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1
Introduction

It ain’t what you don’t know that gets you into trouble.
It’s what you know for sure that just ain’t so.

Sometimes attributed to Mark Twain.

W hen we watch (and enjoy) lightnings during a mild summer night, when a child’s haircut
becomes messy after sliding down a slide, or when a frog’s leg is twitched by a galvanic

cell, the same fundamental mechanism is taking place: the movement of particles carrying an
electric charge. This very effect however not only provides descriptive and hands-on examples
for fruitful physics lessons, but is also of essential importance for the functionality of devices
embedded in a myriad of everyday applications – transistors, the backbone of our digitized lives.
These devices enable a controllable current flow, which is utilized for realizing logic gates within
integrated circuits. Since the 1970s, the semiconductor industry was able to double the number
of transistors in an integrated circuit every two years, which has caused an unequalled gain of
technology and wealth. This exponential growth in chip complexity was a priori anticipated by
Gordon E. Moore [1, 2] and is referred to as Moore’s law.1

In order to keep up with the law (referred to as More Moore), in 1998 the global semiconductor
industry started to release the so-called International Technology Roadmap for Semiconductors
(ITRS) on an annual basis [3]. The purpose of the latter was the coordination and harmonization
of efforts throughout all sectors and segments of the industry, which should ensure that new chips
follow Moore’s law. Thus, the collaboration among suppliers and manufacturers transformed
the law into a self-fulfilling prophecy [4]. However, in 2015, the industry had to face the fact
that a further pursuit of Moore’s law had to be abandoned due to a combination of increasing
1In 1965, Gordon E. Moore forecast a doubling every year [1]. In 1975, he revised his prediction to a doubling
every two years [2].
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physical and economic limitations. Therefore, the ITRS orchestrated downscaling of transistor
sizes was replaced by the new International Roadmap for Devices and Systems (IRDS) in 2016.
The latter is characterized by a strategy which is referred to as More than Moore. It starts with
the analysis of applications needs (for example smartphones or cloud data centres), followed by
the development and supply of customized chips. This concept is contrary to the past, where
applications where always forced to adapt to improved chip generations [4].

Despite the new conception of the IRDS, there are still a lot of ongoing efforts following and
optimizing theMore Moore way. In this context, one key aspect is a new lithography process based
on the usage of extreme ultraviolet (EUV) radiation, which is referred to as EUV lithography.
Substantiating the importance of the EUV lithography technology, a German industry-academic
cooperation was awarded the German Future Prize 2020 for its ground-breaking contributions
to realize the latter [5].

In addition to further improving the fabrication of chips, another approach is based on
researching possible future logic devices realizations which are expected to perform superiorly
compared to conventional complementary metal-oxide-semiconductor (CMOS) devices due to
peculiar and unique physical properties. This alternative is referred to as Beyond CMOS (or also
as Beyond Moore) and an example are spintronic devices [3]. A further option is represented by
the implementation of an entirely new paradigm like quantum computing, which has recently
experienced enormous experimental progress [6, 7]. However, the research towards quantum
computation and spintronic devices is still in its early stages and the quest for material systems
and physical concepts which provide optimal frame conditions to realize these seminal concepts –
despite the most recent breakthroughs – is still ongoing.

In this regard, one of the most promising candidates is represented by the new material
class of two-dimensional (2D) topological insulators (TIs). Devices based on these materials are
characterized by conducting states at the edge of the sample, while the bulk is insulating. These
so-called edge states are topologically protected against backscattering and are thus not causing
any heat – one of the major drawbacks of today’s CMOS technology. The corresponding signature
state of 2D-TIs is the quantum spin Hall (QSH) effect, which was experimentally demonstrated
for the first time in inverted mercury telluride (chemical formula HgTe) quantum wells by the
group of Laurens W. Molenkamp in 2007 [8]. Since this seminal achievement, the utilization of
these unique physical properties in the form of dedicated devices is one of the main goals of the
current research in the field.

In this context, the device concept of a quantum point contact (QPC) [9, 10] is envisaged to
offer a lot of novel and promising possibilities when implemented in a QSH system. It is formed
by a one-dimensional (1D) constriction in an otherwise extended 2D electron or hole system.
If a QPC is realized in a 2D-TI by using an etching process, the QSH edge states are brought
in spatial proximity when they traverse the defined constriction. Such a scenario is expected
to enable the examination of possible interaction effects between the edge states and thus to
allow for a lot of unprecedented experiments. However, no working QPC technology has been
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implemented in 2D-TI systems, so far. In order to overcome this backlog, the accomplishment
of the latter utilizing HgTe quantum wells is the research subject of this thesis, which consists
of three main chapters.

In Chapter 2, the emergence of the QSH state in inverted HgTe quantum wells is explained
and the concept of QPCs is introduced. Afterwards, a newly developed lithography process for
realizing QPCs in HgTe quantum wells is presented. These remarks are followed by a basic
quantum transport characterization of several devices.

In Chapter 3, the formation of a QSH interferometer state in appropriate QPC devices is
discussed, which is explained using a model based on band structure calculations. Due to the
physical properties of inverted HgTe quantum wells, the impact of three different quantum phases
is anticipated. Measurements of the QSH conductance depending on an applied gate voltage as
well as on an applied magnetic field reveal the accumulation of the expected quantum phases.
The results are substantiated by analytic model considerations.

In Chapter 4, the appearance of an anomalous conductance signature emerging from the
QSH state of QPCs based on thick inverted HgTe quantum wells is examined. The effect is only
observed for a small interval of device width values. Moreover, further experimental examination
provides evidence that the signature is related to a gapped topological state and that it is
accompanied by a backscattered QSH edge channel. Two explanatory theoretic models based on
electron-electron interactions are presented.

Each of the three chapters is based in parts on a (to be) published manuscript. Throughout the
whole thesis, required theoretical aspects are integrated within the course of each individual chap-
ter. A recapitulating summary of the presented results is given in Chapter 5, the corresponding
German version is added in Chapter 6.
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2
Realization and

characterization of quantum
point contacts in the quantum

spin Hall insulator HgTe

In this chapter, an initial comprehensive introduction to the emergence of the quantum spin
Hall effect in inverted HgTe quantum wells is provided. Subsequently, the concept of quantum
point contacts is introduced and the associated transport behaviour is analytically explained based
on the saddle point model. After having outlined the constraints of realizing these devices in a
quantum spin Hall system, the lithographic fabrication of top gated quantum point contacts in
HgTe quantum wells utilizing a multi-step wet etching technique is presented. Thereafter, the
transport behaviour of a topological quantum point contact is analysed and the acquired data is
compared with the conductance of a trivial sample. The gate voltage dependence of the conductance
shows the expected quantization in integer steps of ∆G ≈ 2e2/h within the conduction band for
both samples as well as a residual conductance of GQSH ≈ 2e2/h within the bulk band gap for
the topological device due to helical edge channel transport. Furthermore, evidence is provided
that narrow quantum point contacts can be utilized as all-electrically tunable tunnel barriers
in quantum spin Hall systems. Lastly, it is explicated that the trivial ballistic one-dimensional
transport observed in a topological device mirrors the characteristics of quantum point contacts
realized in trivial material systems under temperature and bias voltage influence.

7
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2 Realization and characterization of quantum point contacts in

the quantum spin Hall insulator HgTe

2.1 Quantum spin Hall insulator state in HgTe quan-
tum wells

F ollowing the discovery of the quantum Hall effect (QHE) in a two-dimensional electron
gas (2DEG) at high magnetic fields by von Klitzing et al. [1], the concept of band topology

was introduced in order to explain the observable quantized Hall conductance [2, 3]. The latter
emerges in units of e2/h and can be described by σxy = n · (e2/h), where n ∈ N is an integer,
e is the elementary charge and h is the Planck constant. The integer n is referred to as Chern
number, which indicates the number of occupied Landau Levels and defines the topology of the
band dispersion.

In 2005, Kane and Mele [4] elaborated that topologically non-trivial states of matter can also
emerge without breaking time reversal symmetry, i.e. without the application of a magnetic field.
The authors analysed the band structure of graphene under the impact of spin-orbit coupling and
predicted that the influence of the latter results in a gap opening within the otherwise gapless
Dirac spectrum. This gapped state is characterized by an inverted band ordering, which results
in the emergence of spin-polarized edge states with opposite directions of motion for opposite
spin-orientations (spin-up and spin-down) at a given edge. These edge states form the so-called
QSH state. In analogy with the correlation between particle momentum and particle spin known
as helicity, the edge states are also referred to as helical edge states (or channels) [5]. They form
a so-called Kramers doublet, which is topologically protected by time reversal symmetry. This
circumstance results in the peculiar situation that helical edge channels (synonymously called
QSH edge channels) are protected against backscattering as long as time reversal symmetry is
preserved. A system hosting the QSH state is also referred to as a 2D-TI.

Hereinafter, it turned out that an experimental observation of the pure QSH regime in
graphene would be rather challenging due to the small extent of the bulk band gap [6, 7].
Consequently, no distinct signatures of pure QSH transport have been identified in graphene
based devices to this day. However – shortly after the work of Ref. [4] – a publication by Bernevig,
Hughes and Zhang [8] predicted the QSH state to emerge for HgTe quantum wells of appropriate
thickness. For a more comprehensive and extensive introduction to topological band theory, the
interested reader is referred for example to Ref. [9].

2.1.1 Band structure of HgTe quantum wells

T he compound HgTe is a zincblende-type II-VI material. The bonds within the material
form between 6s electrons from Hg atoms and 5p electrons from Te atoms. As a result, the

key energy bands located close to the Fermi energy EF emerge from these energy levels, as it
is common for most conventional zincblende-type semiconductors. However, HgTe represents a
special case concerning the resulting energetic band ordering [10].

Since both Hg and Te are rather heavy atoms, relativistic corrections to the positions of the
energy levels are of importance. The impact of these corrections for CdTe and HgTe is depicted
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Figure 2.1: a,b, Sketch of the evolution of the key energy bands for CdTe and HgTe at the Γ-point due to several
relativistic corrections. Additional to the unperturbed Hamiltonian H0, the influence of the Darwin term HD, of
the relativistic mass velocity correction HR as well as of the spin-orbit coupling HSOC is depicted. In the case of
HgTe, the pronounced HR contribution leads to a band inversion and thus a negative band gap. Adapted from
Ref. [11].

in Fig. 2.1a,b. In detail, the unperturbed Hamiltonian H0 is corrected by the Darwin term HD,
the relativistic mass velocity correction HR and the spin-orbit coupling correction HSOC [10, 11].

Comparing the influence of the individual corrections in the afore mentioned order for CdTe
and HgTe shows that the impact of the Darwin term HD is similar for both compounds. For
the relativistic mass velocity correction HR, the situation is however quite different. The latter
is caused by the difference of atomic masses and core charges for Hg and Cd. For HgTe, the
mass velocity correction is so pronounced that the energetic position of the Γ6 state (originating
from Hg s-states) is lowered to close proximity to the energy level of the Te p-states, while the
correction for CdTe is way smaller. Lastly, the influence of the spin-orbit coupling correction
HSOC splits the Te p-states into the Γ8 and Γ7 states – similarly for both compounds. For the
case of HgTe, the Γ8 band is lifted above the Γ6 band, resulting in the peculiar situation of an
inverted band structure, whereas CdTe exhibits a conventional ordering with Γ6 representing the
first conduction band and Γ8 being the first valence band. Thus, to put it in a nutshell, the band
inversion for HgTe emerges from an interplay between the relativistic mass velocity correction
HR and the spin-orbit coupling correction HSOC [10].

In addition to be causative for the topological properties of HgTe, the band inversion has
a further consequence. While the Γ6 (J = 1/2) state only forms a single band, the Γ8 (J=3/2)
state leads to the emergence of degenerated light (mj = ±1/2) and heavy hole (mj = ±3/2)
bands for the momentum k = 0 (see Fig. 2.2b). In this context, the definition of the band gap
EG = Γ6(k = 0)− Γ8(k = 0) yields a value of EG ≈ −0.3 eV. However, the actual band ordering
at the degeneracy point of the Γ8 band results in an effective band gap of EG = 0 eV for k = 0,
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Figure 2.2: a,b, Calculation of the bulk band structure around the Γ-point for Hg0.3Cd0.7Te and HgTe using a
k · p method. In both cases, the Γ8 state splits to a light- and a heavy-hole band. Adapted from Ref. [12].

thus making the bulk material HgTe a Dirac semimetal. In this context, the heavy hole band
represents a valence band, while the light hole band acts as the conduction band [10].

In order to make the topological properties experimentally detectable without bulk modes
dominating the transport behaviour, it is essential to lift the Γ8 degeneracy and thus to open
up a band gap. In this regard, one option is to confine the material into lower dimensions,
thus meeting the need of the thesis at hand for 2D layers. The latter scenario is realized by
growing quantum well structures using molecular beam epitaxy (MBE), where a HgTe layer
gets sandwiched between two Hg0.3Cd0.7Te layers. The band structure of Hg0.3Cd0.7Te shown in
Fig. 2.2a exhibits a conventional band ordering and a band gap of EG ≈ 1 eV. The second option
is based on growing three-dimensional (3D) structures, for which the degeneracy can be lifted by
utilizing growth induced strain [10]. This alternative leads to the emergence of 3D-TIs [13], which
will not be covered further within the scope of this thesis. For a comprehensive introduction to
HgTe MBE, the interested reader is referred to Ref. [14].

The characteristic band edge profile of Hg0.3Cd0.7Te/HgTe/Hg0.3Cd0.7Te quantum wells is
sketched in Fig. 2.3a,b. This kind of quantum well formation is also referred to as type III
quantum well. Within the HgTe layer, the spatial confinement in growth direction leads to a
splitting of the Γ6 and the heavy hole Γ8 band into subbands relevant for transport behaviour,
while the light hole state is shifted to lower energies [15]. In Fig. 2.3a–c, subbands emerging from
the Γ6 and the heavy hole Γ8 band are labelled with Ei and Hi, respectively.

The energetic position of the subbands and thus the energetic spacing between the latter is
correlated with the thickness of the HgTe layer (confinement strength), which is also referred to
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Figure 2.3: a,b, Schematic of the band edge profile for a quantum well consisting of a HgTe layer sandwiched
between two Hg0.3Cd0.7Te layers. The confined energy levels (subbands) emerging from Γ6 states are labelled Ei,
the ones originating from Γ8 states Hi, respectively. With adjusting the quantum well thickness dQW, the band
structure can be tuned from the trivial regime with dQW below a critical quantum well thickness dc (dQW < dc)
to the nontrivial, topological regime (dQW > dc). Adapted from Ref. [16]. c, Progression of the subband energies
depending on the quantum well thickness. The vertical dashed line indicates the position of the critical thickness.
Adapted from Refs. [16, 17].

as quantum well thickness dQW (see Fig. 2.3c). For a critical thickness dQW ≈ 6.3 nm =: dc, the
E1 and the H1 subband intersect. Such a situation is referred to as a zero-gap state [16]. For
thinner quantum wells with dQW < dc, the E1 subband (originating from the Γ6 band) is the
first conduction band and the H1 subband (originating from the Γ8 band) is the first valence
band (see Fig. 2.3a). This regime corresponds to a topologically trivial state. For thicker wells
described by dQW > dc and sketched in Fig. 2.3b, the opposite is the case. There, the H1 subband
becomes the first conduction band, while the E1 subband forms one of the valance bands (see
the progression in Fig. 2.3c). In this scenario, the band inversion of bulk HgTe is regained and a
2D-TI state emerges [10].
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2.1.2 Quantum spin Hall effect in HgTe quantum wells

T he signature state of a 2D-TI material is the QSH effect, which describes the existence of 1D
helical edge states at the boundaries of the system. The emergence of these states has been

predicted for HgTe/CdTe quantum wells within the scope of the Bernevig-Hughes-Zhang (BHZ)
model [8]. The latter captures the electronic states by utilizing a relativistic Dirac equation. In
this description, the energy difference between the E1 and the H1 subband at the Γ point is
equivalent to the Dirac mass M – the essential parameter of the model. A trivial band ordering
in the case of dQW < dc yields M > 0, while an inverted band structure and thus dQW > dc is
described by a negative Dirac mass M < 0.

The former has fundamental consequences for the interface between an inverted HgTe layer
and an adjacent vacuum – or, in other words, for the edge of the sample. In this context, it is
important to note that the vacuum is a trivial insulator with a large gap (EG ≈ 1 · 106 eV) and
can be regarded as a system with an infinite positive mass [19]. Thus, for the case of a normal
band ordering, the extent of the band gap increases at the edge of the sample. The consequence
is a trivial insulating state when the Fermi energy is located within the energy gap (M > 0,
see Fig. 2.4a). This situation is contrasted for an inverted band structure, which is sketched



2.2 Quantum point contacts

2

13

in Fig. 2.4b. In this scenario, the Fermi energy in the bulk lies within the energy gap as well.
However, the Dirac mass is negative due to the inversion of the bands. At the edge, the Dirac
mass and thus the band ordering needs to adjust to the trivial state of the surrounding vacuum,
which leads to an energetic interchange of the H1 and the E1 subband. As a result, the subbands
cross the Fermi energy at the edges, which leads to the emergence of QSH edge channels.

The QSH state was experimentally realized for the first time in HgTe quantum wells by König
et al. [20] in 2007. Subsequent experiments based on inverted HgTe quantum wells revealed non-
local transport in the QSH regime [21] and the spin polarization of the helical edge states [22].
Figure 2.4c sketches the emergence of QSH edge channels with attributed spin orientations for a
two-terminal device. Each of the two 1D helical edge channels in transport direction contributes
G1D = e2/h to the conductance, resulting in an overall conductance of

GQSH = 2 ·G1D = 2e2/h (2.1)

for the indicated device concept. The gapless energy dispersion of the helical edge states is linear
at k = 0 (see Fig. 2.4d) and is described by E(k) = ~vFk, where ~ = h/2π represents the reduced
Planck constant and vF is the Fermi velocity of the QSH edge channels. The crossing of the
two branches at k = 0 is referred to as Dirac point. While several basic properties of the QSH
effect are already experimentally described (as outlined above), it is still an open question how
helical edge channels interact when brought in spatial proximity. Such an examination would be
enabled by the realization of a QPC technology in a QSH system.

2.2 Quantum point contacts

AQPC is a 1D constriction in an otherwise extended 2D electron or hole system. It exhibits
a width in the order of the Fermi wavelength λF and is introducing an additional level of

confinement in the transversal direction of the 2D system. Since such a constriction connects two
wide areas of the underlying 2D layer (equilibrium reservoirs of the QPC) with each other, the
basic experimental realization of a QPC is always represented by a two-terminal device concept.
Combining this consideration with the 1D character of the constriction is of particular interest,
since it entails that some of the fundamental phenomena of ballistic transport are observable in
their purest form by examining QPCs [23, 24].

The conventional way to realize QPCs is based on the electrostatic definition of a 1D constric-
tion within a 2DEG. For this purpose, two gate electrodes forming a split gate are patterned on
top of a suitable heterostructure (see Fig. 2.5c). By applying a negative voltage to the electrodes,
the 2DEG underneath (and consecutively in the vicinity of) the electrodes gets successively
depleted, thus narrowing down the remaining part of the 2DEG between the electrodes. As soon
as the width of this area becomes sufficiently small, a 1D transport regime emerges.

This transport regime is characterized as ballistic if the elastic mean free path le of the
electron (average distance between two elastic scattering events) is larger than the relevant
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system size L, i.e. le � L. The elastic mean free path of a 2DEG can be calculated using

le = ~µe
e
·
√

4πne
gsgv

, (2.2)

where ne is the electron density, µe the electron mobility and gs and gv are the spin and valley
degeneracy, respectively. The opposite case of le � L is referred to as diffusive transport regime.

Assuming ballistic transport, scattering of electrons at the boundaries of the sample dominates
over scattering processes at spatial potential fluctuations [25] and the 1D modes can traverse
the QPC unperturbed. In such a scenario, the split gate voltage VSG controllable width of
the QPC is correlated with the number of transmitted 1D transport modes. Thus, tuning the
width of the QPC results in an adjustment of the amount of propagating modes and hence
in a change of conductance. Each mode – when transmitted fully – contributes a conductance
quantum G0 = 2e2/h to the overall conductance, resulting in the QPC characteristic conductance
quantization exhibiting plateaus spaced by

∆G = 2e2

h
. (2.3)

In 1988, QPCs haven been successfully realized for the first time on GaAs/AlGaAs heterostruc-
tures based on the split gate approach by two groups, independently [26, 27]. Shortly afterwards,
an analytical model describing the transport physics of an electrostatically defined QPC was
proposed.

2.2.1 Saddle point model

I n the framework of the saddle point model developed by Büttiker [28], the shape of the
potential forming in the centre of the QPC can be approximated by a hyperbolic paraboloid

defined by the expression

V (x, y) = V0 + 1
2m
∗ω2

yy
2 − 1

2m
∗ω2

xx
2 , (2.4)

where the curvatures in transport direction (longitudinal, x direction) and transversal direction (y
direction) are described by the parameters ωx and ωy, respectively – both with little dependence
on the applied split gate voltage. Furthermore, m∗ is the effective electron mass and V0 is the
electrostatic potential at the saddle point, which depends linearly on the split gate voltage [29].
The spatial shape of such a saddle point potential is exemplarily presented in Fig. 2.5a.

The potential approximation given by Eq. 2.4 can be solved analytically [28]. The correspond-
ing Hamiltonian is

H = p2

2m∗ + V (x, y) , (2.5)

where p2/2m∗ represents the kinetic energy. The Hamiltonian can be separated with regard
to the x and y direction. In the transversal case, an established standard problem of quantum
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∑3
n=0 Tnn using Eq. 2.13 with ωy/ωx = 3.

mechanics arises – the harmonic oscillator in a parabolic well. The allowed wave functions in the
transversal direction are the eigenmodes of the harmonic oscillator, which are associated with
the discrete energy eigenvalues

En = ~ωy

(
n+ 1

2

)
(2.6)

with n ∈ N0 (see Fig. 2.5b). As a consequence, the wave function in x direction is subject to an
effective potential of the form

Veff(x) = V0 + ~ωy

(
n+ 1

2

)
− 1

2m
∗ω2

xx
2 . (2.7)

Considering a QPC device with a Fermi energy EF and neglecting tunnelling effects, there are
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N = nmax + 1 subbands (also referred to as modes or channels) with

En = V0 + ~ωy

(
n+ 1

2

)
< EF , (2.8)

which are available for electron transport in x direction (see Fig. 2.5b). In order to evaluate
the current flow through the 1D constriction (assumption T = 0K), the integral of the current
density

I = e ·
N−1∑
n=0

∫ EF

EF−eVSD
Dn(E)vn(E)dE (2.9)

for all accessible energy values with the assumption of applying a small source-drain voltage
VSD is calculated. Dn(E) = gsgv · 1

2π
dkx
dEn

is the density of states (with gs = 2 and gv = 1 for
GaAs/HgTe) and vn(E) = 1

~
dEn
dkx

is the group velocity of the present 1D case [24, 30]. Using

Dn(E)vn(E) = 2
h
, (2.10)

Eq. 2.9 simplifies to

I =
N−1∑
n=0

2e
h
· e · VSD , (2.11)

thus yielding an equipartition of the current among N occupied modes (see Fig. 2.5c) [30]. The
corresponding conductance term

G = 2e2

h
·N (2.12)

is in qualitative agreement with the experimentally observed quantized split gate voltage depen-
dence of the conductance of QPC devices.

On closer examination, Eq. 2.12 suggests an abrupt steplike increase of the QPC conductance
with changing the split gate voltage, whereas experimental data of QPC samples always exhibits
a rather smooth transition between two consecutive conductance plateaus. In this context,
it becomes necessary to include the circumstance of quantum mechanical transmission and
reflection through the saddle point potential to the analytical description of QPC transport. This
is accomplished by using the so-called Wentzel-Kramers-Brillouin (WKB) approximation. For a
deeper insight, the interested reader is referred for example to Ref. [29].

Applying the WKB approximation to the discussed scenario results in a transmission proba-
bility Tmn(E) for every individual subband

Tmn(E) = δmn
1

1 + exp(−πεn) , εn =
2
[
E − ~ωy

(
n+ 1

2

)
+ V0

]
~ωx

. (2.13)

It should be noted that only if the incident channel and the outgoing channel are the same,
non-zero transmission probabilities can arise [28]. Figure 2.5d shows the calculated transmission
probability through the saddle point potential for the first four subbands (n = 0, 1, 2, 3) and
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of ∑3
n=0 Tnn using Eq. 2.13 with ωy

ωx
= 3. The smooth transition between two consecutive

conductance plateaus is in accordance with experimental data. The transition width is set by
the energy scale ~ωx, whereas the energy shift between two consecutive plateaus is defined by
~ωy [25].

For the sake of completeness, the factor Tnn(E) also has to be included within Eq. 2.9, which
results in the adjusted form

I = e ·
N−1∑
n=0

∫ EF

EF−eVSD
Dn(E)vn(E)Tnn(E)dE . (2.14)

However, the mathematical treatment stays the same if merely small source-drain voltages are
applied (linear regime). In this case, Tnn(E) is roughly constant within the corresponding energy
window and can thus be replaced by Tnn(EF) [25, 31]. Finally, adjusting Eq. 2.12 results in the
term

G = 2e2

h

N−1∑
n=0

Tnn , (2.15)

where Tnn represents the transmission probability for each individual subband. Equation 2.15 is
usually referred to as the Landauer formula, which represents the fundamental law of mesoscopic
transport physics – the relation between conductance and transmission probabilities at the Fermi
energy [23, 31, 32].

2.2.2 Technological variations

T he tuning of the conductance in the framework of the split gate approach is based on
adjusting the height of the saddle point relative to a given level of the Fermi energy (see

Fig. 2.5b). This modification is induced by a split gate voltage controllable change of the con-
striction width. In this context, an alternative method to realize QPC devices is represented by
the etching of mesa structures with dimensions in the order of the Fermi wavelength. In such a
scenario, the minimal device width WQPC and (in approximation) the potential landscape are
constant. Hence, the definition of a top gate electrode is necessary in order to be able to tune
the Fermi energy relative to a given potential and thus to modify the conductance of the QPC.

Concerning the overall geometry of QPCs, two types of device realizations can be distinguished.
A gradual confinement of the 2DEG to a 1D constriction is described as an adiabatic QPC [33, 34],
while a sudden confinement is defined as an abrupt QPC [35]. The advantage of the adiabatic
approach is related to the smooth variation of the constriction width, which ensures a reflectionless
matching of electron states within the transition area between the 2D reservoirs and the 1D
constriction [33]. QPC devices based on electrostatic definition using the split gate approach as
well as etched constrictions utilizing a wet chemical etching process can both be characterized
as adiabatic.

Since the seminal works of van Wees et al. [26] and Wharam et al. [27], QPCs have been
realized in various semiconductor systems. However, GaAs based devices still represent the
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benchmark regarding material and device quality. Recently, QPCs have also been implemented
in graphene [36, 37] and oxide heterostructures [38, 39].

2.2.3 Realization in a quantum spin Hall system

A s pointed out in Chapter 1, the realization of a QPC technology in a QSH system is a long
time awaited achievement. Such a device would represent a ground-breaking development,

since it would act as a basic building block for multiple novel experiments. However, the unique
existence of helical edge channels poses certain challenges concerning the implementation of a
QPC in a 2D-TI system.

Limitations of the split gate approach

P ure helical edge channel transport is only observable within the bulk band gap. Thus, a
device realization which enables the tuning of the Fermi energy of the QPC area from the

conduction band across the band gap to the valence band is required. The split gate approach
sketched in Fig. 2.6a cannot meet this condition, since the latter is conceptually unsuitable to
realize a 1D transport situation in different transport regimes of the same sample.

Furthermore, it is still unclear if the split gate approach is a feasible option for HgTe quantum
wells at all. Due to the small bulk band gap of HgTe, the split gate approach might lead to
a situation in which the depleted areas of the HgTe 2DEG underneath the electrodes start to
enter the valence band regime, while the constriction between the two split gate electrodes still
exhibits a finite width and thus is still hosting 1D electron transport. Such a scenario would
then result in parasitic parallel conductance and hence prevent any observability of conductance
quantization.

However, the main reason why the split gate approach is not utilizable for the envisaged
experiments within the scope of this thesis is related to the nature of helical edge channels. As
explicated earlier, helical edge channels emerge at the boundary of two topologically different
materials where the Dirac mass changes its sign. This topological transition always takes place at
the physical edge of a device and cannot be moved towards the bulk of a device, for example by
the influence of an electric field – a misconception sometimes present in theoretical publications.
As a consequence, a hypothetical device realization of a QPC in a QSH system using the split
gate approach would not exhibit the requested spatial proximity of the helical edge channels (see
Fig. 2.6a).

Top gate approach

I n order to overcome this obstacle, the QPC has to be defined by bringing the physical device
edges – and thus also the QSH edge states – in spatial proximity, which is sketched in Fig. 2.6b.

In other words, the QPC has to be defined by etching a mesa instead of utilizing electrostatic
depletion of an unstructured 2DEG. However, it is important to note that for the case of HgTe
quantum wells, the chosen etching method is an important factor regarding device quality. In
the past, HgTe based QPCs realized using dry etching techniques did not exhibit pronounced
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Figure 2.6: a, Sketch of a QPC realized in a QSH system based on the split gate approach. The dimensions of the
QPC are not constant, since they depend on the extent of the depleted 2DEG area. b, Sketch of a QPC realized
in a QSH system based on the definition of an etched mesa. The QPC, which exhibits a minimal width WQPC
and a length LQPC, is covered by a top gate electrode with a length LGate. In both sketched scenarios, the helical
edge states are located at the physical device edges.

QPC quantization or indications for the presence of the QSH regime [40]. Later, it was found
out that the utilized dry etching process caused local doping of the device edges, which reduced
the carrier mobility especially in small structures drastically. This gain of insight initiated the
implementation of a device quality preserving wet etching process for HgTe devices [41, 42],
which was also utilized for sample fabrication within the scope of this thesis.

A QPC based on an etched mesa realized in a QSH system is sketched in Fig. 2.6b. The
constriction is characterized by its length LQPC and its width WQPC, which is determined by
the smallest distance of the mesa edges. A top gate electrode with a length LGate is centrally
patterned on top of the QPC mesa. Since LGate < LQPC, the length of the gate electrode defines
the relevant length scale of the QPC in terms of transport experiments. By applying a voltage
to the gate electrode, the Fermi energy of the gated region can be tuned from the conduction
band across the band gap to the valence band, while the adjacent ungated areas (reservoirs)
unaffectedly remain n-type – the n represents an electron dominated transport regime, the hole
equivalent is referred to as p-type. Accordingly, the QPC device has to be described as a ballistic
junction with three different transport regimes: the n-n’-n, the n-i-n and the n-p-n regime.

2.3 Lithographic fabrication of HgTe based quan-
tum point contacts

T he introduced device concept of an etched QPC mesa covered with a top gate electrode
results in two requirements for the to be utilized fabrication process. First, the etching of the

QPC has to be controllable and reproducible, which implies a to be established fixed link between
between a priori defined design dimensions and post-fabrication QPC dimensions. Second, the
top gate electrode should only cover the central part of the etched constriction. Otherwise, also
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Figure 2.7: a, c, Sketch and optical micrograph of the first mesa etching step, which forms the equilibrium reservoirs
of the QPC. b, Qualitative schematic of the full layer stack of the HgTe quantum wells used in this thesis. d, e,
Sketch and optical micrograph of the second mesa etching step, which defines the QPC. f, Scanning electron
micrographs of exemplary QPC devices with different values of the width WQPC.

the adjacent 2DEG areas on both sides of the QPC would be gated, thus causing a non-linear
background in the measurement of the gate voltage dependence of the QPC conductance.

The realization of these two prerequisites was the main subject of the lithography development
done within the scope of this thesis. Both tasks have been solved successfully, which will be
presented in the following. In order to fabricate QPC devices, standard optical lithography as
well as electron beam lithography (EBL) methods were utilized. The detailed process parameters
are added to Appendix A.
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Etching of the mesa

T he mesa of the QPC devices is defined utilizing a wet etching process based on an aqueous
solution of KI : I2 : HBr. To guarantee a constant flow of etchant on the sample surface,

a setup is utilized which allows to control the flow rate of the solution by using an adjustable
pump. For further details, the interested reader is referred to Refs. [41, 42]. In order to ensure
controllability of the QPC dimensions, the fabrication of the main mesa (referred to as inner
mesa) is separated into two parts.

In the first step, only the equilibrium reservoirs surrounding the to be defined QPC are
structured, which is shown in Fig. 2.7a,c. Subsequently, the QPC is formed in a second lithography
step (see Fig. 2.7d,e). The etch masks for defining both mesa parts are patterned by using EBL. A
qualitative schematic of the full layer stack of the HgTe quantum wells used for QPC fabrication
is presented in Fig. 2.7b.

The reason for separating both etching steps is related to the presence of the diffusive etching
regime [42]. In this case, the etching rate is indirectly related to the dimensions of the etch
mask. Thus, the etching within the to be defined QPC area takes place at a higher rate than
for example in the device segments of the to be defined equilibrium reservoirs. Hence, it is not
possible to define both mesa parts in one combined etching step, since there is no overall etching
time which would ensure satisfying etching results for all parts of the sample.

Another factor to be considered is the isotropic etching behaviour of the utilized wet etching
process [42]. The latter causes lateral etching, which results in smaller values of the width WQPC

and larger values of the length LQPC of the constriction than specified a priori by the chosen design
dimensions (see Fig. 2.8). The extent of the lateral etching depends on different parameters like
etching time or mask dimensions and has to be quantified via several introductory test samples.
For the equilibrium reservoirs, the influence of lateral etching is negligible.

Using the developed process, it is possible to reproducibly fabricate constrictions with a
minimal step width of ∆WQPC ≈ 50 nm. In this context, Fig. 2.7f shows scanning electron
micrographs of exemplary QPC devices with different width valuesWQPC. In all cases, the length
of the QPC is LQPC ≈ 500 nm. It should be noted that the controllable and reproducible definition
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Figure 2.9: a,b, Sketch and scanning electron micrograph of a QPC covered by a top gate electrode. The layer
stack of the gate electrode is indicated. c,d, Sketch and optical micrograph of a final QPC device. The layer stack
of the ohmic contacts is indicated.

of nanometre scale constrictions via a wet etching process is a technological breakthrough not
achieved before (see for example Ref. [43]).

After the inner mesa is defined, the surrounding and so far unstructured sample areas have
to be etched. This so-called outer mesa consists of segments to be acting as gate leads, as ohmic
contacts and as bonding pads (see Fig. 2.10b). Since the required level of resolution and accuracy
is lower in this final etching step, optical lithography is used to pattern the etch mask.

Definition of the gate electrode and ohmic contacts

T he next lithography step deals with patterning the top gate electrode using EBL, which
is sketched in Fig. 2.9a. To ensure a high yield of working QPC devices, several aspects

have to be taken into account. First, in order to prevent cracks within the gate electrode along
the mesa edges, a sufficiently thick Ti/Au stack has to be metallized. Being able to deposit a
metal stack of high thickness requires a long-chain polymethyl methacrylate (PMMA) resist
system with regard to the subsequent lift-off. The reason is that a long-chain PMMA system
exhibits a higher resist layer thickness than alternatives with a smaller chain length (assuming
identical spin-coating and baking parameters). Furthermore, to ensure a complete development
of the exposed area, a short ultrasonic pulse is included in the development process after the
EBL exposure. Afterwards, the risk of remaining parasitic PMMA residues within the resist-free
area is further reduced by treating the sample with a short oxygen plasma.
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Figure 2.10: a, Schematic of the utilized measurement setup. b, Optical micrograph of a full sample, which exhibits
three single QPC devices.

Subsequent to this preparative step, a low temperature (T < 40 ◦C) atomic layer deposition
(ALD) process is utilized to deposit a film of HfO2, which serves as a dielectric. Lastly, the Ti/Au
stack is metallized. Figure 2.9b shows a scanning electron micrograph of an exemplary QPC
covered by a top gate electrode. The length of the gate electrode is LGate ≈ 250 nm, similar for
all standard QPC samples presented within the scope of this thesis.

The device is finalized by patterning ohmic contacts (AuGe/Au stack) using common optical
lithography methods (see Fig. 2.9c,d). The ohmic contacts are placed far away from the centre of
the QPC (dOhmics ≈ 80 µm > 10× le) in order to allow for full energy relaxation in the reservoirs
and to avoid geometrical resonances. The width of the ohmic contacts increases towards the
outer samples areas. There, the ohmic contacts terminate forming the so-called bonding pads
(see Fig. 2.10b). The latter enable the usage of convenient wedge-wedge bonding techniques
after the finalized sample is glued to a chip carrier. In addition to the ohmic contacts, also the
EBL defined gate electrode requires a wedge-wedge bonding suited extension towards the outer
sample areas. These so-called gate leads (see Fig. 2.10b) can be patterned together with the
ohmic contacts or in a dedicated process step.

2.4 Transport characterization of HgTe based quan-
tum point contacts

A ll devices presented within the scope of this thesis were fabricated from HgTe quantum
wells epitaxially grown on CdZnTe substrates and sandwiched between HgCdTe barriers

(see Fig. 2.7b). An iodine doping layer increases the overall electron density of the quantum
well and is thus reducing the serial resistance of the reservoirs. The layer thicknesses of the
utilized heterostructures are quantified using X-ray diffraction analysis and the relevant material
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Figure 2.11: Gate voltage VG dependence of the conductance G of QPC-I (dQW > dc) and QPC-II (dQW < dc).
The conductance is divided into three regimes indicated by the dashed lines and the Roman numerals (I: n-n’-n,
II: n-i-n and III: n-p-n regime). A serial resistance of RSerial = 260 Ω for QPC-I and RSerial = 1650 Ω for QPC-II
is subtracted. In both cases, the width of the QPC is WQPC ≈ 100 nm.

parameters are deduced from measurements of reference Hall bar samples. The device and
material parameters of all samples discussed within the course of this thesis are presented in
dedicated tables at the end of each chapter.

The transport measurements were performed in helium-4 cryostats at a temperature of
T = 1.4K using standard 4-point low frequency low bias lock-in techniques. A sketch of the cor-
responding measurement setup is shown in Fig. 2.10a. Complementary measurements presented
in Chapter 4 were conducted in a dilution refrigerator with a base temperature of T = 25mK.
An optical micrograph of a full sample is presented in Fig. 2.10b. Every QPC device is attached
to four ohmic contacts and every top gate electrode is connected to two gate leads.

2.4.1 Comparison of topological and trivial devices

T he conductance G as a function of gate voltage VG of a topological (QPC-I) and a trivial
(QPC-II) device of similar width (WQPC ≈ 100 nm) is shown in Fig. 2.11. A serial resistance

of RSerial = 260 Ω is subtracted for QPC-I and a value of RSerial = 1650 Ω is subtracted for the
case of QPC-II (see also Appendix B). The higher subtracted value for QPC-II stems from the
lower electron mobility (see Tab. 2.1), which causes a higher serial resistance of the ungated
sample areas. The latter is related to the conception of QPC devices, which allows for transport
experiments only in local 4-point measurement geometries. Thus, the resistive contribution of
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both reservoirs RSerial = 2 ·RReservoir is added to the resistance of the QPC, which is described
by R = 1/N · h/2e2 +RSerial.

For both devices, conductance steps of integer values of ∆G ≈ 2e2/h can be identified with
decreasing gate voltage values within the n-n’-n regime. The reduced cleanness of the plateaus
for QPC-II can be attributed to the lower material quality of the trivial quantum well, which
for example increases the probability of scattering centres to be located within the vicinity of
the QPC. The conductance saturates around GQSH ≈ 2e2/h for QPC-I with entering the n-i-n
regime, while it drops to G ≈ 0 for QPC-II. For the case of QPC-I, the residual conductance
of GQSH ≈ 2e2/h demonstrates the presence of the QSH state, whereas a real gap and thus
suppressed transport is observed for QPC-II. For even more negative gate voltages, slightly
increasing conductance values for both devices are associated with entering the n-p-n regime.
The slow increase of conductance in the n-p-n regime is attributed to the low mobility for
p-conduction and the wave function mismatch between n- and p-conducting states [44]. The
observed characteristics of all three transport regimes are consistent with predictions by Ref. [44].

The presence of conductance quantization in the n-n’-n regime of QPC-I and QPC-II indicates
ballistic 1D transport through the QPC. The ballistic condition

le � LGate ≈ 250 nm (2.16)

is met for the topological as well as for the trivial device (see Tab. 2.1). In this context, Fig. 2.12a–c
shows the gate voltage dependence of the conductance of the topological devices QPC-III, QPC-
IV and QPC-V. For all three samples, the conductance decreases within the n-n’-n regime and
saturates around the residual conductance of GQSH ≈ 2e2/h within the n-i-n regime. Regarding
the n-n’-n regime, only QPC-III and QPC-V exhibit the emergence of plateaus due to ballistic 1D
transport (subtraction of a serial resistance of RSerial = 150 Ω and RSerial = 1450 Ω, respectively),
whereas no conductance quantization can be identified for the case of QPC-IV. However, as
shown in Tab. 2.1, the condition formulated by Eq. 2.16 is met for all three devices.

A possible reason to explain the absence of quantization caused by ballistic 1D transport for
the case of QPC-IV is provided by Ref. [45]. There, the authors predict that random long-range
potential fluctuations within QPC devices based on doped heterostructures could lead to the
breakdown of conductance quantization – even though if ballistic transport conditions would
be expected from reference characterization measurements. This circumstance can then lead to
pronounced variations in transport between nominally identical devices [45].

Moreover, a further argument is related to intrinsic material quality fluctuations of the
underlying HgTe quantum well. Since the values of electron density and electron mobility are
obtained by analysing standard Hall bars, they result from averaging transport properties of an
area of A = LHB ·WHB ≈ (600 · 200) µm2. For QPC-IV, the transport behaviour of the whole
device is determined by a gated area of merely A = LGate ·WQPC ≈ (250 · 200) nm2, thus making
quality deviations in both directions off the Hall bar benchmark value plausible. Areas of the
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Figure 2.12: a–c, Gate voltage VG dependence of the conductance G of QPC-III (WQPC ≈ 150 nm), QPC-IV
(WQPC ≈ 200 nm) and QPC-V (WQPC ≈ 250 nm). For QPC-III and QPC-V, a serial resistance of RSerial = 150 Ω
and RSerial = 1450 Ω is subtracted, respectively. d, e, Sketch of trivial ballistic and diffusive 1D transport through
a topological QPC. f, Observed interrelations of the emergence of transport regimes in topological QPC devices.

2DEG with more pronounced disorder would then nullify the met ballistic condition of Eq. 2.16
with passing a certain threshold level concerning material quality, whereas QSH edge channel
transport would remain unaffected due to topological protection (sketched in Fig. 2.12d,e).

The latter is of particular interest, since it implies that the QSH regime can emerge despite
an overall diffusive transport regime. This assumption is backed by the fact that the QSH regime
is always present when observing quantization due to ballistic 1D transport, while the reverse
conclusion is not true (see QPC-IV). Moreover, the hypothetical case of quantization due to
ballistic 1D transport without an identifiable QSH regime is not observed within the scope of this
thesis (excluding edge channel hybridization). These interrelations are visualized in Fig. 2.12f.
Lastly, the reasoning of intrinsic material quality fluctuations also accounts for the larger to be
subtracted serial resistance value for the case of QPC-V than for the other topological devices.
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2.4.2 Conductance of a narrow topological device

F or narrow QPC devices with WQPC < WCrit. ≈ 75 nm, the occurrence of pronounced
hybridization effects due to the mixing of the QSH edge channel wave functions is predicted

by Ref. [46]. There, the authors argue that such samples are characterized by the suppression of
topological conductance, which is sketched in Fig. 2.13a. The latter causes a drop of the overall
conductance to G ≈ 0 within the n-i-n regime – despite the topological nature of the underlying
HgTe quantum well [46].

Figure 2.13b shows the gate voltage dependence of the conductance of QPC-VI. The device
is fabricated from a quantum well with dQW > dc and exhibits a width of WQPC ≈ 50 nm, thus
WQPC < WCrit.. A serial resistance of RSerial = 1600 Ω is subtracted. In agreement with the data
of QPC-I, conductance steps of integer values of ∆G ≈ 2e2/h can be identified within the n-n’-n
regime with decreasing gate voltage values. However, contrary to QPC-I, the conductance does
not saturate at GQSH ≈ 2e2/h within the n-i-n regime, but drops to G ≈ 0. This behaviour is
attributed to the afore outlined hybridization effects of the QSH edge channel wave functions
in narrow QPC devices. The increase of conductance for even more negative gate voltages is
associated with entering the n-p-n regime.

In this context, the presence of unperturbed QSH quantization for QPC-I (WQPC ≈ 100 nm)
provides an upper limit regarding the width WHEC of the helical edge channels. Furthermore,
the discussed transport behaviour of QPC-VI (WQPC ≈ 50 nm) contributes to define a lower
limit. Combining both reference points thus enables an estimation of the width of one helical
edge channel, which yields 25 nm < WHEC < 50 nm for quantum wells with dQW = 7nm.

A recent report estimated the width of the helical edge channels by employing the super-
conducting diffraction pattern of a topological Josephson junction to be WHEC ≥ 180 nm [47],
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which is considerably larger than the upper limit of the afore presented range. Other imaging
techniques like microwave impedance mismatch [48], scanning squid [49] as well as scanning gate
[50] experiments seem to give an even wider estimate of the QSH edge channel wave function
width. Adjusting the width of a QPC thus is to date the most accurate experimental method to
estimate the width of helical edge channels.

2.4.3 Trivial one-dimensional transport in a topological de-
vice

I n order to establish a profound picture of QPC devices in QSH systems, it is also necessary to
analyse the trivial ballistic 1D transport behaviour in such devices. The work of Büttiker [28]

contributed to the understanding of the trivial conductance through a QPC by means of trans-
mitted quantum channels (or subbands). Temperature dependent transport data can be utilized
to approximate the energetic spacing ∆E of these subbands, which is referred to as subband
spacing. Since the width of the thermal smearing function df/dEF is approximately 4kBT (kB is
the Boltzmann constant), the conductance quantization within the n-n’-n regime is expected to
vanish for T ' ∆E/4kB [23]. In this context, the gate voltage dependence of the conductance of
QPC-I for different values of the temperature is presented in Fig. 2.14a. The quantization due to
trivial ballistic 1D transport disappears between T = 4.2K and T = 10K, thus yielding a range
of the subband spacing of 1.4 meV < ∆E < 3.4 meV.

A second method to quantify the subband spacing was first discussed by Patel et al. [51].
There, the authors explicated that the application of a sufficiently high direct current (DC) bias
voltage VDC over a QPC device results in an aligning of the Fermi level2 of the source with one
subband, while the Fermi level of the drain is aligned with the subsequent subband. The latter
induces the emergence of plateaus in the differential conductance dI/dV of the device at odd
integer values of e2/h. The position of these plateaus with regard to the applied bias voltage can
then directly be related to the subband spacing of the examined QPC device [51–53].

The bias voltage dependence of the differential conductance of QPC-I for different values of
the gate voltage is shown in Fig. 2.14b. The formation of plateau-like shapes for dI/dV > 2e2/h

can be observed for bias voltages between VDC ≈ 2.2mV and VDC ≈ 3.2mV (pink circles), hence
yielding a subband spacing of 2.2 meV < ∆E < 3.2 meV and thus narrowing down the afore
determined range. Beyond that, the deduced values are comparable with those of electrostatically
defined QPC devices in GaAs based 2DEGs (see for example Ref. [54]).

The similarity between trivial and topological QPC devices reveals itself even more in a further
context. It should be noted that for a QSH system, the conductance of the n-n’-n regime of a QPC
sample is offset by ∆G ≈ 2e2/h due to the residual conductance of the helical edge channels. Thus,
the so-called sub-open regime, which emerges below the first subband and hence forG ∈ [0; 2] e2/h

in trivial devices, occurs for G ∈ [2; 4] e2/h in topological devices. For trivial QPC devices, this
peculiar transport regime exhibits a frequently observed plateau-like shape under bias and/or
2Note that the Fermi level at T = 0K is the Fermi energy.
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Figure 2.14: a, Gate voltage VG dependence of the conductance G of QPC-I for different values of the temperature.
The curves are vertically offset for clarity by ∆G = 2e2/h. b, Bias voltage VDC dependence of the differential
conductance dI/dV of QPC-I for different values of the gate voltage. The pink circles highlight plateaus at odd
integer values of e2/h for dI/dV > 4e2/h, while the blue and green circles indicate plateau-like features within the
sub-open regime. The arrows point at the read out values of the bias voltage. The accumulation around the red
trace is attributed to modes with predominant QSH character. The data of panel a and b was acquired performing
another measurement in addition to the data shown in Fig. 2.11. The shift of the (differential) conductance traces
with regard to the applied gate voltage between the measurements is due to thermal cycling.

gate voltage influence around G ≈ 0.7 ·2e2/h, which is mostly signified as 0.7 anomaly and usually
attributed to electron-electron-interaction effects [55–58] (see also Section 4.2.2). In Fig. 2.14b,
the blue circles highlight the formation of plateau-like shapes within the sub-open regime of
QPC-I around dI/dV ≈ 3.5e2/h. For the case of a topological QPC, features related to the
0.7 anomaly are expected to appear at a value of dI/dV = (1 + 0.7) ·2e2/h = 3.4e2/h. Hence, the
observed plateaus around dI/dV ≈ 3.5e2/h are attributed to the emergence of the 0.7 anomaly.

Moreover, the bias voltage dependence of the differential conductance of QPC-I reveals
another feature at dI/dV ≈ (1 + 0.5) · 2e2/h = 3e2/h, which is indicated by the green circles
in Fig. 2.14b. The latter corresponds to a situation in which the Fermi level of one reservoir
lies above the first subband, while the other reservoir lies within the pinch-off regime of the
trivial 1D conductance contribution [56]. The fact that it is possible to detect these signatures in
topological QPC devices – shifted by ∆dI/dV ≈ 2e2/h, but otherwise equivalent to trivial QPC
samples – provides explicit proof of the unperturbed coexistence of helical and trivial transport
modes. The red trace in Fig. 2.14b highlights the transition from the lower end of the sub-open
regime to the QSH regime. The discussion of the latter under temperature and bias voltage
influence is not part of this thesis.
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2.5 Conclusion

T he implementation of a working QPC technology in a QSH system represents a trailblazing
development in the field of 2D-TIs and allows for a multitude of future experiments. Proposed

applications of high interest facilitated by this technological breakthrough are for example spin-
controllable devices [59, 60] or the examination of parafermions [61]. A further experiment of
high significance is enabled by the opening of helical gaps in narrow topological QPC devices,
since such samples are envisaged to act as an essential building block in the context of detecting
Majorana Kramers pairs [62]. Furthermore, the all-electrically controllable conductance range of
G ≥ 0 suggests the usage of narrow QPC devices as barriers of variable resistance in topological
samples. Hence, such narrow QPCs can be integrated in various setups, for example in the context
of zero-bias tunnelling spectroscopy experiments [63].

2.6 Sample overview

QPC dQW WQPC LQPC LGate ne(0V) µe(0V) le Layer thicknesses
No. [nm] [nm] [nm] [nm] [cm−2] [cm2V−1s−1] [µm] [nm]
I 7.0 100 500 250 5.2 · 1011 2.7 · 105 3.2 70/9/70/7/50
II 5.5 100 500 250 5.1 · 1011 1.5 · 105 1.8 71/10/71/5.5/51
III 7.0 150 500 250 5.2 · 1011 2.7 · 105 3.2 70/9/70/7/50
IV 7.0 200 500 250 5.2 · 1011 2.7 · 105 3.2 70/9/70/7/50
V 7.0 250 500 250 4.8 · 1011 2.3 · 105 2.6 81/10/81/7/59
VI 7.0 50 500 250 5.2 · 1011 2.7 · 105 3.2 70/9/70/7/50

Table 2.1: Summary of the sample and material parameters for each discussed QPC device indicated by Roman
numerals. The layer thickness values refer to the sketched layer stack shown in Fig. 2.7b. The given numbers (from
right to left) are attributed to the sketched layers from top to bottom. The thickness of the buffer as well as of
the substrate is not included.
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3
Quantum spin Hall

interferometer state in HgTe
based quantum point contacts

In this chapter, the occurrence of quantum interference effects in the quantum spin Hall regime
of narrow quantum point contact devices fabricated from HgTe quantum wells with a thickness
of dQW = 7 nm is discussed. The associated emergence of an interferometer state is explained
utilizing a model based on band structure calculations and the relevant quantum phases are
introduced – the Aharonov-Bohm phase, the dynamical Aharonov-Casher phase and the spin-orbit
Berry phase. Subsequently, measurements of the magnetoconductance within the quantum spin
Hall regime of an exemplary device are presented. The data exhibits Aharonov-Bohm characteristic
oscillations and the corresponding period is in quantitative agreement with the device dimensions.
These observations are accompanied by a periodic modulation of the gate voltage dependence of the
conductance in the quantum spin Hall regime as well as by an inversion of the afore mentioned
magnetoconductance pattern for different values of the gate voltage, which provides evidence for
the impact of the dynamical Aharonov-Casher phase. Moreover, a phase shift within the first
Aharonov-Bohm period is reported, which is attributed to the accumulation of a spin-orbit Berry
phase of π. To illustrate the interplay of all three quantum phases, the obtained data is compared
with analytic model considerations. Afterwards, an experimental sanity check of the proposed ring
formation model is provided. Lastly, the data of two more devices is presented, reproducing all
key effects.
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3 Quantum spin Hall interferometer state in HgTe based quantum

point contacts

3.1 Emergence of a quantum spin Hall interferome-
ter state

T he comparability between the width of a QPC device and the Fermi wavelength of the
underlying 2D system is of fundamental importance for trivial ballistic 1D (and thus quan-

tized) transport to occur within the n-n’-n regime. However, for the case of 2D-TIs, it furthermore
enables the observability of a physical phenomenon which has so far been a topic of merely theo-
retical considerations – the emergence of quantum interference effects within the QSH regime.
In theoretical publications, it is an established method to propose QSH interferometers based
on two neighbouring point-like QPCs [1–3]. In these scenarios, the QPCs act as two consecutive
inter-edge couplers between the helical edge states, thus enabling the formation of a closed QSH
ring. While these suggestions still lack experimental examination, the subsequent explications
are going to show that – under certain conditions – already a single HgTe based QPC device
with finite dimensions (not point-like) is sufficient to provide the experimental framework for a
QSH interferometer.

3.1.1 Interference in quantum mechanical systems

T he occurrence of interference effects within the scope of quantum transport experiments
is related to the wave-particle duality of matter – a cornerstone of quantum mechanics. In

this regard, the quantum mechanical behaviour of electrons is no different than for example the
one of neutrons or even molecules [4]. In an experimental context, the archetypal approach to
discuss interference and the wave-particle duality of matter is the double slit experiment.

There, a wave of light or matter is diffracted by two slits with a width smaller than the
associated wavelength and an interference pattern emerges on an observation screen placed
further behind. The complex-valued probability amplitude t for transmission through the upper
split is described by t1 = a1eiθ1 , whereas t2 = a2eiθ2 captures the transmission through the lower
slit. In both cases, a1 and a2 represent positive real numbers between 0 and 1 and θ1 as well as
θ2 are real-valued transmission phases. The intensity on the observation screen is then given by

T = |t1 + t2|2 = a2
1 + a2

2 + 2a1a2 cos δ , (3.1)

where δ = θ1 − θ2 describes the phase difference. The first two terms a2
1 + a2

2 on the right hand
side of the above equation represent the classical transmission probability, i.e. the sum of the two
individual transmission probabilities. The third term 2a1a2 cos δ captures the impact of quantum
interference [5]. For an introduction to the topic, the interested reader is referred to Ref. [6].

A generalized form of the double slit experiment setup is represented by a two-path interfer-
ometer. The latter is sketched in Fig. 3.1 and is applicable to a lot of experiments examining
interference effects. Particles entering the interferometer loop are split into two partial waves
by a beam splitter and traverse the ring geometry half clockwise and half counterclockwise in
the upper and lower interferometer arm, respectively. They interfere in the exit region (beam
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Figure 3.1: Sketch of a two-path interferometer. The incoming particles are split into two partial waves by a
beam splitter at the entrance of the ring and traverse the ring half clockwise (c) and half counterclockwise (cc),
respectively. They interfere in the exit region (beam recombiner) and subsequently leave the interferometer. Path
geometries with higher winding numbers and the occurrence of reflections are neglected.

recombiner) and subsequently leave the interferometer [7]. For analysing interference effects in
semiconductor nanostructures, the ring geometry has to be defined electrostatically by using
gate electrodes [8] or physically by etching mesa structures [9]. Moreover, interference patterns
are detected by using contacts instead of an interference screen.

3.1.2 Formation of a quantum spin Hall ring

I n order to form a QSH interferometer, it is necessary to realize a closed ring geometry purely
based on helical edge channels. Furthermore, the transport through both interferometer arms

has to be phase-coherent and equally probable. Thus, for a single QPC device, a transport
situation is required in which reservoir electrons with randomized spin couple to both helical
edge channels with the same probability. A narrow QPC device based on a HgTe quantum well
with a thickness of dQW = 7nm provides an unpretentious realization of such a transport regime.

To understand how an interferometer state forms within the QSH regime of such a device,
the corresponding band structure shown in Fig. 3.2a has to be analysed. It is calculated for a
semi-finite ribbon with Wy = 100 nm and dQW = 7nm using k · p theory, which is based on the
eight-band Kane model [10]. The colour code indicates the spatial extension of the wave function
in the y direction expressed by the associated standard deviation σy. It can be observed that the
spatial extension of the QSH edge channels strongly depends on the position of the Fermi energy.
The largest spatial extension in y direction arises when the Fermi energy is located in the vicinity
of the Dirac point (regime II in Fig. 3.2a), while the QSH edge channels become more localized
at the device edges when the Fermi energy is approaching the n- or p-conducting regime (regime
I and III). It should be noted that the calculation neglects any temperature effect (T = 0K) and
thus exhibits a finite gap of ∆E ≈ 3.5meV around the Dirac point due to hybridization.

A QSH ring structure emerges when the wave function of the average incident electrons
overlaps with both helical edge channels simultaneously, i.e. when incident electrons from the
reservoir have equal probability to enter either of the two QSH edge channels (see Fig. 3.2c).
This situation is realized when the width of the constriction WQPC, the Fermi wavelength λF of
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Figure 3.2: a, k · p band structure calculation for a semi-finite ribbon with Wy = 100 nm and dQW = 7nm. The
colour code indicates the standard deviation σy of the wave function in y direction, which is categorized by three
regimes. b, c, Emergence of a QSH interferometer within regime II, when the condition defined by Eq. 3.2 is met.

the incident electrons and the spatial extension of the helical edge states σy meet the condition

2σy + λF 'WQPC . (3.2)

Furthermore, both possible propagation paths are externally indistinguishable within the utilized
device concept, thus enabling the occurrence of interference effects when transmitted electrons
are leaving the QSH ring [6, 8].

For being able to apply Eq. 3.2 to the case of a QPC device with a width of WQPC ≈ 100 nm
based on a HgTe quantum well with dQW = 7nm, a quantification of the Fermi wavelength λF

of the incident electrons is necessary. The latter corresponds to the de Broglie wavelength of
electrons at the Fermi energy and can be calculated using

λF = h

pF
= h

m∗vF
= h

~kF
= 2π√

(4πne)/(gsgv)
=
√

2π
ne

, (3.3)

where vF = ~kF/m
∗ represents the Fermi velocity for the case of a 2DEG (kF is the Fermi wave

vector). By utilizing the electron density of the equilibrium reservoirs obtained from reference
Hall bar measurements (see Tab. 3.1), Eq. 3.3 yields a value of λF ≈ 35 nm for the case of QPC-I.
Thus, the condition of Eq. 3.2 is met for regime II, where σy > 30 nm. Hence, the formation of
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a QSH ring within a QPC device of appropriate width depends on the position of the Fermi
energy. As a consequence, the QSH interferometer state can be switched on and off depending
on the localization length of the QSH edge channels and therefore by the applied gate voltage
(see Fig. 3.2b,c).

3.2 Relevant quantum phases

T he formation of a QSH interferometer enables various novel experiments based on the
accumulation of different quantum phases. In order to identify relevant quantum phases

contributing to interference effects in the above outlined scenario, it is helpful to recapitulate
the fundamental transport situation:

• QSH edge channels carry spin-polarized electrons;

• HgTe quantum wells exhibit strong Rashba spin-orbit coupling [11, 12].

Taking these considerations into account, three quantum phase contributions are expected to be
detectable analysing narrow QPC devices based on HgTe quantum wells with dQW = 7nm [13].

3.2.1 Aharonov-Bohm phase

I n 1959, Aharonov and Bohm [14] predicted the occurrence of a phase shift between two
interfering partial waves of a charged particle, when their afore taken paths (defined by γ1

and γ2) have enclosed a magnetic flux φ (see Fig. 3.3 for a sketch). The latter can be described
by a vector potential A(r). The presence of the magnetic flux modifies the transmission phases
according to

θi(φ) = θi(0)− |e|
~

∫
γi

Ads . (3.4)

Consequently, the phase difference between the partial waves

δ(φ) = δ(0)− |e|
~

∫
γ1−γ2

Ads = δ(0)− 2π φ
φ0

(3.5)

depends on the magnetic flux φ with φ0 = h/|e| representing the magnetic flux quantum. Thus,
the flux-dependent transmission term

T (φ) = a2
1 + a2

2 + 2a1a2 cos
[
δ(0)− 2π φ

φ0

]
(3.6)

can be identified. Due to the property

T (φ+ n · φ0) = T (φ) , n ∈ Z , (3.7)

it is possible to detect a periodic interference pattern by tuning the magnetic flux φ. The phase
factor appearing within Eq. 3.6 in addition to the zero magnetic flux case is referred to as the



3

42
3 Quantum spin Hall interferometer state in HgTe based quantum

point contacts

ϕ

Magnetic
flux

Incoming
charged particles

x

y

c, γ1

cc, γ2Beam splitter Beam recombiner

Figure 3.3: Sketch of the acquisition of an AB phase. Partial waves descending from incoming charged particles
(for example electrons) encircle a magnetic flux tube enclosing the flux φ. The acquisition of the AB phase induces
a modulation of the magnetoconductance of the ring structure.

Aharonov-Bohm (AB) phase, which is described by

ϕAB = −2π φ
φ0

. (3.8)

It should be noted that the above considerations are rather generic geometry-wise. For the
specific case of partial waves descended from an electron propagating on a circular path around
a magnetic flux, the probability to be transmitted through the ring within half a revolution is
given by

T = 1
2

[
1 + cos

(
2π φ
φ0

)]
. (3.9)

Considering a 1D transport regime (at zero temperature and neglecting any reflection processes),
the corresponding conductance is described by

G = G0 · T = e2

h

[
1 + cos

(
2π φ
φ0

)]
. (3.10)

The magnetic flux threaded through the encircled area A is quantified by

φ = Bz ·A , (3.11)

where Bz is the magnetic field applied perpendicular to the ring plane. Thus, the period ∆Bz of
the oscillating magnetoconductance

∆Bz = h/|e|
A

=: ρAB (3.12)

is indirectly proportional to the encircled ring area A [5]. The AB effect was experimentally
demonstrated for the first time in 1985 by analysing a single metal ring [15]. The detection of
the AB effect in ring structures fabricated from semiconductor heterostructures followed shortly
after [16–18].
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3.2.2 Dynamical Aharonov-Casher phase

I n 1984, Aharonov and Casher [19] elaborated that an electromagnetic dual to the AB effect
exists. It becomes manifest when a neutral particle equipped with a magnetic moment (spin)

encircles a charge density λ, which creates a radial electric field. With relativistically transforming
the electric field E into the moving reference frame of the uncharged particle, it becomes obvious
that the magnetic moment experiences the magnetic field B = c−2v × E, where c represents
the speed of light and v the electron velocity. Thus, the orientation of the magnetic moment
changes due to the influence of this very magnetic field and the induced circular motion of the
magnetic moment then leads to the accumulation of another quantum phase – the so-called
Aharonov-Casher (AC) phase [5]. This situation is sketched in Fig. 3.4.

It has to be emphasized that the original conception of the AC effect is hardly realizable
in semiconductor nanostructures, since electrons and holes are charged particles. However, the
scientific community extended the notion of the AC effect to scenarios in which charged particles
with spin are moving in arbitrarily oriented electric fields within solids [20–22]. Thus, such a
situation is equivalent to the presence of Rashba spin-orbit coupling in semiconductors [5].

In a quantum ring subject to Rashba spin-orbit coupling, time evolution leads to a precession
of spins [23]. In the adiabatic regime, the precession axis of the spin eigenstates aligns itself with
the direction of an effective magnetic field (see Fig. 3.5b). Since the precession direction of the
spin depends on the propagation path γi, the two interfering partial waves sketched in Fig. 3.4
carry a phase difference. Hence, an accumulated phase originating from the propagation path
dependent spin precession is called a dynamical phase [20, 23]. Due to the causative physical
background, this quantum phase is referred to as dynamical AC phase ϕDyn.

AC [20].
In order to get a grasp on the dynamical AC phase, Ref. [5] considers the circular motion

of an electron in the presence of Rashba spin-orbit coupling. In analogy to the AB case, a full
analytical treatment of the transmission of two interfering partial waves through a two-terminal
ring geometry is provided. The dynamical AC phase is found to be described by [5, 24]

ϕDyn.
AC = −π

[
1 + s

√√√√√1 +
(

2rm∗αR
~2

)2]
, s = ±1 , (3.13)

where αR is the Rashba coupling strength, r is the radius of the encircled ring and s = ±1
represents the two spin eigenstates. The associated conductance modulation of a 1D transport
regime is then given by [20, 24]

G = e2

h

{
1− cos

[
π

√√√√√1 +
(

2rm∗αR
~2

)2]}
. (3.14)

Since the Rashba coupling strength αR is controlled by structural inversion asymmetry, changing
the gate voltage VG induces a conductance modulation approximately described by ∆G ∼ cos(αR)
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Figure 3.4: Sketch of the acquisition of a dynamical AC phase. Partial waves descending from incoming uncharged
particles with a magnetic moment (spin) encircle a tube of constant line charge density λ and thus a radial electric
field. In materials with strong Rashba spin-orbit coupling, the acquisition of the dynamical AC phase induces a
modulation of the gate voltage dependence of the conductance of the ring structure.

with αR ∼ VG [20]. It should be noted that the outlined relation between Rashba coupling strength
and gate voltage is also valid for the QSH regime [28]. However, in order to accentuate the special
nature of the helical spectrum, the Rashba coupling strength within the QSH regime is referred
to as ξR in the following. After the pioneering work of Ref. [20] concerning the experimental
detection of the dynamical AC phase, signatures of the latter have been observed in several
experiments [9, 23, 25–27].

3.2.3 Spin-orbit Berry phase

H owever, the total AC phase ϕTotal
AC accumulated by the spin wave function in quantum

rings subject to Rashba spin-orbit coupling does not only consist of the dynamical AC
phase component ϕDyn.

AC , but is a sum of a dynamical and a geometric phase factor [29]

ϕTotal
AC = ϕDyn.

AC + ϕGeo. . (3.15)

Geometric phases are accumulated during the cyclic evolution of a quantum system and solely
depend on the geometry of the traversed evolution path. Thus, a geometric phase is not influenced
by the dynamics of the underlying system, which makes it robust against dephasing [30, 31]. The
special case of adiabatic evolution (parameters within the Hamiltonian are changed slowly) was
described by Berry [32] in 1984 and the associated acquired quantum phase is referred to as Berry
phase. The more general situation for any kind of cyclic evolution, i.e. also covering non-adiabatic
evolution, was elaborated by Aharonov and Anandan [33] in 1986 and the accumulated phase is
referred to as Aharonov-Anandan phase. In both cases, the term cyclic refers to a system which
returns to its original state after an evolution [33].

In ring structures, the acquisition of a spin geometric phase arises when the wave function
of the electron spin is considered in the presence of a magnetic field and when the electron
momentum embeds a closed trajectory in momentum space [34]. It has been predicted that such
a phase emerges along with the AB phase if the applied magnetic field does not only exhibit
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Figure 3.5: a, Sketch of a 1D quantum ring subject to Rashba spin-orbit coupling. Electrons transmitted through the
ring experience a momentum k dependent in-plane Rashba field BR. b, Bloch sphere schematic of the emergence of
the dynamical and geometric phase contributions to the total AC phase. A 1D quantum ring subject to an in-plane
Rashba field BR and an out-of-plane field Bz lies within the x-y-plane. In the adiabatic case, the precession axis
of the spin eigenstates aligns itself with the direction of the effective magnetic field BEff. = BR + Bz and the
accumulated geometric phase is referred to as spin-orbit Berry phase.

a component normal to the ring plane, but additionally also provides a radial or a tangential
component [35–37]. However, since the proposed approaches are relying on textured magnetic
fields, they are posing undesired challenges concerning experimental realization.

Instead, a more convenient approach is based on 1D ring structures fabricated from materials
exhibiting strong Rashba spin-orbit coupling [34]. Such ring structures host the emergence of
the adiabatic regime [21], which entails that the spin precession axis of the propagating electrons
aligns itself with the local direction of an emerging, momentum-dependent effective magnetic
field BEff. defined by [21, 34]

BEff. = BR + Bz , (3.16)

where BR describes an in-plane Rashba field (sketched in Fig 3.5a,b). Then, the accumulated
spin geometric phase corresponds to a so-called spin-orbit Berry phase [21, 23, 29, 32, 34]

ϕSB = π[1− cos(θ)] , (3.17)

which is half the solid angle Ω = 2π[1− cos(θ)] subtended by the effective magnetic field vector.
The angle θ = arctan(BR/Bz) represents the tilt angle between the out-of-plane field component
Bz and the direction of the effective field BEff. (see Fig. 3.5b).

For the case of Bz = 0T, Eq. 3.16 yields BEff. = BR, resulting in a tilt angle of θ = π/2 and
thus a spin-orbit Berry phase of ϕSB = π. Referring to an interferometer state in narrow HgTe
based QPC devices, it should be noted that the associated spin orientation is compatible with
QSH edge channels, which exhibit a pronounced in-plane spin component under the influence
of Rashba spin-orbit coupling [28, 38, 39]. In such a scenario, the application of a gradually
increasing Bz vector would then successively decrease the tilt angle θ and hence reduce the
accumulated spin-orbit Berry phase.
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3.3 Experimental identification of quantum inter-
ference effects in the quantum spin Hall regime
of device QPC-I

I n the following, experimental evidence for the accumulation of an AB phase, of a dynamical
AC phase as well as of a spin-orbit Berry phase of π will be presented for the case of QPC-I

– thus proving the emergence of a QSH interferometer state. Furthermore, alternative mecha-
nisms hypothetically being able to cause contributions to the observed interference patterns are
discussed and subsequently excluded. The observed effects are reproduced by two additional
samples, which are discussed in Section 3.5.

3.3.1 Accumulation of an Aharonov-Bohm phase

T he magnetoconductance3 G of QPC-I at VG = −0.261V (QSH regime, see Fig. 3.11e) in a
field range of Bz ∈ [−1.2; 1.2] T is presented in Fig. 3.6a, the corresponding gate voltage VG

dependence of the conductance G is shown in Fig. 3.7a. A modulation with a period of ρAB ≈
0.172T is identifiable, which is indicated by vertical lines in Fig. 3.6a. Inserting ρAB ≈ 0.172T
into Eq. 3.12 yields an encircled area of A ≈ 24.1 ·103 nm2. This value is consistent with the gated
area of QPC-I, which is approximately AQPC = LGate ·WQPC ≈ 250 nm · 100 nm = 25 · 103 nm2.
This conformity quantitatively illustrates the impact of the AB phase and demonstrates electron
propagation at the device edges despite spatially extended QSH edge states. Furthermore, the
consistency of both values provides an unprecedented experimental proof of the QSH state, since
the only possible root cause in the present regime is transport via helical edge channels.

However, within the first AB period (Bz = 0T → Bz = 0.172 T =: B0) a phase shift of π
occurs (highlighted by the blue circles in Fig. 3.6a), which is not explainable within the framework
of the AB effect. Moreover, this observation is accompanied by an additional modulation of the
magnetoconductance (intermediate maximum/minimum), which is indicated by the red arrow in
Fig. 3.6a. These deviations from the standard pattern are also visible in Fig. 3.6b, which shows the
background corrected magnetoconductance ∆G of QPC-I for VG = −0.261V. The background
corrected magnetoconductance is acquired by subtracting a smooth background (moving average)
of the data shown in Fig. 3.6a. For Bz > B0, the resulting trace is well represented by a cosine
function described by

∆G ∼ cos
[( 2π
ρAB

)
·Bz

]
(3.18)

with using the afore determined value of ρAB = 0.172T. The phase shift of π as well as the
additional modulation are highlighted in Fig. 3.6b.

A third approach to demonstrate the accumulation of an AB phase is provided by utilizing
the fast Fourier transformation (FFT) method. The latter analyses the frequency spectrum of

3It should be noted that the magnetic field dependence of the conductance is referred to as magnetoconductance.
However, the ordinate of the associated plots is nonetheless labelled as conductance.
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Figure 3.6: a, Magnetoconductance G of QPC-I measured at VG = −0.261V (regime II). Periods are indicated
by vertical lines. The blue circles highlight a phase shift of π, which emerges within the first AB period. This
shift is accompanied by an additional modulation of the magnetoconductance (intermediate maximum/minimum),
which is indicated by the red arrow. b, Background corrected magnetoconductance ∆G of QPC-I for VG = 0.261V
compared with Eq. 3.18 using ρAB = 0.172T. c, FFT of the background corrected magnetoconductance of QPC-I
shown in panel b. The frequencies attributed to the AB effect (black arrow) and to the additional modulation
within the first AB period (red arrows) are indicated.

a modulated signal and helps to identify dominant components. For magnetoconductance data
modulated by the AB effect, it is an established approach to perform FFT analysis based on
the derivative dG(Bz)/dBz [40] or on the background corrected magnetoconductance ∆G [41] –
both methods reduce the influence of the slowly varying background. The FFT analysis of the
data shown in Fig. 3.6b is presented in Fig. 3.6c. The maximum of the FFT transformed data
at 1/Bz ≈ 5.9 T−1 is attributed to the AB effect (corresponds to ρAB ≈ 0.17T). The impact of
the additional modulation within the first AB period is highlighted by the red arrows.

Moreover, the magnetoconductance of QPC-I presented in Fig. 3.6a exhibits an overall decay
for increasing magnetic field values. This observation is in accordance with theory [42–44] and
is caused by the breaking of time reversal symmetry. The latter allows for the occurrence of
backscattering events, hence reducing the magnetoconductance compared to the Bz = 0T case.
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3.3.2 Accumulation of a dynamical Aharonov-Casher phase

T he gate voltage dependence of the conductance of QPC-I with focus on parts of the QSH
regime is shown in Fig. 3.7a. It is well represented by a cosine function described by

∆G ∼ cos
[( 2π
ρAC

)
· VG

]
(3.19)

and exhibits a period of ρAC ≈ 10mV. This result is of particular interest, since it demonstrates
the manipulability of the QSH conductance by all-electrical means, which is attributed to the
impact of the dynamical AC phase.

Furthermore, combining the analysis of both so far discussed quantum interference effects, the
magnetoconductance of QPC-I is presented in Fig. 3.7b for a certain gate voltage range in 1mV
steps. For reasons of clarity, the derivative dG(Bz)/dBz of the magnetoconductance is plotted,
which allows for a good differentiation between maxima and minima. The observable equidistant
spacing within the fan-like pattern is caused by the AB phase, while the diagonal character
of the grid lines demonstrates the impact of the dynamical AC phase [9]. This unperturbed
observation of the combination of AB and AC interference provides evidence that both related
quantum phases influence the interference conditions within the examined QSH interferometer
independently.

The perturbation-free interplay between the AB phase and the dynamical AC phase becomes
also visible when analysing single magnetoconductance traces. In this context, Fig. 3.7c shows
the magnetoconductance of QPC-I at VG = −0.261V as well as at VG = −0.271V. The impact
of the dynamical AC phase becomes manifest in the inversion of all observable patterns and
signatures, while the period ρAB caused by the accumulation of the AB phase remains unaffected.
Both gate voltage values are indicated in Fig. 3.7a,b.

3.3.3 Accumulation of a spin-orbit Berry phase

I n order to track down the impact of the spin-orbit Berry phase, the observed phase shift of
π within the first AB period of the modulated magnetoconductance has to be recalled. If the

effective field BEff. and thus the spin precession axis are assumed to align themselves sufficiently
to Bz within the first AB period, the value of the accumulated spin-orbit Berry phase would
reduce to ϕSB ≈ 0 for Bz ≈ B0 (see Fig. 3.5b). As a consequence, the net phase balance for the
transition Bz = 0 T→ Bz = B0 would yield

∆ϕ ≈ −ϕSB + ϕAB = −π + 2π = π . (3.20)

This relation presumes ϕSB = π for Bz = 0T, as it is the case for the adiabatic regime.

Acquisition of a spin-orbit Berry phase of π

T o verify the validity of the previous assumption, the gate voltage dependence of the con-
ductance of QPC-I for Bz = 0T and Bz = B0 with focus on parts of the QSH regime is
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Figure 3.7: a, Gate voltage VG dependence of the conductance G of QPC-I with focus on parts of the QSH
regime compared with Eq. 3.19 using ρAC ≈ 10mV. The vertical lines highlight the gate voltage values of the
data presented in panel c. The data of panel a was acquired performing another measurement in addition to
the data shown in Fig. 2.11. The shift of the conductance with regard to the applied gate voltage between both
measurements is due to thermal cycling. b, Derivative dG(Bz)/dBz of the magnetoconductance G of QPC-I for
different values of the gate voltage. Straight black lines are added as a guide to the eye. The coloured lines indicate
the gate voltage values of the data presented in panel c. The dashed black circle highlights the area presented
in Fig. 3.9a. The vertical dashed-dot-lines point at a gate voltage independent pattern. c, Magnetoconductance
of QPC-I for two values of the gate voltage (regime II). Periods are indicated by vertical lines. The blue circles
highlight a phase shift of π, which emerges within the first AB period. This shift is accompanied by an additional
modulation of the magnetoconductance (intermediate maximum/minimum), which is indicated by the red arrows.
The green trace is equivalent to the data shown in Fig. 3.6a.

presented in Fig. 3.8a as a first step. The observable range of anti-phase oscillation behaviour
is in accordance with a phase shift of π between the two different system conditions. Such a
scenario is anticipated by theory for two distinct states of a QSH interferometer, which differ in
phase due to the acquisition of a spin Berry phase of π [45, 46].

As a second step, the impact of the spin-orbit Berry phase (Eq. 3.17) is added to the description
of the AB phase induced modulation of the magnetoconductance [5] (Eq. 3.18). Moreover, the
influence of the dynamical AC phase is included (Eq. 3.19), which altogether yields

∆G(Bz, VG) ∼ cos
{[( 2π

ρAB

)
·Bz

]
− π

[
1− cos

(
arctan

(
BR
|Bz|

))]}
· cos

[( 2π
ρAC

)
· VG

]
. (3.21)

Figure 3.8b shows a fit of the background corrected magnetoconductance for two different values
of the gate voltage using Eq. 3.21 with ρAB = 0.172T, BR = B0/2 and cos((2π/ρAC) · VG) = ±1.
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The impact of the spin-orbit Berry phase of π, of the AB phase as well as of the dynamical AC
phase is indicated.



3.3 Experimental identification of quantum interference effects
in the quantum spin Hall regime of device QPC-I

3

51

By further including the observed period of the modulation of the gate voltage dependence
of the conductance ρAC = 10mV, Eq. 3.21 can be used to calculate a full 2D pattern of the
associated conductance modulation within the spin-orbit Berry phase regime. When calculating
the corresponding partial derivative ∂G(Bz, VG)/∂Bz, the analytical description can be compared
with the acquired data, which is shown in Fig. 3.9. Moreover, by performing the calculation for
larger ranges of the gate voltage and of the magnetic field, a pattern describable by equidistant
diagonal lines emerges for Bz > B0, which is shown in Fig. 3.10. The latter is in accordance with
experimental observations presented in Fig. 3.7b.

Quantification of the Rashba coupling strength ξR

T he utilized parameter BR = B0/2 can be approximately related to a quantitative value of
the Rashba coupling strength ξR by using the relation [47]

ξR = gµBBR
2k , (3.22)

where g represents the g-factor, k is the electron momentum and µB is the Bohr magneton.
With using g ≈ 55.5 [48] and k ≈ 0.01 nm−1 (around the Dirac point, see Fig. 3.2a), Eq. 3.22
yields a value of ξR ≈ 13.8 peVm. This result is 5–10× larger than values in ring structures
hosting the non-adiabatic regime [23], thus justifying the assumed presence of adiabaticity in
QSH interferometers emerging within topological HgTe based QPCs.

Assessment of the results

T he model formulated by Eq. 3.21 is based on the assumption of an accumulation of a spin-
orbit Berry phase of π at zero magnetic field due to the presence of the adiabatic transport

regime. The consistency between the analytic description and the acquired experimental data
presented in Fig. 3.8 and Fig. 3.9 legitimizes this hypothesis. Thus, the presence of the spin-
orbit Berry phase of π reveals itself indirectly within the first period of the AB modulation of
the magnetoconductance – by the observable π shift as well as by the additional modulation
(intermediate maximum/minimum).

Moreover, the presented results demonstrate the possibility to appropriately describe the
response of the discussed experimental system towards two external parameters. This accor-
dance between analytic model and experiment is noteworthy, since the QSH regime has to be
characterized as highly complex and fragile under experimental conditions – above all under the
influence of an applied magnetic field. Hence, the presented data demonstrates the resilience
of the emerging QSH interferometer state and substantiates the quality of the utilized device
technology.
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3.3.4 Exclusion of alternative mechanisms
Universal conductance fluctuations

T he observed periodic modulation of the magnetoconductance within regime II of the QSH
regime is attributed to the impact of the AB phase. In the context of some experiments,

a modulation of the magnetoconductance can also be related to the occurrence of universal
conductance fluctuations (UCF, for an introduction see for example Ref. [5]). However, such
an UCF induced modulation is aperiodic [49, 50] and furthermore not assignable to the area
of the analysed device (due to the physical origin of UCF). Moreover, the concept of UCF is
incompatible with a quantized QSH system per se, since the effect solely emerges in the diffusive
transport regime.

Switching between localization effects

T he change of sign of the derivative of the magnetoconductance around Bz = 0T for different
values of the gate voltage, which is accompanied by an inversion of the whole oscillation

pattern, is attributed to the accumulation of a dynamical AC phase. An alternative effect, which
would lead to a similar behaviour of the magnetoconductance around Bz = 0T, is represented
by the hypothetical transition from weak antilocalization (WAL) to weak localization (WL) and
vice versa. For an introduction to both effects, the interested reader is referred for example
to Ref. [5]. However, also WAL and WL only occur in the diffusive transport regime, which
makes them incompatible with a quantized QSH system. A theoretical study of an anticipated
switching behaviour between WAL and WL in diffusive inverted HgTe quantum wells is provided
by Ref. [51].

3.4 Experimental verification of the quantum spin
Hall ring formation model

T he proposed model describing the emergence of a QSH interferometer state in topological
QPC devices is based on the fulfilment of the condition 2σy+λF 'WQPC (see Eq. 3.2). Thus,

the validity of the model can be verified by varying each component of Eq. 3.2 individually and,
subsequently, by monitoring the corresponding impact on the magnetoconductance. However, the
utilized device concept makes it impossible to modify the Fermi wavelength λF of the incident
electrons, since this scenario would require separately gated equilibrium reservoirs. Hence, a
sanity check of the model can be performed by changing:

• the spatial extension σy of the QSH edge states;

• the width WQPC of the QPC device.

While the spatial extension of the helical edge states can be adjusted by tuning the Fermi level,
the alteration of the sample width obviously necessitates a QPC device with a larger value of
WQPC.
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3.4.1 Tuning of the edge channel width

T he helical spectrum of the band structure calculation shown in Fig. 3.2a is categorized
by three regimes. When the Fermi level is located within regime II, a QSH interferometer

state emerges due to spatially extended helical edge channels – based on the assumption that
the condition of Eq. 3.2 is met. In such a scenario, as discussed for the case of QPC-I, an AB
phase induced modulation of the magnetoconductance is observable. However, if the proposed
model capturing the emergence of a QSH interferometer is correct, one would expect the AB
modulation of the magnetoconductance to occur only in a limited gate voltage range (regime
II). This is related to the fact that with pushing the Fermi level into regime I/III of the helical
spectrum, a transition from spatially extended to spatially localized QSH edge channels and thus
a reduction of σy is taking place (see Fig. 3.2a). Then, after passing a certain threshold value, the
condition defined by Eq. 3.2 is not met anymore and the modulation of the magnetoconductance
is expected to gradually diminish.

In this context, Fig. 3.11a shows the magnetoconductance of QPC-I for a gate voltage ap-
proaching the n-conducting regime (regime I), while Fig. 3.11b presents a measurement close to
the p-conducting regime (regime III). In both cases, the periodic modulation of the magnetocon-
ductance is abated. Pushing the Fermi level even further and thus entering the n-n’-n regime
(Fig. 3.11c) or the n-p-n regime (Fig. 3.11d) results in an eventual losing of the interference
pattern. The corresponding gate voltage dependence of the conductance is shown in Fig. 3.11e.
The latter consists of two individual measurements, since the n-n’-n regime was not captured by
the measurement of the black trace. The gate voltage values of the data shown in Fig. 3.11a–d
are indicated, the green and the magenta trace represent the gate voltage values of the data
shown in Fig. 3.7c. It should be noted that the effect of reducing the spatial extension of the
QSH edge channels also becomes manifest in the losing of the anti-phase oscillation behaviour
shown in Fig. 3.8a.

3.4.2 Alteration of the device width

S ince the utilized QPC device concept is based on etched constrictions, modifying the width
WQPC in the context of Eq. 3.2 requires a dedicated sample. For this purpose, the device

QPC-V with a width of WQPC ≈ 250 nm is analysed. Other than that, the sample exhibits
the same dimensions and the same quantum well thickness as QPC-I (for details, see Tab. 3.1).
Furthermore, the wafer materials utilized for the fabrication of both devices have similar electron
densities, thus ensuring that the reservoirs supply electrons with a comparable Fermi wavelength.
For QPC-V, the Fermi wavelength of the incident electrons is λF ≈ 36 nm, while it is λF ≈ 35 nm
for the case of QPC-I.

Figure 3.12a shows the gate voltage dependence of the conductance of QPC-V, the vertical
line indicates the gate voltage value of the data shown in Fig. 3.12d. Conductance steps of
∆G ≈ 2e2/h can be identified with decreasing gate voltage values within the n-n’-n regime and
a residual conductance of GQSH ≈ 2e2/h is observed within the n-i-n regime. For even more
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Figure 3.11: a–d, Magnetoconductance G of QPC-I for different values of the gate voltage VG. The attributed
transport regimes are indicated. e, Composite gate voltage dependence of the conductance G of QPC-I. The
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Fig. 3.7c. The black trace is equivalent to the data shown in Fig. 3.7a. The grey trace is equivalent to the data of
QPC-I shown in Fig. 2.11, but is shifted with regard to the gate voltage axis due to reasons of presentation.

negative gate voltages, the slightly increasing conductance values are associated with entering
the n-p-n regime. A serial resistance of RSerial = 1450 Ω is subtracted for the corrected trace.

A k ·p band structure calculation for a semi-finite ribbon withWy = 250 nm and dQW = 7nm
is presented in Fig. 3.12b. In the vicinity of the Dirac point and thus for regime II, the spatial
extension of the QSH edge channels exhibits a value of σy ≈ 35–45 nm. Using the upper limit of
σy as well as the afore mentioned values ofWQPC and λF, Eq. 3.2 yields (2 ·45+36) nm < 250 nm.
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regimes. c, For WQPC � 100 nm, the condition 2σy + λF 'WQPC is not met anymore within regime II, thus no
interferometer state emerges. d, Magnetoconductance G of QPC-V measured at VG = −0.91V. No serial resistance
is subtracted.

Thus, no formation of a QSH interferometer state is expected for the case of QPC-V (see Fig. 3.12c
for a sketch), which is in accordance with the data shown in Fig. 3.12d. There, the presented
magnetoconductance of QPC-V measured at VG = −0.91V does not exhibit an indication of a
periodic modulation.

It should be noted that the trend of the change of the spatial localization of the QSH edge
channels is slightly different for a ribbon with Wy = 250 nm than for the case of Wy = 100 nm
(see Fig. 3.12b). While the transition from regime II to regime I is qualitatively similar for both
cases (σy decreases), an inverted behaviour is observable for the transition from regime II to
regime III. For Wy = 250 nm, the value of σy increases even further with entering regime III –
contrary to the case of Wy = 100 nm. However, also within regime III, the condition of Eq. 3.2
is not met (σy ≈ 50 nm).
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3.5 Reproduction of the results

T he observation of the introduced quantum interference effects and thus the emergence of a
QSH interferometer state is demonstrated for two more devices. The analysis of QPC-VII

(a replica of QPC-I) reveals the influence of the three expected quantum phases and hence
reproduces the afore discussed data set entirely. For the case of QPC-VIII, no impact of a spin-
orbit Berry phase is observable. This absence is explainable with the geometry of the propagation
path, which differs from samples QPC-I and QPC-VII due to altered device dimensions.

3.5.1 Standard type device QPC-VII
Aharonov-Bohm phase

T he gate voltage dependence of the conductance of QPC-VII (λF ≈ 35 nm) is shown in
Fig. 3.13a. The conductance exhibits values of G ∈ [0.5 · GQSH;GQSH] within the n-i-n

regime, thus showing topological behaviour. Conductance quantization within the n-n’-n regime
due to trivial ballistic 1D transport is not observable.

The magnetoconductance of QPC-VII measured at VG = −0.28V is presented in Fig. 3.13b.
The latter reproduces all observations made for QPC-I – a periodic modulation indicated by
vertical lines and, with regard to the first AB period, a phase shift of π accompanied by an
additional modulation (intermediate maximum/minimum). The magnetic field value of the
intermediate minimum Bz ≈ 0.085T is referred to as B†. Inserting the observable period of
ρAB ≈ 0.2T into Eq. 3.12 yields an encircled area ofA ≈ 20.7·103 nm2, while the dimensions of the
device imply a gated area of approximately AQPC = LGate ·WQPC ≈ 250 nm·100 nm = 25·103 nm2

(see also Tab. 3.1). The smaller value in comparison with QPC-I could be related to a slightly
smaller value of LGate or a marginally overetched mesa.

Dynamical Aharonov-Casher phase

I n order to examine the impact of the dynamical AC phase, a smooth background (moving
average) is subtracted from the gate voltage dependence of the conductance of QPC-VII

shown in Fig. 3.13a. The result is presented in Fig. 3.13c, where it is analysed using Eq. 3.19.
The observable period of ρAC ≈ 9mV is in accordance with the obtained value for QPC-I. This
finding is of particular interest, since it demonstrates that the Rashba coupling strength (and thus
the dynamical AC phase induced modulation of the conductance, see Eq. 3.14) is reproducibly
tunable for devices of similar geometry and layer stack.

Moreover, a change of sign of the derivative of the magnetoconductance around Bz = 0T for
different values of the gate voltage is observed, which is presented in Fig. 3.13d–f. However, the
AB phase induced modulation of the magnetoconductance is less distinct than for Fig. 3.13b.
One possible reason is a reduced resilience of the QSH interferometer state towards an applied
magnetic field due to pronounced potential fluctuations depending on the individual gate voltage
value. In this context, also the overall less clean transport behaviour of QPC-VII should be noted
(see Fig. 3.13a).
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Figure 3.13: a, Gate voltage VG dependence of the conductance G of QPC-VII. The vertical line highlights the
gate voltage value of the data shown in panel b. b, Magnetoconductance G of QPC-VII measured at VG = −0.28V
(regime II). Periods are indicated by vertical lines. The blue circles highlight a phase shift of π, which emerges within
the first AB period. This shift is accompanied by an additional modulation (intermediate maximum/minimum),
which is indicated by the red arrow. The magnetic field value of the intermediate minimum is referred to as B†.
c, Background corrected gate voltage dependence of the conductance ∆G of QPC-VII with focus on parts of the
QSH regime compared with Eq. 3.19 using ρAC ≈ 9mV. The vertical lines highlight the gate voltage values of the
data presented in panels d–f. d–f, Magnetoconductance of QPC-VII for different values of the gate voltage.

Spin-orbit Berry phase

A nalogue to the case of QPC-I, the accumulation of a spin-orbit Berry phase of π be-
comes manifest in a phase shift of π and an additional modulation (intermediate maxi-

mum/minimum) within the first AB period. Figure 3.14a shows the comparison of the back-
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Figure 3.14: a, Background corrected gate voltage VG dependence of the conductance ∆G of QPC-VII with focus
on parts of the QSH regime for Bz = 0T, for Bz = B† = 0.085T and for Bz = B0 = 0.2T. The green trace is
equivalent to the data shown in Fig. 3.13c. b, Derivative dG(Bz)/dBz of the measured magnetoconductance G of
QPC-VII for different values of the gate voltage with focus on the spin-orbit Berry phase regime (right panel). The
measured data is compared with a calculation of ∂G(Bz, VG)/∂Bz using Eq. 3.21 with ρAB = 0.2T, ρAC = 9mV
and BR = B0/2 = 0.1T (left panel). The dashed circles are added as a guide to the eye.

ground corrected gate voltage dependence of the conductance ∆G of QPC-VII for Bz = 0T with
the case of Bz = 0.2 T =: B0. Contrary to QPC-I, it does not exhibit an anti-phase behaviour.
As before, this circumstance is attributed to a reduced resilience of QPC-VII towards magnetic
field influence. However, it has to be noted that not only the type of extremum for Bz = B0, but
also the type of extremum described by Bz = B† in Fig. 3.13b is inverse to the one at Bz = 0T.
The comparison of the Bz = 0T case with the measurement for Bz = B† = 0.085T presented in
Fig. 3.14a reveals the expected anti-phase behaviour.

Furthermore, Eq. 3.21 can be utilized to calculate a full 2D pattern of the conductance
modulation within the spin-orbit Berry phase regime of QPC-VII. The corresponding partial
derivative ∂G(Bz, VG)/∂Bz can then be compared with a measured data set (see Fig. 3.14b). For
calculation purposes, the parameters ρAB = 0.2T, ρAC = 9mV and BR = B0/2 are used.
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Figure 3.15: a, Sketch of the comparison of the gated device area with an ellipse. Relevant dimensions are indicated.
b, Scanning electron micrograph of an exemplary QPC device with LGate ≈ 600 nm.

3.5.2 Elongated type device QPC-VII I

T he device geometry of QPC-I, of QPC-VII as well as of QPC-VIII is schematically depicted
in Fig. 3.15a. While for both geometries the gated area can be compared with an ellipse, a

momentous difference is present with regard to the ratio of the two ellipse axes a/b. Following
the work of Ref. [52], the authors predict that for the case of elliptically deformed quantum rings,
the stability of the adiabatic regime depends on the aspect ratio of the system – with a threshold
around a/b ≈ 0.35. Below, rapid variations in the growing non-adiabatic term of the total spin
geometric phase successively suppress the observability of the spin-orbit Berry phase of π.

Based on the values of ρAB (for QPC-VIII, see below) and on a value of WQPC ≈ 100 nm,
QPC-I and QPC-VII are characterized by a/b ≈ 0.4–0.5, while QPC-VIII exhibits a value of
a/b ≈ 0.17. Thus, the analysis of QPC-VIII is assumed to not reveal any identifiable contribution
of a spin-orbit Berry phase, which is in accordance with the to be presented data. Figure 3.15b
shows a scanning electron micrograph of an exemplary QPC device with LGate ≈ 600 nm.

Aharonov-Bohm phase

T he gate voltage dependence of the conductance of QPC-VIII (λF ≈ 35 nm) is shown in
Fig. 3.16a. The red circles highlight the formation of plateau-like signatures within the

n-n’-n regime. In the first segment of the n-i-n regime, the conductance fluctuates approximately
within G ∈ [0.5 · GQSH; 1.2 · GQSH] (see also Fig. 3.16d), thus showing topological behaviour.
For more negative gate voltages, the less clean character of the sample becomes evident, which
reveals itself also in abiding conductance values of G < 2e2/h for the n-p-n regime.

The magnetoconductance of QPC-VIII measured at VG = −0.239V is presented in Fig. 3.16b.
It exhibits a periodic modulation indicated by vertical lines. Inserting the observable period of
ρAB ≈ 0.069T into Eq. 3.12 yields an encircled area of A ≈ 60 · 103 nm2, while a gated area of
approximately AQPC = LGate ·WQPC ≈ 600 nm · 100 nm = 60 · 103 nm2 is implied by the device
dimensions (see also Tab. 3.1). The background corrected magnetoconductance of QPC-VIII for
VG = −0.239V is presented in Fig. 3.16c, where it is compared with Eq. 3.18 using ρAB = 0.069T.
Signatures associated with the impact of a spin-orbit Berry phase of π are not observable.
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Figure 3.16: a, Gate voltage VG dependence of the conductance G of QPC-VIII. The vertical line highlights the
gate voltage value of the data shown in panel b, the red circles indicate the formation of plateau-like signatures
due to trivial ballistic 1D transport. b, Magnetoconductance G of QPC-VIII measured at VG = −0.239V (regime
II). Periods are indicated by vertical lines. c, Background corrected magnetoconductance ∆G of QPC-VIII for
VG = −0.239V compared with Eq. 3.18 using ρAB = 0.069T. d, Gate voltage dependence of the conductance
of QPC-VIII with focus on parts of the QSH regime compared with Eq. 3.19 using ρAC ≈ 13.5mV. The vertical
lines highlight the gate voltage values of the data presented in Fig. 3.17a–c. The data of panel d was acquired
performing another measurement in addition to the data shown in panel a.

Dynamical Aharonov-Casher phase

A n additional measurement of the gate voltage dependence of the conductance of QPC-VIII
with focus on the entrance area of the n-i-n regime is presented in Fig. 3.16d. The data

is analysed using Eq. 3.19 and a period of ρAC ≈ 13.5mV is observable. Moreover, a change of
sign of the derivative of the magnetoconductance around Bz = 0T for different values of the
gate voltage is found, which is presented in Fig. 3.17a–c. The reasoning concerning the less clean
AB phase induced modulation of the magnetoconductance is equivalent to the case of QPC-VII.
Lastly, Fig. 3.17d shows the gate voltage dependence of the conductance of QPC-VIII with focus
on parts of the QSH regime for Bz = 0T, for Bz = 0.069 T =: B0 and for Bz = 0.172T (B0 for
the case of QPC-I). No anti-phase behaviour is observable.



3

62
3 Quantum spin Hall interferometer state in HgTe based quantum

point contacts

-1 0 1

1.5

2.0
 G(QPC-VIII)

-0.15 -0.13 -0.11
0.8

1.2

1.6

2.0

2.4

           Bz = 0.069 T
 Bz = 0 T   Bz = 0.172 T

VG = -0.152 V

VG = -0.122 V

VG = -0.117 V

C
on

du
ct

an
ce

 G
 [e

2 /h
]

C
on

du
ct

an
ce

 G
 [e

2 /h
]

C
on

du
ct

an
ce

 G
 [e

2 /h
]

Magnetic field Bz [T] Magnetic field Bz [T]

Magnetic field Bz [T]

a

c

b

d

G(QPC-VIII) forC
on

du
ct

an
ce

 G
 [e

2 /h
]

Gate voltage VG [V]

-1 0 1
1.0

1.5

2.0

 G(QPC-VIII)

-1 0 1

1.5

2.0

 G(QPC-VIII)

Figure 3.17: a–c, Magnetoconductance G of QPC-VIII for different values of the gate voltage VG. d, Gate voltage
dependence of the conductance G of QPC-VIII with focus on parts of the QSH regime for a magnetic field value
of Bz = 0T, of Bz = 0.069 T =: B0 and of Bz = 0.172T (B0 for the case of QPC-I). The blue trace is equivalent
to the data shown in Fig. 3.16d.

3.6 Conclusion

T he realization of a QSH interferometer state in narrow HgTe based QPC devices with a
quantum well thickness of dQW ≈ 7 nm is an experimental novelty not achieved before. The
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latter enables the observation of the interplay of the AB phase, of the dynamical AC phase and of a
spin-orbit Berry phase of π for the first time – consistent with theoretical expectations for an ideal
1D quantum ring with strong Rashba spin-orbit coupling [13]. Furthermore, the experimental
availability of a QSH interferometer state allows for manifold new research possibilities and
insights within the field of 2D-TIs.

Since geometric phases are resilient to dephasing, the presence of a spin-orbit Berry phase of
π makes the presented QPC devices promising building blocks for various future applications. An
utilization of high interest is for example related to the realization of geometric quantum gates
within the context of quantum computation [53–55]. Moreover, a device realization anticipated
ever since the experimental proof of 2D-TIs is facilitated by the observation of the dynamical AC
phase. The latter enables an all-electrically controllable conductance in the QSH regime, thus
paving the way to the implementation of a topological transistor. Despite noteworthy progress in
realizing such a technology based on electric field induced quantum phase transitions [56, 57], this
approach still lacks experimental examination in the context of a fabricated sample – contrary
to the case of topological HgTe based QPCs. Optimizing the device concept is expected to result
in an oscillation of the QSH conductance within G ∈ [0; 2e2/h] [24], thus enabling to switch the
QPC from an on state to an off state and vice versa. Therefore, the presented results provide
first evidence in a pure transport framework that topological transistors are attainable.

3.7 Sample overview

QPC dQW WQPC LQPC LGate ne(0V) µe(0V) le Layer thicknesses
No. [nm] [nm] [nm] [nm] [cm−2] [cm2V−1s−1] [µm] [nm]
I 7.0 100 500 250 5.2 · 1011 2.7 · 105 3.2 70/9/70/7/50
V 7.0 250 500 250 4.8 · 1011 2.3 · 105 2.6 81/10/81/7/59
VII 7.0 100 500 250 5.2 · 1011 2.7 · 105 3.2 70/9/70/7/50
VIII 7.0 100 1350 600 5.2 · 1011 2.7 · 105 3.2 70/9/70/7/50

Table 3.1: Summary of the sample and material parameters for each discussed QPC device indicated by Roman
numerals. The layer thickness values refer to the sketched layer stack shown in Fig. 2.7b. The given numbers (from
right to left) are attributed to the sketched layers from top to bottom. The thickness of the buffer as well as of
the substrate is not included.



3

64 Bibliography

Bibliography
[1] F. Dolcini, Full electrical control of charge and spin conductance through interferometry of

edge states in topological insulators, Physical Review B 83, 165304 (2011).

[2] D. Ferraro, G. Dolcetto, R. Citro, F. Romeo, and M. Sassetti, Spin current pumping in
helical Luttinger liquids, Physical Review B 87, 245419 (2013).

[3] G. Dolcetto, M. Sassetti, and T. L. Schmidt, Edge physics in two-dimensional topological
insulators, Rivista del Nuovo Cimento 39, 113 (2016).

[4] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger, Wave–
particle duality of C60 molecules, Nature 401, 680 (1999).

[5] T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford
University Press, Oxford, 2010).

[6] R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. III: The
New Millennium Edition: Quantum Mechanics (Basic Books, New York, 2011).

[7] T. L. Dimitrova and A. Weis, Single photon quantum erasing: a demonstration experiment,
European Journal of Physics 31, 625 (2010).

[8] E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky, Dephasing in electron
interference by a ‘which-path’ detector, Nature 391, 871 (1998).

[9] M. König, A. Tschetschetkin, E. M. Hankiewicz, J. Sinova, V. Hock, V. Daumer, M. Schäfer,
C. R. Becker, H. Buhmann, and L. W. Molenkamp, Direct Observation of the Aharonov-
Casher Phase, Physical Review Letters 96, 076804 (2006).

[10] E. G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C. R. Becker, G. Landwehr,
H. Buhmann, and L. W. Molenkamp,Band structure of semimagnetic Hg1−yMnyTe quantum
wells, Physical Review B 72, 035321 (2005).

[11] Y. S. Gui, C. R. Becker, N. Dai, J. Liu, Z. J. Qiu, E. G. Novik, M. Schäfer, X. Z. Shu, J. H.
Chu, H. Buhmann, and L. W. Molenkamp, Giant spin-orbit splitting in a HgTe quantum
well, Physical Review B 70, 115328 (2004).

[12] J. Hinz, H. Buhmann,M. Schäfer, V. Hock, C. R. Becker, and L. W. Molenkamp,Gate control
of the giant Rashba effect in HgTe quantum wells, Semiconductor Science and Technology
21, 501 (2006).

[13] K. Richter, The ABC of Aharonov effects, Physics 5, 22 (2012).

[14] Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in the Quantum
Theory, Physical Review 115, 485 (1959).



Bibliography

3

65

[15] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Observation of he Aharonov-
Bohm Oscillations in Normal-Metal Rings, Physical Review Letters 54, 2696 (1985).

[16] G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer,
and R. E. Howard, Observation of the Aharonov-Bohm effect for ωcτ > 1, Physical Review
Letters 58, 2814 (1987).

[17] K. Ishibashi, Y. Takagaki, K. Gamo, S. Namba, S. Ishida, K. Murase, Y. Aoyagi, and
M. Kawabe, Observation of Aharonov-Bohm magnetoresistance oscillations in selectively
doped GaAs-AlGaAs submicron structures, Solid State Communications 64, 573 (1987).

[18] C. J. B. Ford, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, C. T. Foxon, J. J. Harris,
and C. Roberts, The Aharonov-Bohm effect in electrostatically defined heterojunction rings,
Journal of Physics C: Solid State Physics 21, L325 (1988).

[19] Y. Aharonov and A. Casher, Topological Quantum Effects for Neutral Particles, Physical
Review Letters 53, 319 (1984).

[20] J. Nitta, F. E. Meijer, and H. Takayanagi, Spin-interference device, Applied Physics Letters
75, 695 (1999).

[21] D. Frustaglia and K. Richter, Spin interference effects in ring conductors subject to Rashba
coupling, Physical Review B 69, 235310 (2004).

[22] B. Molnár, F. M. Peeters, and P. Vasilopoulos, Spin-dependent magnetotransport through
a ring due to spin-orbit interaction, Physical Review B 69, 155335 (2004).

[23] F. Nagasawa, J. Takagi, Y. Kunihashi, M. Kohda, and J. Nitta, Experimental Demon-
stration of Spin Geometric Phase: Radius Dependence of Time-Reversal Aharonov-Casher
Oscillations, Physical Review Letters 108, 086801 (2012).

[24] J. Nitta and T. Bergsten, Time reversal Aharonov–Casher effect using Rashba spin–orbit
interaction, New Journal of Physics 9, 341 (2007).

[25] T. Bergsten, T. Kobayashi, Y. Sekine, and J. Nitta, Experimental Demonstration of the
Time Reversal Aharonov-Casher Effect, Physical Review Letters 97, 196803 (2006).

[26] F. Qu, F. Yang, J. Chen, J. Shen, Y. Ding, J. Lu, Y. Song, H. Yang, G. Liu, J. Fan, Y. Li,
Z. Ji, C. Yang, and L. Lu, Aharonov-Casher Effect in Bi2Se3 Square-Ring Interferometers,
Physical Review Letters 107, 016802 (2011).

[27] F. Nagasawa, D. Frustaglia, H. Saarikoski, K. Richter, and J. Nitta, Control of the spin
geometric phase in semiconductor quantum rings, Nature Communications 4, 2526 (2013).

[28] J. I. Väyrynen and T. Ojanen, Electrical Manipulation and Measurement of Spin Properties
of Quantum Spin Hall Edge States, Physical Review Letters 106, 076803 (2011).



3

66 Bibliography

[29] T.-Z. Qian and Z.-B. Su, Spin-orbit interaction and Aharonov-Anandan phase in mesoscopic
rings, Physical Review Letters 72, 2311 (1994).

[30] A. Carollo, I. Fuentes-Guridi, M. Santos França, and V. Vedral, Geometric Phase in Open
Systems, Physical Review Letters 90, 160402 (2003).

[31] S. Filipp, J. Klepp, Y. Hasegawa, C. Plonka-Spehr, U. Schmidt, P. Geltenbort, and H. Rauch,
Experimental Demonstration of the Stability of Berry’s Phase for a Spin-1/2 Particle, Phys-
ical Review Letters 102, 030404 (2009).

[32] M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences 392, 45 (1984).

[33] Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Physical
Review Letters 58, 1593 (1987).

[34] A. G. Aronov and Y. B. Lyanda-Geller, Spin-orbit Berry phase in conducting rings, Physical
Review Letters 70, 343 (1993).

[35] D. Loss, P. Goldbart, and A. V. Balatsky, Berry’s phase and persistent charge and spin
currents in textured mesoscopic rings, Physical Review Letters 65, 1655 (1990).

[36] D. Loss and P. M. Goldbart, Persistent currents from Berry’s phase in mesoscopic systems,
Physical Review B 45, 13544 (1992).

[37] A. Stern, Berry’s phase, motive forces, and mesoscopic conductivity, Physical Review Letters
68, 1022 (1992).

[38] D. G. Rothe and E. M. Hankiewicz, Tunable polarization in a beam splitter based on two-
dimensional topological insulators, Physical Review B 89, 035418 (2014).

[39] L. Ortiz, R. A. Molina, G. Platero, and A. M. Lunde, Generic helical edge states due to
Rashba spin-orbit coupling in a topological insulator, Physical Review B 93, 205431 (2016).

[40] H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X.-L. Qi, S.-C. Zhang, Z.-X. Shen, and
Y. Cui, Aharonov–Bohm interference in topological insulator nanoribbons, Nature Materials
9, 225 (2010).

[41] L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen, Magnetic field-
induced helical mode and topological transitions in a topological insulator nanoribbon, Nature
Nanotechnology 11, 345 (2016).

[42] J. Maciejko, X.-L. Qi, and S.-C. Zhang, Magnetoconductance of the quantum spin Hall
state, Physical Review B 82, 155310 (2010).



Bibliography

3

67

[43] G. Tkachov and E. M. Hankiewicz, Ballistic Quantum Spin Hall State and Enhanced Edge
Backscattering in Strong Magnetic Fields, Physical Review Letters 104, 166803 (2010).

[44] P. Delplace, J. Li, and M. Büttiker, Magnetic-Field-Induced Localization in 2D Topological
Insulators, Physical Review Letters 109, 246803 (2012).

[45] W. Chen, W.-Y. Deng, J.-M. Hou, D. N. Shi, L. Sheng, and D. Y. Xing, π Spin Berry
Phase in a Quantum-Spin-Hall-Insulator-Based Interferometer: Evidence for the Helical
Spin Texture of the Edge States, Physical Review Letters 117, 076802 (2016).

[46] V. Adak, K. Roychowdhury, and S. Das, Spin Berry phase in a helical edge state: Sz
nonconservation and transport signatures, Physical Review B 102, 035423 (2020).

[47] M. Wang,H. Saarikoski, A. A. Reynoso, J. P. Baltanás, D. Frustaglia, and J. Nitta,Geometry-
Assisted Topological Transitions in Spin Interferometry, Physical Review Letters 123, 266804
(2019).

[48] B. Büttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brüne, H. Buhmann, E. M. Hankiewicz,
P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Single valley Dirac fermions
in zero-gap HgTe quantum wells, Nature Physics 7, 418 (2011).

[49] Y. Imry, Active Transmission Channels and Universal Conductance Fluctuations, Euro-
physics Letters 1, 249 (1986).

[50] W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. D.
Stone, Universal conductance fluctuations in silicon inversion-layer nanostructures, Physical
Review Letters 56, 2865 (1986).

[51] V. Krueckl and K. Richter, Probing the band topology of mercury telluride through weak
localization and antilocalization, Semiconductor Science and Technology 27, 124006 (2012).

[52] Z.-J. Ying, P. Gentile, C. Ortix, and M. Cuoco, Designing electron spin textures and spin
interferometers by shape deformations, Physical Review B 94, 081406 (2016).

[53] J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Geometric quantum computation using
nuclear magnetic resonance, Nature 403, 869 (2000).

[54] G. Falci, R. Fazio, G. M. Palma, J. Siewert, and V. Vedral, Detection of geometric phases
in superconducting nanocircuits, Nature 407, 355 (2000).

[55] E. Sjöqvist, A new phase in quantum computation, Physics 1, 35 (2008).

[56] X. Qian, J. Liu, L. Fu, and J. Li, Quantum spin Hall effect in two-dimensional transition
metal dichalcogenides, Science 346, 1344 (2014).



3

68 Bibliography

[57] J. L. Collins, A. Tadich, W. Wu, L. C. Gomes, J. N. B. Rodrigues, C. Liu, J. Hellerstedt,
H. Ryu, S. Tang, S.-K. Mo, S. Adam, S. A. Yang, M. S. Fuhrer, and M. T. Edmonds,
Electric-field-tuned topological phase transition in ultrathin Na3Bi, Nature 564, 390 (2018).



4
Emergence of an anomalous

topological conductance
plateau for quantum point

contacts based on thick HgTe
quantum wells

This chapter is based on the publication:
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Jonas Strunz, Jonas Wiedenmann, Christoph Fleckenstein, Lukas Lunczer, Wouter Beugeling,
Valentin L. Müller, Pragya Shekhar, Niccolò Traverso Ziani, Saquib Shamim, Johannes Kleinlein,
Hartmut Buhmann, Björn Trauzettel and Laurens W. Molenkamp. Nature Physics 16, 83 (2020).

In this chapter, the conductance pattern of quantum point contacts based on HgTe quantum wells
with a thickness of dQW = 10.5 nm is discussed. For these devices – apart from the expected
conductance quantization within the bulk band gap of GQSH ≈ 2e2/h – an additional plateau
emerges at G ≈ e2/h = 0.5 · GQSH, which is referred to as 0.5 anomaly. The appearance of
the latter is examined for different device widths and it is observed that the 0.5 anomaly occurs
only for a specific interval of width values. Subsequently presented temperature and bias voltage
dependent measurements of the 0.5 anomaly provide evidence that the signature is related to a
gapped topological state. Moreover, by analysing a multi-terminal quantum point contact device,
it is demonstrated that the regime of the 0.5 anomaly is further linked to a backscattered helical
edge channel. In order to explain the emergence of the 0.5 anomaly, two theoretic models are
presented, which both are based on electron-electron interaction effects as an essential ingredient.
While the first approach relies on considerations stemming from the Tomonaga-Luttinger liquid
theory, the second model covers a helical edge reconstruction mechanism.
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4.1 The 0.5 anomaly and its relation to quantum well
thickness

F or ballistic transport experiments, the elastic mean free path le represents the critical
sample parameter. It is known that for the case of HgTe quantum wells, the mean free

path – and thus the electron mobility µe – is correlated with the quantum well thickness dQW.
Hence, the fabrication and examination of QPC devices based on thicker inverted HgTe quantum
wells appears self-evident, since the latter are expected to offer superior transport parameters.
However, the increase in quantum well thickness entails modifications to the energetic order of
subbands within the HgTe quantum well (see Fig. 2.3).

4.1.1 Band structure of inverted HgTe quantum wells beyond
the Bernevig-Hughes-Zhang case

W hile the so far discussed topological QPC devices are based on quantum wells with
dQW = 7nm, the focus shifts now to QPC samples fabricated from quantum wells with a

thickness of dQW = 10.5 nm (see Fig. 4.1a). Figure 4.1b shows the band structure calculations
for the two quantum well thicknesses, which are performed using k · p theory based on the
eight-band Kane model [1]. For both cases, the calculated bulk band structure of an infinitely
wide slab of quantum well material is represented by the solid black lines. A second calculation
using a semi-finite ribbon with a width ofWy = 150 nm provides information about the energetic
ordering and the spatial extension of topological and trivial states within the QPC (coloured
dots in Fig. 4.1b).

The band structure of the dQW = 7nm case is presented in the left panel of Fig. 4.1b. It
exhibits an inverted band ordering, where the H1 subband forms the conduction band and the E1

subband forms the valence band. It is important to note that the Dirac point lies energetically
within the bulk band gap, which is qualitatively consistent with the BHZ model.

The right panel of Fig. 4.1b shows the band structure for the dQW = 10.5 nm case. There,
the band gap is present between the first two heavy hole type subbands H1 and H2. Thus, the
H1 subband forms the conduction band and the H2 subband determines the valence band edge.
The E1 subband – which is still responsible for the band inversion – lies energetically below the
H2 subband. Consequently, the Dirac point is buried deeply in the valence band. Moreover, it
should be stressed that the H2 valence band exhibits maxima at finite momenta and not at k = 0,
which makes the band gap indirect. The latter feature is a consequence of the band inversion
combined with hybridization effects between the subbands and is referred to as camel back [2, 3].

4.1.2 Observation of the 0.5 anomaly

T he gate voltage VG dependence of the conductance G of QPC-IX is presented in Fig. 4.2
– an exemplary QPC device fabricated from a quantum well with dQW = 10.5 nm. The

conductance can be divided into three separate regimes. The trivial regime (n-n’-n regime) shows
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wave function in y direction. The solid black lines represent the bulk band structure.

distinct plateaus up to G ≈ 14e2/h due to trivial ballistic 1D transport. The application of a low
magnetic field Bz = 0.3T (red trace) is equivalent to subtracting a small serial resistance [4].

The subsequent topological regime is classified into two sub-regimes. First, the conductance
saturates around a long plateau at GQSH ≈ 2e2/h, which is attributed to the QSH regime (n-i-n
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Figure 4.2: Gate voltage VG dependence of the conductance G of QPC-IX (dQW = 10.5 nm), which can be divided
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QSH regime (n-i-n regime of a topological QPC device) reveals itself by a conductance of GQSH ≈ 2e2/h. With
entering the 0.5 anomaly regime, the conductance drops to a quantized value of G ≈ e2/h = 0.5 · 2e2/h. Together,
the QSH regime and the 0.5 anomaly regime form the topological regime. The inset shows an enlarged view of the
0.5 anomaly regime.

regime of a topological QPC device). However, with tuning the gate voltage successively towards
more negative values, no signatures of the n-p-n regime (and thus of an increase in conductance)
can be identified within the data shown in Fig. 4.2 – contrary to QPC devices fabricated from
quantum wells with dQW = 7nm. Instead, a step-like transition from GQSH ≈ 2e2/h to an
even longer plateau at G ≈ e2/h = 0.5 ·GQSH occurs. This peculiar phenomenon is labelled as
0.5 anomaly, the corresponding transport regime is referred to as 0.5 anomaly regime.

The inset of Fig. 4.2 demonstrates the precision of the 0.5 anomaly as well as its resilience
towards a magnetic field of Bz / 0.3T. Due to reasons of consistency, the presentation of
conductance data is maintained in units of e2/h. Thus, the conductance plateau attributed to
the 0.5 anomaly appears at 1 · e2/h.

Further remarks

A second measurement of the n-n’-n regime of QPC-IX is shown in Fig. 4.3a. With applying
a magnetic field of Bz = 0.3T, conductance quantization up to G ≈ 22e2/h is observable.

This level of quantization has not been realizable for quantum wells with dQW = 7nm within
the scope of this thesis. Thus, this result indicates the superior quality of QPC devices based on
quantum wells with dQW = 10.5 nm in terms of trivial ballistic 1D transport.
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performing another measurement in addition to the data shown in Fig. 4.2. The shift of the conductance traces with
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G of QPC-IX (dQW = 10.5 nm, blue trace) measured within the QSH regime. The data of QPC-I (dQW = 7nm,
grey trace) is added for comparison purposes and is equivalent to the data presented in Fig. 3.6a.

In Fig. 4.3b, an exemplary measurement of the magnetoconductance G obtained within the
QSH regime of QPC-IX is compared with data of QPC-I (equivalent to the data of Fig. 3.6a).
No distinct periodic oscillation pattern is observable for the case of QPC-IX, which is consistent
with the expectations of the proposed QSH ring formation model in Section 3.1.2. Inserting
WQPC ≈ 150 nm, λF ≈ 33 nm (based on the electron density of the wafer material utilized for the
fabrication of device QPC-IX, see Tab. 4.1) and σy ≈ 10 nm (see Fig. 4.1b) into Eq. 3.2 yields
(2 · 10 + 33) nm < 150 nm, thus no formation of a QSH interferometer state is expected.

4.2 Characterization of the 0.5 anomaly regime

I n order to extend the study of the 0.5 anomaly, its dependence on the device width WQPC, on
the temperature T and on an applied DC bias voltage VDC will be analysed in the following.

Subsequently, the emergence of the 0.5 anomaly is discussed from a single particle picture per-
spective. These considerations also include implications caused by the peculiar band structure of
HgTe quantum wells with dQW = 10.5 nm, i.e. the emergence of the camel back. Moreover, the
lithographic fabrication process as well as transport measurements of a novel multi-terminal QPC
device are presented. The acquired data demonstrates that the occurrence of the 0.5 anomaly is
accompanied by a backscattered QSH edge channel.

4.2.1 Dependence on device width

A n overview of the gate voltage dependence of the conductance of various QPC samples
with different width values is presented in Fig. 4.4. The 0.5 anomaly can be identified
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for the devices QPC-IX, QPC-XI, QPC-XII and QPC-XIII (Fig. 4.4b–d), which exhibit device
width values of WQPC ∈ [100; 200] nm. For devices with larger width values such as QPC-X
(WQPC ≈ 250 nm, see Fig. 4.4a), the conductance still drops below GQSH ≈ 2e2/h, but does not
reach the value G ≈ 0.5·GQSH anymore. This observation suggests that an interaction mechanism
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between the helical edge channels is crucial for the appearance of the 0.5 anomaly. For the case
of QPC-XII and QPC-XIII (WQPC ≈ 100 nm), no distinct plateau emerges at GQSH ≈ 2e2/h

any longer. However, the plateau at G ≈ 0.5 · GQSH is still observable. In the context of an
interaction driven mechanism responsible for the emergence of the 0.5 anomaly, this behaviour
can be attributed to stronger inter-edge interactions in narrower QPC devices.

For all QPC devices exhibiting the 0.5 anomaly, the signature appears at large negative gate
voltage values and persists over a wide voltage range. The gate efficiency of the examined devices
is known from measurements of reference Hall bar samples with an analogue gate stack to be
approximately ∆ne/∆VG ≈ 8–10 · 1011 cm−2V−1. Hence, it appears reasonable to conclude that
the bulk density in the 0.5 anomaly regime is strongly p-doped with a roughly estimated hole
density of nh > 1 · 1012 cm−2. However, bulk transport through the QPC is suppressed in the
0.5 anomaly regime, which will be discussed in Section 4.2.3.

For very narrow QPC devices such as QPC-XIV (WQPC ≈ 50 nm, Fig. 4.4e) and QPC-XV
(WQPC ≈ 25 nm, Fig. 4.4f), the conductance drops to G ≈ 0 within the bulk band gap and neither
a plateau at GQSH ≈ 2e2/h nor at G ≈ 0.5 · GQSH is observable. This absence of topological
transport within the bulk band gap is attributed to hybridization effects between the helical
edge channels.

In the case of QPC-XV (WQPC ≈ 25 nm), the gate voltage dependence of the conductance
exhibits signatures which resemble Coulomb blockade oscillations typical for quantum dots (see
Fig. 4.5a). This assignment is confirmed by measurements of the combined gate and bias voltage
dependence of the differential conductance dI/dV of QPC-XV, which is presented in Fig. 4.5b.
The grey scale plot shows diamond shaped structures known from the Coulomb blockade transport
regime (see for example Ref. [5]). Hence, the Coulomb blockade diamonds indicate the presence
of quasi-zero-dimensional states and thus the formation of electron islands within the gated QPC
area.
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4.2.2 Dependence on temperature and bias voltage

T he temperature dependence of the 0.5 anomaly is presented in Fig. 4.6a for the case of
QPC-IX. Up to T = 1.4K (see also Fig. 4.2 and Fig. 4.4), a pronounced step-like transition

from GQSH ≈ 2e2/h to G ≈ e2/h is observable. For higher values of the temperature (T ≥ 4K),
this transition becomes less distinct. Furthermore, the 0.5 anomaly characteristic quantization
of G ≈ e2/h is lost and the lowest value of the topological conductance beyond the QSH regime
increases with rising temperatures (G ≈ 1.1e2/h at T = 4K). With choosing the range of
T ≈ 2–4K as the upper temperature limit up to which the 0.5 anomaly is still observable, a
corresponding energy scale of ∆E = kBT ≈ 150–300 µeV can be defined.

This energy scale is in agreement with the results of the bias voltage dependence of the
0.5 anomaly, which is presented in Fig. 4.6b–e for the case of QPC-XIII. The 0.5 anomaly is
observable up to bias voltage values of VDC ≈ 200–400 µV (see Fig. 4.6d), which results in an
energy scale of ∆E = eVDC ≈ 200–400 µeV. The consistency of the energy scale values among
several devices and different estimation methods substantiates the robust, stable and reproducible
character of the 0.5 anomaly.

With increasing the bias voltage further, the differential conductance increases as well until it
starts to saturate at dI/dV ≈ 2e2/h for VDC > 13meV (see Fig. 4.6c). This saturation indicates
that both edge channels are transmitted through the QPC without perturbation over a large
range of gate voltage when a sufficiently high bias voltage is applied (see also Fig. 4.6e). Hence,
this observation suggests that the occurrence of the 0.5 anomaly is related to the emergence of a
gap within the helical spectrum – caused by interactions in devices with an appropriate width
WQPC.

A further interesting feature of the bias voltage dependence of the differential conductance is
highlighted by the arrow in Fig. 4.6c. The latter points to the formation of a plateau-like shape
around dI/dV ≈ 0.8 · 2e2/h. Depending on the device, it is sometimes also possible to identify
such a feature as a function of gate voltage (see for example Fig. 4.4c).

It is conjectured that this feature is related to the 0.7 anomaly commonly observed in con-
ventional QPC devices [6]. Following the argumentation of Ref. [7], the 0.7 anomaly emerges
due to a broadened density of states at the bottom of the first trivial subband in combination
with enhanced electron-electron interactions. As a consequence, a small negative conductance
correction occurs, which forms a shoulder-like signature around G ≈ 0.7 · 2e2/h – referred to as
0.7 anomaly. Adapted to the present case, the feature at dI/dV ≈ 0.8 · 2e2/h appears when the
applied bias voltage becomes large enough to touch the lower edge of the interaction induced
gap.
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4.2.3 Discussion from a single particle picture perspective in-
cluding band structure considerations

T he peculiar band structure of quantum wells with dQW = 10.5 nm is demonstrably crucial
for the emergence of the 0.5 anomaly. While the exact physical origin of the latter is still

unclear, the so far discussed experimental observations point towards an interaction mechanism
between the helical edge states, which opens up a gap in the helical spectrum. In the following,
it will be explicated that the burying of the Dirac point and the formation of the camel back
have several implications for charge transport and that they are causative for different aspects
in the context of observing the 0.5 anomaly.

Figure 4.7a shows a self-consistent k · p band structure calculation for a semi-finite ribbon
with Wy = 150 nm and dQW = 10.5 nm, which enables the inclusion of an applied electric field
and thus to mimic the influence of the high gate voltages accompanying the 0.5 anomaly regime.
By lowering the gate voltage, the Fermi level (indicated by the dashed black line) is pushed
into the H2 bulk subbands. There, the valence band structure exhibits the camel back and the
Fermi level gets pinned at the flat valence band edge (high density of states). This circumstance
is indicated by the Roman numeral I in Fig. 4.7a. Furthermore, the separation in momentum
space between the helical edge states and the bulk states allows for their coexistence without
hybridization effects (numeral II). In addition, the large Fermi momentum mismatch between
valence and conduction bands suppresses inter-band transitions and hence also suppresses bulk
transport in the n-p-n regime (numeral III). These arguments explain the pronounced range in
gate voltage of the QSH plateau at GQSH ≈ 2e2/h as well as the suppression of bulk conductance
when entering the valence band. In order to illustrate this behaviour, Fig. 4.7b compares the
gate voltage dependence of the conductance of QPC-IX (dQW = 10.5 nm) with a wide range gate
voltage dependence of the conductance of QPC-I (dQW = 7nm).

The influence of the electric field becomes manifest in the Rashba splitting of the bulk bands,
while the dispersion of the helical edge states remains unaffected (see Fig. 4.7a). Nevertheless, the
influence of Rashba spin-orbit coupling does induce an energy dependence of the spin-momentum
locking within the helical edge states [8, 9], which is indicated by the tilted black arrows (numeral
IV). However, the emergence of a gapless generic helical spectrum as well as the previous single
particle picture based arguments still cannot explain the occurrence of the 0.5 anomaly.

In the context of discussing the implications of the band structure on transport, a further
observation of interest is presented in Fig. 4.7c. There, the gate voltage dependence of the
conductance of QPC-IX (WQPC ≈ 150 nm) and of QPC-XV (WQPC ≈ 25 nm) is shown for wider
ranges of the gate voltage. To ensure comparability between the two devices, both traces are
shifted with regard to the gate voltage axis.

For QPC-XV, the conductance drops to G ≈ 0 caused by hybridization effects of the QSH edge
channels. Due to the impact of the camel back, the state of zero conductance (n-i-n regime) persists
for a pronounced range of gate voltage. As shown in Fig. 4.7c, this very range is comparable with
the total topological regime of QPC-IX, which consists of the QSH regime and the 0.5 anomaly
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Figure 4.7: a, k · p band structure calculation for a semi-finite ribbon with Wy = 150 nm and and dQW = 10.5 nm.
The colour code indicates the standard deviation σy of the wave function in y direction. The solid black lines
represent the bulk band structure. The calculation includes the application of a finite electric field to the top of
the quantum well. The induced Rashba effect results in a splitting of the bulk bands as well as in a tilting of the
spin polarization of the helical edge states (indicated by the black arrows). The meaning of the Roman numerals
is discussed in the text. The dashed black line indicates the position of the Fermi level. b, Comparison of the
gate voltage VG dependence of the conductance G of QPC-I (dQW = 7nm) and QPC-IX (dQW = 10.5 nm). The
blue trace is equivalent to the data shown in Fig. 4.4c. The grey trace represents a measurement of QPC-I over a
wider range of gate voltage as for the data shown in Fig 2.11 and is shifted with regard to both axes to ensure
comparability (by ∆G = 2e2/h with regard to the ordinate). c, Gate voltage dependence of the conductance of
QPC-IX and of QPC-XV for wider ranges of the gate voltage. Both traces are shifted with regard to the gate
voltage axis in order to ensure comparability between the topological regime of QPC-IX and the n-i-n regime of
QPC-XV.
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regime. This result indicates a similar bulk band gap size of the two samples, which seems
convenient since both devices are fabricated from quantum wells with dQW = 10.5 nm.

With passing a certain threshold value towards more negative gate voltages, the conductance
of QPC-XV increases again, which is attributed to entering the n-p-n regime. Referring to
previous statements, this observation can be explained with a lowering of the Fermi level deeper
into the valence bands and hence beyond the camel back due to the application of very high
gate voltages. In this scenario, the Fermi momentum mismatch between valence and conduction
bands is reduced, which eventually enables bulk transport in the n-p-n regime.

Interestingly, this increase of conductance for the case of QPC-XV coincides with a decrease
of conductance for the case of QPC-IX – below G ≈ e2/h. This behaviour insinuates that the
effect causing the 0.5 anomaly seems to be fragile with respect to the influence of occurring bulk
transport. Since the so far discussed experiments suggest an inter-edge interaction mechanism
between the helical edge states to be responsible for the occurrence of the 0.5 anomaly, a parasitic
impact of bulk transport appears reasonable.

4.2.4 Detection of a backscattered state in a multi-terminal
device geometry

T he 0.5 anomaly regime is characterized by a conductance of G ≈ e2/h. This value implies
the transmission of one QSH edge channel through the QPC, while the other one is reflected

(see Fig. 4.8a for a sketch). Such an assumption of one backscattered helical edge channel can
be tested by realizing additional voltage probes in a Hall geometry adjacent to both sides of the
QPC, which is sketched in Fig. 4.8b. As long as the device is in the QSH regime, both helical
edge channels are transmitted. Then, the expected values of the longitudinal resistance Rxx and
the transversal resistance Rxy are

Rxx(1-4, 2-3) = h

2e2 and Rxy(1-4, 6-2) = 0 . (4.1)

However, when one QSH edge channel gets reflected, these values change to

Rxx(1-4, 2-3) = 2h
3e2 and Rxy(1-4, 6-2) = h

3e2 (4.2)

according to predictions by Landauer-Büttiker theory for one backscattered helical edge channel
in a six-terminal device at zero magnetic field [10]. It should be noted that these values presume
a full reflection of one edge channel as well as a complete transmission of the other edge channel.
The fabrication process for such a multi-terminal QPC device was developed within the scope
of this thesis.

Device concept and lithographic fabrication

T he device concept of a multi-terminal QPC sample is schematically shown in Fig. 4.9a. The
mesa can be described by a standard Hall bar geometry, which is modified by an embedded
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Figure 4.8: a, Sketch of a transport situation within a topological QPC device, in which one of the helical edge
channels is completely backscattered, while the other one is transmitted through the constriction. b, Sketch of the
analogous transport situation in a topological multi-terminal QPC device.

constriction in its middle part forming a QPC. In order to be able to tune the Fermi level of
the QPC separately from the surrounding reservoirs and thus to enhance device controllability,
three individual top gate electrodes are patterned. For the detection of a backscattered state in
the context of the 0.5 anomaly, the QPC part of a multi-terminal QPC device has to be tuned
to the 0.5 anomaly regime, whereas the adjacent reservoirs have to be tuned to the QSH regime.

The underlying approach of device fabrication is analogue to the concept developed for
conventional QPC devices. The etching of the mesa is done in three steps. After the Hall bar
geometry is defined in a first etching step, the QPC is etched in a second step using a dedicated
etching time (see Fig. 4.9b,c – EBL used for both steps). The outer mesa is etched in a final
third step using optical lithography methods.

Subsequently, the three top gate electrodes are structured using EBL. In a first step, the
two separated gate electrodes covering the reservoir areas are patterned simultaneously (gate
electrode A and B, see Fig. 4.9d–f). The width of the gap WGap between the two electrodes
effectively defines the parameter LGate of the QPC part of the multi-terminal device. The extent
of the gap width can be tuned by design modifications.

Due to the utilized exposure and development parameters, the developed PMMA mask for
structuring gate electrode A and B exhibits a pronounced undercut. If the design is chosen such
that WGap is sufficiently small, the two resist-free areas are not separated by a dense line of
PMMA anymore. However, a PMMA bridge is formed. Thus, the subsequently deposited HfO2

layer covers the whole area of the mesa (see the green layer in Fig. 4.9g), while the metallized
gate electrodes remain separated. Such a scenario is beneficial for the intended experiment, since
HfO2 sidewalls would have a negative impact on the functionality of the to be structured QPC
gate electrode otherwise.

Next, the gate electrode covering the QPC area is patterned (gate electrode C, sketched in
Fig. 4.9a,g). In order to avoid ungated areas between the electrodes, the design is chosen such
that gate electrode C overlaps with gate electrodes A and B. The deposition of a second film of
HfO2 (grey layer in Fig. 4.9g) ensures that the three gate electrodes remain electrically separated.
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Figure 4.9: a, Sketch of the concept of a multi-terminal QPC device. Three individual top gate electrodes are
defined. b,c, Sketch and scanning electron micrograph of the mesa of a multi-terminal QPC device. Relevant
dimensions are indicated. d, Sketch of the mesa covered by gate electrodes A and B. The electrodes are separated by
a gap with a width WGap. e,f, Scanning electron micrographs of two exemplary devices covered by gate electrodes
A and B. Relevant dimensions are indicated. g, Cross section of a final device along the transport axis of the QPC.
The gate electrodes, the area of the QPC and of the surrounding reservoirs as well as the two individual HfO2
layers are indicated.
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100 μm1 mm

Figure 4.10: a, Optical micrograph of a full multi-terminal QPC sample. b, Zoom on the central part of the sample.
The optical micrograph shows the device after defining the three top gate electrodes.

Furthermore, screening effects are expected to prevent cross-influences between the individual
gate electrodes. Lastly, ohmic contacts and gate leads are structured using optical lithography.
Complementary optical micrographs of an exemplary multi-terminal QPC device are presented
in Fig. 4.10. Process details and parameters are presented in Appendix C.

It should be noted that the fabrication process is still in a preliminary condition. The
remaining technological obstacle appears at the interface between gate electrode A/B and gate
electrode C. For every fabricated device, the three electrodes are shorted to each other, thus
effectively forming one extended top gate electrode covering the whole device. A mere increase of
the thickness of the HfO2 layer associated with gate electrode C (grey layer in Fig. 4.9g) turned
out to be not sufficient to solve this problem.

Consequently, the fabricated devices are only working under limited conditions. Due to the
outlined situation, the gate action for the two reservoir areas is higher (lower thickness of the
HfO2 layer) than for the QPC area (larger thickness of the HfO2 layer, combination of the green
and grey layer in Fig. 4.9g). Thus, there is only a small range of gate voltage in which the
reservoirs are located in the QSH regime before they become p-conducting.

Device characterization

T he gate voltage dependence of the two-point conductance Gxx(1-4, 1-4) of the multi-terminal
QPC device QPC-XVI is presented in the upper panel of Fig. 4.11. With lowering the gate

voltage, a clear step-like behaviour is observable as well as a transition to a long and stable
plateau of low conductance. This plateau is identified as the 0.5 anomaly regime, even though
the conductance is not in accordance with the expected value of G ≈ e2/h. The latter is due to a
gate voltage induced increase of the resistance of the reservoirs, which is also responsible for the
shifted position of the QSH plateau and of the plateaus caused by trivial ballistic 1D transport.

The lower panel of Fig. 4.11 shows the simultaneously measured gate voltage dependence of
the transversal resistance Rxy(1-4, 6-2). For the trivial regime and for the QSH regime of the
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Figure 4.11: Transport analysis of the multi-terminal QPC device QPC-XVI. The upper panel shows the two-point
conductance Gxx(1-4,1-4) as a function of the gate voltage VG. The inset of the upper panel shows the contact
configuration of the measured device. The lower panel presents the gate voltage dependence of the transversal
resistance Rxy(1-4,6-2). The inset of the lower panel shows a zoom on the acquired data. Both traces were measured
simultaneously and are not shifted with regard to the applied gate voltage.

two-point conductance, the potential difference between contact 6 and contact 2 remains zero,
which yields Rxy(1-4, 6-2) = 0 Ω. However, as soon as the QPC enters the 0.5 anomaly regime, a
significant voltage drop emerges. Moreover, the corresponding transversal resistance exhibits a
maximum around Rxy(1-4, 6-2) = 1/3 · h/e2, thus being in accordance with the value predicted
by Landauer-Büttiker calculations for one reflected helical edge channel (see also the inset of the
lower panel of Fig. 4.11).

Due to the absence of any magnetic field influence (Bz = 0T), the detection of a finite
voltage in a Hall geometry in the given transport regime can only be caused by helical edge



4.3 Origin of the 0.5 anomaly – differentiation of two models
based on electron-electron interactions

4

85

channels. Thus, the data presented in Fig. 4.11 proves that the occurrence of the 0.5 anomaly is
accompanied by a backscattered helical edge channel. The decrease to lower (but finite) resistance
values for more negative gate voltages is attributed to scattering events caused by the impact of
occurring p-bulk transport in the reservoirs. Due to device specific issues, contact 3 and contact
5 are not working, thus no further four-point configurations of interest can be analysed.

4.3 Origin of the 0.5 anomaly – differentiation of
two models based on electron-electron interac-
tions

T he discussion of Section 4.2.3 demonstrates that the emergence of the 0.5 anomaly cannot
be captured within the single particle picture. Furthermore, the acquired data suggests that

the occurrence of the 0.5 anomaly is caused by an inter-edge interaction mechanism, which is
accompanied by the backscattering of one helical edge channel. At the moment, two plausible
explanatory models based on electron-electron interactions across the device edges exist.

4.3.1 Tomonaga-Luttinger liquid theory

I n the presence of interactions, a 1D system behaves fundamentally different than its coun-
terparts of higher dimensionality. For the 2D and 3D case, the Fermi liquid theory describes

interacting electron systems in the context of almost free quasiparticles with an effective mass.
However, in the 1D case, this quasiparticle picture collapses. The pictorial reason is that a single
particle cannot move without perturbing its neighbours. Thus, only collective excitations are
possible, which represent the eigenstates of the system [11]. This very scenario of an interacting
1D system is captured by the Tomonaga-Luttinger liquid (TLL) theory [12–15].

Tomonaga-Luttinger liquid theory in a nutshell

T he TLL theory is based on the description of a 1D many-body system consisting of inter-
acting (relativistic) fermions as a model of free bosons. This transformation is referred to as

bosonization, which requires a linear energy dispersion. Such a linear spectrum is either present
in a 1D gas of relativistic free fermions or can be obtained by the linearization of a parabolic
spectrum around the Fermi energy in the context of a many-body system of non-relativistic free
fermions [16]. For an in-depth introduction to bosonization, the interested reader is referred for
example to Ref. [16].

For a QSH system, a linear energy dispersion is naturally present. In terms of the thus possible
description within the scope of the TLL model, the edge states of a QSH insulator are referred
to as a helical Luttinger liquid (HLL) [17]. Such a HLL exhibits spin-momentum-locking and
consists of bosonic spin σ and charge ρ modes [11], which is sketched in Fig. 4.12b.

The strength of interactions between single particles within the 1D system is described
by the Luttinger parameter KL. Repulsive electron-electron interactions are characterized by
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Figure 4.12: a, Schematic of the correlated two particle backscattering process, which causes the opening of a spin
gap. The Fermi level µ is indicated. b, Illustration of the reduction of the QPC conductance in the HLL picture,
where σ and ρ indicate the bosonic spin and charge modes.

0 ≤ KL < 1, while attractive interactions are present for KL > 1. The noninteracting case is
represented by KL = 1 [11, 16, 19]. An estimation of KL for a HLL can be obtained using [20]

KL =
[
1 + 2e2

πε0εr~vF
ln
(

7.1d
ξ + 0.8dQW

)]−1/2

, (4.3)

where ε0 is the permittivity of free space, εr is the dielectric constant, vF is the Fermi velocity, d
is the distance between the edge channels and the top gate electrode, dQW is the quantum well
thickness and ξ = 2~vF/EGap with EGap representing the bulk band gap of the system under
consideration [3, 20].

Opening of a spin gap due to Coulomb interactions

U tilizing the introduced concept of HLLs, a model explaining the occurrence of the
0.5 anomaly can be compiled. Assuming weak repulsive electron-electron interactions across

the device edges, Ref. [21] defines a two-particle scattering term which describes a backscattering
process between the QSH edge states of opposite sample edges. The process preserves the number
of right and left movers and is sketched in Fig. 4.12a.

To be of relevance, the scattering term furthermore requires a sufficiently high magnitude of
Rashba coupling strength being present within the examined system. If this condition is met,
Ref. [21] demonstrates using bosonization techniques that the correlated backscattering process
depicted in Fig. 4.12a acts as a gap to the spin sector of the HLL. This situation is sketched in
Fig. 4.12b and is accompanied by a reduced conductance of G = e2/h = 0.5 ·GQSH. For a detailed
analytic description of the discussed mechanism, the interested reader is referred to Refs. [18, 21].
Using εr = 20 for HgTe [3], vF = 6 · 105 ms−1, d = 60nm, dQW = 10.5 nm and EGap = 10meV,
Eq. 4.3 yields a value of KL ≈ 0.55, which is in accordance with repulsive interactions. The
values of vF and EGap are extracted from the band structure calculation shown in Fig. 4.7a, the



4.4 Recapitulating discussion from an experimental perspective

4

87

a b

Sharp confining potential Smooth confining potential

Figure 4.13: a, Sketch of a sample hosting the QSH regime with a sharp confining edge potential. The helical edge
states lie on top of each other in space. b, Sketch of a sample hosting the QSH regime with a smooth confining
edge potential. In such a scenario, the authors of Ref. [10] predict the emergence of a helical edge reconstruction
mechanism, which leads to a separation of the helical edge states in space.

approximated value of d stems from the addition of the cap layer thickness of the quantum well
and the thickness of the Ti/HfO2 stack.

4.3.2 Helical edge reconstruction

T he second model suitable to explain the emergence of the 0.5 anomaly is a helical edge
reconstruction mechanism formulated by Ref. [10]. The authors propose that when consider-

ing a realistic smooth confining potential at the sample edge instead of an unrealistic sharp one,
the pair of counterpropagating helical edge channels becomes separated in space (see Fig. 4.13
for a sketch). If such a scenario is applied to a QPC device, falling below a threshold value
of the QPC width causes the wave functions of the inner pair of edge states to overlap earlier
than for the outer pair. With further taking repulsive electron-electron interactions into account,
the authors expect that such a regime enables a selective backscattering process to take place
within the QPC (see Fig. 4.8a). They assume the corresponding conductance pattern to exhibit
a second plateau at G = e2/h = 0.5 ·GQSH in addition to the conventional one at GQSH = 2e2/h.
When the QPC is furthermore embedded in a six-terminal device, the authors predict that
the regime of G = 0.5 · GQSH is accompanied by the emergence of a finite Hall resistance of
Rxy(1-4, 6-2) = h/3e2 at zero magnetic field. The latter relies on the assumption that the inner
edge channel is completely reflected, while the outer one is still entirely transmitted [10]. This
situation is sketched in Fig. 4.8b.

4.4 Recapitulating discussion from an experimental
perspective

W hen reviewing the two introduced models in the context of the discussed experimental
observations, it has to be noted that both are consistent with the width dependence of

the 0.5 anomaly (see Fig. 4.4). This conclusion stems from the fact that an inter-edge interaction
mechanism between helical edge channels has to exhibit a dependence on the device width and
thus on the distance between the sample edges by conception. Moreover, this consistency is also
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given for the observed decrease of conductance below G ≈ e2/h at large negative gate voltage
values (see Fig. 4.7c), which is attributed to the impact of arising bulk transport in the n-p-n
regime. In this scenario, the latter causes the breakdown of the inter-edge interaction mechanism.

Furthermore, each of the two models is in accordance with the occurrence of the 0.5 anomaly
in quantum wells with dQW = 10.5 nm, whereas the feature is absent in quantum wells with
dQW = 7nm. For both described mechanisms, the pinning of the Fermi level at the camel back is
of crucial importance. While it enables a sufficiently large value of Rashba spin-orbit coupling for
the spin gap to open in the HLL model, the Fermi level pinning also generates a highly p-doped
bulk density within the QPC area. This high density of states of p-carriers causes the formation of
a smooth confining potential at the device edge, thus giving rise to the helical edge reconstruction
mechanism. Due to the lack of Fermi level pinning for quantum wells with dQW = 7nm, both
mechanisms are not applicable, which is in accordance with the experimentally demonstrated
absence of the 0.5 anomaly in QPC devices fabricated from such quantum wells.

With regard to the detection of a backscattered helical edge channel in a multi-terminal QPC
device, the situation is slightly different. While such an observation is central in the context
of the helical edge reconstruction mechanism proposed by Ref. [10], the harmonization of this
result with the proposed presence of a spin gap seems less trivial. This is related to the fact
that after the emergence of such a gapped state, only the charge mode at each edge remains
propagating (see Fig. 4.12b). However, this scenario does not result in a potential difference
within an adjacent Hall geometry.

A possible explanation is given by the assumption that the HLL description of the inter-edge
interaction mechanism is only valid for the centre of the QPC, where the correlated backscattering
process – and thus the opening of a spin gap – takes place. However, the strength of inter-edge
interaction reduces when moving away from the centre (increasing the distance between the
edges). Consequently, it appears plausible that the correlated two particle picture description of
transport collapses to an effective single particle picture transport situation – thus giving rise to
the propagation of one helical edge channel.

Since both theoretic models are overall consistent with the experimental observations made in
the context of the 0.5 anomaly, it is not possible to discard or favour one of the two mechanisms.
From an experimental point of view, the presented results prove in any case the presence of an
inter-edge interaction mechanism between helical edge channels, which is accompanied by the
formation of a gapped topological state as well as by a backscattered helical edge channel – a
novel result observed for the first time in a QSH insulator. Moreover, the transmission of only
one helical edge channel is equivalent to the generation of a 100% spin-polarized current.

4.5 Conclusion

T he unexpected observation of the 0.5 anomaly in HgTe quantum wells with dQW = 10.5 nm
represents further evidence regarding the significance of realizing a working QPC technology

in the context of knowledge gain about QSH systems. Moreover, the discussion of the results
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has demonstrated how fundamental the information about the exact band structure is for device
realizations beyond the BHZ limit. As explicated, the formation of the camel back – which is not
covered by the BHZ model – is crucial for understanding the phenomenon of the 0.5 anomaly.
The emergence of the latter is accompanied by a backscattered helical edge channel, which is
evidenced by examining a specifically developed multi-terminal QPC device. However, the device
technology still exhibits a preliminary character.

A completely functional multi-terminal device to be realized in the future might support
the identification of the actual mechanism causing the occurrence of the 0.5 anomaly and is
thus expected to help determining which of the two discussed models provides the more reliable
description. Beyond an understanding of the 0.5 anomaly in thick HgTe quantum wells, such
a device is furthermore of high interest for analysing transport in QPCs in general. Due to its
concept, such a multi-terminal QPC sample provides three independently gated device segments –
the QPC itself and the two adjacent reservoirs. Hence, the examination of arbitrary combinations
of transport regimes within one device becomes possible.

4.6 Sample overview

QPC dQW WQPC LQPC LGate ne(0V) µe(0V) le Layer thicknesses
No. [nm] [nm] [nm] [nm] [cm−2] [cm2V−1s−1] [µm] [nm]
I 7.0 100 500 250 5.2 · 1011 2.7 · 105 3.2 70/9/70/7/50
IX 10.5 150 500 250 5.9 · 1011 3.2 · 105 4.1 73/10/73/10.5/52
X 10.5 250 500 250 5.9 · 1011 3.2 · 105 4.1 73/10/73/10.5/52
XI 10.5 200 500 250 5.9 · 1011 3.2 · 105 4.1 73/10/73/10.5/52
XII 10.5 100 500 250 5.9 · 1011 3.2 · 105 4.1 73/10/73/10.5/52
XIII 10.5 100 500 250 5.9 · 1011 3.2 · 105 4.1 73/10/73/10.5/52
XIV 10.5 50 500 250 5.9 · 1011 3.2 · 105 4.1 73/10/73/10.5/52
XV 10.5 25 500 250 5.9 · 1011 3.2 · 105 4.1 73/10/73/10.5/52
XVI 10 200 500 250 5.8 · 1011 2.0 · 105 2.5 63/9/63/10/45

Table 4.1: Summary of the sample and material parameters for each discussed QPC device indicated by Roman
numerals. The layer thickness values refer to the sketched layer stack shown in Fig. 2.7b. The given numbers (from
right to left) are attributed to the sketched layers from top to bottom. The thickness of the buffer as well as of
the substrate is not included.
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5
Summary

Q uantum point contacts (QPCs) are one-dimensional constrictions in an otherwise ex-
tended two-dimensional electron or hole system. Since their first realization in GaAs based

two-dimensional electron gases [1, 2], QPCs have become basic building blocks of mesoscopic
physics and are used in manifold experimental contexts. A so far unrealized goal however is the
implementation of QPCs in the new material class of two-dimensional topological insulators,
which host the emergence of the so-called quantum spin Hall (QSH) effect [3–5]. The latter
is characterized by the formation of conducting one-dimensional spin-polarized states at the
device edges, while the bulk is insulating. Consequently, an implemented QPC technology can
be utilized to bring the QSH edge channels in close spatial proximity, thus for example enabling
the study of interaction effects between the edge states [6, 7]. The thesis at hand describes the
technological realization as well as the subsequent experimental characterization and analysis of
QPCs in a QSH system for the first time.

After an introduction is given in Chapter 1, the subsequent Chapter 2 starts with discussing
the peculiar band structure of HgTe. The emergence of the QSH phase for HgTe quantum wells
with an inverted band structure is explained. For the band inversion to occur, the quantum wells
have to exhibit a well thickness dQW above a critical value (dQW > dc = 6.3 nm). Subsequently,
the concept of QPCs is explicated and the corresponding transport behaviour is analytically
described. Following the discussion of relevant constraints when realizing a QPC technology in a
QSH system, a newly developed lithography process utilizing a multi-step wet etching technique
for fabricating QPC devices based on HgTe quantum wells is presented. Transport measurements
of exemplary devices show the expected conductance quantization in steps of ∆G ≈ 2e2/h

within the conduction band for a topological as well as for a trivial (dQW < dc) QPC. For the
topological case, the residual conductance within the bulk band gap saturates at GQSH ≈ 2e2/h

due to presence of the QSH state, while it drops to G ≈ 0 for the trivial device. Moreover, bias
voltage dependent measurements of the differential conductance of an inverted sample provide
explicit proof of the unperturbed coexistence of topological and trivial transport modes.
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In a next step, Chapter 3 describes the emergence of a QSH interferometer state in narrow
QPC devices with a quantum well thickness of dQW = 7nm. Presented band structure calculations
reveal that the spatial extension of the QSH edge states depends on the position of the Fermi
energy within the bulk band gap. As a consequence, reservoir electrons with randomized spin
couple to both edge channels with the same probability under certain conditions, thus causing
the formation of a QSH ring. A straightforward model capturing and specifying the occurrence of
such a QSH interferometer is provided as well as substantiated by two experimental plausibility
checks. After relevant quantum phases are theoretically introduced, the discussion of the obtained
data reveals the accumulation of an Aharonov-Bohm phase [8], of a dynamical Aharonov-Casher
phase [9] as well as of a spin-orbit Berry phase of π [10] in appropriate QPC devices. These
results are consistent with analytic model considerations.

The last part of this thesis, Chapter 4, covers the observation of an unexpected conductance
pattern for QPC samples fabricated from quantum wells with dQW = 10.5 nm. In these devices,
an anomalous plateau at G ≈ e2/h = 0.5 ·GQSH emerges in addition to the QSH phase entailed
residual conductance of GQSH ≈ 2e2/h. This so-called 0.5 anomaly occurs only for a specific
interval of QPC width values, while it starts to get lost for too large sample widths. Furthermore,
presented temperature and bias voltage dependent measurements insinuate that the emergence
of the 0.5 anomaly is related to a gapped topological state. Additional characterization of this
peculiar transport regime is provided by the realization of a novel device concept, which integrates
a QPC within a standard Hall bar geometry. The results of the experimental analysis of such a
sample link the occurrence of the 0.5 anomaly to a backscattered QSH channel. Thus, following a
single particle perspective argumentation, it is reasoned that only one edge channel is transmitted
in the context of the 0.5 anomaly. Two theoretic models possibly explaining the emergence of
the 0.5 anomaly – based on electron-electron interactions – are discussed.

To conclude, the implementation of a working QPC technology in a QSH system represents
a paramount development in the context of researching two-dimensional topological insulators
and enables a multitude of future experiments. QPC devices realized in a QSH system are for
example envisaged to allow for the detection of Majorana fermions [11] and parafermions [12].
Furthermore, the reported formation of a QSH interferometer state in appropriate QPC devices
is of high interest. The observed dynamical Aharonov-Casher phase in the QSH regime enables
a controllable modulation of the topological conductance, thus providing the conceptual basis
for a topological transistor [13, 14]. Moreover, due to the resilience of geometric phases against
dephasing [15, 16], the presence of a spin-orbit Berry phase of π represents a promising perspective
with regard to possible quantum computation concepts [17–19]. Besides that, the transmission of
only one QSH edge channel due to the emergence of the 0.5 anomaly is equivalent to 100% spin
polarization, which is an essential ingredient for realizing spintronic applications [20, 21]. Hence,
the thesis at hand covers the experimental detection of three effects of fundamental importance
in the context of developing new generations of logic devices – based on QPCs fabricated from
topological HgTe quantum wells.
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6
Zusammenfassung

Q uantenpunktkontakte (englisch: quantum point contacts, QPCs) sind eindimen-
sionale Engstellen in einem ansonsten zweidimensionalen Elektronen- oder Lochsystem. Seit

der erstmaligen Realisierung in GaAs-basierten zweidimensionalen Elektronengasen [1, 2] sind
QPCs sukzessive zu einem Grundbestandteil mesoskopischer Physik geworden und erfahren in
einer Vielzahl von Experimenten Anwendung. Jedoch ist es bis zur Anfertigung der vorliegenden
Arbeit nicht gelungen, QPCs in der neuen Materialklasse der zweidimensionalen topologischen
Isolatoren zu realisieren. In diesen Materialien tritt der sogenannte Quanten-Spin-Hall-Effekt
(QSH-Effekt) auf [3–5], welcher sich durch die Ausbildung von leitfähigen, eindimensionalen
sowie gleichermaßen spinpolarisierten Zuständen an der Bauteilkante auszeichnet, während die
restlichen Bereiche der Probe isolierend sind. Ein in einem zweidimensionalen topologischen
Isolator realisierter QPC kann demgemäß dafür benutzt werden, die sich stets an der Bauteilka-
nte befindlichen QSH-Randkanäle einander räumlich anzunähern, was beispielsweise die Unter-
suchung potentieller Wechselwirkungseffekte zwischen ebenjenen Randkanälen ermöglicht [6, 7].
Die vorliegende Arbeit beschreibt die erstmalig erfolgreich durchgeführte Implementierung einer
QPC-Technologie in einem QSH-System. Überdies werden die neuartigen Bauteile experimentell
charakterisiert sowie analysiert.

Nach einer in Kapitel 1 erfolgten Einleitung der Arbeit beschäftigt sich das nachfolgende Kapi-
tel 2 zunächst mit der besonderen Bandstruktur von HgTe. In diesem Kontext wird die Ausbildung
der QSH-Phase für HgTe-Quantentröge mit einer invertierten Bandstruktur erläutert, welche für
deren Auftreten eine Mindesttrogdicke von dQW > dc = 6.3 nm aufweisen müssen. Im Anschluss
wird das Konzept eines QPCs allgemein eingeführt sowie das zugehörige Transportverhalten
analytisch beschrieben. Überdies werden die Einschränkungen und Randbedingungen diskutiert,
welche bei der Realisierung eines QPCs in einem QSH-System Berücksichtigung finden müssen.
Darauf folgt die Präsentation des eigens zur QPC-Herstellung entwickelten Lithographieprozesses,
welcher auf einer mehrstufigen Anwendung eines für HgTe-Quantentrogstrukturen geeigneten
nasschemischen Ätzverfahrens beruht. Die im Nachgang diskutierten Transportmessungen exem-
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plarischer Proben zeigen die erwartete Leitwertquantisierung in Schritten von ∆G ≈ 2e2/h im
Bereich des Leitungsbandes – sowohl für eine topologische als auch für eine triviale (dQW < dc)
QPC-Probe. Mit dem Erreichen der Bandlücke saturiert der Leitwert für den topologischen QPC
um GQSH ≈ 2e2/h, wohingegen ebenjener für den Fall des trivialen Bauteils auf G ≈ 0 abfällt.
Darüber hinaus belegen durchgeführte Messungen des differentiellen Leitwertes einer invertierten
QPC-Probe in Abhängigkeit einer Biasspannung die stabile Koexistenz von topologischen und
trivialen Transportmoden.

Gegenstand von Kapitel 3 ist die Beschreibung der Ausbildung eines QSH-Interferometers in
QPCs mit geringer Weite, welche unter Verwendung von Quantentrögen mit einer Trogdicke von
dQW = 7nm hergestellt werden. Die Diskussion von Bandstrukturrechnungen legt dar, dass die
räumliche Ausdehnung der Randkanäle von der jeweiligen Position der Fermi-Energie im Bereich
der Bandlücke abhängt. Hieraus resultiert eine Transportsituation, in welcher – unter bestimmten
Voraussetzungen – Reservoir-Elektronen mit randomisiertem Spin an beide QSH-Randkanäle
mit gleicher Wahrscheinlichkeit koppeln, was in der Ausbildung eines QSH-Rings resultiert. Diese
Ringbildung wird im Rahmen eines durch Plausibilitätsüberprüfung getesteten Modells erklärt
und spezifiziert. Danach erfolgt eine theoretische Einführung von drei relevanten Quantenphasen,
deren Akkumulation in der Folge für mehrere geeignete QPC-Proben nachgewiesen wird. Es
handelt sich hierbei um die Aharonov-Bohm-Phase [8], um die dynamische Aharonov-Casher-
Phase [9] sowie um eine Spin-Bahn-Berry-Phase mit einem Wert von π [10]. Diese experimentellen
Ergebnisse stehen darüber hinaus im Einklang mit analytischen Modellbetrachtungen.

Das anschließende Kapitel 4 stellt den letzten Teil der Arbeit dar und beschäftigt sich mit
der Beobachtung einer anomalen Leitwertsignatur, welche für QPC-Proben basierend auf einer
Quantentrogdicke von dQW = 10.5 nm auftritt. Diese Proben zeigen neben der durch die QSH-
Phase bedingten Leitwertquantisierung von GQSH ≈ 2e2/h ein weiteres Leitwertplateau mit
einem Wert von G ≈ e2/h = 0.5 ·GQSH. Diese sogenannte 0.5-Anomalie ist nur für ein kleines
Intervall von QPC-Weiten beobachtbar und wird mit zunehmender Bauteilweite abgeschwächt.
Weiterführende Untersuchungen in Abhängigkeit der Temperatur sowie einer angelegten Bi-
asspannung deuten darüber hinaus darauf hin, dass das Auftreten der 0.5-Anomalie mit einem
modifizierten topologischen Zustand einhergeht. Überdies wird eine zusätzliche sowie vervoll-
ständigende Charakterisierung dieses Transportregimes durch die Realisierung eines neuartigen
Bauteilkonzeptes möglich, welches einen QPC in eine standardisierte Hall-Bar-Geometrie inte-
griert. Das Ergebnis der experimentellen Analyse einer solchen Probe verknüpft das Auftreten
der 0.5-Anomalie mit der Rückstreuung eines QSH-Randkanals. Demgemäß wird aus Sicht des
Einteilchenbildes geschlussfolgert, dass im Kontext der 0.5-Anomalie lediglich ein Randkanal
transmittiert wird. Zudem werden zwei theoretische Modelle basierend auf Elektron-Elektron-
Wechselwirkungen diskutiert, welche beide jeweils als ursächlicher Mechanismus für das Auftreten
der 0.5-Anomalie in Frage kommen.

Abschließend ist zu deduzieren, dass die Implementierung einer QPC-Technologie in einem
QSH-System eine bedeutende Entwicklung im Bereich der Erforschung von zweidimensionalen
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topologischen Isolatoren darstellt, welche eine Vielzahl zukünftiger Experimente ermöglicht. So ex-
istieren beispielsweise theoretische Vorhersagen, dass QPCs in einem QSH-System die Detektion
von Majorana- [11] sowie Para-Fermionen [12] ermöglichen. Überdies ist die nachgewiesene Aus-
bildung eines QSH-Interferometers in geeigneten QPC-Proben eine Beobachtung von großer Fol-
gewirkung. So ermöglicht die beobachtete dynamische Aharonov-Casher-Phase im QSH-Regime
die kontrollierbare Modulation des topologischen Leitwertes, was die konzeptionelle Grundlage
eines topologischen Transistors darstellt [13, 14]. Eine weitere Anwendungsmöglichkeit wird
durch die Widerstandsfähigkeit geometrischer Phasen gegenüber Dephasierung [15, 16] eröffnet,
wodurch die nachgewiesene Spin-Bahn-Berry-Phase mit einem Wert von π im Kontext poten-
tieller Quantencomputerkonzepte von Interesse ist [17–19]. Darüber hinaus ist die Transmission
von nur einem QSH-Randkanal im Zuge des Auftretens der 0.5-Anomalie äquivalent zu 100%
Spinpolarisierung, was einen Faktor essentieller Relevanz für die Realisierung spintronischer An-
wendungen darstellt [20, 21]. Demgemäß beinhaltet die vorliegende Arbeit den experimentellen
Nachweis von drei unterschiedlichen Effekten, von welchen jedem einzelnen eine fundamentale
Rolle im Rahmen der Entwicklung neuer Generationen logischer Bauelemente zukommen kann –
ermöglicht durch die Realisierung von QPCs in topologischen HgTe-Quantentrögen.
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A
Fabrication process of a HgTe
based quantum point contact

E very fabrication of a QPC device starts with an MBE grown wafer, which is cleaved
into sample pieces of approximately (3 · 3)mm2 for production purposes. After an initial

cleaning step, the mesa is defined by three consecutive etching steps. Within the scope of this
thesis, quantum wells with dQW ∈ [5.5; 10.5] nm have been utilized for device fabrication. In the
following process description, the term water refers to the usage of ultra pure water.

Preparative cleaning step

• Ultrasonic bath in acetone for 5min at 37 kHz and for 5min at 80 kHz (both at 100%P).

• Rinse in isopropanol and water (consecutively), dry with nitrogen.

Definition of the mesa – step I (electron beam lithography)

• Spin coating of PMMA 950K 3% in ethyl lactate (supplier: Allresist GmbH) for 40 s at
5000 rpm and softbaking for 10min at 80 ◦C.

• Exposure with an acceleration voltage of 2.5 kV, a working distance of 10mm, an aperture
of 30 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 90 µC/cm2, a stepsize
of 9.4 nm and a magnification of 389×.

• Development in a solution of AR600-56 (supplier: Allresist GmbH) and isopropanol (1:1)
for 60 s, rinse in isopropanol for 60 s, dry with nitrogen.
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• Wet etching of the mesa:

– Dip the sample for 50 s in a solution of hydrofluoric acid and water (1:200).

– Rinse in water, dry with nitrogen.

– Etch for 50 s via the pumping method, use a 2 h old solution of an aqueous solution
of KI : I2 : HBr (standard recipe) and water (1:4).

– Rinse in water, dry with nitrogen, review the etching result.

• Remove the etch mask in acetone, rinse in isopropanol and water (consecutively), dry with
nitrogen.

Definition of the mesa – step II (electron beam lithography)

• Spin coating of PMMA 950K 3% in ethyl lactate for 40 s at 7000 rpm and softbaking for
10min at 80 ◦C.

• Exposure with an acceleration voltage of 2.5 kV, a working distance of 10mm, an aperture
of 30 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 160 µC/cm2, a stepsize
of 9.4 nm and a magnification of 389×.

• Development in a solution of AR 600-56 and isopropanol (1:1) for 60 s, rinse in isopropanol
for 60 s, dry with nitrogen.

• Wet etching of the mesa:

– Dip the sample for 50 s in a solution of hydrofluoric acid and water (1:200).

– Rinse in water, dry with nitrogen.

– Etch for 25 s via the pumping method, use a 2 h old solution of an aqueous solution
of KI : I2 : HBr (standard recipe) and water (1:4).

– Rinse in water, dry with nitrogen, review the etching result.

• Remove the etch mask in acetone, rinse in isopropanol and water (consecutively), dry with
nitrogen.

Definition of the mesa – step III (optical lithography)

• Spin coating of AZ ECI 3012 (supplier: Microchemicals GmbH) for 20 s at 6000 rpm and
softbaking for 2min at 80 ◦C.
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• Exposure for 8 s (or longer if necessary) with an intensity of 8mW/cm2.

• Development in AZ 726 MIF (supplier: Microchemicals GmbH) for 22 s, rinse in water, dry
with nitrogen.

• Wet etching of the mesa:

– Etch for 90 s via the pumping method, use a 2 h old solution of an aqueous solution
of KI : I2 : HBr (standard recipe) and water (1:4).

– Rinse in water, dry with nitrogen, review the etching result.

• Remove the etch mask in acetone, rinse in isopropanol and water (consecutively), dry with
nitrogen.

Definition of the gate electrode (electron beam lithography)

• Note: to ensure an optimal alignment process during the exposure of the gate electrode
design, a set of alignment marks is exposed and thus made resist-free in a first step.

• Spin coating of PMMA 600K 6% in ethyl lactate (supplier: Allresist GmbH) for 40 s at
5000 rpm and softbaking for 15min at 80 ◦C.

• Exposure with an acceleration voltage of 30 kV, a working distance of 10mm, an aperture
of 30 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 750 µC/cm2, a stepsize
of 9.4 nm and a magnification of 390×.

• Development in AR600-56 for 60 s, rinse in isopropanol for 60 s, dry with nitrogen.

• Exposure with an acceleration voltage of 6.5 kV, a working distance of 10mm, an aperture
of 20 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 300 µC/cm2, a stepsize
of 9.4 nm and a magnification of 388×.

• Development in AR600-56 for 60 s (after 30 s: ultrasonic pulse of 1 s at 80 kHz and 50%
power), rinse in isopropanol for 60 s, dry with nitrogen.

• Execution of a short oxygen plasma cleaning step in order to remove PMMA residuals. The
process parameters are strongly depending on the utilized machine. For the QPC devices
presented within this thesis, program 70 of the chair’s reactive ion etching machine was
used. The process was stopped manually 3 s after the machine’s readout of the reflected
power dropped to 0.

• ALD growth of 90 cycles of HfO2 at ≈ 35 ◦C.



A

106 A Fabrication process of a HgTe based quantum point contact

• Electron beam physical vapour deposition (EBPVD) based metallization of 5 nm of Ti and
of 350 nm of Au.

• Lift-off in acetone for 30min at 50 ◦C.

• Rinse in isopropanol and water (consecutively), dry with nitrogen.

Definition of the gate leads (optical lithography)

• Spin coating of AR-N 4340 (supplier: Allresist GmbH) for 20 s at 6000 rpm and softbaking
for 2min at 80 ◦C.

• Exposure for 20 s with an intensity of 8mW/cm2.

• Post exposure bake for 6min at 80 ◦C.

• Development in AR 300-47 (supplier: Allresist GmbH) for 42 s, rinse in water, dry with
nitrogen.

• EBPVD based metallization of 5 nm of Ti and of 250 nm of Au.

• Lift-off in acetone for 10min at 50 ◦C.

• Rinse in isopropanol and water (consecutively), dry with nitrogen.

Definition of the ohmic contacts (optical lithography)

• Spin coating of AR-N 4340 for 20 s at 6000 rpm and softbaking for 2min at 80 ◦C.

• Exposure for 20 s with an intensity of 8mW/cm2.

• Post exposure bake for 6min at 80 ◦C.

• Development in AR 300-47 for 42 s, rinse in water, dry with nitrogen.

• Contact etch process using the chair’s ion beam etching machine. Goal: etch ≈ 20 nm close
to the HgTe layer. Process parameters: beam/extractor voltages of ±0.4 kV, beam current
of 8mA, argon flow of 3.5 sccm. The etching time depends on the thickness of the cap layer.
The etching rate depends on the configuration of the machine and has to be redetermined
from time to time.
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• In situ transfer, EBPVD based metallization of 80 nm of AuGe and of 170 nm of Au.

• Lift-off in acetone for 10min at 50 ◦C.

• Rinse in isopropanol and water (consecutively), dry with nitrogen.





B
Completive transport data

T he gate voltage VG dependence of the conductance G of the QPC devices presented within
the course of Chapter 2 is corrected by the subtraction of a serial resistance RSerial for

five out of six devices. For the sake of completeness, the comparison between the corrected and
uncorrected transport data is presented in Fig. B.1. The individual subtracted values are added
to the caption of Fig. B.1.
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Figure B.1: a, Gate voltage VG dependence of the conductance G of QPC-I. A serial resistance of RSerial =
260 Ω is subtracted for the corrected trace. b, Gate voltage VG dependence of the conductance G of QPC-II. A
serial resistance of RSerial = 1650 Ω is subtracted for the corrected trace. c, Gate voltage VG dependence of the
conductance G of QPC-III. A serial resistance of RSerial = 150 Ω is subtracted for the corrected trace. d, Gate
voltage VG dependence of the conductance G of QPC-V. A serial resistance of RSerial = 1450 Ω is subtracted
for the corrected trace. e, Gate voltage VG dependence of the conductance G of QPC-VI. A serial resistance of
RSerial = 1600 Ω is subtracted for the corrected trace.



C
Fabrication process of a HgTe
based quantum point contact
embedded in a multi-terminal

device geometry

T he following process steps describe the fabrication of a QPC embedded in a multi-terminal
device geometry. As outlined in Chapter 4, the process is still in the development phase.

Within the scope of this thesis, a quantum well with dQW = 10nm has been utilized for device
fabrication. Equivalent to standard QPC devices, the mesa is defined by three consecutive etching
steps. In the following process description, the term water refers to the usage of ultra pure water.

Preparative cleaning step

• Ultrasonic bath in acetone for 5min at 37 kHz and for 5min at 80 kHz (both at 100%P).

• Rinse in isopropanol and water (consecutively), dry with nitrogen.

Definition of the mesa – step I (electron beam lithography)

• Spin coating of PMMA 950K 3% in ethyl lactate for 40 s at 5000 rpm and softbaking for
10min at 80 ◦C.
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C Fabrication process of a HgTe based quantum point contact

embedded in a multi-terminal device geometry

• Exposure with an acceleration voltage of 2.5 kV, a working distance of 10mm, an aperture
of 30 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 90 µC/cm2, a stepsize
of 9.4 nm and a magnification of 389×.

• Development in a solution of AR600-56 and isopropanol (1:1) for 60 s, rinse in isopropanol
for 60 s, dry with nitrogen.

• Wet etching of the mesa:

– Dip the sample for 50 s in a solution of hydrofluoric acid and water (1:200).

– Rinse in water, dry with nitrogen.

– Etch for 30 s via the pumping method, use a 2 h old solution of an aqueous solution
of KI : I2 : HBr (standard recipe) and water (1:4).

– Rinse in water, dry with nitrogen, review the etching result.

• Remove the etch mask in acetone, rinse in isopropanol and water (consecutively), dry with
nitrogen.

Definition of the mesa – step II (electron beam lithography)

• Spin coating of PMMA 950K 3% in ethyl lactate for 40 s at 7000 rpm and softbaking for
10min at 80 ◦C.

• Exposure with an acceleration voltage of 2.5 kV, a working distance of 7mm, an aperture
of 30 µm, a writing field size of (81.92 · 81.92) µm2, an area dose of 160 µC/cm2, a stepsize
of 10 nm and a magnification of 868×.

• Choose a design width of W = 450 nm.

• Development in a solution of AR 600-56 and isopropanol (1:1) for 60 s, rinse in isopropanol
for 60 s, dry with nitrogen.

• Wet etching of the mesa:

– Dip the sample for 50 s in a solution of hydrofluoric acid and water (1:200).

– Rinse in water, dry with nitrogen.

– Etch for 15 s via the pumping method, use a 2 h old solution of an aqueous solution
of KI : I2 : HBr (standard recipe) and water (1:4).

– Rinse in water, dry with nitrogen, review the etching result.
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• Remove the etch mask in acetone, rinse in isopropanol and water (consecutively), dry with
nitrogen.

Definition of the mesa – step III (optical lithography)

• Spin coating of AZ ECI 3012 for 20 s at 6000 rpm and softbaking for 2min at 80 ◦C.

• Exposure for 8 s (or longer if necessary) with an intensity of 8mW/cm2.

• Development in AZ 726 MIF for 22 s, rinse in water, dry with nitrogen.

• Wet etching of the mesa:

– Etch for 90 s via the pumping method, use a 2 h old solution of an aqueous solution
of KI : I2 : HBr (standard recipe) and water (1:4).

– Rinse in water, dry with nitrogen, review the etching result.

• Remove the etch mask in acetone, rinse in isopropanol and water (consecutively), dry with
nitrogen.

Definition of gate electrode A & B (electron beam lithography)

• Note: to ensure an optimal alignment process during the exposure of the gate electrode
design, a set of alignment marks is exposed and thus made resist-free in a first step.

• Spin coating of PMMA 600K 6% in ethyl lactate for 40 s at 5000 rpm and softbaking for
15min at 80 ◦C.

• Exposure with an acceleration voltage of 30 kV, a working distance of 10mm, an aperture
of 30 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 750 µC/cm2, a stepsize
of 9.4 nm and a magnification of 390×.

• Development in AR600-56 for 60 s, rinse in isopropanol for 60 s, dry with nitrogen.

• Exposure with an acceleration voltage of 6.5 kV, a working distance of 10mm, an aperture
of 20 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 300 µC/cm2, a stepsize
of 9.4 nm and a magnification of 388×.

• Choose a design width of W = 800 nm.
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C Fabrication process of a HgTe based quantum point contact

embedded in a multi-terminal device geometry

• Development in AR600-56 for 60 s (after 30 s: ultrasonic pulse of 1 s at 80 kHz and 50%
power), rinse in isopropanol for 60 s, dry with nitrogen.

• Execution of a short oxygen plasma cleaning step in order to remove PMMA residuals. The
process parameters are strongly depending on the utilized machine. For the QPC devices
presented within this thesis, program 70 of the chair’s reactive ion etching machine was
used. The process was stopped manually 3 s after the machine’s readout of the reflected
power dropped to 0.

• ALD growth of 45 cycles of HfO2 at ≈ 35 ◦C.

• EBPVD based metallization of 5 nm of Ti and of 300 nm of Au.

• Lift-off in acetone in an ultrasonic bath using 37 kHz and 100%P at 40 ◦C for 20min (start
the ultrasonic bath first, then add the sample).

• Rinse in isopropanol and water (consecutively), dry with nitrogen.

Definition of gate electrode C (electron beam lithography)

• Note: to ensure an optimal alignment process during the exposure of the gate electrode
design, a set of alignment marks is exposed and thus made resist-free in a first step.

• Spin coating of PMMA 600K 6% in ethyl lactate for 40 s at 5000 rpm and softbaking for
15min at 80 ◦C.

• Exposure with an acceleration voltage of 30 kV, a working distance of 10mm, an aperture
of 30 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 750 µC/cm2, a stepsize
of 9.4 nm and a magnification of 390×.

• Development in AR600-56 for 60 s, rinse in isopropanol for 60 s, dry with nitrogen.

• Exposure with an acceleration voltage of 6.5 kV, a working distance of 10mm, an aperture
of 20 µm, a writing field size of (204.8 · 204.8) µm2, an area dose of 300 µC/cm2, a stepsize
of 9.4 nm and a magnification of 388×.

• Choose a design width of W = 350 nm.

• Development in AR600-56 for 60 s (after 30 s: ultrasonic pulse of 1 s at 80 kHz and 50%
power), rinse in isopropanol for 60 s, dry with nitrogen.
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• Execution of a short oxygen plasma cleaning step in order to remove PMMA residuals. The
process parameters are strongly depending on the utilized machine. For the QPC devices
presented within this thesis, program 70 of the chair’s reactive ion etching machine was
used. The process was stopped manually 3 s after the machine’s readout of the reflected
power dropped to 0.

• ALD growth of 90 cycles of HfO2 at ≈ 35 ◦C.

• EBPVD based metallization of 5 nm of Ti and of 300 nm of Au.

• Lift-off in acetone in an ultrasonic bath using 37 kHz and 100%P at 40 ◦C for 20min (start
the ultrasonic bath first, then add the sample).

• Rinse in isopropanol and water (consecutively), dry with nitrogen.

Definition of the gate leads (optical lithography)

• Spin coating of AR-N 4340 for 20 s at 6000 rpm and softbaking for 2min at 80 ◦C.

• Exposure for 20 s with an intensity of 8mW/cm2.

• Post exposure bake for 6min at 80 ◦C.

• Development in AR 300-47 for 42 s, rinse in water, dry with nitrogen.

• EBPVD based metallization of 5 nm of Ti and of 250 nm of Au.

• Lift-off in acetone for 10min at 50 ◦C.

• Rinse in isopropanol and water (consecutively), dry with nitrogen.

Definition of the ohmic contacts (optical lithography)

• Spin coating of AR-N 4340 for 20 s at 6000 rpm and softbaking for 2min at 80 ◦C.

• Exposure for 20 s with an intensity of 8mW/cm2.

• Post exposure bake for 6min at 80 ◦C.

• Development in AR 300-47 for 42 s, rinse in water, dry with nitrogen.
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C Fabrication process of a HgTe based quantum point contact

embedded in a multi-terminal device geometry

• Contact etch process using the chair’s ion beam etching machine. Goal: etch ≈ 20 nm close
to the HgTe layer. Process parameters: beam/extractor voltages of ±0.4 kV, beam current
of 8mA, argon flow of 3.5 sccm. The etching time depends on the thickness of the cap layer.
The etching rate depends on the configuration of the machine and has to be redetermined
from time to time.

• In situ transfer, EBPVD based metallization of 80 nm of AuGe and of 170 nm of Au.

• Lift-off in acetone for 10min at 50 ◦C.

• Rinse in isopropanol and water (consecutively), dry with nitrogen.
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