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The immune system plays a vital role in maintaining tissue integrity and organismal
homeostasis. The sudden stress caused by myocardial infarction (MI) poses a significant
challenge for the immune system: it must quickly substitute dead myocardial with fibrotic
tissue while controlling overt inflammatory responses. In this review, we will discuss the
central role of myocardial regulatory T-cells (Tregs) in orchestrating tissue repair processes
and controlling local inflammation in the context of MI. We herein compile recent advances
enabled by the use of transgenic mouse models with defined cardiac antigen specificity,
explore whole-heart imaging techniques, outline clinical studies and summarize deep-
phenotyping conducted by independent labs using single-cell transcriptomics and T-cell
repertoire analysis. Furthermore, we point to multiple mechanisms and cell types targeted
by Tregs in the infarcted heart, ranging from pro-fibrotic responses in mesenchymal cells
to local immune modulation in myeloid and lymphoid lineages. We also discuss how both
cardiac-specific and polyclonal Tregs participate in MI repair. In addition, we consider
intriguing novel evidence on how the myocardial milieu takes control of potentially auto-
aggressive local immune reactions by shaping myosin-specific T-cell development
towards a regulatory phenotype. Finally, we examine the potential use of Treg
manipulating drugs in the clinic after MI.

Keywords: Tregs (regulatory T cells), Foxp3, myocardial infarction, heart, fibrosis, T-cells
INTRODUCTION

Heart and immune system development are closely intertwined, as leukocytes permeate the cardiac
tissue during the embryonic stage and remain there throughout life. In addition to their
housekeeping functions and recently discovered new roles (1, 2), diverse leukocyte populations
are recruited by and respond to the tissue damage elicited after (MI). These responses secure the
proper clearance of dying tissue, foster myocardial healing and thereby aid cardiac tissue recovery
(1). However, uncontrolled long-lasting immune cell activation may also lead to cardiac damage and
contribute to heart failure (HF) progression (1). Deciphering the paths and immune players
responsible for proper cardiac wound healing is therefore crucial for designing new therapeutic
strategies to improve post-MI recovery.

A growing body of evidence indicates that adaptive immune responses orchestrated by CD4+

T-cells can significantly affect myocardial repair after MI (3). While lack of CD4+ T-cell responses
hindered myocardial healing, chronic T-cell activation can contribute to HF progression as seen in
pressure overload models (4, 5). Regulatory T-cells (Tregs) have immunosuppressive and
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pro-healing functions that generated particular interest in
understanding their role in cardiovascular diseases (6–8). A
series of studies conducted in recent decades formally
identified Tregs as a subset of CD4+ T-cells expressing the
transcription factor Forkhead box P3 (FOXP3) that are
involved in immunosuppression and play a vital role in
maintaining immunological tolerance and overall homeostasis
(9–15).

In addition to their suppressive functions, previously
unknown Treg roles have recently been discovered based on
their location in parenchymal rather than lymphoid tissue (16).
For instance, Tregs infiltrating the visceral adipose tissue (VAT)
rely on peroxisome proliferator-activated receptor (PPAR-g) for
accumulation, phenotype and function, as VAT Tregs lacking
PPAR-g cannot restore insulin sensitivity in obese mice (17).
Similarly, Tregs can be recruited to the injured skeletal muscle
where they mediate tissue repair via amphiregulin and
interleukin-33 (IL-33) pathways (18, 19). Single-cell sequencing
of Tregs from the skin, the colon and their respective draining
lymph nodes revealed tissue-specific Treg signatures, which are
present in both lymph nodes and tissue, suggesting that local
draining tissue cues can shape Treg phenotypes (20). Therefore,
understanding the phenotype and functions of myocardial Tregs,
plus the manner in which the MI milieu influences Treg
function, may form the basis for new cell-mediated therapies
in cardiovascular diseases.

In this review, we will summarize the current knowledge on
cardiac Tregs, including the mechanisms through which Tregs
contribute to myocardial healing after infarction. We will also
address how antigen specificity plays a role in CD4 heart-specific
T-cell responses. Further, we will describe the heart-infiltrating
Treg phenotype and how it is shaped by MI’s context. Finally, we
will explore novel clinical strategies to manipulate Treg function
after MI in patients.
BIDIRECTIONAL COMMUNICATION
BETWEEN TREGS AND THE
INFARCTED MYOCARDIUM

Treg Effects in Myocardial Inflammation
and Repair After Infarction
Investigations of heart-specific T-cell responses were initially
confined to experimental models of autoimmune myocarditis, a
pathological condition in which heart-directed T-cells cause
myocardial damage (21, 22). More recently, however,
mounting evidence has suggested that the most common
myocardial diseases, namely MI and HF, can also activate
antigen-specific T-cell responses, which in turn modulate
myocardial inflammation and fibrosis (3, 23). MI is
pathologically defined as myocardial cell death due to
prolonged ischemia, which may be caused by atherosclerotic
plaque disruption, interrupted oxygen supply or increased
myocardial oxygen demand (24). MIs can be classified
temporally according to clinical features and pathological
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appearance as acute (hours), healing (days) and healed (weeks)
phases (24). From the immunological perspective, MI can be
perceived as sterile tissue damage in the context of ischemia,
resulting in the prompt release of damage-associated molecular
patterns (DAMPs) and autoantigens.

During MI’s acute phase, CD4+ T-cells are recruited to the
infarct zone and heart-draining mediastinal lymph nodes. To
address the role of T-cell responses in MI outcome, Hofmann
et al. applied an experimental MI model in either CD4 knockout or
major histocompatibility complex class II (MHC-II) knockout mice,
both of which lack functional CD4+T-cell responses. In all
experimental settings, mice without CD4+ T-cell responses
showed impaired myocardial leukocyte migration, reduced
collagen deposition and unexpectedly decreased survival after
experimental MI (25). Mice carrying a transgenic T cell receptor
specific to an ovalbumin (OVA) peptide antigen (OT-II mice) also
recapitulate this phenotype (25). Unlike in autoimmune
myocarditis, CD4+ T-cell responses seen shortly after MI are
mostly salutary and seem to contribute to tissue repair. In parallel
to those findings, T-cells infiltrating the cardiac draining lymph
nodes were shown to acquire a regulatory phenotype, that depends
on TCR activation (25). Similarly, an experimental MI model in rats
led to increased cardiac tissue Treg numbers, and in vivo Treg
expansion via CD28 superagonistic antibody treatment resulted in
improved cardiac function (26). To determine the specific
contribution of Tregs to myocardial repair, Weirather et al. used
gain (CD28-superagonistic antibody) and loss (FOXP3DTR) of
function approaches in an experimental MI model (27). Tregs
were found to be necessary for proper myocardial repair, as their
depletion produced larger infarcts, exacerbated local inflammatory
responses and hampered collagen deposition, ultimately leading to
impaired survival (27). Therapeutic Treg activation favored
macrophage polarization towards a pro-healing phenotype
characterized by production of osteopontin, a cytokine known to
potentiate collagen synthesis and deposition (27, 28).
Mechanistically, canonical Treg-derived cytokines such as IL-10
and TGF-b may account for the macrophage polarization and
enhanced fibrosis observed during Treg activation (29, 30).
Analogous findings were observed in an ischemia-reperfusion
model of MI, in which Treg depletion was associated with
elevated inflammatory response, higher chemokine ligand 2
(CCL2) production and diminished fibroblast function (31).
Selectively depleting Tregs in the myocardial ischemia/reperfusion
model also resulted in aggravated injury, which could be rescued by
transferring in vitro pre-activated Tregs (32). Interestingly, Tregs’
beneficial effects required intact CD39 (Ectonucleoside triphosphate
diphosphohydrolase-1) signaling, suggesting that controlling
purinergic metabolism may be an important Treg function in
cardiovascular diseases (32). Relatedly, Borg et al. demonstrated
that lack of CD73, another ectonucleotidase that converts AMP to
adenosine, on CD4+ T-cells resulted in increased inflammatory
tonus and impaired cardiac function after ischemia/reperfusion
(33), and antagonizing C-X-C chemokine receptor type 4
(CXCR4) reduced scar size and attenuated cardiac remodeling
after MI, through mechanisms related to augmented Treg
accumulation in the infarcted region (34). Conversely, the C-C
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motif chemokine ligand 17 (CCL17) produced by C-C chemokine
receptor type 2 (CCR2) positive monocyte-derived macrophages
was shown to curtail Treg migration to the heart in a myocardial
damage model induced by angiotensin II/phenylephrine treatment
(35). Lack of epicardium transcription coactivators yes-associated
protein 1 (YAP)/tafazzin (TAZ) signaling produced profound
pericardial inflammation, fibrosis and cardiomyopathy after MI.
Interestingly, knockout mice showed less Treg infiltration at the site
of injury while controlled delivery of interferon gamma (IFN-g) to
the heart following MI restored Treg migration and decreased
fibrosis (36), suggesting a link between YAP/TAZ and cardiac
Treg function after MI. Altogether, these data suggest that CD4+

T-cells and, to a larger extent, Tregs favor acute myocardial healing
by dampening local inflammatory responses through multiple
mechanisms while fostering pro-fibrotic functions on
mesenchymal cells (Figure 1).

Previous findings suggested that CD4+ T-cell activation after
MI requires TCR activation viaMHC-II (25), but the identities of
those antigens and whether they are cardiac selective remained
elusive. By screening a peptide library of cardiac-selective
proteins that MHC-II can present, our group identified a
peptide sequence spanning the cardiac-specific part of the
myosin heavy alpha chain protein (MYHCA614-629) that drives
CD4+ T-cell responses after MI in Balb/C mice (37–39). In
adoptive transfer experiments using a transgenic TCR model
against the MYHCA antigen (henceforth termed TCR-M), we
showed that transferred TCR-M cells differentiated towards a
regulatory phenotype in the heart, acquired a unique pro-healing
gene signature in MedLNs and were associated with improved
systolic function and faster collagen deposition after MI (37). In
addition, heart recipients’ IL-17 production by CD4+ T-cells was
Frontiers in Immunology | www.frontiersin.org 3
abrogated in TCR-M-transferred mice, while recipients’ heart
Treg numbers rose. Moreover, transferring in vitro-Treg-
expanded TCR-M cells inhibited cardiac inflammatory
responses (40). Remarkably, thymic epithelial cells do not
express the MYHCA protein in either mice or humans; thus,
central tolerance mechanisms are not functional for this antigen
and peripheral presentation plays a fundamental role (41–43).

Besides myosin-specific Treg responses, polyclonal thymic-
derived Tregs might also support cardiac repair after MI. In this
context, Xia et al. demonstrated that thymus-derived
(HeliosHighNrp-1High) Tregs infiltrated the myocardium via the
IL-33 interleukin 1 receptor-like 1(-ST2) axis and favored collagen
deposition and infarct maturation through mechanisms that
depend on expression of Secreted Protein Acidic And Cysteine
Rich (Sparc), a gene involved in collagen calcification and
extracellular matrix synthesis (44). These cells’ specificity is still
largely unknown. The fact that MYHCA, the main antigen
triggering peripheral Treg conversion in the heart, is not
expressed in the thymus could indicate that other yet unidentified
cardiac antigens might be relevant in the context of MI (Figure 1).

Despite the above-mentioned and well-established salutary role
Tregs play during the early repair phase of MI (45, 46), it is
important to stress that Tregs sometimes change their phenotype
during chronic inflammatory conditions and negatively affect
cardiac function by fueling pro-inflammatory mechanisms. For
instance, Bansal et al. reported that Tregs lose their suppressive
function and acquire features related to TH1 polarization in chronic
ischemic HF (47). In these conditions, Tregs expressed higher TNF/
TNFR1 levels and contributed to pro-fibrotic responses that led to
adverse remodeling. During post-MI chronic stages, depleting Tregs
using a FOXP3DTR model or neutralizing anti-CD25 antibody
FIGURE 1 | Treg-mediated effects in myocardial repair and inflammation after infarction. Tregs control local immune responses through a multitude of mechanisms,
including inhibiting both canonical TH1/TH17 cytokine production and leukocyte migration. Treg cytokines (e.g. IL-10 and TGF-b) and purinergic metabolism products may
modulate macrophage polarization towards a pro-healing/reparative phenotype. In addition, Tregs contribute to fibroblast activation and steady collagen deposition in the
infarcted area.
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prevented cardiac remodeling and, interestingly, reconstituted Tregs
showed restored immunomodulatory activity (47), in sharp contrast
to early post-MI Treg depletion (27). However, in models of chronic
HF induced by stress overload, cardiac Tregs expressed high Pdcd1
levels (encoding the inhibitory receptor PD-1), suggesting they
might exert suppressive and anti-inflammatory function in this
context too (48).

How Myocardial Infarction Milieu Shapes
Treg Biology
MI provides cues that may alter/shape the phenotype of local Tregs,
which in turn may affect tissue repair through mechanisms beyond
the immune suppression seen in autoimmunity experimental
models (8, 18). Indeed, establishing a model to study cardiac-
specific T-cell responses has led to important insights on how the
stressed heart signals to T-cells and shapes Treg differentiation.

The differences between baseline and cardiac TCR-M Treg
frequency suggest that either the myocardium preferentially
recruits Tregs or its milieu induces conventional T-cells to
become Tregs. By transferring labeled conventional (CD25-) and
regulatory (CD25+) TCR-M cells we showed that the myocardium
attracts conventional TCR-M cells, which in turn gain FOXP3
expression, demonstrating that the infarcted heart favors in situ
Treg conversion (37) (Figure 2). Strikingly, the transgenic mice
bearing TCR-M cells developed spontaneous autoimmune
myocarditis via a microbiota peptide mimicry and TH17
polarization, illustrating how different contexts shape the T-cell
phenotypes (39). These data reveal that in infarcted tissue, cardiac-
specific T-cells are poised towards an induced Treg signature that
favors pro-fibrotic responses and suppresses local immune
activation. The reinforcing Treg signature in myosin-specific
Frontiers in Immunology | www.frontiersin.org 4
CD4+ T-cells can be seen in adoptive transfer of pro-
inflammatory polarized cells. For instance, in vitro pre-
differentiated TH17 but not TH1 TCR-M cells still acquired
FOXP3 expression in the heart, albeit to a lower extent than
naïve TCR-M cells. Conversely, Treg-expanded TCR-M cells kept
FOXP3 expression in the heart, suggesting they do not become ex-
Tregs (40). More importantly, increased TCR-M Treg conversion
correlated with lower inflammatory responses in the heart,
regardless of infarct size, illustrating that cardiac Treg tonus
directly affects local inflammatory responses (40). Taken
together, these findings suggest a strong regulatory tonus
imposed in the myocardium during MI’s acute healing phase
affects T-helper cells that in turn module tissue inflammation.
Nevertheless, these findings are yet to be confirmed in further
experimental conditions and in mice with different genetic
background. While the TCR-M system has been validated in
Balb/C mice (MHC-II haplotype I-Ad, I-Ed), there are currently
no cardiac antigens mapped in the widely used C57BL/6 mouse
strain (MHC-II haplotype I-Ab) or in humans. This current lack of
tools to track heart-specific Tregs in C57BL/6 mice is an important
limitation in the field and a major roadblock to translation. The
genetic background can critically impact antigen presentation, T-
cell responses, autoimmunity predisposition, myocardial function,
amongst several other factors (49–52). Thus, future studies might
further explore this gap and expand our toolkit to dissect
myocardial T-cell responses in different mouse strains and
in patients.

The myocardial injury that follows an infarction results in
multiple layers of immune system activation (necrotic cell death,
release of DAMPs, ischemia), yet the heart seems to tame T-cell
responses and direct them toward a regulatory phenotype.
FIGURE 2 | Treg recruitment and in situ conversion during MI. After MI, cardiac autoantigens, including MYHCA, are drained to local MedLN and presented to CD4+

T-cells via the MHC-II molecule. Naturally existing thymus derived Tregs (nTreg) and conventional T-cells are activated in the MedLN after MI and migrate to the
infarcted tissue. The myocardial immune crosstalk induces myosin-specific T-cells to acquire an induced regulatory phenotype (iTreg). Both induced and naturally
occurring Tregs contribute to tissue repair by modulating local inflammatory response and fostering tissue fibrosis.
May 2022 | Volume 13 | Article 914033

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Weiß et al. Tregs in Myocardial Infarction
Unlike tissues such as skin and liver, the adult heart possesses
negligible regenerative capacity, and transient functional
impairment can be life-threatening. Interestingly, the
myocardium is equipped with several immune inhibitory
receptors that can keep T-cell responses at bay under baseline
conditions (53, 54). As a result, the heart may both prevent futile
immune activation at baseline and, following injury, allow a
limited response that soon shifts to a pro-resolving phase.
Additionally, ligands, such as PD-L1, expressed by myocardial
endothelial cells and yet undiscovered targets may contribute to
in situ Treg polarization and inhibitory function (55, 56).

Defining Myocardial Tregs Based on
Single-Cell Transcriptomics
Plasticity, polarization and adaptation are key features of the
immune system, and T-cells are particularly known for adopting
distinct phenotypic states dictated by the milieu. Immunological
research has recently experienced a breakthrough with the advent of
Single-Cell RNA sequencing (ScRNAseq) technology, which allows
for unbiased, simultaneous characterization of cellular information
across thousands of individual cells. Moreover, all this information
can be tracked to TCRa/b sequences at the single-cell level, enabling
researchers to analyze the transcriptome response, evaluate clonal
expansion and eventually address expanded TCR specificity in
unprecedented detail (57). Considering the complex interplay
between Tregs and the injured myocardium, pioneering studies
sought to resolve cardiac T-cell intricacies at the single-cell level. Xia
et al. (44) combined ScRNAseq and bulk RNA sequencing to show
that cardiac Tregs clonally expand and present a unique TCR
repertoire. The same team also observed a transcriptome
signature characterized by pro-healing genes (Areg), effector
markers (Tnfrsf9) and collagen synthesis-related genes (Sparc).
Further investigation revealed that the IL-33 axis and Sparc were
necessary for the Treg-mediated improvement in cardiac function
post MI. Martini et al. (48) used ScRNAseq to map heart leukocyte
responses in a pressure-overload model. Tregs were found to be
expanded after 1 week of thoracic aortic constriction (TAC) and
were observed in two main clusters, one resembling bona fide Tregs
expressing Foxp3, Tnfrsf18 and Ctla4 and the other expressing
features of non-lymphoid and TH17-like Tregs such as Rora and
Gata3. Remarkably, both Treg clusters expressed high levels of the
checkpoint receptor Pdcd1, which may be associated with their
suppressive function. In a mouse model of MI, our team has
characterized both the endogenous (polyclonal) and myosin-
specific (TCR-M cells) T-cell responses at the single-cell level in
the heart and MedLNs. Intriguingly, TCR-Ms clustered separately
from bona fide Tregs and showed a transcriptome suggesting an
induced Treg signature (enriched for Cd200, Pou2f2, Sox4 and
Izumo1r) (40). More detailed single cell transcriptomic analyses
suggested that the TCR-M cells activated after MI differentiate into
two main Treg transcriptional states: a subset enriched for
transcripts associated to TCR activation, cell growth/cycling and
pro-fibrotic responses (Myc, Tnfrsf9, Mif and Tgfb1) and another
subset expressing high levels of immune checkpoint inhibitor
transcripts (Pdcd1, Lag3, Tigit). However, further investigation is
needed to validate these phenotypic states and eventually resolve the
Frontiers in Immunology | www.frontiersin.org 5
mechanisms underlying their differentiation and function (40)
(Figure 3). Overall, cardiac Treg responses stem from naturally
occurring and locally induced regulatory T-cells that have features
linked to tissue repair, extracellular matrix organization and potent
immune suppression. In addition, the molecular details of cardiac
Treg priming and recruitment to the injured heart remain largely
undiscovered and may explain the distinct phenotype myocardial
Tregs acquire after MI.
SCARRING VERSUS REGENERATION

Adult myocardial tissue has negligible regenerative capacity, but
neonatal cardiomyocytes (CM) have a short regeneration window
that lasts until shortly after birth (58, 59). Tregs may contribute to
this regenerative capacity, as depleting them during pregnancy
decreases fetal cardiomyocyte (CM) proliferation through
paracrine mechanisms (60). In addition, neonatal cardiac
regeneration is impaired in Treg-depleted mice, and Treg cell
transfer to NOD/SCID mice restores their regenerative phenotype
(61). Moreover, in zebrafish, which retain cardiac regenerative
abilities in adulthood, disrupting Tregs dampened heart
regeneration after injury. Zebrafish cardiac Tregs produce Nrg1,
a cardiomyocyte mitogen involved in heart regeneration (62).
Besides directly impacting CM proliferation, Tregs may support a
pro-tolerogenic milieu in neonates while hampering pro-
inflammatory T-cell activation. On the other hand, transplanting
neonates with adult conventional CD3+ T-cells interferes with
cardiac regeneration after MI, resulting in impaired function and
pro-fibrotic responses, dependent on IFN-g signaling (63). These
observations regarding cardiac Tregs parallel skeletal muscle
(SkM) T-cell responses after injury; in both models, Tregs
constitute up to 50% of the local CD4+ compartment, show
clonal expansion, acquire the regulatory phenotype in situ and
are necessary for proper tissue healing (18, 19, 64). Tregs in
skeletal muscle also express high levels of Helios/Nrp1 and rely on
IL-33 signaling for proper tissue homing (65). While SkM
Tregs enhance satellite cell myogenic activity that engenders
muscle regeneration, cardiac Tregs ensure proper scar
formation via collagen deposition in the post-mitotic
myocardium (19, 26, 27, 37).
TRANSLATIONAL CONSIDERATIONS

State-of-the-art therapy for infarcted patients has significantly
reduced mortality and morbidity over the years, but
understanding local immune responses in the MI context may
reveal immunological markers of progression toward HF and
further improve patient recovery. For instance, the CANTOS
(Canakinumab Anti-inflammatory Thrombosis Outcome Study)
trial demonstrated that targeting pro-inflammatory cytokines in
patients with previous MI lowers the rate of recurrent
cardiovascular events (66).

Currently, little is known about T-cell biology in infarcted
human hearts. Analyzing human cardiac autopsies showed
May 2022 | Volume 13 | Article 914033
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increased Treg infiltration during the proliferative phase of MI
repair. In addition, PET/CT imaging using a CXCR4 probe, as a
readout for T-cell activity, revealed elevated signal in the heart
draining lymph nodes of infarcted patients compared to control
subjects, suggesting the existence of a similar MedLN-Heart T-cell
axis following MI (37, 67). A prospective study found that higher
blood Treg numbers were associated with better survival for patients
with HF with reduced ejection fraction (HFrEF), indicating Tregs
may influence HF progression (68). Similarly, other studies reported
that infarcted patients have decreased Treg numbers in their blood
and that pro-inflammatory effector T-cell expansion correlated with
the occurrence of ischemic heart disease (69, 70), though other
studies did not find a clear association (71). In HF patients with
reduced ejection fraction, lower circulating Tregs levels correlated
with higher C reactive protein and IL-6 levels and were associated
with more re-hospitalizations. However, data must be interpreted
carefully due the study’s small sample size (n:32) (72). The LILACS
trial (Low-dose interleukin-2 in Patients with stable ischemic heart
disease and acute coronary syndrome) explored the potential of
Treg expansion in patients with acute coronary syndrome, in
pursuit of therapeutically targeting Tregs in humans. Tregs have a
high density of IL-2 receptors and are known to outcompete effector
T-cells for IL-2 (73). Relatedly, low-dose IL-2 treatment induced
tolerance and promoted Treg development in the context of
autoimmune disease (74). In the LILACS trial, administering low-
Frontiers in Immunology | www.frontiersin.org 6
dose IL-2 (Aldesleukin) was sufficient to selectively expand Tregs
but not conventional T-cells. Furthermore, the phase 1b/2a report
determined the optimal IL-2 dose for Treg expansion and reported
no major adverse events, thus opening the door for further studies
and evaluations of the treatment’s efficacy (75, 76). Additionally, the
CAR T-cell technology that has revolutionized cancer care could be
used to treat cardiovascular diseases with known antigen. The work
conducted by Epstein’s lab showed that CD5-targeted lipid
nanoparticles carrying mRNA to reprogram lymphocytes could
transiently generate CAR T-cells against fibroblast activation
protein alpha (FAP) and consequently reduce fibrosis in a murine
hypertensive model (77). This research opens new avenues for CAR
T-cell and CAR Treg cell therapy in HF.
CONCLUDING REMARKS

With regard to the immune system, MI substantially differs from
surface/mucosal infection; MI results in abrupt release of auto-
antigens and DAMPs in a sterile environment in a vital post-
mitotic organ with low disease tolerance (53). Thus, optimal
immune responses would restore the heart’s vital function with
minimal collateral damage. We herein summarized the roles
regulatory T-cells play in such processes, illustrating their protective
functions during MI’s acute repair phase. In brief, this is achieved by
FIGURE 3 | Transcriptome of myocardial Tregs in the injured heart. Single-cell sequencing of heart and MedLN T-cells after MI (40) Delgobo et al., 2022 revealed that
TCR-M cells have an induced Treg signature characterized by effector-state Tregs expressing high levels of Tgfb1 and suppressor cells expressing several immune
checkpoint receptors (e.g. Pdcd1, Icos, Tigit). Single-cell and bulk RNA sequencing of cardiac T-cells after MI (44) Xia et al., 2020 showed Treg clonal expansion, a Treg
thymus-derived signature and the production of pro-healing transcripts such as Areg and Sparc. Single-cell sequencing of myocardial leukocytes in a pressure overload
model (48) Martini et al., 2019 demonstrated that two main Treg populations expanded one week post injury. Both bona fide Tregs and those with TH17/non-lymphoid
gene signatures were identified, and both expressed high levels of Pdcd1 immune checkpoint receptor.
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T-cells mounting pro-tolerogenic responses to cardiac antigens and
the recruitment of polyclonal Tregs to the site of injury. Further, the
infarct milieu poises cardiac-specific conventional T-cells towards a
regulatory phenotype. The persistent pro-inflammatory signals seen
in chronic disease stages may disrupt T-cell tolerance in the
myocardium. However, the molecular signals and cellular processes
promoting Treg conversion and regulatory function in the injured
myocardium remain largely elusive. Controlling Treg responses in
myocardial diseases may lead to new therapeutic interventions aimed
to restore tissue tolerance, integrity and function.
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