between LS and GA to analyze
the statistical significance of the results. The test calculates a p-value of 0.001
and, hence, we are able to reject the hypotheses with a significance level of
α = 0.05 what means that the values are statistically significant different. In
summary, the GA shows significant improvements over the LS and shows the
most stable solution quality.

211

Chapter 11: Vertical Systems-of-Systems Workflow

0 50 100 150 200 250 300
Time (s)

200
250
300
350
400
450
500
550
600

S2
 /

10
,0

00

Blackbox-I
Blackbox-II

LS
GA

Figure 11.11: Mean and standard deviations of the tour length score (S2) to be mini-
mized for the VRP-II problem instance for all algorithms that returned a result for S2

in the course of their execution. Mean and standard deviations are calculated for the
algorithms LS and GA.

11.4.6 VRP-II

The problem instance VRP-II is a larger version of the VRP-I instance and
consists of 100 orders that need to be scheduled to 13 vehicles. This problem
instance does not include pause times. As the summary in Table 11.5 show
that both Blackbox algorithms are able to match all time windows, while LS
only matches time windows in 28 of 30 runs. The solutions of GA match all
time windows in all runs, and hence, are considered better than the solutions
of LS. Figure 11.11 shows the course of optimization during calculation time
for all algorithms. The Blackbox-I algorithm returns its result of 396 score
points after around 45 seconds, while the Blackbox-II algorithm delivers its
solution after around 75 seconds with a score of 373. The GA starts with a
solution quality in the area of the Blackbox algorithms and further reduces the
score value to 293 and its standard deviation to 15 score points over time. In
contrast, the LS starts with a high score outside the depicted scale and reduces
its solution drastically to the level of the GA at around 100 seconds but shows
a comparably high standard deviation of 61 score points. However, LS and GA
show considerably lower values compared to both Blackbox algorithms. The
box plots in Figure 11.12 also shows this finding that LS and GA have lower
mean values than the Blackbox algorithms. However, the LS shows a broader
variety in the solution quality with whiskers ranging from 250 to 350 and an
outlier at around 580 score points while the GA’s whiskers range from 280
to 310 and shows an outlier at around 350 score points. Hence, the solution
quality and the variety of the quality of the final results of both algorithms is
comparably good with a small advantage for the GA.We performed aWilcoxon

212

11.4 Results and Interpretation

Blackbox-I Blackbox-II LS GA
250
300
350
400
450
500
550
600

S2
 /

10
,0

00

Figure 11.12: Box plot of the tour length score (S2) to be minimized for the VRP-
II problem instance for all algorithms that returned a result for S2. The box plot is
calculated with the final solutions the algorithms return after their execution finished
or the maximum computation time was reached.

signed rank test to compare the results from LS and GA which calculates a
p-value of 0.478. Hence, we are not able to reject our hypotheses and cannot
state that the mean values are drawn from distinct distributions. In summary,
the LS and GA algorithms outperform both Blackbox algorithms with regards
to the second score and perform comparably good. However, the LS does not
match the time windows in all runs and is considered worse than the GA.

11.4.7 TSP-PD

For both P&D problem instance, we compare the LS and the GA since the
Blackbox algorithms cannot handle P&D problems. We first evaluate the al-
gorithms using a TSP-PD instance that consists of 10 orders to be scheduled
on one vehicle with P&D requirements but without pause times. The results
in Table 11.5 show for the TSP-PD problem instance that the LS matches time
windows in 21 from 30 runs, and the GA in 27 from 30 runs. Hence, the GA can
be considered more stable than the LS as the probability to receive solutions
with matching time windows is higher. The LS produces a mean score value of
108 score points with a standard deviation of 2 score points while the GA has a
mean value of 105 and a standard deviation of 18 score points. Figure 11.13
shows the optimization result during the runtime of the algorithms with a
maximum computation time of 60 seconds. Both algorithms start with high
score values above the depicted scale and reduce the score in the first 2-3 sec-
onds to values of around 108 for the LS and 105 for the GA. The GA shows
larger standard deviations of around 18 score points compared to the LS with
a standard deviation of 2. This can also be seen in Figure 11.14 where the box

213

Chapter 11: Vertical Systems-of-Systems Workflow

0 10 20 30 40 50 60
Time (s)

100

105

110

115

120

125

130

S2
 /

10
,0

00

LS GA

Figure 11.13: Mean and standard deviations of the tour length score (S2) to be mini-
mized for the TSP-PD problem instance for all algorithms that returned a result for S2

in the course of their execution. Mean and standard deviations are calculated for the
algorithms LS and GA.

plot of the LS is very small besides one outlier at around 117 score points and
the GA box plot shows a broader range from 108 to 110 score points. We again
performed a statistical test to analyze the statistical significance of our results.
The Wilcoxon signed rank test was not able to reject the hypotheses with a
p-value of 0.145 and hence, we cannot state that both mean values are drawn
from distinct distributions. In summary, both algorithms perform comparably
good in this problem instance as both do not match all time windows and
deliver nearly the same quality in the S2 score.

LS GA100.0
102.5
105.0
107.5
110.0
112.5
115.0
117.5
120.0

S2
 /

10
,0

00

Figure 11.14: Box plot of the tour length score (S2) to be minimized for the TSP-PD
problem instance for all algorithms that returned a result for S2. The box plot is
calculated with the final solutions the algorithms return after their execution finished
or the maximum computation time was reached.

214

11.4 Results and Interpretation

0 50 100 150 200 250 300
Time (s)

300

350

400

450

500

550

600

S2
 /

10
,0

00

LS GA

Figure 11.15: Mean and standard deviations of the tour length score (S2) to be mini-
mized for the VRP-PD problem instance for all algorithms that returned a result for S2

in the course of their execution. Mean and standard deviations are calculated for the
algorithms LS and GA.

11.4.8 VRP-PD

Finally, we analyze our algorithms on a VRP-PD instance that includes 63 orders
that need to be scheduled using seven vehicles and that integrates P&D as well
as pause times. Again, Table 11.5 summarizes the results and shows that LS
and GA are able to match all time windows in the VRP-PD problem instance.
Further, the GA produces solutions with a lower mean S2 score value of around
332 score points compared to the LSwith a value of 338. The standard deviations
of both algorithms are comparably low with values of 18 and 14 for the LS and
the GA, respectively. In Figure 11.15 both algorithms start with a high value of
450 for the GA and 600 score points for the LS but decrease the score in the first
100 seconds to around 350 score points. Still, the GA maintains its lead and its
mean value stays below the mean of the LS. The box plots in Figure 11.16 show
that the final mean values are also very similar. The box and whiskers of the
LS span a wider range from 300 to 355, while the GA has a smaller box ranging
from 325 to 360 but some more outliers below and above the whiskers. We
performed a statistical test to analyze the statistical significance of our results.
The Wilcoxon signed rank test was not able to reject the hypotheses with a
p-value of 0.329 and, hence, we cannot state that the derived mean values are
drawn from distinct distributions. In summary, again both algorithms perform
equally good with a slight advantage of around 50 score points for the GA.

215

Chapter 11: Vertical Systems-of-Systems Workflow

LS GA

300
310
320
330
340
350
360
370

S2
 /

10
,0

00

Figure 11.16: Box plot of the tour length score (S2) to be minimized for the VRP-
PD problem instance for all algorithms that returned a result for S2. The box plot is
calculated with the final solutions the algorithms return after their execution finished
or the maximum computation time was reached.

11.5 Threats to Validity

We identified the following threats to validity for our approach. In this paper,
we focus on nature-inspired algorithms (ACO and GA) for tackling the rVRP
and compared them to a Brute-Force, two Blackbox algorithms implemented
by our cooperation company, and LS. Those algorithms provide heuristic so-
lutions, which provide fast results, however, require multiple runs to receive
reliable results. Further, we did not evaluate other common algorithms used
for these kinds of problems as those often require manual implementation
effort to adjust them for the particular rVRP problem. Therefore, we decided
to compare our algorithms to an existing implementation of LS inside Opta-
Planner. Additionally, our results are limited to the defined problem instances
and we plan to also evaluate even larger VRP instances in cooperation with
our cooperation company in the future. Finally, our analysis of related work
showed that existing approaches simplify the problem by using assumptions or
neglecting specific aspects. One could argue that we over-complicated the prob-
lem as so far it has been enough for the industry to solve the trimmed-down
versions. However, as the problem formulation was motivated and done with
our cooperation company, these constraints reflect an actual need from practice.
Further, we think that in the course of digitization in industry, industry will be
faced with increasing complex problems and solving them in an automated
way without limitations might be a competitive advantage.

216

11.6 Summary

11.6 Summary

In this chapter, we evaluated our first contribution, which focuses on Goal B:
Improving the quality of optimization strategies in complex systems-of-systems with a
special attention to the field of logistics. We answer RQ B.1 and its subordinate
question RQ B.1.3 by analyzing the proposed approaches on the use case rVRP.
The evaluation showed that the approach integrates all real-world constraints
and reduces the time-to-result from 30 to 2 seconds and from 60 to 5 seconds
for the TSP and VRP instances, respectively. These results have an tremendous
practical benefits and show that the proposed workflow takes into account the
complex systems-of-systems structure.

217

Chapter 12

Horizontal Systems-of-Systems Approach

In this chapter, we evaluate our approaches for the horizontal systems-of-
systems problem statement of the logistics domain: the storage assignment
and order picking in a mezzanine warehouse. We introduced our approach in
Chapter 9 and proposed an NSGA-II for the storage assignment and an ACO
for order picking. We analyze the performance of our algorithms on three
different warehouse models representing different sizes of warehouses. For all
three warehouse models, we execute our algorithms and compare them with
policies commonly used inmezzaninewarehouses. To analyze the performance,
we use several performance indicators to judge the quality of Pareto fronts
as introduced by [WAY+16] and Section 3.3. Therefore, we first evaluate the
storage assignment task for allwarehousemodels, followed by the order picking,
and finally, we evaluate the interaction between the storage assignment and
order picking approach.
This chapter is based on our technical report [LMK+21b] and our paper

under review in the Springer Applied Intelligence Journal [LMK+21a] and is
structured as follows: Section 12.1 introduces our three different warehouse
models including the fill strategy and properties of the stored products. Sec-
tion 12.2 presents storage assignment and order picking strategies often used in
real world mezzanine warehouses to which we compare our approaches. Sec-
tion 12.3 summarizes the parameter settings for our approaches that we used
in our evaluation on the three warehouse models. Section 12.4 presents and
discusses our results of our storage assignment task, Section 12.5 summarizes
the results of the order picking, and, Section 12.6 discusses the interaction of
both warehouse tasks. Afterward, Section 12.7 analyzes threats to validity and,
finally, Section 12.8 summarizes this chapter.

12.1 Mezzanine Warehouse Models

To evaluate our proposed algorithms, we aim at a realistic scenario to obtain
results as realistic as possible. Therefore, we cooperated with a consulting

219

Chapter 12: Horizontal Systems-of-Systems Approach

company that provided uswith real-world examplewarehouse layouts, product
assortments, and customer orders. Unfortunately, we are not able to publish
this dataset as it is subject to a non-disclosure agreement. Based on this data,
we design three artificial mezzanine warehouses of different sizes shown in
Figure 12.1: WHsmall (yellow),WHmedium (orange), andWHlarge (red).
All warehouses consist of two identical floors and apply a similar layout as

depicted in the figure: The left side depicts the warehouse layouts, the different
colors represent the three warehouse sizes, while the right side provides in-
formation about the number of floors, racks, and markets for each warehouse.
The warehouse layouts on the left show black dots that represent P&D points.
The colored rectangles represent one block each that consists of eight narrow
pick aisles and 20 racks per sub aisle. The horizontal dotted lines indicate cross
aisles, while the vertical lines represent wide pick aisles. The yellow warehouse
consists of 6 blocks, 1020 racks, and 8 markets per floor, that is, 12 blocks, 2040
racks, and 16markets for the overall warehouse. The orangewarehouse consists
of 12 blocks, 2080 racks, and 15 markets per floor, while the red warehouse
consists of 20 blocks, 3500 racks, and 24 markets per floor. All warehouse sizes
consist of two identical floors.
For the small, medium, and large warehouses, we define the size of the

product assortment to be 500, 1000, and 1500, respectively. Since each product
requires a weight, we need to define a process to assign weights to all products.
We aim at a representative set of product weights where most of the products
have a medium weight and some products have low and some have heavy
weights. Hence, we define three normal distributions and a probability to
determine the weight using this distribution: 25% to use N (2, 1.0), 50% to
use N (5, 2.0), and 25% to use N (8, 1.0). This means, for example, that with a
probability of 25% we assign the considered product a weight using N (2, 1.0),
that is, a normal distributed weight with mean of two and a standard deviation
of one. Additionally, the products might also have correlations to up to three
other products: With a probability of 30%, 40%, 20%, and 10% a product has no,
one, two, or three correlated products, respectively, with a randomly generated
correlation confidence between 10% and 90%.

For evaluating the order picking algorithm, we fill the storage up to 50% of the
available storage space using the abovementioned rules and randomly generate
100 customer orders based on the product assortment and given correlations
between products. Each customer order comprises 20 items to be picked that
are selected as follows: We split the product assortment into four equally sized
groups based on the product rank. With a probability of 40%, 30%, 20%, and
10% an order contains an item of the highest, second highest, third highest,

220

12.2 Alternative Strategies

Figure 12.1: The warehouse models WHsmall,WHmedium, and WHlarge with their
floor layout as used in the evaluation depicted at the left. The right side shows the
number of floors, racks, and markets per warehouse size.

and lowest rank class, respectively, which ensures that high-ranked products
appear more often in customer orders. Hence, orders contain diverse products
with individual amounts to be picked.

12.2 Alternative Strategies

To compare the performance of our proposed algorithms for storage assignment
and order picking, we use several commonly used strategies for both tasks
for comparison. We use the following strategies for the storage assignment
problem:

• The random storage assignment strategy allocates the incoming items to
random racks on the floors in clusters of target quantity size [BIH19].

221

Chapter 12: Horizontal Systems-of-Systems Approach

• In the closest open location storage assignment strategy, the strategy
selects the storage locations for storing an incoming product, which are
usually the racks closest to the P&D-points [DKLDR07].

• The rank-based storage assignment strategy assigns fast-moving prod-
ucts close to the P&D-points, while slow-moving products are assigned
to racks further away [PS99].

For the order picking problem, we solely apply a modified S-Shape heuris-
tic [Pet97] and constructs s-shaped pick routes based on the graph representa-
tion. This heuristic uses all markets as starting point, traverses the remaining
markets using an s-like shape, and additionally, computes the reversed versions
of each route to generate a Pareto front of possible solutions.

12.3 Algorithm Parameter Settings

Based on a preliminary parameter study, we parameterize our NSGA-II algo-
rithm as follows: We set the mutation probability to 0.95 for all warehouse
sizes so that the mutation operators are applied very frequently. Further, we
define parameters dependent on the warehouse size (small/medium/large):
The parent population size is set to (50/60/70), and the maximum number
of generations to (200/250/300). These values increase with the size of the
warehouse since the number of possible solutions increases with the warehouse
size and we provide the algorithm more exploration possibilities (population
size) and more time (number of generations) for optimizing the solutions.

Further, we set the parameters for our ACO algorithm as follows: Using the
results of a preliminary parameter study, we define the pheromone factor α
to 1.0 and the heuristic factor β to 2.0. We configure the evaporation factor ρ
to 0.02 causing the pheromones to evaporate rather slowly, which enables the
algorithm to achieve a higher degree of exploration especially in the early
stages. We define the min/max values for the pheromone matrices (τmin/max)
to be 1 and 25, respectively, set the floor change penalty to 50, and define the
allowed weight difference to 3kg. As stopping criterion, we set the maximum
number of cataclysms to 3 and hence, the algorithm terminates after it became
stuck for the third time. We set the maximum consecutive iterations without
improvements to 20, and the maximum iterations to 250 since these values
yield the best results w.r.t. the scores.

222

12.4 Evaluation of the Storage Assignment Approach

12.4 Evaluation of the Storage Assignment Approach

We evaluate our NSGA-II algorithm against the random, closest open location,
and rank-based storage assignment policies. We apply our NSGA-II approach
and all alternative strategies on the three different warehouse sizes which we
call Setting 1.a, 1.b, and 1.c for the small, medium, and large warehouse sizes,
respectively. For each setting, we generate five random storage assignment
tasks, i.e., we select a random product from the product assortment and set
the quantity to be assigned to the quantity already existing in the warehouse.
We repeat each task of all settings and, hence, the execution of the NSGA-II
algorithm, ten times with different random seeds to reduce random effects
and present mean and standard deviation values. Unfortunately, the limited
number of repetitions does not allow for meaningful statistical significance tests.
However, additional runs may be conducted in the future to confirm the results
presented. Afterward, we use all generated solutions of all algorithms and
strategies to calculate the reference Pareto front required for the performance
indicators. Table 12.1 summarizes themean and standard values for this storage
assignment evaluation and we indicate the best mean values per performance
indicator using bold font. Further, Figure 12.2 presents box plots for all applied
approaches and strategies including all performance indicators on all three
warehouse sizes, i.e., settings. A higher value is better for C and PFS, while a
lower value is better for GD, ED, GS, and IGD.
We first analyze the results for the small warehouse listed in the first row

of Table 12.1 and at the top of Figure 12.2. The coverage (C) results for the
small warehouse show that the NSGA-II Pareto front covers about 90% of the
reference Pareto front while the other approaches cover only about 9% and
1%. This shows the poor performance of the alternative strategies, which could
lead to a discussion about the usefulness of this selection. However, we have
deliberately chosen these alternative strategies because they are commonly used
in real application scenarios and in many cases no real optimization takes place.
Further, the NSGA-II shows the lowest GD and ED mean values of around
0.04 and 16.48, respectively, and, hence, its Pareto front is located closest to the
reference front. However, the values of the competing strategies do not show
such a strong difference as with the first metric as they lie between 0.95 and
2.14, and between 21.88 and 28.37 for GD and ED, respectively. Regarding the
PFS performance indicator, the NSGA-II algorithm finds around 48 solutions
per problem instance with a maximum possible value of 50 solutions for the
small warehouse size. The other policies construct only 22 to 28 Pareto-optimal
solutions while their maximum possible value is defined to be 500 due to our
methodology. Further, the box plot of the NSGA-II shows a smaller variability

223

Chapter 12: Horizontal Systems-of-Systems Approach

for this metric and, hence, shows the most stable result. Further, the NSGA-
II achieves the lowest GS and IGD values of 0.5 and 0.26, respectively, which
indicates that the solutions convergewell towards the reference Pareto front and
offer diverse solutions. Especially for the IGDmetric, the other approaches show
a large range covered by the outliers ranging up to a value of 8. In summary,
the NSGA-II performs best for the small setting as it is able to optimize all
performance indicators best compared to the alternative strategies.

Next, we analyze themediumwarehouse listed in the second rowof Table 12.1
and in Figure 12.2. In this warehouse, the results show similar performances of
all approaches applied in this task. Again, the results show that the NSGA-II
Pareto front covers approximately 93% of the reference Pareto front. Except
for some outliers, the alternative policies struggle to cover the solutions in
the reference front with C values of around 0.00 and 0.06. The observed GD
and ED values are fairly similar to the values in Setting 1.a. However, the
standard deviations of the EDmetric increased noticeably, whichmay be related
to the larger search space where the solutions tend to be more spread out.
Nevertheless, the Pareto front of the NSGA-II still achieves the lowest GD and
ED values of 0.04 and 16.48, indicating that this Pareto front converges best
towards the reference Pareto front. Concerning the PFS metric, the NSGA-II
algorithm finds about 53 solutions per problem instance, while the alternative
policies find approximately less than 20 solutions per problem instance. The GS
values of the NSGA-II increased remarkably from 0.5 in the small warehouse
to 1.04 in the medium warehouse, which may be due to the larger parent
population size and the larger search space that make it difficult for the NSGA-
II algorithm to fill the gaps in the Pareto front so that all solutions are evenly
distributed. Accordingly, the closest storage assignment strategy produces the
best value for the GD metric of the medium warehouse of 0.73. Still, the box
plot shows that the 3rd quartile ranges to a value of 1.5 which indicates that
the NSGA-II has the potential to produce clearly better values compared to
the other strategies. Lastly, the IGD values of the NSGA-II are close to zero
with a value of 0.11 compared to values around 2.00 for the other strategies,
indicating that NSGA-II represents the entire reference Pareto front in most
cases. In summary, we again consider the NSGA-II algorithm to perform best
as it optimizes all indicators best with the exception of the GD value.
Finally, we analyze the results for the large warehouse listed in the third

row of Table 12.1 and at the bottom of Figure 12.2. Similar to both smaller
warehouses, the large warehouse shows comparable results. The Pareto front
of the NSGA-II covers about 99% of the reference Pareto front, while the Pareto
front of the rank-based strategy covers only 1%. Thus, almost all solutions

224

12.4 Evaluation of the Storage Assignment Approach

found by the rank-based strategy are dominated by the solutions found by the
NSGA-II algorithm. The mean GD value of the NSGA-II equals zero, indicating
that the entire Pareto front is part of the reference Pareto front in almost all cases.
The other strategies have higher GD values between 1.4 and 3.11 and, hence,
are outperformed by the NSGA-II. Regarding the ED performance, the results
of the competing strategies seem to come closer and have a wider variety in the
solution quality indicated by the box plots, which we can confirm by analyzing
the mean and standard deviations in Table 12.1 Again, the NSGA-II algorithm
finds most solutions per problem instance with a value of 64 compared to
values between 9.92 to 14.24 for the other strategies. Similar to the medium
warehouse task, the GS values show that the NSGA-II performs worse than the
other strategies with a mean value of 1.37 compared to 0.81 to 0.94 for the other
strategies. Lastly, the mean IGD value of the NSGA-II of 0.02 indicates that this
algorithm outperforms the commonly used strategies for storage assignment
with values between 1.86 to 2.10, that, additionally, show very large box plots
with whiskers ranging up to a value of 9.

In summary, the results show that the random and the closest open location
strategy struggle to cover a single solution in the reference Pareto frontwhile the
rank-based strategy at least produces a value of 0.09. Regarding the convergence
performance indicators GD and ED, the NSGA-II algorithm produces the best
Pareto fronts closest to the reference front compared to the other strategies. For
the diversity performance indicators PFS and GS, the NSGA-II always produces
the highest number of solutions but gets outperformed regarding the spread of
the solutions for the larger warehouse sizes. Finally, the NSGA-II outperforms
the other strategies with regards to the IGD, and hence computes the Pareto
fronts closest to the reference front. In conclusion, we consider the NSGA-II
algorithm best for all sizes and performance indicators, as it outperforms the
alternative policies in all except one indicator categories.

In addition, we also measure the mean execution time of the approaches for
solving 50 problem instances in each warehouse size. We run our experiments
on a MacBook Pro using macOS Sierra 10.12.6, a 2.2GHz Intel Core i7 CPU,
and 16GB DDR3 RAM. The alternative policies achieve low execution times of
about 0.17/0.30/0.50 seconds for small/medium/largewarehouses, respectively,
which is due to their simple operation. In the warehouse small/medium/large,
the NSGA-II algorithm achieves execution times of about 2/6/15 seconds, re-
spectively, which is due to the increased population and iteration count for
larger warehouses. The execution times of the NSGA-II algorithm may be
considered acceptable, as the algorithm requires only a few seconds to find
remarkably better solutions compared to the alternative policies.

225

Chapter12:
H
orizontalSystem

s-of-System
sA

pproach

Table 12.1: Mean and standard deviation values of the six quality indicators Coverage (C), Generational Distance (GD),
Euclidean Distance (ED), Pareto Front Size (PFS), Generational Distance (GD), and Inverted Generational Distance (IGD)
achieved by the storage assignment strategies in Setting 1.a, 1.b, and 1.c (best mean values are shown in bold).

Setting Policy C GD ED PFS GS IGD
µ σ µ σ µ σ µ σ µ σ µ σ

1.a

Random 0.01 0.01 1.59 0.78 25.33 10.20 24.80 11.52 0.73 0.16 2.26 1.91
Closest 0.01 0.01 2.14 1.26 28.37 12.29 21.98 9.49 0.74 0.19 2.53 1.71
Rank 0.09 0.09 0.95 0.44 21.88 10.66 28.20 14.98 0.78 0.21 2.53 1.99
NSGA-
II

0.90 0.10 0.04 0.08 16.48 7.93 47.52 5.35 0.50 0.17 0.26 0.26

1.b

Random 0.01 0.02 2.38 1.21 26.20 15.20 16.80 13.29 0.75 0.13 1.92 0.96
Closest 0.00 0.01 3.32 1.74 31.28 18.95 14.82 9.84 0.73 0.08 2.18 0.95
Rank 0.06 0.01 1.68 1.39 22.03 23.91 19.44 6.79 0.83 0.17 2.13 2.12
NSGA-
II

0.93 0.14 0.02 0.05 14.01 9.38 52.84 9.46 1.04 0.54 0.11 0.20

1.c

Random 0.00 0.00 2.78 2.34 29.47 26.32 9.92 4.89 0.81 0.13 1.86 1.81
Closest 0.00 0.00 3.11 3.55 28.58 26.45 11.08 7.49 0.86 0.16 2.10 2.17
Rank 0.01 0.01 1.40 1.39 25.23 23.91 14.24 6.79 0.94 0.17 1.92 2.12
NSGA-
II

0.99 0.01 0.00 0.00 16.76 14.06 64.34 9.60 1.37 0.45 0.02 0.06

226

12.4
Evaluation

oftheStorageA
ssignm

entA
pproachFigure 12.2: Box plots of the performance indicators achieved by the storage assignment strategies in Setting 1.a, 1.b, and 1.c.

227

Chapter 12: Horizontal Systems-of-Systems Approach

12.5 Evaluation of the Order Picking Approach

We evaluate both versions of our ACO algorithm against the modified S-Shape
heuristic and apply all approaches on the three warehouse sizes (Settings 2.a,
2.b, 2.c). Further, we randomly generate five customer orders as explained
earlier and repeat the execution of the ACO algorithms ten times to reduce
random effects and present mean and standard deviation values. Then, we
use all generated solutions of the algorithms and strategies to calculate the
reference Pareto front that integrates the best known solutions as this is required
for the performance indicators. Table 12.2 summarizes the mean and standard
deviation values and Figure 12.3 shows the box plots for this evaluation.
Similar to the evaluation of the storage assignment task, we first analyze

the small warehouse results listed in the first row of Table 12.2 and at the
top of Figure 12.3. For the small warehouse, the Pareto fronts of the ACO3

and ACO4 variants cover 73% and 74% of the reference Pareto front while the
S-Shape strategy fails to cover even a single solution as indicated by the C
performance indicator. Similar to the previous evaluation, this shows the poor
performance of the alternative strategy, which could lead to a discussion about
the usefulness of this selection. However, we have deliberately chosen this
alternative because it is commonly used in real application scenarios and in
many cases no real optimization takes place. Both ACO algorithms achieve
nearly the same GD and ED values of 1.40 and 1.59, as well as 32.03 and 32.07,
respectively, and the close to zero GD values show that many solutions are
part of the reference front while the S-Shape strategy results in a mean GD
value of 22.15. The ACO algorithms find around ten solutions per problem
instance, while the S-Shape finds only three solutions per problem instance
with regards to the PFS performance indicator. The S-Shape achieves the lowest,
hence, the best mean GS value of around 0.84 compared to values of 0.87 and
0.99 for the ACO4 and ACO3 algorithms, respectively. However, the boxes
of all three assessed algorithms and strategies heavily overlap and it is not
statistically significant to compare the S-Shape result to the ACO ones as it
contains only three solutions that are considerably worse than solutions of both
ACO algorithms. The ACO algorithms achieve low IGD values of 1.91 and 2.74
for the ACO4 and ACO3 algorithms, respectively, indicating that both Pareto
fronts converge well towards the reference front and provide diverse solutions.
In summary, both ACO algorithms perform similar well in the small warehouse
and we consider them better performing compared to the S-Shape strategy as
they clearly outperform it in five of performance indicators.
Next, we analyze the evaluation results for all three approaches for the

medium warehouse that is listed in the second row in Table 12.2 and at the

228

12.5 Evaluation of the Order Picking Approach

center of Figure 12.3. The results for the medium warehouse show similar
behavior as in the previous setting. Like in the previous setting, the S-Shape
Pareto front fails to cover even a single solution in the reference Pareto front
indicated by the C. The Pareto front of the ACO3 covers approximately 69% of
the reference front, while ACO4 covers only 33%. Thus, the ACO3 variant tends
to find better pick routes than the ACO4 variant. The Pareto front of the ACO3

achieves the lowest GD and ED values of 1.97 and 50.11 among all computed
Pareto fronts that show values of 4.30 and 54.59 for the ACO4 variant and 31.20
and 117.42 for the S-Shape strategy. Thus, ACO3 converges best towards the
reference front, which is not surprising as ACO3 covers most of the solutions in
the reference Pareto front. The GD and ED values of ACO4 are slightly larger
than the ones of ACO3, indicating that ACO4 does not converge as well as ACO3

towards the reference front. Compared to the previous setting, the GD and ED
values of the S-Shape strategy increased, which may be due to the larger search
space. Concerning the PFS metric, the ACO3 variant finds about 12 solutions
per problem instance, followed closely by the ACO4 variant that finds around
11 solutions per problem instance, while the S-Shape heuristic finds only about
4 solutions per problem instance. Regarding the GS metric, the solutions of
ACO4 are slightly better distributed than the solutions of ACO3 with values
of 0.66 compared to 0.81 for the ACO4 and 0.72 for the S-Shape strategy. With
respect to the IGD metric, the ACO3 achieves the lowest IGD values of 3.00
compared to a value of 4.15 for the ACO4 and even 18.78 for the S-Shape strategy,
indicating that ACO3 converges well towards the reference front and offers a
high diversity of solutions. In summary, again both ACO algorithms perform
similarly well and outperform the S-Shape heuristic regarding all performance
indicators while the ACO3 shows a slight advantage compared to the ACO4.

Finally, we analyze the results for the large warehouse listed in the third
row of Table 12.2 and at the bottom of Figure 12.3. In the large warehouse, the
S-Shape strategy is again unable to cover any solution in the reference Pareto
front. The ACO3 covers 84% of the reference Pareto front, while ACO4 covers
only 16%. Thus, most of the solutions found by the ACO4 variant are dominated
by the solutions found by the ACO3 variant. Accordingly, the ACO4 variant has
problems to compete with the ACO3 variant in larger warehouses. Compared
to the previous setting, the GD and ED values of ACO4 further increased to
9.78 compared to 1.56 for the ACO3, indicating that the distances between the
solutions of ACO4 and the solutions of ACO3 became larger. The Pareto front
from ACO3 converges best towards the reference Pareto front, as it achieves
the lowest GD and ED values of 1.56 and 56.75 compared to 9.78 and 70.02 for
the ACO4 and even 41.41 and 121.35 for the S-Shape strategy. Regarding the

229

Chapter 12: Horizontal Systems-of-Systems Approach

PFS metric, both ACO variants find about 10 solutions per problem instance
while the S-Shape strategy can ony find two solutions. The GS metric indicates
that the solutions of ACO4 are marginally better distributed than the solutions
of ACO3 with values of 0.68 compared to 0.74. Finally, the Pareto front of the
ACO3 achieves the best IGD values of 5.64, signalizing that the ACO3 converges
best towards the reference Pareto front and offers diverse solutions.
In summary, the ACO algorithms outperform the S-Shape heuristic in all

warehouse sizes, while ACO3 and ACO4 show similar performance in smaller
warehouses. With increasing warehouse size, the solutions found by the ACO3

variant dominate more and more solutions of ACO4 variant. Hence, the ACO3

variant starts to find better pick routes than the ACO4 variant, while the ACO4

variant produces slightly better distributed solutions.
In addition to the performance evaluation, we also measure the mean execu-

tion time of the approaches for solving 50 problem instances in each warehouse
size. The S-Shape heuristic takes around 0.15 seconds to compute routes. The
ACO3 and the ACO4 variant achieve fairly the same execution times in all
warehouse sizes of around 1/3/6 seconds for WHsmall/WHmedium/WHlarge,
respectively. As the warehouse size increases, the graph consists of more mar-
kets causing more ants to be deployed in each iteration. Still, we consider the
ACO execution times acceptable, as they require only a few seconds to find
noticeably better pick routes.

12.6 Evaluation of the Interaction between Storage
Assignment and Order Picking Approaches

In the previous section, we have shown the applicability of our algorithms
for storage assignment and order picking in dedicated analyses. The results
indicate that both algorithms outperform commonly used strategies used in real
applications for those tasks. In this section, we evaluate the interaction between
our proposed algorithms by assessing them in three settings: In Section 12.6.1
we determine whether the ACO3 performs better on the NSGA-II planned
warehouse compared to the random warehouse for warehouse sizes small,
medium, and large, which we refer to Setting 3.a, 3.b, and 3.c, respectively; in
Section 12.6.2 we perform a similar assessment for the ACO4 as Settings 4.a,
4.b, and 4.c, respectively; in Section 12.6.3 we evaluate whether the ACO3 or
the ACO4 perform better on the NSGA-II planned warehouse on all warehouse
sizes, which we refer to as Setting 5.a, 5.b, and 5.c, respectively. In Table 12.3,
we provide a summary of all results using mean and standard deviations for
all three settings. Additionally, we provide a box plot for each setting.

230

12.6
Evaluation

ofInteracting
Processesin

M
ezzanineW

arehouses

Table 12.2: Mean and standard deviation values of the six quality indicators Coverage (C), Generational Distance (GD),
Euclidean Distance (ED), Pareto Front Size (PFS), Generational Distance (GD), and Inverted Generational Distance (IGD)
achieved by the order picking strategies in Setting 2.a, 2.b, and 2.c (best mean values are shown in bold).

Setting Policy C GD ED PFS GS IGD
µ σ µ σ µ σ µ σ µ σ µ σ

2.a
sShape 0.00 0.00 22.15 14.20 80.34 28.26 2.80 1.60 0.84 0.16 18.28 6.55
ACO3 0.73 0.13 1.40 1.91 32.03 16.21 10.66 5.63 0.99 0.36 2.74 2.96
ACO4 0.74 0.18 1.59 2.64 32.07 16.14 9.54 3.97 0.87 0.35 1.91 2.52

2.b
sShape 0.00 0.00 31.20 6.92 117.42 34.51 3.60 1.02 0.72 0.12 18.78 5.03
ACO3 0.69 0.15 1.97 2.08 50.11 15.74 12.14 3.80 0.81 0.20 3.00 2.67
ACO4 0.33 0.16 4.30 3.62 54.59 14.43 11.30 3.23 0.66 0.17 4.15 2.68

2.b
sShape 0.00 0.00 41.41 16.42 121.35 35.71 2.00 0.89 0.88 0.14 27.18 6.95
ACO3 0.84 0.11 1.56 2.90 56.75 18.95 10.50 2.87 0.74 0.23 5.64 6.27
ACO4 0.16 0.11 9.78 5.83 70.02 21.76 10.14 3.28 0.68 0.21 7.28 3.91

231

Chapter12:
H
orizontalSystem

s-of-System
sA

pproach

Figure 12.3: Box plots of the performance indicators achieved by the order picking strategies in Setting 2.a, 2.b, and 2.c.

232

12.6 Evaluation of Interacting Processes in Mezzanine Warehouses

12.6.1 Storage Assignment Approaches combined with ACO3

In this setting, we apply the ACO3 algorithm on all warehouse sizes (Setting
3.a, 3.b, 3.c) twice: once for the warehouse using the NSGA-II algorithm and
once for the randomly assigned warehouse. Again, we select five random items
from the product assortment and double the existing amount in the warehouse.
We summarize the mean and standard deviation values for this evaluation in
Table 12.3 in the first group of rows and depict box plots in Figure 12.4.

In the small warehouse, the Pareto front of the NSGA-II planned warehouse
covers the entire reference front while the randomly planned warehouse does
not cover a single solution in the reference front as indicated by the C per-
formance metric. Hence, the GD and IGD values of the NSGA-II planned
warehouse are down to 0 while the randomly planned warehouse produces
mean values of 60.32 and 56.49 for the GD and IGD indicators, respectively.
Additionally, the ED values are minimal for the NSGA-II planned warehouse
with amean value of 22.62 compared to amean value of 215.43 for the randomly
planned warehouse. The high GD and ED values of the randomly planned
warehouse indicate that its Pareto front does not converge well towards the
reference front. The randomwarehouse was able to achieve the best results only
for the GS performance indicator with a mean value of 0.97 compared to 1.12
for the NSGA-II warehouse. However, as the number of solutions in its Pareto
front is smaller than the ones of the NSGA-II warehouse with mean values of
9.96 and 12.20 for the random and the NSGA-II warehouse, we consider this
difference as not decisive. Thus, the solutions found in the random warehouse
are considerably worse than the solutions found in the NSGA-II warehouse.

In themediumwarehouse, the Pareto fronts of random andNSGA-II planned
warehouses achieve fairly the same performance indicator values as in the
previous setting. However, the GD and ED metrics indicate that the results for
the random warehouse unexpectedly converge better towards the reference
front than in Setting 3.a. This could be due to the limited amount of executed
problem instances and needs to be further assessed with a higher number of
problem instances. Nevertheless, the Pareto front of the random warehouse is
still far from converging towards the reference front.

In the large warehouse, the same observations can be made as in the previous
settings, underlining that theACO3 variant finds better pick routes in theNSGA-
IIwarehouse than in the randomwarehouse. In summary, the evaluation results
show that the NSGA-II algorithm and the ACO3 variant interact well together
and the ACO3 variant profits from the NSGA-II algorithm that ensures our four
economic constraints.

233

Chapter 12: Horizontal Systems-of-Systems Approach

Figure 12.4: Box plots of the performance indicators achieved by the interaction evalu-
ation for the ACO3 algorithm in Setting 3.a, 3.b, and 3.c.

12.6.2 Storage Assignment Approaches combined with ACO4

This setting repeats the Settings 3.a to 3.c for the ACO4 algorithm. Again,
we summarize the mean and standard deviation values for this evaluation in
Table 12.3 in the second group of rows. Further, Figure 12.5 depicts the box
plots for these three settings.

In the small warehouse, the Pareto front of the NSGA-II warehouse covers
the entire reference Pareto front and the random warehouse fails to cover a
single solution as indicated by the C performance indicator. Thus, all solutions
found in the randomwarehouse are dominated by the solutions of the NSGA-II

234

12.6 Evaluation of Interacting Processes in Mezzanine Warehouses

Figure 12.5: Box plots of the performance indicators achieved by the interaction evalu-
ation for the ACO4 algorithm in Setting 4.a, 4.b, and 4.c.

warehouse. The GD and ED values for the random warehouse are higher than
the ones of the NSGA-II warehouse with a value of 54.03 and 165.75 compared
to 0.00 and 25.08. This shows that the Pareto front of the random warehouse is
further away from the reference front. Similar to the previous setting using the
ACO3 algorithm, the NSGA-II planned warehouse produces more solutions in
the Pareto front with a value of 11 than the randomly planned warehouse with
a value of 8, while the randomly planned warehouse shows a slightly smaller
mean GS value of 0.93 compared to 0.96. Again, we consider this difference
not decisive and conclude that the solutions of the random warehouse are
noticeably worse than the solutions found in the NSGA-II warehouse.

235

Chapter 12: Horizontal Systems-of-Systems Approach

In the medium warehouse, the Pareto front of the NSGA-II warehouse does
not always cover the entire reference front with a mean C value of 0.99, while
the random warehouse covers at least one solution in the reference front in 7 of
50 repetitions with a mean C value of 0.01. Thus, the ACO4 variant occasionally
finds a few solutions in the random warehouse that are comparable with the
solutions found in the NSGA-II warehouse. Despite these few outliers, the
results show a similar behavior as when using the small warehouse.
Similar to both previous settings, the evaluation in the large warehouse

show comparable results. The NSGA-II warehouse covers all solutions in the
reference front in 49 of 50 repetitions and the random warehouse manages to
cover at least one solution in the reference front. In summary, the results show
that the ACO4 variant also finds better pick routes if the warehouse applies the
NSGA-II storage strategy and both algorithms interact well with each other.

12.6.3 Order Picking Approaches combined with NSGA-II

This section investigates which ACO variant performs better if the warehouse
applies the NSGA-II storage strategy, hence, it analyzes how well both of our
proposed approaches interact with each other. Again, we apply both variants
of the ACO on five randomly generated customer orders on all warehouse
sizes (Settings 5.a, 5.b, 5.c). We summarize the mean and standard deviation
values for this evaluation in Table 12.3 in the last group of rows. Further,
Figure 12.6 depicts the box plots for these three settings.

In the small warehouse, the Pareto front of theACO3 algorithm covers approx-
imately 80% of the reference front, while ACO4 covers only 66% as indicated by
the C metric. Both ACO variants converge well towards the reference front as
indicated by the low GD and ED values of around 1.43 and 25.30 for the ACO3

and around 1.52 and 26.58 for the ACO4. Both variants find approximately
ten solutions per problem instance indicated by PFS. The IGD values of both
fronts are similar with values of 1.38 for ACO3 and 0.98 for ACO4 compared to
values above 3 for the larger warehouse sizes. However, the GS values indicate
that the ACO4 variant produces a better distribution than the ACO3 with mean
values of 0.88 compared to 0.99.

236

12.6 Evaluation of Interacting Processes in Mezzanine Warehouses

Figure 12.6: Box plots of the performance indicators achieved by the evaluation between
ACO3 and ACO4 with the NSGA-II algorithm in Setting 5.a, 5.b, and 5.c.

237

Chapter12:
H
orizontalSystem

s-of-System
sA

pproach

Table 12.3: Mean and standard deviation values of the six quality indicators Coverage (C), Generational Distance (GD),
Euclidean Distance (ED), Pareto Front Size (PFS), Generational Distance (GD), and Inverted Generational Distance (IGD)
achieved by the evaluation runs addressing the interaction of storage assignment and order picking tasks in Setting 3.a-3.c,
4.a-4.c, and 5.a-5.c (best mean values are shown in bold).

Setting Policy C GD ED PFS GS IGD
µ σ µ σ µ σ µ σ µ σ µ σ

3.a Random, ACO3 0.00 0.00 60.32 22.94 215.43 62.38 9.96 4.10 0.97 0.06 56.49 22.96
NSGA-II, ACO3 1.00 0.00 0.00 0.00 22.62 7.51 12.20 6.17 1.12 0.35 0.00 0.00

3.b
Random, ACO3 0.00 0.00 38.37 13.66 168.05 35.09 13.76 3.88 0.91 0.07 38.85 14.41
NSGA-II, ACO3 1.00 0.00 0.00 0.00 36.65 16.50 12.12 4.18 0.96 0.36 0.00 0.00

3.c Random, ACO3 0.00 0.00 50.06 14.03 213.69 54.74 13.96 3.56 0.90 0.07 51.35 17.53
NSGA-II, ACO3 1.00 0.00 0.00 0.00 32.78 8.19 12.02 5.40 0.87 0.32 0.00 0.00

4.a Random, ACO4 0.00 0.00 54.03 18.52 165.75 73.60 8.14 3.69 0.93 0.10 46.16 26.01
NSGA-II, ACO4 1.00 0.00 0.00 0.00 25.08 8.71 10.26 3.65 0.96 0.31 0.00 0.00

4.b
Random, ACO4 0.01 0.03 44.61 15.52 198.83 62.11 11.82 2.96 0.86 0.09 48.94 22.17
NSGA-II, ACO4 0.99 0.03 0.12 0.57 35.65 22.53 11.10 4.20 0.71 0.28 0.21 0.77

4.c Random, ACO4 0.00 0.01 51.19 21.77 207.95 68.40 12.04 3.55 0.85 0.08 52.91 26.20
NSGA-II, ACO4 1.00 0.01 0.00 0.00 38.08 12.91 10.04 3.82 0.71 0.28 0.03 0.22

5.a NSGA-II, ACO3 0.80 0.15 1.43 2.70 25.30 6.61 10.26 4.74 0.99 0.20 1.38 1.93
NSGA-II, ACO4 0.66 0.20 1.52 2.11 26.58 7.98 9.32 3.72 0.88 0.20 0.98 0.93

5.b
NSGA-II, ACO3 0.69 0.16 1.40 1.74 21.37 4.58 9.84 3.43 0.94 0.25 3.53 3.46
NSGA-II, ACO4 0.41 0.16 3.83 5.59 22.85 4.58 8.14 1.90 0.79 0.22 3.13 3.48

5.c NSGA-II, ACO3 0.79 0.14 1.92 3.81 33.80 12.68 9.16 3.28 0.81 0.25 3.11 4.40
NSGA-II, ACO4 0.22 0.14 8.69 6.32 43.25 17.01 9.18 3.54 0.66 0.18 5.71 3.54

238

12.7 Threats to Validity

In the medium warehouse, the Pareto front of ACO3 covers approximately
69% of the reference front, while the one from ACO4 covers only 41% indicated
by the C metric, and thus, the solutions found by ACO4 tend to be dominated
by the ones from ACO3. The GD and ED metric indicate that the ACO3 front
converges better towards the reference front with mean values of 1.40 and 21.37
for the ACO3 and 3.83 and 22.85 for the ACO4 variant, respectively. The GS
values indicate that solutions of the ACO4 Pareto front are better distributed
with a value of 0.79 compared to 0.94 for the ACO3.

In the large warehouse, the ACO3 dominates ACO4 even more with regards
to the Cmetric showingmean values of 0.97 compared to 0.22. Furthermore, the
GD and ED values of ACO4 increased to 8.69 and 43.25, respectively, indicating
that the distance between the solutions in ACO4 Pareto front and the solutions
in the reference front become larger. Again, the solutions in the ACO4 Pareto
front have a slightly better distribution than the solutions in the ACO3 Pareto
front as indicated by the values for the GS metric with a value of 0.66 compared
to 0.81. However, this time, ACO3 achieves better IGD values of 3.11 compared
to 5.71, as the ACO3 covers large parts of the reference front. In summary, we
can state that with increasing warehouse size, the ACO3 variant finds better
pick routes than the ACO4 variant while both variants find approximately the
same number of solutions per problem instance. However, the solutions found
by the ACO4 are slightly better distributed than the ones from the ACO3.

12.7 Threats to Validity

We identified the following threats to validity of our evaluation. First, the
NSGA-II and ACO algorithms are evaluated in three custom build mezzanine
warehouses of different sizes. However, real-world mezzanine warehouses
may consist of more floors, blocks, pick aisles, and racks than specified in the
warehouses used for evaluation. Nevertheless, we are convinced that our de-
fined warehouses form a representative set for mezzanine warehouses and can
easily be extended for further evaluation runs. Second, since the algorithms
and strategies are evaluated in warehouses that apply either the random or
the NSGA-II storage strategy, the evaluation results may not be transferable to
warehouses that apply different storage strategies. Even though the product
assortment, the product correlations, the customer orders, and the storage
allocations are randomly generated reflecting specific characteristics of real-
world mezzanine warehouses, the proposed algorithms are easily transferable
to real application data. Third, we decided to compare the ACO algorithm
only with one order picking strategy. This decision was made in awareness of

239

Chapter 12: Horizontal Systems-of-Systems Approach

the limited expressiveness of our results but was necessary as the majority of
policies in the literature violate assumptions made for our approach. Further,
we evaluate our NSGA-II and ACO algorithms only against heuristic strategies.
Hence, they should additionally be evaluated against further optimization
methods like other evolutionary optimization algorithms or graph-based opti-
mization techniques. However, we decided to postpone these evaluations to
future work. Finally, the limited amount of repetitions per setting do not allow
for meaningful statistical tests which limits the expressiveness of our results.
Still, we presented mean and standard deviation values as well as boxplots
using ten repetitions. Further, we evaluated the approaches using a diverse
set of metrics assessing the performance of Pareto fronts and the presented
approaches appear to dominate the other approaches clearly. The combination
of the repetitions and the diverse set of metrics provides a meaningful first
insight into the performance of the presented approaches. However, additional
evaluation runs including a larger amount of repetitions can be performed in
the future to examine the results shown for their statistical significance.

12.8 Summary

In this chapter, we evaluated our second contribution, which focuses onGoal B:
Improving the quality of optimization strategies in complex systems-of-systems with a
special attention to the field of logistics. We answer RQ B.2 and its subordinate
question RQ B.2.3 by analyzing the proposed approaches for the mezzanine
warehouse use case. The evaluation showed that our proposed optimization
algorithms integrate all real-world constraints. Furthermore, the results show
that considering the interrelatedness and the direct integration of this charac-
teristic into the optimization approaches improves the solution quality. Hence,
the results have tremendous practical benefits and show that the proposed
approaches take into account the complex systems-of-systems structure.

240

Part IV

Conclusions

Chapter 13

Related Work

In this chapter, we present the current state-of-the-art literature related to this
work. Therefore, we divide the discussion of related work into four parts.
First, we present approaches in the literature related to the self-aware optimiza-
tion framework in 13.1. In this section, we review the literature on the main
functions of the framework such as situation detection, strategy selection, and
parameter optimization. We also present related approaches to fairness aspects
in adaptation planning strategies and approaches to managing uncertainty dur-
ing a planning phase. We then present related work on the systems-of-systems
integration in Section 13.2 and discuss how the proposed approaches for the
rVRP and mezzanine warehouses relate to this research are. Then, we analyze
the related literature for the rVRP in Section 13.3. Finally, we summarizes
the state-of-the-art literature on the optimization of mezzanine warehouses in
Section 13.4.

13.1 Self-aware Optimization Framework

This section discusses related approaches on situation-awareness, meta-self-
awareness, algorithm selection, and meta-optimization. The content is based
on our publications [LNH+21,Les20].
A recent study by Calinescu et al. [CMPPW20] has shown that situation-

awareness is the main driver for the development of self-adaptive systems and
is therefore still an important research topic with many open research chal-
lenges. Endsley [End17] presents a theoretical model of situation-awareness
in relation to dynamic human decision making, building on research on natu-
ralistic decision making. Fredericks et al. [FGKV19] present an approach that
uses clustering to determine the current situation. They use this information
for optimization techniques to discover the optimal configuration for black-box
systems. Liu et al. [LKPA15] propose an approach to situation-awareness in
autonomous driving that aims to improve the decision-making process in an
urban environment. Rockl et al. [RRFS07] propose an architecture for driver

243

Chapter 13: Related Work

assistance systems that uses increased environmental information to detect
hazardous situations. Hardes et al. [HS19b] address communication problems
in urban platooning scenarios by using the concept of situation-awareness.
Porter et al. [PRF16] propose a software framework that learns optimal sys-
tem assemblies in emergent software systems. Kang et al. [KCP20] analyze
which history length and sensor range provide the best results for long-term
situational awareness.
According to Lewis et al. [LBL+17, p.52], meta-self-awareness “leads to

the ability to model and reason about changing trade-offs during the sys-
tem’s lifetime”. Cox et al. [Cox05] research on meta-cognition, which bridges
psychology and computer science. Agarwal et al. [AME+09] provide an ap-
proach that allows computer systems to reason about their own knowledge. Per-
rouin et al. [PMC+12] propose a rule-based approach to meta-self-awareness.
They use layered MAPE-K Control Loop to optimize adaptation decisions and
make an adaptive system “resilient to a larger number of unexpected situ-
ations” [PMC+12, p.1354]. Gerostathopoulos et al. [GBH+17] propose the
concept of meta-adaption for cyber-physical systems, which improves the adap-
tation of a cyber-physical system by generating new self-adaptation strategies
at runtime. Kinneer et al. [KCW+18] propose the idea of re-using knowledge
from previous plans for optimization. They use a white-box approach with
knowledge about the system combined with a genetic algorithm to respond to
unexpected adaptation scenarios.

Kate Smith-Miles considers algorithm selection as learning problem [SM09].
She reviews the interdisciplinary literature dealing with algorithm selection
and presents the developments in this research area. Kerschke et al. provide a
survey on automated algorithm selection [KHNT19]. The survey covers early
and recent work in this area and discusses promising application areas. Further,
it includes an overview on related areas such as algorithm configuration and
scheduling. Pascal Kerschke and Heike Trautmann contribute an approach
for automatic model construction for algorithm selection in continuous black-
box optimization problems [KT19]. The goal of this approach is to reduce the
required resources of the selected optimization algorithms. Kotthoff et al. apply
algorithm selection on the TSP problem [KKHT15]. They apply two existing
TSP solvers and show that they perform complementary in different instances.
The authors design algorithm selectors based on existing TSP features from
the literature as well as new features. Bischl et al. propose a benchmark library
for algorithm selection [BKK+16]. They define a standardized format for
representing algorithm selection scenarios. Further, they provide a repository
containing data sets from the literature to compare proposed approaches.

244

13.1 Self-aware Optimization Framework

Neumüller et al. [NSW+12] present an implementation of parameter meta-
optimization for the heuristic optimization environmentHeuristicLabHive. Their
approach minimizes the expert knowledge required to adapt the parameters of
a meta-heuristic. In their evaluation, Neumüller et al. showed that the obtained
parameter combinations in some cases deviate strongly from the usual settings.
However, their approachmainly covers single-objective optimization, whereas a
multi-objective problem can only be assessed using a normalized and weighted
sum of objectives. Feurer et al. [FSH15] improve the Sequential Model-based
Bayesian Optimization (SMBO) used for tuning the parameters of machine
learning algorithms involving meta-learning. Using the knowledge from past
optimization runs, they showed significant improvement in the SMBO algo-
rithm. Zhang et al. [ZHO+18] address the problem of release planning, which
means the process of deciding which features to integrate into the next ver-
sion of a software release. The authors perform a study on various meta- and
hyper-heuristics used for multi-objective release planning. They use different
hyper-heuristic algorithms to decide on search operators for meta-heuristics to
improve solution quality and compare their performance. Chis et al. [CVV13]
use the Framework for Automatic Design Space Exploration (FADSE) to com-
pare the performance of different multi-objective meta-heuristics. The authors
show that all algorithms find similar Pareto front approximations with good
solution quality. Similarly, Vinctan et al. [VCIC15] deal with design space
exploration by implementing a meta-optimization layer for the tool FADSE.
With this approach, it is possible to introduce a meta-optimization function
that can use multiple meta-heuristics simultaneously by switching between
them at simulation runtime. In the evaluation, the authors show that their
meta-optimization approach leads to better results than running two different
meta-heuristics independently and combining their results.

Another research direction related to this work is the area of Auto-ML. As the
name suggests, automated machine learning focuses on automating machine
learning mechanisms by using pipelines in combination with hyperparameter
optimization to reduce manual effort. Reinbo, for example, is an Auto-ML
framework that uses task pipelines and implements reinforcement learning
and Bayesian optimization to automatically determine the parameters [SLB19].
A similar approach is used by Chai et al. who propose an Auto-ML framework
that covers the common problem of data drift in machine learning [CCZL19].
Thornton et al. propose a mechanism for hyper-parameters selection and
optimization in the context of classification algorithms [THHLB13]. Finally,
Li et al. address the problem of tuning hyper-parameters using random search
combined with adaptive resource allocation and early-stopping [LJD+17].

245

Chapter 13: Related Work

Finally, the research on fitness landscape analysis is also related to this work.
The idea of this research area is to gain a better understanding of the search
space of optimization problems to derive problem-specific information and
tune the selected algorithm on the characteristics of the problem [PA12]. A
special focus of this research is on heuristic solution approaches. However, this
analyses require much computation time, which could also be used to compute
an actual solution for the problem to be solved. In contrast to the static fitness
landscape analysis, the dynamic landscape analysis additionally considers
the performance of the desired algorithm on a specific problem and aim on
recommendations on the most promising algorithm [WLZY18]. The concept
of fitness landscape analysis is applied on diverse problem statements such
as quadratic assignment problem [MF00], multi-dimensional Knapsack prob-
lem [TPC08], traveling thief problem [YMK+18]. Further, this concept is used
to improve the performance of neural networks [NFP21] or to further enhance
the approaches on Auto-ML [PdSOP20]. Finally, Sun et al. perform a study
on the optimal selection of fitness landscape analysis metrics for continuous
optimization problems [SHKM14].
This work delineates from the presented related work as follows: All men-

tioned approaches already cover parts of our proposed framework, such as a
rule-based meta-self-aware approach, situation-awareness, determining the
optimal configuration of a system, analyzing the search space of the problem
or performance comparison of optimization techniques. However, there is no
other work that integrates all these aspects into one framework. The combina-
tion of a multi-layered framework with the LRA-M Loop and the integration of
adaptation planning strategies, situation-awareness, strategy selection, learning
approaches, and optimization techniques make the proposed approach unique
and a valuable contribution to the research community. The fitness landscape
analysis, presented as last aspect in this section, is currently not integrated in
this work, but provides a promising possibility to enhance the framework and
kick-start the optimization process.

Fairness in Adaptation Planning Strategies

This section discusses related work in the are of compensation models to ensure
fairness, particularly in the area of ITS containing platooning compensation
models and vehicle sequence optimization within a platoon. Furthermore, this
section presents approaches to compensation-based system integration from
the SISSY research domain. This section is mainly taken from our publica-
tion [LKS+21]

246

13.1 Self-aware Optimization Framework

Besides the technological aspects of platooning, the SARTRE project [RCC10]
also included studies on incentives and compensation models. In the monthly
subscription model, that is, a market compensation model, customers pay a
monthly fee, which also compensates the lead driver for his effort. Similarly, in
the pay-as-you-go model, users pay the platoon leader a fee to join the platoon
over a predefined distance or pay per usage. To compensate the users of pla-
tooning for the paid fees, the SARTRE researchers recommend a Free Sponsored
Benefitsmodel, i.e., governments offer free services—free parking or access to
car pool lanes—to make platooning more appealing. The taking turns model
assumes a large user base: Users are incentivized to act as a platoon leader as
this is the only possibility to earn the right to be in an inner-platoon position
in the future. Whereas the first two models are examples for direct compensa-
tion of the platoon leaders, the last two are indirect compensations for users
of platoons. The TNO project [JZBdK15] differs substantially from SARTRE
as it only targets trucks and as it does not allow a platoon to be longer than
two vehicles. TNO considers Logistic Service Providers (LSP) and Platooning
Service Providers (PSP). The scheduled platooning model describes the idea
that LSP (forwarder, shipper, haulers) use platooning whenever two trucks
of the own company at least partially travel together. The on-the-fly platooning
model describes dynamic inter-company platooning. This requires compensa-
tion mechanisms; however, TNO does not further specify them. A third model
integrates PSP as instances that coordinate platooning, handle administrative is-
sues, and transfer compensation payments. Peloton uses a direct compensation
model that offers platooning as a usage-based service [Pup16]. The cloud-
based Network Operations Centre coordinates platooning and assignments of
vehicles to platoons. When situated in the fuel-saving position, a vehicle pays
a per-mile fee that includes compensation payments for the platoon leader.

Research on the topic of intra-platoon vehicle sequence optimization deals
with finding an optimal ordering of the platooning vehicles. Depending on
the exact use case, different variables can be optimized. Hao et al. [HWW+17]
investigated the optimal joining position for new vehicles in order to mini-
mize acceleration, deceleration, and cruising maneuvers when opening/closing
gaps, which leads to a more energy-efficient usage of platooning. To achieve
this, they formulated a bi-level integer programming model. Similarly, Liang
et al. [LAG11] also analyzed the effects of ordering intra-platoon vehicles in
different ways. They focused on the mass of Heavy-duty Vehicle (HDV) as an
important factor which influences the driving characteristics. The results of
both strategies show that the sequence of vehicles inside a platoon can have a
considerable impact and can be used to achieve higher fuel efficiency.

247

Chapter 13: Related Work

However, previous research on platoon formation neglects the aspect of
evenly distributing the benefits of platooning in terms of fuel efficiency. This
thesis contributes to this research by proposing six different rotation strate-
gies that ensure fairness among the participants in a platoon, as presented
in Section 7.7. We consider these strategies as adaptation planning strategies,
which are part of the second layer in our proposed system model in Section 7.5.
Hence, we allow the rotation strategies to be switched depending on the current
situation the platoon is in, for example, the number of lanes or vehicles on a
road section.

Planning under Uncertainty

This section analyzes related work on adaptation planning under uncertainty
and is mainly taken from our publication [LHKK21b]. Human-in-the-loop
interaction is often seen as a potential source of uncertainty [SWM19,MHAW16].
Cámara et al. discuss different types of involving humans in self-adaptive
systems but focus on integrating humans for doing tasks that are difficult or
infeasible to automate [CGMS17]. Here, the human is seen in the function
of a system administrator. Similarly, the framework of Gil et al. provides a
design of human participation in the control loops [GPFA16]. Huang and
Miranda present an approach to adding users’ intentions through neural input
into the adaptation decision [HM15]. Consequently, this enables to adjust the
system’s behavior to the goals of the users. Similarly, Becker, Hähner, and
Tomforde present an approach to integrate flexibility through incorporating
changing user goals in a learning-based adaptation decision making [BHT12].
Cámara, Moreno, and Garlan define a modeling approach for reasoning about
the humans’ capability for being involved in self-adaptation. The modeling
approach relies on stochastic multiplayer games [CMG15].

Another research stream focuses on the reasoning of adaptation under uncer-
tainty. POISED [EKM11] supports reasoning on uncertainty for the adaptation
decision by evaluating the consequences of uncertainty using possibility the-
ory. Additionally, POISED integrates this assessment in the adaptation logic
to include. Moreno et al. present an approach for handling the latency result-
ing from reactive adaptation [MCGS16] based on Markov Decision Processes
(MDP) with probabilistic model checking for improving proactive adapta-
tion by explicitly handling the uncertainty resulting from the MDP. Recently,
Moreno et al. presented tactics to reduce uncertainty coming from simplified
design assumptions, noise, model drift, context issues, human-in-the-loop, or
decentralization [MCGK18]. Gerostathopoulos et al. present an approach to
handle uncertainty resulting from noisy system outputs using Bayesian Op-

248

13.2 Systems-of-Systems Integration

timization with Gaussian Processes [GPB18]. They evaluate their approach
using the traffic navigation self-adaptation exemplar CrowdNav [SGPB17].
Kinneer proposes an approach for planning in unexpected situations by us-
ing prior planning knowledge based on genetic programming and reusing
existing plans [KCW+18]. SimCA* provides a control-theoretic approach that
provides guarantees for uncertainty related to system parameters, component
interactions, system requirements, and environmental uncertainty [SWM19].
A detailed discussion on how to handle uncertainty in self-adaptive systems
can be found in [EM13].
Various authors deal with the topic of applying utility functions as deci-

sion criteria for self-adaptive systems [FKH11, GSCG17, KPP08, WTKD04].
Glazier et al. [GSCG17] state that each adaptive system incorporates a utility
function. This could be, for example, when applying a rule-based approach,
the developers have to determine an order of the applied actions and, thus, a
utility function can be used to model the decision logic. According to [KPP08],
a utility function provides a mathematical function which calculates a measure
of goodness to determine a comparable score for possible adaptations. The
scores of available options enable self-configuration of the system by selecting
the highest score which results in the highest user satisfaction [GSCG17].

However, there is a limited body of work that addresses the question of how
to switch between different utility functions depending on users preferences
and the current situation the system needs to face. In this thesis, we apply the
concept of utility functions to deal with uncertainty in ITS and propose a set of
functions. We consider these utility functions as part of the second layer of our
multi-layer system model proposed in Section 7.5. Thus, by applying our pro-
posed framework, we fill this research gap and enable dynamically switching
between adaptation planning strategies, that is, between utility functions.

13.2 Systems-of-Systems Integration

This section summarizes related work in the area of systems-of-systems in-
volving their integration. Therefore, this section relates to the vertical and
horizontal systems-of-systems approaches of the rVRP and mezzanine ware-
houses in Chapter 8 and Chapter 9. It is mainly taken from our paper [LKS+21].
The focus of the SISSY research lies on systems of systems, federations of sys-
tems, or interwoven systems [THS+14]. The integration of those large scale,
heterogeneous entities for enabling a cooperative behavior is a very challenging
task [BTW14]. We classified coordination mechanisms for this integration into
decentralized approaches—selfish behavior, altruistic behavior, negotiation—

249

Chapter 13: Related Work

and (pseudo-)central approaches—enforcement of central decision making,
rewards/incentives [LKT19a]. First, selfish behavior might lead automatically
to a coordination of the instances due to interaction awareness [LCF+15] as
each entity tries to optimize its benefits through coordination with others. In-
formation dissemination can help to lower the risk of potentially conflicting
decisions. Second, to overcome the issue of conflicting adaptation plans if
selfish entities are not interaction-aware, mechanisms must ensure that such en-
tities act cooperatively [LCF+15]. Still, situations can occur where agents may
disagree but still need to find a consensus. Then, negotiation techniques–such
as auctions [JFL+01], or bio-inspired approaches (e.g., [RKVB14])—might
support the integration of entities to a shared system. Further, there are sce-
narios where a central or pseudo-central instance is necessary. Approaches
based on leader election for choosing one specific node that acts on behalf of
the group can help to enforce a central plan. Instead of forcing the resources to
obey a given plan, incentives convince the resources to choose from adaptation
alternatives specifying degrees of freedom.

In emergent-based approaches, the system is fully decentralized as agents act
autonomously without using explicit coordination or negotiation techniques.
For coordination purposes, this generally refers to simple scheduling schemes
(see [Pin12] for an overview). Alternative solutions include concepts from
Organic Computing (e.g., [SMM08]). However, in some situations, incentives
are used as a mechanism to guarantee participation. In literature, different
approaches to counter the negative effects (such as decreased willingness to
participate or unfairness) are known, including compensation based on (crypto)
money, trust values, scheduling priorities, or reputation. A corresponding
overview can be found in [Req05,ZYS+16].
Another stream of research focuses on a fair distribution of benefits and

resources. Pitt et al. [PBM14] present an approach to common-pool resource
management based on Rescher’s theory of distributive justice [Res02]. Voting
functions collectively determine the rank order in which resources are allo-
cated; hence, the systems self-organize the allocation method. Similar, Garbiso
et al. [GDC+17] adopt the theory of distributive justice to ensure fairness in a
use case of clusters of connected vehicles.

This thesis ties in with these research areas, as it aims at optimizing problems
that can be considered as system-of-systems. The rVRP discussed in Chapter 8
can be considered as a vertical system-of-system, since each VRP system con-
tains several TSP systems that need to be optimized. In this thesis, this vertical
systems-of-systemsstructure is taken into account by designing a two-layered
approach that allows both systems to be optimized individually. This leads

250

13.3 Optimization of the Rich Vehicle Routing Problem

to better overall results since both systems can be treated independently and
the most appropriate optimization algorithm can be selected for each system.
Further, the optimization of storage assignment and order picking processes
in mezzanine warehouses can be considered as horizontal system-of-system,
since both processes coexist and cooperate, affecting the output quality of each
other. We address this interdependence by designing optimization algorithms
for each of the processes with particular attention on their interaction. This
unique approach and the integration of the interaction already at the design
time represents the unique selling point of this work.

13.3 Optimization of the Rich Vehicle Routing Problem

This section presents an overview of the state-of-the-art of optimizing the
VRP and is mainly taken from our publication [LKK+21a]. The TSP and
VRP are well-known and highly researched transportation problems that were
first mentioned in the last century: the TSP in 1930, and the VRP in 1959.
Hence, the literature providesmany different approaches to both of the problem
statements. Besides the classical VRP, that assigns customer orders to vehicles
and optimizes their tours, several extended VRP versions exist. These versions
include additional requirements to the VRP such as capacities of vehicles, time
windows, and pickup and delivery behavior. In the following, we introduce the
most common variants of the VRP and provide a list of relatedwork focusing on
this specific problem statement. Cordeau et al. [CLSV07] introduce a capacity
constraint for all vehicles of the fleet that must not be exceeded and thus define
the C-VRP [FTV94,AHM13,CLSV07,FLL+05,LN87,QTY10,GC09,WZZL18,
RSM20,SWH11, lCkYmW06,BM04,DX06,YYY09,BA03,BB03,GLP02,VCG+12,
CM13]. In the VRP-TW, each customer order can be defined using additional
time windows that refer to opening hours of the location which need to be
met by the delivery vehicle [CLSV07,HI20,CC02,Ski11,CM12,BS03,RMLG07,
FMP07,GG10,KTSA14,ENOBTMG16]. The VRP-PD provides the possibility
to return goods to depots or transport them from one location to another
one and to place multiple pickup and deliveries at one location [DDE+02,
MJMBMD17,Aa06,WS03,CHD07,CEE16,Çat09,PDG96,TG10,SR16]. Further,
the combination of time windows and pickup and delivery results in the VRP-
TW-PD [LL02,WZW+16,DHR00,TYA+17,Pan05,WC12,CMMF17] All versions
of the VRP are highly researched on and the literature provides a large amount
of approaches to tackle these problems. We are aware, that this summary of
related work is only an excerpt and does not provide a complete overview of all

251

Chapter 13: Related Work

relevant literature in this field, but represents a spectrum of the main research
streams in the area of these specific problems.

In the following, we analyze relevant literature of the last five years that explic-
itly covers multiple objectives as part of their VRP or TSP approach. [TGBM17]
addresses multi-trip VRP with intermediate depots and time windows. The
paper provides a robust Mixed-Integer Linear Programming model and ad-
dresses the following objectives: travel distances, vehicle costs, and earliness
and tardiness penalty costs of services. They solve their model using CPLEX.
The authors of [BTASG19] also address amulti-trip VRP in the domain of urban
waste collection. They seek to minimize cost objectives, such as traversing costs,
employment costs, and exit penalties from permissible time windows. Unlike
the previous papers, they use Simulated Annealing to solve their problem.

[DBM+20] addresses a multi-objective set orienteering problem using clus-
ters of customers. The authors assign a predefined profit amount per visit
to each customer in a cluster and specify a maximum service time. Their ap-
proach has two objectives: maximizing customer satisfaction and maximizing
profit. The advancement of this method is to incorporate customer satisfaction
objectives instead of standard cost-based objectives.
A multi-objective model of the capacitated VRP for perishable goods is

proposed in [BDMK21]. The objectives of thismodel are tominimize the quality
degradation of goods and to minimize the delivery costs. The authors propose
an m-ring star distribution network with two types of vehicles and customers,
and apply NSGA-II and Strength Pareto Evolutionary Algorithm (SPEA2) with
the same time complexity statements as in the previously mentioned paper.
The evaluation shows that NSGA-II performs better in terms of quality and
costs when using two types for vehicles.
The authors of [MBD+21] deal with a multi-objective ring tree problem

with secondary sub-depots. They specify a fixed node as depot and define
other primary and secondary sub-depots in combination with three types
of customers. The objectives include minimizing the total routing cost and
minimizing the number of type 3 customers. The authors use a discrete multi-
objective ant lion optimizer and showed that their approach has better efficiency
for most test instances in their evaluation.
Another set of studies focuses on green approaches to VRP variants. First,

[THS+18] addresses a multi-trip green capacitated arc routing problem. The
authors aim to minimize the total cost, which consists of routing costs, vehicle
costs, and greenhouse gas generation and emission cost. They use a hybrid
GA with Simulated Annealing for generating initial solutions. The authors do
not specify the time complexity of their approach, but show that their solution

252

13.3 Optimization of the Rich Vehicle Routing Problem

performs desirably within a reasonable computation time. Second, [THWM20]
deal with a green VRPwith intermediate depots and integrate urban traffic con-
ditions, fuel consumption, time windows, and uncertainty in demands. They
model this problem as robust Mixed-Integer Linear Programming model and
solve it using CPLEX. The integration of urban traffic conditions is a particular
advance of this work. Third, [ATD+21] proposes a Mixed-Integer Linear Pro-
gramming model for the green inventory routing problem with time windows.
They attempt to minimize the total cost, which consists of fuel consumption,
driver cost, inventory cost, and vehicle cost. The authors use an original and
an augmented Tabu Search as well as Differential Evolution.
The last set of related works from recent years covers the integration of

uncertainty in the pickup demand. First, [RMW17] addresses uncertainty in
urban waste collection and models the problem as a two-stage multi-objective
transportation problem. They model uncertainty as grey parameters and apply
a procedure to reduce them to real numbers. They solve their model using
revised multi-choice goal programming. Second, [RMWG17] address a multi-
choice multi-objective transportation problem and model cost, demand, and
supply as multi-choice parameters. They reduce their problem to a multi-
objective transportation problem by introducing binary variables and applying
revised multi-choice goal programming. Third, [RMW19] addresses a multi-
objective multi-item fixed-charge solid transportation problem and incorporate
fuzzy-rough variables as coefficients of their objective functions and constraints.
They use a fuzzy-rough expected-value operator to transform the problem
into a deterministic one, and apply weighted goal programming and fuzzy
programming to find solutions. Fourth, [BTGPMK19] also addresses the urban
waste collection problem with uncertainties and models the problem as a
robust bi-objective multi-trip periodic capacitated arc routing problem under
demand uncertainty. They integrate cost and tour length objectives and solve
their problem using CPLEX and a multi-objective invasive weed optimization
for real-world problem instances without defining the time complexity. The
particular advance of these approaches is the general applicability of their
approaches to model uncertainty.

In linewith the observation of [Pig13], our analysis of relatedwork shows that
existing approaches fail to address the combination of different aspects of the
rVRP in such away that all relevant requirements of a real-world application are
considered simultaneously. Moreover, related approaches neglect the vertical
systems-of-systems structure of the general VRP problem and, thus, do not
treat it explicitly, which provides opportunities for progress in this research
direction. In this work, we focus on this research gap by integrating a variety

253

Chapter 13: Related Work

of real-world requirements of the rVRP. In addition, we explicitly address
the systems-of-systems structure of the problem by designing the two-layer
approach that will enable hybrid optimization methods in the future.

13.4 Optimization of Warehouse Processes

This section presents relevant literature on optimizing storage assignment and
order picking in warehouses and is based on our publication [LMK+21a].
In the literature, diverse storage assignment policies exist such as the dedi-
cated and the random storage policy [BIH19], the closest open location storage
policy [DKLDR07], rank-based storage policies [PS99]. Further, class-based,
golden zone, and family grouping storage policies are introduced in the liter-
ature [DKLDR07,PSH05]. Additionally, diverse approaches apply optimiza-
tion techniques. [SKG12] propose a particle swarm optimization algorithm
for warehouses that deploy the class-based storage policy. [Kov11] presents
a mixed integer programming model for optimizing the storage assignment
problem for class-based assigned warehouses. [KBW+10] apply local search
algorithms for reorganizing the products in the warehouse to keep it operating
efficiently. [LCL08] propose a multi-objective genetic algorithm for optimizing
the storage assignment problem in automated storage/retrieval warehouses.

Similarly, heuristic policies exist for the order picking problem such as the S-
Shape, Return, Mid-Point, Largest Gap, and Combined heuristic [Pet97,RdK01,
Vau99] Besides, [RR83] presents an optimal algorithm using dynamic program-
ming to find the shortest pick route in a single-block warehouse. Addition-
ally, [DRS98] propose a mathematical model in combination with construction
heuristics and apply Tabu Search to construct order picking routes. [EÖ12]
present an integer programming model for optimizing the order picking prob-
lem. [XGN+10] propose an Max-Min Ant System (MMAS) algorithm for
optimizing machine travel paths in automated storage/retrieval warehouses.
[CWQX13] propose an ACO algorithm that detects congestion situations that
arise when multiple order pickers traverse the same pick aisle simultaneously.
Finally, related work also assess the interaction of storage assignment and

order picking approaches. [PS99] and [vGRCdK18] provide an overview of
well-performing combinations of storage assignment strategies and routing
heuristics. [MGPR07] analyze different parameters that affect the travel time in
single-block warehouses that deploy the class-based storage policy. [SAAS14]
study the effects of parameters on the travel distance in multi-block warehouses.

Our work delineates from these existing approaches in several aspects. First,
our work applies optimization techniques rather than relying on a policy to

254

13.4 Optimization of Warehouse Processes

select suitable storage racks or shortest pick routes. Second, compared to
existing optimization approaches, our work integrates multiple objectives at
once, considering both economic and ergonomic constraints, while most other
approaches focus on a single economic objective. Finally, unlike existing work
that address the impact of storage assignment and order picking tasks, we
designed algorithms that optimize the objectives of both tasks. Hence, our
approach optimizes storage assignment and order picking with respect to
the interdependence of both processes, while other works only provide well-
performing combinations of algorithms or perform parameter tuning.

255

Chapter 14

Conclusion

This chapter concludes the thesis by briefly summarizing its contributions,
which are structured around two research goals. First, we examine Goal A,
which focuses on the design and implementation of a self-aware optimization
framework for adaptation planning strategies. To approach this research goal,
we first analyze the specific characteristics of adaptation planning strategies in
the example domains ITS and logistics. Based on this knowledge, we design a
self-aware optimization framework that integrates situation-awareness, algo-
rithm selection, and parameter tuning to reduce the required expert knowledge
and manual effort. This framework is designed to be generally applicable to
diverse domains due to its component-based structure and the possibility to
provide domain-dependent information in the DDM. In addition, we propose
adaptation planning strategies that ensure fairness for platooning participants,
and we design utility functions that account for uncertainty in the planning
stage. We apply our contributions on prototypical use cases from the ITS do-
main but they can also be generalized to other domains such as smart grid.
Second, we address Goal B, which focuses on improving the quality of opti-
mization strategies in complex systems-of-systems, with particular attention
to the field of logistics. In this contribution, we first analyze real-world use
cases and define constraints and restrictions for the formulation of the prob-
lems. Then, we analyze the system-of-systems structure of the addressed use
cases and identify vertical and horizontal structures. We use this knowledge to
design a workflow for optimizing vertical systems-of-systems and propose to
incorporate the interdependence of horizontal systems-of-systems in order to
improve the output quality. We apply these contributions on the prototypical
use cases of rVRP and mezzanine warehouses from the domain of logistics.
However, we are convinced that the contributions can also be generalized to
other domains such as intelligent computer networks. In the following, we
briefly summarize the contributions related to the two main research goals and
refer to the associated research questions.

257

Chapter 14: Conclusion

Contribution 1: Analysis of Specific Characteristics of Adaptation Planning
Strategies

As a first contribution, we analyze example use cases from ITS and logis-
tics and derive a set of characteristics that are important for the application
of adaptation planning strategies. Hence, this contribution addresses the
research question RQ A.1 of Goal A. We choose platooning coordination
and route planning in highly dynamic environments as representative
of ITS. In these case studies, we observe that the choice of adaptation
planning strategies depends on the current situation and show the im-
portance of fairness and uncertainty aspects. Further, we analyze rVRP
and storage assignment and order picking in the field of logistics and
identify the system-of-systems structure of complex problems.

Contribution 2: Component-based Framework for Self-Aware Optimization
of Adaptation Planning Strategies

As our second contribution, we design a novel self-aware optimization
framework for adaptation planning strategies. This contribution focuses
on the research questions RQ A.2, RQ A.3, and RQ A.6 of Goal A. The
proposed framework is generalizable to a wide range of use cases because
we placed it on top of an application and its adaptation planning strate-
gies, and defined a DDM to apply the framework to any use case. The
framework automatically identifies the current situation of the system,
selects the most promising adaptation planning strategy, and tunes its
input parameters. Therefore, it contains four components: (i) Coordina-
tion, (ii) Situation Detection, (iii) Strategy Selection, and (iv) Parameter
Optimization. To achieve this, the framework implements concepts from
the SeAC and is capable of learning and reasoning. We evaluate our pro-
posed framework and its components on the example use case platooning
coordination and compare it to state-of-the-art coordination strategies.

Contribution 3: Fairness-Ensuring Adaptation Planning Strategies

Our third contribution is related to research question RQ A.4 of Goal A.
We analyze which important characteristics of adaptation planning strate-
gies should be handled and propose to address fairness in the used adap-
tation planning strategies. In this contribution, we analyze the example
use case platooning and define six mechanisms for rotating the sequence

258

of platoons to ensure fairness within a platoon. These mechanisms can
be categorized as adaptation planning strategies because they change the
composition of existing platoons. We analyze the mechanisms to ensure
equal distribution of positive and negative effects for participants.

Contribution 4: Addressing Uncertainty in Adaptation Planning Strategies

In our fourth contribution, we propose to consider uncertainty directly in
the adaptation planning strategies as well. This contribution addresses
research question RQ A.5 of Goal A. In this contribution, we propose
a methodology to account for uncertainty and incorporate uncertainty
measures into adaptation planning strategies. We address the example
use case of fueling planning along a route and design six utility functions
considering different aspects of route planning. Further, we integrate
uncertainty measures for dynamic fuel prices by adding penalties for
longer travel time or longer distance to the next gas station. We show the
positive impact of the mechanism and the utility functions on reducing
uncertainty in our use case.

Contribution 5: Optimization of Nested Systems-of-Systems

In our fifth contribution, we research on the optimization of nested
systems-of-systems on the prototypical use case rVRP. This contribu-
tion refers to research question RQ B.1 and its subordinate research
questions of Goal B. We define a set of constraints and objectives that
must be considered to formulate a real-world rVRP. We then analyze the
nested structure of the problem and design an integrated workflow. This
workflow allows both systems to be optimized individually, flexibly, and
interchangeably. As optimization approaches, we apply the GA and ACO
algorithms to both nested systems and compare the performance with
state-of-the-art optimization algorithms for this use case.

Contribution 6: Optimization of Coexisting Systems-of-Systems

In our last contribution, we study coexisting systems-of-systems by opti-
mizing typical processes in the example use case mezzanine warehouses.
This contribution addresses the research question RQ B.2 and its subordi-
nate research questions ofGoal B. Similar to the previous contribution, we
define which constraints and objectives must be considered to formulate

259

Chapter 14: Conclusion

a real-world problem. Then, we analyze the coexisting system-of-systems
structure of this problem and design an integrated workflow that opti-
mizes all constraints and aims for a good overall system performance,
taking into account the interdependence of both systems. We apply
NSGA-II for storage assignment and ACO for order picking and adapt
them to the specific requirements of the horizontal system-of-systems
structure. Finally, we show the positive impacts of this approach, which
increases the performance of both processes by integrating their depen-
dencies in the optimization algorithms.

The presented contributions represent an important advance for both the
academic research community and practical applications. To the best of our
knowledge, we are the first to design a self-aware optimization framework for
adaptation planning strategies. The integration of situation-awareness, algo-
rithm selection, parameter tuning, as well as learning and reasoning into one
framework is amajor advancement of the state-of-the-art. The promising results
of the framework, which performs close to the gold standard in our evaluation,
demonstrate the importance of this contribution and offer new opportunities to
address the underlying problems from a software engineering perspective. In
addition, our proposed adaptation planning strategies to compensate negative
effects of platooning provide a major improvement, which could lead to higher
acceptance in society and more likely adoption of the technology in the real
world. Our mechanism and utility functions for coping with uncertainty are an
important step to improving the capabilities of SASs in an increasingly turbulent
environment. Moreover, our contributions to nested and coexisting systems-of-
systems optimization in logistics provide a major contribution to research and
practical applications. Our proposed workflow for nested systems-of-systems
and consideration of the interdependence of coexisting systems-of-systems
are important contributions to the state of research in logistics as well as in
the systems-of-systems domain. Finally, we select real-world use cases for our
approaches and cooperated with industrial partners, highlighting the practical
relevance of our work. Considering real-world use cases and reducing expert
knowledge and manual effort in selecting the most appropriate strategy and its
parameters is a major step in bridging the gap between academia and practice.
Our two-layer approach on the rVRP is integrated into our partner’s software.
In conclusion, the contributions of this thesis have spawned several research
projects such as a long-term industrial project on optimizing parcel delivery
funded by Bayerisches Verbundforschungsprogramm (BayVFP) – Digitalisierung
and further collaborations, opening up promising avenues for future research.

260

Chapter 15

Outlook

This chapter discusses future work based on the presented approaches that
can potentially further improve the performance and applicability of our work.
We motivate additional studies to characterize adaptation planning strategies
in general, highlight opportunities to improve the self-aware optimization
framework as a whole, and discuss the transfer of research results from the
systems-of-systems domain to the framework. Further, we propose research
directions for our example use cases platooning coordination, rVRP, and mez-
zanine warehouses.

General Characterization of Adaptation Planning Strategies.
We examined various characteristics of adaptation planning strategies
with a particular focus on ITS and logistics. Our case studies revealed
the characteristics situation-awareness, fairness, and uncertainty. How-
ever, we do not claim the completeness of the identified characteristics
in adaptation planning strategies, as we limited our research to the do-
mains of ITS and logistics. Therefore, additional studies characterizing
adaptation planning strategies in other use cases are useful to discuss the
applicability of the framework in other domains and to derive possible
further advancements of the framework.

Enhancing the Components of the Framework.
In this thesis, we proposed a self-aware optimization framework for adap-
tation planning strategies consisting of four components: (i) Coordina-
tion, (ii) Situation Detection, (iii) Strategy Selection, and (iv) Parameter
Optimization. Each of these components has individual limitations that
can be reduced in the future. First, the coordination component processes
the observations from the application and triggers the other components.
However, with increasing runtime of the framework, the amount of data
collected from the application increases. This leads to large data sets
that may become outdated [MS88,SLMS20]. Hence, a strategy on how

261

Chapter 15: Outlook

to discard or aggregate the increasing amount of data could enhance
the component. Further, the situation detection currently comprises a
rule-based and a clustering approach, but it does not adapt the rule set
with learned insights. Hence, a rule-learning mechanism could improve
the rule base of the situation detection. Currently, the strategy selection
learns which strategy to choose based solely on all observations of the
current situation. However, a global mechanism could provide bene-
fits to the component by adjusting the order of strategies based on the
performance of strategies previously experienced in all situations. This
could reduce the trial-and-error phase for new situations and shorten the
convergence time. The parameter optimization component currently pro-
vides the hypervolume metric and individual thresholds. However, for
other use cases, other techniques for multi-objective optimization could
be useful, such as the concept of Pareto-optimality to provide the operator
with a set of equally well performing configurations. Further, approaches
to reduce the search space for parameter tuning, such as [PG18,HHLB11],
could speed up the component or fitness landscape analysis could be
applied to kick-start the optimization process [PA12]. In general, the
component-based architecture of our framework allows for enhancement
of each component according to the individual requirements and best
practices of the targeted use case.

Transfer of Results in Optimizing Systems-of-Systems to the Framework.
At the current stage of the self-aware optimization framework, we did not
integrate the approaches for tackling more complex systems-of-systems
such as those for rVRP and processes in mezzanine warehouses. Cur-
rently, the framework can be applied to these use cases to identify the
situation, select promising optimization approaches, and tune their pa-
rameters. However, it does not explicitly consider mutual interactions
of the systems-of-systems structure, including vertical and horizontal
systems. In the future, the framework could be extended to include
mechanisms to deal with such complex systems and meet the specific
requirements in such scenarios.

Advancing the Research on Platooning Coordination.
In this thesis, we used platooning coordination as a use case and applied
three commonly used platooning coordination strategies. Further, we pro-
posed six platooning sequence rotation mechanisms that can be used to
balance positive and negative effects of platooning. Many approaches for

262

platooning coordination have been proposed in the literature [LBS+21].
Although many approaches proved their effectiveness in simulations,
there is currently no quantitative comparison. In a recent publication,
we presented a testbed [KLP+19] based on the platooning simulator
PLEXE [SJB+14,Seg16]. However, this assessment is out of the scope of
this thesis, but it can be a starting point for an in-depth comparison of
approaches. Additionally, the definition of individual platooning coordi-
nation approaches that take into account individual goals and constraints
as well as vehicular characteristics indicates another future direction.

Enhancement of the Optimization Workflow for rVRP.
In our contribution on optimization of nested systems-of-systems, we
used the rVRP as a use case and applied GA and ACO as optimization
algorithms. In the future, an investigation of other common optimiza-
tion algorithms such as particle swarm or branch-and-bound algorithms
within our two-stage approach is meaningful. Since hybrid approaches
seem to be useful for such complex problems in the literature, an investi-
gation of a mixture of GA, ACO, and LS at the different stages could be
beneficial. Also, a multi-objective representation of the problemmight be
possible by transferring the constraints such as time window adjustment,
reduction of required time, and travel distances as opposing objectives.
Then we could apply common multi-objective optimization techniques
such as NSGA-II and evaluate their performance.

Enhancement of Storage Assignment and Order Picking in Mezzanine Warehouses.
Finally, we studied coexisting systems-of-systems using the example
of processes in mezzanine warehouses. Here also other optimization
algorithms can be examined for this problem. Further, by integrating
additional features, the applicability of storage assignment and order
picking approaches can be enhanced. In this work, we assumed that
the mezzanine warehouse does not change while we execute the opti-
mization algorithms. However, since these systems are highly dynamic,
accounting for state changes within themezzanine warehouses while run-
ning the algorithms could lead to a more robust approach for real-world
applications. Further, parallelizing the algorithms of both coexisting
systems could reduce the required computation time. Finally, integrating
forecasts of future assignment and order picking tasks could lead to a
novel warehouse handling, as goods that are expected to be ordered in
the near future could be relocated in advance towards the delivery point.

263

Chapter 15: Outlook

264

Appendices

265

Appendix A

Appendix

A.1 Full Specification of the Domain Data Model of the
Self-Aware Optimization Framework

The following tables fully specify the DDM used in Chapter 7 to define use-case
specific characteristics. TableA.1 defines the use case part of theDDM, TableA.2
specifies the context part, Table A.3 describes the parameter optimization part,
and Table A.4 determines the performance metrics part of the DDM.

Table A.1: Definition of the Use Case part of the DDM.

Use Case

Name Type Required

name String Yes
available_algos List of String Yes
fallback_rules String Yes

267

A
ppendix

A
:
A
ppendix

Table A.2: Definition of the Context part of the DDM.

Context

Name Type Required

- (context:data, context:situation_detection_settings) Yes
data List of context:observation Yes
observation (context:name, context:type) Yes
name String Yes
type int, double Yes
situation_detection-
_settings

(context:algorithm, context:settings) Yes

algorithm ENUM: kMeans, DBSCAN, OPTICS, RuleBased Yes

settings

(context:find_k, context:min_k, context:max_k,
context:k)

if context:algorithm == kMeans

(context:min_samples, context:eps) if context:algorithm == DBSCAN

(context:min_samples, context:min_cluster_size) if context:algorithm == OPTICS

(context:rule_set) if context:algorithm == RuleBased

find_k Boolean if context:algorithm == kMeans

min_k int if context:algorithm == kMeans

max_k int if context:algorithm == kMeans

k int if context:algorithm == kMeans

min_samples int if context:algorithm == DBSCAN OR OPTICS

eps int if context:algorithm == DBSCAN

min_cluster_size int if context:algorithm == OPTICS

rule_set String if context:algorithm == RuleBased

268

A
.1

FullSpecification
oftheD

om
ain

D
ataM

odeloftheSelf-Aw
areO

ptim
ization

Fram
ew

ork

Table A.3: Definition of the Parameter Options part of the DDM.

Parameter Options (param_opt)

Name Type Required

- (param_opt:data,
param_opt:strategy_selection_settings)

Yes

data List of param_opt:params Yes
params (param_opt:name, param_opt:algorithms,

param_opt:data_type, param_opt:min, param_opt:max,
param_opt:step)

Yes

name String Yes
algorithms List of Strings No
data_type int, double Yes
min int Yes
max_k int Yes
step int No
strategy_selection-
_setting

(param_opt:min_optimization_attempts,
param_opt:window_size, param_opt:threshold_exceeds,
param_opt:method, param_opt:hypervolume_threshold)

Yes

min_optimization-
_attempts

int Yes

window_size int Yes
threshold_exceeds int Yes
method hypervolume, threshold Yes
hypervolume_threshold double if param_opt:method == hypervolume269

A
ppendix

A
:
A
ppendix

Table A.4: Definition of the Performance Metrics part of the DDM.

Performance Metrics (perf_metr)

Name Type Required

- List of perf_metr:metrics Yes
metrics (perf_metr:data_type, perf_metr:higher_is_better,

perf_metr:reference_value,
perf_metr:threshold_value)

Yes

data_type int, double Yes
higher_is_better Boolean Yes
reference_value double Yes
threshold_value double if param_opt:method == threshold

270

List of Figures

2.1 Concept of the LRA-M Loop as used by the SeAC research com-
munity. 18

4.1 Illustration of the proposed taxonomy of platooning coordina-
tion approaches with eleven dimensions clustered into the two
categories concept and strategy. 35

4.2 Relative and absolute frequency of the different platooning co-
ordination characteristics. 38

4.3 Absolute frequency of the different actions that existing ap-
proaches are able to coordinate. 39

4.4 Overview of the strategy category with the objectives, inputs,
algorithms, and constraints. 43

5.1 Example floor layout of a mezzanine warehouse. 53
5.2 Example rack configurations used in mezzanine warehouses. . . 54
5.3 Illustration of rank-based storage assignment strategies. 56
5.4 Illustration of five state-of-the-art order picking strategies and

the optimal strategy based on dynamic programming. 57

6.1 Comparison of the three platooning coordination strategies over
all 20 traffic situations. 62

6.2 Analysis of the velocity based strategy for the four base scenarios. 63
6.3 Analysis of the contribution to the best-known front for each

optimization algorithm. 64
6.4 Comparison of optimized and default solutions for platooning

coordination strategies. 66
6.5 Time spent in different intra-platoon positions for each platoon-

ing vehicle for DtF. 68
6.6 Time spent in different intra-platoon positions for all methods. . 70
6.7 Difference between estimated and actual costs of utility functions. 73

7.1 Multi-layer architecture of the self-aware optimization framework. 87
7.2 Modified Learn-Reason-Act-Model Loop (LRA-M Loop). 89
7.3 Composition of the self-aware optimization framework. 91

271

List of Figures

7.4 Sequence diagram of the self-aware optimization framework. . . 93
7.5 Timescale of the components the Coordination invokes. 97
7.6 Use case adapter for the self-aware optimization framework. . . 113
7.7 Illustration of the Drafting to Front and to Back mechanisms. . . 115
7.8 Illustration of the Belgian Tourniquet and Belgian Tourniquet

with Jump-start mechanisms. 116
7.9 Illustration of the Reversed Belgian Tourniquet and Belgian

Tourniquet with Jump-start mechanisms. 118
7.10 Model of our self-adaptive route calculation system CostSAVeR

based on the MAPE-K Control Loop. 121

8.1 Domain model of the rVRP problem statement. 129
8.2 Overview of the two-staged strategy for the rVRP. 132
8.3 Illustration of a genome representation of the GA. 136
8.4 Graph representation of the VRP problem. 143

9.1 Definition of the structure and state of mezzanine warehouses
using a meta-model. 149

9.2 Example mezzanine floor layout from top-down view. 151
9.3 Illustration of the chromosome representation and the reference

to the warehouse layout. 155
9.4 Calculation of the ideal distance for storing an incoming product.157
9.5 Illustration of the workflow for calculating the quantity score. . 159
9.6 Illustration of the calculation of the correlated example products

available in the vicinity of an incoming product. 161
9.7 Illustration of the graph representation for one exemplary floor. 166
9.8 Illustration of the two layered pick route determined by one ant

of the algorithm. 168

10.1 Considered traffic scenarios of the framework evaluation for
Wednesday and Saturday. 178

10.2 Detected situations for Wednesday traffic data. 182
10.3 Detected situations for Saturday traffic data. 184
10.4 Strategy selection on Wednesday traffic data. 185
10.5 Evaluation of the strategy selection component. 186
10.6 Evaluation of the optimization component. 189
10.7 Mean area under curve over time for the HV score. 192
10.8 Mean area under curve over time for the HV score. 193

11.1 Mean and standard deviations of the tour length score (S2) for
the TSP-I problem instance in the course of the execution. 203

272

List of Figures

11.2 Box plot of the tour length score (S2) for the TSP-I instance. . . 204
11.3 Mean and standard deviations of the tour length score (S2) for

the TSP-II problem instance in the course of execution. 205
11.4 Box plot of the tour length score (S2) for the TSP-II instance. . . 206
11.5 Mean and standard deviations of the tour length score (S2) for

the TSP-II-P problem instance in the course of their execution. . 207
11.6 Box plot of the tour length score (S2) for the TSP-II-P instance. . 208
11.7 Mean and standard deviations of the tour length score (S2) for

the VRP-I problem instance in the course of their execution. . . 209
11.8 Box plot of the tour length score (S2) for the VRP-I instance. . . 210
11.9 Mean and standard deviations of the tour length score (S2) for

the VRP-I-P problem instance in the course of their execution. . 211
11.10Box plot of the tour length score (S2) for the VRP-I-P instance. . 211
11.11Mean and standard deviations of the tour length score (S2) for

the VRP-II problem instance in the course of their execution. . . 212
11.12Box plot of the tour length score (S2) for the VRP-II instance. . . 213
11.13Mean and standard deviations of the tour length score (S2) for

the TSP-PD problem instance in the course of their execution. . 214
11.14Box plot of the tour length score (S2) for the TSP-PD instance. . 214
11.15Mean and standard deviations of the tour length score (S2) for

the VRP-PD problem instance in the course of their execution. . 215
11.16Box plot of the tour length score (S2) for the VRP-PD instance. . 216

12.1 Illustration of the warehouse models with their characteristics
as used in the evaluation. 221

12.2 Box plots of the performance indicators achieved by the storage
assignment strategies. 227

12.3 Box plots of the performance indicators achieved by the order
picking strategies. 232

12.4 Box plots of the performance indicators achieved by the interac-
tion evaluation for the ACO3 algorithm. 234

12.5 Box plots of the performance indicators achieved by the interac-
tion evaluation for the ACO4 algorithm. 235

12.6 Box plots of the performance indicators achieved by the interac-
tion evaluation. 237

273

List of Tables

4.1 Overview of the taxonomy including both categories, their di-
mensions, and characteristics. 36

6.1 Average objective score and standard deviation. 65
6.2 Excerpt of the related work covering diverse VRP problems clas-

sified by their algorithm type. 77

9.1 Penalties for assigning a product to a specific compartment with
regards to the product weight. 154

9.2 Penalties for assigning a product to a specific compartment with
regards to the product rank. 154

10.1 Configuration of the framework and tested strategies, algorithms,
and methods. 181

10.2 Configurations of the baseline approaches for evaluating the
proposed framework. 181

10.3 Evaluation summary of the performance metrics of the frame-
work for both scenarios. 191

11.1 Overview of the evaluated problem instances for the rVRP. . . . 197
11.2 Overview on the applied algorithms and their capabilities with

respect to the requirements of the rVRP. 198
11.3 Parametrization of our proposed GA approach. 199
11.4 Parametrization of our proposed ACO approach. 200
11.5 Evaluation summary of the rVRP approaches on eight real-world

problem instances. 202

12.1 Mean and standard deviation values of the six quality indicators
achieved by the storage assignment strategies. 226

12.2 Mean and standard deviation values of the six quality indicators
achieved by the order picking strategies. 231

12.3 Mean and standard deviation values of the six quality indicators
achieved by the evaluation of interacting warehouse processes. . 238

275

List of Tables

A.1 Definition of the Use Case part of the DDM. 267
A.2 Definition of the Context part of the DDM. 268
A.3 Definition of the Parameter Options part of the DDM. 269
A.4 Definition of the Performance Metrics part of the DDM. 270

276

Acronyms

AC Autonomic Computing.

ACC Adaptive Cruise Control.

ACO Ant Colony Optimization.

AMTICS Advanced Mobile Traffic Information and Communication System.

API Application Programming Interface.

APTS Advanced Public Transportation Systems.

ARTS Advanced Rural Transportation Systems.

ATIS Advanced Traveler Information Systems.

ATMS Advanced Traffic Management Systems.

AVCS Advanced Vehicle Control Systems.

BD Best Distance.

BDL Best Distance and Lane.

BT Belgian Tourniquet.

BTJS Belgian Tourniquet Jump-start.

BV Best Velocity.

C Coverage.

C-VRP Capacitated Vehicle Routing Problem.

CACC Cooperative Adaptive Cruise Control.

CPS Cyber-Physical System.

CVO Commercial Vehicle Operations.

277

Acronyms

DAS Dynamically Adaptive System.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DDM Domain Data Model.

DtB Drafting a Single Vehicle to the Back.

DtF Drafting a Single Vehicle to the Front.

ED Euclidean Distance.

EGRS Electronic Route Guidance System.

EUREKA European Road Transport Telemetric Implementation Coordination
Organization.

FADSE Framework for Automatic Design Space Exploration.

GA Genetic Algorithm.

GD Generational Distance.

GS Generated Spread.

GUI Graphical User Interface.

HDV Heavy-duty Vehicle.

HV Hypervolume.

ICT Information and Communications Technology.

IGD Inverted Generational Distance.

ILP Integer Linear Program.

IoT Internet of Things.

ITS Intelligent Transportation Systems.

KVM Kernel-based Virtual Machines.

LRA-M Loop Learn-Reason-Act-Model Loop.

278

Acronyms

LS Local Search.

LSP Logistic Service Providers.

MAPE-K Control Loop Monitor Analyze Plan Execute Knowledge Control
Loop.

MDP Markov Decision Processes.

MMAS Max-Min Ant System.

MPC Model Predictive Control.

NSGA-II Non-dominated Sorting Genetic Algorithm II.

OBD On-Board Diagnostics.

OC Organic Computing.

OPTICS Ordering Points To Identify the Clustering Structure.

P&D Pickup and Delivery.

PCS Platooning Coordination System.

PD Proportional Derivative.

PFS Pareto Front Size.

PLEXE Platooning Extension for Veins.

PSP Platooning Service Providers.

RACS Road Automobile Communication System.

RBT Reversed Belgian Tourniquet.

RBTJS Reversed Belgian Tourniquet Jump-start.

REST Representational State Transfer.

rVRP Rich Vehicle Routing Problem.

SAS Self-adaptive System.

279

Acronyms

SeAC Self-aware Computing.

SMBO Sequential Model-based Bayesian Optimization.

SPEA2 Strength Pareto Evolutionary Algorithm.

SUMO Simulation of Urban MObility.

TSP Traveling Salesman Problem.

TW Time Windows.

Veins Vehicles in Network Simulation.

VM Virtual Machine.

VRP Vehicle Routing Problem.

VRP-TW-PD Vehicle Routing Problem with Time Windows and Pickup and
Delivery.

VRP-PD Vehicle Routing Problem with Pickup and Delivery.

VRP-TW Vehicle Routing Problem with Time Windows.

YAML YAML Ain’t Markup Language.

280

Bibliography

[Aa06] Fermín Alfredo Tang Montané and Roberto Diéguez Galv
ao. A tabu search algorithm for the vehicle routing problem
with simultaneous pick-up and delivery service. Computers
& Operations Research, 33(3):595–619, 2006. [see pages 77
and 251]

[AG] PTVPlanung Transport Verkehr AG. Regionaler Nahverkehrs-
plan Mittleres Mecklenburg/Rostock. https://www.planun
gsverband-rostock.de/wp-content/uploads/2018/07/
NVP%5F%5Fbersicht.pdf. Last Accessed: 2021-10-07. [see
page 179]

[AGM15] Alan Ali, Gaetan Garcia, and Philippe Martinet. The Flatbed
Platoon TowingModel for Safe andDense Platooning onHigh-
ways. Intelligent Transportation Systems Magazine, 7(1):58–68,
2015. [see page 33]

[AHM13] Samira Almoustafa, Said Hanafi, and Nenad Mladenović.
New exact method for large asymmetric distance-constrained
vehicle routing problem. European Journal of Operational Re-
search, 226(3):386–394, 2013. [see pages 77 and 251]

[Ala11] Assad Alam. Fuel-efficient distributed control for heavy duty vehi-
cle platooning. PhD thesis, KTH Royal Institute of Technology,
Stockholm, 2011. [see page 3]

[ALS11] Sheng-hai An, Byung-Hyug Lee, and Dong-Ryeol Shin. A
Survey of Intelligent Transportation Systems. In 2011 Third
International Conference on Computational Intelligence, Communi-
cation Systems and Networks, pages 332–337. IEEE, 2011. [see
page 27]

[AME+09] Anant Agarwal, Jason Miller, Jonathan Eastep, David Wentzi-
aff, and Harshad Kasture. Self-aware computing. Technical
report, Massachusetts Institute of Technology, 2009. [see
page 244]

281

https://www.planungsverband-rostock.de/wp-content/uploads/2018/07/NVP%5F%5Fbersicht.pdf
https://www.planungsverband-rostock.de/wp-content/uploads/2018/07/NVP%5F%5Fbersicht.pdf
https://www.planungsverband-rostock.de/wp-content/uploads/2018/07/NVP%5F%5Fbersicht.pdf

Bibliography

[ASG07] I. Alaya, C. Solnon, and K. Ghedira. Ant Colony Optimization
for Multi-Objective Optimization Problems. In In Proceedings
of the 19th IEEE International Conference on Tools with Artificial
Intelligence, volume 1, pages 450–457, 2007. [see pages 171,
172, and 173]

[ATD+21] Mahdi Alinaghian, Erfan Babaee Tirkolaee, Zahra Kaviani
Dezaki, Seyed RezaHejazi, andWeiping Ding. An augmented
Tabu search algorithm for the green inventory-routing prob-
lem with time windows. Swarm and Evolutionary Computation,
60:100802, 2021. [see page 253]

[ATL14] Salem Alelyani, Jiliang Tang, and Huan Liu. Feature Selection
for Clustering: A Review. Data Clustering: Algorithms and
Applications, 29(110-121), 2014. [see page 106]

[BA03] Barrie M. Baker and M.A. Ayechew. A genetic algorithm for
the vehicle routing problem. Computers & Operations Research,
30(5):787–800, 2003. [see pages 77 and 251]

[bas] bast (Bundesanstalt für Straßenwesen) - Automatische
Zählstellen 2018. https://www.bast.de/BASt2017/DE/V
erkehrstechnik/Fachthemen/v2-verkehrszaehlung/Date
n/20181/Jawe2018.html. Last Accessed: 2021-11-12. [see
page 178]

[BB03] Jean Berger and Mohamed Barkaoui. A Hybrid Genetic Algo-
rithm for the Capacitated Vehicle Routing Problem. In Genetic
and Evolutionary Computation — GECCO 2003, pages 646–656,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. [see
pages 77 and 251]

[BBD+21] Tim Bolender, Gereon Bürvenich, Manuela Dalibor, Bernhard
Rumpe, and Andreas Wortmann. Self-Adaptive Manufactur-
ing with Digital Twins. In 2021 International Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 156–166, 2021. [see pages 2 and 3]

[BCDF10] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial
on Bayesian optimization of expensive cost functions, with
application to active user modeling and hierarchical reinforce-
ment learning. arXiv preprint arXiv:1012.2599, 2010. [see
page 61]

282

https://www.bast.de/BASt_2017/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Daten/2018_1/Jawe2018.html
https://www.bast.de/BASt_2017/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Daten/2018_1/Jawe2018.html
https://www.bast.de/BASt_2017/DE/Verkehrstechnik/Fachthemen/v2-verkehrszaehlung/Daten/2018_1/Jawe2018.html

Bibliography

[BDMK21] Partha Sarathi Barma, Joydeep Dutta, Anupam Mukherjee,
and Samarjit Kar. A multi-objective ring star vehicle routing
problem for perishable items. Journal of Ambient Intelligence
and Humanized Computing, pages 1–26, 2021. [see page 252]

[BDSH13] Lakshmi Dhevi Baskar, Bart De Schutter, and Hans Hellen-
doorn. Optimal routing for automated highway systems.
Transportation Research Part C: Emerging Technologies, 30:1–22,
2013. [see pages 41, 42, and 45]

[BGT+19] Amel Bennaceur, Carlo Ghezzi, Kenji Tei, Timo Kehrer, Danny
Weyns, Radu Calinescu, Schahram Dustdar, Zhenjiang Hu,
Shinichi Honiden, Fuyuki Ishikawa, Zhi Jin, Jeffrey Kramer,
Marin Litoiu, Michele Loreti, Gabriel Moreno, Hausi Müller,
Laura Nenzi, Bashar Nuseibeh, Liliana Pasquale, Wolfgang
Reisig, Heinz Schmidt, Christos Tsigkanos, and Haiyan Zhao.
Modelling and Analysing Resilient Cyber-Physical Systems.
In 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS),
pages 70–76, 2019. [see page 2]

[BHMK11] Thomas Bousonville, Alexandra Hartmann, Teresa Melo, and
Herbert Kopfer. Vehicle Routing and Refueling: The Impact of
Price Variations on Tour Length. Herausforderungen, Chancen
und Lösungen Band II, page 83, 2011. [see page 71]

[BHT12] Christian Becker, Jörg Hähner, and Sven Tomforde. Flexibility
in Organic Systems - Remarks on Mechanisms for Adapting
System Goals at Runtime. In Proceedings of the 9th International
Conference on Informatics in Control, Automation and Robotics
- Volume 1: ICINCO,, pages 287–292. SciTePress, 2012. [see
page 248]

[BIH19] John J Bartholdi III and Steven Todd Hackman. Warehouse
and Distribution Science. Supply Chain and Logistics Insti-
tute, School of Industrial and Systems Engineering, Georgia
Institute of Technology, 2019. [see pages 54, 55, 221, and 254]

[BJ15] Bart Besselink andKarl Henrik Johansson. Control of platoons
of heavy-duty vehicles using a delay-based spacing policy. In
12th IFAC Workshop on Time Delay Systems (TDS 2015), pages
364–369, Ann Arbor, MI, 6 2015. Elsevier. [see page 33]

283

Bibliography

[BJ17] Bart Besselink and Karl Henrik Johansson. String Stability
and a Delay-Based Spacing Policy for Vehicle Platoons Sub-
ject to Disturbances. IEEE Transactions on Automatic Control,
62(9):4376–4391, 9 2017. [see page 33]

[BKK+16] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer,
Yuri Malitsky, Alexandre Fréchette, Holger Hoos, Frank Hut-
ter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin Van-
schoren. ASlib: A benchmark library for algorithm selection.
Artificial Intelligence, 237:41–58, 2016. [see pages 5 and 244]

[BLV+19] André Bauer, Veronika Lesch, Laurens Versluis, Alexey
Ilyushkin, Nikolas Herbst, and Samuel Kounev. Chamulteon:
Coordinated Auto-Scaling of Micro-Services. In Proceedings of
the 39th IEEE International Conference on Distributed Computing
Systems, July 2019. [see page xxv]

[BM04] John E. Bell and Patrick R.McMullen. Ant colony optimization
techniques for the vehicle routing problem. Advanced Engi-
neering Informatics, 18(1):41–48, 2004. [see pages 77 and 251]

[Bre] Jörg Breithut. A8 zwischen Stuttgart und Leonberg: Polizei
stellt Autobahn-Blitzer wieder auf. https://www.stuttgar
ter-nachrichten.de/inhalt.a8-zwischen-stuttgart-un
d-leonberg-polizei-stellt-autobahn-blitzer-wieder-
auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html. Last
Accessed: 2021-10-06. [see page 178]

[Bro11] Jason Brownlee. Clever algorithms: nature-inspired programming
recipes. Jason Brownlee, 2011. [see pages 23, 24, and 25]

[BS03] Benjamin Baran and Matilde Schaerer. A Multiobjective Ant
Colony System for Vehicle Routing Problem with Time Win-
dows. In IASTED International Multi-Conference on Applied
Informatics, volume 21, pages 97–102, 01 2003. [see pages 77
and 251]

[BSC+12] Carl Bergenhem, Steven Shladover, Erik Coelingh, Christoffer
Englund, and Sadayuki Tsugawa. Overview of Platooning
Systems. In Proceedings of the 19th ITS World Congress, 2012.
[see pages 59, 67, 114, and 118]

284

https://www.stuttgarter-nachrichten.de/inhalt.a8-zwischen-stuttgart-und-leonberg-polizei-stellt-autobahn-blitzer-wieder-auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html
https://www.stuttgarter-nachrichten.de/inhalt.a8-zwischen-stuttgart-und-leonberg-polizei-stellt-autobahn-blitzer-wieder-auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html
https://www.stuttgarter-nachrichten.de/inhalt.a8-zwischen-stuttgart-und-leonberg-polizei-stellt-autobahn-blitzer-wieder-auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html
https://www.stuttgarter-nachrichten.de/inhalt.a8-zwischen-stuttgart-und-leonberg-polizei-stellt-autobahn-blitzer-wieder-auf.631561fb-8f7f-4881-a4cc-74eac1f4a158.html

Bibliography

[BT83] Egon Balas and Paolo Toth. Branch and Bound Methods for
the Traveling Salesman Problem. 1983. [see page 50]

[BTASG19] Erfan Babaee Tirkolaee, Parvin Abbasian, Mehdi Soltani, and
Seyed Ali Ghaffarian. Developing an applied algorithm for
multi-trip vehicle routing problem with time windows in ur-
ban waste collection: A case study. Waste Management &
Research, 37(1_suppl):4–13, 2019. [see page 252]

[BTGPMK19] Erfan Babaee Tirkolaee, Alireza Goli, Maryam Pahlevan, and
Ramina Malekalipour Kordestanizadeh. A robust bi-objective
multi-trip periodic capacitated arc routing problem for urban
waste collection using a multi-objective invasive weed opti-
mization. Waste Management & Research, 37(11):1089–1101,
2019. [see page 253]

[BTV+16] Bart Besselink, Valerio Turri, Sebastian H. Van De Hoef,
Kuo Yun Liang, Assad Alam, Jonas Mårtensson, and Karl H.
Johansson. Cyber-Physical Control of Road Freight Transport.
Proceedings of the IEEE, 104(5):1128–1141, 2016. [see pages 40,
41, and 45]

[BTW14] K. Bellman, S. Tomforde, and R. P.Würtz. Interwoven Systems:
Self-Improving Systems Integration. In IEEE Eighth Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems
Workshops, pages 123–127, 2014. [see pages 5 and 249]

[bus] bussgeldkatalog.org. Wissenswertes zur Verkehrsstatistik für
die Jahre 2018/2019. https://www.bussgeldkatalog.org/
verkehrsstatistik/#auchinpunctostau\zeigtdiestatisti
keinesteigerungimjahr2018. Last Accessed: 2021-10-24. [see
page 2]

[Çat09] Bülent Çatay. Ant Colony Optimization and Its Application to
the Vehicle Routing Problem with Pickups and Deliveries, pages
219–244. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
[see pages 77, 145, and 251]

[CBK+17] Javier Cámara, Kirstie L Bellman, Jeffrey O Kephart, Marco
Autili, Nelly Bencomo, Ada Diaconescu, Holger Giese, Sebas-
tian Götz, Paola Inverardi, Samuel Kounev, et al. Self-Aware
Computing Systems: Related Concepts and Research Areas.

285

https://www.bussgeldkatalog.org/verkehrsstatistik/#auch_in_puncto_stau_zeigt_die_statistik_eine_steigerung_im_jahr_2018
https://www.bussgeldkatalog.org/verkehrsstatistik/#auch_in_puncto_stau_zeigt_die_statistik_eine_steigerung_im_jahr_2018
https://www.bussgeldkatalog.org/verkehrsstatistik/#auch_in_puncto_stau_zeigt_die_statistik_eine_steigerung_im_jahr_2018

Bibliography

In Self-Aware Computing Systems, pages 17–49. Springer, 2017.
[see page 86]

[CC02] Zbigniew J. Czech and P. Czarnas. Parallel simulated anneal-
ing for the vehicle routing problem with time windows. In
Proceedings 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, pages 376–383, 2002. [see pages 77
and 251]

[CCZL19] Jinlong Chai, Jiangeng Chang, Yakun Zhao, and Honggang
Liu. An Auto-ML Framework Based on GBDT for Lifelong
Learning. arXiv preprint arXiv:1908.11033, 2019. [see page 245]

[CdLG+09] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola
Inverardi, and JeffMagee. Software Engineering for Self-Adaptive
Systems: A Research Roadmap. Springer Berlin Heidelberg, 2009.
[see pages 1, 5, and 17]

[CEE16] Jhon Jairo Santa Chávez, John Willmer Escobar, and Mauri-
cio Granada Echeverri. A multi-objective Pareto ant colony
algorithm for the Multi-Depot Vehicle Routing problem with
Backhauls. International Journal of Industrial Engineering Com-
putations, pages 35–48, 2016. [see pages 77 and 251]

[CGMS17] Javier Cámara, David Garlan, Gabriel A. Moreno, and Bradley
Schmerl. Evaluating Trade-Offs of Human Involvement in
Self-Adaptive Systems. In Managing Trade-Offs in Adaptable
Software Architectures, pages 155–180.MorganKaufmann, 2017.
[see page 248]

[CHD07] Ping Chen, Houkuan Huang, and Xingye Dong. An Ant
Colony System Based Heuristic Algorithm for the Vehicle
Routing Problem with Simultaneous Delivery and Pickup. In
In Proceedings of the 2nd IEEE Conference on Industrial Electronics
and Applications, pages 136–141. IEEE, may 2007. [see pages 77
and 251]

[CHS+18] Shelvin Chand, Quang Huynh, Hemant Singh, Tapabrata
Ray, and Markus Wagner. On the Use of Genetic Program-
ming to Evolve Priority Rules for Resource Constrained Project
Scheduling Problems. Information Sciences, 432:146–163, 2018.
[see page 106]

286

Bibliography

[CLSV07] Jean-François Cordeau, Gilbert Laporte, Martin W.P. Savels-
bergh, and Daniele Vigo. Chapter 6 Vehicle Routing. In
Transportation, volume 14 of Handbooks in Operations Research
and Management Science, pages 367–428. Elsevier, 2007. [see
pages 77 and 251]

[CM12] Jean-François Cordeau and Mirko Maischberger. A parallel
iterated tabu search heuristic for vehicle routing problems.
Computers & Operations Research, 39(9):2033–2050, 2012. [see
pages 77 and 251]

[CM13] Padmabati Chand and JRMohanty. AMulti-Objective Vehicle
Routing Problem using Dominant Rank Method. Interna-
tional Journal of Computer Application, pages 29–34, 2013. [see
pages 77 and 251]

[CMG15] Javier Cámara, Gabriel A. Moreno, and David Garlan. Reason-
ing about Human Participation in Self-Adaptive Systems. In
10th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, pages 146–156, 2015. [see
page 248]

[CMMF17] Z. Al Chami, H. Manier, M.-A. Manier, and C. Fitouri. A
hybrid genetic algorithm to solve a multi-objective Pickup
andDelivery Problem. IFAC-PapersOnLine, 50(1):14656–14661,
2017. [see pages 77 and 251]

[CMPPW20] RaduCalinescu, RaffaelaMirandola, Diego Perez-Palacin, and
Danny Weyns. Understanding Uncertainty in Self-adaptive
Systems. In In Proceedings of IEEE International Conference on
Autonomic Computing and Self-Organizing Systems, pages 242–
251. IEEE, 2020. [see pages 5 and 243]

[Cox05] Michael T Cox. Metacognition in computation: A selected
research review. Artificial Intelligence, 169:104–141, 2005. [see
page 244]

[ÇS19] Melih Çelik and Haldun Süral. Order picking in parallel-aisle
warehouses with multiple blocks: complexity and a graph
theory-based heuristic. International Journal of Production Re-
search, 57(3):888–906, 2019. [see page 74]

287

Bibliography

[CT10] Chia-Ho Chen and Ching-Jung Ting. Applying Two-Stage Ant
Colony Optimization to Solve the Large Scale Vehicle Routing
Problem. Journal of the Eastern Asia Society for Transportation
Studies, 8:761–776, 2010. [see pages 77 and 131]

[CVV13] Radu Chis, Maria Vintan, and Lucian Vintan. Multi-objective
DSE algorithms’ evaluations on processor optimization. In
In Proceedings of the 9th International Conference on Intelligent
Computer Communication and Processing, pages 27–33. IEEE,
2013. [see pages 5 and 245]

[CW64] Geoff Clarke and JohnWWright. Scheduling of Vehicles from
a Central Depot to a Number of Delivery Points. Operations
Research, 12(4):568–581, 1964. [see pages 51 and 198]

[CWQX13] Fangyu Chen, Hongwei Wang, Chao Qi, and Yong Xie. An
ant colony optimization routing algorithm for two order pick-
ers with congestion consideration. Computers & Industrial
Engineering, 66(1):77–85, 2013. [see pages 170 and 254]

[DBM+20] Joydeep Dutta, Partha Sarathi Barma, Anupam Mukherjee,
Samarjit Kar, and Tanmay De. A multi-objective open set
orienteering problem. Neural Computing and Applications,
32(17):13953–13969, 2020. [see page 252]

[DCH08] Thanh-Son Dao, Christopher Michael Clark, and Jan Paul
Huissoon. Distributed Platoon Assignment and Lane Selec-
tion for Traffic Flow Optimization. In Proceedings of the 2008
IEEE Intelligent Vehicles Symposium, pages 739–744, 2008. [see
page 39]

[DDE+02] Guy Desaulniers, Jacques Desrosiers, Andreas Erdmann, Mar-
ius M. Solomon, and François Soumis. 9. VRP with Pickup
and Delivery. In The Vehicle Routing Problem, pages 225–242.
Society for Industrial andAppliedMathematics, jan 2002. [see
page 251]

[DFJ54] George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution
of a Large-Scale Traveling-Salesman Problem. Journal of the
Operations Research Society of America, 2(4):393–410, 1954. [see
page 50]

288

Bibliography

[DG97] Marco Dorigo and Luca Maria Gambardella. Ant colonies
for the travelling salesman problem. Biosystems, 43(2):73–81,
1997. [see page 50]

[DHR00] Karl Doerner, Richard F. Hartl, andMarc Reimann. Ant colony
optimization applied to the pickup and delivery problem.
Technical Report 76, SFB Adaptive Information Systems and
Modelling in Economics and Management Science, WU Vi-
enna University of Economics and Business, Vienna, 2000.
[see pages 77 and 251]

[DK07] M B M. De Koster. Warehouse Assessment in a Single Tour.
In Facility Logistics, pages 53–74. Auerbach Publications, 2007.
[see pages 4, 52, and 74]

[DKLDR07] René De Koster, Tho Le-Duc, and Kees Jan Roodbergen. De-
sign and control of warehouse order picking: A literature
review. European Journal of Operational Research, 182(2):481–
501, 2007. [see pages 4, 52, 55, 74, 222, and 254]

[DMC96] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant
system: optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 26(1):29–
41, 1996. [see pages 25 and 141]

[dpa] dpa/lsw. Verkehr - Stuttgart - Meistbefahrener Autobahnab-
schnitt: Unfallzahlen verdoppelt - Wirtschaft - SZ.de. https:
//www.sueddeutsche.de/wirtschaft/verkehr-stuttgart
-meistbefahrener-autobahnabschnitt-unfallzahlen-ve
rdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99
-537657. Last Accessed: 2021-10-06. [see page 177]

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT
Meyarivan. A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEETransactions on Evolutionary Computation,
6(2):182–197, 2002. [see pages 25, 61, 154, and 162]

[DPH17] Victor S. Dolk, Jeroen Ploeg, and W. P. Maurice H. Heemels.
Event-Triggered Control for String-Stable Vehicle Platoon-
ing. IEEE Transactions on Intelligent Transportation Systems,
18(12):3486–3500, 9 2017. [see page 33]

289

https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657
https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657
https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657
https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657
https://www.sueddeutsche.de/wirtschaft/verkehr-stuttgart-meistbefahrener-autobahnabschnitt-unfallzahlen-verdoppelt-dpa.urn-newsml-dpa-com-20090101-170806-99-537657

Bibliography

[DPW09] Ding-Zhu Du, Panos M. Pardalos, and Weili Wu. History of
Optimization, pages 1538–1542. Springer US, Boston, MA, 2009.
[see page 19]

[DR59] George B Dantzig and John H Ramser. The Truck Dispatching
Problem. Management Science, 6(1):80–91, 1959. [see page 50]

[DRS98] Richard L Daniels, Jeffrey L Rummel, and Robert Schantz.
A model for warehouse order picking. European Journal of
Operational Research, 105(1):1–17, 1998. [see page 254]

[DRTR+19] Floriano De Rango, Mauro Tropea, Pierfrancesco Raimondo,
Amilcare Francesco Santamaria, and Peppino Fazio. Bio In-
spired Strategy for Improving Platoon Management in the
Future Autonomous Electrical VANET Environment. In Pro-
ceedings of the 28th IEEE International Conference on Computer
Communication and Networks, 2019. [see page 45]

[DRTRS20] Floriano De Rango, Mauro Tropea, Pierfrancesco Raimondo,
and Amilcare Francesco Santamaria. Grey Wolf Optimization
in VANET to manage Platooning of Future Autonomous Elec-
trical Vehicles. In Proceedings of the IEEE 17th Annual Consumer
Communications & Networking Conference, 2020. [see page 45]

[DX06] Lin Wei Dong and Cai Tian Xiang. Ant Colony Optimization
for VRP and Mail Delivery Problems. In In Proceedings of the
4th IEEE International Conference on Industrial Informatics, pages
1143–1148, 2006. [see pages 77 and 251]

[DYW+16] Kakan C. Dey, Li Yan, Xujie Wang, Yue Wang, Haiying Shen,
Mashrur Chowdhury, Lei Yu, Chenxi Qiu, and Vivekgautham
Soundararaj. A Review of Communication, Driver Character-
istics, and Controls Aspects of Cooperative Adaptive Cruise
Control (CACC). IEEE Transactions on Intelligent Transportation
Systems, 17(2):491–509, 2 2016. [see page 33]

[Eil15] Sönke Eilers. COMPANION Deliverable D3.2 - Information
Model for Platoon Services. Technical Report 610990, 2015.
[see page 45]

[EKM11] Naeem Esfahani, Ehsan Kouroshfar, and Sam Malek. Taming
Uncertainty in Self-adaptive Software. In Proceedings of the 19th

290

Bibliography

ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, pages 234–244, 2011. [see
page 248]

[EM13] Naeem Esfahani and Sam Malek. Uncertainty in Self-Adaptive
Software Systems, pages 14—-238. Springer, 2013. [see pages 71
and 249]

[End17] Mica R Endsley. Toward a Theory of Situation Awareness in
Dynamic Systems. In Human Factors: The Journal of Human
Factors and Ergonomics Society, volume 37, pages 32–64. Sage
Journals, 2017. [see pages 5 and 243]

[ENOBTMG16] David Espinoza-Nevárez, José Carlos Ortiz-Bayliss, Hugo
Terashima-Marín, and Gustavo Gatica. Selection and Genera-
tionHyper-Heuristics for Solving theVehicle Routing Problem
with Time Windows. In Proceedings of the 2016 on Genetic and
Evolutionary Computation Conference, page 139–140, 2016. [see
pages 77 and 251]

[EÖ12] Seval Ene and Nursel Öztürk. Storage location assignment
and order picking optimization in the automotive industry.
The International Journal of Advanced Manufacturing Technology,
60:787–797, 2012. [see page 254]

[EU221] Directive 2010/40/EU of the European Parliament and of the
Council of 7 July 2010 on the framework for the deployment
of Intelligent Transport Systems in the field of road transport
and for interfaces with other modes of transport Text with
EEA relevance. https://eur-lex.europa.eu/legal-cont
ent/EN/TXT/?uri=CELEX:32010L0040, May 2021. [Online;
accessed 28. May 2021]. [see page 27]

[FGKV19] Erik M Fredericks, Ilias Gerostathopoulos, Christian
Krupitzer, and Thomas Vogel. Planning as Optimization: Dy-
namically Discovering Optimal Configurations for Runtime
Situations. In In Proceedings of the 13th International Conference
on Self-Adaptive and Self-Organizing Systems, pages 1–10. IEEE,
2019. [see pages 5, 106, and 243]

[FJM+01] Lino Figueiredo, Isabel Jesus, JA Tenreiro Machado, Jose Rui
Ferreira, and JL Martins De Carvalho. Towards the develop-
ment of intelligent transportation systems. In In Proceedings of

291

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0040
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0040

Bibliography

IEEE Intelligent Transportation Systems, pages 1206–1211. IEEE,
2001. [see pages 2 and 27]

[FKH11] Camilo Fitzgerald, Benjamin Klöpper, and Shinichi Honiden.
Utility-Based Self-Adaption with Environment Specific Qual-
ityModels. InAbdelhamid Bouchachia, editor,Adaptive and In-
telligent Systems, pages 107–118. Springer, 2011. [see page 249]

[FLL+05] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Mar-
cus Poggi de Aragão, Marcelo Reis, Eduardo Uchoa, and Re-
nato F. Werneck. Robust Branch-and-Cut-and-Price for the
Capacitated Vehicle Routing Problem. Mathematical Program-
ming, 106(3):491–511, oct 2005. [see pages 77 and 251]

[Flo56] Merrill M Flood. The Traveling-Salesman Problem. Operations
research, 4(1):61–75, 1956. [see page 50]

[FMP07] Daniela Favaretto, Elena Moretti, and Paola Pellegrini. Ant
colony system for a VRP with multiple time windows and
multiple visits. Journal of Interdisciplinary Mathematics, 10:263–
284, 04 2007. [see pages 77 and 251]

[FN15] Pedro Fernandes and Urbano Nunes. Multiplatooning Lead-
ers Positioning and Cooperative Behavior Algorithms of Com-
municant Automated Vehicles for High Traffic Capacity. IEEE
Transactions on Intelligent Transportation Systems, 16(3):1172–
1187, 2015. [see page 42]

[Fra02] Edward Frazelle. Supply Chain Strategy: The Logistics of Supply
Chain Management. McGrraw-Hill, 2002. [see page 55]

[FSH15] Matthias Feurer, Jost Tobias Springenberg, and Frank Hut-
ter. Initializing Bayesian Hyperparameter Optimization via
Meta-Learning. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015. [see pages 5 and 245]

[FTV94] Matteo Fischetti, Paolo Toth, and Daniele Vigo. A Branch-
and-Bound Algorithm for the Capacitated Vehicle Routing
Problem on Directed Graphs. Operations Research, 42(5):846–
859, oct 1994. [see pages 77 and 251]

[FVDW21] Nicola Franco, Hoai My Van, Marc Dreiser, and GereonWeiss.
Towards a Self-Adaptive Architecture for Federated Learning

292

Bibliography

of Industrial Automation Systems. In 2021 International Sym-
posium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pages 210–216, 2021. [see pages 2 and 3]

[FZL+19] Shuo Feng, Yi Zhang, Shengbo Eben Li, Zhong Cao, Henry X.
Liu, and Li Li. String stability for vehicular platoon control:
Definitions and analysis methods. Annual Reviews in Control,
47:81–97, 2019. [see page 31]

[GBBGP21] Mathieu Guillame-Bert, Sebastian Bruch, Josh Gordon, and
Jan Pfeifer. Introducing TensorFlow Decision Forests. https:
//blog.tensorflow.org/2021/05/introducing-tensorfl
ow-decision-forests.html, Nov 2021. [Online; Accessed 2.
Nov. 2021]. [see page 110]

[GBH+17] Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, Adam
Hujecek, Frantisek Plasil, and Dominik Skoda. Strengthening
Adaptation in Cyber-Physical Systems via Meta-Adaptation
Strategies. ACM Transactions on Cyber-Physical Systems, 1(3):1–
25, 2017. [see page 244]

[GC09] Pablo Garrido and Carlos Castro. Stable Solving of CVRPs
Using Hyperheuristics. In Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation, page 255–262.
ACM, 2009. [see pages 77 and 251]

[GDC+17] Julian Pedro Garbiso, Ada Diaconescu, Marceau Coupechoux,
Jeremy Pitt, and Bertrand Leroy. Distributive Justice for Fair
Auto-Adaptive Clusters of Connected Vehicles. In 2nd Interna-
tional Workshops on Foundations and Applications of Self* Systems
(FAS* W), pages 79–84, 2017. [see page 250]

[GG78] Bezalel Gavish and Stephen C Graves. The Travelling Sales-
man Problem and Related Problems. Operations Research Cen-
ter Working Papers, 1978. [see page 51]

[GG10] Keivan Ghoseiri and Seyed Farid Ghannadpour. Multi-
objective vehicle routing problem with time windows using
goal programming and genetic algorithm. Applied Soft Com-
puting, 10(4):1096–1107, sep 2010. [see pages 77 and 251]

[GGM10] Jinxiang Gu, Marc Goetschalckx, and Leon F. McGinnis. Re-
search on warehouse design and performance evaluation: A

293

https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html
https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html
https://blog.tensorflow.org/2021/05/introducing-tensorflow-decision-forests.html

Bibliography

comprehensive review. European Journal of Operational Research,
203(3):539–549, 2010. [see pages 6, 75, and 147]

[Glo86] Fred Glover. Future paths for integer programming and
links to artificial intelligence. Computers & Operations Research,
13(5):533–549, 1986. [see page 198]

[GLP02] Michel Gendreau, Gilbert Laporte, and Jean-Yves Potvin. 6.
Metaheuristics for the Capacitated VRP. In The Vehicle Routing
Problem, pages 129–154. Society for Industrial and Applied
Mathematics, jan 2002. [see pages 77 and 251]

[GMS+09] Adam Ghandar, Zbigniew Michalewicz, Martin Schmidt,
Thuy-Duong To, and Ralf Zurbrugg. Computational Intelli-
gence for Evolving Trading Rules. IEEE Transactions on Evolu-
tionary Computation, 13(1):71–86, 2009. [see page 106]

[Gov] Robert Gove. Using the elbow method to determine the opti-
mal number of clusters for k-means clustering - bl.ocks.org.
https://bl.ocks.org/rpgove/0060ff3b656618e9136b.
Accessed: 2021-03-12. [see page 106]

[GP19] Ilias Gerostathopoulos and Evangelos Pournaras. TRAPPed in
Traffic? A Self-Adaptive Framework for Decentralized Traffic
Optimization. In 2019 IEEE/ACM14th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 32–38, 2019. [see page 2]

[GPB18] Ilias Gerostathopoulos, Christian Prehofer, and Tomas Bures.
Adapting a System with Noisy Outputs with Statistical Guar-
antees. In Proceedings of the 13th International Conference on
Software Engineering for Adaptive and Self-Managing Systems,
page 58–68. ACM, 2018. [see page 249]

[GPFA16] Miriam Gil, Vicente Pelechano, Joan Fons, and Manoli Albert.
Designing the Human in the Loop of Self-Adaptive Systems.
In Carmelo R. García, Pino Caballero-Gil, Mike Burmester,
and Alexis Quesada-Arencibia, editors, Ubiquitous Computing
and Ambient Intelligence, pages 437–449. Springer, 2016. [see
page 248]

[GRW08] Bruce L Golden, Subramanian Raghavan, and Edward A
Wasil. The Vehicle Routing Problem: Latest Advances and New

294

https://bl.ocks.org/rpgove/0060ff3b656618e9136b

Bibliography

Challenges, volume 43. Springer Science & Business Media,
2008. [see pages 5 and 76]

[GSBLC19] Giulia Giordano, Michele Segata, Franco Blanchini, and Re-
nato LoCigno. The joint network/control design of platooning
algorithms can enforce guaranteed safety constraints. Ad Hoc
Networks, 94, 11 2019. [see page 33]

[GSCG17] Thomas J. Glazier, Bradley Schmerl, Javier Cámara, and David
Garlan. Utility Theory for Self-Adaptive Systems. Technical
Report CMU-ISR-17-119, CMU, 2017. [see page 249]

[HC05] Randolph Hall and Chinan Chin. Vehicle Sorting for Pla-
toon Formation: Impacts on Highway Entry and Through-
put. Transportation Research Part C: Emerging Technologies, 13(5-
6):405–420, 2005. [see pages 41 and 42]

[Hes63] James L Heskett. Cube-per-order index-a key to warehouse
stock location. Transportation and Distribution Management,
3(1):27–31, 1963. [see page 55]

[HGR+21] Stefan Herrnleben, Johannes Grohmann, Pitor Rygielski,
Veronika Lesch, Christian Krupitzer, and Samuel Kounev. A
Simulation-based Optimization Framework for Online Adap-
tation of Networks. In Houbing Song and Dingde Jiang, ed-
itors, Proceedings of the 12th EAI International Conference on
Simulation Tools and Techniques, SIMUtools 2020, page 513–532,
Cham, August 2021. Springer International Publishing. [see
page xxiv]

[HHLB11] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Se-
quential Model-Based Optimization for General Algorithm
Configuration. In Carlos A. Coello Coello, editor, Learning
and Intelligent Optimization, pages 507–523, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg. [see page 262]

[HI20] Timo Hintsch and Stefan Irnich. Exact solution of the soft-
clustered vehicle-routing problem. European Journal of Opera-
tional Research, 280(1):164–178, 2020. [see pages 77 and 251]

[HLL+21] Stefan Herrnleben, Maximilian Leidinger, Veronika Lesch,
Thomas Prantl, Johannes Grohmann, Christian Krupitzer, and

295

Bibliography

Samuel Kounev. ComBench: A Benchmarking Framework for
Publish/Subscribe Communication Protocols under Network
Limitations. In Proceedings of the 13th EAI International Confer-
ence on Simulation Tools and Techniques, SIMUtools 2021, 2021.
[see page xxiv]

[HLS+21] Elia Henrichs, Veronika Lesch, Martin Straesser, Samuel
Kounev, and Christian Krupitzer. A Literature Review on Op-
timization Techniques for Adaptation Planning in Adaptive
Systems: State of the Art and Research Directions. Information
and Software Technology, 2021. Under Review, Impact Factor
(2020): 2.73. [see page xxiv]

[HM15] Shihong Huang and Pedro Miranda. Incorporating Human
Intention into Self-Adaptive Systems. In 37th IEEE International
Conference on Software Engineering, pages 571–574, 2015. [see
page 248]

[HMS+17] Abid Hussain, Yousaf Shad Muhammad, M. Nauman Sajid,
Ijaz Hussain, Alaa Mohamd Shoukry, and Showkat Gani. Ge-
netic Algorithm for Traveling Salesman Problem with Modi-
fied Cycle Crossover Operator. Computational Intelligence and
Neuroscience, 2017:1–7, 2017. [see page 140]

[Hol92] John H. Holland. Genetic Algorithms. Scientific American,
267(1):66–73, 1992. [see pages 24 and 136]

[HRFA19] Claretha Hughes, Lionel Robert, Kristin Frady, and Adam Ar-
royos. Artificial intelligence, Employee Engagement, Fairness,
and Job Outcomes. In Managing Technology and Middle-and
Low-skilled Employees. Emerald Publishing Limited, 2019. [see
page 75]

[HRMS98] WilliamHHendrix, Tina Robbins, Janis Miller, and Timothy P
Summers. Effects of Procedural and Distributive Justice on
Factors Predictive of Turnover. Journal of Social Behavior and
Personality, 13(4):611, 1998. [see page 75]

[HS19a] Tobias Hardes and Christoph Sommer. Dynamic Platoon
Formation at Urban Intersections. In Proceedings of the 44th
IEEE Conference on Local Computer Networks, pages 101–104,
2019. [see pages 5, 39, and 45]

296

Bibliography

[HS19b] Tobias Hardes and Christoph Sommer. Towards Heteroge-
neous Communication Strategies for Urban Platooning at
Intersections. In 2019 IEEE Vehicular Networking Conference,
pages 1–8. IEEE, 2019. [see page 244]

[HWW+17] PengHao, ZiranWang, GuoyuanWu, Kanok Boriboonsomsin,
andMatthew Barth. Intra-Platoon Vehicle Sequence Optimiza-
tion for Eco-Cooperative Adaptive Cruise Control. In IEEE
20th International Conference on Intelligent Transportation Sys-
tems, 2017. [see page 247]

[ICMPG16] Joaquín Izquierdo, Enrique Campbell, Idel Montalvo, and
Rafael Pérez-García. Injecting problem-dependent knowledge
to improve evolutionary optimization search ability. Journal
of Computational and Applied Mathematics, 291:281–292, 2016.
[see page 150]

[ISR+19] Lukas Iffländer, Jonathan Stoll, Nishant Rawtani, Veronika
Lesch, Klaus-Dieter Lange, and Samuel Kounev. Performance
Oriented Dynamic Bypassing for Intrusion Detection Systems.
In Proceedings of the 2019 ACM/SPEC International Conference
on Performance Engineering, ICPE ’19, page 159–166, New York,
NY, USA, 2019. ACM. [see page xxv]

[JCS+19] Pooyan Jamshidi, Javier Cámara, Bradley Schmerl, Christian
Käestner, and David Garlan. Machine Learning Meets Quan-
titative Planning: Enabling Self-Adaptation in Autonomous
Robots. In 2019 IEEE/ACM 14th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 39–50, 2019. [see pages 2 and 3]

[JFL+01] Nicholas R Jennings, Peyman Faratin, Alessio R Lomuscio,
Simon Parsons, Michael J Wooldridge, and Carles Sierra. Au-
tomated Negotiation: Prospects, Methods and Challenges.
Group Decision and Negotiation, 10(2), 2001. [see page 250]

[JM03] David S Johnson and Lyle A McGeoch. 8. The traveling sales-
man problem: a case study. In Local Search in Combinatorial
Optimization, pages 215–310. Princeton University Press, 2003.
[see page 50]

[JNJM18] Alexander Johansson, Ehsan Nekouei, Karl Henrik Johans-
son, and Jonas Mårtensson. Multi-Fleet Platoon Matching: A

297

Bibliography

Game-Theoretic Approach. In Proceedings of the 21st IEEE Inter-
national Conference on Intelligent Transportation Systems, pages
2980–2985, 2018. [see page 45]

[Joo12] P Jootel. Safe road trains for the environment (SARTRE) final
report. tech. rep., Technical Report for European Commission under
the Framework 7 Programme Project 233683), 2012. [see page 67]

[JZBdK15] Robbert Janssen, Han Zwijnenberg, Iris Blankers, and Janiek
de Kruijff. Truck platooning: Driving the future of transporta-
tion. Technical report, TNO, 2015. [see page 247]

[KAFF14] Roozbeh Kianfar, Mohammad Ali, Paolo Falcone, and Jonas
Fredriksson. Combined longitudinal and lateral control de-
sign for string stable vehicle platooning within a designated
lane. In 17th International IEEE Conference on Intelligent Trans-
portation Systems, pages 1003–1008. IEEE, 10 2014. [see
page 33]

[Kar72] Richard M Karp. Reducibility among Combinatorial Prob-
lems. In Complexity of Computer Computations, pages 85–103.
Springer, 1972. [see pages 50 and 51]

[KB05] Majid Ali Khan and Ladislau Bölöni. Convoy driving through
ad-hoc coalition formation. In Proceedings of the 11th IEEE
Real Time and Embedded Technology and Applications Symposium,
pages 98–105, 2005. [see pages 40 and 42]

[KBW+10] Monika Kofler, Andreas Beham, Stefan Wagner, Michael Af-
fenzeller, and Clemens Reitinger. Reassigning storage loca-
tions in a warehouse to optimize the order picking process.
In Proceedings of the 22th European Modeling and Simulation
Symposium, pages 77–82, 2010. [see page 254]

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Auto-
nomic Computing. IEEE Computer, 36(1):41–50, 2003. [see
pages 1, 2, 17, 46, 88, and 120]

[KCP20] Sehyeok Kang, Taeyeong Choi, and Theodore P Pavlic. How
far should I watch? Quantifying the effect of various obser-
vational capabilities on long-range situational awareness in
multi-robot teams. In In Proceedings of the IEEE International

298

Bibliography

Conference on Autonomic Computing and Self-Organizing Systems,
pages 146–152. IEEE, 2020. [see pages 5, 107, and 244]

[KCW+18] Cody Kinneer, Zack Coker, Jiacheng Wang, David Garlan,
and Claire Le Goues. Managing Uncertainty in Self-Adaptive
Systems with Plan Reuse and Stochastic Search. In Proceedings
of the 13th International Conference on Software Engineering for
Adaptive and Self-Managing Systems, pages 40–50, 2018. [see
pages 244 and 249]

[KFF11] Roozbeh Kianfar, Paolo Falcone, and Jonas Fredriksson. A Re-
ceding Horizon Approach to String Stable Cooperative Adap-
tive Cruise Control. In Proceedings of the 14th International
IEEE Intelligent Transportation Systems Conference, pages 734–
739, Washington, D.C., 10 2011. IEEE. [see page 32]

[KGV83] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Opti-
mization by simulated annealing. Science, 220(4598):671–680,
1983. [see pages 24 and 61]

[KHNT19] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike
Trautmann. Automated Algorithm Selection: Survey and
Perspectives. Evolutionary Computation, 27(1):3–45, 2019. [see
pages 5 and 244]

[KKHT15] Lars Kotthoff, Pascal Kerschke, Holger Hoos, and Heike Traut-
mann. Improving the State of the Art in Inexact TSP Solving
Using Per-Instance Algorithm Selection. In Clarisse Dhaenens,
Laetitia Jourdan, andMarie-EléonoreMarmion, editors, Learn-
ing and Intelligent Optimization, pages 202–217, Cham, 2015.
Springer International Publishing. [see pages 5 and 244]

[KLB+17] Samuel Kounev, Peter Lewis, Kirstie L Bellman, Nelly Ben-
como, Javier Camara, Ada Diaconescu, Lukas Esterle, Kurt
Geihs, Holger Giese, Sebastian Götz, et al. The Notion of Self-
aware Computing. In Self-Aware Computing Systems, pages
3–16. Springer, 2017. [see pages 1, 2, 17, 18, 82, and 88]

[KLP+19] Christian Krupitzer, Veronika Lesch, Martin Pfannemüller,
Christian Becker, and Michele Segata. A Modular Simulation
Framework for Analyzing Platooning Coordination. In Pro-
ceedings of the 1st ACMWorkshop on Technologies, mOdels, and

299

Bibliography

Protocols for Cooperative Connected Cars (TOP-Cars), Colocated
with ACM MobiHoc 2019. ACM, July 2019. [see pages xxv, 46,
61, and 263]

[KLR+20] Dennis Kaiser, Veronika Lesch, Julian Rothe, Michael
Strohmeier, Florian Spiess, Christian Krupitzer, Sergio Mon-
tenegro, and Samuel Kounev. Towards Self-Aware Multirotor
Formations. Computers, 9(7), Februar 2020. Special Issue on
Self-Aware Computing. [see page xxiii]

[KM07] Jeff Kramer and Jeff Magee. Self-Managed Systems: an Ar-
chitectural Challenge. In In Proceedings of Future of Software
Engineering, pages 259–268. IEEE, 2007. [see pages 82 and 86]

[KML+20] Christian Krupitzer, Sebastian Müller, Veronika Lesch, Mar-
win Züfle, Janick Edinger, Alexander Lemken, Dominik
Schäfer, Samuel Kounev, and Christian Becker. A Survey
on Human Machine Interaction in Industry 4.0. Technical
report, Universität Würzburg and University of Mannheim
and ioxp GmbH and Syntax Systems GmbH, feb 2020. [see
page xxvi]

[Kor21] Martin Kords. Transportleistung im Straßengüterverkehr 2019
| Statista. https://de.statista.com/statistik/daten/st
udie/2979/umfrage/entwicklung-der-transportleistun
g-des-strassengueterverkehrs, 2021. [Online; acc. 3. Feb.
2021]. [see pages 3 and 76]

[Kov11] András Kovács. Optimizing the storage assignment in a ware-
house served by milkrun logistics. International Journal of
Production Economics, 133(1):312–318, 2011. [see page 254]

[KPP08] Konstantinos Kakousis, Nearchos Paspallis, and George A.
Papadopoulos. Optimizing the Utility Function-Based Self-
adaptive Behavior of Context-Aware SystemsUsingUser Feed-
back. In Robert Meersman and Zahir Tari, editors, On the
Move to Meaningful Internet Systems: OTM 2008, pages 657–
674. Springer, 2008. [see page 249]

[KRV+15] Christian Krupitzer, Felix Maximilian Roth, Sebastian Vansy-
ckel, Gregor Schiele, and Christian Becker. A survey on engi-
neering approaches for self-adaptive systems. Pervasive and

300

https://de.statista.com/statistik/daten/studie/2979/umfrage/entwicklung-der-transportleistung-des-strassengueterverkehrs
https://de.statista.com/statistik/daten/studie/2979/umfrage/entwicklung-der-transportleistung-des-strassengueterverkehrs
https://de.statista.com/statistik/daten/studie/2979/umfrage/entwicklung-der-transportleistung-des-strassengueterverkehrs

Bibliography

Mobile Computing, 17:184–206, 2015. [see pages 1, 5, 17, 46,
119, and 120]

[KSB+18] Christian Krupitzer, Michele Segata, Martin Breitbach, Samy
El-Tawab, Sven Tomforde, and Christian Becker. Towards
Infrastructure-Aided Self-Organized Hybrid Platooning. In
In Proceedings of IEEE Global Conference on Internet of Things,
2018. [see pages 29 and 46]

[KT05] Vijay RKannan andKeahChoon Tan. Just in time, total quality
management, and supply chain management: understanding
their linkages and impact on business performance. Omega,
33(2):153–162, 2005. [see page 49]

[KT19] Pascal Kerschke andHeike Trautmann. AutomatedAlgorithm
Selection on Continuous Black-Box Problems by Combining
Exploratory Landscape Analysis and Machine Learning. Evo-
lutionary Computation, 27(1):99–127, 03 2019. [see pages 5
and 244]

[KTSA14] V. Sivaram Kumar, M.R. Thansekhar, R. Saravanan, and
S. Miruna Joe Amali. Solving Multi-objective Vehicle Routing
Problem with Time Windows by FAGA. Procedia Engineering,
97:2176–2185, 2014. [see pages 77 and 251]

[KWZ+20] Christian Krupitzer, Tim Wagenhals, Marwin Züfle, Veronika
Lesch, Dominik Schäfer, Amin Mozaffarin, Janick Edinger,
Christian Becker, and Samuel Kounev. A Survey on Predic-
tive Maintenance for Industry 4.0. Technical report, Univer-
sität Würzburg and University of Mannheim and Syntax Sys-
tems GmbH and MOZYS Engineering GmbH, feb 2020. [see
page xxvi]

[LAB+11] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson,
David Held, Soeren Kammel, J. Zico Kolter, Dirk Langer,
Oliver Pink, Vaughan Pratt, Michael Sokolsky, Ganymed
Stanek, David Stavens, Alex Teichman, Moritz Werling, and
Sebastian Thrun. Towards Fully Autonomous Driving : Sys-
tems and Algorithms. In Proceedings of the IEEE Intelligent
Vehicles Symposium, pages 163–168, 2011. [see page 31]

[LAG11] Kuo-Yun Liang, Assad Alam, and Ather Gattami. The impact
of heterogeneity and order in heavy duty vehicle platooning

301

Bibliography

networks (poster). In 2011 IEEE Vehicular Networking Confer-
ence, pages 291–297, 2011. [see page 247]

[Lap92] Gilbert Laporte. The vehicle routing problem: An overview
of exact and approximate algorithms. European Journal of
Operational Research, 59(3):345–358, 1992. [see page 51]

[LBHK18] Veronika Lesch, André Bauer, Nikolas Herbst, and Samuel
Kounev. FOX: Cost-Awareness for Autonomic Resource Man-
agement in Public Clouds. In Proceedings of the 9th ACM/SPEC
International Conference on Performance Engineering (ICPE 2018),
New York, NY, USA, April 2018. ACM. [see page xxiv]

[LBL+17] Peter Lewis, Kirstie L Bellman, Christopher Landauer, Lukas
Esterle, Kyrre Glette, Ada Diaconescu, and Holger Giese. To-
wards a framework for the levels and aspects of self-aware
computing systems. In Self-Aware Computing Systems, pages
51–85. Springer, 2017. [see page 244]

[LBS+21] Veronika Lesch, Martin Breitbach, Michele Segata, Chris-
tian Becker, Samuel Kounev, and Christian Krupitzer. An
Overview on Approaches for Coordination of Platoons. IEEE
Transactions on Intelligent Transportation Systems, 2021. Impact
Factor (2020): 6.492. [see pages xxiii, 29, 30, 34, and 263]

[LCF+15] Peter R. Lewis, Arjun Chandra, Funmilade Faniyi, Kyrre
Glette, Tao Chen, Rami Bahsoon, Jim Torresen, and Xin Yao.
Architectural Aspects of Self-Aware and Self-Expressive Com-
puting Systems: From Psychology to Engineering. IEEE Com-
puter, 48(8):62–70, 2015. [see page 250]

[lCkYmW06] Ai ling Chen, Gen ke Yang, and Zhi mingWu. Hybrid discrete
particle swarm optimization algorithm for capacitated vehicle
routing problem. Journal of Zhejiang University-SCIENCE A,
7(4):607–614, mar 2006. [see pages 77 and 251]

[LCL08] Meijuan Li, Xuebo Chen, and Chenqi Liu. Pareto and Niche
Genetic Algorithm for Storage Location Assignment Opti-
mization Problem. In 3rd International Conference on Innovative
Computing Information and Control, pages 465–465. IEEE, 2008.
[see page 254]

302

Bibliography

[Les20] Veronika Lesch. Toward a Framework for Self-Learning Adap-
tation Planning through Optimization. In Sven Tomforde and
Christian Krupitzer, editors, Organic Computing: Doctoral Dis-
sertation Colloquium 2020, pages 17–31. Kassel University Press
GmbH, jul 2020. [see pages xxvi, 1, 9, 17, 82, and 243]

[LHKK21a] Veronika Lesch, Marius Hadry, Samuel Kounev, and Chris-
tian Krupitzer. A Case Study on Optimization of Platooning
Coordination. Technical report, Universität Würzburg, 2021.
[see pages xxvi, 9, 82, and 177]

[LHKK21b] Veronika Lesch, Marius Hadry, Samuel Kounev, and Christian
Krupitzer. Utility-based Vehicle Routing Integrating User
Preferences. In Proceedings of 3rd International Workshop on
Pervasive Computing for Vehicular Systems, 2021. IEEE, March
2021. [see pages xxv, 9, 10, 71, 72, 120, and 248]

[LHKK21c] Veronika Lesch, Marius Hadry, Christian Krupitzer, and
Samuel Kounev. A Self-Aware Optimization Framework for
Adaptation Planning Strategies. ACM Transactions on Au-
tonomous and Adaptive Systems, 2021. In Preparation. [see
pages xxiii, 9, 82, and 177]

[Lia14] Kuo-Yun Liang. Coordination and Routing for Fuel-Efficient
Heavy-Duty Vehicle Platoon Formation. PhD thesis, KTH, Auto-
matic Control, 2014. [see page 45]

[LJD+17] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, andAmeet Talwalkar. Hyperband: Anovel bandit-
based approach to hyperparameter optimization. The Journal
of Machine Learning Research, 18(1):6765–6816, 2017. [see
page 245]

[LKK+21a] Veronika Lesch, Maximilian König, Samuel Kounev, Anthony
Stein, and Christian Krupitzer. Tackling the Rich Vehicle
Routing Problem with Nature-Inspired Algorithms. Applied
Intelligence, 2021. Accepted - In Press, Impact Factor (2020):
5.086. [see pages xxiii, 3, 9, 11, 76, 128, 195, and 251]

[LKK+21b] Veronika Lesch, Maximilian König, Samuel Kounev, Anthony
Stein, and Christian Krupitzer. A Case Study of Vehicle Route
Optimization, 2021. [see pages xxvi, 11, 76, 128, and 195]

303

Bibliography

[LKPA15] Wei Liu, Seong-Woo Kim, Scott Pendleton, and Marcelo H
Ang. Situation-aware decision making for autonomous driv-
ing on urban road using online POMDP. In 2015 IEEE Intel-
ligent Vehicles Symposium, pages 1126–1133. IEEE, 2015. [see
pages 5 and 243]

[LKS+21] Veronika Lesch, Christian Krupitzer, Kevin Stubenrauch, Nico
Keil, Christian Becker, Samuel Kounev, and Michele Segata.
A Comparison of Mechanisms for Compensating Negative
Impacts of System Integration. Future Generation Computer
Systems, 116:117–131, March 2021. [see pages xxiii, 3, 9, 10, 67,
114, 246, and 249]

[LKT19a] Veronika Lesch, Christian Krupitzer, and Sven Tomforde.
Emerging Self-Integration through Coordination of Au-
tonomous Adaptive Systems. In Proceedings of the 4th IEEE
International Workshops on Foundations and Applications of Self*
Systems (FAS* W) 2019. IEEE, June 2019. [see pages xxv
and 250]

[LKT19b] Veronika Lesch, Christian Krupitzer, and Sven Tomforde.
Multi-objective Optimisation in Hybrid Collaborating Adap-
tive Systems. In Proceedings of the 7th edition in the Series on
Autonomously Learning and Optimising Systems, co-located with
32nd GI/ITG ARCS 2019. Gesellschaft fuer Informatik (GI),
may 2019. [see pages xxv, 2, 3, 18, 28, 85, and 88]

[LL02] Hoong Chuin Lau and Zhe Liang. Pickup and delivery with
time windows: Algorithms and test case generation. Inter-
national Journal on Artificial Intelligence Tools, 11(03):455–472,
2002. [see pages 77 and 251]

[LLJ15] Jeffrey Larson, Kuo Yun Liang, and Karl H. Johansson. A
Distributed Framework for Coordinated Heavy-Duty Vehi-
cle Platooning. IEEE Transactions on Intelligent Transportation
Systems, 16(1):419–429, 2015. [see page 40]

[LMJ16] Kuo Yun Liang, Jonas Mårtensson, and Karl H. Johans-
son. Heavy-Duty Vehicle Platoon Formation for Fuel Effi-
ciency. IEEE Transactions on Intelligent Transportation Systems,
17(4):1051–1061, 2016. [see page 45]

304

Bibliography

[LMK+21a] Veronika Lesch, Patrick B. M. Müller, Moritz Krämer, Samuel
Kounev, and Christian Krupitzer. Optimizing Storage As-
signment, Order Picking, and their Interaction in Mezzanine
Warehouses. Applied Intelligence, 2021. Under Review, Impact
Factor (2020): 5.086. [see pages xxiv, 4, 9, 11, 74, 148, 219,
and 254]

[LMK+21b] Veronika Lesch, Patrick B.M. Müller, Moritz Krämer, Samuel
Kounev, and Christian Krupitzer. A Case Study on Optimiza-
tion of Warehouses. Technical report, 2021. Submitted to
arxiv.org. [see pages xxvi, 11, 19, 52, 74, 148, and 219]

[LMS01] Helena R Lourenço, Olivier Martin, and Thomas Stützle. A
beginner’s introduction to Iterated Local Search. In Proceed-
ings of the 4th Metaheuristics International Conference, volume 4,
pages 1–11, 2001. [see page 24]

[LMS16] Jeffrey Larson, Todd Munson, and Vadim Sokolov. Coordi-
nated Platoon Routing in a Metropolitan Network. In Proceed-
ings of the Seventh SIAM Workshop on Combinatorial Scientific
Computing, pages 73–82, 2016. [see page 40]

[LN87] Gilbert Laporte and Yves Nobert. Exact Algorithms for the
Vehicle Routing Problem. In Silvano Martello, Gilbert La-
porte, Michel Minoux, and Celso Ribeiro, editors, Surveys in
Combinatorial Optimization, North-Holland Mathematics Stud-
ies, pages 147–184. North-Holland, 1987. [see pages 51, 77,
and 251]

[LNH+21] Veronika Lesch, Tanja Noack, Johannes Hefter, Samuel
Kounev, and Christian Krupitzer. Towards Situation-Aware
Meta-Optimization of Adaptation Planning Strategies. In Pro-
ceedings of the 2nd IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS 2021). IEEE,
2021. Best paper candidate. [see pages xxiv, 9, 61, 111, 180,
192, 193, and 243]

[LR98] Paul D Larson and Dale S Rogers. Supply ChainManagement:
Definition, Growth and Approaches. Journal of Marketing
Theory and Practice, 6(4):1–5, 1998. [see page 49]

305

Bibliography

[LS08] Joel Lehman and Kenneth O Stanley. Exploiting Open-
Endedness to Solve Problems Through the Search for Novelty.
In ALIFE, pages 329–336, 2008. [see page 143]

[LS10] Joel Lehman and Kenneth O Stanley. Efficiently evolving
programs through the search for novelty. In Proceedings of the
12th Annual Conference on Genetic and Evolutionary Computation,
pages 837–844. ACM, 2010. [see page 61]

[LSG06] Adam N Letchford and Juan-José Salazar-González. Projec-
tion results for vehicle routing. Mathematical Programming,
105(2):251–274, 2006. [see page 51]

[LSL15] Erik Larsson, Gustav Sennton, and Jeffrey Larson. The Ve-
hicle Platooning Problem: Computational Complexity and
Heuristics. Transportation Research Part C: Emerging Technolo-
gies, 60:258–277, 2015. [see pages 39, 40, and 45]

[Mai98] MarkWMaier. Architecting principles for systems-of-systems.
Systems Engineering: The Journal of the International Council on
Systems Engineering, 1(4):267–284, 1998. [see pages 76, 127,
and 147]

[MBD+21] Anupam Mukherjee, Partha Sarathi Barma, Joydeep Dutta,
Goutam Panigrahi, Samarjit Kar, and Manoranjan Maiti. A
multi-objective antlion optimizer for the ring tree problem
with secondary sub-depots. Operational Research, pages 1–39,
2021. [see page 252]

[MCGK18] Gabriel A. Moreno, Javier Cámara, David Garlan, and Mark
Klein. Uncertainty Reduction in Self-Adaptive Systems. In
Proceedings of the 13th International Conference on Software En-
gineering for Adaptive and Self-Managing Systems, pages 51–57.
ACM, 2018. [see page 248]

[MCGS16] Gabriel A. Moreno, Javier Cámara, David Garlan, and Bradley
Schmerl. Efficient Decision-Making under Uncertainty for
Proactive Self-Adaptation. In 2016 IEEE International Con-
ference on Autonomic Computing, pages 147–156, 2016. [see
page 248]

[MF00] P. Merz and B. Freisleben. Fitness landscape analysis and
memetic algorithms for the quadratic assignment problem.

306

Bibliography

IEEE Transactions on Evolutionary Computation, 4(4):337–352,
2000. [see page 246]

[MGPR07] Riccardo Manzini, Mauro Gamberi, Alessandro Persona, and
Alberto Regattieri. Design of a class based storage picker to
product order picking system. International Journal of Advanced
Manufacturing Technology, 32:811–821, 2007. [see page 254]

[MHAW16] S. Mahdavi-Hezavehi, P. Avgeriou, and D. Weyns. A Classi-
fication of Current Architecture-based Approaches Tackling
Uncertainty in Self-Adaptive Systems with Multiple Require-
ments. InManaging Trade-offs inAdaptable Software Architectures.
Elsevier, 2016. [see pages 71 and 248]

[MJMBMD17] Agustín Montero, Juan José Miranda-Bront, and Isabel
Méndez-Díaz. An ILP-based local search procedure for the
VRPwith pickups and deliveries. Annals of Operations Research,
259(1):327–350, Dec 2017. [see pages 77 and 251]

[MKES21] Sumbal Malik, Manzoor Ahmed Khan, and Hesham El-Sayed.
Collaborative Autonomous Driving—A Survey of Solution
Approaches and Future Challenges. Sensors, 21(11), 2021.
[see page 28]

[MKPG19] Gabriel Moreno, Cody Kinneer, Ashutosh Pandey, and David
Garlan. DARTSim: An Exemplar for Evaluation and Compar-
ison of Self-Adaptation Approaches for Smart Cyber-Physical
Systems. In 2019 IEEE/ACM 14th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), pages 181–187, 2019. [see page 2]

[MKS10] Vikas Misra, MI Khan, and UK Singh. Supply Chain Man-
agement Systems: Architecture, Design and Vision. Journal of
Strategic Innovation and Sustainability, 6(4):96–101, 2010. [see
page 49]

[MS88] ShaulMarkovitch and PAULD. SCOTT. The Role of Forgetting
in Learning. In John Laird, editor,Machine Learning Proceedings
1988, pages 459–465. Morgan Kaufmann, San Francisco (CA),
1988. [see page 261]

[MSH08] Philipp Meisen, Thomas Seidl, and Klaus Henning. A Data-
Mining Technique for the Planning and Organization of Truck

307

Bibliography

Platoons. In Proceedings of the International Conference on Heavy
Vehicles, pages 389–402, 2008. [see pages 39, 41, and 44]

[MSS+14] Vicente Milanés, Steven E. Shladover, John Spring, Christo-
pher Nowakowski, Hiroshi Kawazoe, and Masahide Naka-
mura. Cooperative Adaptive Cruise Control in Real Traffic
Situations. IEEE Transactions on Intelligent Transportation Sys-
tems, 15(1):296–305, 2014. [see page 33]

[MST17] Christian Müller-Schloer and Sven Tomforde. Organic
Computing-Technical Systems for Survival in the Real World.
Springer, 2017. [see pages 1 and 17]

[MTZ60] Clair EMiller, AlbertWTucker, and RichardAZemlin. Integer
Programming Formulation of Traveling Salesman Problems.
Journal of the ACM, 7(4):326–329, 1960. [see page 50]

[NFP21] Matheus Nunes, Paulo M. Fraga, and Gisele L. Pappa. Fitness
Landscape Analysis of Graph Neural Network Architecture
Search Spaces. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’21, page 876–884, New York,
NY, USA, 2021. Association for Computing Machinery. [see
page 246]

[NH16] Abtin Nourmohammadzadeh and Sven Hartmann. The Fuel-
Efficient Platooning of Heavy Duty Vehicles by Mathematical
Programming and Genetic Algorithm. In Proceedings of the
International Conference on Theory and Practice of Natural Com-
puting, pages 46–57, 2016. [see pages 41 and 45]

[NH19] Abtin Nourmohammadzadeh and Sven Hartmann. Fuel-
efficient truck platooning by a novel meta-heuristic inspired
from ant colony optimisation. Soft Computing, 23(5):1439–
1452, 2019. [see page 45]

[Noo15] Qais Noorshams. Modeling and Prediction of I/O Performance
in Virtualized Environments. PhD thesis, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany, February 2015. [see
page 111]

[NSW+12] Christoph Neumüller, Andreas Scheibenpflug, Stefan Wag-
ner, Andreas Beham, and Michael Affenzeller. Large scale

308

Bibliography

parameter meta-optimization of metaheuristic optimization
algorithms with heuristiclab Hive. Actas del VIII Español so-
bre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, 2012.
[see pages 5 and 245]

[NZES05] P. Ngatchou, A. Zarei, and A. El-Sharkawi. Pareto Multi Ob-
jective Optimization. In Proceedings of the 13th International
Conference on, Intelligent Systems Application to Power Systems,
pages 84–91, 2005. [see pages 20 and 21]

[NZJT12] Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen
Tan. A Computational Study of Representations in Genetic
Programming to Evolve Dispatching Rules for the Job Shop
Scheduling Problem. IEEE Transactions on Evolutionary Com-
putation, 17(5):621–639, 2012. [see page 106]

[oSCMP13] Council of Supply Chain Management Professionals. SCM
Definitions and Glossary of Terms, Aug 2013. [Online; Last
accessed 18. Oct. 2021]. [see pages 2 and 49]

[PA12] Erik Pitzer and Michael Affenzeller. A Comprehensive Survey
on Fitness Landscape Analysis, pages 161–191. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012. [see pages 246 and 262]

[Pan05] Giselher Pankratz. A Grouping Genetic Algorithm for the
Pickup and Delivery Problem with Time Windows. OR Spec-
trum, 27(1):21–41, jan 2005. [see pages 77 and 251]

[PBM14] Jeremy Pitt, Dídac Busquets, and Sam Macbeth. Distributive
Justice for Self-Organised Common-Pool Resource Manage-
ment. ACM Transactions on Autonomous and Adaptive Systems,
9(3), 2014. [see page 250]

[PD21] Daniela Paddeu and Jozef Denby. Decarbonising road freight:
Is truck automation and platooning an opportunity? Clean
Technologies and Environmental Policy, pages 1–15, 2021. [see
page 3]

[PDG96] Jean-Yves Potvin, Christophe Duhamel, and Francois Guertin.
A Genetic Algorithm for Vehicle Routing with Backhauling.
Applied Intelligence, 6(4):345–355, 1996. [see pages 77 and 251]

309

Bibliography

[PdSOP20] Cristiano G. Pimenta, Alex G. C. de Sá, Gabriela Ochoa, and
Gisele L. Pappa. Fitness Landscape Analysis of Automated
Machine Learning Search Spaces. In Luís Paquete and Chris-
tine Zarges, editors, Evolutionary Computation in Combinatorial
Optimization, pages 114–130, Cham, 2020. Springer Interna-
tional Publishing. [see page 246]

[Pet97] Charles G Petersen. An evaluation of order picking routeing
policies. International Journal of Operations & Production Man-
agement, 17(11):1098–1111, 1997. [see pages 57, 222, and 254]

[PG18] Dmytro Pukhkaiev and Sebastian Götz. BRISE: energy-
efficient benchmark reduction. In Proceedings of the 6th In-
ternational Workshop on Green and Sustainable Software, pages
23–30, 2018. [see page 262]

[PGCP00] Martin Pelikan, David E Goldberg, and Erick Cantu-Paz. Link-
age Problem, Distribution Estimation, and Bayesian Networks.
Evolutionary Computation, 8(3):311–340, 2000. [see page 24]

[PGGM13] Victor Pillac, Michel Gendreau, Christelle Guéret, and An-
drés L Medaglia. A review of dynamic vehicle routing prob-
lems. European Journal of Operational Research, 225(1):1–11,
2013. [see page 51]

[Pig13] Tim Pigden. Missing from the Model: Orders, Drivers, Trac-
tors and Trailers and Non-Linear Loading. In Proceedings of the
15th Annual Conference Companion on Genetic and Evolutionary
Computation, page 1079–1084. ACM, 2013. [see pages 6, 76,
and 253]

[Pin12] Michael L Pinedo. Scheduling: Theory, Algorithms, and Systems.
Springer, 2012. [see page 250]

[PK87] Judea Pearl and Richard E Korf. Search techniques. Annual
Review of Computer Science, 2(1):451–467, 1987. [see page 23]

[PMC+12] Gilles Perrouin, Brice Morin, Franck Chauvel, Franck Fleurey,
Jacques Klein, Yves Le Traon, Olivier Barais, and Jean-Marc
Jézéquel. Towards flexible evolution of Dynamically Adaptive
Systems. In In Proceedings of the 34th International Conference
on Software Engineering, pages 1353–1356. IEEE, 2012. [see
page 244]

310

Bibliography

[PRF16] Barry Porter and Roberto Rodrigues Filho. Losing Control:
The Case for Emergent Software Systems Using Autonomous
Assembly, Perception, and Learning. In 10th International
Conference on Self-Adaptive and Self-Organizing Systems, pages
40–49. IEEE, 2016. [see pages 5 and 244]

[PRT+08] Holger Prothmann, Fabian Rochner, Sven Tomforde, Jürgen
Branke, Christian Müller-Schloer, and Hartmut Schmeck. Or-
ganic Control of Traffic Lights. In Chunming Rong, Mar-
tin Gilje Jaatun, Frode Eika Sandnes, Laurence T. Yang, and
Jianhua Ma, editors, Autonomic and Trusted Computing, pages
219–233, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
[see page 28]

[PS99] Charles G Petersen and Roger W Schmenner. An Evaluation
of Routing and Volume-based Storage Policies in an Order
Picking Operation. Decision Sciences, 30(2):481–501, 1999. [see
pages 55, 56, 222, and 254]

[PSH05] Charles G Petersen, Charles Siu, and Daniel R Heiser. Improv-
ing order picking performance utilizing slotting and golden
zone storage. International Journal of Operations & Produc-
tion Management, 25(10):997–1012, 2005. [see pages 55, 56,
and 254]

[PSvdWN14] Jeroen Ploeg, Dipan P. Shukla, Nathan van de Wouw, and
Henk Nijmeijer. Controller Synthesis for String Stability of
Vehicle Platoons. IEEE Transactions on Intelligent Transportation
Systems, 15(2):854–865, 4 2014. [see page 31]

[PSvN+11] Jeroen Ploeg, Bart T. M. Scheepers, Ellen van Nunen, Nathan
van de Wouw, and Henk Nijmeijer. Design and Experimental
Evaluation of Cooperative Adaptive Cruise Control. In Pro-
ceedings of the 14th International IEEE Intelligent Transportation
Systems Conference, pages 260–265. IEEE, 2011. [see page 32]

[Pup16] Yulia Puplaka. Implementation of platooning concept from
business perspective, 2016. Student Paper. [see page 247]

[QTY10] Ali Gul Qureshi, Eiichi Taniguchi, and Tadashi Yamada. Ex-
act solution for the vehicle routing problem with semi soft

311

Bibliography

time windows and its application. Procedia - Social and Behav-
ioral Sciences, 2(3):5931–5943, 2010. The Sixth International
Conference on City Logistics. [see pages 77 and 251]

[Raj12] Rajesh Rajamani. Vehicle Dynamics and Control. Springer Sci-
ence & Business Media, 2012. [see pages 30, 31, and 32]

[Rao19] Singiresu S Rao. Engineering Optimization: Theory and Practice.
John Wiley & Sons, 2019. [see pages 19, 20, and 23]

[RCC10] Tom Robinson, Eric Chan, and Erik Coelingh. Operating
Platoons On Public Motorways: An Introduction To The
SARTRE Platooning Programme. In Proceedings of the 17th
World Congress on Intelligent Transport Systems, 2010. [see
pages 2, 3, 29, and 247]

[RdK01] Kees Jan Roodbergen and RenÉ de Koster. Routing methods
for warehouses with multiple cross aisles. International Journal
of Production Research, 39(9):1865–1883, 2001. [see pages 52,
53, and 254]

[Req05] Till Requate. Dynamic incentives by environmental policy
instruments–a survey. Ecological Economics, 54(2-3):175–195,
2005. [see page 250]

[Res02] Nicholas Rescher. Fairness: Theory and practice of distributive
justice. Transaction Publishers, 2002. [see pages 66, 67, 81,
113, and 250]

[Ric76] John R Rice. The Algorithm Selection Problem. In Advances
in Computers, volume 15, pages 65–118. Elsevier, 1976. [see
page 5]

[RJC12] Andres J Ramirez, Adam C Jensen, and Betty HC Cheng. A
taxonomy of uncertainty for dynamically adaptive systems. In
7th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 99–108. IEEE, 2012. [see
pages 71 and 81]

[RKVB14] F. M. Roth, C. Krupitzer, S. Vansyckel, and C. Becker. Nature-
Inspired Interference Management in Smart Peer Groups. In
International Conference on Intelligent Environments, pages 132–
139, 2014. [see page 250]

312

Bibliography

[RLR18] Jeppe Rich, Rune Larsen, and Thomas Kjær Rasmussen. Intel-
ligent truck platooning : how to make it work. In Proceedings
of the 25th ITS World Congress, 2018. [see pages 40 and 45]

[RMLG07] A. E. Rizzoli, R. Montemanni, E. Lucibello, and L. M. Gam-
bardella. Ant colony optimization for real-world vehicle rout-
ing problems. Swarm Intelligence, 1(2):135–151, sep 2007. [see
pages 77 and 251]

[RMW17] Sankar Kumar Roy, Gurupada Maity, and Gerhard-Wilhelm
Weber. Multi-objective two-stage grey transportation problem
using utility function with goals. Central European Journal of
Operations Research, 25(2):417–439, 2017. [see page 253]

[RMW19] Sankar Kumar Roy, Sudipta Midya, and Gerhard-WilhelmWe-
ber. Multi-objective multi-item fixed-charge solid transporta-
tion problem under twofold uncertainty. Neural Computing
and Applications, 31(12):8593–8613, 2019. [see page 253]

[RMWG17] Sankar Kumar Roy, Gurupada Maity, Gerhard Wilhelm We-
ber, and Sirma Zeynep Alparslan Gök. Conic scalarization
approach to solve multi-choice multi-objective transportation
problem with interval goal. Annals of Operations Research,
253(1):599–620, 2017. [see page 253]

[RR83] H Donald Ratliff and Arnon S Rosenthal. Order-Picking in
a Rectangular Warehouse: A Solvable Case of the Traveling
Salesman Problem. Operations Research, 31(3):507–521, 1983.
[see pages 57, 58, and 254]

[RRFS07] Matthias Rockl, Patrick Robertson, Korbinian Frank, and
Thomas Strang. An architecture for situation-aware driver
assistance systems. In 2007 IEEE 65th Vehicular Technology
Conference-VTC2007-Spring, pages 2555–2559. IEEE, 2007. [see
pages 5 and 243]

[RSCMT19] J Reyes, E Solano-Charris, and J Montoya-Torres. The storage
location assignment problem: A literature review. International
Journal of Industrial Engineering Computations, 10(2):199–224,
2019. [see page 74]

313

Bibliography

[RSM20] Bochra Rabbouch, Foued Saâdaoui, and Rafaa Mraihi.
Empirical-type simulated annealing for solving the capaci-
tated vehicle routing problem. Journal of Experimental & Theo-
retical Artificial Intelligence, 32(3):437–452, 2020. [see pages 77
and 251]

[RTLZ00] Rajesh Rajamani, Han-Shue Tan, Boon Kait Law, and Wei-Bin
Zhang. Demonstration of Integrated Longitudinal and Lateral
Control for the Operation of Automated Vehicles in Platoons.
IEEE Transactions on Control Systems Technology, 8(4):695–708,
2000. [see page 31]

[SAAS14] Maram Shqair, Safwan Altarazi, and Sameh Al-Shihabi. A sta-
tistical study employing agent-basedmodeling to estimate the
effects of different warehouse parameters on the distance trav-
eled in warehouses. Simulation Modelling Practice and Theory,
49:122–135, 2014. [see page 254]

[SBH17] Dietrich Steinmetz, Gerrit Burmester, and Sven Hartmann. A
Fast Heuristic for Finding Near-Optimal Groups for Vehicle
Platooning in Road Networks. In Proceedings of the Interna-
tional Conference on Database and Expert Systems Applications,
pages 395–405. Springer International Publishing, 2017. [see
page 41]

[Seg16] Michele Segata. Safe and Efficient Communication Protocols for
Platooning Control. Phd thesis, University of Innsbruck, 2 2016.
[see pages 29, 67, and 263]

[SGD11] Christoph Sommer, Reinhard German, and Falko Dressler.
Bidirectionally Coupled Network and Road Traffic Simula-
tion for Improved IVC Analysis. IEEE Transactions on Mobile
Computing, 10(1):3–15, 2011. [see page 46]

[SGPB17] Sanny Schmid, Ilias Gerostathopoulos, Christian Prehofer,
and Thomas Bures. Self-Adaptation Based on Big Data Ana-
lytics: A Model Problem and Tool. In Proceedings of the 12th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 102–108, 2017. [see page 249]

[SHKM14] Yuan Sun, Saman K. Halgamuge, Michael Kirley, andMario A.
Munoz. On the selection of fitness landscape analysis metrics

314

Bibliography

for continuous optimization problems. In 7th International Con-
ference on Information and Automation for Sustainability, pages
1–6, 2014. [see page 246]

[SIS13] Stefan Solyom, Arash Idelchi, and Badr Bin Salamah. Lateral
Control of Vehicle Platoons. In IEEE International Conference
on Systems, Man, and Cybernetics, pages 4561–4565. IEEE, 10
2013. [see page 33]

[SJB+14] Michele Segata, Stefan Joerer, Bastian Bloessl, Christoph Som-
mer, Falko Dressler, and Renato Lo Cigno. PLEXE: A Platoon-
ing Extension for Veins. In Proc. VNC, pages 53–60, 2014. [see
pages 46 and 263]

[SKG12] Natanaree Sooksaksun, Voratas Kachitvichyanukul, and Dah-
Chuan Gong. A class-based storage warehouse design using
a particle swarm optimisation algorithm. International Journal
of Operational Research, 13(2):219–237, 2012. [see page 254]

[Ski11] Rafał Skinderowicz. Co-operative, Parallel Simulated Anneal-
ing for the VRPTW. In Computational Collective Intelligence.
Technologies and Applications, pages 495–504. Springer Berlin
Heidelberg, 2011. [see pages 77 and 251]

[SKSB21] Timo Sturm, Christian Krupitzer, Michele Segata, and Chris-
tian Becker. A Taxonomy of Optimization Factors for Pla-
tooning. IEEE Transactions on Intelligent Transportation Systems,
22(10):6097–6114, 2021. [see pages 3, 29, and 37]

[SKVPA16] Elham Semsar-Kazerooni, Jan Verhaegh, Jeroen Ploeg, and
Mohsen Alirezaei. Cooperative adaptive cruise control: An
artificial potential field approach. In IEEE Intelligent Vehicles
Symposium, pages 361–367, Göteborg, Sweden, 6 2016. IEEE.
[see page 33]

[SLB19] Xudong Sun, Jiali Lin, and Bernd Bischl. ReinBo: Machine
Learning pipeline search and configuration with Bayesian Op-
timization embedded Reinforcement Learning. arXiv preprint
arXiv:1904.05381, 2019. [see page 245]

[SLHB21] Yong-Jun Shin, Lingjun Liu, Sangwon Hyun, and Doo-Hwan
Bae. Platooning LEGOs: An Open Physical Exemplar for Engi-
neering Self-Adaptive Cyber-Physical Systems-of-Systems. In

315

Bibliography

2021 International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS), pages 231–237, 2021.
[see page 2]

[SLM+17] Vadim Sokolov, Jeffrey Larson, Todd Munson, Josh Auld,
and Dominik Karbowski. Platoon formation maximization
through centralized routing and departure time coordination.
Technical report, Argonne National Laboratory, 2017. [see
page 41]

[SLMS20] Sergey Sukhov, Mikhail Leontev, AlexanderMiheev, and Kirill
Sviatov. Prevention of catastrophic interference and imposing
active forgetting with generative methods. Neurocomputing,
400:73–85, 2020. [see page 261]

[SM09] Kate A Smith-Miles. Cross-disciplinary perspectives on meta-
learning for algorithm selection. ACM Computing Surveys,
41(1):1–25, 2009. [see pages 5, 108, and 244]

[SMM08] Alexander Scheidler, Daniel Merkle, and Martin Middendorf.
Congestion Control in Ant LikeMovingAgent Systems. In Pro-
ceedings of Biologically-Inspired Collaborative Computing, pages
33–43. Springer, 2008. [see page 250]

[SR16] Ali Mohammad Shahdaei and Amir Masoud Rahimi. Solv-
ing vehicule routing problem with simultaneous pick-up and
delivery with the application of genetic algirithm. In Indian
Journal of Fundamental andApplied Life Sciences, volume 6, pages
247–259, 2016. [see pages 77 and 251]

[SSV+15] Stefania Santini, Allesandro Salvi, Antonio Saverio Valente,
Antonio Pescap, Michele Segata, and Renato Lo Cigno.
A Consensus-based Approach for Platooning with Inter-
Vehicular Communications. In Proceedings of the 2015 IEEE
Conference on Computer Communications, pages 1158–1166, 2015.
[see page 33]

[SSV+19] Stefania Santini, Alessandro Salvi, Antonio Saverio Valente,
Antonio Pescapè, Michele Segata, and Renato Lo Cigno. Pla-
tooning Maneuvers in Vehicular Networks: a Distributed and
Consensus-Based Approach. IEEE Transactions on Intelligent
Vehicles (T-IV), 4(1):59–72, 3 2019. [see page 33]

316

Bibliography

[Sus08] Joseph S Sussman. Perspectives on intelligent transportation
systems (ITS). Springer Science & Business Media, 2008. [see
pages 2, 27, and 28]

[SWH11] W.Y. Szeto, Yongzhong Wu, and Sin C. Ho. An artificial bee
colony algorithm for the capacitated vehicle routing problem.
European Journal of Operational Research, 215(1):126–135, 2011.
[see pages 77 and 251]

[SWM19] Stepan Shevtsov, Danny Weyns, and Martina Maggio.
SimCA*: A Control-Theoretic Approach to Handle Uncer-
tainty in Self-Adaptive Systems with Guarantees. ACM Trans-
actions on Autonomous and Adaptive Systems, 13(4), 2019. [see
pages 248 and 249]

[TBJ17] Valerio Turri, Bart Besselink, and Karl H. Johansson. Cooper-
ative Look-Ahead Control for Fuel-Efficient and Safe Heavy-
Duty Vehicle Platooning. IEEE Transactions on Control Systems
Technology, 25(1):12–28, 2017. [see page 33]

[TG10] A. Serdar Tasan and Mitsuo Gen. A genetic algorithm based
approach to vehicle routing problem with simultaneous pick-
up and deliveries. In Computers & Industrial Engineering, vol-
ume 62. IEEE, 2010. [see pages 77 and 251]

[TGBM17] Erfan Babaee Tirkolaee, Alireza Goli, Mani Bakhsi, and Iraj
Mahdavi. A robust multi-trip vehicle routing problem of per-
ishable products with intermediate depots and time windows.
Numerical Algebra, Control & Optimization, 7(4):417–433, 2017.
[see page 252]

[THHLB13] Chris Thornton, Frank Hutter, Holger H Hoos, and Kevin
Leyton-Brown. Auto-WEKA: Combined selection and hy-
perparameter optimization of classification algorithms. In
Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 847–855, 2013. [see
page 245]

[THS+14] S. Tomforde, J. Hähner, H. Seebach, W. Reif, B. Sick, A.Wacker,
and I. Scholtes. Engineering and Mastering Interwoven Sys-
tems. In Workshop Proceedings on Architecture of Computing
Systems, 2014. [see page 249]

317

Bibliography

[THS+18] Erfan Babaee Tirkolaee, Ali Asghar Rahmani Hosseinabadi,
Mehdi Soltani, Arun Kumar Sangaiah, and Jin Wang. A Hy-
brid Genetic Algorithm for Multi-Trip Green Capacitated Arc
Routing Problem in the Scope of Urban Services. Sustainability,
10(5), 2018. [see page 252]

[THWM20] Erfan Babaee Tirkolaee, Shaghayegh Hadian, Gerhard-
Wilhelm Weber, and Iraj Mahdavi. A robust green traffic-
based routing problem for perishable products distribution.
Computational Intelligence, 36(1):80–101, 2020. [see page 253]

[TJS16] Sadayuki Tsugawa, Sabina Jeschke, and Steven E Shladover. A
review of truck platooning projects for energy savings. IEEE
Transactions on Intelligent Vehicles, 1(1):68–77, 2016. [see
page 29]

[TPB+11] Sven Tomforde, Holger Prothmann, Jürgen Branke, Jörg Häh-
ner, Moez Mnif, Christian Müller-Schloer, Urban Richter, and
Hartmut Schmeck. Observation and Control of Organic Sys-
tems. In Organic Computing–A Paradigm Shift for Complex Sys-
tems, pages 325–338. Springer, 2011. [see pages 2, 17, and 88]

[TPC08] Jorge Tavares, Francisco B. Pereira, and Ernesto Costa. Multidi-
mensional Knapsack Problem: A Fitness Landscape Analysis.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics), 38(3):604–616, 2008. [see page 246]

[TV14] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods,
and applications. Society for Industrial and Applied Mathemat-
ics, 2014. [see page 51]

[TWH01] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Esti-
mating the number of clusters in a data set via the gap statistic.
Journal of the Royal Statistical Society: Series B (Statistical Method-
ology), 63(2):411–423, 2001. [see page 106]

[TYA+17] M. Noumbissi Tchoupo, A. Yalaoui, L. Amodeo, F. Yalaoui,
and F. Lutz. Ant Colony Optimization Algorithm for Pickup
and Delivery Problemwith TimeWindows. In Antonio Sforza
and Claudio Sterle, editors, Springer Proceedings inMathematics
& Statistics, pages 181–191. Springer International Publishing,
2017. [see pages 77 and 251]

318

Bibliography

[UAB+08] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher
Baker, Robert Bittner, M. N. Clark, John Dolan, Dave Dug-
gins, Tugrul Galatali, Chris Geyer, Michele Gittleman, Sam
Harbaugh, Martial Hebert, Thomas M. Howard, Sascha Kol-
ski, Alonzo Kelly, Maxim Likhachev, Matt Mcnaughton, Nick
Miller, Kevin Peterson, Brian Pilnick, Raj Rajkumar, Paul
Rybski, Bryan Salesky, Young-woo Seo, Sanjiv Singh, Jarrod
Snider, Anthony Stentz, William Red Whittaker, Ziv Wolkow-
icki, Jason Ziglar, Hong Bae, Thomas Brown, Daniel Demitr-
ish, Bakhtiar Litkouhi, Jim Nickolaou, Varsha Sadekar, Wende
Zhang, Joshua Struble, andMichael Taylor. Autonomous Driv-
ing in Urban Environments: Boss and the Urban Challenge.
Journal of Field Robotics, 25(8):425–466, 2008. [see page 31]

[Vau99] T.S. Vaughan. The effect of warehouse cross aisles on order
picking efficiency. International Journal of Production Research,
37(4):881–897, 1999. [see page 254]

[VCG+12] Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Na-
dia Lahrichi, and Walter Rei. A Hybrid Genetic Algorithm for
Multidepot and Periodic Vehicle Routing Problems. Operations
Research, 60(3):611–624, 2012. [see pages 77 and 251]

[VCIC15] Lucian Vinţan, Radu Chiş, Muhammad Ali Ismail, and Cris-
tianCoţofană. ImprovingComputing SystemsAutomaticMul-
tiobjective Optimization Through Meta-Optimization. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(7):1125–1129, 2015. [see pages 5 and 245]

[vGRCdK18] Teun van Gils, Katrien Ramaekers, An Caris, and René B. M.
de Koster. Designing efficient order picking systems by com-
bining planning problems: State-of-the-art classification and
review. European Journal of Operational Research, 267:1–15, 05
2018. [see pages 6, 75, and 254]

[VJD15] Sebastian Van De Hoef, Karl H Johansson, and Dimos V Di-
marogonas. Fuel-Optimal Centralized Coordination of Truck
Platooning Based on Shortest Paths. In Proceedings of the 2015
American Control Conference, pages 3740–3745, 2015. [see
pages 38, 39, 40, 41, and 45]

319

Bibliography

[VJD18] Sebastian Van De Hoef, Karl Henrik Johansson, and Dimos V
Dimarogonas. Fuel-Efficient En Route Formation of Truck
Platoons. IEEE Transactions on Intelligent Transportation Systems,
19(1):102–112, 2018. [see pages 39 and 42]

[VMDJ19] Sebastian Van De Hoef, Jonas Mårtensson, Dimos V. Dimarog-
onas, and Karl Henrik Johansson. A Predictive Framework for
Dynamic Heavy-Duty Vehicle Platoon Coordination. ACM
Transactions on Cyber-Physical Systems, 4(1), 2019. [see pages 41
and 42]

[Voi31] Bernhard Friedrich Voigt. Der Handlungsreisende, wie er
sein soll und was er zu thun hat, umAufträge zu erhalten und
eines glücklichen Erfolgs in seinen Geschäften gewiss zu sein.
Commis-Voageur, Ilmenau, 1831. [see page 50]

[VWHK13a] Willem Van Willigen, Evert Haasdijk, and Leon Kester. A
multi-objective approach to evolving platooning strategies in
intelligent transportation systems. In Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation,
pages 1397–1404. Association for Computing Machinery, 2013.
[see page 40]

[VWHK13b] Willem Van Willigen, Evert Haasdijk, and Leon Kester. Fast,
Comfortable or Economical: Evolving Platooning Strategies
with Many Objectives. In Proceedings of the 16th International
IEEE Conference on Intelligent Transportation Systems, pages
1448–1455, 2013. [see page 44]

[VWMA11] Pieter Vromant, Danny Weyns, SamMalek, and Jesper Ander-
sson. On Interacting Control Loops in Self-Adaptive Systems.
In Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS
’11, page 202–207, New York, NY, USA, 2011. Association for
Computing Machinery. [see page 28]

[WAY+16] Shuai Wang, Shaukat Ali, Tao Yue, Yan Li, and Marius Liaaen.
A practical guide to select quality indicators for assessing
pareto-based search algorithms in search-based software en-
gineering. In Proceedings of the 38th International Conference on
Software Engineering, pages 631–642. ACM, 2016. [see pages 21
and 219]

320

Bibliography

[WC12] Hsiao-Fan Wang and Ying-Yen Chen. A genetic algorithm for
the simultaneous delivery and pickup problems with time
window. Computers & Industrial Engineering, 62(1):84–95, 2012.
[see pages 77 and 251]

[WLZY18] Mang Wang, Bin Li, Guofu Zhang, and Xin Yao. Popula-
tion Evolvability: Dynamic Fitness Landscape Analysis for
Population-Based Metaheuristic Algorithms. IEEE Transac-
tions on Evolutionary Computation, 22(4):550–563, 2018. [see
page 246]

[WM97] David H. Wolpert and William G. Macready. No free lunch
theorems for optimization. IEEE Transactions on Evolutionary
Computation, 1(1):67–82, 1997. [see pages 4, 73, 74, 75, 81, 107,
110, 113, and 119]

[WS03] Anne Wade and Said Salhi. An Ant System Algorithm for
the Mixed Vehicle Routing Problem with Backhauls. In Meta-
heuristics: Computer Decision-Making, pages 699–719. Springer
US, 2003. [see pages 77 and 251]

[WTKD04] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and
Rajarshi Das. Utility Functions in Autonomic Systems. In
International Conference on Autonomic Computing, pages 70–77,
2004. [see pages 122 and 249]

[WW02] Jane Webster and Richard T Watson. Analyzing the Past to
Prepare for the Future: Writing a Literature Review. MIS
Quarterly, 26(2):xiii–xxiii, 2002. [see page 34]

[WZW+16] Jiahai Wang, Ying Zhou, Yong Wang, Jun Zhang, C. L. Philip
Chen, and Zibin Zheng. Multiobjective Vehicle Routing Prob-
lems With Simultaneous Delivery and Pickup and Time Win-
dows: Formulation, Instances, and Algorithms. IEEE Trans-
actions on Cybernetics, 46(3):582–594, 2016. [see pages 77
and 251]

[WZZL18] Lijun Wei, Zhenzhen Zhang, Defu Zhang, and Stephen C.H.
Leung. A simulated annealing algorithm for the capacitated
vehicle routing problem with two-dimensional loading con-
straints. European Journal of Operational Research, 265(3):843–
859, 2018. [see pages 77 and 251]

321

Bibliography

[XGN+10] Bo Xing, Wen-Jing Gao, Fulufhelo V Nelwamondo, Kimberly
Battle, and Tshilidzi Marwala. Ant colony optimization for
automated storage and retrieval system. In IEEE Congress
on Evolutionary Computation, pages 1–7. IEEE, 2010. [see
page 254]

[XPN16] Haitao Xing, Jeroen Ploeg, and Henk Nijmeijer. Padé Ap-
proximation of Delays in Cooperative ACC Based on String
Stability Requirements. IEEE Transactions on Intelligent Vehicles
(T-IV), 1(3):277–286, 9 2016. [see page 31]

[XSBC14] Xiao-Feng Xie, Stephen F Smith, Gregory J Barlow, and Ting-
Wei Chen. Coping with real-world challenges in real-time
urban traffic control. InCompendium of Papers of the 93rd Annual
Meeting of the Transportation Research Board, pages 1–15, 2014.
[see page 2]

[XSJ21] Xi Xiong, Junyi Sha, and Li Jin. Optimizing Coordinated Vehi-
cle Platooning: An Analytical Approach Based on Stochastic
Dynamic Programming. Transportation Research Part B: Method-
ological, 150:482–502, 2021. [see page 45]

[YMK+18] Mohamed El Yafrani, Marcella S. R. Martins, Mehdi El Krari,
Markus Wagner, Myriam R. B. S. Delgado, Belaïd Ahiod, and
Ricardo Lüders. A Fitness Landscape Analysis of the Travel-
ling Thief Problem. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO ’18, page 277–284, New
York, NY, USA, 2018. Association for Computing Machinery.
[see page 246]

[YYY09] Bin Yu, Zhong-Zhen Yang, and Baozhen Yao. An improved
ant colony optimization for vehicle routing problem. European
Journal of Operational Research, 196(1):171–176, 2009. [see
pages 77 and 251]

[ZBL+19] Marwin Züfle, André Bauer, Veronika Lesch, Christian
Krupitzer, Nikolas Herbst, Samuel Kounev, and Valentin
Curtef. Autonomic Forecasting Method Selection: Exami-
nation and Ways Ahead. In Proceedings of the 16th IEEE Inter-
national Conference on Autonomic Computing. IEEE, June 2019.
[see page xxv]

322

Bibliography

[ZC18] Alice Zheng and Amanda Casari. Feature Engineering for
Machine Learning: Principles and Techniques for Data Scientists.
O’Reilly, 2018. [see page 123]

[ZHO+18] Yuanyuan Zhang, Mark Harman, Gabriela Ochoa, Guenther
Ruhe, and Sjaak Brinkkemper. An Empirical Study of Meta-
and Hyper-Heuristic Search for Multi-Objective Release Plan-
ning. ACM Transactions on Software Engineering and Methodol-
ogy, 27(03), 2018. [see pages 5 and 245]

[ZMJ16] Wei Zhang, Xiaoliang Ma, and Erik Jenelius. Planning of
heavy-duty vehicle platoon formulation: basic scheduling
problem considering travel time variance. In Proceedings of the
Transportation Research Board 95th Annual Meeting, 2016. [see
page 41]

[ZML+21] Marwin Züfle, Felix Moog, Veronika Lesch, Christian
Krupitzer, and Samuel Kounev. A machine learning-based
workflow for automatic detection of anomalies in machine
tools. ISA Transactions, 2021. Impact Factor (2020): 5.468. [see
page xxiii]

[ZSK17] Wei Zhang,Marcus Sundberg, andAnders Karlström. Platoon
coordination with time windows: an operational perspective.
Transportation Research Procedia, 27:357–364, 2017. [see page 44]

[ZYS+16] Xinglin Zhang, Zheng Yang, Wei Sun, Yunhao Liu, Shaohua
Tang, Kai Xing, and Xufei Mao. Incentives for Mobile Crowd
Sensing: A Survey. IEEE Communications Surveys & Tutorials,
18(1):54–67, 2016. [see page 250]

323

	Introduction
	Motivation
	Problem Statement and Shortcomings of Existing Approaches
	Research Questions
	Contributions
	Outline

	Foundations
	Self-aware Computing
	Optimization
	Optimization Problems
	Multi-objective Optimization
	Quality Indicators for Multi-objective Optimization
	Optimization Algorithms

	Intelligent Transportation Systems
	Platooning
	Levels of Platooning
	Platooning Control

	Platooning Coordination
	Taxonomy
	Concept
	Strategy

	Platooning Coordination Simulation

	Logistics
	Traveling Salesman Problem
	Vehicle Routing Problem
	Mezzanine Warehouses
	Warehouse Layout
	Storage Assignment
	Order Picking

	Selected Motivating Scenarios
	Intelligent Transportation Systems
	Situation-dependency
	Fairness
	Uncertainty

	Logistics
	Storage Assignment and Order Picking
	Vehicle Routing Problem

	Summary

	Self-aware Optimization
	Self-aware Optimization Framework
	Assumptions
	Terminology
	System Model
	LRA-M Loop Adoption
	Framework Composition
	Coordination
	Domain Data Model
	Situation Detection
	Strategy Selection
	Parameter Optimization

	Use Case-specific Adapter of the Framework
	Fairness-Ensuring Adaptation Planning Strategies
	Drafting a Single Vehicle to the Front (DtF)
	Drafting a Single Vehicle to the Back (DtB)
	Belgian Tourniquet (BT)
	Belgian Tourniquet Jump-start (BTJS)
	Reversed Belgian Tourniquet (RBT)
	Reversed Belgian Tourniquet Jump-start (RBTJS)

	Addressing Uncertainty in Adaptation Planning Strategies
	CostSAVeR
	Utility Functions

	Summary

	Optimization of Vertical Systems-of-Systems
	Problem Statement
	Approach
	Two-staged Strategy
	Cost Function
	Timeline Algorithm

	Genetic Algorithm
	VRP-stage
	TSP-stage

	Ant Colony Optimization
	VRP-stage
	TSP-stage

	Summary

	Optimization of Horizontal Systems-of-Systems
	Meta-Model of Considered Mezzanine Warehouses
	Storage Assignment
	Constraints and Assumptions
	3-Phase Storage Assignment Algorithm

	Genetic Algorithm for Storage Assignment
	Chromosome Encoding
	Objective Functions
	Genetic Operators
	NSGA-II Algorithm

	Order Picking
	Constraints
	Graph Representation
	Pick Route Construction
	Heuristic Function
	Objective Functions
	ACO Algorithm Procedure
	ACO3 Variant
	ACO4 Variant

	Summary

	Evaluation
	Self-aware Optimization Framework
	Methodology
	Evaluation of the Situation Detection Component
	Evaluation of the Strategy Selection Component
	Evaluation of the Parameter Optimization Component
	Evaluation of the Entire Framework
	Threats to Validity
	Summary

	Vertical Systems-of-Systems Workflow
	Problem Instances
	Alternative Algorithms for Comparison
	Evaluation Procedure
	Results and Interpretation
	TSP-I
	TSP-II
	TSP-II-P
	VRP-I
	VRP-I-P
	VRP-II
	TSP-PD
	VRP-PD

	Threats to Validity
	Summary

	Horizontal Systems-of-Systems Approach
	Mezzanine Warehouse Models
	Alternative Strategies
	Algorithm Parameter Settings
	Evaluation of the Storage Assignment Approach
	Evaluation of the Order Picking Approach
	Evaluation of Interacting Processes in Mezzanine Warehouses
	Storage Assignment Approaches combined with ACO_3
	Storage Assignment Approaches combined with ACO_4
	Order Picking Approaches combined with NSGA-II

	Threats to Validity
	Summary

	Conclusions
	Related Work
	Self-aware Optimization Framework
	Systems-of-Systems Integration
	Optimization of the Rich Vehicle Routing Problem
	Optimization of Warehouse Processes

	Conclusion
	Outlook
	Appendices
	Appendix
	Full Specification of the Domain Data Model of the Self-Aware Optimization Framework

	List of Figures
	List of Tables
	Acronyms
	Bibliography

