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Abstract: Inland surface water is often the most accessible freshwater source. As opposed to ground-
water, surface water is replenished in a comparatively quick cycle, which makes this vital resource—if
not overexploited—sustainable. From a global perspective, freshwater is plentiful. Still, depending
on the region, surface water availability is severely limited. Additionally, climate change and human
interventions act as large-scale drivers and cause dramatic changes in established surface water
dynamics. Actions have to be taken to secure sustainable water availability and usage. This requires
informed decision making based on reliable environmental data. Monitoring inland surface water
dynamics is therefore more important than ever. Remote sensing is able to delineate surface water in
a number of ways by using optical as well as active and passive microwave sensors. In this review,
we look at the proceedings within this discipline by reviewing 233 scientific works. We provide an
extensive overview of used sensors, the spatial and temporal resolution of studies, their thematic
foci, and their spatial distribution. We observe that a wide array of available sensors and datasets,
along with increasing computing capacities, have shaped the field over the last years. Multiple global
analysis-ready products are available for investigating surface water area dynamics, but so far none
offer high spatial and temporal resolution.

Keywords: remote sensing; surface water; dynamics; global change; earth observation; hydrology;
biosphere; anthroposphere; review

1. Introduction
1.1. Surface Water in a Societal and Environmental Context

On Earth, most water is bound in the oceans, in ice caps, or is stored as groundwater
or ground ice. Only a small percentage (ca. 0.01%) of Earth’s water resources is fluid inland
water. This group covers all water bodies, water courses, and flooded lands. The residence
time in these storages is very short, on average 9–18 days. Due to of its fast renewal
rate, surface water is an important part of the hydrological cycle [1]. Across the globe,
inland surface water is unequally distributed. Its availability depends on fluxes from other
storages in the hydrological cycle. Precipitation makes up the largest share of incoming
water (>99%). Additionally, meltwater from glaciers and permafrost areas, and inflow from
groundwater, are significant contributors to inland surface water. Conversely, existing
fluxes like evapotranspiration (ET), surface water runoff, and groundwater infiltration
steadily drain surface water storage. Hydrological fluxes themselves are subject to natural
large-scale oscillations (e.g., El Niño Southern Oscillation–ENSO, Indian Ocean Dipole–
IOD, or Atlantic Multi-decadal Oscillation–AMO) and seasonal variations, leading to
inter- and intra-annual dynamics of surface water. With ongoing climate change, these
fluxes—most notably precipitation—change or become more variable, leading to changes
in surface water dynamics [2,3]. This affects surface water availability, increasing the
likelihood and severity of droughts and floods [3]. Apart from climate change, human
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interference changes surface water dynamics through, for example, dam construction [4],
water diversion [5], or surface sealing [6]. An overview of the components of surface water
hydrology and the factors that impact surface water dynamics are given in Figure 1.

Figure 1. Model overview of surface water hydrology including natural and anthropological influ-
ences that affect surface water dynamics.

For the living environment, inland surface water is one of the most important re-
sources. The availability of surface water—particularly freshwater—is a key factor for
many ecosystems, as well as human society [7]. According to [8], surface water covers
50% of drinking water needs, 80% of irrigation water demand, and 60% of industrial water
usage, albeit with substantial variation from country to country. The changes in inland
surface water dynamics and, consequently, in water availability, affect both the natural
environment and the anthroposphere.

Especially in semi-arid and arid regions, surface water availability decreases due to
increasing ET and decreasing precipitation rates on the one hand, and the overexploitation
of available water resources on the other hand [9]. In the case of Lake Urmia in Iran, for
example, human water use has reportedly led to a decrease of up to 45% of lake inflow and
between 39% and 43% of lake water loss over the timeframe of 2003–2013 [10]. Ref. [11] even
reports a net permanent loss of surface water in the Middle East and Central Asia of >70%.
Constant overuse of available water resources leads to ecosystem degradation, which mani-
fests itself as changes in local flora, decreasing animal populations, and deterioration of soil
quality through aridization and salinization [12,13]. The consequences for the local human
population are reduced agricultural yields [14], problematic sanitation situations [15], and
drinking water shortages [16]. There are also indirect effects of reduced water availability.
Once degraded, even year-long conservation efforts only yield a minimal effect towards
re-establishing the full capacity of ecosystem services [17]. Since they are often an integral
part of local subsistence and economy, the degradation of natural environments decreases
human livelihood [18] and security [19]. The effect of such destabilization is felt not only in
the region that is directly affected, but also in areas connected to the original crisis through
trade or migration flows [20,21].

In contrast to water scarcity, extreme precipitation events [22], ice-jams [23], increased
inflow from upstream riparian areas [24], or sudden water discharge from reservoirs [25]
can lead to intense flooding. Flood waves are a natural occurrence in river systems. They are
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important for local ecosystems, providing nutrient rich sediment and seasonal inundation.
In a natural environment, once a flood wave exceeds the bankfull height, the retention
areas and floodplains are inundated [26]. However, human intervention drastically inhibits
the water storage capability of such areas. Most notably, many natural wetlands have
been replaced with agricultural area and urbanized areas (e.g., [27,28]). On a global scale,
wetlands have declined by 35% [29]. Due to the increase in impervious surface area, urban
areas are more at risk of being flooded [30]. In highly populated areas, such events often
cause high casualties [31] and an increased risk for disease [32] among the local population,
as well as the destruction of infrastructure [33].

To prevent humanitarian and environmental crises due to water scarcity or sudden
floods, sustainable management processes have to be in place. The Sustainable Devel-
opment Goals (SDGs) [34] and other management agendas work towards better water
availability and security. The topic of changing surface water dynamics ties into multiple
goals at once. Twelve of seventeen formulated SDGs are reportedly concerned with or
highly dependent on a secure water situation [35].

Focusing on SDG 6 (clean water), which is often mentioned as a key motivation
for surface water dynamics monitoring (e.g., [36]), we see that, in the last years, there
have been global efforts dedicated to reaching it. However, while positive effects like a
global increase of water-use efficiency by 10% could be documented, no global indicator
associated with this goal has been fully accomplished yet. On the contrary, some indicators,
like SDG 6.2.1a (proportion of population using safely managed sanitation services), show
negative development [15]. This indicates that plans for sustainable future management
are still needed [37]. For the development, implementation, and impact monitoring of such
initiatives, reliable and timely information on available water resources is vital [38]—even
more so in the face of a changing climate, dynamic population growth, and industrial
development in many countries [39,40].

1.2. Remote Sensing Perspective

Earth Observation (EO) provides datasets to monitor long-term dynamics as well as
abrupt changes. Remote sensing (RS) in particular is able to provide data without disturbing
the investigated area and offers a possibility to monitor otherwise inaccessible regions.

While already foreseen as an important tool for water resource monitoring and man-
agement at the beginning of this millennium [41], over the last years, the potential of EO for
surface water dynamics research has increased considerably. Vast open archives like those
of Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), or the Sentinel fleet
enable research on all geographical scales from local to global at high temporal and spatial
resolution. Data records of optical sensors like the Landsat mission, for example, reach far
back into the last century (1972), which allows for the analysis of surface water dynamics
on climatically relevant temporal scales [42], and with high spatial resolution as well. Other
sensors, like MODIS, have since considerably increased the potential to monitor short-term
changes in surface water by providing very high temporal resolution data (2 observations
per day) [43]. However, up until the start of the Sentinel fleet, widely accessible data has
always seen a duality of either high spatial or high temporal resolution. Increasingly, a
trend can be seen towards sensor constellations that can overcome this limitation. As an
example, records from high resolution sensors, like the Multispectral Instrument (MSI)
onboard Sentinel-2, are available at temporal resolutions of 2–5 days. This trend towards
more high resolution constellations can also be seen for commercial satellites (e.g., the
PlanetScope constellation [44]).

Due to their sensitivity to cloud cover and the confinement to daytime observations,
optical sensors are not always an ideal choice for the analysis of surface water dynam-
ics. Active and passive microwave sensors are valuable complementary assets as they
can observe surface water through cloud and even vegetation cover (depending on the
used wavelength) [45]. Traditionally, active microwave sensors, like Synthetic Aperture
Radar (SAR) systems, have lower temporal resolution than optical systems [46]. This has
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changed over the last years with constellation missions like Sentinel-1 [4] or the Radarsat
Constellation Mission [47].

Now more than ever, the potential of RS is vast due to open archives for long-standing
satellite fleets, increasingly powerful computers, and the onset of cloud computing [48].
This enables the analysis of dense time series analysis, long-term change detection mon-
itoring, and the observation of short-term inundation dynamics on multiple geographi-
cal scales.

1.3. Objective of this Review

In this review, we present how the RS-based investigation of inland surface water
dynamics has developed over the last several decades. We concentrate on publications
that show a multi-temporal development of inland surface water areas, thereby excluding
approaches that solely focus on groundwater or water level, as well as those concerned
with oceans and coasts. An overview of groundwater-related EO is given in [49]. Fur-
ther, Ref. [50] provides a valuable overview of recent developments in the inclusion of
Gravity Recovery and Climate Experiment (GRACE) data on terrestrial water storage in
hydrological models. Satellite-based altimetry is reviewed in a comprehensive work on
RS for deriving water extent and level by [51]. An overview of the Global Navigation
Satellite System Reflectometry (GNSS-R) technique and its potential for wetland moni-
toring is given by [52]. Ref. [53] discusses the impact of humans and climate change on
estuarine–coastal ecosystems.

There have been a number of contributions on topics related to that presented within
this paper: Ref. [7], for example, provides an overview of optical sensor approaches for
surface water detection and monitoring. Concentrating on SAR approaches, Ref. [54] details
the strengths of SAR-based approaches and discusses the potential for future improvement.
Ref. [55] offers insight on a large number of globally and freely available datasets related to
hydrological dynamics and water management. Additionally, we identified reviews that
describe and discuss recent proceedings in EO for specific hydrological applications (e.g.,
aquaculture [56] or model calibration and data assimilation [57]) or in selected geographical
regions (e.g., India [58], the Tibetan Plateau (TP) [59,60]). Further, a human geography
perspective on improving water security in large river basins is provided by [61].

Complementing existing works, the objective of this study is to provide an up-to-date
view on the topic of RS of inland surface water area dynamics from a global perspective.
To this end, we analyze the used timeframes, sensors, datasets, applications, and methods
of 233 publications to answer the following research questions:

• How did the research field develop over time?
• Where are the hotspots of surface water dynamics research?
• What spatial and temporal scales are employed?
• What sensors are being used?
• What methods are utilized for delineating surface water?
• What are the strengths and limitations of available dynamic global surface water products?
• What are the predominant research foci?

In the following sections, we present our review method (Section 2) and our results
with respect to the presented research questions (Section 3). The findings are discussed in
Section 4, followed by a conclusion and outlook on the future (Section 5).

2. Materials and Methods

For our analysis we used the Web of Science platform (last accessed on 28 March 2022).
It allows searches on the basis of search strings and additional filter criteria such as scientific
discipline or publication year. Figure 2a presents the workflow we used, resulting in n = 233
reviewed publications. Our focus was on studies concerned with inland surface water,
temporal dynamics, and EO, and is visualized as an overlap of the circles that represent
our focus topics in Figure 2b. We used conditional statements to ensure the inclusion of
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each focus topic. To allow some leeway, we worked with a number of synonymous search
terms per focus topic:

Figure 2. (a) Flowchart of filtering process to arrive at n = 233 publications. (b) Outline of the initial
Web of Science “topic” search using search strings.

In the case of inland surface water, we included the terms “water” and “hydrology”,
if used in conjunction with the word “inland”. Additionally, the mentioning of specific
types of inland surface water, like “lake”, “river”, “reservoir”, or any word starting with
“flood” was also accepted. Studies that include temporal dynamics were selected via the
terms “dynamic” and “time series”. Also allowed was a conjunctional use of “change”,
“variability”, and words starting with “seasonal” together with “multi temporal”. Literature
concerned with EO was selected if it included any of the terms “remote sensing”, “satellite
remote”, “rs”, “earth observation”, “eo”, or “mapping”.

Based on these search terms, our initial search returned over 11,000 results. We there-
fore limited the scope to publications with a focus on the global perspective by including
the term “global” in the search string. This yielded a more manageable n = 1604 results
(Figure 2b). Going forward, we used the following search string to filter for publications
that match our scope:

TS = ((((water OR hydrology) AND inland) OR lake OR river OR reservoir OR flood*)
AND (dynamic OR time series OR ((change OR variability OR seasonal*) AND multi
temporal)) AND (remote sensing OR satellite remote OR rs OR eo OR earth observation
OR mapping) AND global)

Here, TS stands for “topic”. Publications are considered on topic if given search terms
appear in its title, abstract, or keywords. OR and AND are Boolean operators that we
used together with brackets to formulate conditional statements. We filtered the returned
n = 1604 publications by “Web of Science Category” to focus on publications from scientific
disciplines that are within our scope. This process consists of two steps. In a first step, we
refined our search so that the included publications fit at least one of the following cate-
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gories: “Ecology”, “Environmental Sciences”, “Geography Physical”, “Geosciences Multi-
disciplinary”, “Imaging Science Photographic Technology”, “Remote Sensing”, or “Water
Resources”. In a second step, we excluded any “Web of Science Category” entries that were
still included but did not fit our scope: “Archaeology”, “Art”, “Astronomy Astrophysics”,
“Biochemistry Molecular Biology”, “Biophysics”, “Chemistry Analytical”, “Energy Fuels”,
“Engineering Aerospace”, “Engineering Chemical”, “Engineering Electrical Electronic”,
“Engineering Geological”, “Engineering Ocean”, “Engineering Petroleum”, “Evolutionary
Biology”, “Genetics Heredity”, “Geochemistry Geophysics”, “Limnology”, “Mechanics”,
“Microbiology”, “Mining Mineral Processing”, “Oceanography”, “Paleontology”, “Physics
Fluids Plasmas”, “Physiology”, “Soil Science”, “Spectroscopy”, “Toxicology”, or “Zoology”.
This reduced the number of publications to n = 1020.

We limited our scope to English papers, which excluded three publications. Further,
we refined our search by limiting accepted document types to articles and review papers,
thereby ensuring that publications considered have been under scrutiny through peer
review. This returned n = 899 publications. After this filtering using the Web of Science
platform, we proceeded by manually filtering the remaining publications by title (n = 426)
and full text (n = 233), picking out results that do not match our thematic focus but include
all search terms and other filter criteria thus far. In this last filtering step, only studies
with a focus on inland surface water area or surface water storage remained. We filtered
out studies that had no focus on inland surface water. With respect to coastal areas, we
included river mouths, deltas, and estuaries, but excluded lagoons and other coastal water
bodies with no freshwater access.

To only cover studies that monitor surface water dynamics, we considered time series
as well as multi-temporal change detections with a minimum of three observations, but
excluded uni- and bi-temporal studies. Further, publications on surface water modelling,
like runoff simulations, were excluded if they did not include surface water dynamics
from RS data. We did not set a temporal frame for the publication year of the included
publications, the first publication that fit our search criteria was from 1994. However, the
majority of included works have been published within the last ten years. Included in the
final pool of publications are 16 review papers, which we considered in the investigations
presented in the following section as applicable. For some of the following analyses, the
publications considered were assigned to groups representing their thematic focus. Studies
without a thematic focus were excluded in these cases. A full list of reviewed works is
given in Table S1.

3. Results

In the following sub-sections, we present the results of our review. First, we show
how research interest in the subject of surface water dynamics has changed over time and
how it is distributed across the globe. We present used sensors and sensor types, as well as
methods and used datasets for surface water dynamics analyses. Lastly, we analyze the
thematic foci with respect to the geographic location and relevant findings.

3.1. Development of Research Interest over Time

The number of publications on the topic of surface water dynamics has significantly
increased over the years (Figure 3). While a pioneer study from 1994 on inter-annual lake
dynamics has been identified [62], only few peer-reviewed contributions to the topic have
been published before 2006. In Figure 3, this is visible as data gaps for the years 1995–1999
and 2002–2005. Starting with 2014, an almost continuous increase in publication numbers
per year can be seen. So far, the all-time peak of publication numbers is 2020. In 2021, there
were fewer studies. The number of publications for 2022 only includes articles published
within the first quarter, and is therefore much lower than for previous years. Overall, the
development of publication numbers is in good accordance with previous works reviewing
similar topics (e.g., [7]) and reviews on other EO applications (e.g., [30,63,64]). The general
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trend visible is attributable to the increased availability of satellite data, both through
opening existing archives [65,66] and the start of new sensor fleets.

Figure 3. Increasing number of publications with indication of thematic focus (situation in March
2022). No publications fit our scope for the years 1995–1999 and 2002–2005, resulting in data gaps.

Concentrating on thematic foci, we see roughly proportional increases in publication
numbers per year for all spheres from 2015 onwards. Hydrosphere-oriented publications
mostly make up the largest share, followed by anthroposphere and biosphere-oriented
works. “Other” works are publications with no discernable thematic focus, as is the case
for some method papers and reviews included.

3.2. Discrepancy betweeen Areas of Interest and Authorships

Due to their impact on environment and society, inland surface water dynamics are
a globally important topic. Figure 4 visualizes the hotspots of research as well as the
first author countries for all research articles (n = 233). Areas of interest are shown in
Figure 4a. Some studies have multiple areas of interest (AOIs). Multiple AOIs within one
country are counted once and multiple AOIs across multiple countries are counted once
per country. Additionally, the distribution of application foci for each continent is also
presented with the respective number of publications. First author countries are shown in
Figure 4b. Similar to Figure 4a, first authors could belong to multiple institutions. Authors
belonging to multiple institutions within one country are counted once. Authors belonging
to multiple institutions in multiple countries are counted once per country. The maps of
Figure 4 are classified in seven Jenks Natural Breaks clusters to highlight high outliers but
also include subtle differences between lower counters.

Visible in Figure 4a is a strong concentration of research on areas in China. Especially,
the Chinese part of the TP is often in focus due to its high importance for freshwater
availability in East and South Asia [24,60,67–71]. Several major Asian rivers are fed from
the plateau, all of which are extremely important for downstream water availability.

Apart from TP, several other regions in China are often investigated. Many studies
are, for example, concerned with the trends and dynamics of lakes along the Yangtze
River, like Dongting or Poyang Lake [7,36,39,72–81]. Additional hotspots are visible in
South America and Australia. In South America, most research activity is concentrated
on the Amazon basin or its sub-basins. In Australia, most research is concentrated on the
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Murray–Darling Basin or its sub-basins. Furthermore, there is a high number of global
approaches (e.g., [11,73,82–86]). Comparing Figure 4a,b, it becomes clear that the research
hotspots in South America, Africa, and Central Asia are investigated by foreign research
teams. Foreign research involvement is particularly visible in the Amazon and Congo River
Basins (e.g., [87–89]).

Figure 4. Global spatial distribution of (a) investigated areas and application focus distribution with
number of publications per continent and (b) first authorships.

Interestingly, the distribution of the application foci varies for different continents
(Figure 4a). The share of hydrology-oriented publications is highest in Australia (62%)
and lowest in Africa (48%). North America has the largest proportion of biology-oriented
publications (28%), while Australia (15%) has the lowest. Lastly, anthroposphere-oriented
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studies have a high representation in Africa (27%). For other continents, the share is
considerably smaller (16% in North America and 15% in Europe).

3.3. Spatial and Temporal Scales of the Studies

As shown before, the increased availability of satellite RS has a positive effect on
the number of studies published per year on the topic of inland surface water dynamics.
Figure 5 shows the development of investigated timeframes over the years. Figure 5a is a
full representation of the start years, end years, and timeframe length for each investigated
research article, Figure 5b presents the development of the investigated timeframe length
over the years, while Figure 5c focuses on the distribution of the start years chosen. Studies
concerned with intra-annual dynamics behave quite differently from those only focusing
on inter-annual dynamics. For studies focusing on inter-annual dynamics, the length of
considered timeframes did not change significantly over the years—apart from a gradual
shift towards later “end” dates for considered timeframes with ongoing time (Figure 5a,b).
However, studies that consider intra-annual dynamics exhibit a clear trend of increasingly
long investigated timeframes (Figure 5b). Especially, studies published before 2010 all
have relatively short temporal frames. In general, studies that only consider inter-annual
dynamics have longer temporal frames than those concentrating on intra-annual dynamics
(Figure 5a,b). Of the studies that only monitor inter-annual dynamics, many studies
investigate long Landsat time series—the longest going back to the first available scenes
from Landsat 1 [70,90–96]. Few studies consider even longer timeframes, all of those
make use of “niche” satellite sensors that were not originally developed for EO but for
espionage [27,97–100] or historic aerial imagery [101]. These approaches typically do not
consider intra-annual dynamics, as the availability of historical RS data is limited. In newer
publications, intra-annual dynamics are increasingly considered. Time series capable of
capturing such dynamics can extend as far back as the 1970s when based on Landsat
(1972-present) or the Advanced Very High Resolution Radiometer (AVHRR) (1978-present),
but the bulk of studies considering intra-annual dynamics has “start” dates in the 1980s or
around 2000. This coincides with the start of the operational phase of Landsat 5 and Terra
MODIS, respectively (Figure 5c).

Approaches with “start” dates earlier than 2000 mostly rely on Landsat data. Many of
them investigate surface water dynamics using the Global Surface Water (GSW) product
developed by the European Commission’s Joint Research Centre [11] or alternative products.
Long time series that use data of higher temporal resolution start in the early 2000s and
use MODIS data from Terra, Aqua, or often both. With the launch of the Sentinel fleet,
more and more studies include Sentinel-1—especially—for shorter, but mostly weather
independent, high-resolution time series of surface water [4,25,39,74,102–111]. Additionally,
Sentinel-2 is often used for high spatial and temporal resolution time series, or as validation
data [9,24,39,100,110,112–119].

The spatial and temporal resolution utilized in studies is visualized in Figure 6, under
consideration of how many studies investigate intra-annual dynamics. At first glance, the
dominance of approaches on a local to regional level becomes apparent. At these scales,
most research is done at high (≤100 m) or medium (≤1000 m) spatial resolution. With
respect to the temporal resolution, we see that studies with high (≤100 m) or very high
(≤10 m) spatial resolution often do not take intra-annual dynamics into account. Forty-
eight percent of these publications only focus on inter-annual dynamics. The largest group
of these studies operates on a local to regional basis, mostly using Landsat data. While these
data offer the temporal resolution for investigating intra-annual surface water dynamics,
it is limited by long revisit times and additional influences that impact data availability
for all optical sensors, like clouds or nighttime. When it comes to studies working on a
geographical scale that spans an entire continent or even the entire globe, we see a shift in
preference from high spatial resolution towards higher temporal resolution and the share
of studies including intra-annual dynamics becomes larger (92% on a continental scale,
94% on a global scale).
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Figure 5. (a) Overview of investigated timeframes in reviewed publications. (b) Development
of investigated timeframe lengths over the years. (c) Frequency and distribution of start years of
investigated timeframes. Points signify studies, the general trend can be discerned from linearly fitted
lines. Studies are color coded to show whether they did or did not consider intra-annual dynamics
(dark and light blue, respectively).

What Figure 6 does not visualize is the intra-annual temporal resolution consid-
ered in these studies. The nominal temporal resolution of Landsat is 16 days, but due
to data gaps, most Landsat-based approaches mostly work with monthly time series
(e.g., [5,11,83,96,120,121]). MODIS-based approaches profit from a higher temporal res-
olution. This enables global and daily time series, as provided by Global WaterPack
(GWP) [84,122], but at the cost of spatial resolution.

Generally, we see a duality between high spatial resolution and low temporal resolu-
tion studies versus low spatial resolution and high temporal resolution studies. However,
there are approaches that seek to overcome this and produce high spatial and temporal res-
olution products based on data fusion. One approach in this regard is the blending of high
spatial resolution time series with a high temporal resolution time series [39,81,122–124].
Another approach is downscaling based on empirical data (e.g., high resolution topo-
graphic data) [40,82,84,88,89,110,125–127]. Especially, the former is quite computationally
intensive. Existing approaches—although providing convincing results on a local to re-
gional level—are so far not suitable for global application. Apart from the data volume
involved in the fusion process, this is mostly due to the available algorithms themselves.
Especially, highly dynamic situations that demand high temporal and spatial resolution
imagery cannot be represented accurately [128–130]. Empirical downscaling approaches
have similar problems; here, static ancillary datasets used for the downscaling process
introduce additional uncertainty [88]. Constellations of high-resolution sensors often are
the preferred solution with global applicability (e.g., [44]), which explains their growing
popularity with ongoing time of operation.
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Figure 6. Visualization of spatial resolution versus study area size. Share of all included works
is expressed in the area of scatter points and indicated as percentage values for each scatter point.
Additionally, color shading from light to dark blue expresses the share of studies within a particular
group that consider intra-annual dynamics. The darker the shading, the more studies of this group
are considered intra-annual dynamics. For example: 100% of studies have a spatial resolution of
≤1000 m and global coverage analyze intra-annual dynamics, while only 30% of studies have a
spatial resolution of ≤100 m and local coverage consider intra-annual dynamics.

3.4. Sensors and Sensor Types

The choice of sensor is mostly determined by the focus of a study (i.e., intra- vs. inter-
annual dynamics), its area of interest, and the length of the considered timeframe. In general,
four major categories of sensors are available for detecting surface water and monitoring
dynamics: active and passive sensors working in the visible to infrared spectrum, or
microwave spectrum, respectively. For visible and infrared wavelengths, active sensors
use Light Detection and Ranging (LIDAR), while passive sensors work with the reflected
light from the Earth’s surface. Passive sensors operating in the visible to infrared spectrum
are often called optical sensors. Microwave radiation is either actively emitted and the
backscatter is analyzed (Radio Detection and Ranging–RADAR) or the natural microwave
emission from Earth is analyzed (passive microwave). We show the utilized sensors and
sensor types of investigated publications in Figure 7a,b, respectively. Here, we decided to
concentrate on sensors used for water surface monitoring and omit all additional sensors
that may be used in studies to, for example, include topography, water level, or rainfall.
Several studies use multiple sensors and sensor types in combination, this is considered
in this figure. As shown in Figure 7, an overwhelming amount of studies primarily used
optical systems. Due to the high spatial resolution, the long continuity, and the availability
of multiple analysis-ready products, the vast majority of studies work with Landsat data.
Apart from that, a considerable number of studies rely on MODIS data due to its high
temporal resolution. With any optical sensor, cloud contamination is a major problem.
The lower the revisit frequency of the used sensor, the higher the impact on dynamics
analyses. Given that, active microwave sensors—specifically SAR systems—are often seen
as an alternative [110,131–134]. While, depending on the sensor wavelength, SAR-based
imagery can also be affected by weather influences [4,46], in general, they offer higher
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data availability in regions that are often cloudy or affected by polar night. That being
said, SAR sensors have a few sensor-specific drawbacks that limit their usability. Namely,
SAR sensors are sensitive to surface roughness [46,102]. Especially in topographically
heterogeneous areas, foreshortening, layover, and radar shadowing impact the return
signal [135]. Additionally, misclassifications of land as water can happen, especially with
threshold-based approaches when soil moisture content is high and incoming microwaves
get scattered by wet ground in a similar way as water surfaces [109]. Water under canopy
cover is partially detectable by SAR imagery, depending on the season and wavelength.
While X- and C-band have limited accuracy [136], longer wavelengths like L-band SAR
are able detect water surfaces under canopy, but come at the cost of reduced spatial
resolution [137].

Figure 7. Used sensors (a) and sensor types (b) for surface water dynamics monitoring. Color coding
indicates sensor type. Many studies use multiple sensors and sensor types.

Some approaches also use passive microwave sensors to identify water surfaces based
on brightness temperature data. This approach is mostly based on passive L-band mi-
crowave data. While operating on low spatial resolution, this approach is mostly insensitive
to cloud and rain [87,88,108,125,138–140]. However, L-band-based approaches tend to over-
estimate surface water. Therefore, so far, they have been mostly applied locally and under
inclusion of a-priori data to reduce misclassifications [141,142]. LIDAR systems as well
as hyperspectral optical sensors are not used for water surface delineation in any of the
studies reviewed. Even though a number of studies successfully include LIDAR datasets as
auxiliary topographic datasets and for altimetry [4,90,98,137,143–146] most studies analyz-
ing water storage use auxiliary altimetry datasets. There are approaches that investigate the
storage–area relationship based on optical and topographic or bathymetric data [147–150].
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Yet, in these cases, changes in lake level can only be recognized if they are several times
bigger than the pixel size (min. 6 pixel shift) of the used water surface dataset. The accuracy
of the reconstructed lake level therefore strongly depends on the precision of water–land
border retrieval, which demands very high-resolution data [149].

3.5. Methods for Surface Water Delineation

An overview of used methods for analyzing surface water dynamics is given in
Figure 8. Many studies introduce custom classifications that often work similarly but are
optimized for a specific sensor, area of interest, or thematic focus. The largest share of
publications uses unsupervised classification techniques to classify surface water area (56%),
especially threshold-based classifications, which are often utilized (29%). Such techniques
are easy to implement and comparatively inexpensive in terms of computation [151]. In
the visible and infrared spectrum, the spectral characteristics of water are, in most cases,
strongly different from dry land. While water can have similar spectral characteristics to
land in the visible spectrum, it absorbs infrared radiation much more strongly than dry land.
Using this, thresholds can be applied on single infrared bands (e.g., [152,153]) or multiple
channels. The latter is often done using ratio-based indices that include infrared bands
(e.g., [9,69,78,80,117,154–156]). In SAR data, water is discernable due to its low backscatter
intensity. Smooth water surfaces lead to a largely specular reflection. Incoming microwaves
from side-looking radars are therefore reflected away from the sensor. Dry land has higher
backscatter intensities because the microwaves are reflected more randomly. This leads to a
largely bi-modal distribution of pixel values, and thus allows threshold-based approaches
(e.g., [74,157,158]). Thresholds can be defined as fixed values or dynamically. Temporally
and spatially dynamic thresholds have the ability to compensate for variations in the return
signal and are therefore often implemented in large-scale studies that include intra-annual
dynamics (e.g., [84,159,160]). However, they are also more sensitive towards cloud cover
and other image contaminations [83]. Ultimately, the choice of thresholding technique
therefore often depends on the performance in a specific use case. Surface water is not
always distinguishable from its surroundings using a simple threshold. Therefore, some
studies use more complex classification approaches, like decision trees (10%), specialized
water classification algorithms (6%), or unsupervised clustering algorithms (5%).

Supervised classifications (17%) are used especially in studies where multiple land
cover classes are considered (e.g., [90,161,162]). Here, labeled data points have to be
prepared to train classification algorithms. While this offers advantages in comparison
to unsupervised classifications, it also requires manual work. On a global scale, the
production of training data is a very work-intensive task. Therefore, over 85% of studies
that use supervised classification techniques work on a local to regional scale.

In many publications, surface water dynamics analyses are based on readily available
data, like dynamic surface water area products (17%). A full overview of dynamic global
surface water datasets is provided in Table 1. Particularly, Landsat-based products (GSW
5%, Water Observations from Space (WOfS) 1%, and Surface Water Extent Dynamics (SWD)
1%) are used in many studies [36,37,72,73,79,85–89,120,125,144,163–172].



Remote Sens. 2022, 14, 2475 14 of 39

Figure 8. Detailed summary of methods used for the analysis of surface water dynamics. Custom
classification approaches and approaches based on available products are shown in dark blue and
light blue, respectively. The percentage value represents the share of all included works. All works
are sorted as specifically as possible. Methods belonging to multiple subgroups or with too little
detail to sort them correctly are not categorized further.

The dynamic GSW product and the static occurrence dataset GSWO are used more
often than other available global surface water dynamics products. Within GSW, water
occurrences are classified based on an expert system for the timeframe of 1984–2020 [11].
In addition to the 5% of studies that use GSW for surface water time series, 12% of studies
incorporate it into their water classifications as an auxiliary dataset or use it for validation.
However, the GSW dataset has several drawbacks that limit their accuracy and usabil-
ity [173]. This has been found to especially be the case for frequently cloud-covered regions,
polar regions, and the Sahel [139,166,167]. Other Landsat-based products try to advance on
this. On a continental scale, the WOfS and SWD dataset are available for Australia ([174,175]
and [42], respectively). WOfS has a ~25 m spatial resolution and is based on Landsat obser-
vations starting in 1987. The WOfS approach is based on a decision tree [176]. The temporal
resolution of the product is ~16 days [175]. SWD is another Landsat-based water body time
series product. It follows a slightly different approach, using a random forest classifier and
spans the timeframe of 1986–2011 at a temporal resolution of ~3 months [42,177]. There
are also global Landsat-based products and approaches that try to advance on GSW. Using
cloud removal algorithms, Ref. [120] developed the Global Reservoir Surface Area Dataset
(GRSAD) on the basis of GSW. This approach makes use of image enhancement based
on water occurrence frequency to reduce cloud contamination and missing data effects to
increase the availability and reliability of the monthly product [120]. Another dataset is the
Global Land Analysis & Discovery Surface Water product (GLAD Surface Water), which
provides monthly and global surface water data based on Landsat for 1999-2020. It uses
multiple hierarchical decision trees for training a global classification model [173]. Apart
from these products, there are approaches applied on a global scale that include Sentinel-2
observations in their time series [116], or fuse Landsat and MODIS data to obtain synthetic
imagery with a higher temporal resolution [81].

Due to the low temporal resolution of Landsat, rapid events like sudden reservoir
discharge [25], and events that are very time sensitive, like starts and ends of reservoir
flooding [122], are difficult to observe using GSW. For this reason, a number of other global
surface water datasets are available. Although MODIS offers a shorter timeframe and
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coarser spatial resolution than Landsat, MODIS-based surface water dynamics products
like the GWP are a viable alternative due to their higher temporal resolution [165,178,179].

Table 1. Overview of available dynamic global inland surface water datasets.

Name Spatial Resolution Temporal
Resolution Timeframe Sensor Type Availability Sources

GIEMS
(Global Inundation

Extent from
Multi-Satellites)

Native: ~25,000 m
GIEMS-D15: ~500 m
GIEMS-D3: ~90 m

Monthly 1993–2007
Active Microwave
Passive Microwave

Optical
Upon request [82,180–183]

GIEMS-2
(Global Inundation

Extent from
Multi-Satellites 2)

~25,000 m Monthly 1992–2015
Active Microwave
Passive Microwave

Optical
Upon request [139]

GLAD Surface
Water

(Global Land
Analysis &

Discovery Surface
Water)

30 m Monthly 1999–2020 Optical Project Website 1 [173]

GRSAD
(Global Reservoir

Surface Area
Dataset)

30 m Monthly 1984–2015 Optical Project Website 2 [120]

GSW
(Global Surface

Water)
30 m Monthly 1984–2020 Optical Project Website 3

GEE [11]

GSWED
(Global Surface

Water Extent
Dataset)

250 m 8 Days 2000–2020 Optical Project Website 4 [73]

GWP
(Global WaterPack) 250 m Daily 2003–2020 Optical EOCGeoService 5

Upon request [75,84]

SWAMPS
(Surface Water

Microwave Product
Series)

~25,000 m Daily 1992–2020
Active

MicrowavePassive
MicrowaveOptical

Project Website 6 [140,184]

Daily Global
Surface Water

Change Database
500 m Daily 2001–2016 Optical Project Website 7 [178]

1 https://glad.umd.edu/dataset/global-surface-water-dynamics; 2 https://dataverse.tdl.org/dataset.xhtml?
persistentId=doi:10.18738/T8/DF80WG; 3 https://global-surface-water.appspot.com/download; 4 http://www.
dx.doi.org/10.11922/sciencedb.00085; 5 https://geoservice.dlr.de/web/maps/eoc:gwp; 6 https://asf.alaska.edu/
data-sets/derived-data-sets/wetlands-measures/wetlands-measures-product-downloads/; 7 http://data.ess.
tsinghua.edu.cn/modis_500_2001_2016_waterbody.html (all Websites last visited on 14 April 14 2022).

For the selected large-scale research areas, multi-satellite products offer distinct advan-
tages. Global Inundation Extent from Multi-Satellites (GIEMS) and its follow-up, GIEMS-2,
are based on active and passive microwave data as well as optical data, which increases
their robustness against cloud and vegetation cover [126,139]. Downscaling approaches
can be applied, as is the case with the GIEMS dataset. However, the downscaling procedure
introduces, as briefly discussed earlier, new error sources. While downscaled GIEMS
has proven useful for large-scale study areas like the Amazon basin [40,185,186] or the
Ganges-Brahmaputra River Basin [16], variations in performance depending on the study
region have been reported [126].

Other studies (e.g., [187]) include the Surface Water Microwave Product Series (SWAMPS),
which offers global coverage and has low sensitivity to cloud cover due to its active–passive
microwave approach. Yet, at a spatial resolution of ~25 km, the applicability of such a
dataset is limited for smaller study areas.

3.6. Review of Thematic Foci in Research Hotspots

We sorted reviewed works into three spheres based on their main thematic focus:
“hydrosphere”, “biosphere”, and “anthroposphere”. We categorized n = 221 publications
into these spheres and further divided them into groups and subgroups (Figure 9). Most

https://glad.umd.edu/dataset/global-surface-water-dynamics
https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/DF80WG
https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/DF80WG
https://global-surface-water.appspot.com/download
http://www.dx.doi.org/10.11922/sciencedb.00085
http://www.dx.doi.org/10.11922/sciencedb.00085
https://geoservice.dlr.de/web/maps/eoc:gwp
https://asf.alaska.edu/data-sets/derived-data-sets/wetlands-measures/wetlands-measures-product-downloads/
https://asf.alaska.edu/data-sets/derived-data-sets/wetlands-measures/wetlands-measures-product-downloads/
http://data.ess.tsinghua.edu.cn/modis_500_2001_2016_waterbody.html
http://data.ess.tsinghua.edu.cn/modis_500_2001_2016_waterbody.html
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publications cover more than one of the presented focus topics. It has to be kept in mind
that some application topics are interrelated and most analyses are not confined to one
specific topic. For example, studies analyzing ecosystem services (=anthroposphere) of a
specific lake (=hydrosphere) are also concerned with ecological impact (=biosphere). We
decided to group studies by their main thematic focus as we see differences in study layout
and spatial distribution (Figure 10) depending on said focus.

Figure 9. Detailed summary of investigated applications of n = 221 publications. Application fields
are color-coded: Hydrosphere – blue, Biosphere – green, Anthroposphere – red. Most works are
concerned with several of the given application topics. However, only the main focus is considered
for this figure. Due to a rounding error, the numbers do not add up exactly. The closeness of spheres
mimics the relatedness of focus topics. Those works that are not specified into further subgroups
have a focus too broad to narrow it down further. As an example: 49% of included works have their
primary focus on hydrosphere. A subset of 40% of all included works concentrates on surface water
area dynamics. Narrowing it down further, a subset of 19% of included publications concentrates on
lakes and reservoirs.

Nearly half of the studies (49%) mainly focus on the analysis of surface water hydrol-
ogy. Within this sphere, studies generally operate on a large geographical scale, often span-
ning continents or the entire globe [11,73,75,82,83,85,86,122,125,126,131,139,140,143,164,173,178,180].
While many global hydrological works investigate water surface dynamics of all inland
water bodies, lakes, and reservoirs or large rivers, like the Amazon or Congo, which are
sometimes exclusively in focus. Accordingly, the most dominant group belonging to this
sphere is that of surface water area dynamics (40%). A further 9% of studies investigate
surface water storage. Within the group of surface water area dynamics, we identified three
subgroups. Twenty-seven percent of publications could be categorized further, according
to the specific water body types they focus on. The largest subgroup, nearly one-fifth of
the included works (19%), is concerned with dynamics analyses for lakes and reservoirs.
Rivers and deltas are the primary focus of 6% of the studies. Aquaculture was analyzed in
2% of the studies.



Remote Sens. 2022, 14, 2475 17 of 39

Figure 10. Number of studies mostly concerned with a thematic focus on hydrosphere (a), bio-
sphere (b), and anthroposphere (c).

Twenty-four percent of the studies focus on the biosphere. Biosphere-oriented pub-
lications mostly quantify the ecological impact of changing surface water dynamics and
long-term trends. Few studies with this thematic focus work on a large geographical
scale—examples are [40,80,187]. Often, drivers like human influence or climate change
are associated with ecological deterioration. The main focus lies mainly on the analysis
of landscape change (22%). Particularly, wetland monitoring (15%) is often a study focus
(e.g., [13,71,74,110,137,144,163,170,187–191]). A smaller share of publications focuses on the
impact of rapid urbanization (1%) [6,27,192]. Another 2% focus on the ecological impact of
surface water dynamics.

In total, 26% of studies put their main focus on the anthroposphere. However, few
of those operate on a global scale—[37,175,193] are examples. Especially, the analysis of
natural hazards (17%) often is a thematic focus. A further 8% of studies had resource man-
agement as their thematic focus. This is the case for [25,36,37,69,90,92,104,167,171,194–196].
For such analyses, the study area is often a specific basin, lake, or reservoir. Ecosystem
services are investigated in 1% of studies (e.g., [175,193]). Subdividing the natural hazards
group—in particular, floods (11%)—are often the main thematic focus (e.g., [4,153,197,198]).
Fewer studies mainly focus on droughts (2%) or rapid expansion events of glacier lakes
(1%) (e.g., [86,199] and [70,200,201], respectively). A substantial share of studies concerned
with resource management focus on sustainable development (5%). This includes EO-based
efforts for SDG reporting, as demonstrated by [37].

On a global scale, 65% of studies primarily focus on the hydrosphere. Especially,
surface water area dynamics are often investigated. For this, optical sensors are used
predominantly, mostly Landsat 5, 7, and 8, or Landsat-based analysis-ready products
like GSW, GLAD Surface Water, or GRSAD [11,83,85,120,173,202,203]. In contrast, high
temporal resolution analyses rely on MODIS data or MODIS-based analysis-ready products
like GWP [73,75,84,122,127,131,178]. Some approaches work on dynamic global surface
water storage estimations that are based on area–storage relationships using Landsat-
based analysis-ready data. In the case of Ref. [204], GSW observations and topographic
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information from the ETOPO1 Global Relief Model are used to estimate water height and
volume. Using GSW and GRSAD for lake area, and including lake water level based
on ICESat and ICESat-2 data, [205] creates a monthly time series of global lake volume
for 2003–2020.

Another 26% of global studies are concerned with the biosphere, particularly the
monitoring of wetlands. Early studies, like [159] use ENVISAT ASAR data for wetland
delineation. However, as wetlands feature a high vegetation coverage, multi-sensor ap-
proaches are utilized more strongly. Mainly the GIEMS dataset is used [82,126,132,181,206],
however, individual studies work with the alternative SWAMPS dataset [140,187]. As indi-
cated before, the main limitation of these datasets is their very low native spatial resolution
(~25 km). There are approaches for downscaling GIEMS to a higher resolution [82]—here,
the limitations discussed earlier apply. Still, even in their native resolution, multi-sensor
approaches are of sufficient resolution to evaluate global models, as Ref. [207] shows.

The rest of the global studies have a thematic focus on the anthroposphere. Landscape
change is investigated by Ref. [180]. They use a multi-sensor approach that is based on
the original GIEMS methodology [181] and adaptations made by Ref. [208]. Covering the
timeframe of 1993–2007, a decline of inundated area by 6% globally is reported, mostly in
tropical and subtropical South America and South Asia. It is suggested that this dynamic
is due to high population pressure in these regions [180]. Focusing on global flood risk,
Ref. [125] uses Soil Moisture Active Passive (SMAP) brightness temperature estimates from
passive L-band observations with Advanced Microwave Scanning Radiometer 2 (AMSR-2)
passive K-band retrievals and a static MOD44W MODIS surface water mask to assess
global inundation dynamics. Global drought monitoring on the basis of reservoir dynamics
is done by Ref. [86] using the GRSAD dataset.

As indicated earlier, most studies work on a regional or local scale. This is also visible
in Figure 10. The global perspective is still considered in those works. As summarized
in Table 2, the findings regarding surface water dynamics are strongly dependent on
the investigated region, but associations with large-scale drivers are similar across most
regions. In the following, we give a more detailed overview of the individual regions and
application foci.
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Table 2. Overview of researched areas, main findings, identified drivers, and challenges.

Continent Hotspots Main Findings Drivers Challenges Sources

A
fr

ic
a Sahel

Congo River Basin
East African Rift

• Ecosystem degradation
• Changing seasonal and inter-annual

variations in Lake Chad due to
climate change

• ENSO and IOD strongly impact
inter-annual surface water dynamics

• In (semi-)arid regions: Land use and land
cover change with substantial decrease of
surface water body extent

• Extreme intra- and inter-annual
fluctuations in surface water body
extent (Tanzania)

• Human intervention
• Climate change
• Large scale oscillations (AMM,

AMO, ENSO, IOD) • Data gaps
• Clouds and atmospheric influence
• Mixed pixels (spatial

resolution constraints)
• Limited cooperation and data sharing
• Water surface roughness (esp. for

C-band SAR)
• Limited temporal resolution
• Satellite-based altimetry only for large

enough water surfaces possible
• Vegetation cover obstructs

water surfaces
• Spectral or backscatter similarity of

water surfaces and other land cover
• Attributability of observed changes to

suspected drivers
• Data volume (especially for large

scale studies)
• Impact of topography
• Validation difficult to realize

(especially for large scale studies)
• Sensor ageing
• Limited correlation of surface water

extent and altimetry
• Limitations from static water masks
• Global applicability of

regional approaches
• Inaccuracies of used DEMs
• In SAR approaches: Surface wetness

reduces classification accuracy
• Spectral variations of different

water bodies

[9,14,37,62,87,92,102,104,105,114,127,
137,151–154,161,166,167,194,197,209–

218]

A
si

a

Siberian Tundra
Central Asia
China
High Mountain AsiaSouth &
Southeast Asia

• In alpine and arctic regions: Increase of
available surface water due to increased
precipitation and melting processes

• In arid regions: Mostly decreasing trend of
available surface water

• Gradual and abrupt changes due to human
interventions impacting established
surface water dynamics

• In humid low-lying regions: Changes in
inundation dynamics

• Human intervention
• Climate change
• Large scale oscillations

(ENSO, IOD)
[4–6,10,12,13,16,17,24,25,27,31,33,36,

39,43,46,60,67–72,74,77–
80,91,94,95,97,98,100,103,104,106–

109,111–113,115–
118,121,123,127,133,141,142,145,147,
150,155,156,158,162,169,172,188,189,
192,193,196,198,200,201,216,219–251]

A
us

tr
al

ia

Southeast Australia
(Murray-Darling-Basin)

• Human activities impact existing intra-
and inter-annual surface water dynamics

• Established surface water dynamics
stabilize important local ecosystems

• Human intervention
• Climate change
• ENSO

[42,90,124,165,174,175,177,252,253]

Eu
ro

pe Mediterranean
Alpine regions
Western Europe

• In Alps and Carpathians: Increase of
glacier lake growth

• Well researched areas used for
proof-of-concept studies and
performance testing

• Human intervention
• Climate change (especially

temperature increase)
[99,121,127,141,149,163,168,236,254–

256]

N
or

th
A

m
er

ic
a

Arctic tundra
Boreal regions
Continental USA

• In Arctic: Inter-annual changes identified
that correspond with surface water body
size (growth of large lakes, retreat of
smaller lakes)

• In Arctic: Big impact of global warming
and associated precipitation increase;
incline in extreme thermokarst
lake drainage

• In Everglades: Dense vegetation cover and
high cloud cover challenge conventional
surface water detection approaches

• Human intervention
• Climate change (especially

temperature and
precipitation change)

[5,23,43,44,47,93,96,101,110,127,144,
148,157,169–171,199,236,252,257–262]
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Table 2. Cont.

Continent Hotspots Main Findings Drivers Challenges Sources

So
ut

h
A

m
er

ic
a

Amazon River Basin
Pampas

• ENSO is a driving factor of monitored
inter-annual surface water dynamics

• In Amazon basin: Intra- and inter-annual
surface water availability fluctuations are
directly linked to precipitation

• Dense vegetation cover and high cloud
cover challenge conventional surface water
detection approaches

• Human intervention
• ENSO
• Climate change (temperature

and precipitation change)
[22,37,40,88,104,127,135,138,141,185,

186,263–267]
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3.6.1. Africa

Concentrating on the Sahel, especially the anthroposphere, is a central focus point
in many publications (Figure 10c). Multiple studies document inter-annual changes and
long-term dynamics in surface water due to changing land use [194,209,210]. Studies
analyze changes in land cover and land use based on multi-temporal Landsat imagery. The
water body extent changes due to reservoir constructions due to, for example, mining [210]
or hydropower generation [194]. Such interventions directly affect the socio-economic
situation of the local population, as well as the local biodiversity. For Lake Chad, Ref. [9]
shows that extreme climatic shifts in the 1970s and 1980s led to an extreme decline in lake
surface area (90%). Water surface dynamics are analyzed for 2015–2019 and are based on
Sentinel-2 and Landsat 8 data. Additionally, the study makes use of altimetry time series
based on TOPEX/POSEIDON and JASON-1 and -2 for 1993–2015 and a precipitation time
series based on TRMM data for 1998–2013. Apart from RS data, surface water storage
estimates from the Hydrological Modelling and Analysis Platform (HyMap) are included
in the study. Due to the accelerated population growth in the region and the subsequent
increased food and freshwater demand, water withdrawals additionally contributed to the
rapid shrinking of the lake. On top of that, major shifts in land cover towards agricultural
expansion and deforestation took place. This has led to the complete drying of the North
pool of the lake. These findings highlight the global climate influence on the region by
showing the significant relationships between climate models and drought patterns in the
region. This is observed specifically for the AMO, the Atlantic Meridional Mode (AMM),
and ENSO that all have significant correlations with the changes in lake area extent.

Especially in arid regions, accurate monitoring of surface water is important since
small and highly dynamic surface water bodies are important for local livelihood. Thus,
focusing on wetlands along the Senegal River, Ref. [114] tests multiple approaches for
wetland mapping using optical sensors. They employ data from Landsat, Sentinel-2, and
MODIS. Their findings suggest that flood dynamics are not accurately represented by
Landsat before 2013 due to its low temporal resolution. The inclusion of MODIS data is
therefore advised for the long-term monitoring of highly dynamic surface water. Further,
Ref. [166] tests the performance of GSW for surface water detection in the Nigerien Sahel.
Their results indicate the underestimations of small, turbid water bodies that are vital
for local livelihood. Therefore, they suggest the use of methods optimized for the local
environment in combination with very high-resolution data. Indeed, focusing on ephemeral
water bodies in the Ferlo region in West Africa, Ref. [211] saw promising results in a direct
comparison of very high spatial and temporal resolution PlanetScope data and Landsat
8 data. They suggest a complementary use of very high spatial resolution data and an
established lower resolution time series.

Another research hotspot in Africa is the Congo River Basin (CRB). The Cuvette
Central, a shallow depression along the equator, is often an area of focus [87,137,212,213].
This region is important for local surface water hydrology and the valuable ecosystems of
the African inner tropics [213]. However, there are still considerable uncertainties regarding
the intra- and inter-annual dynamics of inundated areas in this region. Therefore, the
main focus for this area is quantifying the dynamics of the surface water area (e.g., [87])
or storage (e.g., [213]). Due to the high cloud cover and dense vegetation, all studies
focusing on this region rely on water delineation methods that use microwave backscatter.
Ref. [212] analyzed the behavior of CRB surface water dynamics using GIEMS, Ref. [87]
using SWAMPS, and Ref. [137] using a multi-sensor approach that heavily relies on L-band
SAR. Their findings show considerable inter-annual dynamics in surface water due to the
larger hydro-climatic system. The main drivers of the CRB hydro-climatic system are the
large-scale phenomena ENSO and IOD (Table 2).

In the East African Rift Region, the focus often lies on the anthroposphere (Figure 10c).
Studies find that, similar to the situation in the Sahel, major socio-economic and environ-
mental effects are connected to the identified water area decreases [14,92,105,214]. In a case
study on Lake Manyara in northern Tanzania, Ref. [92] monitored the extreme inter-annual
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dynamics using a MODIS-based Modified Normalized Difference Water Index (MNDWI)
time series. Throughout the studied time period (2000–2011), the lake lost over 90% of its
surface water area on two occasions (97% in 2005 and 94% in 2011). The authors suggest
that the monitored dynamics are due to regional and global climate fluctuations. Similarly,
in a study focusing on the Awash River Basin in Ethiopia, Ref. [105] found that the regional
droughts have an acute impact on the area’s water resources. They made use of an active–
passive approach, incorporating optical Landsat 7 and 8 data as well as Sentinel-1 (A,B) data
to produce monthly 10 m water body maps. Ref. [215] investigates the impact of Gibe III in
Ethiopia. They modeled the impact the dam will have on the Omo River and Lake Turkana
once it is fully constructed. They use multi-temporal Landsat observations together with
water level observations based on TOPEX/POSEIDON, JASON-1, and ENVISAT altimetry,
as well as supporting climate and hydrological datasets. They conclude that during the
filling period, the lake level would drop by 1–2 m. After the filling period, lake fluctuations
will be within natural variability.

3.6.2. Asia

Several studies focus on surface water dynamics in the Siberian tundra due to the
impact of the region on the global CH4 budget [46,94]. Testing the suitability of C-band
SAR data for this task, Ref. [46] monitored the permanently and seasonally inundated
areas in the West Siberian Lowland from 2007–2008 based on ENVISAT ASAR data. On a
longer temporal scale (1973–2013), the effect of rising temperatures due to climate change
become obvious [94]. Also focusing on western Siberia, Ref. [94] utilizes Landsat data
for a temporally extensive analysis. They monitor a rapid increase in the number of
small thermokarst lakes formed due to degrading permafrost. At the same time, larger
lakes disappeared, leading to a net loss of surface water area in the investigated region.
The increased erosion rates of islands in anabranching rivers like the Lena are reported
by Ref. [97]. They utilize data from multiple optical sensors, namely CORONA and
HEXAGON KeyHole reconnaissance satellites; Landsat 5, 7, and 8; SPOT 5 and 6; and
Pleiades, for a sparse (13 observations) time series covering 50 years. By including data
from gauge stations as well as air and water temperature into their analysis, Ref. [97] shows
that permafrost degradation increases along with discharge and temperature. Further,
more frequent summer floods due to higher precipitation are recorded. Feedback loops
may additionally increase permafrost degradation and morphodynamic change.

Central Asia is a research hotspot for studies concerned with any of the identified
spheres (Figure 10). These studies mostly use Landsat data [189,193,219]. Temporal resolu-
tion ranges from sparse multi-temporal observations [219] to sub-monthly time series [189].
Within the region, smaller water bodies have been changing drastically between 2000 and
2015, as analyzed by Ref. [193]. Both the maximum and minimum water surface area
decreased in a roughly linear fashion. With perennial water cover decreased by 15% from
~101,438 km2 in 2000 to ~85,702 km2 in 2015. Human activity and climate change influenced
surface water dynamics considerably, thereby resulting in the retreat of several Central
Asian lakes between 1975 and 2007 (e.g., Aral Sea −75%, Bosten Lake −9%, Ebinur Lake
−8%) [219]. Focusing on Hanun Wetland in the border region of Iran and Afghanistan,
Ref. [189] analyzed the intra-annual dynamics between March and August 2014 based on
roughly biweekly land cover classifications. Their findings showed that, after an initial
inundation period in the spring, the wetland dried up almost completely until August due
to increased water consumption and blocking of upstream discharge. Case studies through-
out Central Asia show that the overuse of available surface water resources results in
desertification, salinization, degradation of vegetation, and biodiversity loss [189,193,220].

The main hotspot in any observed sphere is China (Figure 10). On a national level, the
focus often lies on the study of lake and reservoir area dynamics [77,79]. On this geographi-
cal scale, MODIS-based approaches are in the majority [77,79]. Ref. [79] uses MOD09Q1
data with a modified Otsu thresholding method to produce a nation-wide 8-daily surface
water product. Their Inland Surface Water Dataset in China (ISWDC) covers a timeframe
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from 2000 to 2016 and shows good consistency when compared to GSW. On a high spatial
resolution, Ref. [39] fuses optical Sentinel-2 and Landsat 8 imagery with Sentinel-1 imagery
for the years 2017–2020. They produce a 10 m monthly time series product. Focusing on
drivers of long-term surface water dynamics in China, Ref. [200] investigates the decadal
changes based on Landsat and Gaofen-2 data, as well as auxiliary climate and socioeco-
nomic data. In the following, we present studies that investigate specific areas in and
around China, we grouped these studies according to their geographic location:

In Mongolia and the arid Chinese North, ecosystem degradation and desertification
is observed in the long-term trend analyses of optical sensors, primarily Landsat [91,113].
From a hydrological perspective, Ref. [230] investigates the inter-annual dynamics of Hulun
Lake in Inner Mongolia. They use an annual time series of Landsat data and altimetry data
from Jason-1 and -2 to observe the water area and height for 2002–2015.

In the densely populated and highly urbanized eastern Chinese lowland, numerous
studies describe changes in surface water dynamics over the last decades. Over 50% of
studies concentrating on this region focus on the hydrosphere perspective. Especially,
surface water area dynamics are often investigated (49%). These studies overwhelmingly
utilize time series from optical data, particularly Landsat or MODIS. Indiscriminate of the
water body, Refs. [116,243] observe surface water dynamics in the middle Yangtze reaches.
Ref. [116] uses Sentinel-2 along with Landsat 8 data for improved temporal resolution.
Studies that focus on lakes or reservoirs include [12,69,81,228,231,242,248]. A smaller
number of studies focuses on rivers and deltas throughout China [13,43,115,172,192] or
monitor changes in aquaculture area [103,106,244]. It has to be noted that specifically
the monitoring of aquaculture ponds is more often based on Sentinel-1 C-band SAR data
than optical data [103,106]. Twenty-nine percent of studies concentrating on the East of
China focus on a biosphere-related topic. Most studies concentrate on landscape change
in general [123,196] or wetland monitoring in particular [74,155,188,222,224,232] and base
their results on multi-temporal Landsat observations or Landsat-based time series. The
exceptions are the SAR-based approach by Ref. [74], and the approach by Ref. [155] which
fuses Landsat and MODIS data to fill data gaps in the analyzed time series. The remaining
studies in this region focus on the anthroposphere. The single largest topic within this group
is flood monitoring [31,108,238]. In contrast to other application fields, flood monitoring
demands high temporal resolution data. Therefore, early studies work with sensors like
AVHRR [238], while more recent studies propose multi-sensor approaches incorporating
Sentinel-1 SAR data and passive microwave data from SMMR, SSM/I-SSMIS, and AMSR-E
for high spatial and temporal resolution [108].

Due to its importance for surface water supply of multiple large Asian rivers, several
studies focus on High Mountain Asia. Particularly, the Himalayas and the TP are popular
research sites. Within this region, many studies concentrate on changes in the hydrosphere.
Particularly, long-term changes of glacier lakes and other high-altitude lakes are inves-
tigated using yearly to decadal observations of Landsat data [60,68,100,225,234,246,251].
For most lakes in the Himalayan and TP regions, increases in water area and storage are
documented [70,72,77,80,98,100,220]. Apart from the mid- to long-term consequences of
retreating glaciers and increasing temperatures [60], rapidly increasing glacier lakes and
thawing permafrost increase the risk of lake outburst floods [24,229]. Particularly, expan-
sion events of glacial lakes [70,201] are associated with these natural hazards. These studies
concentrate on long-term changes and, therefore, mostly employ long-term multi-temporal
Landsat data with yearly [24,70] or fewer observations [201,229,237].

Fifty-seven percent of studies in the regions of South and Southeast Asia focus on the
hydrosphere. Especially, surface water area dynamics of rivers and deltas [43,111,221] or
lakes and reservoirs [117,249] are often the main focus. Focusing on the Pearl River Delta
and the Irrawaddy River Delta, Ref. [221] quantifies the changes in delta channel networks.
They utilize all available Landsat 5, 7, 8 data for 1986–2018 to produce four multi-year
composites to eliminate problems like cloud cover and hydrological extremes. Using object-
based classification, they segment areas of water occurrence and then delineate the center-
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and banklines of the channel for each time step. Ref. [43] uses 250 m resolution MODIS data
to investigate the intra-annual dynamics of multiple important delta regions, including the
Mekong River Delta, Irrawaddy River Delta, and the Ganges-Brahmaputra Delta. Further,
Ref. [111] models river discharge based on Sentinel-1 time series data for a test region in
the middle Mekong. By calculating river width at multiple segments for each time step,
they estimate the discharge using a width–discharge relationship. Twenty-four percent of
studies concentrating on the region focus on the anthroposphere [33,37,198,216,241]. As
one major natural hazard in the area, floods are monitored by multiple studies [33,198,216].
As it is mostly insensitive to atmospheric influences, data from SAR sensors is preferred
for this application. Ref. [216] investigates the short-term dynamics of floods based on
multi-temporal Sentinel-1 SAR with a roughly weekly temporal resolution. Focusing on a
region in Kerala, India, Ref. [33] assesses the flood dynamics for an event that occurred in
2018. They utilize Sentinel-1 data both from ascending and descending orbits to maximize
the temporal resolution. The increasing variability of precipitation due to climate change
leads to more pronounced intra- and inter-annual water body dynamics in the area [240].
Hydrologically complex regimes like the Tonle Sap Lake are increasingly impacted by
the accumulating effects of changing flood pulses from the Mekong, thereby intensifying
agricultural use, water diversion and damming, and increased water demand [4]. In an
early study on multi-sensor approaches, Ref. [235] analyzes the wetland dynamics for
the Indian subcontinent on a monthly basis for a two-year period (1993–1994). Ref. [198]
investigates the dynamics of annual floods based on a MODIS 8-day composite image
time series for 2000–2005. Producing a framework for analyzing land surface dynamics
and corresponding drivers for the Indo-Gangetic River Basin, Ref. [250] incorporates
GWP data with other MODIS-based analysis-ready time series and climatological and
hydrological data.

3.6.3. Australia

The majority of studies concentrating on Australia (56%) have a focus on the anthro-
posphere, particularly the assessment of drought- and flood-related surface water dynam-
ics [42,165,174,177,252]. The rest focus on surface water area dynamics in general [124,253],
or specifically concentrate on certain water bodies like lakes and reservoirs [175] or estuar-
ies [90]. The studies mainly utilize optical sensor data from Landsat, the exception being
Ref. [165], who work with daily and 8-daily MODIS time series. Closing the gap between
high spatial and high temporal resolution, Ref. [124] blends MODIS and Landsat imagery
for multiple areas of interest in the Murray–Darling Basin to investigate the La Niña floods
of 2010-2011 at a spatial resolution of 30 m and a temporal resolution of 8 days.

3.6.4. Europe

European studies are notably underrepresented as a study site (Figure 10). Mainly,
studies with a focus on the hydrosphere are present [99,149,168,255,256]. Further, individ-
ual studies concentrating on flood dynamics [121,254] and wetland monitoring [236] have
been identified. There is a considerable spread in size and spatial distribution of studies.
Ref. [168] produces a 15-year time series (2000–2015) from 8-daily MODIS data for the
entire Mediterranean region. With a focus on alpine glacier lakes, Ref. [255] investigates the
inter-annual dynamics based on the GSW and GLAD Surface Water datasets for the time
period between 2000–2019. Analyzing the impact of climate change on glacial lakes in the
Romanian Carpathians, Ref. [99] studies the time period from 1968–2014. They find that
north-facing lakes are slowly decreasing, while south-facing glacier lakes are growing. The
authors utilize a number of optical sensors in their study, namely CORONA KH-4B, SPOT-5,
WorldView-1, Pleiades, and aerial imagery. On a smaller geographical scale, Ref. [256]
compares the time series based on Sentine-1 and Sentinel-2. They test multiple moving
window sizes for an accurate representation of reservoir dynamics for French reservoirs
with sizes as small as 20 ha. Working on a local scale, Ref. [149] tests an approach that uses
very high-resolution RapidEye optical data to reconstruct lake level changes.
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3.6.5. North America

In the tundra and boreal region of North America, many studies monitor lake area
dynamics [93,169] and wetlands [157] over long timeframes. These studies use optical
(Landsat) [93,169] or SAR (ERS-1/-2) data [157]. A method is proposed that, using GSW
monthly data, generates a lookup table of lake shorelines. This is further used to es-
timate the lake area and volume on the basis of altimetry data alone using statistical
regression [169]. Results from the North American tundra show strong inter-annual dy-
namics [23,257]. The outcomes vary to some degree depending on the study region. The
findings for North-central Canada for 1985–2015 indicate that smaller water bodies shrank
or disappeared entirely, while larger water bodies have grown [257]. For Lake Athabasca,
however, decreasing trends are documented [169]. This is partially supported by the find-
ings of Ref. [93]. They observe a decline in lake area for their study area in Yukon over
the period of 1950–2009, but simultaneously record an increasing number of lakes. The
reason being extreme drainage events from thermokarst lakes due to new or enlarged outlet
channels that result from permafrost degradation [93]. In the Mackenzie Delta, flood events
due to ice break-up events are recorded [23].

In the rest of North America, 47% of studies focus primarily on the hydrosphere. Par-
ticularly, surface water storage (e.g., [5,262]) and surface water area dynamics (e.g., [96,258])
are investigated. Twenty-four percent of studies concentrate on the anthroposphere. Flood
dynamics are monitored on the basis of SAR data [259], while drying rivers are investi-
gated based on the GSW product [199]. Further, biosphere-oriented studies predominantly
analyze the wetland dynamics of the Florida Everglades [170,260]. In a MODIS-based
approach, intra-annual inundation dynamics are monitored for 2004 [260]. With optical,
and even most SAR sensors, the monitoring of wetlands is hindered by vegetation. There-
fore, a novel approach is introduced that uses Cyclone Global Navigation Satellite System
(CYGNSS) data [170]. It is found that CYGNSS is less sensitive to vegetation but more
sensitive to water saturated soils and concludes that the use of CYGNSS can complement
existing methods for wetland monitoring.

3.6.6. South America

Most studies located in South America concentrate on the Amazon River Basin. Sixty-
seven percent of studies focus on the hydrosphere, particularly surface water area dy-
namics [88,104,149,264,267] and surface water storage dynamics [138,185,186]. Due to the
high cloud cover and dense vegetation in the research area, most studies work with multi-
sensor approaches. The GIEMS dataset or its downscaled version, GIEMS-D15, is used
by [40,138,185,186]. An alternative approach based on Soil Moisture and Ocean Salinity
(SMOS) passive microwave satellite data has been developed in recent years. It offers
higher temporal resolution (3 days) but is limited in its spatial resolution (25 km) [88,267].
The findings from the Guayas watershed [263], the Orinoco River [138], and the Amazon
basin [22] are in agreement that the intra- and inter-annual water dynamics are correlated
by variations in precipitation. These, in turn, are often linked to ENSO [22,138,263]. In the
case of floods and droughts in the Amazon basin, driver associations are not as clear-cut:
Ref. [88] attributes dry years, in part (1997–1998), to El Niño occurrences and, in part (2005,
2010), to high sea surface temperatures in the Tropical North Atlantic, thereby coming to a
different conclusion than Ref. [22]. Floods are associated partly with La Niña occurrences
(1999, 1012) (as [22] also conclude) and partly with high sea surface temperatures in the
Tropical South Atlantic (2012, 2014) [88,89]. In contrast, the impact of human land use on
flood risk is shown by Ref. [268]. Multi-temporal Landsat-based water surface estimations,
16-daily MODIS NDVI, as well as long-term hydrological modeling based on the HYDRUS
1D model, are used to investigate the sub-humid plains of the Pampas. Ref. [268] concludes
that flood frequency and severity is linked to the expansion of grain production systems.
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4. Discussion
4.1. Revisiting the Duality of Spatial vs. Temporal Resolution

From the presented results, a duality of spatial vs. temporal resolution is apparent.
Generally, most studies use data from optical sensors—primarily Landsat and MODIS.
Especially for long time series with high spatial resolution, there is virtually no alternative
to using Landsat data. This limits temporal resolution to, at best, 16 days. Analyzing
highly dynamic surface water is therefore not possible based on Landsat alone. Conversely,
high temporal resolution data that extends into the pre-Sentinel era is of limited spatial
resolution. The choice of high spatial or high temporal resolution primarily depends on the
application focus. The assessments of rapid urbanization’s impact on surface water bodies,
for example, often rely on high spatial resolution data, but very low temporal resolution.
The investigation of flood pulses in large-scale basins, on the other hand, is more reliant
on high temporal resolution then on high spatial resolution. We see overcoming this
duality as one of the most important enablers for future RS-based surface water dynamics
analyses. Data fusion approaches and downscaling procedures show promising results,
but introduce additional sources of error [88] and are limited in their ability to represent
trends and variations [128–130]. The increased availability of satellite constellations like the
Sentinel fleet ensures increased data availability with high spatial and temporal resolution
data. However, since the timeframes of most studies are more than a decade, newer sensors
do not yet see the same number of use cases as, for example, Landsat or MODIS.

4.2. Analysis-Ready Datasets

From the results presented and visualized in Figure 9, we conclude that the available
surface water products are being adopted well by the research community. There are a
number of reasons for this. Particularly, the transferability of approaches, comparability
of results, and ease of use may be important. Especially, the GSW product sees a high
number of use cases. Still, it’s applicability is limited by it’s low temporal resolution
and reduced reliability for specific regions due to extensive cloud cover and/or polar
night [167,173]. A larger share of reviewed publications therefore produces their own
products to fulfill the needs of their analyses or to advance on existing, globally available
products (e.g., [165,269,270]).

4.3. Drivers of Surface Water Change

Even though RS data, analysis-ready products, and computation infrastructure are
widely available, there is no obvious trend towards global analysis approaches—as visual-
ized in Figure 6. Instead, the study focus is what mainly determines the scale of the study
area. Hydrology-oriented analyses are often performed on a global or continental scale.
In contrast, biosphere- and anthroposphere-oriented studies are mostly performed on a
regional or even local basis. Such studies have high relevance as they are able to connect
observations with influencing factors and may provide more detailed insights regarding
the underlying drivers of change. As drivers interfere with each other, such complex
cause–effect relationships are mostly investigated and quantified on a local to regional level.
However, as shown in Table 2, even though the effects of specific drivers differ from region
to region, we can still deduct three main causes of surface water dynamics change:

• Human impact, specifically the construction of reservoirs, intensification of agriculture,
rapid urbanization, and ineffective water management, has a great impact on global
surface water. As is visible in Figure 10, humans are most often identified as drivers in
densely populated areas with mostly high population increases. This interpretation
is backed by other studies that show human impact on free flowing rivers [271] and
surface water bodies in general [180,272].

• Climate change is often attributed with the highest or second highest impact on
surface water dynamics. In contrast to human interventions, climate change impacts
are reported for highly populated as well as nearly untouched regions of the world.
Especially in cold and arctic regions, as well as those with acute water scarcity, these
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impacts are significant. In water scarce regions, the impacts of climate change (mainly
temperature increase and more variable precipitation) often worsen the already tense
situation. In cold and arctic regions, rising temperatures and precipitation changes
have multiple effects: higher precipitation generally leads to increasing water body
sizes. Water bodies fed by meltwater additionally increase in size due to higher
temperature. Water bodies that are not fed by meltwater shrink if precipitation rates
remain similar or decrease. This can be explained by simultaneously increasing
temperatures and ET rates. Areas underlain by permafrost, due to rising temperatures,
lead to a thawing process that can destabilize lake edges and rapidly drain lakes.

• Especially in tropical and subtropical regions, large scale oscillations affect the inter-
annual dynamics of surface water. The impact of such climate modes spans mul-
tiple continents and can lead to adverse water situations in multiple and distant
regions at the same time; even more so when they occur in combination with temper-
ature increases and higher precipitation variations and human-induced changes in
water dynamics.

4.4. Future Developments

It is apparent that there is a high motivation to globally monitor the impacts that
large-scale drivers have on surface water dynamics. Especially, regions that already have a
high population density and dynamic growth need strategies for effective surface water
management in the face of climate change and the increasing likelihood of water stress.
The information basis of such strategies can be provided by satellite RS [39].

Still, there are limitations to RS-based analyses that need to be kept in mind:

• As discussed above, all sensor types utilized in RS all have their respective short-
comings. Optical sensors, for example, are highly sensitive towards cloud coverage.
SAR sensors have limitations depending on the wavelength they operate in. Shorter
wavelength sensors like those operating in the X- and C-band are influenced by soil
moisture and atmospheric influences, while sensors operating in longer wavelengths
like L-band SAR are limited by their coarse spatial resolution.

• Depending on the classification scheme, the quality of results can vary substantially.
Accurate measurements of RS-based analyses are especially complicated for large-
scale applications such as global mapping initiatives. On this level, ground truth
comparisons become unfeasible and accuracy has to be measured via proxies like
visual image interpretation or comparison with high resolution sensors. All of these
approaches carry over the uncertainties of the used proxies.

• Lastly, the duality of high spatial vs. high temporal resolution sensors can be seen as
the largest hurdle that limits the applicability of RS-based approaches.

With increasingly long time series from high spatial and temporal resolution satellite
constellations like the Sentinel fleet, we postulate that the spatial vs. temporal resolution
duality will end. For many areas and applications, SAR and optical data enable high
spatial and temporal resolution global surface water time series with increasingly long
temporal frames. Regarding very long-term analyses, Landsat remains the most important
tool available as it offers the longest continuous time series of any environmental satellite
program. We see high potential in the use of multi-sensor approaches for challenging
environments like tropical rain forests or inundated forests. Here, optical sensors and
C-band SAR are limited in their applicability. Approaches that utilize longer wavelengths
either as SAR or passive microwave data are reportedly capable of identifying inundated
areas under canopy cover. Techniques like L-band reflectometry based on GNSS are a
valuable tool in this regard. Further, with the launch of the Surface Water and Ocean
Topography (SWOT) mission, which is planned for late 2022, a valuable tool for the
analysis of surface water dynamics will become available. We prognose that, in the future,
a synergistic use of the resources available will be able to overcome the main limitations
that hold back RS-based approaches for surface water dynamics analyses.
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5. Conclusions

We provide an extensive review of remote sensing of inland surface water dynamics.
The literature included offered multi-temporal observations of surface water area with a
global perspective. For a total of n = 233 studies, we investigated the spatial distribution of
research hotspots, temporal resolution and investigated timeframe, used sensors and sensor
types, methods for surface water delineation, and thematic foci. Following, we briefly
summarize our main findings regarding the defined research questions from Section 1.3.:

• We identified an overall increase in research activity over time. From 2006 onwards,
multiple peer-reviewed contributions are identified each year. From 2014 onwards, a
steep increase in research activity was identified.

• Research hotspots are foremost located in Asia. China alone was covered by ~33%
of the publications on surface water dynamics. Further, areas in Central, South, and
Southeast Asia are investigated in 19%, 20%, and 19%, respectively. Further, a high
concentration of studies was found for the Amazon River Basin (20%), the Congo
River Basin (18%), Australia (19%), and North America (20%). Most first authorships
come from China (36%), the USA (20%), France, and Germany (each 12%). This shows
a discrepancy in the spatial distributions of research areas and first author countries.
A significant number of studies investigates surface water dynamics globally (15%).

• On the temporal scale, we differentiated between studies considering inter-annual
dynamics versus those including intra-annual dynamics. We found that earlier studies
including intra-annual dynamics use shorter timeframes than more recent works.
Generally, studies focusing on inter-annual dynamics observe longer timeframes
than those analyzing intra-annual dynamics. There is a duality between high spatial
resolution and high temporal resolution approaches. While many studies working on
a local or regional scale employ high spatial resolution and low temporal resolution
data, studies on a large geographical scale mostly work with low spatial resolution
but high temporal resolution data.

• Most studies include optical data (91%). Often, studies rely solely on optical data
(72%). Landsat data is utilized in 62% of studies and MODIS data is used in 20% of
studies. Further, microwave data is used in a significant number of studies. In terms
of active microwave data, especially synthetic aperture radar (SAR), sensors are used
in many studies (18%). Ten percent of studies include passive microwave data.

• Most studies use a custom approach to identify the surface water area (79%). In
many cases, this approach is based on a threshold-based classification of water (29%).
Supervised classifications are used in 17% of studies. Twenty-one percent of studies
rely on analysis-ready datasets to describe surface water area. In 5% of studies,
surface water is monitored using the Global Surface Water (GSW) used by Ref. [11].
Additionally, the Global Inundation Extent from Multi-Satellites (GIEMS) by Ref. [181]
or newer iterations of the same product are used in 3% of studies.

• Global surface water products have the potential to provide comparable surface
water observations. Landsat-based products offer the longest timeframes (e.g., Global
Surface Water (GSW): 1984-present). However, due to the low temporal resolution
of Landsat, its use for the analysis of highly dynamic surface water bodies is limited.
Particularly for GSW, low accuracies for specific regions (e.g., the Sahel [166,167])
are reported. High temporal resolution products are exclusively based on MODIS
data. To our knowledge, the Global WaterPack (GWP) by Ref. [84] provides the
highest temporal resolution of any available global product at 250 m spatial resolution.
Additionally, all products based on optical sensors are limited by weather-related data
gaps and cannot accurately depict water under canopy. Multi-sensor products like
Global Inundation Extent from Multi-Satellites (GIEMS) have an advantage here, but
are limited in spatial and temporal resolution (~25 km, monthly). The mentioned
duality of spatial vs. temporal resolution is therefore also visible in global surface
water products. We postulate this duality will end due to the increasingly long time
series of high spatial and high temporal resolution satellite constellations.
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• We categorized studies based on their thematic focus. Three spheres were identified:
~49% of studies have a thematic focus on the hydrosphere, ~24% on the biosphere, and
~26% on the anthroposphere. We divided studies into further subgroups. Within the
respective identified spheres, the largest groups would be publications with a focus on
surface water area dynamics (40%), natural hazards (17%), or landscape change (22%).
The respective foci are distinctly spatially distributed. There are more global studies
with a hydrosphere focus than studies with a biosphere or anthroposphere focus.
Hydrosphere research hotspots are the Arctic and cold regions, the Amazon River
Basin, the Congo River Basin, China, and Australia. Biosphere research hotspots are
concentrated in North America, Iran, and China. Anthroposphere research hotspots
are situated in the USA, the Sahel, the East African Rift, Central Asia, South Asia,
China, and Australia.

Our review complements the existing body of research on surface water dynamics
with a comprehensive overview of the field. We presented important developments in
used methodologies and applications of surface water dynamics studies. We highlighted
the strengths and limitations of current approaches and offer our prognoses for possible
future developments.
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