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Zusammenfassung

Diese Arbeit beschéftigt sich mit kompositen-basierter Strukturgleichungmodellie-
rung. Strukturgleichungsmodellierung kann genutzt werden um sowohl theoretische
Konzepte als auch deren Beziehungen untereinander zu modellieren. In der tradi-
tionellen faktor-basierten Strukturgleichungsmodellierung werden diese theoretischen
Konzepte als “common factor”, d.h. als latente Variablen, die die Kovarianzstruk-
tur ihrer beobachteten Variablen erkldren, modelliert. Im Gegensatz dazu, kénnen
in kompositen-basierter Strukturgleichungsmodellierung die theoretischen Konzepte
sowohl als “common factor” als auch als Komposite, also als Linearkombinationen
beobachteter Variablen, die die gesamte Information zwischen ihren beobachteten Va-
riablen und allen anderen Variablen im Modell iibertragen, modelliert werden. Diese
Arbeit stellt einige methodische Weiterentwicklungen im Bereich der kompositen-
basierten Strukturgleichungsmodellierung vor. Sie besteht aus insgesamt 7 Kapiteln.

Kapitel 1 gibt zunichst einen Uberblick iiber das zugrundeliegende Modell sowie
iiber die Definition des Begriffs der kompositen-basierten Strukturgleichungsmodel-
lierung.

In Kapitel 2 wird anschlieflend eine Anleitung dafiir gegeben, wie Monte Carlo
Simulationen in der Statistik Software R mittels des Pakets “cSEM” fiir verschiede-
ne Schétzer, die der kompositen-basierten Strukturgleichungsmodellierung zugeordnet
werden, durchgefiihrt werden kénnen. Diese Anleitung wird anhand einer beispielhaf-
ten Simulationsstudie veranschaulicht, die das Verhalten von Partial Least Squares

Path Modeling (PLS-PM) und consistent Partial Least Squares (PLSc) Schétzungen
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in endlichen Stichproben untersucht, insbesondere im Hinblick auf die Auswirkungen
von Stichprobenkorrelationen zwischen Messfehlern auf statistische Inferenz.

Im dritten Kapitel werden Schétzer der kompositen-basierten Strukturgleichungs-
modellierung vorgestellt, die robust gegeniiber Ausreiflern sind. Dafiir werden Schétzer
der kompositen-basierten Strukturgleichungsmodellierung, PLS-PM und PLSc, ange-
passt. Im Gegensatz zu den urspringlichen Schétzern, konnen mit diesen Anpassun-
gen Verzerrungen, die durch zuféllig entstandene Ausreifler in Stichproben entstehen
kénnen, vermieden werden, was anhand einer Simulationsstudie gezeigt wird.

In Kapitel 4 wird eine Methode zur Durchfiihrung von Vorhersagen auf Basis von
Modellen vorgestellt, die mit ordinal Partial Least Squares und ordinal consistent
Partial Least Squares geschétzt wurden. Die beobachteten Variablen sind dabei ordi-
nal kategorial skaliert, was sowohl bei der Schitzung als auch der Vorhersage explizit
berticksichtigt wird. Die Vorhersagegiite wird mittels einer Simulationsstudie unter-
sucht. Zuséatzlich wird eine Anleitung, wie solche Vorhersagen mittels des R Pakets
“cSEM” durchgefiihrt werden kénnen, gegeben. Diese wird anhand eines empirischen
Beispiels demonstriert.

In Kapitel 5 wird die konfirmatorische Kompositenanalyse fiir Forschung im Be-
reich von “Human Development” vorgestellt. Mittels konfirmatorischer Kompositen-
analyse konnen Kompositenmodelle geschitzt und auch evaluiert werden. In diesem
Kapitel wird die Henseler-Ogasawara Spezifikation fiir Kompositenmodelle verwendet,
wodurch beispielsweise die Maximum Likelihood Methode zur Parameterschatzung
verwendet werden kann.

Da der auf der Henseler-Ogasawara Spezifikation basierende Maximum Likelihood
Schétzer Nachteile aufweist, wird in Kapitel 6 eine andere Spezifikation des Kompo-
sitmodells vorgestellt, mit der Kompositenmodelle mit der Maximum Likelihood Me-
thode geschétzt werden konnen. Die Ergebnisse dieses Maximum Likelihood Schétzers
werden mit denen von PLS-PM verglichen und somit gezeigt, dass dieser Maximum
Likelihood Schétzer auch in endlichen Stichproben valide Ergebnisse liefert.

Das letzte Kapitel, Kapitel 7, gibt einen Uberblick iiber die Entwicklung und
die verschiedenen Strdnge der kompositen-basierten Strukturgleichungsmodellierung.
Dariiber hinaus wird hier der Beitrag, den die vorangegangenen Kapitel zur weiteren

Verbreitung kompositen-basierter Strukturgleichungsmodellierung leisten, aufgezeigt.
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Summary

This thesis is about composite-based structural equation modeling. Structural equa-
tion modeling in general can be used to model both theoretical concepts and their
relations to one another. In traditional factor-based structural equation modeling,
these theoretical concepts are modeled as common factors, i.e., as latent variables
which explain the covariance structure of their observed variables. In contrast, in
composite-based structural equation modeling, the theoretical concepts can be mod-
eled both as common factors and as composites, i.e., as linear combinations of ob-
served variables that convey all the information between their observed variables and
all other variables in the model. This thesis presents some methodological advance-
ments in the field of composite-based structural equation modeling. In all, this thesis
is made up of seven chapters.

Chapter 1 provides an overview of the underlying model, as well as explicating
the meaning of the term composite-based structural equation modeling.

Chapter 2 gives guidelines on how to perform Monte Carlo simulations in the
statistic software R using the package “cSEM” with various estimators in the context
of composite-based structural equation modeling. These guidelines are illustrated by
an example simulation study that investigates the finite sample behavior of partial
least squares path modeling (PLS-PM) and consistent partial least squares (PLSc)
estimates, particularly regarding the consequences of sample correlations between
measurement errors on statistical inference.

The third Chapter present estimators of composite-based structural equation mod-
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eling that are robust in responding to outlier distortion. For this purpose, estimators
of composite-based structural equation modeling, PLS-PM and PLSc, are adapted.
Unlike the original estimators, these adjustments can avoid distortion that could arise
from random outliers in samples, as is demonstrated through a simulation study.

Chapter 4 presents an approach to performing predictions based on models esti-
mated with ordinal partial least squares and ordinal consistent partial least squares.
Here, the observed variables lie on an ordinal categorical scale which is explicitly
taken into account in both estimation and prediction. The prediction performance is
evaluated by means of a simulation study. In addition, the chapter gives guidelines on
how to perform such predictions using the R package “cSEM?”. This is demonstrated
by means of an empirical example.

Chapter 5 introduces confirmatory composite analysis (CCA) for research in “Hu-
man Development”. Using CCA, composite models can be estimated and assessed.
This chapter uses the Henseler-Ogasawara specification for composite models, allow-
ing, for example, the maximum likelihood method to be used for parameter estimation.

Since the maximum likelihood estimator based on the Henseler-Ogasawara spec-
ification has limitations, Chapter 6 presents another specification of the composite
model by means of which composite models can be estimated with the maximum
likelihood method. The results of this maximum likelihood estimator are compared
with those of PLS-PM, thus showing that this maximum likelihood estimator gives
valid results even in finite samples.

The last chapter, Chapter 7, gives an overview of the development and differ-
ent strands of composite-based structural equation modeling. Additionally, here I
examine the contribution the previous chapters make to the wider distribution of

composite-based structural equation modeling.



Samenvatting

Deze dissertatie behandelt op composiet gebaseerde structurele vergelijking modeller-
ing. Structurele vergelijkingsmodellen kunnen worden gebruikt om zowel theoretische
concepten als hun relaties te modelleren. In traditionele factorge-baseerde struc-
turele vergelijkingsmodellering worden deze theoretische concepten gemodelleerd als
“common factors”, oftewel als latente variabelen die de covariantiestructuur van hun
geobserveerde variabelen verklaren. Bij op composiet gebaseerde structurele vergeli-
jkingsmodellering daarentegen kunnen de theoretische concepten gemodelleerd wor-
den, zowel als “common factors” en als composieten, als lineaire combinaties van
geobserveerde variabelen die alle informatie overbrengen tussen hun geobserveerde
variabelen en alle andere variabelen in het model. Deze disseratie presenteert enkele
methodologische vorderingen op het gebied van op composiet gebaseerde structurele
vergelijkingsmodellering. Deze dissertatie beslaat zeven hoofdstukken.

Hoofdstuk 1 geeft een overzicht van het onderliggende model, alsmede een uitleg
van de betekenis van de term op composiet gebaseerde structurele vergelijkingsmod-
ellering.

Hoofdstuk 2 geeft richtlijnen voor het uitvoeren van Monte-Carlosimulaties in
de statistische software R met behulp van het pakket “cSEM” met verschillende
schatters in de context van “composite-based structural equation modeling“. Deze
richtlijnen worden geillustreerd door een voorbeeld simulatiestudie die het eindige-
steekproefgedrag van “Partial Least Squares Path Modeling” (PLS-PM) en “consis-

tent partial least squares” (PLSc) wordt onderzocht, met name wat betreft de gevolgen
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van steekproefcorrelaties tussen meetfouten voor de statistische gevolgtrekking.

In het derde hoofdstuk worden schatters van op composiet gebaseerde structurele
vergelijkingsmodellering gepresenteerd die robuust zijn om te reageren op uitbijterver-
vorming. Daartoe worden schatters van op composiet gebaseerde structurele vergelijk-
ingsmodellering, PLS-PM en PLSc, aangepast. In tegenstelling tot de oorspronkelijke
schatters kunnen deze aanpassingen vertekening als gevolg van willekeurige uitbijters
in steekproeven voorkomen, zoals wordt aangetoond met een simulatiestudie.

Hoofdstuk 4 presenteert een aanpak voor het doen van voorspellingen op ba-
sis van modellen geschat met “ordinal partial least squares” en “ordinal consistent
partial least squares”. Hierbij liggen de waargenomen variabelen op een ordinale
categorische schaal, waarmee zowel bij de schatting als bij de voorspelling expliciet
rekening wordt gehouden. De voorspellingsprestaties worden geévalueerd door middel
van een simulatiestudie. Daarnaast geeft het hoofdstuk richtlijnen over hoe dergelijke
voorspellingen kunnen worden uitgevoerd met behulp van het R-pakket “cSEM”. Dit
wordt gedemonstreerd aan de hand van een empirisch voorbeeld.

Hoofdstuk 5 introduceert “confirmatory composite analysis” (CCA) voor onder-
zoek in “Human Development”. Met behulp van CCA kunnen composietmodellen wor-
den geschat en geévalueerd. Dit hoofdstuk maakt gebruik van de Henseler-Ogasawara
specificatie voor composietmodellen, waardoor bijvoorbeeld de maximum likelihood-
methode kan worden gebruikt voor de parameterschatting.

Aangezien de maximum likelihood-schatter op basis van de Henseler-Ogasawara
specificatie beperkingen heeft, wordt in hoofdstuk 6 een andere specificatie van het
composietmodel gepresenteerd waarmee composietmodellen kunnen worden geschat
met de maximum likelihood-methode. De resultaten van deze maximum likelihood-
schatter worden vergeleken met die van PLS-PM, waarmee wordt aangetoond dat deze
maximum likelihoodschatter ook valide resultaten oplevert bij eindige steekproeven.

Het laatste hoofdstuk, hoofdstuk 7, geeft een overzicht van de ontwikkeling en de
verschillende onderdelen van op composiet gebaseerde structurele vergelijkingsmodel-
lering. Daarnaast ga ik hier in op de bijdrage van de voorgaande hoofdstukken aan
de bredere verspreiding van op composiet gebaseerde structurele vergelijkingsmodel-

lering.
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Chapter 1

Introduction

Structural equation modeling (SEM) is a popular method in social and behavioral sci-
ences. Its ability to model theoretical concepts, to take into account various forms of
measurement errors, and to model relations between theoretical concepts ensure that
this method is frequently and widely applied (Bagozzi and Phillips, 1982; Bollen,
1989). Traditionally, in SEM theoretical concepts are modeled as common factors
which are latent variables that explain the variance-covariance structure of their re-
lated observed variables (Joreskog, 1970a). Consequently, this type of SEM is often
referred to as ‘factor-based SEM’. Factor-based SEM is well established, with vari-
ous estimators such as a generalized least squares (GLS, Joreskog and Goldberger,
1972) estimator or a maximum likelihood (ML, Joreskog, 1969) estimator proposed
to obtain the parameter estimates. Also, it is often applied in various disciplines such
as business management (Mak and Sockel, 2001) and psychology (MacCallum and
Austin, 2000).

Besides SEM with common factors, SEM with composites — labeled as composite-
based SEM — has recently been established as a second type of SEM. While tradition-
ally, composites were regarded only as the outcome of dimension reduction procedures,
nowadays we regard the composite model as a statistical model (Cho et al., in press;

Dijkstra, 2015, 2017; Henseler et al., 2014) and thus, it is used to represent theo-



retical concepts (Henseler, 2021). Moreover, with the introduction of confirmatory
composite analysis (CCA, Henseler et al., 2014; Schuberth et al., 2018a), a statisti-
cal tool to assess composites is available. Consequently, composite-based SEM has
gained attraction in various research fields, such as marketing research (Cheah et al.,
2018), psychology (Pant et al., 2018), and business management (Liem and Hien,
2020; Henseler and Schuberth, 2020).

The most dominant approach in estimating composite models is partial least
squares path modeling (PLS-PM, Wold, 1975). Although it was introduced as an ap-
proach to estimate path models with latent variables (Wold, 1982), in its traditional
form, PLS-PM is only able to consistently estimate composite models. However, if a
correction for attenuation is applied, i.e., if consistent PLS (PLSc) is applied, it can
also be used to obtain consistent parameter estimates for common factor models and
models incorporating both composites and common factors (Dijkstra and Henseler,
2015a,b). Besides enhancing PLS-PM to obtain consistent parameter estimates for
composite and common factor models, i.e., PLSc, various improvements and exten-
sions, such as an overall model fit test (Dijkstra and Henseler, 2015a), a possibility
to take measurement errors into account (Rademaker et al., 2019), robust versions
which are not as vulnerable to outlier distortion as the original approaches, specifi-
cally robust PLS and robust PLSc (Schamberger et al., 2020), and approaches used
to obtain out-of-sample predictions (Danks et al., 2019; Shmueli, 2010; Shmueli et al.,
2016, 2019) have been proposed.

Besides PLS-PM, the literature proposes various other approaches for estimating
composite models. While generalized structured component analysis (GSCA, Hwang
and Takane, 2004) can be used to estimate composite models, GSCA with unique-
ness terms for accommodating measurement error (GSCAm, Hwang et al., 2017) can
be used to consistently estimate models with common factors. Further, integrated
GSCA (IGSCA, Hwang et al., 2021) can deal with models containing both compos-
ites and common factors. Moreover, a specification of the composite model in terms
of composite loadings, emergent variables, and excrescent variables has been intro-
duced (Henseler, 2021; Schuberth, forthcoming). Using this specification, structural
equation models relating composites can be estimated with the common estimators
of factor-based SEM. Consequently, a ML estimator or a GLS estimator, for example,

can be applied to estimate composite models.



This thesis contributes to the existing literature by providing several enhancements
for composite-based SEM. This chapter provides a brief introduction to composite-
based SEM. First, Section 1.1 describes the underlying statistical model. Section 1.2
describes what can be understood as composite-based SEM. Finally, the introduc-
tion closes in Section 1.3 with a short overview of the following chapters and their

contributions to the composite-based SEM literature.

1.1 Structural equation models

Structural equation models are composed of two parts. The first part comprises the
relations between theoretical concepts that are captured in the structural model. In
the second part, the theoretical concepts are modeled, thus it depicts the relations
between constructs — which can be either common factors or composites — and their
related observed variables. In the process a block of observed variables belonging to
the j-th construct n; is composed in the (K; x 1) vector x;, which is called the j-th
block of observed variables. In total, the model contains J constructs and K observed

variables.

1.1.1 Structural model

The structural model comprises the relations between constructs, which are not de-
pendent on the type of construct. In general, modeling relations between constructs
can be understood as restricting the covariances between them. To model these re-
lations, the endogenous constructs which are explained through at least one other
construct are stored in the (Jg, X 1) vector ne, and the exogenous constructs which

are not explained through other constructs are stored in the (Jex X 1) vector ney:

Men = Bnen + Fnex + C (11)
~ Nen = ]-_-[T’ex + (I - B)ilc (12)

where II = (I — B)7!T. The (Jen X Jon) matrix B represents the relations between
the endogenous constructs and the (Jon X Jox) matrix I' represents the relations be-
tween the exogenous and the endogenous constructs. The vector ¢ contains the Jg,
structural error terms with an assumed mean vector of zeros. In my thesis, I restrict

my attention to recursive structural models with uncorrelated structural error terms.



The exogenous constructs meyx are assumed to be uncorrelated with the structural
error terms . Figure 1.1 depicts an example structural model with one exogenous

and two endogenous constructs.

7]en,2

Figure 1.1: Structural model

1.1.2 Reflective measurement model

Traditionally, theoretical concepts are modeled as common factors which are latent

variables that explain the covariance structure of their related observed variables:

xji:/\ji'nj+€ji izl,...7Kj; ]21,7J (13)

;=X +¢€; i=1...J (1.4)

where A; is a vector containing the K; factor loadings, where the loading A;; represents
the influence of the j-th common factor n; on its i-th observed variable x;;. The vector
€; contains the K; random measurement errors. In my thesis, I restrict my attention
to measurement errors with a zero mean, which are not correlated with one another,
nor with the constructs. The model with a common factor as articulated in Equation
1.4 is also known as reflective measurement model. Figure 1.2 depicts a reflective
measurement model representing the relation between one block of observed variables

and its related common factor.

1.1.3 Composite model

Besides modeling theoretical concepts as common factors, such concepts can be mod-

eled as composites, i.e., as linear combinations of observed variables:

!

nj:'w]a:j jzl,,J (15)
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Figure 1.2: Common factor model

where the vector w; contains the K; weights of the j-th block of observed variables.
The composites are assumed to convey the information between their observed vari-
ables and all other variables in the model. Figure 1.3 depicts the relations between

one composite and its related observed variables.

Wi1 -~ Wiz Wj3 WjK,
/[ ] N\
T T2 Tj3 (L‘jK]

Figure 1.3: Composite model

1.1.4 Model-implied observed variables’ variance-covariance

matrix

With the model definition given above, the (K x K) model-implied observed variables’
variance-covariance matrix 3(6) can be specified for use in model estimation if ML
is employed, and for data generation in Monte Carlo simulations.

Using the reduced form of the structural model as articulated in Equation 1.2, we



derive the variance-covariance matrix of the constructs as follows:

i PIT
Vin) = , 1 . (16)
1 II®Il'+ (I - B)"'¥(I - B)'~
where 7 is a vector of both the exogenous and the endogenous constructs, the matrix
® contains the variances and covariances of the exogenous constructs 7.y, and the
matrix W comprises the variance-covariance matrix of the structural error terms (.
Using the relations between the observed variables and their related constructs we

can derive the inter-block covariances, i.e., the covariances between observed variables

of different blocks, as follows:
Cov(zji, Tik) = Nji - Ak - cov(n;,m) (1.7)

where Aj; and Ay, are the factor loadings as shown in Equation 1.4 if the corresponding
constructs are common factors and composite loadings if the constructs are modeled as
composites. Composite loadings are derived from the corresponding weights and the
intra-block variances and covariances captured in the intra-block variance-covariance

matrix 3;;:
Aj = Bjj - wj (1.8)

In contrast, the variance-covariance matrix of a block of observed variables, i.e.,
the intra-block variance-covariance matrix depends on the type of constructs. For

composite models, the intra-block variances and covariances are unrestricted:

)
(7) (4) (7)
21 022 .- O2k;
=1 . . L (1.9)
(4) (4) (4)
Ok Ok o ORGK,
where U](c]l') represents the covariance between x5 and x;. In contrast, the common

factor model usually imposes constraints on the intra-block variance-covariance ma-
trix. Specifically, the intra-block variance-covariance matrix depends on the factor
loadings, the variance of the common factor, and the variances of the random mea-

surement errors:

2]’]‘ = )\J)\; . V&I‘(’I]j) —+ G&‘j (110)



where @, is the variance-covariance matrix of the random measurement errors of

block j.

1.2 Composite-based structural equation modeling

In general, two types of SEM can be distinguished - factor-based and composite-
based SEM. While factor-based SEM is often understood as SEM with theoretical
concepts modeled as common factors, composite-based SEM is often understood as
SEM with theoretical concepts modeled as composites. Yet, this distinction does not
allow us to account for the different natures the various estimators have. Therefore,
to clarify, I will describe my understanding of composite-based SEM in the following
section. This is in line with the definition put forward by Henseler (2021) and Yu
et al. (2021). Obviously, this distinction is not unique and depends on the researcher’s
view. Consequently, others could argue in a different way.

I understand composite-based SEM as a variety of approaches that build on
composites for parameter estimation (Henseler, 2021). Consequently, two types of
composite-based SEM can be distinguished: First, if the theoretical concept of inter-
est is modeled as a composite, and thus represented as in Equation 1.5, this should be
classified as composite-based SEM, for the simple reason that the common estimators
of factor-based SEM, namely ML and GLS, cannot be applied to estimate composite
models if they are specified in terms of weights. Consequently, PLS-PM, GSCA, and
other variance-based estimators with which weight estimates are directly obtained
illustrate estimators in composite-based SEM. Additionally, if the theoretical concept
of interest is modeled as a composite, but specified in terms of composite loadings,
emergent, and excrescent variables - i.e., if the Henseler-Ogasawara specification
(Henseler, 2021; Schuberth, forthcoming) is used — this type of SEM should also be
classified as composite-based SEM. Although in this case, the composites are specified
in terms of composite loadings and the model is estimated with the common estima-
tors of factor-based SEM, the composite nature must explicitly be taken into account
to obtain the model parameters. Specifically, the composite loading estimates must
be inverted to obtain weight estimates. Consequently, although ML and GLS are used
to estimate the model parameters, due to the composite nature of the constructs, this

should be classified as composite-based SEM.



The second type of composite-based SEM considers theoretical concepts which
are modeled as common factors. Traditionally, factor-based SEM estimators such as
ML or GLS are used to estimate common factor models. Nevertheless, composite-
based SEM estimators such as PLSc and GSCAm can also be used to obtain the
parameter estimates for this type of construct. PLSc and GSCAm are enhancements
of traditional composite-based estimators, namely PLS-PM and GSCA, respectively.
Both these approaches build composites to obtain the model parameters and should
therefore be classified as composite-based SEM.

To summarize, if the theoretical concepts are modeled as composites, composite-
based SEM has to be applied to obtain the model parameters. If the theoretical
concepts are modeled as common factors, both composite-based SEM and factor-
based SEM can be applied to obtain the model parameters. Therefore, if a model
contains both theoretical concepts modeled as composites and theoretical concepts
modeled as common factors, composite-based estimators such as PLSc, IGSCA, or
the Henseler-Ogasawara specification of the composite model need to be applied to

obtain the model parameters.

1.3 Contribution to composite-based structural equation

modeling

This thesis contributes to the literature by presenting various improvements in the
context of composite-based SEM. Specifically, Chapter 2 provides guidelines for per-
forming Monte Carlo simulations for SEM with PLS-PM and other variance-based
estimators in R using the package ¢cSEM (Rademaker and Schuberth, 2020), which
includes most of the traditional estimators for composited-based SEM such as PLS-
PM and GSCA. In addition, these guidelines are illustrated using an example Monte
Carlo simulation with ready-to-use R code. Chapter 3 introduces robust versions of
PLS-PM and PLSc, namely robust PLS and robust PLSc (Schamberger et al., 2020),
respectively. The chapter shows that the traditional versions of PLS-PM and PLSc
lead to distorted estimates if the considered sample contains outliers. The chapter
demonstrates the performance of robust PLS and robust PLSc using a Monte Carlo
simulation comparing their results to those of their traditional counterparts. Robust

PLS and robust PLSc provide researchers with composite-based SEM estimators that



are less vulnerable to outlier distortion than their traditional counterparts. Chapter 4
presents a procedure to perform out-of-sample predictions using the composite-based
SEM estimators ordinal partial least squares (OrdPLS, Cantaluppi and Boari, 2016)
and ordinal consistent partial least squares (OrdPLSc, Schuberth and Cantaluppi,
2017; Schuberth et al., 2018b). OrdPLS and OrdPLSc should be used if the observed
variables of the constructs are on an ordinal categorical scale. Moreover, performing
out-of-sample predictions using model estimates by PLS-PM and PLSc has increas-
ingly gained attention in composite-based SEM literature (Shmueli et al., 2016). Still,
existing approaches to performing out-of-sample predictions for model estimates with
PLS-PM and PLSc do not allow us to account for the ordinal categorical nature of
the observed variables. As a remedy, Chapter 4 provides guidelines on how to per-
form out-of-sample predictions using OrdPLS and OrdPLSc. This is illustrated by
an example using the R package ¢SEM. Chapter 5 contributes to the literature by
introducing confirmatory composite analysis (CCA, Henseler and Schuberth, 2021b;
Henseler, 2021; Schuberth et al., 2018a) for human development research based on
the Henseler-Ogasawara specification (Schuberth, forthcoming) for composite models,
which enables the specification of composite models in terms of composite loadings,
as well as emergent and excrescent variables. Thus, these kinds of models can be
estimated using the common tools of factor-based SEM, such as Mplus (Muthén and
Muthén, 1998-2017), and the R package lavaan (Rosseel, 2012). Consequently, the
parameter estimates can be obtained by ML if the Henseler-Ogasawara specification is
used. Finally, Chapter 6 contributes to the composite-based SEM literature by provid-
ing a specification of the composite model in terms of weights and a corresponding ML
estimator. This ML approach’s performance is compared to the corresponding results
obtained by PLS-PM in a Monte Carlo simulation. This thesis closes with an epilogue
in Chapter 7 providing an overview of the different strands of composite-based SEM
and how the previous chapter contributed to the wider spread of composite-based

SEM in the literature.
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Chapter 2

Conducting Monte Carlo
simulations with PLS-PM and other
variance-based estimators for
structural equation models: A

tutorial using the R package cSEM

2.1 Introduction

Structural equation modeling (SEM) is a popular method in social and behavioral sci-
ences. It allows for modeling relationships between theoretical concepts and between
theoretical concepts and observed variables (Bagozzi and Phillips, 1982). Moreover,
it is able to take into account various forms of measurement errors (Bollen, 1989).
As a consequence, SEM is widely applied in various disciplines such as marketing
research (Steenkamp and Baumgartner, 2000), psychology (Fassinger, 1987; MacCal-
lum and Austin, 2000; Higgins, 2002), business management (Hult et al., 2006; Mak
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and Sockel, 2001), and information systems research (Urbach et al., 2010).

Traditionally, SEM uses covariance-based estimators such as a maximum likeli-
hood (ML, Joreskog, 1970b) estimator or a generalized least squares (GLS, Joreskog
and Goldberger, 1972) estimator to obtain parameter estimates. Covariance-based
estimators obtain parameter estimates by minimizing the discrepancy between the
observed variables’ model implied and sample variance-covariance matrix. Tradition-
ally, covariance-based estimators were used to estimate structural equation models in
which theoretical concepts are modeled as common factors which explain the variance-
covariance structure of their related observed variables (Joreskog, 1970a). However, a
recently introduced specification of the composite model in terms of composite load-
ings (Henseler, 2021; Schuberth, forthcoming) allows us to employ covariance-based
approaches to obtain the model parameters for structural equation models with the-
oretical concepts modeled as composites which are linear combinations of observed
variables (Benitez et al., 2020; Henseler, 2017; Hubona et al., 2021).

Besides covariance-based estimators, variance-based estimators which build prox-
ies for the theoretical concepts first and estimate the model parameters based on these
proxies afterwards, have been introduced to estimate structural equation models.
Traditionally, variance-based estimators such as partial least squares path modeling
(PLS-PM, Wold, 1975) or generalized structured component analysis (GSCA, Hwang
and Takane, 2004) are used to estimate composite models. Nevertheless, enhance-
ments of these approaches such as consistent partial least squares (PLSc, Dijkstra
and Henseler, 2015a) or generalized structured component analysis with uniqueness
terms for accommodating measurement error (GSCAm, Hwang et al., 2017) can be
used to estimate common factor models.

SEM in general and variance-based estimators for structural equation models in
particular, are constantly being refined and new methods are constantly being intro-
duced, such as a new criterion to assess discriminant validity (Roemer et al., 2021),
a combination of ML and PLS-PM to obtain parameter estimates (Ghasemy et al.,
2021), or an approach to estimate second-order constructs (Schuberth et al., 2020).
These need methodological and theoretical justification, e.g., statistical properties
such as the bias or the standard errors need to be evaluated. Instead of formally
proving statistical properties — which is often difficult or even impossible — a common

practice is to provide evidence for these by using Monte Carlo simulations. For this

13



purpose, a series of samples is drawn from a given population and analyzed using
the method of interest. To evaluate the estimates, they can be compared to their
known population counterparts. The Monte Carlo method was introduced in 1949 by
Metropolis and Ulam in physics. With increasing computational power, the Monte
Carlo method gained increasing attention and Monte Carlo simulations are now fre-
quently applied in various research fields, including physics (Landau and Binder,
2021), econometrics (Hendry, 1984), biology (Manly, 2018), and medicine (Mode,
2011).

In general, Monte Carlo simulations can be performed in any statistical envi-
ronment. Nevertheless, R (R Core Team, 2020) is popular among researchers be-
cause of its open-source nature. The most popular R package to estimate structural
equation models with covariance-based estimators such as ML and GLS is arguably
lavaan (Rosseel, 2012) for which several tutorials are available (Lee, 2015; Rosseel,
2014). Nevertheless, lavaan cannot be used to estimate structural equation models
with variance-based estimators such as PLS-PM and GSCA. For that purpose, the
R package ¢cSEM (Rademaker and Schuberth, 2020) can be used. c¢SEM provides
researchers with a tool to estimate structural equation models with PLS-PM, PLSc,
GSCA, and other variance-based estimators. Moreover, ¢SEM is accompanied by the
R package c¢SEM.DGP to simulate data for predetermined structural equation models
(Rademaker and Schamberger, 2020). Thus, it provides users with all the necessary
tools to perform Monte Carlo simulations for SEM with variance-based estimators in
R. However, as yet, no tutorial is available on how to conduct Monte Carlo simulations
for SEM using c¢SEM.

To address this gap, this chapter provides guidelines for performing Monte Carlo
simulations for SEM with PLS-PM and other variance-based estimators using the
open-source software ¢cSEM. To demonstrate the guidelines, I conduct an exemplary
Monte Carlo simulation to investigate PLS-PM’s and PLSc’s finite sample behavior,
particularly regarding the consequences of sample correlations among measurement
errors on statistical inference. In more detail, this paper evaluates whether a t-test
can hold the significance level for a path coefficient estimate of which the population
value is zero, and which is estimated by PLS-PM or PLSc if one of the two constructs
is assumed to function according to a common factor.

The remainder of the chapter is structured as follows. Section 2.2 gives an overview

14



of Monte Carlo simulations for SEM and existing software tools to perform Monte
Carlo simulations for SEM with PLS-PM and other variance-based estimators demon-
strating the need for guidelines on Monte Carlo simulations for SEM using ¢SEM.
Section 2.3 gives step-by-step guidelines on how to conduct Monte Carlo simulations
for SEM using the R package ¢cSEM. Section 2.4 illustrates the guidelines by an ex-
emplary Monte Carlo simulation. The chapter closes with a conclusion in Section

2.5.

2.2 The need for further guidelines on Monte Carlo

simulations for SEM

“Monte Carlo is the confluence of deterministic, stochastic, and computational meth-
ods with computer generated random numbers an important component.”(Hurd, 1985)
Although it is assumed that the first application of Monte Carlo methods was to es-
timate the number =, the first published Monte Carlo method was as an approach
to answer questions in physics (Metropolis and Ulam, 1949). Originally, the method
was introduced as an approach to obtain probabilities that could not be obtained
analytically. It is based on the idea of the law of large numbers and other asymptotic
theorems of statistics (Metropolis and Ulam, 1949). Monte Carlo simulations are of-
ten applied to estimate parameters of interest by using a large number of simulated
samples. These are often generated using inverse sampling (Johansen, 2010). Inverse
sampling proceeds to generate values according to the quantile function of the consid-
ered distribution, such that these follow the considered distribution. For each of the
simulated samples, the parameters of interest are estimated. Naturally, “the estimate
will never be confined within given limits with certainty, but only - if the number of
trials is great - with great probability” (Metropolis and Ulam, 1949). Consequently,
the parameter estimates can be evaluated, e.g., in terms of bias, consistency, and ef-
ficiency. With increasing computational power, Monte Carlo simulations have gained
increasing attention in various research fields — also in the context of SEM.

Monte Carlo simulations for SEM are used for different purposes. First, they are
used to demonstrate the performance of new approaches to obtain parameter esti-
mates such as PLSc (Dijkstra and Henseler, 2015b), GSCAm (Hwang et al., 2017),
PLSel (Huang, 2013), and PLSe2 (Ghasemy et al., 2021) where the bias and stan-
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dard errors in small samples are evaluated, or of enhancements for model assessment
such as goodness of fit indices, tests for the overall model fit (Moshagen, 2012), or
bootstrap-based techniques for inference (Jung et al., 2019). These kinds of Monte
Carlo simulation are often conducted to demonstrate the performance of an enhance-
ment in the specific situation for which it was developed. Second, Monte Carlo simula-
tions for SEM are often conducted to demonstrate the limitations of SEM approaches
in specific situations (Ronkk6 and Evermann, 2013). Third, Monte Carlo simulations
for SEM are used to compare the performance of different estimators (Reinartz et al.,
2009; Hwang et al., 2017).

Since Monte Carlo simulations for SEM are frequently applied, various tools have
been proposed to perform such simulations. For example, the commercial software
Mplus (Muthén and Muthén, 1998-2017) or LISREL (J6reskog and Sérbom, 1993)
provide tools for data generation and model estimation using covariance-based ap-
proaches such as ML or GLS. Besides commercial software, open source software such
as the R packages lavaan (Rosseel, 2012) and simsem (Pornprasertmanit et al., 2021)
are available for Monte Carlo simulations for SEM with covariance-based estimators
and there are various guidelines on how to perform such Monte Carlo simulations.
The R package lavaan comprises most of the available approaches for covariance-based
estimators, interacts with the R package simsem to simulate data, and thus provides
users with all the necessary tools to perform Monte Carlo simulations for SEM if
covariance-based estimators are used to obtain the model parameters. Nevertheless,
these tools cannot be used to perform Monte Carlo simulations with PLS-PM and
other variance-based estimators for structural equation models.

Variance-based estimators for structural equation models such as PLS-PM or
GSCA gained traction over the last two decades, thus, Monte Carlo simulations with
PLS-PM and other variance-based estimators for structural equation models, increas-
ingly gained attention. Nevertheless, compared to covariance-based estimators, ex-
isting software tools for this type of SEM are still limited. Consequently, one rarely
comes across guidelines for Monte Carlo simulations for PLS-PM and other variance-
based estimators for structural equation models in the literature. While available
commercial software such as ADANCO (Henseler, 2019) or SmartPLS (Ringle et al.,
2015) do not provide tools for generating data and thus cannot directly be applied to
conduct a Monte Carlo simulation, the R package matrizpls (Rénkko, 2021) can be

16



used to obtain parameter estimates with variance-based estimators such as PLS-PM,
PLSc and GSCA. The package interacts with the R package simsem to simulate data
and can thus also be used for Monte Carlo simulations for SEM. Nevertheless, ma-
trizpls does not provide users with the possibility of obtaining model parameters with
approaches such as Kettenring’s (1971) approaches for generalized canonical correla-
tion analysis (GCCA). Additionally, higher-order constructs (Schuberth et al., 2020)
or non-linear structural equation models containing higher-order terms (Dijkstra and
Schermelleh-Engel, 2014) cannot be estimated using matrizpls. While most available
software for SEM uses the data as input to obtain parameter estimates, matrizpls uses
a variance-covariance matrix as input to obtain parameter estimates, which makes it
less flexible in terms of evaluating a model’s prediction performance.

As an alternative, the R package ¢cSEM was introduced. This package comprises
a majority of variance-based estimators for SEM and is well established (Rademaker
and Schuberth, 2020). To elaborate, researchers using ¢cSEM are provided with sev-
eral possibilities to determine standard errors of the parameter estimates, such as
jackknife (Tukey, 1958) or bootstrap (Efron, 1979). Moreover, nonlinear structural
equation models and models containing higher-order constructs can be estimated.
Besides model estimation, ¢cSEM provides users with the possibility of identifying in-
admissible solutions, performing out-of-sample predictions, and assessing the models.
Finally, it is accompanied by the R package ¢SEM.DGP (Rademaker and Scham-
berger, 2020) which was designed to simulate data for predefined structural equation
models. Consequently, ¢SEM provides users with all the necessary tools to perform
Monte Carlo simulations with PLS-PM and other variance-based estimators for struc-
tural equation models in R, which is why I provide guidelines for applying these tools

in the following section.

2.3 Monte Carlo simulation for SEM using the R package
cSEM

To support researchers in conducting Monte Carlo simulations for SEM with variance-
based estimators using the R package ¢SEM, I present guidelines in this section by
explaining the different steps that need to be performed, namely determining the sim-

ulation study’s objective, determining the underlying population, determining other
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simulation parameters, determining the expectations related to the simulation results,
generating samples according to the simulation study’s design, estimating the model
parameters based on the generated samples, and evaluating the results of the Monte

Carlo simulation as displayed in Figure 2.1.

Step 1 Determining the simulation study’s objective

Step 2 Determining the underlying population

Step 3 Determining other simulation parameters

Step 4 Determining the expectations related to the simulation results
Step 5 Generating samples according to the simulation study’s design
Step 6 Estimating the model parameters based on the generated samples
Step 7 Evaluating the results of the Monte Carlo simulation

Figure 2.1: Steps to perform a Monte Carlo simulation with variance-based estimators
using the R package ¢cSEM

2.3.1 Determining the objective of the Monte Carlo simulation

The starting point of a Monte Carlo simulation is to determine its objective. Consid-
ering PLS-PM and other variance-based estimators, most Monte Carlo simulations
have one of the following objectives: (i) to demonstrate the performance of a new
methodology (e.g., Dijkstra and Henseler, 2015a; Henseler et al., 2012; Henseler and
Sarstedt, 2013; Henseler et al., 2015, 2016b; Klesel et al., 2019); (ii) to compare the

results of different estimators (e.g., Dijkstra and Henseler, 2015a; Henseler and Chin,
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2010; Henseler and Sarstedt, 2013; Reinartz et al., 2009); (iii) to evaluate the perfor-
mance of an existing approach in a specific situation (e.g., Henseler, 2010; Henseler

et al., 2012, 2015; Ronkko and Evermann, 2013).

2.3.2 Determining the underlying population

Structural equation models consist of two parts: (i) equations describing the relations
between the constructs, and (ii) equations describing the relations between the con-
structs and their related observed variables. The relations between the constructs can

be written as follows:

n=DBn+( (2.1)

where 1) is a vector of the constructs n;, B contains the corresponding path coeffi-
cients, and ¢ is a vector of structural error terms.

Besides the relations between the constructs, two different types of relations be-
tween the constructs and their related observed variables can be distinguished. First,
if the theoretical concepts are modeled as common factors which explain the variance-
covariance structure of their related observed variables, the relations between the

construct 7; and its observed variables x; are represented in terms of loadings:
T;=A\n; +¢€; (2.2)

The observed variables related to the j—th construct are stored in a block of observed
variables x;, with A; as a vector of loadings and €; as a vector of measurement errors.
Second, the theoretical concept can be modeled as a composite which emerges from
its observed variables and conveys all information between its observed variables and
the other variables in the model. Composites are linear combinations of observed

variables:
n; = Wi, (2.3)

The vector x; represents the block of observed variables related to the composite 7;,
and w; is a vector of the corresponding weights.

The concrete population is directly influenced by the objective of the Monte Carlo
simulation, and all the population model’s parameters should be determined in accor-

dance with the Monte Carlo simulation’s objective. In more detail, Figure 2.2 shows

19



the relevant steps to determine the underlying population. To evaluate the influence
of the population model on the simulation results, researchers can consider different

population models for their simulation study.

Specify the size
of the blocks of
observed variables

Specify the
number of
constructs

Should the
population model
be recursive?

Specify the types
of constructs

How large
are the load-
ings/weights and
path coefficients?

Specify the
distribution
of the exoge-

nous variables

Figure 2.2: How to specify a population

Once the model has been determined, it needs to be specified in lavaan syntax for
the later estimation. To specify a model in lavaan syntax, it is specified as a string
in which the structural relations are determined using ~, correlations are determined
using ~~, relations between common factors and their observed variables are deter-
mined using =~, and relations between composites and their observed variables are
determined using <~.

As Figure 2.2 shows, the distribution of the exogenous variables needs to be de-
termined. Using this distribution and the population relations between the variables,
the distribution of the observed variables can be determined. For simplicity, it is
customary to assume a multivariate standard normal distribution for the exogenous
variables (e.g., Jannoo et al., 2014; Jung et al., 2019; Rademaker et al., 2019), there-

fore, samples can be generated by using the population variance-covariance matrix.
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As an alternative to calculating the population variance-covariance matrix by
hand, the population correlation matrix can be obtained using the R package
¢SEM.DGP (Rademaker and Schamberger, 2020). In ¢SEM.DGP, several assump-
tions about the error terms are imposed. First, the structural error terms (; are
assumed to be uncorrelated with those constructs n; that solely occur in an exoge-
nous position and thus are not explained through other constructs. Second, the
measurement errors €; are assumed to be uncorrelated among one another, with the
measurement errors of other constructs and the structural error terms. To obtain
the population correlation matrix, in a first step the model has to be specified in
lavaan syntax including the population parameters. This population model has to be
used as input for the function generateData() to obtain the population correlation
matrix. Further, the argument .return_ type of the generateData() function needs
to be set to “cor” and the argument .empirical needs to be set to “TRUE” to obtain

the considered matrix.

2.3.3 Determining other simulation parameters

Besides determining the population for the Monte Carlo simulation, other simulation
parameters have to be specified. The simulation parameters that need to be considered
depend on the simulation study’s objective. Nevertheless, some parameters need to

be considered for all simulation studies:

e Sample size:
For a Monte Carlo simulation, samples need to be drawn from the above de-
scribed population. To provide empirical evidence for statistical properties such
as consistency or asymptotic efficiency, large samples should be considered.
Moreover, Monte Carlo simulations are often applied to evaluate the estima-
tor’s finite sample behavior. Thus, sample sizes of 200 and 500 observations are
commonly used for Monte Carlo simulations with PLS-PM and other variance-
based estimators. (Dijkstra and Henseler, 2015b; Jung et al., 2019). To evaluate
the effect of the sample size on the performance of an approach, different sample

sizes should be considered.

o Number of draws:

As the Monte Carlo principle relies on the law of large numbers, several sam-
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ples need to be drawn and used to estimate the model parameters. A high
number of draws implies estimates that are more precise (Metropolis and Ulam,
1949). However, a high number of draws implies a longer computational time.
For simulation studies with variance-based estimators for structural equation
models, it is common to set the number of draws to 500 (Hwang et al., 2010;
Goodhue et al., 2012; Jung et al., 2019) or 1000 (Aguirre-Urreta and Ronkkd,
2015; Dijkstra and Henseler, 2015b).

2.3.4 Determining the expectations related to the simulation

results

The fourth step of a Monte Carlo simulation with variance-based estimators for struc-
tural equation models is to determine the expectations regarding the simulation re-
sults. The expectations are closely related to the Monte Carlo simulation’s objective.
Nevertheless, the expectations should be determined when the population is speci-
fied to be able to determine expectations about all parameters of the Monte Carlo
simulation. In general, formulating the expectations helps to check whether the sim-
ulation design, i.e., the chosen population and other simulation parameters, fits the

simulation study’s objective or whether the design needs to be adjusted.

2.3.5 Generating samples according to the simulation study’s

design

Once the design of the Monte Carlo simulation has been specified, samples need to be
generated according to the population and the other simulation parameters. Using
c¢SEM the easiest way to simulate data according to the simulation design, i.e., the
population model and other simulation parameters, is to use the generateData()
function of the package ¢cSEM.DGP. In doing so, samples from a multivariate normal
distribution and also from a distribution with predefined values for the skewness and

kurtosis can be drawn:

generateData(.model, .N, .skewness, .kurtosis, .return_ type)

To obtain samples from a distribution with predefined values for skewness and kurto-
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sis and thus nonnormally distributed samples, the Fleishman-Vale-Maurelli procedure
(Fleishman, 1978; Vale and Maurelli, 1983) is used. The argument .model contains
the population model in lavaan syntax including the population parameters as de-
scribed above. The argument .N equals the corresponding sample size and .skewness
and .kurtosis can be used if a distribution of the observed variables different to the
multivariate normal distribution is considered. As default, .skewness and .kurtosis
are set to the values of the normal distribution, i.e. to a skweness of 0 and a kur-
tosis of 3. The argument .return_ type determines the requested output format. As
default it is set to ,data.frame”, thus, it does not need to be adjusted to obtain a
simulated sample. Note that ¢SEM.DGP is still limited in terms of model complexity,
i.e., considering the number of concepts that can be taken into account. If the defined
population model is not supported by ¢SEM.DGP, samples according to the simula-
tion design can be drawn by using other well developed R packages such as simsem.
For more flexibility considering data generation, the R package covsim (Grgnneberg
and Foldnes, 2017), for example, could be used. As an alternative, samples can be

drawn by using the corresponding quantile function of the considered distribution.

2.3.6 Estimating the model parameters based on the generated

samples

Once the samples have been drawn according to the simulation design, the model
parameters need to be estimated. Using the R package ¢SEM, model estimation is
done using the function csem(), which has a variety of possible arguments. In its
simplest form, csem() only requires a sample (.data) and a model in lavaan syntax

(.model):

csem(.data, .model)

Added to this, csem() has a variety of optional arguments. I will focus on the
optional arguments that are relevant for the exemplary Monte Carlo simulation that
I will show later. The optional arguments all have default values and thus only need
further definition if different options should be used. For a detailed explanation of all
optional arguments and their corresponding default values, please refer to the manual

of the ¢SEM package (Rademaker and Schuberth, 2020).
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e .approach__weights: defines the approach that is used to obtain the weights of
the composites. The default is set to “PLS-PM”.

o .disattenuate: defines whether the construct correlations should be disattenu-
ated in order to get consistent estimates for the loadings and path coefficients

in case of concepts modeled as common factors. The default is set to “TRUE”.

e .PLS weight_scheme_inner: defines the inner weighting scheme that is used
during the PLS-PM algorithm. The default is set to the path weighting scheme
(upath”).

e .PLS modes: defines the PLS-PM mode that should be used for estimating the
weights for each construct. The default is set to “NULL”, and consequently, for
common factors PLS-PM Mode A is used, and for composites PLS-PM Mode

B is used.

o .resample_method: defines the resample method that is used. The default is
set to “NULL”, and consequently, no resampling is done and no standard errors

are provided.
e .R: defines the number of resampling replications. The default is set to 499.

o .seed: defines the seed that is used for the resampling. If no seed is provided, a

random seed is produced.

e .handle_inadmissibles: defines how inadmissible results that appear during the
resampling should be treated. Inadmissible results are results which did not
converge, where at least one standardized loading is larger than 1, where the
construct correlation matrix is not positive semi-definite, at least one reliable
estimate is larger than 1, or where the observed variables’ population variance-
covariance matrix is not positive definite. The default is set to “drop”. Conse-
quently, if inadmissible solutions occur during the resampling, the final results

can be based on less than 499 resamples.

The csem() result is a list with the parameter estimates and further information
about the estimation. Moreover, several post estimation functions like assess(),
infer(), predict (), summarize () and verify() can be applied. The post-estimation

function verify() checks for inadmissible results. An inadmissible result indicates
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a problem with the model for the available sample. Consequently, depending on the
simulation study’s objective, inadmissible results could be removed from the sim-
ulation and replaced with admissible counterparts.! The post-estimation function
summarize () gives a summary of the estimation results, including the parameter es-
timates and their standard errors — if resampling was applied. For an explanation of

the other post-estimation functions, please refer to Rademaker and Schuberth (2020).

2.3.7 Evaluating the results of the Monte Carlo simulation

As a last step of a Monte Carlo simulation with PLS-PM and other variance-based
estimators, the results need to be evaluated. The type of evaluation depends highly
on the Monte Carlo simulation’s objective, therefore, general guidelines cannot be
provided. Nevertheless, some possibilities are given in the following exposition.

If an approach to obtain parameter estimates is evaluated, statistical properties,
such as the bias, consistency, and efficiency should often be evaluated. The bias can be
estimated by comparing the average parameter estimates to their population values:

L §ndraws 6,—0;. To provide evidence for the consistency of parameter estimates,

Ndraws £=i=1

one often evaluates whether the bias decreases for increasing sample sizes and whether

estimations based on very large samples — for example, 100’000 observations —
show any bias. Further, the efficiency of parameter estimates obtained by different
approaches is evaluated by comparing the standard errors for different sample sizes.
To evaluate both the bias and the variance jointly, measures such as the root mean
squared error (RMSE) or the mean absolute error (MAE) are applied. Additionally,
visualizing the results by using barplots, density plots, or similar can improve the
comprehensibility of the results.

Besides evaluating the results in terms of numbers and statistical properties, the
results should also be compared to the expectations about the results that were for-
mulated at the beginning of the simulation study. Moreover, expectations that were
not met should be justified, and where other expectations were met, those reasons

should also be given.

INote that in terms of good research practice, the share of inadmissible results generated through
the simulation study should be reported since a huge share of inadmissible results indicates that the
corresponding estimator is problematic in the considered research situation.
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2.4 Example: The consequences of sample correlations
among measurement errors on statistical inference

concerning the PLS-PM results

To illustrate the guidelines to conducting Monte Carlo simulations with PLS-PM and
other variance-based estimators for structural equation models using the R package

c¢SEM, 1 conducted an exemplary Monte Carlo simulation.?

2.4.1 Determining the objective

The exemplary Monte Carlo simulation investigates PLS-PM’s and PLSc’s finite sam-
ple behavior, particularly regarding the consequences of sample correlations among
measurement errors on statistical inference. Since correlations of zero are hardly ever
found in empirical research, PLS-PM’s assumption of uncorrelated error terms can
yield a bimodal distribution of the parameter estimates in finite samples. This ef-
fect has previously been discussed in the literature (Ronkko, 2014). The illustrative
Monte Carlo simulation presented here, evaluates the effect of this assumption in
empirical research on an extreme case with uncorrelated constructs. Specifically, the
study evaluates whether a t-test regarding a path coefficient estimate which is zero in
the population is able to hold the level of significance if the parameter estimates are
obtained with PLS-PM and PLSc if one construct is modeled as a composite and one
construct is modeled as a common factor. Additionally, we evaluate the guidelines
that propose that PLS-PM and PLSc need a nomological net to provide valuable es-
timates, and thus that the constructs should not be isolated (Henseler et al., 2014).
Consequently, we evaluate whether the bimodal distribution of the parameter esti-
mates vanishes and whether the t-test is able to hold its significance level if the model
is embedded in more contexts.

The illustrative Monte Carlo simulation’s objective can be classified using the
classes described above. Since no enhancement is introduced, but two approaches are
compared and their performance is evaluated in a specific situation, the exemplary
Monte Carlo simulation can be classified in the second and third group of Monte Carlo

simulations for SEM.

2Note that the results of this section are obtained using the c¢SEM package version 0.2.0.
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2.4.2 Underlying Population

Some parts of the underlying population are directly motivated by the Monte Carlo
simulation’s objective. Since we consider an extreme case of two uncorrelated con-
structs in which one construct is modeled as a common factor and another is modeled
as a composite, the types of constructs are already specified. Further, the exogenous
construct is modeled as a common factor and the endogenous construct is modeled
as a composite. The population model should be non-recursive, and exactly two con-
structs are included. Also, the two constructs are related to three observed variables.

Consequently, the following structural relation is considered:

n2 =0.0-m + G2 (2.4)

We use the following relations between the observed variables and their associated

constructs:
211 =0.9-m +¢en1 (25)
212 =0.8-1m1 + €12 (26)
213 =0.7-m + €13 (27)
Ny =0.6-221 +0.4-292 4+ 0.2 203 (2.8)

The random measurement errors are assumed to be uncorrelated and (s is assumed
to be uncorrelated with both 7; and the measurement errors. The variances of the
measurement errors of the first construct 7; are set to 0.19, 0.36, and 0.51, respectively.
The correlations between the observed variables of the composite are set to 0.5 each,
such that the composite 75 has unit variance. The observed variables are assumed to
be multivariate normally distributed. Figure 2.3 displays the population model.

Once the population model has been determined, the model has to be specified in
lavaan syntax as input for the later simulation:

model <- '

# Relations between the constructs and the observed variables
etal =~ x11 + x12 + x13

eta2 <~ x21 + x22 + x23

# Structural relations
eta2 ~ etal'

The observed variables’ population variance-covariance matrix depends on the

loadings, the intra-block correlations of the composite’s observed variables, the mea-
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0.19 036 0.51

T11 T12 T13

0.0

Figure 2.3: Population model with two constructs

surement errors’ variances, and the structural relations. Note that ¢SEM as well as
¢SEM.DGP rely on correlations and not on variances and covariances. Due to the
zero path between the constructs n; and 79, the correlations between the observed
variables associated with n; and 7y are zero. The correlations between the observed

variables of a common factor can be obtained as follows:
COV(ZL’ji,.’Kjk) = )\ji . )\jk

The correlations between the observed variables of a composite are given in the model
definition. Consequently, the observed variables’ population correlation matrix is

given as follows:
T11 Z12 Z13 21 T22 Z23

1.00 B
0.72 1.00

0.63 0.56 1.00

0.00 0.00 0.00 1.00

0.00 0.00 0.00 0.50 1.00

0.00 0.00 0.00 0.50 0.50 1.00
As explained above, the observed variables’ population correlation matrix can be
obtained using the R package cSEM.DGP by using the model including the population

parameters as input for the generateData() function:
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library (cSEM.DGP)

model_dgp <- '

# Relations between the constructs and the observed variables
etal =~ 0.9%x11 + 0.8%x12 + 0.7%x13

eta2 <~ 0.6*x21 + 0.4%*x22 + 0.2%x23

# Structural relations
eta2 ~ 0.0*etal

# Intra-block correlations
x21 ~~ 0.5%x22 + 0.5%x23
x22 ~~ 0.5%x23'

Sigma <- generateData( model_dgp, "cor", TRUE)

To evaluate the influence of the population model on the simulation results, as well
as the guidelines that state PLS-PM and PLSc need the constructs to be embedded
in a nomological net and not to be isolated, we considered a second population model.
The relation between 71 and 72, as well as how they relate to their observed variables
remain the same as for the first population model. In addition, both constructs
are connected to one composite each with a non zero path. The following relations

between the constructs 7, and 7y and the new composites n3 and 74 are considered:

M2 =0.0-1m14+03 13 (2.10)
m 20.3'7]4 (211)

Both composites 13 and 74 are assumed to be composed of three indicators each. The
population model is displayed in Figure 2.4. The observed variables are assumed to
be multivariate normally distributed. Note that the population correlation matrix,
as well as the R code for simulating the model with four constructs, are given in the

Appendix.

2.4.3 Determining other simulation parameters

Considering the rest of the simulation design, the following parameters are chosen:
First, two sample sizes, namely 200 and 500 observations, are considered to evaluate
the estimators’ finite sample behavior. Second, the number of draws is set to 500.
Consequently, in total two estimators, two population models with two sample sizes

each, and one number of draws, i.e., eight conditions, are considered.
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0.0

0.0

Figure 2.4: Population model with four constructs

2.4.4 Expectations regarding the simulation results

Considering the situation outlined above, we expected that the t-test would not hold
the significance level for the path coefficient in the case of the population model
with two constructs. Further, we expected that the parameter estimates would show
a bimodal distribution in this case, which would be in line with previous findings
in the literature (Ronkko, 2014). For the population model with four constructs,
we expected that the bimodal form of the distribution would vanish for the path
coefficient between 7; and 7s. Further, we assumed that the t-test is able to hold its
significance level in this case, which would also be in line with previous findings in the
literature that showed that PLS-PM and PLSc need the constructs to be embedded
in a nomological net (Henseler et al., 2014). Considering the two sample sizes, namely
200 and 500 observations, we expected that the results would become more accurate

in the sense that the bias as well as the standard errors would decrease.
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2.4.5 Data generation

Using the ¢SEM.DGP package, we generated samples with 200 observations by first
determining the population model including the model parameters in lavaan syntax,
and afterwards using the generateData() function:

library(cSEM.DGP)

model_dgp <- '

# Relations between the constructs and the observed variables

etal =~ 0.9%x11 + 0.8%x12 + 0.7*x13
eta2 <~ 0.6*x21 + 0.4%*x22 + 0.2*%x23

# Structural relations
eta2 ~ 0.0%etal

# Intra-block correlations
x21 ~~ 0.5%x22 + 0.5%x23
x22 ~~ 0.5%x23'

data <- generateData( model_dgp, 200)

Since the observed variables are assumed to be multivariate normally distributed, the
other arguments of generateData() do not have to be adjusted from their defaults.

Note that according to the simulation design, several samples need to be simulated.
These can either all be simulated first and estimated afterwards or each sample can
be estimated before simulating a new sample. The samples with 500 observations are

simulated similarly by setting the argument .N to 500.

2.4.6 Model estimation

To investigate PLS-PM’s and PLSc’s finite sample behavior, particularly regarding
the consequences of sample correlations among measurement errors on statistical in-
ference, the model described above in lavaan syntax and the simulated samples need
to be used as input for the csem() function. Additionally, the standard errors of the
path coefficient estimates need to be obtained. Consequently, the argument .resam-
ple__method needs to be adjusted from its default. For example, the standard errors

can be obtained using a bootstrap approach:

csem(.data, .model, .resample_method = “bootstrap”)

To ensure that all results rely on the same number of bootstrap samples and that
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all bootstrap results taken into account are in fact admissible, the argument .han-
dle_inadmissibles needs to be set to “replace”. Also, csem() uses a disattenuation
for common factors as default. To obtain PLS-PM estimates instead of PLSc esti-
mates in the case of common factors, the argument .disattenuate needs to be set to
“FALSE”. The argument .seed is set to “123” to ensure that the bootstrap results can
be reproduced. The other optional arguments are not changed from their defaults.
Consequently, the following two commands provided the requested estimates:

# Estimation of the model based on the simulated sample

res_PLSc <- csem(.model = model, .data = data, .resample method = "bootstrap",

.handle_inadmissibles = "replace", .seed = 123)

# Estimation of the model based on the simulated sample without disattenuation

res_PLS <- csem(.model = model, .data = data, .resample_method = "bootstrap",
.disattenuate = FALSE, .handle_inadmissibles = "replace",
.seed = 123)

In the illustrative Monte Carlo simulation, for each sample size, 500 samples
needed to be simulated and estimated using PLSc and PLS-PM using the simula-

tion design. To do so, we applied the following code:

library (cSEM)

library(cSEM.DGP)

# Define model for the data generation

model_dgp <- '

# Relations between the constructs and the observed variables
etal =~ 0.9%x11 + 0.8xx12 + 0.7+*x13

eta2 <~ 0.6%x21 + 0.4xx22 + 0.2%x23

# Structural relations
eta2 ~ 0.0xetal

# Intra-block correlations
x21 ~~ 0.5%x22 + 0.5%x23
x22 ~~ 0.5%x23'

# Define model for the parameter estimation

model <- '

# Relations between the constructs and the observed variables
etal =~ x11 + x12 + x13

eta2 <~ x21 + x22 + x23

# Structural relations
eta2 ~ etal'

# Define lists to store the simulation results
res_PLS <- list()
res_PLSc <- list()
set.seed(123)
while(i < 501){
data <- generateData(.model = model_dgp, .l = 200)
res_PLSc_temp <- csem(.model = model, .data = data)
res_PLS_temp <- csem(.model = model, .data = data, .disattenuate = FALSE)

if (sum(verify(res_PLSc_temp)) == 0 && sum(verify(res_PLS_temp)) == 0){
res_PLSc[[i]l] <- csem(.model = model, .data = data, .resample_method = "bootstrap",
.handle_inadmissibles = "replace", .seed = 123)
res_PLS[[i]] <- csem(.model = model, .data = data, .res e_method = "bootstrap",
.disattenuate = FALSE, .handle_inadmissibles = "replace",
.seed = 123)

i<- i+l
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Note that we included only admissible results in the results. Thus, if estimating
one of the generated samples yields an inadmissible result, this is replaced by an ad-
missible one. Consequently, all results are based on 500 admissible solutions with 499
admissible bootstrap runs each. To obtain the simulation results for the population
model with two constructs and a sample size of 500, the argument .N has to be set
to 500. I give the code that needs to be run to obtain the results for the population

model with four constructs in the Appendix.

2.4.7 Evaluating the simulation results

To evaluate the results, in a first step, the share of significant path coefficient estimates
has to be determined for the various sample sizes and population models. Note that for
the larger model with four constructs, only the path coefficient between the common
factor 77 and the composite 7y is considered to be able to evaluate the population
model’s effect on the test’s performance regarding significance for this path coefficient.
The other parameters are not considered here.

Using bootstrap, standard errors 6; — were obtained for all path coefficient es-
timates. These estimated standard errors can be used to test the null hypothesis:
Hy : byy = 0 for each estimation, achieved by using the t-test statistic

b
L= 21

- (2.12)
3,

which is also provided in the output of the csem() function. The test statistic is
asymptotically standard normally distributed. The significance level « is set to 0.01,
0.05, and 0.1, respectively. To obtain the p-value, the asymptotic distribution of the
test statistic was used. The p-value of the test statistic is compared to the level of
significance to decide whether the structural coefficient is significant at the given level
of significance. If the share of significant coefficients is smaller or equal to the level
of significance, the test was able to hold the level of significance. Besides evaluating
the share of significant path coefficients in terms of a t-test, we could also obtain the
share of significant path coefficients using bootstrap confidence intervals. Since the
share of significant path coefficients was similar if confidence intervals were used, we
do not report the results here. Nevertheless, I give a table with the corresponding

results in the Appendix.

33



The results of the illustrative Monte Carlo simulations have been stored in lists
where each list element contains the results for one simulated sample. As explained
earlier, every result of the csem() function is a list, and several post-estimation func-
tions can be applied. The post-estimation function summarize () yields an overview
of the estimation, and the parameter estimates including their estimated standard

errors, t-statistics, and p-values:

summarize (res_PLS[[1]])

##

## Overview
##

## General information:

##

## Estimation status = 0k

## Number of observations = 200

## Weight estimator = PLS-PM

## Inner weighting scheme = "path"

## Type of indicator correlation = Pearson

## Path model estimator = 0LS

## Second-order approach = NA

## Type of path model = Linear

## Disattenuated = No

##

## Resample information:

##

## Resample method = "bootstrap"
## Number of resamples = 499

## Number of admissible results = 499

## Approach to handle inadmissibles = "replace"
## Sign change option = "none"

## Random seed = 123

##

## Construct details:

##

## Name Modeled as Order Mode

##

## etal Common factor First order "modeA"

## eta2 Composite First order "modeB"

##

## Estimates
##

## Estimated path coefficients:

##

## CI_percentile
##  Path Estimate Std. error t-stat. p-value 95%
## eta2 ~ etal 0.1064 0.1850 0.5754 0.5650 [-0.2610; 0.2700 ]
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## Estimated loadings:

##

## CI_percentile
##  Loading Estimate Std. error t-stat. p-value 95%

##  etal =~ x11 -0.8789 0.4158 -2.1134 0.0346 [-0.8822; 0.9642 ]
##  etal =~ x12 -0.8187 0.3950 -2.0726 0.0382 [-0.8250; 0.9389 ]
##  etal =~ x13 -0.2443 0.3767 -0.6484 0.5167 [-0.6913; 0.9751 ]
##  eta2 =~ x21 -0.8635 0.4904 -1.7609 0.0783 [-0.6115; 0.9882 ]
##  eta2 =~ x22 0.0251 0.4233 0.0592 0.9528 [-0.4657; 0.9735 ]
##  eta2 =~ x23 -0.4103 0.3718 -1.1033 0.2699 [-0.3613; 0.9440 ]
##

## Estimated weights:

##

## CI_percentile
##  Weight Estimate Std. error t-stat. p-value 95Y%

##  etal <~ x11 -0.7687 0.3447 -2.2302 0.0257 [-0.7026; 0.8455 ]
##  etal <~ x12 -0.5355 0.2619  -2.0442 0.0409 [-0.4618; 0.6801 ]
##  etal <~ x13 0.4664 0.4096 1.1388 0.2548 [-0.8339; 1.1183 ]
##  eta2 <~ x21 -1.0299 0.6980 -1.4754 0.1401 [-1.0375; 1.1659 ]
##  eta2 <~ x22 0.6202 0.6930 0.8950 0.3708 [-1.0602; 1.2290 ]
##  eta2 <~ x23 -0.2319 0.6089 -0.3808 0.7034 [-0.9968; 1.2552 ]
##

## Estimated indicator correlations:

##

## CI_percentile
##  Correlation Estimate Std. error  t-stat. p-value 95%

##  x21 ~~ x22 0.4554 0.0530 8.6003 0.0000 [ 0.3523; 0.5586 ]
##  x21 ~~ x23 0.5008 0.0535 9.3572 0.0000 [ 0.3885; 0.5926 ]
##  x22 ~~ x23 0.5440 0.0521  10.4400 0.0000 [ 0.4334; 0.6405 ]
##

## Effects

##

## Estimated total effects:

##

## CI_percentile
##  Total effect Estimate Std. error t-stat. p-value 95%

## eta2 ~ etal 0.1064 0.1850 0.5754 0.5650 [-0.2610; 0.2700 ]
##

Consequently, the p-value corresponding to the t-statistic of Equation 2.12 can be
extracted by using “summarize(res_ PLS[[i]])$Estimates$path_ estimates$p_ value”.
The complete results are displayed in Figure 2.5 using a bar plot. Also, the con-
crete results in terms of numbers, are given in the Appendix. Further, besides the
results in terms of test statistics, we give the results using confidence intervals to
detect significant path coefficients in the Appendix.

The results show that for the model with two constructs, the t-test for the path
coefficient is not able to hold the level of significance. For both sample sizes and all
levels of significance we detected higher shares of significant path coefficients for mod-
els estimated with PLS-PM and PLSc. Consequently, significant relations between

the two constructs are detected too often, which can lead to false conclusions. If the
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Figure 2.5: Share of significant path coefficients between 7, and 75
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The results for models estimated with PLS-PM and PLSc only, hardly differ at all.

Eventually, Figure 2.6 shows the density for the path coefficient between 7; and
79 for the different simulation conditions. The results demonstrate that for the model
with two constructs, the path coefficients show the bimodal distribution as expected.
In contrast, for the model with four constructs, the results do not have the bimodal
distribution. This is in line with previous findings in the literature which state that

PLS-PM and PLSc need models with more context to yield valuable results (Henseler

et al., 2014).
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Figure 2.6: Density for the path coefficients
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As stated before, we ensured that all simulation results only consider admissible
results. Therefore, in the analysis we removed all inadmissible results from the results
we used. Nevertheless, the shares of inadmissible solutions are displayed in Table 2.13.

This shows that for the model with two constructs which are connected through a

Table 2.1: Share of inadmissible solutions

sample size number of share of inadmissi-
constructs ble solutions

200 2 0.5292

500 2 0.5136

200 4 0.1379

500 4 0.0512

zero path, more than 50% of the simulated samples result in an inadmissible solution.
Moreover, for the model with four constructs, the share of inadmissible solutions is
much lower and also decreases with increasing sample size. High shares of inadmissible
results indicate a problem with the considered model and thus, we find support for
the hypothesis that PLS-PM and PLSc need the constructs to be embedded in a
nomological net. The results of the Monte Carlo simulation are completely in line with
the expectations that were described above, and thus are also in line with previous

findings in the literature.

2.5 Conclusion

This chapter has presented guidelines for performing Monte Carlo simulations with
PLS-PM and other variance-based estimators for structural equation models using the
R package cSEM. First, the need for further guidelines on Monte Carlo simulations for
SEM is explained. Second, step-by-step guidelines for how to conduct a Monte-Carlo
simulation with PLS-PM and other variance-based estimators for structural equation
models are given. The guidelines are accompanied by an illustrative example and the
corresponding ready-to-use R code. Moreover, suggestions for evaluating the results
and the general design for this type of Monte Carlo simulation, are provided. The
latter are based on commonly used design patterns for Monte Carlo simulations with

variance-based estimators given in the literature.

3Note that these only refer to the original estimation and do not consider the inadmissible
solutions generated during the resampling to obtain standard errors.
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Besides providing guidelines for Monte Carlo simulations using the R package
c¢SEM, data storage and availability of the data is a relevant issue. In terms of good
research practice, the exact procedure researchers followed for their Monte Carlo sim-
ulation had to be explained in detail. Further, all functions and packages researchers
used have to be reported to ensure that the results can be reproduced. The code
researchers used have to be provided by the authors — according to good practice,
at least upon request. Considering the data used for the simulation study, it should
either be made publicly available, or researchers need to ensure that the data could
be reproduced by using a seed during the simulation study. Using a seed ensures
that although the data is randomly drawn, if the code is run again, the same random
samples are drawn. If a seed was to be used during the simulation, this should be
mentioned in the simulation design.

Future research should provide guidelines for Monte Carlo simulations with PLS-
PM and other variance-based estimators for structural equation models using the R
package ¢SEM for more specific situations, e.g. in using the post-estimation func-
tion predict (). Moreover, future research should provide guidelines for larger Monte
Carlo simulations for which using high performance clusters could be helpful. Nev-
ertheless, the interested reader is referred to Rademaker and Schuberth (2020) for a

more detailed explanation of the R package ¢cSEM and the optional arguments.
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Chapter 3

Robust partial least squares path

modeling

3.1 Introduction !

Structural equation modeling (SEM) is a popular psychometric method in social and
behavioral sciences. Its ability to operationalize abstract concepts, estimate their
relationships and take into account measurement errors make it a frequently applied
tool for answering various types of research questions (Bollen, 1989).

Generally, two kinds of SEM estimators can be distinguished. On the one hand,
covariance-based estimators, such as the maximum likelihood (Jéreskog, 1970a) and
the generalized least squares estimator (Browne, 1974), minimize the discrepancy be-
tween the empirical and the model-implied observed variable variance-covariance ma-

trix to obtain the model parameter estimates. On the other hand, variance-based

I This chapter is based on joint work with Florian Schuberth, Jérg Henseler and Theo K. Dijkstra.
It was published as a peer-reviewed article:
Schamberger, T., Schuberth, F., Henseler, J., Dijkstra, T.K., 2020. Robust partial least squares path
modeling. Behaviormetrika 47, 307 - 334.
The article is published under the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/). Compared to the published article, I adjusted the
notation such that it is consistent with the other chapters.
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(VB) estimators, such as generalized structured component analysis (Hwang and
Takane, 2004) and generalized canonical correlation analysis (Kettenring, 1971), first
build proxies for the constructs as linear combinations of the observed variables and,
subsequently, estimate the model parameters.

Among VB estimators, partial least squares path modeling (PLS-PM, Wold, 1975)
is one of the most often applied and thoroughly studied estimators. Its performance
has been investigated for various population models, for normally and non-normally
distributed data and in comparison to other estimators (Dijkstra and Henseler, 2015a;
Hair et al., 2017c; Sarstedt et al., 2016; Takane and Hwang, 2018). Moreover, in
empirical research, PLS-PM has been used across a variety of fields, such as Marketing
(Hair et al., 2012), Information Systems (Marcoulides and Saunders, 2006), Finance
(Avkiran et al., 2018), Family Business (Sarstedt et al., 2014), Human Resources
(Ringle et al., 2020) and Tourism (Miiller et al., 2018).

Over the last several years, PLS-PM has undergone numerous enhancements. In
its current form, known as consistent partial least squares (PLSc), it consistently es-
timates linear and non-linear structural models containing both composites and com-
mon factors (Dijkstra and Schermelleh-Engel, 2014; Dijkstra and Henseler, 2015b).
Moreover, it can estimate models containing hierarchical constructs (Becker et al.,
2012; Fassott et al., 2016; van Riel et al., 2017), deal with ordinal categorical ob-
served variables (Schuberth et al., 2018b) and correlated measurement errors within
a block of observed variables (Rademaker et al., 2019), and can be employed as an
estimator in confirmatory composite analysis (Schuberth et al., 2018a). In addition
to model estimation, PLS-PM can be used in multigroup comparisons (Klesel et al.,
2019; Sarstedt et al., 2011) and to reveal unobserved heterogeneity (Becker et al.,
2013; Ringle et al., 2014). Furthermore, the fit of models estimated by PLS-PM
can be assessed in two ways: first, by measures of fit, such as the standardized root
mean square residual (SRMR, Henseler et al., 2014), and second by bootstrap-based
tests of the overall model fit (Dijkstra and Henseler, 2015a). An overview of the
methodological research on PLS-PM is provided by Khan et al. (2019).

Despite the numerous enhancements of PLS-PM and suggested guidelines (e.g.,
Benitez et al., 2020; Henseler et al., 2016a; Rigdon, 2016), handling outliers in the
context of PLS-PM has been widely neglected, although outliers are often encountered

in empirical research (Filzmoser, 2005). This is not without problems, since PLS-PM
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and many of its enhancements such as PLSc use the Pearson correlation, which is
known to be very sensitive to outliers (e.g., Boudt et al., 2012). Therefore, ignoring
outliers is very likely to lead to distorted results and thus to questionable conclusions.

Outliers are observations that differ significantly from the rest of the data (Grubbs,
1969). Two types of outliers can be distinguished (Niven and Deutsch, 2012).2 First,
outliers can arise completely unsystematic and therefore not follow any structure.
Second, outliers can arise systematically, e.g., from a different population than the
rest of the observations.

To deal with outliers in empirical research, two approaches are commonly used.
The first encompasses using robust estimators that are not or are only to a lesser
extent distorted by outliers. The second entails identifying and manually removing
outliers before the final estimation. The latter is often regarded as the inferior ap-
proach. First, it cannot be guaranteed that outliers are identified as such because
outliers can affect the results in a way that they may not be identified by visualiza-
tion or statistics such as the Mahalanobis distance (Hubert et al., 2008). Second,
even if outliers can be identified, removing them implies a loss of useful information
they contain (Gideon and Hollister, 1987); additionally, for small datasets, reducing
the effective number of observations reduces statistical power.

In light of this situation, this chapter contributes to the existing SEM literature
by presenting robust versions of PLS-PM. Specifically, we introduce robust partial
least squares path modeling (robust PLS) and robust consistent partial least squares
(robust PLSc), which combine the robust covariance estimator minimum covariance
determinant (MCD) with PLS-PM and PLSec, respectively. Consequently, if robust
PLS/PLSc are used to estimate structural equation models, outliers do not have to
be removed manually.

The remainder of the chapter is structured as follows. Section 3.2 develops robust
PLS/PLSc as a combination of PLS-PM/PLSc with the robust minimum covariance
determinant (MCD) estimator of covariances. Section 3.3 and Section 3.4 present the
setup of our Monte Carlo simulation to assess the efficacy of robust PLS/PLSc and the
corresponding results. Section 3.5 demonstrates the performance of robust PLS/PLSc

by two empirical examples. Finally, the chapter is concluded by Section 3.6 with a

21t is noted that extant literature provides various taxonomy descriptions of outliers (e.g., Sarst-
edt and Mooi, 2014).

42



discussion of findings, conclusions and an outlook on future research.

3.2 Developing robust partial least squares path modeling

Originally, PLS-PM was developed by Wold (1975) to analyze high-dimensional data
in a low-structure environment. PLS-PM is capable of emulating several of Ket-
tenring’s (1971) approaches to generalized canonical correlation analysis (Tenenhaus
et al., 2005). However, while traditionally it only consistently estimates structural
models containing composites (Dijkstra, 2017)3, in its current form, known as PLSc,
it is capable of consistently estimating structural models containing both composites
and common factors (Dijkstra and Henseler, 2015a). The following section presents
PLS-PM and its consistent version expressed in terms of the correlation matrix of the

observed variables.

3.2.1 Partial least squares path modeling

Consider K standardized observed variables for J constructs, each of which belongs
to one construct only. The n observations of the standardized observed variables
belonging to the j-th construct are stored in the data matrix X; of dimension (n x
K;) such that Z'j]:l K; = K. The empirical correlation matrix of these observed
variables is denoted by S;;. To ensure the identification of the weights, they need
to be normalized. This normalization is typically done by fixing the variance of each
proxy to one, i.e., w}o)'sﬁw;o) = 1. Typically, unit weights are used as starting
weights for the iterative PLS-PM algorithm. To obtain the weights to build the
proxies, the iterative PLS-PM algorithm performs the following three steps in each
iteration (1).

In the first step, outer proxies for the construct are built by the observed variables

as follows:

A = X0 (3.1)

Nl

The weights are scaled in each iteration by (w§l)/5jjti;§-l))7 . Consequently, the

proxy 7); has zero mean and unit variance.

31t is noted that in the context of PLS-PM only mode B consistently estimates composite models
(Dijkstra, 2017).
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In the second step, inner proxies for the constructs are built by the outer proxies

of the previous step:
l 4 1) Al
3= 3 al o)
=1

There are three different ways of calculating the inner weight eyj),, all of which yield

similar results (Noonan and Wold, 1982): centroid, factorial and the path weighting
O]

scheme. The factorial scheme calculates the inner weight e}, as follows:*

(1) A(D) . .
cov(n;:’, N ), if n; and 7, are adjacent
Q) _ oVl j and (3.3)

0 otherwise

The resulting inner proxy 7j; is scaled to have unit variance again.
In the third step of each iteration, new outer weights 11)5”1) are calculated.® Using
mode A, the new outer weights (correlation weights) are calculated as the scaled

correlations of the inner proxy ﬁ(l)

;* and its corresponding observed variables X;:

J
~(I+1) ~ (1) : A (1+1) AU+
'wj X Z ejj/Sjj/wj, with wj Sjj'wj =1 (34)
i'=1
Using mode B, the new outer weights (regression weights) are the scaled estimates

from a multiple regression of the inner proxy ﬁ(-l)

;* on its corresponding observed vari-

ables:
J
~ (141 — l ~(1 . ~(I41) ~ (11
w§- ) Sjj1 Z e§J?,Sjj/w§,) with w; ) Sjjw]( ) =1 (3.5)
j'=1
The final weights are obtained when the new weights 'LT)J(-ZH) and the previous

weights w§” do not change significantly; otherwise, the algorithm starts again from
Step 1, building outer proxies with the new weights. Subsequently, the final weight

estimates w; are used to build the final proxies 7);:
nj = X;jw; (3.6)

Loading estimates are obtained as correlations of the final proxies and their ob-
served variables. The path coefficients are estimated by ordinary least squares (OLS)

according to the structural model.

4For more details on the other weighting schemes, see, e.g., Tenenhaus et al. (2005).
5In the following, we only consider mode A and mode B. mode C, which is a combination of
Modes A and B, is not considered here (Dijkstra, 1985).
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3.2.2 Consistent partial least squares

For models containing common factors, it is well known that the estimates are only
consistent at large, i.e., the parameter estimates converge in probability only to their
population values when the number of observations and the number of observed vari-
ables tend to infinity (Wold, 1982).

To overcome this shortcoming, Dijkstra and Henseler (2015b) developed PLSc.
PLSc applies a correction for attenuation to consistently estimate factor loadings and
path coefficients among common factors. The consistent factor loading estimates of

observed variables’ block j can be obtained as follows:
Aj = &, (3.7)
The correction factor ¢; is obtained from the following equation:

\/ W’ (S, — diag(S;;)) w;

’li/- (’I.Z)]’li}_; — dlag (’lf)j’li);)) ’lf)j

¢ = (3.8)
J

To obtain consistent path coefficient estimates, the correlation estimates among the

proxies need to be corrected for attenuation to consistently estimate the construct

correlations:

WS

— 3.9
0,0, (3.9)

cot(n;, ;1) =
Here, Qj = éj\/u?j/lbj is the reliability estimate. In case of composites, typically, no
correction for attenuation is applied, i.e., Qj is set to 1 if the j-th construct is modeled
as a composite. Finally, based on the consistently estimated construct correlations,
the path coefficients are estimated by OLS for recursive structural models and by

two-stage least squares for non-recursive structural models.

3.2.3 Selecting a robust correlation

As illustrated, PLS-PM and PLSc can both be expressed in terms of the correlation
matrix of observed variables. For this purpose, typically, the Pearson correlation
estimates are used. However, it is well known in the literature that the Pearson cor-
relation is highly sensitive to outliers (e.g., Abdullah, 1990). Hence, a single outlier
can cause distorted correlation estimates and therefore distorted PLS-PM/PLSc re-

sults. To overcome this shortcoming, we propose to replace the Pearson correlation
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by robust correlation estimates. Similar was already proposed for covariance-based
estimators (e.g., Yuan and Bentler, 1998a,b).

The existing literature provides a variety of correlation estimators that are robust
against unsystematic outlier. Table 3.1 presents an overview of several robust correla-
tion estimators and their asymptotic Breakdown Points. The Breakdown Point (BP)
of an estimator is used to judge its robustness against unsystematic outliers and thus
indicates the minimum share of outliers in a dataset that yields a breakdown of the
estimate, i.e., a distortion of the estimate caused by random/unsystematic outliers
(Donoho and Huber, 1983). Formally, the BP of an estimator T' can be described as

follows:
BP = inf{e : sup|T(X*) — T(X)| = o0},

with T'(X) being the estimate based on the sample X which is not contaminated by
outliers and T'(X*) being the estimate based on the sample X* which is contami-
nated by outliers of share . Usually, an estimator with a higher asymptotic BP is
preferred, as it is more robust, i.e., less prone to outlier’s distortion, than an estima-
tor with a lower asymptotic BP. In addition to ranking various estimators by their
asymptotic BPs, the estimators can be distinguished by their approach to obtaining
the correlation estimate: using robust estimates in the Pearson correlation, using non-
parametric correlation estimates, using regression-based correlations and performing
an iterative procedure that estimates the correlation matrix by using the correlation
of a subsample that satisfies a predefined condition.

To protect the Pearson correlation from being distorted by outliers, robust mo-
ment estimates can be used for the calculation of correlation. For instance, the mean
and standard deviation can be replaced by, respectively, the median and the me-
dian absolute deviation (Falk, 1998), or variances and covariances can be estimated
based on a winsorized or trimmed dataset (Gnanadesikan and Kettenring, 1972). In
addition to the Pearson correlation, robust non-parametric estimators such as Spear-
man’s, Kendall’s or the Gaussian rank correlation can be used (Boudt et al., 2012).
Regression weights that indicate if an observation is regarded as an outlier can also be
applied to weight the variances and covariances in the Pearson correlation (Abdullah,
1990). Finally, iterative algorithms, such as the Minimum Covariance Determinant

(MCD) and the Minimum Volume Ellipsoid (MVE) estimator, can be used to select a
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Table 3.1: Review of various robust correlation coefficients

Approach Estimator Source Description BP
Use of Correlation Me- Falk (1998) The median absolute devi-
robust dian ation is used instead of the
estimates in standard deviation, and
the Pearson the comedian is used in-
correlation stead of the covariance.
Trimmed dataset Gnanadesikan and The variances and covari-
Kettenring (1972) ance is calculated for a
trimmed dataset.
Wainsorized Gnanadesikan and The variances and covari-
dataset Kettenring (1972) ance are calculated for a
winsorized dataset.
Non- Spearman’s Boudt et al. (2012) The correlation is calcu- 20.6%
parametric rank lated for ranked observa-
correlation correlation tions.
estimators
Kendall’s Boudt et al. (2012)  The correlation is calcu- 29,3%
rank lated based on the similar-
correlation ity of ranked observations.
Gaussian Boudt et al. (2012) The correlation is calcu- 12,4%
rank lated for the Gaussian
correlation scores of the ranked obser-
vations.
Regression- ‘Weighted Abdullah (1990) Weights used in the <50%
based Least weighted least squares ap-
correlation Squares proach that deemphasize
outliers less are applied
in/to the estimation of
the variances and covari-
ance used in the Pearson
correlation.
Use the Minimum Rousseeuw (1985) The correlation matrix of 50%
subsample Volume a subsample that yields
that satisfies Ellipsoid the ellipsoid with the
a predefined smallest volume ellipsoid
condition to is used.
estimate the
correlation Minimum Rousseeuw (1985) The correlation matrix of 50%
Covariance a subsample that yields
Determi- to the smallest correlation
nant determinant is used.

representative subsample unaffected by outliers for the calculation of the covariance
and the standard deviations.
Among all considered approaches, the MCD estimator is a promising candidate

for developing a robust version of PLS-PM and PLSc. Although both MVE and MCD
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estimators have an asymptotic BP of 50%, which is the highest BP an estimator can
have and is much larger than the asymptotic BP of 0% of the Pearson correlation,
in contrast to the MVE estimator, the MCD estimator is asymptotically normally
distributed. Moreover, robust estimates based on the MCD are more precise (Butler
et al., 1993; Gnanadesikan and Kettenring, 1972) and a closed-form expression of the
standard error exists (Rousseeuw, 1985).

The MCD estimator estimates the variance-covariance matrix of a sample X of
dimension n X K as the variance-covariance matrix of a subsample of dimension h x K
with the smallest positive determinant. To identify this subsample, theoretically, the
variance-covariance matrices of (Z) different subsamples have to be estimated. The
choice of h also determines the asymptotic BP of the MCD estimator. A maximum
asymptotic BP of 50% is reached if h = (n + K + 1)/2; otherwise, it will be smaller
(Rousseeuw, 1985).

The rationale behind the MCD estimator can be given by considering two random
variables, each with n observations. While the Pearson correlation is based on all n
observations to estimate the correlation, the MCD estimator calculates the variances
and the covariance based on a subsample containing only h observations. The h
observations are determined by the ellipse with the smallest area containing the A
observations. Similarly is done in case of more than two variables, the subsample
is determined by the ellipsoid with smallest volume containing the h observations.
Generally, the MCD estimator finds the confidence ellipsoid to a certain confidence
level with the minimum volume to determine the variances and covariances.

To reduce the computational effort of calculating the MCD estimator, a fast algo-
rithm has been developed that considers only a fraction of all potential subsamples
(Rousseeuw and Driessen, 1999). The fast MCD algorithm is an iterative procedure.
In each iteration (1), the algorithm applies the following three steps to a subsample

H® of sample X consisting of h observations and K variables:

e Calculate the Mahalanobis distance dgl) for every observation x; of X:

dV = \/(asi —z0) SO (z; —20)  i=1,...,n, (3.10)

where () is the sample mean, and S is the variance-covariance matrix of the

subsample H®.
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« Create the new subsample HU*1 consisting of the observations corresponding

to the h smallest distances.

e Return SO if the determinant of S(**1) equals the determinant of % or zero;

otherwise, start from the beginning.

Since det(S®) > det(SUHD) and det(SM) > det(SP) > det(S®))... is a non-
negative sequence, the convergence of this procedure is guaranteed (Rousseeuw and
Driessen, 1999). Once the iterative procedure has converged, the procedure is repeated
several times for different initial subsamples H ().

The initial subsample H) is chosen as follows: First, a random subsample H(® of
size K +1 of X is drawn. If det(S(®)) = 0, which is not desirable, further observations
of X are added to H® until det(S©®) > 0, where S = cov(H). Second,

) are calculated based on the mean vector and the variance-

the initial distances dgo
covariance matrix of H() see Equation 3.10. Finally, the initial subsample H )
consists of the observations belonging to the i smallest distances d§0>.

Figure 3.1 illustrates the difference between the Pearson correlation and the MCD
estimator for a normally distributed dataset with 300 observations, where 20 percent
of observations are replaced by randomly generated outliers. The population corre-
lation is set to 0.5. As shown, the estimate of the Pearson correlation is strongly

distorted by the outliers, while the MCD correlation estimate is robust against out-

liers, and thus very close to the population correlation.

3.2.4 Robust partial least squares path modeling and robust

consistent partial least squares

To deal with outliers in samples without manually removing them before the estima-
tion, we propose modifications of PLS-PM and PLSc called robust PLS and robust
PLSc, respectively. In contrast to traditional PLS-PM and its consistent version
using the Pearson correlation, the proposed robust counterparts use the MCD cor-
relation estimate as input to the PLS-PM algorithm. As a consequence, the steps
of the PLS-PM algorithm and the principle of PLSc of correcting for attenuation
remain unaffected. Figure 3.2 contrasts robust PLS and PLSc with their traditional

counterparts.
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Figure 3.1: Difference between the MCD and Pearson correlation

As shown in Figure 3.2, the only difference between robust PLS/PLSc and its
traditional counterparts is the input of the estimation. The subsequent steps remain
unaffected, and thus, robust PLS/PLSc can be easily implemented in most common
software packages. However, due to the iterative algorithm, robust PLS/PLSc are
more computationally intensive than their traditional counterparts that are based on

the Pearson correlation.

3.3 Computational experiments using Monte Carlo

simulation

The purpose of our Monte Carlo simulation is twofold: First, we examined the be-
havior of PLS-PM and PLSc in case of unsystematic outlier. Although the reliance of
traditional PLS-PM/PLSc on Pearson correlation implies that outliers would be an
issue, there is no empirical evidence so far of whether the results of traditional PLS-
PM/PLSc are affected by outliers and, if so, how strong the effect is. Second, we were
interested in the efficacy of robust PLS/PLSc. More concretely, we investigated the
convergence behavior, bias and efficiency of robust PLS/PLSc and compared them to
their traditional counterparts.

The experimental design was full factorial and we varied the following experimental
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Figure 3.2: Conceptual differences of traditional and robust PLS/PLSc

conditions: ©

 concept operationalization (all constructs are specified either as composites or

common factors),

6 Additionally, three other conditions were examined. First, it was examined whether the model
complexity had an influence on the results by including a model containing 5 constructs and 20
observed variables. In doing so, all constructs were either specified as composites or as common
factors. Second, we investigated the estimators’ performance in case that only a fraction of the
observed variables, i.e., two observed variables, are contaminated by outliers. Third, we examined
the estimators’ performance in case of systematic outliers. In doing so, the outliers were drawn from
the univariate continuous uniform distribution with lower bound 2 and upper bound 5 representing
a situation where respondents always score high. Since the results are very similar to the results
presented, these conditions are not be explained in detail in this chapter. For the results as well as
further information on both conditions, we refer to the Appendix.
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o sample size (n = 100, 300 and 500) and

o share of outliers (0%, 5%, 10%, 20%, 40% and 50%).

3.3.1 Population models

To assess whether the type of construct, i.e., composite or common factor, affects the
estimators’ performance, we considered two different population models.
Population model with three common factors

The first population model consists of three common factors and has the following

structural model:

N2 = Y21 + G2 (3.11)

N3 = Y3111 + Y32m2 + (3, (3.12)

where v91 = 0.5, 731 = 0.3 and 32 = 0.0. As Figure 3.3 depicts, each block of
three observed variables loads on one common factor with the following population

loadings: 0.9, 0.8 and 0.7 for 1y, 0.7, 0.7 and 0.7 for 75, and 0.8, 0.8 and 0.7 for 73.

299 999 999

Y31 =3

Figure 3.3: Population model containing three common factors

All structural and measurement errors are mutually independent and the common

factors are assumed to be independent of measurement errors. The observed variables’
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population correlation matrix is given by the following:

T T T3 Tn T T T; Ty T
1.000
0.720 1.000

0.630 0.560 1.000
0.315 0.280 0.245 1.000
X =(0.315 0.280 0.245 0.490 1.000 (3.13)
0.315 0.280 0.245 0.490 0.490 1.000

0.216 0.192 0.168 0.084 0.084 0.084 1.000
0.216 0.192 0.168 0.084 0.084 0.084 0.640 1.000

0.189 0.168 0.147 0.074 0.074 0.074 0.560 0.560 1.000

Population model with three composites

The second population model illustrated in Figure 3.4 is similar to the first, but all
common factors are replaced by composites. The composites are built as follows:
m = xhw; with w] = (0.6,0.4,0.2); ny = zhws with w)j = (0.3,0.5,0.6); and
N3 = Thws with wh = (0.4,0.5,0.5).

D
11 T12 Ty

.0
21 T22 T2

x 3 T 3 Z

Y31 =3

Figure 3.4: Population model containing three composites
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The observed variables’ population correlation matrix has the following form:”

Tuo T T Tn T Ty T Ta o Ty
1.000
0.500 1.000

0.500 0.500 1.000
0.180 0.160 0.140 1.000
¥ =(0.360 0.320 0.280 0.200 1.000 (3.14)
0.360 0.320 0.280 0.000 0.400 1.000

0.196 0.174 0.152 0.044 0.087 0.087 1.000
0.184 0.163 0.143 0.041 0.082 0.082 0.250 1.000

0.200 0.178 0.155 0.044 0.089 0.089 0.400 0.160 1.000

3.3.2 Sample size

Although the asymptotic BP of MCD equals 50% (Rousseeuw, 1985), its finite sample
behavior in the context of the PLS-PM algorithm needs to be examined. Therefore,
we varied the sample size from 100 to 300 and 500 observations. For an increasing
sample size, we expect almost no effect on the behavior of robust PLS and PLSc
except that standard errors of their estimates decrease, i.e., the estimates become

more accurate.

3.3.3 Outlier share in the datasets

To assess the robustness of our proposed estimator and to investigate the performance
of PLS-PM and PLSc in case of randomly distributed outliers, we varied the outlier
share in the datasets from 0% to 50% with the intermediate levels of 5%, 10%, 20% and
40%. We deliberately included a share of 0% to investigate whether robust PLS and
PLSc perform comparably to their non-robust counterparts if outliers are absent. In
this case, we would expect the traditional versions of PLS-PM/PLSc to outperform
our proposed modifications as they are based on the Pearson correlation which is
known to be asymptotically efficient under normality (Anderson and Olkin, 1985).

As the share of outliers increases, we expect an increasing distortion in PLS-PM and

7All correlations were rounded to three decimal places.
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PLSc estimates. In contrast, due to the MCD estimator’s asymptotic BP of 50%, we
expect robust PLS/PLSc to be hardly affected by outliers unless the asymptotic BP

is reached.

3.3.4 Data generation and analysis

The simulation was carried out in the statistical programming environment R (R
Core Team, 2017). The datasets without outliers were drawn from the multivariate
normal distribution using the function mvrnorm() from the MASS package (Venables
and Ripley, 2002). The outliers were randomly drawn from the univariate continuous
uniform distribution with the lower bound of -10 and the upper bound of 10 using
the function runif () from the stats package (R Core Team, 2017). To contaminate
the datasets with outliers, the last observations of each dataset were replaced by
those. The MCD correlation estimates were calculated by the cov.rob() function
from the MASS package (Venables and Ripley, 2002). PLS-PM and PLSc as well as
the estimates of our proposed robust versions were obtained using the function csem()
from the ¢cSEM (version 0.0.0.9000, Rademaker and Schuberth, 2020) package.® The
inner weights were obtained by the factorial scheme and the observed variable weights
in case common factors were calculated by mode A and in case of composites by mode
B.

Although we considered the number of inadmissible solutions, the presented final
results are based on 1,000 admissible estimations per estimator for each condition, i.e.,
the inadmissible solutions were excluded and replaced by proper ones. To assess the
performance of the different estimators, we consider the empirical smoothed density
of the deviations of a parameter estimate from its population value. The range of the
density represents the accuracy of an estimator, i.e., the fatter the tails are the less
precise the estimator. A narrow symmetric density with a mode at zero is desired, as

it indicates an unbiased estimator with a small standard error.

8Since the cSEM package is currently under development, the results for PLS-PM and PLSc
were validated by ADANCO (Henseler, 2019) and SmartPLS (Ringle et al., 2015).
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3.4 Results

This section presents the results of our Monte Carlo simulation. Due to the large
number of results, we report only a representative part of the results. In doing so, we
only consider some of the model parameters since the results are very similar for all

parameters. The complete results are given in the Appendix.

3.4.1 Population model with three common factors

This section shows the result for the population model consisting of three common
factors. Figure 3.5 shows the performance of robust PLSc for various sample sizes
and outlier shares when all observed variables are affected by unsystematic outliers.
For clarity, only the two path coefficients v2; and ~y32 and the factor loading A3 are

considered. The results for the other parameters are similar.

n = 100 n = 300 n = 500
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Figure 3.5: Performance of robust PLSc
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As illustrated, the outlier share does not affect the parameter estimates of robust
PLSc. On average, all estimates are close to their population value. Only when the
proportion of outliers reaches 50% will the estimates be clearly distorted. Moreover,
the results are similar for larger sample sizes, except that the estimates become more
accurate.

Figure 3.6 compares the estimates of robust and traditional PLSc. Since their
results are very similar across various sample sizes, the results are only shown for a
sample size of 300 observations. Moreover, as the results for robust PLSc are almost
unaffected by the share of outliers, only the results for outlier shares of 0%, 5%, 40%

and 50% are considered.
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Figure 3.6: Comparison of robust and traditional PLSc for n = 300

For samples without outliers, both approaches yield similar estimates, but PLSc

produces slightly smaller standard errors. However, while robust PLSc estimates
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show almost no distortion until the asymptotic BP of 50% of the MCD estimator is
reached, traditional PLSc estimates are already distorted for a small outlier share.

This distortion increases if the outlier share is increased.

3.4.2 Population model with three composites

In the following, the results for the population model consisting of three composites
are shown. To preserve clarity, only the results for the two path coefficients v,; and
~v32 and the weight w3 are reported. However, the results for the other parameters

are similar. Figure 3.7 illustrates the performance of robust PLS.
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Figure 3.7: Performance of robust PLS

Similar to the model with three common factors, the outlier share has almost no
effect on the performance of robust PLS. Only when the share of outliers reaches 50%

are the estimates significantly distorted. On average, the robust estimates are very
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close to their population value; for an increasing sample size, the estimates becomes
more precise.

Figure 3.8 compares the performance of robust PLS and that of its original version
for various shares of outliers. Since the results are very similar across the considered
sample sizes, the results for 300 observations are representative of the results for other
sample sizes. Moreover, robust PLS behaves similarly for different outlier shares;

therefore, only the results for outlier shares of 0%, 5%, 40% and 50% are shown.
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Figure 3.8: Comparison of robust and traditional PLS for n = 300

In the case of no outliers, the two estimators yield similar estimates, but PLS-PM
results in slightly smaller standard errors. While robust PLS shows a distortion only
at the share of 50% of outliers, traditional PLS-PM estimates are already distorted at
the outlier share of 5%. As the outlier share increases, the PLS-PM estimates become

increasingly distorted, and in case of outlier share of 10% or above, the estimates even
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show a bimodal distribution.

3.4.3 Inadmissible solutions

Figures 3.9 and 3.10 illustrate the share of inadmissible solutions until 1,000 proper
solutions were reached for the models with three common factors and three com-
posites. An inadmissible solution is defined as estimation for which the PLS-PM
algorithm does not converge, at least one standardized loading or one construct reli-
ability of greater than 1 is produced, or for which the construct correlation matrix or

the model-implied observed variable’s correlation matrix are not positive definite.
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Figure 3.9: Occurence of inadmissible solutions for the model containing three com-
mon factors

Figure 3.9 shows the shares of inadmissible solutions for the model containing
three common factors. The largest number of inadmissible solutions is produced by
PLSc based on the Pearson correlation.? In this case, neither the sample size nor
the share of outliers significantly influences the share of inadmissible solutions. In
contrast, robust PLSc produces fewer inadmissible solutions than does traditional
PLSc in every condition except for samples without outliers. Although robust PLSc
produces numerous inadmissible solutions in case of 100 observations, its results im-
prove for samples of size 300 and 500. Robust PLSc only produces a large number of

inadmissible solutions for 50% of outliers in the sample.

9 Additionally, to examine whether the large number of inadmissible solutions is a PLSc-specific
problem, we estimated the model with three common factors, 100 observations and 20% outlier by
maximum likelihood using the sem() function of the lavaan package (Rosseel, 2012). As a result, we
observed a similar share of indadmissible solutions.
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Figure 3.10: Occurence of inadmissible solutions for the model containing three com-
posites

Figure 3.10 shows the share of inadmissible solutions for the model consisting of
three composites. In general, the share of inadmissible solutions is lower than that
for the model with three common factors. While almost no inadmissible solutions
are produced by robust PLS, except in case of the outlier share of 50%, the share
of inadmissible solutions of PLS-PM is substantial when outliers are present and is
almost unaffected by the sample size and the outlier share. However, in case of no

outliers, almost no inadmissible solutions are produced by PLS-PM.

3.5 Empirical examples

In this section, we illustrate the relevance of robust PLS/PLSc for empirical research.
In doing so, we adopt the Corporate Reputation Model adapted from Hair et al.
(2017b) and evaluate the influence of an incorrectly prepared dataset on the esti-
mation results. Additionally, using the open- and closed-book dataset from Mardia
et al. (1979), we compare the results of robust PLSc to those obtained by the robust

covariance-based estimator suggested by Yuan and Bentler (1998a).

3.5.1 Example: Corporate reputation

The Corporate Reputation Model explains customer satisfaction (CUSA) and cus-
tomer loyalty (CUSL) by corporate reputation. Corporate reputation is measured

using the following two dimensions: (i) company’s competence (COMP) which repre-
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sents the cognitive evaluation of the company, and (ii) company’s likeability (LIKE)
which captures the affective judgments. Furthermore, the following four theoretical
concepts explain the two dimensions of corporate reputation: (i) social responsibil-
ity (CSOR), (ii) quality of company’s products and customer orientation (QUAL),
(iii) economic and managerial performance (PERF) and (iv) company’s attractiveness
(ATTR).

The concepts CSOR, PERF, QUAL and ATTR are modeled as composites while
the concepts LIKE, COMP, CUSA and CUSL are modeled as common factors. In to-
tal, 31 observed variables are used for the concept’s operationalization. Each observed
variable is measured on a 7-point scale ranging from 1 to 7. The dataset is publicly
available and comprises 344 observations per observed variable including 8 observa-
tions with missing values in at least one observed variable coded as -99 (SmartPLS,
2019).

The conceptual model is illustrated in Figure 3.11. To preserve clarity, we omit
the measurement and structural errors as well as the correlations among the observed
variables. For detailed information about the underlying theory and the used ques-
tionnaire, it is referred to Hair et al. (2017Db).

We estimate the model by robust and traditional PLS-PM/PLSc based on the
dataset with and without missing values. Ignoring missing values, i.e., analyzing a
dataset containing missing values, represents a situation where a researcher does not
inspect the dataset for missing values a priori to the analysis. Consequently, the
missing values which are coded as -99 are treated as actual observations and can
therefore be regarded as outliers since they are obviously different from the rest of
the observations.

In case of no missing values, the missing values are assumed to be completely
missing at random and are removed prior to the estimation. As a consequence, they
do not pose a threat for the analysis.

To obtain consistent estimates, the model is estimated by PLSc, i.e., mode B is
applied for composites and mode A with a correction for attenuation is employed for
common factors . Additionally, the factor weighting scheme is used for inner weight-
ing and statistical inferences are based on bootstrap percentile confidence intervals

employing 999 bootstrap runs. Table 3.2 presents the path coefficient estimates and
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Figure 3.11: Corporate Reputation Model

their significances.'?

Although PLSc and robust PLSc produce quite similar path coefficient estimates in
case of the dataset containing outliers, there are some noteworthy differences leading
to contrary interpretations. While PLSc produces a non-significant effect with a

A

negative sign of LIKE on CUSA (6 = —0.151), employing robust PLSc results in

10The estimated weights and factor loadings can be found in Table 8.4 in the Appendix.
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Table 3.2: Path coefficient estimates for the Corporate Reputation Model

With outliers Without outliers
traditional robust traditional = robust
PLSc PLSc PLSc PLSc
QUAL — COMP 0.482** 0.412** 0.486** 0.402**
PERF — COMP 0.345** 0.398** 0.339** 0.388**
CSOR — COMP 0.058 -0.008 0.060 0.008
ATTR — COMP 0.098° 0.204* 0.097° 0.210*
QUAL — LIKE 0.414** 0.463** 0.413** 0.482**
PERF — LIKE 0.128° 0.152 0.127 0.123
CSOR — LIKE 0.197** 0.227* 0.209** 0.204*
ATTR — LIKE 0.182** 0.133° 0.173* 0.181°
COMP — CUSA 0.252 0.203 0.033 0.221
LIKE — CUSA -0.151 0.454* 0.555** 0.449*
COMP — CUSL 0.049 -0.054 -0.116 -0.147
LIKE — CUSL 0.031 0.507** 0.533** 0.601**
CUSA — CUSL 0.698** 0.504** 0.499** 0.497**

**: significant on a 1% level; *: significant on a 5% level;

°: significant on a 10% level

a clear positive effect (ﬁ = 0.454, f2 = 0.085). Moreover, the effect of LIKE on
CUSL is non-significant under PLSc (B = 0,031) indicating no effect, robust PLSc
produces a moderate positive effect (B = 0.507, f?2 = 0.237). In case of no outliers,

both estimators lead to similar results with no contradictions in the interpretation.

3.5.2 Example: Open- and closed-book

This section compares the results of robust PLSc to the outlier-robust covariance-
based (robust CB) estimator proposed by Yuan and Bentler (1998a). The latter
employs M- and S- estimators to obtain robust estimates for the observed variables’
variance-covariance matrix as input for the maximum likelihood (ML) estimator. For
the comparison, we replicate the empirical example in Yuan and Bentler (1998a) using
the open- and closed-book dataset from Mardia et al. (1979).

The dataset contains test scores of 88 students on five examinations. The first two
observable variables (score on Mechanics and Vectors) are linked to the first factor
(closed-book exam) and the last three observable variables (score on Algebra, Analysis
and Statistics) depend on the second factor (open-book exam). For more details, see

Tanaka et al. (1991).
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Table 3.3 presents the estimated factor correlation (p) for the different estimators.

Table 3.3: Open and closed book example: estimated factor correlation

Estimator 0

PLSc 0.791
ML 0.818
robust PLSc 0.853

robust CB estimator  [0.856;0.896]"
*: Depending on the weighting
factor, the estimate ranges from
0.856 to 0.896.

The ML and robust CB estimates are taken from Yuan and Bentler (1998a). Since
the M- and S- estimator depend on a weighting factor, the parameter estimates depend
on that weighting factor as well. As a consequence, the estimated factor correlation
ranges from 0.856 to 0.896 for the robust CB estimator.

In general, the PLSc and the ML estimate and the robust PLSc and the robust ML
estimates, respectively, are very similar indicating that robust PLSc performs similarly
as the robust CB estimator. Moreover, the difference between robust PLSc and its
traditional counterpart is 0.062, while the difference between the ML estimator and
its robust version ranges from 0.038 to 0.078. This is in line with Yuan and Bentler’s
conclusion that no extreme influential observations are present in the dataset leading

to similar results for robust and non-robust estimators.

3.6 Discussion

Outliers are a major threat to the validity of results of empirical analyses, with VB
estimators being no exception. Identifying and removing outliers, if practiced at all,
often entails a set of practical problems. Using methods that are robust against
outliers is thus a preferable alternative.

Given the frequent occurrence of outliers in empirical research practice, it appears
surprising that the behavior of traditional PLS-PM and PLSc has not yet been stud-
ied under this circumstance. The first important insight from our simulation study is
that neither traditional PLS-PM nor PLSc is suitable for datasets containing outliers;
both methods produce distorted estimates when outliers are present. Strikingly, even

a small number of outliers can greatly distort the results of traditional PLS-PM/PLSc.
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This observation underscores the need for a methodological advancement and high-
lights the relevance of addressing outliers in empirical research using PLS-PM/PLSc.

As a solution, we introduced the robust PLS/PLSc estimators to deal with outliers
without the need to manually remove them. The robust PLS/PLSc estimators use the
MCD estimator as input to the PLS-PM algorithm. This modular construction of the
new method permits the PLS-PM algorithm and the correction for attenuation applied
in PLSc to remain untouched and thus allow for an straightforward implementation.

The computational experiment in the form of a Monte Carlo simulation showed
that both robust PLS and robust PLSc can deal with large shares of unsystematic
outlier and that their results are hardly affected by the model complexity and the
number of observed variables contaminated by outliers. The proposed method’s esti-
mates are almost undistorted for the outlier share of up to 40%. The share of outliers
would need to reach or exceed 50% of observations for the robust PLS/PLSc to break
down. This finding is unsurprising, as this level matches the asymptotic BP of the
employed MCD correlation estimator. Our findings are relatively stable with regard
to outlier extent and model complexity. Even for systematic outliers, our Monte Carlo
simulation provides first evidence that robust PLS/PLSc yield undistorted estimates.
However, the BP is slightly lower compared to the situation with unsystematic out-
liers. This is not surprisingly since the asymptotic Breakdown Point of an estimator
is defined on basis of randomly generated contamination.

Although robust PLSc produces a large number of inadmissible solutions in case
of small sample sizes, it still produces a smaller number of such solutions than does its
non-robust counterpart. Furthermore, robust PLS produces only a notable number of
inadmissible solutions for samples with the outlier share of 50%, while its traditional
counterpart also produces higher numbers of inadmissible results for smaller outlier
shares. Generally, as the sample size increases, the number of inadmissible results
decreases and as expected, the estimates become more precise.

It is worth noting that if the data do not contain outliers, PLS-PM and PLSc out-
perform their robust counterparts with regard to efficiency, i.e., by producing undis-
torted estimates with smaller standard errors. This finding is unsurprising because
the Pearson correlation equals the maximum likelihood correlation estimate under
normality, which is known to be asymptotically efficient (Anderson and Olkin, 1985).

Moreover, the MCD estimator is based only on a fraction of the original dataset, while
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the Pearson correlation takes the whole dataset into account.

The practical relevance of robust PLS/PLSc in empirical research is demonstrated
by two empirical examples which additionally emphasize the problem of ignoring out-
liers. By means of the Corporate Reputation example, it is shown that not addressing
outliers can affect the sign and magnitude of the estimates, and thus, also their sta-
tistical significance. This is particular problematic as researchers can draw wrong
conclusions when generalizing their results. Additionally, the open- and closed-book
example shows that robust PLSc produces similar results as the robust covariance-
based estimator suggested by Yuan and Bentler (1998a) providing initial evidence
that both estimators perform similarly well. While the latter is likely to be more
efficient in case of pure common factor models as it is based on a maximum likelihood
estimator, robust PLSc is likely to be advantageous in situations in which researchers
face models containing both common factors and composites.

Although robust PLS and PLSc produce almost undistorted estimates when the
outliers arise randomly and initial evidence is obtained that they are robust against
systematic outliers, future research should investigate the behavior of these estima-
tors in case of outliers that arise from a second population, e.g., from an underlying
population that the researcher is unaware of or uninterested in. Moreover, since
robust PLS and PLSc are outperformed by their traditional counterparts when no
outliers are present, future research should develop statistical criteria and tests to
decide whether the influence of outliers is such that the use of a robust method is rec-
ommendable. As robust covariance-based estimators have already been introduced,
future research should compare their performance to robust PLS/PLSc. Furthermore,
the large number of inadmissible solutions produced by PLSc if outliers are present,
should be investigated. Even though an initial simulation has shown that the large
number of inadmissible results is not a PLSc-specific problem, future research should
examine whether a use of other correction factors (Dijkstra, 2013b) or an empirical
Bayes approach (Dijkstra, 2018) could improve its performance in presence of out-
liers. It may be fruitful to depart from robust PLS/PLSc in exploring all these new

research directions.
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Chapter 4

Performing out-of-sample
predictions based on models
estimated by ordinal consistent

partial least squares

4.1 Introduction !

Partial least squares path modeling (PLS-PM) was developed as a computationally
efficient estimator for structural equation models containing common factors (Wold,
1974, 1982). It is based on the PLS-PM algorithm that first creates weights to form
linear combinations of observed observed variables that serve as proxies for latent
variables. Subsequently, it uses these proxies to estimate the model parameters.
Since PLS-PM estimates are known to be only consistent at large (e.g., Hui and

Wold, 1982), PLS-PM was enhanced. This enhancement, known as consistent partial

IThis chapter is based on joint work with Gabriele Cantaluppi and Florian Schuberth. At the
time this dissertation was submitted, the paper was under review for possible publication in:
H. Latan, J.F. Hair & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts,
methodological issues, and applications (2nd ed.). Cham, Switzerland: Springer.
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least squares (PLSc), applies a correction for attenuation in order to obtain consistent
estimates for structural models containing common factors (Dijkstra, 2013b; Dijkstra
and Henseler, 2015b). In the course of this, PLS-PM was extended to deal with non-
linear and non-recursive structural models, as well as with correlated measurement
errors within blocks of observed variables (Dijkstra and Schermelleh-Engel, 2014;
Dijkstra and Henseler, 2015a; Rademaker et al., 2019). PLS-PM has now become a
widely used estimator in various fields including marketing research (Hair et al., 2011),
information systems research (Benitez et al., 2020), and tourism research (Miiller
et al., 2018). Moreover, during the last decade the evaluation of the predictive power
of models estimated by PLS-PM has gained more and more interest (Carrién et al.,
2016). For instance, PLSpredict was proposed as an approach to perform out-of-
sample predictions based on a model estimated by PLS-PM (Shmueli et al., 2016).
Guidelines on how to use PLSpredict have been introduced (Shmueli et al., 2019).
Nowadays, PLS-PM is even regarded as the preferred approach to structural equation
modeling “when the statistical objective is prediction” (Hair et al., 2017a, p. 454).

As recognized early in the PLS-PM literature the “the standard procedures cannot
be used for the categorical and ordinal-scaled variables that are often encountered in
the behavioral sciences” (Lohmoller, 1989, p. 155). Nevertheless, most of the devel-
opments of PLS-PM such as PLSc assume that the observed variables are measured
on a metric scale. To relax this metric scale assumption, ordinal partial least squares
(OrdPLS, Cantaluppi, 2012) and ordinal consistent partial least squares (OrdPLSec,
Schuberth et al., 2018b) were designed to deal with ordinal categorical observed vari-
ables in a psychometric way. OrdPLS and OrdPLSc are similar to PLS-PM and PLSc,
respectively; however, the Pearson correlations are replaced by polychoric/polyserial
correlations. Consequently, researchers who want to apply PLSc and PLS-PM who
also striving for consistent estimates in the case of ordinal categorical observed vari-
ables are advised to apply OrdPLSc and OrdPLS, respectively.

Although the development of OrdPLS and OrdPLSc is promising in terms of pa-
rameter recovery (Schuberth et al., 2018b), very little research has been conducted
to assess their suitability for performing model-based out-of-sample predictions. Per-
forming predictions based on models estimated by PLS-PM, known as PLSpredict
(Shmueli et al., 2016), is well established (Shmueli et al., 2019); however, an approach
to perform predictions in the context of OrdPLS and OrdPLSc when all observed vari-
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ables are ordinal categorical, was only recently proposed (Cantaluppi and Schuberth,
2019). In this chapter, we propose OrdPLScpredict and OrdPLSpredict which are
extensions of the approach Cantaluppi and Schuberth (2019) suggested to deal with
both continuous and ordinal categorical observed variables. Additionally, we provide
guidelines on how to perform OrdPLScpredict and OrdPLSpredict using the open
source R package ¢SEM (Rademaker and Schuberth, 2020).

The remainder of the chapter is organized as follows: Section 4.2 presents OrdPLS
and OrdPLSc. Section 4.3 gives an overview of performing out-of-sample predictions
using PLScpredict and PLSpredict. In Section 4.4, we propose OrdPLScpredict and
OrdPLSpredict, two approaches to perform out-of-sample predictions using models
estimated by OrdPLS and OrdPLSc, respectively. In Section 4.5, we conduct a Monte
Carlo simulation to evaluate the performance of our two proposed approaches. Section
4.6 provides guidelines on how to perform predictions using the open source R package

¢SEM. Our chapter closes with a discussion given in Section 4.7.

4.2 Ordinal (consistent) partial least squares path modeling

Wold (1966) originally developed PLS-PM as an approach for principal component
analysis and (generalized) canonical correlation analysis, which at the time was still
known as nonlinear iterative least squares and nonlinear iterative partial least squares,
respectively (Tenenhaus et al., 2005). In fact, PLS-PM can emulate several of Ket-
tenring’s (1971) approaches for generalized canonical correlation analysis (Tenenhaus
et al., 2005). A few years later, Wold proposed PLS-PM as a computational efficient
estimator for structural models containing common factors (Wold, 1974, 1982). In
this case, weights are determined by the PLS-PM algorithm to form proxies and sub-
sequently these proxies are used to estimate the relationships between the common
factors. As various researchers emphasized, PLS-PM estimates for this type of model
are only consistent at large; i.e., only if both the number of observations and the
number of observed variables converge to infinity, will PLS-PM estimates converge in
probability to the respective population parameters (e.g., Hui and Wold, 1982; Di-
jkstra, 1985). However, recently various studies have shown that PLS-PM produces

consistent estimates for models containing interrelated composites (Dijkstra, 2017;
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Cho and Choi, 2020; Henseler, 2021).2

In its most modern appearance known as consistent partial least squares (Dijkstra
and Henseler, 2015a,b, PLSc), it produces consistent parameter estimates for struc-
tural models containing common factors and composites. Similar to PLS-PM, PLSc
relies on the PLS-PM algorithm to determine the weights to build proxies for the
constructs. In cases that constructs are modeled as common factors, it applies a cor-
rection for attenuation to correlations affected by common factors. In this way, it is
ensured that the construct correlation matrix is consistently estimated, and thus, con-
sistent path coefficient estimates can be obtained. Moreover, in contrast to PLS-PM
which always relies on ordinary least squares (OLS) to estimate the model parameters,
PLSc applies two-stage least squares (2SLS) in the case of non-recursive structural
models. Finally, a recent development allows PLSc to deal with correlated random
measurement errors within a block of observed variables measuring a common factor
(Rademaker et al., 2019).

PLS-PM including PLSc assumes that the observed variables are measured on
a metric scale. To overcome this limitation, various modifications of PLS-PM have
been developed to cope with non-metric variables such as partial maximum likelihood
partial least squares (Jakobowicz and Derquenne, 2007) and non-metric partial least
squares (Russolillo, 2012). A further approach that was developed to deal with ordinal
categorical observed variables in a classic psychometric way, is OrdPLS (Cantaluppi,
2012). OrdPLS is similar to PLS-PM, but applies polychoric and polyserial corre-
lations as input for the PLS-PM algorithm to take the nature of ordinal categorical
observed variables into account. Consequently, the original PLS-PM algorithm re-
mains untouched. In the same way as PLS-PM was extended by PLSc, OrdPLS was
extended by OrdPLSc to consistently estimate structural models containing common
factors and ordinal categorical observed variables (Schuberth and Cantaluppi, 2017;
Schuberth et al., 2018b). Figure 4.1 illustrates the four steps of OrdPLSc: (i) calcu-
lating the polychoric/polyserial correlations, (ii) performing the PLS-PM algorithm,
(iii) correcting for attenuation if some constructs are modeled as common factors,

and (iv) estimating the path coefficients by OLS and 2SLS, respectively. Below we

2These composites are not only a weighted linear combination of variables, but also convey all
the information between its observed variables and other variables in the model.
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elaborate each of the four steps>.

Calculating ) o
polychoric/ Performing the Correcting ) Estimating -

lyserial PLS algorithm for attenuation path coefficients
b oteelatio (common factor) by OLS/2SLS

correlations

Figure 4.1: Ordinal Consistent Partial Least Squares (adapted from Schuberth et al.
(2018Db))

4.2.1 Calculating polychoric/polyserial correlations

Following Pearson’s idea of a polytomous variable, we assume an ordinal categorical
observed variable = to be the result of a categorized unobservable standard normally

distributed random variable z* (Pearson, 1900, 1913)

T=xym if Thoi<a'<m, m=1,...,M (4.1)
where the threshold parameters 7g,..., 7y determine the observed categories. The
first and last threshold are fixed: 79 = —oo and 7p; = co. Moreover, we assume the

thresholds to be strictly increasing: 70 < 71 < ... < Tas.

Figure 4.2 depicts the idea of an underlying continuous variable, i.e., for observed
variable x, category x,, is observed if the realisation of the underlying continuous
variable x* falls between the thresholds 7,,_1 and 7,,.

Since we assume an ordinal categorical variable to be determined by an underlying
continuous variable, it is more appropriate to consider the correlation between these
underlying continuous variables for evaluating the linear relationship of interest. This
is achieved by using the polychoric correlation (Drasgow, 1986). In cases where the
correlation between an ordinal categorical variable and a metric variable is calculated

the polyserial correlation can be used (Lee and Poon, 1986).

3Note that the following subsections contain large parts adapted from Schuberth et al.
(2018b) which is published under the Creative Commons Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/).

4In empirical work two consecutive threshold parameters can be equal, Tp,_1 = Tm, if the
corresponding category ., is not observed.
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Figure 4.2: Pearson’s idea of an ordinal categorical variable (taken from Schuberth
et al. (2018b))

4.2.2 Performing the PLS-PM algorithm

The second step of OrdPLS and OrdPLSc involves applying the PLS-PM algorithm
to the sample correlation matrix S of dimension K x K calculated in the previous
step. For simplicity, the K; observed variables belonging to one construct n;, i.e., a
common factor or a composite, are grouped to form the block j with 7 =1,...,J and
where ijl K; = K, i.e., each observed variable belongs exactly to one block.

The PLS-PM algorithm is an iterative algorithm which starts with initial arbitrary
©)
J

the following condition: w§0)’sjjw§°> = 1 for each block j where the (K; x Kj)

weights @’ (K; x 1). The initial weights are chosen in such a way that they satisfy
matrix S;; contains the sample correlations of the observed variables of block j. This
condition holds for all weights in each iteration ¢ and can be achieved by using a
(4

scaling factor (wj(.")’sjjwy))—% for the weights w

; in each iteration <.

The PLS-PM algorithm aims to determine weights to build proxies for the J
constructs. This can be done in three ways, identified as Mode A, Mode B, and
Mode C. In the case of Mode A, the weights, also known as correlation weights, are

determined as follows:
J
L (i1 NOWG . o (i41)1 o (i41
w§ ) ZSjlwl( )e;l) with wj( ) Sjij( )= 1. (4.2)
=1
In the case of Mode B, the weights, also known as regression weights, are calculated
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as follows:

(Y o« 57 ZJ: Spw{ el with @' w{ T = 1. (4.3)

=1
Mode C, also known as MIMIC mode, is a mixture of mode A and B, which we do not
consider here. The inner weights e;; can be obtained in three different ways, following
the centroid (Wold, 1982), factorial (Lohméller, 1989), and path weighting scheme.
All inner weighting schemes produce essentially the same results (Noonan and Wold,
1982), hence, we consider the path weighting scheme here.® For the path weighting

scheme, the inner weight e;; is chosen as follows:

w§i)’sjlw§i) if n; is a consequence of n;
65‘? =145 if ; is an antecedent of 7, (4.4)

0 otherwise

As the Equation (4.4) shows, the inner weight e;; equals the covariance between the
proxies of the constructs n; and »; if construct 7; is a consequence of the construct ;.
In contrast, if the construct 7; is an antecedent of the construct n;, the inner weight
ej; is equal to the regression coefficient Bl of a multiple regression of the construct
n; on its antecedents. Otherwise, if the two constructs are not connected via the
structural model, the inner weight is set to 0.

Since the PLS-PM algorithm has no single optimization criterion to be minimized,

the new weights 11)§i+1)

wf) in the previous iteration step. If there is a significant change in the weights,

are checked for significant changes compared with the weights

the algorithm starts again. Otherwise, the final weights w; equal the stable weights
determined in the last iteration.
Finally, the standardized composite loadings, i.e., the correlations between a proxy

and its observed variables, are calculated as:

~

If we apply OrdPLS, the standardized factor loading estimates, i.e., the estimated

correlations between a common factor and its observed variables, are calculated in

5Note that the choice of inner weighting scheme can substantially affect the estimates in the case
of models containing second-order constructs (Becker et al., 2012; Schuberth et al., 2020). For more
details on the other inner weighting schemes, see Tenenhaus et al. (2005).
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the same way. Thus, the polychoric/polyserial correlation matrix is taken into account
and therefore the calculation considers correlations with the underlying continuous
variable that correspond to ordinal observed variables of a common factor. As for

PLS-PM, the factor loading estimates of OrdPLS are not consistent.

4.2.3 Correcting for attenuation if constructs are modeled as

common factors

OrdPLS creates composites as proxies for constructs. Consequently, its estimates are
biased if the constructs are modeled as common factors. To overcome this issue in the
context of PLS-PM, Dijkstra and Henseler (2015a,b) proposed PLSc which applies
a correction to obtain consistent parameter estimates. OrdPLSc applies the same
correction to obtain consistent estimates for models containing common factors. The
correction exploits the linearity between population factor loadings and the population
weights, A; = cjw; and requires that each common factor be measured by at least two
observed variables. The estimated correction factor for block j satisfies the following
condition

phm éj = A;E]‘j}\j, (46)

where A; is a column vector of length K; containing the population loadings of com-
mon factor n; and X, is the (K; x K;) population correlation matrix of the observed

variables of block j.5 The correction factor é; can be obtained by

W (S;; — diag(S;;))w

2 j J
2 ) 4.7
T W (o, — diag(i; ) (4.7)
It is chosen in such a way that the Euclidean distance between
Sjj —diag(S;;) and  (c;w;)(cjw;) — diag((c;w;)(c;w})) (4.8)

is minimized (Dijkstra and Henseler, 2015a). For other ways to obtain correction
factors, the interested reader is referred to Dijkstra (2013b). Finally. the standardized

factor loadings of block j can be consistently estimated as

~

A = ;. (4.9)

SHere we do not consider the use of mode B for common factors. For a consistent version of
PLS-PM using mode B, the interested reader is referred to Dijkstra (2011).
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4.2.4 Estimating path coefficients by OLS/2SLS

In the last step, we estimate the path coefficients based on the proxies’ correlation
matrix, i.e., W’SW, where the matrix W of dimension K x J contains all the weight
estimates. In OrdPLS, this matrix is directly applied to estimate the parameters of the
structural model by OLS. In contrast, if constructs are modeled as common factors,
OrdPLSc applies a correction for attenuation to the proxies’ correlation matrix before
calculating the path coefficients. The correlation between the two common factors n;

and 7; where j # [ can be consistently estimated by:

cor(n;,m) = - —
£/ W W C Wy,

Similarly, if construct n; is modeled as a common factor and construct 7; as a com-

(4.10)

posite, the consistently estimated correlation is obtained by

cor(n, m) = (4.11)
In the case of both constructs being modeled as composites, no correction of the
correlation is required because we assume that the correlation between two composites
is not affected by attenuation. Finally, in OrdPLSc the path coefficients are estimated
by OLS or 2SLS depending on the structure of the underlying structural model.

4.3 Model-based predictions using PLS-PM and PLSc

In the context of PLS-PM, out-of-sample predictions have increasingly gained at-
tention (Evermann and Tate, 2014; Carrién et al., 2016; Sarstedt and Danks, 2021;
Shmueli et al., 2016, 2019). To perform such out-of-sample prediction, a procedure
called PLSpredict was introduced (Shmueli et al., 2016). In PLSpredict, endogenous
values are predicted by exogenous values based on a model estimated by PLS-PM.
In cases where the model parameters are estimated by PLSc, we label the procedure
PLScpredict. In the following exposition we present the steps of PLSpredict and
PLScpredict.

We start out with two datasets, namely the train dataset Xy;.in and the test
dataset Xiost- The train dataset contains observations for all observed variables and

is used to estimate the model parameters by PLS-PM or PLSc, i.e., the weights
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wj, j = 1,...,J, the loadings 5\]-, and the path coefficients of the exogenous and
endogenous constructs, which are captured in the matrices I' and B, respectively.
Subsequently, out-of-sample predictions can be performed based on the estimated
model and the observations given in the test dataset. The test dataset comprises
N observations for at least all observed variables connected to exogenous constructs.
Importantly, the observations of the test dataset are not used during the estimation
of the model.

In the context of PLSpredict, we can distinguish different types of predictions
(Lohmoller, 1989; Shmueli et al., 2016): (i) valid predictions in which predictions for
scores of exogenous constructs are obtained by observations of their associated ob-
served variables, (ii) structural predictions in which predictions for scores of endoge-
nous constructs are obtained by exogenous construct scores, (iii) commaunal predictions
in which predictions for values of observed variables associated with endogenous con-
structs are obtained by scores of their associated constructs, (iv) redundant predictions
in which predictions for values of the observed variables associated with endogenous
constructs are obtained by exogenous construct scores and the estimated structural
model, (v) latent predictions in which predictions for scores of endogenous constructs
are obtained by observations of the observed variables associated with exogenous con-
structs and the estimated structural model, and (vi) operative predictions in which
predictions for values of observed variables associated with endogenous constructs
are obtained by observations for the observed variables associated with exogenous
constructs and the estimated structural model.

Obviously, operative predictions are the most general case in that they involve
all the steps of the other types of predictions. Additionally, predictions can only be
evaluated if they are performed on item level, i.e., if values of the observed variables
are predicted. Against this background, we will now focus on operative predictions.
Note that other types of predictions can be obtained by starting or stopping the
approach we describe below at a later or earlier stage.

To obtain operative predictions, valid predictions have to be performed first. To
do this, we standardize the IV observations of the test dataset Xies; for the observed
variables associated with the exogenous constructs using the corresponding moments
estimated on the basis of the train datasets (Shmueli et al., 2016). Subsequently, for

all Jexo exogenous constructs, we predict scores as the weighted sum of their associated
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observed variables using the observations from the test dataset. Consequently, the

predicted scores of the exogenous constructs are obtained as follows:
Njexo = X testW; i=1,..., Jexo (4.12)

In a next step, we use the predicted scores of the exogenous constructs to predict
the scores of the Jo,q endogenous constructs in accordance with the structural model,

i.e. we perform structural predictions:
'flend = 'flexof‘/(l - B/)ila (413)

where fjeng is a matrix of dimension N X Jgnq that contains the predictions for the
scores of the endogenous constructs in its columns.

Finally, in the last step, we use the scores of the endogenous constructs to predict
values of the observed variables connected to endogenous constructs, i.e. we perform

communal predictions:
Xend = ﬁendAénd (414)

where the matrix Aend contains the estimated loadings of the observed variables con-
nected to endogenous constructs in its columns. To obtain the final predictions for
continuous observed variables, the values in Xenq are brought back to their original
scale using the mean and standard deviation of the train dataset (see Shmueli et al.
(2016)). In cases where ordinal categorical observed variables are associated with
endogenous constructs, Cantaluppi and Schuberth (2019) proposed rounding the pre-
dicted values to an integer. Thereby, we obtain predictions that are in line with the
domain of the ordinal categorical observed variables.

To evaluate the model’s predictive power, the test dataset must contain observa-
tions for all observed variables. In such a case, the observed values of the endogenous
constructs can be compared to their predicted counterparts (Shmueli, 2010). As pre-
dictive performance measures, the mean absolute error (MAE), the root mean squared
error (RMSE) (Evermann and Tate, 2014), and the concordance can be used to eval-
uate the predictive power of the model. Note that the latter, that summarizes the
number of ‘exact’ predictions, is only useful to assess predictions’ accuracy in the case
of categorical observed variables. Also, contributions to MAE and RMSE related to

ordered categorical observed variables can be appropriately interpreted as penalties
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of 0 in the presence of exact concordances between actual and predicted categories,
as penalties of 1 if a category h — 1 or i + 1 is predicted for the observed category h,
and as penalties of 2(MAE) or 4(RMSE) if a category h — 2 or h + 2 is predicted for

category h, and so on.

4.4 Model-based predictions using OrdPLS and OrdPLSc
(OrdPLSpredict and OrdPLScpredict)

In this section, we present an approach to performing predictions based on a model
estimated by OrdPLS and OrdPLSc, which we label OrdPLSpredict and OrdPLScpre-
dict, respectively. This approach allows for both ordinal categorical and continuous
observed variables. In fact, our approach generalizes the idea Cantaluppi and Schu-
berth (2019) presented to perform predictions based on a model estimated by OrdPLS
or OrdPLSc in cases where all observed variables are ordinal categorical.

We rely on the idea presented in section 4.2.1 that an ordinal categorical observed
variable x is the outcome of a polytomized standard normally distributed unobservable
random variable z*, see Equation (4.1). In cases with more than one categorical ob-
served variable, we assume that the categorical observed variables x are the outcome
of categorized underlying multivariate standard normally distributed latent random
variables £*. Consequently, the observations of the ordinal categorical observed vari-
ables x; belonging to construct j are the outcome of columnwise transformations
(as expressed by Equation (4.1)) of the observations of the underlying multivariate
normally distributed random variables that are stacked in the matrix X7, expressed

as:
X - X (4.15)

As shown in Section 4.2, OrdPLS and OrdPLSc can deal with both ordinal categorical
and continuous observed variables. Note that the transformation is only performed
for the observations of the ordinal categorical observed variables and not for those of
continuous observed variables.

As in PLSpredict, the first step is to estimate the model parameters. In the
context of OrdPLSpredict and OrdPLScpredict this is done by OrdPLS and OrdPLSc,

respectively, based on the train dataset which contains observations for at least one

79



ordinal categorical observed variable. Otherwise, if the train dataset contains no
ordinal categorical observed variable, there is no need to apply OrdPLS or OrdPLSc.

Next, the estimated model and the observations of the test dataset are used to
perform out-of-sample predictions. For this purpose, the test dataset must at least
contain observations for the observed variables associated with the exogenous con-
structs which are stored in the matrix Xiest, exo-"  We assume the observations of
ordinal categorical observed variables of the test dataset to be the columnwise trans-
formations of a multivariate truncated normally distributed dataset, as stated by

Equation (4.1):

Trunc,*
Xtest, eﬁco — Xtest, exo (416)
. . . . . . T
The observations from the multivariate truncated normal distribution X, wn are

standardized and have the same correlation matrix as the polychoric correlation be-
tween the observed variables connected to the train data’s exogenous constructs.

For each subject in the test dataset, given the expressed categories, the domain of

Trunc,*
Xtest, exo

is defined by the corresponding pairs of thresholds in the set of thresh-
olds (7;j_1,7;). These are obtained from the polychoric correlation matrix used for
model parameter estimation, i.e., the one based on the train dataset Xy ain. If the
test dataset contains additional observations for the observed variables associated
with endogenous constructs, the model’s predictive performance can be evaluated by
comparing the observed variables’ observed values to their predicted counterparts.

In the following explication, we present the steps OrdPLSpredict and OrdPLScpre-
dict take to perform out-of-sample predictions. Similar to PLSpredict and PLScpre-
dict, the only difference between OrdPLSpredict and OrdPLScpredict is that the
former uses OrdPLS estimates, while the latter employs OrdPLSc estimates.

1. Standardize the test dataset Xiest, exo Using the means and standard deviations
of the train dataset. Note that only the continuous observed variables are stan-
dardized, i.e., the ordinal categorical observed variables comprised in the test

dataset remain untouched.

2. Predict the scores of the exogenous constructs. In PLSpredict, scores of con-

struct j are obtained as linear combinations of the observed variables x; and

“In cases where only values of a subset of the observed variables associated with endogenous
constructs are predicted, a subset of the observed variables associated with the exogenous constructs
might be sufficient.
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the corresponding weight estimates, regardless of the observed variables’ mea-
surement scale. In contrast, in OrdPLSpredict and OrdPLScpredict the nature
of ordinal categorical observed variables is explicitly taken into account. Since
the number of ordinal categorical observed variables associated with exogenous
constructs can differ, three cases have to be distinguished, namely ones in which
(i) all observed variables are continuous, (ii) all observed variables are ordinal
categorical, and (iii) there is a mixture of continuous and ordinal categorical

observed variables.

Considering cases in which all observed variables associated with exogenous

constructs are continuous, construct scores are obtained as in PLSpredict:

A

Njexo = Xj,test,exowj> Jj=1..., Jexo (417)

where w; are the weight estimates obtained by OrdPLS/OrdPLSc based on the

train data.

Considering cases in which all observed variables associated with exogenous
constructs are ordinal categorical, the unknown values of the unobservable vari-
ables underlying these observed variables (see Equation (4.1)) need to be aggre-
gated. Specifically, the exogenous constructs’ scores can be calculated as linear

combinations of multivariate truncated normally distributed random variables

Trunc,*

Jtest.oxo Which are continuous. They also have the domain (7;_1,7;) defined

by the threshold parameters of the polychoric correlations based on the train
dataset Xipain, conditional on categories that characterize the manifest test data
set regarding ordinal categorical observed variables. Consequently, we obtain

the construct scores as follows:

A Trunc,* _~ .
Mjexo = Xj,test,exowj J=1..Jexo (418)

As Equation (4.18) shows, the distribution of the construct scores is a linear com-
bination of multivariate truncated normally distributed random variables with
OrdPLS/OrdPLSc weight estimates based on the train data. The distribution
of the construct scores has no simple form but can be approximated by simu-
lation. To simulate this distribution for each subject, we generate npyeq = 100
drawings from a multivariate truncated normal distribution with a variance-

covariance matrix that equals the polychoric correlation matrix of the train
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dataset and truncation limits that equal the threshold parameter estimates of
this polychoric correlation matrix. As a consequence, we obtain npy.q draws in
total for the unobservable variables underlying the ordinal categorical observed

) ) . T
variables associated with exogenous constructs X o 0P

j,test,exo for p= 17 -+ s Npred;

and thus, npreq sets of predicted scores for each exogenous construct:

A o = XD =1 Jexor D=Ly Mprea (4.19)

J,test,exo

Considering a case in which there is a mixture of continuous and ordinal cat-
egorical observed variables associated with exogenous constructs, we generate
Npred drawings from a multivariate truncated normal distribution for both the
categorical and the continuous observed variables to obtain construct scores.
The variance-covariance matrix of the multivariate truncated normal distribu-
tion equals the estimated correlation matrix of the observed variables based on
the train dataset, which can contain polychoric, polyserial and Pearson cor-
relations. We take the continuous observed variables into account during the
simulation to preserve the correlation structure. However, their generated values
in XjTgeu;Ceif are replaced by the corresponding observations from the test data.
For the ordinal categorical observed variables, the truncation limits are appro-
priately chosen, conditional on categories that characterize the test data set by
using the threshold estimates obtained by the polychoric/polyserial correlations
based on the train data. In contrast, for the continuous observed variables we
use arbitrary lower and upper truncation limits, e.g. -10 and 10. Consequently,
we obtain np,,eq datasets for the observed variables connected to exogenous con-
structs where the observations of the continuous observed variables equal the
observations from the test data, while for the categorical observed variables
we use the generated dataset of the multivariate truncated normal distribution.
Based on the resulting samples, we calculate the np;eq scores for each exogenous

construct as follows:

N o Trunc,*,p A . o
N exo = X test,exo Wi J=1..  Jexos P=1,...,Npred (4.20)

. Predict the endogenous constructs’ scores using the exogenous constructs’ scores
in accordance with the structural model. Using the npr.q predicted scores of

the exogenous constructs, npreq scores for the endogenous constructs can be
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predicted via the structural model:
ﬁgnd = ﬁgxof‘/(I - B/)il p= ]-, e 7nprcd (421)

For the case in which only continuous observed variables are connected to exoge-
nous constructs, the matrix with the predicted construct scores nZ,, is replaced
by flexo from Equation (4.17). Consequently, we do not obtain npreq matrices
containing predicted scores for the endogenous constructs, but only one matrix

ﬁend .

. Predict the values of the observed variables belonging to the endogenous con-
structs. Here, two cases need to be distinguished, namely ones in which (i) an
observed variable belonging to an endogenous construct is continuous, and (ii)

an observed variable belonging to an endogenous construct is ordinal categorical.

If the observed variable x; belonging to the j-th endogenous construct is con-
tinuous, first npreq predictions are obtained by multiplying the construct scores

with the estimated loading from the train dataset:

:%Z,cnd :ﬁiendj\j,k,end J = 17--'7Jend k= 17“~qu p= 17'~~7npred
(4.22)

In contrast, if the observed variable associated with an endogenous construct is
ordinal categorical, predictions for the continuous unobservable variables under-
lying the ordinal categorical observed variable have to be obtained first. As we
have predicted npreq scores for an endogenous construct, we also obtain npreq
predictions for the unobservable variable underlying the ordinal categorical ob-
served variable. This we do by multiplying the endogenous construct’s scores
with the estimated loading corresponding to the k-th observed variable xj of

the j-th endogenous construct 7);:

‘%Z:Zc)nd = ﬁiendj\j,k,end i=1...,Jdema k=1,..., Kj p=1,... , Npred
(4.23)

Obviously, the only difference between the procedure for continuous and ordinal
categorical variables is that for the latter the values of the unobservable variable

underlying the ordinal categorical variable are predicted.
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Finally, to obtain one prediction for each observation of the test dataset, the
Npred predictions for the observed variables of the endogenous constructs need
to be summarized. For this purpose, Cantaluppi and Boari (2016) proposed the
mean, the median, or the mode approach. In the case of the mean approach,
the i-th value of a continuous observed variable is predicted as the mean of the

Npred draws, expressed as:

Npred

1
P e i=1,..N (4.24)

Npred

Ak _
xk,i,end -
p=1

The median approach works similar to the mean approach; however, instead of
using the mean to summarize the npeq predictions, the median is used. While
for continuous observed variables the summarized values equal the final predic-
tions, for ordinal categorical variables, the summarized values are transformed
into categorical values according to Equation (4.1) using the estimated thresh-

olds based on the train data.

As a third approach to summarizing the npeq predictions, we can use the mode
approach. It uses the maximum of the predicted unobservable variable’s em-
pirical density on the intervals defined by the thresholds. Consequently, this

approach cannot be used for continuous observed variables.

Finally, the continuous observed variables’ predicted values are brought back to

their original scale using the mean and standard deviation of the train data.

4.5 Monte Carlo simulation

To assess the performance of OrdPLSpredict and OrdPLScpredict, we conducted a
Monte Carlo simulation. Specifically, we compared the accuracy of predictions for
continuous and ordinal categorical observed variables obtained by OrdPLScpredict,
OrdPLSpredict, PLScpredict, and PLSpredict. For OrdPLSpredict and OrdPLScpre-
dict, we used the mean and the median approach to obtain the final predictions of
the observed variables. Since PLSpredict and PLScpredict produce real values as
predictions, even for ordinal categorical observed variables, we rounded the predicted

values for the categorical observed variables to an integer.
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4.5.1 Simulation design

To compare the various approaches’ performance, we considered a population model
consisting of one exogenous common factor 7; and two endogenous common factors
12 and n3. We assumed all common factors to be standardized and related via a

structural model, as follows:

n2 =0.6-m + G (4.25)
N3 =0.0-1m1 +0.6 12+ (2 (4.26)

Additionally, we measured each of the three common factors by three observed vari-
ables; therefore, x11, 12, and x13 loaded on 77 with the factor loadings of 0.8, 0.7,
and 0.6, respectively; x21, 22, and x23 loaded on 7, each with a factor loading of
0.7; and x31, T32, and 33 loaded on 73 with factor loadings of 0.5, 0.7, and 0.9,
respectively. Similar to the common factors, the observed variables were assumed
to be standardized. Moreover, all structural disturbance terms ¢; and random mea-
surement errors €; were assumed to be uncorrelated. Similarly, the common factors
n; were assumed to be uncorrelated with the random measurement errors. Finally,
we assumed the exogenous common factor 7; to be uncorrelated with the structural
disturbance terms (7 and (5. Consequently, we could give the population correlation

matrix of the observed variables as follows:

T T T3 Tn T T T; Txm T
1.000
0.560 1.000

0.480 0.420 1.000
0.336 0.294 0.252 1.000
=033 0294 0.252 0.490 1.000 (4.27)
0.336 0.294 0.252 0.490 0.490 1.000

0.144 0.126 0.108 0.210 0.210 0.210 1.000
0.202 0.176 0.151 0.294 0.294 0.294 0.350 1.000

0.259 0.227 0.194 0.378 0.378 0.378 0.450 0.630 1.000

To examine the approaches’ performance in predicting ordinal categorical observed

variables’ values, the values of observed variables x11, =13, T21, 23, and x33 were
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transformed as described in section 4.2. In doing so, we varied the number of cate-
gories between four and five, and we considered two sets of threshold parameters that
Rhemtulla et al. (2012) proposed. In the case of symmetrically distributed threshold
parameters, all five observed variables were categorized using the following thresh-
old parameters: -oco, -1.25, 0, 1.25, co and -oco, -1.5, -0.5, 0.5, 1.5, oo, respectively.
Similarly, for the extreme asymmetric threshold parameter distribution, we set the
thresholds to -oo, 0.28, 0.71, 1.23, co in the case of four categories, and to -oco, 0.05,
0.44, 0.84, 1.34, oo in the case of five categories.

To assess the approaches’ predictive performance, we considered test datasets
containing N = 100 observations. Additionally, we focused on the following three
predictive performance measures: (i) the mean absolute error (MAE), (ii) the root
mean squared error (RMSE), and (iii) the concordance. The MAE is the average
absolute deviation of the predicted value of an observed variable from its observed
counterpart, % Zf\il |&; — x|, where N is the sample size of the test dataset. The
RMSE is the square root of the average squared deviation of the predicted value

from its observed counterpart, \/ + Zivzl(@ —x;)2 and the concordance gives the

share of exact predictions for an ordinal categorical observed variable. Note that
the concordance measure can only be reasonably calculated for categorical observed
variables. Further, while small values for the MAE and the RMSE indicate an accurate
prediction, for the concordance measure large values are desirable.

The complete Monte Carlo simulation is carried out in the statistical programming
environment R (R Core Team, 2020). To assess the influence of the train dataset’s
sample size on the approaches’ predictive performance, we varied the sample sizes of
the train dataset from 200, 500, and 1000 observations. Hence, in total, we had 24
conditions: three different sample sizes of the test dataset (200, 500, and 1000 ob-
servations) x two different numbers of categories for the ordinal categorical observed
variables (four and five categories) x two threshold parameter distributions (symmet-
ric and extreme asymmetric distributions) x two ways to obtain the final predictions
for OrdPLScpredict and OrdPLSpredict (mean and median approach). For each con-
dition, we conducted 500 simulation runs. In each run, we drew a dataset from the
multivariate standard normal distribution with a mean vector of 0 and the correlation
matrix shown in Equation (4.27) using the mvrnorm() function of the MASS package
(Venables and Ripley, 2002). The number of draws equaled the train dataset’s sample

86



size from the corresponding condition plus the 100 observations of the test dataset.
Subsequently, we categorized the observations for the variables x11, €13, 21, T23, and
r33 to obtain categorical variables using threshold parameters from the correspond-
ing condition. To estimate the model by PLS-PM, PLSc, OrdPLS, and OrdPLSc,
we used the csem() function of the R package ¢SEM (version 0.4.0.9000, Rademaker
and Schuberth, 2020). In doing so, the path weighting scheme was used for inner
weighting and Mode A was used to calculate the weights to form the proxies for the
common factors. Additionally, we replaced inadmissible estimations, i.e., each con-
dition was based on 500 valid estimations. An inadmissible estimation suffers from
at least one of the following problems: (i) the PLS-PM algorithm has not converged,
(ii) at least one reliability estimate is larger than 1, (iii) at least one absolute factor
loading estimate is larger than 1, (iv) the model-implied construct correlation matrix
is not positive semi-definite, and (v) the model-implied observed variables’ correlation
matrix is not positive semi-definite. Next, by using the predict() function of the
R package c¢SEM, we obtained the predictions for the observed variables associated
with endogenous constructs using OrdPLScpredict, OrdPLSpredict, PLScpredict, and
PLSpredict.

4.5.2 Simulation results

In this section, we present the results of our Monte Carlo simulation. Since the results
for the ordinal categorical observed variables and the continuous observed variables,
respectively, are very similar, we only present the results for the ordinal categorical
observed variable zo3 and for the continuous observed variable x3;. Further, the
results for four and five categories are very similar. Therefore, we only report the
results for four categories. Furthermore, the results are only slightly affected by the
train dataset’s sample size. Hence, we only report the results for 500 observations.
Finally, the results for the mean and median approaches used to obtain the predictions
with OrdPLScpredict and OrdPLSpredict hardly differ. Therefore, we report only the
results for the mean approach. The complete results are given in the Appendix.
Figure 4.3 shows the average values over the 500 simulation runs for the three
predictive performance measures, namely, the concordance, the MAE, and the RMSE.
Since the information value of the concordance measure is limited for continuous

observed variables, we report it only for the ordinal categorical observed variable zo3.
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Figure 4.3: Average performance measures

Considering the ordinal categorical observed variable xs3, OrdPLScpredict and
OrdPLSpredict produce very similar results. The same is observed for PLScpredict
and PLSpredict. Also, the four approaches produce very similar results in terms of
average RMSEs for an extreme asymmetric threshold distribution. Considering the
average MAE and the average RMSE for a symmetric threshold distribution, Ord-
PLScpredict and OrdPLSpredict outperform PLSpredict and PLScpredict. Similarly,
OrdPLScpredict and OrdPLSpredict outperform the other approaches in terms of the
average concordance. This is particularly obvious in the case of the extreme asymmet-
ric threshold parameter distribution. Considering the continuous observed variable

x31, all approaches perform very similar in terms of average MAE and average RMSE.

4.5.3 Simulation insights

The results of our Monte Carlo simulation show that for continuous observed vari-
ables, OrdPLScpredict and OrdPLSpredict perform very similar to PLScpredict and
PLSpredict. Considering the ordinal categorical observed variables, no clear picture
emerges, and the advantage of an approach depends on the employed predictive perfor-
mance measure. While for the average RMSE and an extreme asymmetric threshold

distribution all four approaches produce similar results, OrdPLScpredict and Ord-
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PLSpredict outperform the other two approaches regarding the average concordance
and the average MAE. In line with the findings of Cantaluppi and Schuberth (2019),
this is particularly the case for extremely skewed categorical observed variables. Sim-
ilarly, correcting for attenuation bias as is done in OrdPLSc and PLSc, does not lead

to more accurate predictions.

4.6 Guidelines on performing predictions using the R

package cSEM

To illustrate how researchers can apply OrdPLScpredict, OrdPLSpredict, PLScpre-
dict, and PLSpredict, we provide guidelines for the open source R package ¢SEM. In
doing so, we focus on a model that Hwang and Takane (2004) studied. We display
their model in Figure 4.4. To preserve clarity, we have omitted the measurement error
terms and the structural error terms. For a motivation of the model, the interested

reader is referred to the article of Hwang and Takane (2004).

ceil
cei2 mal ma2 mad3 mad mab mab
ceid
ceid
OrgPres 3| Orglden
ceid
ceib
cei7
cei8
orgemth| [orgemt6| [orgemt8 orgemtl| [orgemt2| [orgemt3| Jorgemt7

Figure 4.4: Model from Hwang and Takane (2004)

As Figure 4.4 shows, the model consists of the following four concepts modeled
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as common factors: organizational prestige (OrgPres), organizational identification
(Orglden), affective commitment (Love) (Afflove), and affective commitment (Joy)
(AffJoy). Bergami and Bagozzi (2000) give an elaboration of the concepts. The
considered dataset is part of the survey data used in Bergami and Bagozzi’s (2000)
study. It consists of 305 observations for the 21 observed variables. Each observed
variable is measured on a 5 point scale ranging from 1 (=strongly disagree) to 5
(=strongly agree), i.e., all observed variables are categorical. A detailed description
of the observed variables can be found in Henseler (2021, Table 6.1).

As a first step, we need to estimate the model parameters. For this purpose, we
can use the csem() function of the cSEM R package. In general, the csem() function
requires a dataset and a model as input.

To specify models in ¢SEM, lavaan syntax (Rosseel, 2012) is used. Specifically,
the ‘=~ operator is used to specify the relationship between observed variables and

)

common factors, the ‘<~ operator is used to specify observed variables forming a

composite, and the ‘~’ operator is used to specify the structural model. The specifi-

cation for the model illustrated in Figure 4.4 is given as follows:

.model="

#Measurement models

OrgPres =~ ceil + cei2 + cei3 + cei4 + ceib + ceib + cei7 + cei8
Orglden =~ mal + ma2 + ma3 + ma4 + mab + ma6

AffJoy =~ orgcmtl + orgcmt2 + orgcmt3 + orgcmt7

Afflove =~ orgcmt5 + orgcmt 6 + orgcmt8

# Structural model
Orglden ~ OrgPres
AfflLove ~ Orglden
AffJoy ~ Orglden

The dataset we use here is publicly available and also provided in the ¢SEM R
package. However, as it is provided in the ¢cSEM package all observed variables are
labeled as numeric. In this case, the csem() function uses the Pearson correlations
to estimate the model parameters, i.e., PLS-PM or PLSc is employed. To use the
polychoric/polyserial correlations, and thus to apply OrdPLS or OrdPLSc, the ordinal
categorical observed variables need to be labeled as ordered factors, as shown in the

following:
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# Load the data from the cSEM package
data(BergamiBagozzi2000)

# Transform the numerical indicators into factors

data_new <- data.frame( as.ordered(BergamiBagozzi2000$ceil),
as.ordered(BergamiBagozzi2000$cei2) ,
as.ordered (BergamiBagozzi2000$cei3),
as.ordered (BergamiBagozzi2000%cei4),
as.ordered (BergamiBagozzi2000$ceib) ,
as.ordered(BergamiBagozzi2000$ceib) ,
as.ordered(BergamiBagozzi2000$cei7) ,
as.ordered (BergamiBagozzi2000$cei8) ,
as.ordered (BergamiBagozzi2000$mal) ,
as.ordered (BergamiBagozzi2000$ma2) ,
as.ordered(BergamiBagozzi2000$ma3) ,
as.ordered(BergamiBagozzi2000$ma4) ,
as.ordered (BergamiBagozzi2000$ma5) ,
as.ordered (BergamiBagozzi2000$ma6) ,
as.ordered(BergamiBagozzi2000$orgecmt1) ,
as.ordered(BergamiBagozzi2000$orgcmt?2) ,
as.ordered (BergamiBagozzi2000$orgcmt3) ,
as.ordered (BergamiBagozzi2000$orgemt5) ,
as.ordered(BergamiBagozzi2000$orgcmt6) ,
as.ordered (BergamiBagozzi2000$orgemt7) ,
as.ordered (BergamiBagozzi2000$orgcmt8))

Finally, to estimate the model parameters, the dataset and the specified model

are provided as input to the csem() function as the following shows:

res <- csem( .model, data_new[1:250,], "bootstrap")

Since we wanted to evaluate our model’s predictive performance, we use only the
first 250 observations of the dataset for the estimation. Note that ¢cSEM applies a
correction for attenuation by default if common factors are included in the model,
i.e., PLSc or OrdPLSc is used. Further, by default, ¢SEM uses the path weighting
scheme to calculate the inner weights. In our case, the specified model was estimated
by OrdPLSc since at least one observed variable is labeled as factor and the model
comprises at least one common factor. If the user aims for statistical inference about
the parameter estimates, the argument ‘resample method’ has to be set to either
‘bootstrap’ or ‘jackknife’, otherwise no standard errors will be estimated. In our
case, we used bootstrap for statistical inference. By default, 499 bootstrap runs are
conducted. A summary of the estimated model can be obtained via the summarize ()
function.

To assess the estimated model’s predictive performance, the predict() function
is used. Evaluating the predictive performance of a model requires benchmark pre-

dictions. For that purpose, the ‘benchmark’ argument of the predict() function
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can be used to determine how benchmark predictions are obtained. In cases where
the original model was estimated by OrdPLSc or OrdPLS, the benchmark predic-
tions are rounded for the categorical observed variables if PLS-PM or PLSc were
used to estimate the benchmark model. If predictions based on OrdPLSpredict were
to be used as benchmark, the ‘benchmark’ argument must be set to ‘PLS-PM", the
argument “treat_as continuous’ must be set to ‘FALSE‘, and the argument ‘disat-
tenuate’ has to be set to ‘FALSE’ to prevent a correction for attenuation. In the case
of OrdPLScpredict and OrdPLSpredict, by default npeq = 100 draws are performed
for the multivariate truncated normally distributed unobservable variables underlying
the categorical observed variables associated with exogenous constructs. To summa-
rize the npreq predictions for the observed variables of the endogenous constructs, the
‘mean’, ‘median’, or ‘mode’ approach can be used. The approach can be chosen sepa-
rately for the target predictions and the benchmark predictions using the arguments
“approach_ score_ target’ and ‘approach_score_benchmark’, respectively.

The predict () function allows the user to provide a test dataset via the “test_ data’
argument. If no test dataset is provided, k fold cross-validation is applied, i.e., the
dataset from the original estimation is randomly split into k (approximately) equal
parts. Subsequently, the values of each part are predicted based on a model estimated
on the basis of the remaining parts. To adjust the number of cross-validation folds
the “cv_folds’ argument is used. By default this argument is set to 10. To minimize
the effect of random splitting in k fold cross-validation, the k fold cross-validation is
repeated several times (Shmueli et al., 2019). In the predict () function, the number
of repetitions is adjusted via the argument “1r’. If a test dataset is provided, no k fold
cross-validation is conducted and predictions are performed based on the observations
of the test dataset.

For the considered empirical example, we used PLScpredict as benchmark, and
provided the last 55 observations of the original dataset as test dataset, i.e., only the
observations of the test dataset were predicted. Additionally, we used the ‘median’
approach to obtain predictions in OrdPLScpredict. The results of the predict()

function are as follows.

pred = predict( res, "PLS-PM", data_new[(251):305,],
TRUE, "median")

The output contains some general information in the top. In addition, it provides
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the MAE and the RMSE of the predictions for all observed variables associated with

endogenous constructs:

##

## Overview

##

## Number of obs. training = 250

## Number of obs. test = 65

## Number of cv folds = NA

## Number of repetitions =1

## Handle inadmissibles = stop

## Estimator target = 'OrdPLS'

## Estimator benchmark = 'PLS-PM'

## Disattenuation target = 'TRUE'

## Disattenuation benchmark = 'TRUE'

##

## Prediction metrics

##

##

##  Name MAE target MAE benchmark RMSE target RMSE benchmark  Q2_predict
## mal 0.5091 1.3455 0.7628 1.5255 0.0101
##  ma2 0.4545 1.3818 0.7006 1.5255 0.0125
## ma3 0.5636 1.0000 0.8202 1.2863 0.0000
## mad 0.6000 1.6909 0.8842 1.8635 -0.1832
## mab 0.6909 1.6545 0.9909 1.8537 -0.2624
## ma6 0.5636 1.2182 0.8202 1.4460 0.0148
##  orgcmtb 0.4000 0.9818 0.6876 1.1442 0.0000
##  orgcmté 0.4727 0.6545 0.7135 0.9145 0.0000
##  orgcmt8 0.7455 0.9091 1.0180 1.1755 -0.2475
##  orgemtl 0.6727 1.1818 0.9045 1.3817 0.0000
##  orgcmt2 0.5818 1.1273 0.8090 1.3212 0.0000
##  orgcmt3 0.5455 1.1273 0.7862 1.3484 0.0495
##  orgemt7 0.5636 0.8364 0.8202 1.0445 -0.0916
##

Considering our example’s MAE and RMSE, the results show that OrdPLScpredict
outperforms PLScpredict for both measures and all observed variables. In contrast
to the MAE and the RMSE, the concordance is not reported by default. However, it

can be accessed as follows:
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pred$Prediction_metrics

## Name MAE_target MAE_benchmark RMSE_target RMSE_benchmark Q2_predict
## 1 mal 0.5090909 1.3454545 0.7627701 1.5255401 0.01012658
## 2 ma2 0.4545455 1.3818182  0.7006490 1.5255401 0.01253918
## 3 ma3 0.5636364 1.0000000 0.8201995 1.2862914 0.00000000
## 4 ma4 0.6000000 1.6909091 0.8842048 1.8635255 -0.18318966
## 5 mab 0.6909091 1.6545455  0.9908674 1.8537431 -0.26240458
## 6 ma6é 0.5636364 1.2181818  0.8201995 1.4459976 0.01478353
## 7 orgcmt5 0.4000000 0.9818182  0.6875517 1.1441551 0.00000000
## 8 orgemt6 0.4727273 0.6545455  0.7135061 0.9145292 0.00000000
## 9 orgcmt8 0.7454545 0.9090909 1.0180195 1.1755076 -0.24751656
## 10 orgemtl 0.6727273 1.1818182  0.9045340 1.3816986 0.00000000
## 11 orgecmt2 0.5818182 1.1272727  0.8090398 1.3211565 0.00000000
## 12 orgcmt3 0.5454545 1.1272727  0.7862454 1.3483997 0.04947368
## 13 orgemt7 0.5636364 0.8363636  0.8201995 1.0444659 -0.09159483
## concordance_target concordance_benchmark
## 1 0.5272727 0.10909091
## 2 0.5636364 0.05454545
## 3 0.4909091 0.27272727
## 4 0.4727273 0.05454545
## 5 0.4363636 0.07272727
## 6 0.4909091 0.16363636
##t 7 0.6363636 0.18181818
## 8 0.5454545 0.43636364
## 9 0.3818182 0.30909091
## 10 0.4000000 0.18181818
## 11 0.4545455 0.18181818
## 12 0.4909091 0.20000000
## 13 0.4909091 0.29090909

This shows that the concordance is larger for all observed variables in the case
of OrdPLScpredict, which indicates more accurate predictions than those obtained
by PLScpredict. These results are also in line with the findings of our Monte Carlo
simulation.

In general, the ¢cSEM R package provides users with a lot of flexibility. For
more details about the package, we refer the interested reader to the manual. Also,

additional tutorials using the ¢SEM package can be found in Henseler (2021).

4.7 Discussion

The past decade has seen increased scholarly attention to evaluating the predictive
power of models estimated by PLS-PM (e.g., Carrién et al., 2016; Shmueli et al.,
2016, 2019). This is mainly due to the causal-predictive nature of PLS-PM (Chin
et al., 2020). However, as Schuberth et al. (forthcoming) has emphasized, if PLS-PM
is applied in the context of explanatory modeling, i.e., in theory testing, researchers

should not rely solely on predictive metrics for model evaluation, but should consider
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all possible means known from explanatory modeling for model assessment, including
overall model fit assessment.

In this chapter, we have focused on the predictive power of models estimated by
OrdPLS and OrdPLSc. Specifically, we presented OrdPLScpredict and OrdPLSpre-
dict. The two approaches are similar to those known from PLS-PM and PLSc to
perform predictions, namely PLSpredict and PLScpredict. In contrast to PLSpredict
and PLScpredict, our two proposed approaches take the nature of ordinal categor-
ical observed variables into account. Additionally, our approaches resemble those
Cantaluppi and Schuberth (2019) recently proposed. However, our two proposed
approaches are not limited to models containing only ordinal categorical observed
variables.

The results of our Monte Carlo simulation to evaluate OrdPLScpredict’s perfor-
mance provides several interesting insights. First, all approaches, i.e., OrdPLScpre-
dict, OrdPLSpredict, PLScpredict, and PLSpredict perform very similar in cases
where values of continuous observed variables are predicted. Second, considering
the concordance evaluation metric and the MAE, OrdPLScpredict outperforms the
other approaches in cases where values of ordinal categorical observed variables are
predicted. This is especially the case with highly skewed ordinal categorical observed
variables. In contrast, there is no big difference between the approaches’ perfor-
mance in terms of RMSE in case of an extreme asymmetric threshold distribution.
Third, comparing the performance of OrdPLScpredict and OrdPLSpredict to the
performance of PLScpredict and PLSpredict, the results show that not correcting for
attenuation, even if the parameter estimates are not consistent, does not lead to a
worse predictive performance.

A crucial point in predictive research is the principle that estimation should be
based solely on the train dataset, while prediction should be based solely on the test
dataset (James et al., 2017). In OrdPLSpredict and OrdPLScpredict, we simulate val-
ues for the observed variables connected to exogenous constructs from a multivariate
truncated normal distribution if ordinal categorical variables are present. Specifically,
we use a variance-covariance matrix that equals the estimated correlation matrix and
truncation limits that equal the estimated thresholds of the train dataset. Although
using estimated threshold parameters based on the train dataset is the only feasible

solution in various situations, e.g., in cases of small test datasets, future research
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should evaluate ways of rendering the current prediction method more robust to sit-
uations in which the test data set’s correlation structure slightly differs from the one
observed on the training data set. For instance, research could consider the effect
on a model’s predictive performance if the test dataset’s correlation matrix instead
the train dataset’s is used for simulating the scores of exogenous constructs. Further,
simulation studies are limited regarding their design. Consequently, future research
should evaluate the effect of our chosen simulation parameters. Specifically, the effect
of the test data sample size and model complexity should be evaluated. Finally, the
results of OrdPLScpredict should be compared to predictions based on other estimates

such as GSCA or canonical correlation analysis.
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Chapter 5

Using confirmatory composite
analysis to assess composites in

human development research

5.1 Introduction!

Human development research often relies on aggregated variables or composites to
operationalize theoretical concepts of interest (e.g., Blau, 1998; Davis et al., 2004).
Already in 1983, Rushton et al. (1983) recognized the aggregation principle’s rele-
vance in the context of human development research. For instance, composite indices
such as the United Nations Development Program’s Human Development Index (Hop-
kins, 1991; UNDP, 1990) or the Centre for Global Development and Foreign Policy’s
Commitment to Development Index (Lee et al., 2020) are frequently applied in hu-
man development research (e.g., Chowdhury and Squire, 2006; Harttgen and Klasen,
2011; Noorbakhsh, 1998). In all such instances, the theoretical concept of interest is

IThis chapter is based on joint work with Florian Schuberth and Jérg Henseler. By the time this
dissertation was submitted, the paper was under review for possible publication in the International
Journal of Behavioral Development.
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represented by a composite, i.e., a linear combination of more elementary variables.

Although human development research often deals with composites, these con-
structs are mostly assessed by confirmatory factor analysis (CFA, Joreskog, 1979).
For instance, in the existing human development literature, CFA was used to as-
sess work and job withdrawal (Blau, 1998), which were both modeled as composites.
CFA is not only a standard tool in human development research; it is also frequently
applied in other research fields such as psychology (DiStefano and Hess, 2005; Mac-
Callum and Austin, 2000), business management (Mak and Sockel, 2001), and crim-
inology (Williams et al., 2007). In CFA, which is a covariance structure analysis
(CSA) technique, theoretical concepts are modeled as common factors and not as
composites (Joreskog, 1969, 1970a). Common factors are unobserved variables that
are assumed to explain the variance-covariance structure of observed variables. As
all CSA techniques, CFA entails the following four steps: (i) model specification, (ii)
model identification, (iii) model estimation, and (iv) model assessment (e.g., Bollen,
1989).

Considering the situation outlined above, it would be illogical for researchers to
employ CFA as a statistical tool for construct validation if they want to model theo-
retical concepts that function according to a composite. To avoid the misuse of CFA
in cases where a theoretical concept is modeled as a composite, researchers are faced
with the question of how to assess composites with the same degree of rigor as they
are accustomed to when studying common factors with CFA.

Against this background, this chapter presents a novel kind of CSA devoted to the
analysis of interrelated composites: confirmatory composite analysis (CCA, Schuberth
et al., 2018a). Since CCA is a CSA technique, it follows the same four steps, namely
model specification, model identification, model estimation and model assessment
(Henseler and Schuberth, 2020; Hubona et al., 2021; Schuberth, 2021). Originally,
it was suggested to use MAXVAR, an approach to generalized canonical correlation
analysis (Kettenring, 1971), however, a recently proposed specification allows us to
employ the maximum likelihood estimator known from CFA (Henseler and Schuberth,
2021b; Schuberth, forthcoming). Overall, CCA shows the same benefits for assessing
theoretical concepts modeled as composites as CFA shows for theoretical concepts
modeled as common factors. Hence, CCA is a suitable approach for assessing com-

posites as it overcomes the drawback CFA has in assessing composites.
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The remainder of this chapter is structured as follows: The following section
emphasizes the need for a proper method to assess composites in the context of
human development research by highlighting the important role of composites in this
discipline. Subsequently, we present CCA and describe its steps. Following this
description, we provide an illustrative example in the context of human development

research. Finally, the chapter closes with concluding remarks.

5.2 The need for a proper method to assess composites in

human development

Various fields in human development research rely on the aggregation of more ele-
mentary variables, i.e., they frequently use composites. For instance, fear, anger and
joy were modeled as composites to study their effects on children’s emotional develop-
ment (Kochanska, 2001). Similarly, core-self evaluation was proposed to be modeled
as composite which comprises self-esteem, generalized self-efficacy, locus of control,
avoidance motivation and approach motivation (Johnson et al., 2008). Another exam-
ple is socio-economic status which is “composed of items relating to parental educa-
tional attainment, occupational prestige, and family income” (p. 86S, Wright et al.,
2017). Similarly, work withdrawal and job withdrawal are modeled as composites
composed of unfavorable job behaviors, lateness and absence, and turnover intent,
desire to retire and intended retirement age, respectively (Blau, 1998). Moreover,
composites often appear as indices, so-called composite indices. The arguably most
prominent composite index in the context of human development research is the Hu-
man Development Index (HDI), which measures the development status of a country
and is composed of the life expectancy index, the gross domestic product index and
the education index (UNDP, 1990). Due to several criticism of the HDI, the Mod-
ified Human Development Index was introduced (Noorbakhsh, 1998). Additionally,
alternative indices, such as the Composite Global Well-Being Index (Chaaban et al.,
2015), have been proposed. Besides the HDI, the Gender Development Index, the
Human Poverty Index (UNDP, 1990), the Inequality in Human Development Index,
the Gender Inequality Index, and the Multi-dimensional Poverty Index (UNDP, 2010)
are popular composite indices in human development research. Alongside composite

indices used to evaluate the development status of countries, composite indices are
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also used in other contexts, such as in assessing the quality of universities (Murias
et al., 2008). For a literature overview on composites in higher education research
we refer to Table I in Asif and Searcy (2014). Further, composite indices are ap-
plied on the individual level to evaluate children’s development status. Such indices
include the Mental Development Index (Bayley and Reuner, 1969) which focuses on
the status of cognitive and language development (Lowe et al., 2011) or the Early
Development Index (Janus and Offord, 2000) which evaluates a child’s development
status in deciding on school readiness.

In general, composites are the outcome of a dimension reduction (Dijkstra and
Henseler, 2008). Thus, combining variables into a composite does carry information
loss. However, currently researchers do not assess whether the benefits of dimen-
sion reduction, such as studying a single variable instead of multiple variables com-
bined, sufficiently compensate for the disadvantage of losing information. Similarly,
researchers lack statistical methods to assess whether a block of observed variables
acts as a whole. Both these issues can be addressed by means of CCA. Against this

background, we present CCA in the following section.

5.3 Confirmatory composite analysis and its step-by-step

application

A common method used to assess theoretical concepts is CSA — a family of gen-
eralized methods — in which hypotheses concerning variance-covariance matrices’
underlying structure can be assessed. Although CSA literature has already men-
tioned the possibility of assessing composites (e.g., Schonemann and Steiger, 1976)
and whether a composite acts as a single variable (Borsboom et al., 2003), to our
knowledge the application of composites in CSA in human development research is
still rather limited.

To address this gap, we present a recently developed CSA method, namely CCA
(Schuberth et al., 2018a). CCA was first sketched by Jorg Henseler and Theo K. Di-
jkstra (Henseler et al., 2014) when they used the iterative partial least squares path
algorithm (Wold, 1975) for model estimation. Subsequently, it was fully elaborated
by Schuberth et al. (2018a) who suggested the employment of MAXVAR, one of Ket-

tenring’s (1971) approaches to generalized canonical correlation analysis to estimate
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the model parameters. However, a more recently introduced specification allows for
conducting a CCA using ML (Henseler and Schuberth, 2021b; Hubona et al., 2021;
Schuberth, forthcoming). Although CCA has been introduced in various fields, such
as business research (Henseler, 2021), managerial science (Schuberth, 2021), and in-
formation systems research (Hubona et al., 2021), it has not yet been presented to
the field of human development research.

CCA is similar to CFA (Joreskog, 1979) in which the theoretical concepts are
modeled as common factors that explain the variance-covariance structure of a set of
observed variables. In contrast to CFA, CCA models theoretical concepts as compos-
ites which emerge from a set of observed variables. In its application, CCA follows

the same four steps as CFA, which we elaborate in the next sections.

5.3.1 Model specification in CCA

In a first step of CCA, a composite model has to be specified (Cho et al., in press;
Dijkstra, 2013a, 2017). Considering K observed variables, the observed variables
that belong to one composite 7; are stored in block x; with K; observed variables
which are allowed to covary freely. Following the composite model, we assume that
each observed variable belongs to one block and that the composites convey all of
the information between their blocks. The composition of a composite 7; can be
understood as a prescription of dimension reduction (Dijkstra and Henseler, 2008),

which is typically expressed as follows:

nj = WiT; i=1,...,J (5.1)
where w; is a vector of weights and J is the number of composites. Specifying a
composite in terms of weights is done very intuitively because it directly reflects
how the ingredients compose the composite. However, such specification prevents
researchers from estimating a composite model with common CFA software such as
lavaan (Rosseel, 2012), AMOS (Arbuckle, 2014) and Mplus (Muthén and Muthén,
1998-2017).
To overcome this issue, we rely on a specification that was introduced recently,
which expresses the relations between a composite and its observed variables in terms
of composite loadings (Schuberth, forthcoming). In doing so, not only one composite,

but as many composites as observed variables are extracted per block. These compos-
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ites are uncorrelated among each other and thus, together they span the same space

as the observed variables do. Consequently, Equation (5.1) is rewritten as:

j

Vj

=Wz, (5.2)

We follow Henseler (2021) in denoting the composite of interest 7; as an emergent
variable to emphasize that it emerges from its observed variables and conveys all the
information between its observed variables and the other variables in the model. In
contrast, the remaining composites v;, which are labeled as excrescent variables, have
no surplus meaning and just serve the purpose of spanning the remaining space of the
observed variables. Hence, the excrescent variables capture the remaining variances
and covariances among the observed variables of one block that are not accounted
for by the emergent variable. Moreover, the excrescent variables are assumed to be
uncorrelated with one another and uncorrelated with the emergent variable.
Equation (5.2) makes it apparent that the relationship between composites and
their observed variables can be expressed in terms of composite loadings A; instead

of weights W;:
(5.3)

Since the transposed weight matrix Wj’ is quadratic and of full rank, it can be
inverted. As a consequence, the intra-block variance-covariance matrix, i.e., the
variance-covariance matrix of a block of observed variables, can be displayed as fol-

lows:
Ejj = AjéjjA;‘ (54)

The matrix ®;; equals the variance-covariance matrix of block j’s emergent and
excrescent variables. Since the excrescent variables v; are uncorrelated with one
another and uncorrelated with the emergent variable n;, ®;; is a diagonal matrix.
In addition to extracting composites from the blocks of observed variables, i.e.,
emergent and excrescent variables, their covariances need to be specified. While the
emergent variables are typically allowed to covary freely, the excrescent variables do

not covary with any other variables in the model apart from their corresponding
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observed variables. Consequently, the covariances between observed variables of two

different blocks x; and x; are stored in the inter-block covariance matrix 3;;:
B =A@ A} (5.5)

where the matrix ®;; contains the covariances between the emergent and excres-
cent variables of the i-th and j-th block. The complete observed variables’ variance-
covariance matrix 3(€) implied by the model is a block matrix with the intra-block
variance-covariance matrices on the main diagonal and the inter-block covariance ma-
trices on the off-diagonal. The vector @ contains all model parameters, specifically
the composite loadings and the covariances between the emergent variables.

To illustrate this way of specifying composites, we consider a situation in which
a researcher wants to study two correlated composites n; and 7y, where the two
composites are made up of three and four observed variables, respectively. Following
the specification described above, each composite is replaced by a set of emergent
and excrescent variables as displayed in Figure 5.1. Specifically, the first composite is
replaced by one emergent variable 7, and two excrescent variables v1; and vy, while
the second composite is replaced by one emergent variable 7y and three excrescent
variables vs1, 93, and vo3.

In Figure 5.1, observed variables are depicted as rectangles. The emergent and
excrescent variables are displayed as hexagons to distinguish them from common fac-
tors, which are typically expressed as ovals. However, most CFA software with a
graphical user interface such as AMOS (Arbuckle, 2014) model these variables as
common factors and thus display them as ovals. Consequently, we need to constrain
variances of measurement errors associated with observed variables to zero. Further,
the relations between the variables are depicted by different types of arrows. While
single-headed arrows display linear regression coeflicients, double-headed arrows illus-

trate covariances.

5.3.2 Model identification in CCA

Once the model has been specified, we need to ensure that the model is identified,
i.e., that there is a unique solution for the model parameters. In general, models
can be either under-identified, just-identified or over-identified (Brown, 2015). If a

model is under-identified — also referred to as a not-identified model — more than
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Figure 5.1: Specification of a composite model

one set of parameters is consistent with the model constraints. Consequently, there
is no unique solution for the model parameters so that only limited conclusions can
be drawn from the model. In contrast, a just-identified model provides a unique
solution for the model parameters and shows the same number of free parameters as
non-redundant elements of the observed variables’ variance-covariance matrix, i.e., it
shows zero degrees of freedom. In empirical analysis, such models cannot be used
to evaluate the overall model fit since they perfectly fit the data. An over-identified
model also provides a unique solution for the model parameters; however, it shows
more non-redundant elements in the observed variables’ variance-covariance matrix
than model parameters and thus puts contraints on the variance-covariance matrix,

i.e., it shows a positive number of degrees of freedom. These constraints can be
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exploited in empirical studies to assess the overall model fit.

To achieve model identification in CCA, several additional constraints need to
be imposed. In the following exposition, we provide concise guidelines; for a more
technical explanation of the identification of composite models, see Schuberth (forth-
coming). First, the variances of the emergent and excrescent variables need to be
determined. Hence, we recommend that one composite loading for each emergent
and excrescent variable be constrained to one. In doing so, one needs to ensure that
an observed variable serves not multiple times as scaling variable. For our example
specification in Figure 5.1, x11, 12, and x13 serve as scaling variables for 77, v11, and
V12, respectively. A similar action was taken for the second block of observed vari-
ables. Second, further composite loadings of the excrescent variables need to be fixed
to avoid over-parameterization. For this reason, we recommend that excrescent vari-
ables’ composite loadings be fixed at zero in the following way: For the first excrescent
variable, no additional constraints are imposed; for the second excrescent variable, we
fix one of the composite loadings at zero; for the third excrescent variable, we fix two
composite loadings at zero; for the fourth excrescent variable, we fix three composite
loadings at zero; and so forth. Consequently, for the last excrescent variable of each
block, one composite loading will remain unconstrained. As Figure 5.1 shows, in our
example specification the first composite loading of the excrescent variable vqo was
fixed at zero. A similar action was taken for the other excrescent variables.

In the situation described above, the degrees of freedom are obtained as follows:

J
df= 05 K-(K+1) =) j<Kj—1+
| S —

j=1

KK - 1)
2
elements of the lower triangle
including the main diagonal
of the empirical
variance-covariance matrix

number of free composite loadings

- 05-J-(J+1) - (K —J)
—_——— ——
number of free variances and covariances number of free variances
between the emergent variables of the excrescent variables
J
_ 2
=05 | K(K—2)+J3B—J) - K; (5.6)
j=1

With Equation (5.6) we can show that our example specification depicted in Figure

5.1 has 6 degrees of freedom:
df=05-(7-5+2-1-3%-4%) =6 (5.7)
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5.3.3 Model estimation in CCA

After ensuring identification of the model, the next step of estimating the model
parameters can be taken. For this purpose, a variety of estimators implemented
in common CFA software can be used, such as the ML estimator (Joreskog, 1969;
Schuberth, forthcoming) and the generalized least squares estimator (Browne, 1974).
Besides these estimators, as originally proposed in CCA, estimators that emerged
outside the realm of CFA can be applied, e.g., MAXVAR (Schuberth et al., 2018a)
and partial least squares path modeling (Henseler and Schuberth, 2020). However,
note that these estimators require a different model specification in terms of composite

weights without excrescent variables.

5.3.4 Model assessment in CCA

In the last step of CCA, the model is assessed. This involves assessing the overall
model fit and the parameter estimates. Overall model fit refers to the comparison
of the observed variables’ sample variance-covariance matrix S and their estimated
model-implied variance-covariance matrix E(é) In CFA literature, the dominant
ways of assessing the overall model fit are statistical tests for exact model fit and fit
indices to assess the model’s approximate fit (e.g., Schermelleh-Engel et al., 2003). In
CCA, overall model fit assessment helps to evaluate whether composites fully convey
the information between blocks, and thus whether their ingredients act as a whole
instead of a mere loose collection of parts. Hence, this assessment examines the trade-
off between the benefits of dimension reduction and losing information by forming a
composite. If the estimated model’s fit is regarded as unacceptable, forming compos-
ites is most likely not justified since the information loss is not tolerable and “more
information can be extracted from the data” (Joreskog, 1969, p. 201). Therefore,
researchers are advised to consider the observed variables individually.

Besides overall model fit assessment, the parameter estimates need to be assessed.
CFA software provides estimates and their standard errors for the parameters from
the specification described above, i.e., the covariances between the emergent variables
and the composite loadings. Hence, inference about these parameters can be drawn in
the common way. In contrast, weight estimates are not directly provided. Researchers

who are interested in the weights, e.g., who want to evaluate the contribution each
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observed variable makes to a composite or to calculate composite scores, can exploit
the relationship between the weights and composite loadings as described in Equa-
tion (5.3). Consequently, the weight estimates can be obtained as the inverse of the

estimated composite loading matrix:

W, = (&) (5.8)
However, to obtain standard errors of the weight estimates, requires more effort. For
instance, researchers could obtain them via bootstrap or using the delta method as

proposed by Schuberth (forthcoming).

5.4 Illustrative example

To illustrate the use of CCA in human development research, we study the relations
between political instability, agricultural inequality, and industrial development us-
ing the Russet data (Russett, 1964)2. The Russet data contains observations from
47 countries for 10 variables. While Agricultural Inequality is a composite made
up of the percentage of farmers that own half of the land (farm), the inequality of
land distribution (gini), and the percentage of farmers that rent all their land (rent),
the composite Political Instability is composed of variables indicating the stability
of a democracy (demo), the instability of the executive (inst), whether a country’s
form of government is a dictatorship (dict), the number of violent internal war inci-
dents (ecks), and people killed as a result of civic group violence (deat). Similarly,
the composite Industrial Development is formed of the gross national product per
capita (gnpr) and the percentage of labor force employed in agriculture (labo). Note
that some of the variables have been transformed before the analysis as suggested

by Tenenhaus and Tenenhaus (2011).3 Equation 5.9 gives the observed variables’

2The data can be accessed using the R package cSEM (Rademaker and Schuberth, 2020).
3The original Russett dataset is publicly available, see e.g., Gifi (1990). Moreover the transformed
dataset is available in the R package cSEM (Rademaker and Schuberth, 2020).
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empirical correlations:

farm  gini rent demo  inst ecks dict  deat gnpr labo

Lo

094  1.00

046  0.39  1.00

—-0.43 -0.36 0.17  1.00

0.12 0.14 008 —-0.34 1.00

= 035 029 0.09 -0.60 0.33 1.00

028 021 001 -0.59 0.02 039 1.00

041 043 029 -049 0.08 063 053 1.00

-0.37 -0.30 -0.06 063 —-0.14 -0.55 -0.62 -0.51 1.00

030 026 -0.21 -0.71 025 049 066 052 —0.82 1.00
(5.9)

This model and the Russet data have already been showcased in other studies
focusing on composites (e.g., Tenenhaus and Tenenhaus, 2011). Hence, for a detailed
explanation of the observed variables, we refer to Tenenhaus and Tenenhaus (2011)
and Russett (1964).

As we explained in the section “Model Specification in CCA” above, each compos-
ite is replaced by a set of emergent and excrescent variables and the corresponding
composite loadings. The complete model specification is displayed in Figure 5.2.

As Figure 5.2 illustrates, Agricultural Inequality, Political Instability, and Indus-
trial Development are allowed to covary freely.

To ensure identification, one composite loading of each emergent and excrescent
variable was set to 1%. Further, we restricted additional composite loadings of the
excrescent variables to zero, as explained in the section “Model Identification in CCA”
and illustrated in Figure 5.2. Consequently, the model displayed in Figure 5.2 has 21

degrees of freedom.

4For the emergent variable “Political Instability” the composite loading for the observed variable
“demo” was set to -1 to ensure the correct orientation of “Political Instability”.
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Figure 5.2: A confirmatory composite analysis of political instability, agricultural
inequality, and industrial development

To obtain the model results, we used the ML estimator as implemented in Mplus

(Muthén and Muthén, 1998-2017, Version 8), using the following syntax:
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TITLE:
Russett;
DATA:
FILE IS Russettcor.dat;
TYPE = CORRELATION;
NOBSERVATIONS = 47;
VARIABLE:
NAMES ARE gini farm rent gnpr labo inst

ecks deat demo dict;

MODEL:
ISpecify the emergent variable
lAgricultural Inequality (AI)
AT BY farm@l gini*0O rent*0;

ISpecify the two corresponding

lexcrescent variables (nl and n2)

lincluding constraints on composite loadings
!to avoid overparametrization

nl BY farm*0 gini@l rent*0;

n2 BY farm@0 gini*0 rent@1;

ISpecify the emergent variable

IPolitical Instability (PI)
PI BY demo®@-1 inst*0 ecks*0 deat*0 dict*0;
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ISpecify the four corresponding

lexcrescent variables (n3, n4, n5 and n6)
lincluding constraints on composite loadings
'to avoid overparametrization

n3 BY demo*0 inst@l ecks*0 deat*0 dictx*0;

n4 BY demo@0 inst*0 ecks@l deat*0 dict*0;

n5 BY demo@0 inst@0 ecks*0 deat*0 dict@1;

n6 BY demo@0 inst@0 ecks@0 deat@l dictx0;

!Specify the emergent variable
IIndustrial Development (ID)
ID BY gnpr@l1 labox*0;

ISpecify the corresponding

lexcrescent variable n7

lincluding constraints on composite loadings
!to avoid overparametrization

n7 BY gnpr*0 labo@1;

ISpecify covariances among emergent
lvariables

AI WITH PI ID;

PI WITH ID;
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IConstrain covariances of excrescent
lvariables with other variables

n7 WITH AIQ0 PIQO ID@O nl1-n6@0;

n6 WITH AIQ0 PIQ0 ID@O nl1-nb5Q0;

n5 WITH AIQ0 PIQO ID@O nl1-n4@0;

n4 WITH AIQ0 PIQ0 ID@O n1-n3Q0;

n3 WITH AIQ0 PIQO ID@O nl1-n2@0;

n2 WITH AIQO0 PIQO IDQO nl@0;

nl WITH AIQO PIQO ID@O;

ISpecify the variances of

Ithe observed variables

gini@0 farm@0 rent@0 gnpr@0 labo@0

inst@0 ecks@0 deat@0 demo@0 dict@O;
OUTPUT:

STANDARDIZED;

As Schuberth (forthcoming) observed, the default Mplus starting values often lead
to convergence issues. Hence, we set all starting values of the composite loadings at
zero as shown in the syntax above.

The estimation in Mplus converged normally and estimates for the composite
loadings and the covariances among the emergent variables are provided. Additionally,
the results of the chi square test used for overall model fit assessment indicate that our
model is misspecified (x? = 61.03, df=21, p<0.01). As a consequence, the information
loss through the dimension reduction is most likely not tolerable and the observed
variables should be studied individually instead of combining them into composites.
To locate the misspecification, researchers can follow CSA guidelines and, for instance,
inspect residuals, i.e., the differences between the sample and estimated model-implied
variance-covariance matrix (e.g., Kline, 2015). Even though the misfit of the model
was not acceptable, we continue here to demonstrate how the weights can be obtained
from the composite loadings.

Considering Agricultural Inequality, the estimated composite loading matrix is

113



given as follows:
Al 1 Vo
1.00 0.93 0.00\ farm
0.82 1.00 —0.69 | gini
—-0.26 1.18 1.00/ rent

A= (5.10)

The first column contains the composite loadings of Agricultural Inequality, while the
second and third columns contain the composite loadings of the respective excrescent
variables.

The weights that form Agricultural Inequality can be obtained by the inverse of

the transposed composite loading matrix as shown in Equation (5.8):

Al 1 Vo
1.49 —0.53 1.01\ farm
—0.76 0.82 —1.17 | gini
—0.53 0.57 0.19/ rent

W=(A") = (5.11)

This means that Agricultural Inequality is built by its observed variables in the fol-
lowing way:

Al =1.49 - farm — 0.76 - gini — 0.53 - rent (5.12)

The weights that form Political Instability and Industrial Development can be deter-
mined analogically. Standardized weights can be obtained in a similar way; however,
instead of using the original composite loadings, the standardized composite loadings
need to be transformed. For Agricultural Inequality the standardized weights are as

follows: 2.03 (farm), —1.04 (gini), and —0.72 (rent).

5.5 Concluding remarks

Researchers often inappropriately assess composites in human development research
using CFA. To address this issue, we present a recently developed approach to CSA
— namely CCA — which allows for assessing composites with the same rigor as re-
searchers who assess common factors in CFA. In doing so, we explain how to specify
a composite model by means of emergent and excrescent variables. Additionally, we

show how such models can be identified and how parameter estimates can be obtained
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using common CFA software. Finally, we elaborate on the assessment of composite
models, which helps researchers to evaluate whether the observed variables of a block
form a whole or act as a mere pile of parts, and thus should be studied individually.

Besides explaining the steps of CCA, we demonstrate its use by means of an
illustrative example using Mplus. We deliberately chose Mplus to specify and estimate
the model, for the following reasons: First, Mplus is a widely used CFA software.
Second, Mplus shows a relatively good convergence behavior, whereas other SEM
software such as AMOS (Arbuckle, 2014) or the R package lavaan (Rosseel, 2012)
face bigger difficulties (Schuberth, forthcoming). Although the use of common CFA
software facilitates the application of CCA, it has the drawback that it provides no
weight estimates and corresponding standard errors directly. While weight estimates
can be obtained via a straightforward transformation of the estimated composite
loadings, future research needs to show ways of obtaining the corresponding standard
errors in a simple fashion.

Finally, although researchers can use CCA to assess composite models, in empirical
applications, they are likely to face both common factors and composites in their
models. To deal with such situations, the model specification we have presented,
can be adapted. In this case, one could speak of confirmatory composite and factor

analysis (CCFA). Future research should provide concise guidelines for CCFA.
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Chapter 6

A maximum likelihood estimator

for composite models

6.1 Introduction !

Structural equation modeling (SEM) is a widely acknowledged method in social and
behavioural sciences, which includes educational research (Khine, 2013), criminol-
ogy (Higgins, 2002), counseling psychology (Fassinger, 1987), marketing research
(Steenkamp and Baumgartner, 2000), psychology (MacCallum and Austin, 2000),
international business research (Hult et al., 2006) and information systems research
(Urbach et al., 2010). This method is frequently applied in these research areas
due to its ability to model and assess theories comprising abstract concepts (Bagozzi
and Phillips, 1982). Researchers are able not only to specify how observed variables
are related to their constructs (Bollen and Bauldry, 2011), but also to model com-
plex relationships, such as nonlinear relationships, between the constructs (Klein and
Moosbrugger, 2000).

Originally, in SEM abstract concepts are modeled as common factors, i.e., as

IThis chapter is based on joint work with Florian Schuberth and Jérg Henseler. At the time this
dissertation was submitted, the paper was under review at a methodological journal.
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latent variables that explain the covariance structures among their associated ob-
served variables (Joreskog, 1970a). This type of modeling is well established in the
literature (Bollen, 1989; Schumacker and Lomax, 2009) and various approaches have
been developed to estimate its model parameters, such as generalized least squares
(GLS, Joreskog and Goldberger, 1972), weighted least squares (WLS, Browne, 1984),
model-implied instrumental variable estimation (MIIV, Bollen, 1996), factor score
regression in combination with a correction for attenuation (Devlieger and Rosseel,
2017), consistent partial least squares (PLSc, Dijkstra and Henseler, 2015a,b; Dijk-
stra and Schermelleh-Engel, 2014), and generalized structured component analysis
with unique terms for accommodating measurement error (GSCAm, Hwang et al.,
2017). Arguably, the most often applied estimator is the full information maximum
likelihood estimator (ML, Joreskog, 1970b), including its robust versions (Yuan and
Bentler, 1998a, 2007). This could be explained by its favourable statistical properties,
such as consistency, asymptotical efficiency, and asymptotical normality, given that
its underlying assumptions are met (Davidson and Mackinnon, 1993).

Over the last few decades, the composite model has gained popularity as a second
type of modeling in the context of SEM (e.g., Conway and Kovacs, 2015; Dijkstra,
2017; Edwards and Bagozzi, 2000; Fornell and Bookstein, 1982; Grace and Bollen,
2008; Sarstedt et al., 2016). In the composite model, theoretical concepts are modeled
as composites, i.e, as linear combinations of observed variables that are related via a
structural model. Yet, the number of approaches with which composite models can
be estimated is rather limited. The possibly most well-known estimator for composite
models is partial least squares path modeling (PLS-PM, Wold, 1975). Although PLS-
PM produces consistent estimates, it shows crucial limitations. For instance, PLS-
PM is limited regarding model specification, e.g., parameters cannot be constrained.
Additionally, there is no formula for standard errors and statistical inference relies
on non-parametric approaches such as bootstrapping. To date, no estimator with
the same capacities as the ML estimator known from SEM with common factors is
available.

Against this background, we contribute a full information ML estimator for the
composite model. As is common for ML estimators, our proposed estimator is consis-
tent, asymptotically efficient, and asymptotically normal. Moreover, it overcomes the

current limitations of existing estimators such as PLS-PM. Generally, compared to

117



PLS-PM, it allows for higher flexibility in terms of model specification. Further, the
overall fit of composite models estimated by ML can be assessed by a likelihood ratio
test, which makes it a prominent candidate for explanatory statistical modeling and
theory testing. Finally, one can obtain the standard errors of ML estimators using
the information matrix, thus no bootstrap is required.

The remainder of the chapter is structured as follows. Section 6.2 presents the
composite model and gives an overview of extant approaches that extract composites,
also showing their limitations for the composite model. In Section 6.3, we contribute a
full information ML estimator for composite models. To demonstrate its finite sample
behaviour and to compare its performance to PLS-PM, we conduct a Monte Carlo
simulation in Section 6.4. Finally, the chapter closes with a discussion and conclusion

in Sections 6.5 and 6.6.

6.2 The composite model and approaches to extract

composites

For a long time, the composite model has not been recognized as a statistical model
with meaningful and testable implications. Traditionally, composites have merely
been regarded as mathematical operations or tools for dimension reduction and not
as statistical entities representing concepts. For instance, researchers do not ascribe
any conceptual unity to the components of a composite (Bollen and Diamantopoulos,
2017), and methods dedicated to composites such as canonical correlation analysis
(CCA, Hotelling, 1936) do not have a history of assessing the overall model fit (Fan,
1997). This situation changed when theoretical frameworks developed that provide
justification for employing composites to model theoretical concepts (e.g., Henseler,
2017; Henseler and Schuberth, 2021a; Rigdon, 2012; Sarstedt et al., 2016) and when
the composite model was formally introduced (Dijkstra, 2013a, 2015, 2017). Since
the composite model forms the basis of our ML estimator we elaborately describe it

in the following section.
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6.2.1 The composite model

A composite n; is a linear combination of observed variables:

1 = wiT, (6.1)
where the vector :c; = (wj1,%j2,...,%;Kk,;) contains the K; observed variables of block
J making up the composite n; and the vector w} = (wj1,wj2,...,w;K;) contains the

corresponding weights. We assume that the J blocks of observed variables are disjoint,
i.e., each observed variable is connected to only one composite. Therefore, the total
number of observed variables equals the sum of the observed variables per block
K = ijl K;. As is common in the composite model, the observed variables are
centered and the variances and covariances among the observed variables of one block
are unconstrained (Dijkstra, 2017). Figure 6.1 shows one block of observed variables

with its corresponding composite.

Wj1 Wiz Wj3 ’LUJ'K].
/L [ | AN

Tj Zj2 T3 (L’j[(].

Figure 6.1: A block of observed variables and its associated composite

In the composite model, the composites convey all the information between the
blocks of observed variables. In its simplest form, all composites are allowed to be
freely correlated, i.e., the variance-covariance matrix of the composites is uncon-
strained. This is the same as the model that is typically studied in confirmatory
composite analysis (Henseler and Schuberth, 2020; Schuberth et al., 2018a). Further,
the composites can also be related via a structural model. For that purpose, we distin-
guish between exogenous composites 1ex and endogenous composites 7e,. In contrast

to endogenous composites, exogenous composites are not explained by other compos-
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ites in the structural model. The structural model specifies how the composites are

related and can be expressed as follows:

Nen = BNen + T'Nex + ¢ (6.2)

The matrix I' contains the coefficients of the exogenous composites where v;; shows
the influence of ey ; 0N Nen ;. Similarly, the coefficients of the endogenous composites
are captured in the matrix B, i.e., b;; shows the effect of 7en,; 0N Nen ;. Here we assume
that no composite explains itself, i.e., the diagonal elements of B are all equal to 0.
Additionally, we assume the structural error terms ¢ have zero mean and account
for the remaining variance in a dependent composite that cannot be explained by its
independent composites. Figure 6.2 shows an exemplary composite model embedded
in a structural model with three blocks of observed variables, one exogenous and two

endogenous composites.

w1y ) wsy  wzz \34

[\

T32 T33 L34

=

T21 T22 T23

Figure 6.2: Three composites embedded in a structural model

6.2.2 Existing approaches to extract composites

Several approaches that have been developed to extract composites might be suitable
to estimate composite models. In this section, we discuss the arguably most well-

known approaches, which include principal component analysis (PCA, Pearson, 1901),
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(generalized) canonical correlation analysis ((G)CCA, Hotelling, 1936; Horst, 1961a,b;
Kettenring, 1971), PLS-PM (Wold, 1975), generalized structured component analysis
(GSCA, Hwang and Takane, 2004), and ML representing the composites in terms of
loadings (Henseler, 2021; Schuberth, forthcoming).

PCA is one famous approach to extract composites from a dataset (Pearson, 1901).
Originally, in PCA, several orthogonal composites, or principal components as they
are labeled in PCA, could be extracted. To use PCA in estimating the composite
model, Tenenhaus (2008) suggested the first principal component for each block of
observed variables should be extracted and subsequently the structural model should
be estimated using these components. A disadvantage of this approach is that the
structural model is not taken into account when weights are estimated. Consequently,
we expect that this approach will not produce consistent estimates for the composite
model.

Besides PCA, GCCA was proposed as an approach to extract composites, or as
they are called in GCCA, canonical variates, from several blocks of observed variables.
Originally, in GCCA several composites are extracted stagewise from the blocks of
observed variables. The composites of different stages are formed in such a way that
they are mutually orthogonal. In contrast, in the case of two blocks of observed
variables as studied in canonical correlation analysis (CCA), the composites of one
stage are maximally correlated (Hotelling, 1936). Similarly, in the case of more than
two blocks of observed variables, the composites of one stage are maximally related.
The exact objective function depends on the chosen approach (see e.g., Kettenring,
1971). In addition to Kettenring’s (1971) approaches to GCCA, others proposed an
ML approach (Gu et al., 2019; Ogasawara, 2007). In principle, all these approaches
can be directly applied to the composite model in its simplest form, i.e., where the
composites are freely correlated and not embedded in a structural model. For the
composite model comprising a structural model, a viable approach is to extract only
the first-stage composites from the blocks of observed variables and subsequently to
use their variance-covariance matrix to estimate the structural model (Dijkstra, 2017).
A drawback all GCCA approaches have for the composite model is that the structural
model is not considered during the weights’ estimation because the composites are
allowed to correlate freely. Consequently, the structural model’s constraints cannot

be taken into account.
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The arguably most widely used estimator for composite models is PLS-PM which
relies on a two step procedure (Lohmoller, 1989; Wold, 1975). In the first step, the
weights are estimated by the iterative partial least squares algorithm to calculate the
composites and their variance-covariance matrix. Subsequently, in the second step,
the path coefficients of the composite model are estimated based on the compos-
ites’ variance-covariance matrix. Although PLS-PM produces consistent estimates
for the composite model (Dijkstra, 2017), it is very restrictive in terms of model
specification. For instance, covariances among the exogenous composites cannot be
constrained. Similarly, weights and path coefficients cannot be constrained. Finally,
several statistical properties of PLS-PM estimates, such as asymptotic efficiency, have
not been derived yet.

GSCA was proposed as an alternative to PLS-PM (Cho and Choi, 2020; Hwang
and Takane, 2004). It also produces consistent estimates for the composite model. In
contrast to PLS-PM, it optimizes a global criterion to obtain the parameter estimates.
Specifically, it minimizes all sum squared residuals by an alternating least squares
algorithm to obtain the parameter estimates. While GSCA is quite flexible in terms
of model specification, currently no tests are available to assess the estimated model’s
overall fit.

Only recently, a specification was proposed that allows us to estimate composite
models by means of ML known from SEM with common factors (Henseler, 2021). This
specification was inspired by the composite factor model (Henseler et al., 2014) and
the ML estimator proposed for GCCA (Ogasawara, 2007). In this specification, the
relationships between a composite and its associated observed variables are expressed
by loadings, i.e., covariances between the composites and their observed variables,
and not by weights. As a result, no weights are estimated and statistical inference

about the weights cannot be drawn directly.
6.3 A full information maximum likelihood-based approach
for estimating composite models

In this section, we contribute a full information ML estimator for the composite model
to the literature. This ML estimator is specifically tailored for the composite model

and thus overcomes the limitations of other approaches that can be used to estimate

122



composite models. Additionally, since it is an ML estimator, it has known desirable
statistical properties, such as asymptotic efficiency. It has been designed analogous to

the full information ML estimator for common factor models (e.g., Joreskog, 1970b).

6.3.1 Full information maximum likelihood estimator for

composite models

The parameters of the composite model as shown in Subsection 6.2.1 cannot be iden-
tified without further assumptions. Therefore, we impose the following constraints to
ensure that our ML is able to produce unique parameter estimates for the composite
model. First, we scale each weight vector w; to ensure a unit variance for the com-
posites, i.e., w;- Y w; = 1.2 Second, we assume that no composite 7; is isolated in
the structural model, i.e., each composite needs to be connected to at least one other
composite. Otherwise, an infinite number of weight sets for this composite exists that
satisfies the scaling condition. Additionally, it needs to be ensured that the structural
model is identified. For this purpose, we assume that the structural error terms ¢
are uncorrelated with the exogenous composites 7ex. For simplicity, we further as-
sume that the error terms are mutually uncorrelated, i.e., we consider only recursive
structural models. Consequently, the corresponding path diagram equals a directed
acyclic graph. Notably, this assumption can be relaxed (Dijkstra, 2017). Further-
more, we assume that I — B is nonsingular so that (I — B)~! exists. Consequently,
the structural model from Equation 6.2 that relates the composites can be written as

follows:
Nen = Mnex + (I — B)_lc (6.3)

with IT = (I — B)~'T". Finally, we assume some regularity conditions to hold, such
as that weight vectors w; are not allowed to consist of zeros only and the variance-
covariance matrix of a block of observed variables x; cannot be singular.

Against these assumptions, we can derive the variance-covariance matrix implied
by the composite model. Considering the K; observed variables of block j, their

variance-covariance matrix 3;;, also known as intra-block variance-covariance matrix,

2 Alternative ways to fix the scale of the composites would be to fix one weight per composite to
a specific value or to fix the length of the weight vector.
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is usually unconstrained and has the following general form:

(4)

011
(4) (4)
012 022
Y= : : - (6.4)
0’§.‘]}2J éjf)(J ttt U%J)KJ

where O’Ei) equals the covariance between the observed variables x;; and x;,. More-
over, the covariances between the observed variables of two different blocks ¢ and j,

which are captured in the inter-block covariance matrix X;;, can be written as:
Eij = Eiiwiw;Ejj EYE (65)

Due to the scaling condition, r;; equals the correlation between the composites n;
and n;. Notably, the weights w; producing these matrices are the same across all
inter-block covariance matrices X;; with ¢ =1,...,J and ¢ # j.

The exact structure of the composites’ correlation matrix R depends on the coef-
ficients in B and T', and the correlation matrix of the exogenous composites ®. The
variance-covariance-matrix of the structural error terms ¥ is a diagonal matrix of
which the elements are determined by the model parameters because all composites
are standardized. Since the structural error terms are uncorrelated with the exogenous

variables, the composites’ correlation matrix can be written as follows:

® oIT
R= (6.6)
0é T&1 + (I - B)"'¥(I - B)~!

The complete variance-covariance matrix of the observed variables 3(0) can be ex-

pressed as a partitioned matrix:3

X
o1 X
3(0) = (6.7)
Y X X
and can be rewritten as:
3(0)=A+ Aww' Ao D, (6.8)

3We can show that this variance-covariance matrix is positive-definite if, and only if, the following
two conditions hold: (i) all intra-block variance-covariance matrices are positive-definite, and (ii) the
variance-covariance matrix of the composite is positive-definite (Dijkstra, 2015, 2017).
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where the vector w’ = (w], w5, ..., w’;) contains all weights used to build the com-
posites 17 and the operator "o" denotes the Hadamard product. Additionally, the
block-diagonal matrix A contains the intra-block variance-covariance matrices on
its diagonal and the matrix D is a block matrix with D; = 0 € RE>Ki and
D;j = rij - € R XK with 4,5 = 1,...,J and i # j. It is obvious, that the
observed variables’ variance-covariance matrix depends on the model parameters 9,
i.e., the weights, the intra-block variances and covariances, and the covariances among
the composites. The latter depends on the covariances among the exogenous compos-
ites and the path coefficients in B and I" (and on the variances of the structural error
terms, if a different scaling condition is used for the composites) if the composites are
embedded in a structural model.

To develop our full information ML estimator, additional distributional assump-
tions about the observed variables & are required. Analogous to the ML estima-
tors known from SEM with common factors, we assume that the observed variables
are multivariate normally distributed & ~ N(0,X(0)). Consequently, the variance-
covariance matrix S of a sample with n+ 1 observations drawn from this distribution
follows a Wishart distribution. Then, given that the model is correctly specified, the
parameters in @ are estimated consistently by maximizing the corresponding loglike-

lihood function (Lawley and Maxwell, 1963):
1
log L = —5n [log|=(0)] + tr(S2(6) )] (6.9)

with |A| = det(A). Maximizing the loglikelihood function is equivalent to minimizing

the following fit function:

F = log|=(0)| + tr(SXZ(0) ) — log|S| — K, (6.10)

where the constants log|S| and K are included to obtain a value of 0 for F if 3(0)
equals S. Since the variance of each composite is fixed to one by scaling its weights,
the fit function needs to be minimized under this scaling condition, i.e., 'w;- Yw; =1,

Vj=1,...J. Consequently, the ML estimates are obtained by solving the first order
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conditions (FOCs) which, with respect to the fit function F, are given as:

OF _ dlog|S(0)| , tx(SB(6)”")

0 0 00y (6.11)
L (90 Oai:
Y Ym0 Y Y (26 s - 2 L
i=1 j=i+1 i=1 j=i+1 i
(6.12)

To solve the FOCs, iterative algorithms such as the SOLNP algorithm (Ye, 1987) can
be used. We suggest to use PLS-PM estimates as starting values for the iterative
algorithm. Similarly, is done in PLSel (Bentler and Huang, 2014; Huang, 2013),
where PLSc estimates are used as starting values for the Newton Raphson procedure
to obtain consistent and asymptotically efficient factor model estimates.

An advantage of ML estimators is that the estimates’ asymptotic variance-covariance
matrix can be obtained by the inverse of the Fisher information matrix. The Fisher
information matrix equals the Cramér-Rao boundary and is equal to the negative
expectation of the second derivatives of the loglikelihood function (Davidson and
Mackinnon, 1993). To the best of our knowledge, for our ML estimator no closed
form of the second derivatives exist and therefore there is no closed form of the Fisher
information matrix. Consequently, the asymptotic variance-covariance matrix has to

be calculated individually for each model.

6.3.2 Testing the overall model fit

In empirical research, it can be crucial to assess whether an estimated composite
model is consistent with the collected data. Our proposed ML estimator provides the
opportunity to assess the composite model’s overall fit by means of a likelihood ratio

test. Specifically, it tests the following null hypothesis:
Hy:¥%(60)=% (6.13)

where ¥(0) denotes the model-implied variance-covariance matrix of the observed
variables based on the population parameters, and X is the population variance-
covariance matrix of the observed variables. The likelihood ratio test statistic can be

computed as follows (Joreskog, 1969; Wilks, 1938):

T =n-F(9) (6.14)
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where n + 1 is the sample size and F' the fit function from Equation 6.10.

Under the null hypothesis, the likelihood ratio test statistic T is asymptotically x?
distributed with k£ degrees of freedom, where k equals the number of non-redundant
elements in the sample variance-covariance matrix of the observed variables minus the
number of free model parameters (Wilks, 1938). In our case, the number of free model
parameters equals the number of weights plus the number of free elements in B and
T plus the number of non-redundant elements in ¢ and in the intra-block variance-
covariance matrices minus the number of blocks of observed variables. The number of
blocks is subtracted from the free model parameters because for each block of observed

variables one weight is determined by the others due to the scaling condition.

6.4 Monte Carlo simulation

The asymptotic properties of ML estimators are well-known. Particularly, ML estima-
tors are consistent and asymptotically efficient, i.e., as the sample size increases their
estimates converge in probability to the true counterpart and the variance-covariance
matrix of the estimates converges towards the Cramér-Rao bound (Davidson and
Mackinnon, 1993). To investigate the finite sample behaviour of our proposed es-
timator, we conducted a Monte Carlo simulation. To assess the performance of our
proposed ML estimator, we compared it to the performance of PLS-PM, the dominant

estimator for composite models.

6.4.1 Simulation design

In designing our Monte Carlo simulation, we considered a population model with three
composites, namely, one exogenous composite 7,1, and two endogenous composites
Nen,1 a0d 7en 2. The three composites are formed by two, three and four observed vari-
ables, respectively. The population intra-block variance-covariance matrices for the

three blocks of observed variables are given in Equation 6.15. Notably, the following

127



values are rounded to the second decimal.

2.00 0.63 1.20 1.70
4.00 0.87 2.40

3.00 2.52 0.63 5.00 2.53 3.19
Y= , 290 = 1087 3.00 0.83],%33=
2.52 5.00 1.20 2.53 8.00 2.12
2.40 0.83 9.00
1.70 3.19 2.12 9.00
(6.15)

Additionally, the population weights to form the composites are set as follows: wy; =
0.35 and wiz = 0.22 for 7Nex,1, wor = 0.20, way = 0.29 and w3 = 0.17 for 7en,1
and wz; = 0.28, wsz = 0.09, wzz = 0.18 and wss = 0.10 for 7en 2. Note that the
population weights are chosen in such a way that the corresponding composite shows
a unit variance. As structural model, we opt for a full mediation model in which 7, 1
fully mediates the effect of 7cx,1 on 7en,2. The population path coefficients are set
as follows: 11 = 0.3 and be; = 0.4. Since the composites have a unit variance, the
variances of the structural error terms are given as: 111 = 0.91 and 192 = 0.62. The
complete population variance-covariance of the observed variables is given in Equation
6.16.

Ty Tz T T: T Ty T U Tm
3.00

2.52  5.00

0.70 0.87 4.00

0.57 0.70 0.87 3.00

=107 1.33 240 0.83 9.00 (6.16)
0.19 0.24 0.58 0.47 0.89 2.00

0.27 033 0.81 0.66 1.24 0.63 5.00

0.42 0.52 1.27v 1.03 1.95 1.20 2.53 8.00

039 049 1.18 096 181 1.70 3.19 2.12 9.00

Figure 6.3 displays the population model. For more clarity, we omit the covariances
among the observed variables belonging to one block, i.e., the intra-block covariances.

A model that equals the population model given in Figure 6.3 is estimated by each
estimator 1,000 times using sample sample sizes of 100, 200, 500 and 1000 to inves-

tigate our proposed ML estimator’s finite sample behaviour. To assess and compare
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Figure 6.3: Population model of the Monte Carlo simulation

the performance of our ML estimator and PLS-PM, we consider the estimated bias,
and the estimated root mean square error (RMSE) of the standardized parameters.

The estimated bias and RMSE are obtained as follows:

0; -0 (6.17)

(6.18)

where 6 represents a generic population parameter, HAZ is its corresponding estimate
from the ¢-th Monte Carlo simulation run, and N denotes the total number of Monte
Carlo simulation runs. While the estimated bias indicates how much, on average, an
estimate differs from its population counterpart, the RMSE combines the bias and the
uncertainty involved in an estimate, namely its standard error. Since both estimators
are consistent, we expect that the bias of the estimates will diminish for increasing
sample size. Since ML estimates are asymptotically efficient, we expect that compared
to PLS-PM, our approach will produce estimates with smaller standard errors for large
sample sizes. Therefore, the ML estimates are expected to show a smaller RMSE than
estimates produced by PLS-PM for large sample sizes. Further, we compare the two
estimators regarding Fisher consistency, i.e., whether they are able to retrieve the
population parameters when the population variance-covariance matrix is used as
input. Since ML estimators are Fisher consistent (Dijkstra, 1983), we expect both
estimators to be Fisher consistent.

We carried out the complete Monte Carlo simulation in the statistical program-

ming environment R (R Core Team, 2020). The datasets were drawn from a multi-
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variate normal distribution with zero mean, and the variance-covariance matrix from
Equation 6.16 using the mvrnorm() function of the MASS package (Venables and
Ripley, 2002). To employ our proposed estimator, we used our own implementa-
tion.To minimize the loglikelihood function under the constraint that each composite
has unit variance, we used the solnp() function of the Rsolnp package (Ghalanos
and Theussl, 2015), which is based on the SOLNP algorithm to solve non-linear
systems of equations comprising constraints (Ye, 1987). As starting values for the
SOLNP algorithm, we used the PLS-PM estimates obtained by the matrizpls pack-
age’s matrixpls () function (Rénkkds, 2021) based on the sample variance-covariance
matrix of the observed variables. To obtain the unstandardized model parameter
estimates of PLS-PM, we again used the matrizpls package’s matrixpls() function
(Ronkko, 2021)%. To fix the orientation of each composite and to avoid sign ambigu-
ity of the weight vector, we choose the sign of each weight vector in such a way that
the dominant observed variable of a block is positively correlated with its compos-
ite. Specifically, we choose x12 for 7ex,1, Z23 for 7en,1 and xz3 for nen 2 as dominant
observed variables, which are the observed variables that show the highest positive

population correlation with the composite.

6.4.2 Simulation results

Considering Fisher consistency, Table 6.1 shows that our proposed ML estimator, as
well as PLS-PM, are able to retrieve the population parameters when the population
variance-covariance matrix is provided as input. The covariances among the observed
variables of one block are omitted to preserve clarity. As Table 6.1 shows, both
estimators are Fisher consistent for the considered model.

Besides the results for Fisher consistency, Figure 6.4 presents bar plots for the
estimated bias and the RMSE. Since the results are very similar across the various
parameters, we report only the results for the covariance between xs2 and o3 (og)),
the weight of z11 (w11) and the path coefficient of 7ex,1 on 7en1 (711). Overall, for
each approach, the bias and the RMSE are calculated based on 1,000 valid estima-

tions per considered sample size, i.e., no inadmissible solutions or convergence issues

4Note that for PLS-PM the correlation matrix of the observed variables is often used as input
for the estimation. Consequently, the parameter estimates are standardized. However, we used the
variance-covariance matrix of the observed variables as input.
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Table 6.1: Fisher consistency

Parameter | Population parameter | ML ~ PLS-PM

w11 0.35 0.35 0.35
W12 0.22 0.22 0.22
Wa3 0.17 0.17 0.17
w31 0.28 0.28 0.28
W32 0.09 0.09 0.09
Y11 0.30 0.30 0.30
bay 0.40 0.40 0.40

were encountered during the estimations. The complete results are provided in the

Appendix.
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Figure 6.4: Simulation results

As can be seen from Figure 6.4, our proposed ML estimator produces estimates
that, on average, are close to the population value. Even for a smaller sample size,

i.e., 100 observations per sample, the estimates are hardly biased. This also holds for
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the PLS-PM estimates. While the bias of the ML estimates is slightly smaller than
the bias of PLS-PM estimates for the path coefficient and the weight, the bias of the
intra-block covariance for the two estimators does not differ. For increasing sample
sizes, the bias and the difference between the two estimators diminish. Considering
the RMSE of the ML estimates, it decreases for all parameters for an increasing
sample size. Moreover, the RMSE is very similar for the estimates obtained by ML

and PLS-PM. In fact, there is almost no difference between the two estimators.

6.4.3 Simulation insights

Our Monte Carlo simulation results largely confirm our expectations, i.e. the bias of
the estimates diminishes and the RMSE of the estimates decreases for an increasing
sample size. This is in line with the ML estimator’s properties, i.e., with its consis-
tency and asymptotic efficiency. Additionally, a comparison of the ML estimator and
PLS-PM shows that their estimates hardly differ.

These results lead to two conclusions. Firstly, our proposed ML estimator does
not perform worse than existing estimators for composite models in finite samples,
particularly in small samples. Secondly, PLS-PM performs similarly to ML in terms
of RMSE, although asymptotic efficiency has not been proven for PLS-PM. Conse-

quently, for our considered model, the two estimators can be used equivalently.

6.5 Discussion

In this chapter, we designed an ML estimator that overcomes the limitations of ex-
isting estimators for composite models such as the lack of a test for overall model fit
and limitations in terms of model specification. Specifically, we present the variance-
covariance matrix of the observed variables implied by the composite model, which
forms the basis of our ML estimator. Further, we present a fit function that is min-
imized by our ML estimator to obtain consistent estimates for the composite model.
To assess the overall fit of composite models, we present a likelihood ratio test that
can be used for this purpose. Additionally, the likelihood ratio test allows us to test
nested models, which can be beneficial in assessing measurement invariance of com-

posites (Henseler et al., 2016b). Finally, besides constraining the variances of the
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composites, the ML principle allows for imposing further parameter constraints in
the estimation. Thus, it overcomes a limitation of PLS-PM for composite models.

Our Monte Carlo simulation results show that our ML estimator behaves as ex-
pected in finite samples. Specifically, the bias diminishes and the RMSE decreases
for an increasing sample size. Moreover, our proposed ML estimator shows a bias in
finite samples similar to that of PLS-PM. Since the statistical properties of PLS-PM
have not been completely explored (Hanafi, 2007; Henseler, 2010), the results provide
empirical evidence for the efficiency of PLS-PM.

Naturally, simulation studies are limited by their design. Therefore, we advise fu-
ture research to examine and compare the performance of our ML estimator in more
complex settings, e.g., in non-recursive structural models. Similarly, future research
is advised to compare our proposed estimator to PLS-PM in cases of model misspec-
ification. Due to its two step nature PLS-PM is a limited information estimator in
comparison to our proposed ML approach. Hence, we expect PLS-PM to outperform
our proposed approach in cases of model misspecification. Additionally, researchers
most likely deal with a combination of composites and common factors in empirical
research (Hwang et al., 2021). Hence, a promising avenue for future research would
be to adjust our ML estimator to models that consist of both composites and common
factors. In such a case, the performance should be compared to that of consistent
partial least squares (PLSc, Dijkstra and Henseler, 2015a), an approach that can deal
with models containing both common factors and composites. Further, the ML esti-
mates are currently obtained by an iterative algorithm. Considering this, an issue that
requires further attention is the choice of starting values. We propose to use PLS-PM
estimates as starting values, which is similar to PLSel proposed for common factor
models. A set of improper starting values can result in optimizer non-convergence
or even prevent the optimization. While our simulation used the PLS-PM estimates
as starting values, future research should propose ways to determine starting values
that do not require an iterative algorithm. Moreover, we deliberately focused on the
unidimensional composite model. Future research should try to extend our approach
to the case where more than one composite per block of observed variables should to
be extracted, i.e., to the multidimensional case. Finally, future research should inves-
tigate how current enhancements to the ML estimator for common factor models can

be adopted to our ML estimators such as dealing with missing values.
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6.6 Conclusion

In this chapter, we contribute a full information ML estimator for composite models,
which overcomes the limitations of existing approaches to estimate composite models.
In analogy to PLSel, it can be regarded as a consistent and asymptotically efficient
PLS-PM estimator if PLS-PM estimates are used as starting values to solve the FOCs
of our ML estimator. As shown in our Monte Carlo simulation study, our ML esti-
mator performs similar to existing estimators for composite models such as PLS-PM
in finite samples. However, in contrast to PLS-PM, it allows for more flexibility in
terms of model specification and for assessing the overall fit of composite models by

means of a likelihood ratio test.
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Chapter 7

Epilogue

This thesis has presented several methodological advances in the field of composite-
based structural equation modeling (SEM). Traditionally, theoretical concepts are
modeled as common factors and thus this type of SEM is often referred to as factor-
based SEM (Bollen, 1989; Joreskog, 1970b). Factor-based SEM is well established and
widely used in various disciplines such as psychology (Raykov et al., 1991), education
(Khine, 2013), criminology (Higgins, 2002), and business (Shook et al., 2004). In
contrast, composite-based SEM has only recently been recognized as a second type
of SEM. Nevertheless, composite-based SEM has gained increasing attention over
the last two decades and has been applied in various disciplines such as marketing
(Hair et al., 2011), psychology (Karimi and Meyer, 2014), or information systems
(Al-Emran et al., 2018). This thesis further contributes to composite-based SEM
literature, specifically by having introduced new methods, improved existing methods,
critically discussed existing methods, and having provided guidelines for the presented
methods.

Originally, composites were regarded as the outcome of dimension reduction pro-
cedures such as principal component analysis (Pearson, 1901). The introduction of
partial least squares path modeling (PLS-PM, Wold, 1975) marks an important cor-

nerstone in the maturation of composite-based SEM. To start with, PLS-PM was
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introduced in the light of principal component analysis (Wold, 1966, 1975). Subse-
quently, it was introduced as an approach that could estimate path models with latent
variables (Wold, 1982). As a result, it gained increasing attention (Lohmoller, 1989;
Tenenhaus et al., 2005) and various improvements were developed (Becker et al.,
2018; Dijkstra and Henseler, 2015a,b; Henseler, 2007; Henseler and Sarstedt, 2013;
Henseler et al., 2014; Huang, 2013; Rademaker et al., 2019; Sarstedt et al., 2011;
Tenenhaus et al., 2004). Although the early literature already disclosed the limita-
tions of PLS-PM (Dijkstra, 1981), they were not taken into account for a long time,
but only considered later (Ronkko and Evermann, 2013; Ronkko et al., 2016). As a
consequence, other estimators that built on composites to estimate structural equa-
tion models, such as generalized structured component analysis (GSCA, Hwang and
Takane, 2004), generalized structured component analysis with uniqueness terms for
accommodating measurement error (GSCAm, Hwang et al., 2017), or integrated gen-
eralized structured component analysis (IGSCA, Hwang et al., 2021) have become
more attractive and composite-based SEM was established as a second type of SEM.

In this light, two different strands have contributed to the spread of composite-
based SEM. The first strand involves the original application of composites in SEM,
namely composite-based methods to estimate models in which theoretical concepts
are modeled as common factors as is the case in PLSc, GSCAm, IGSCA and other
variance-based estimators. At first, using composites was questionable because taking
the composites as proxies for common factors lead to inconsistent estimates. Yet,
the introduction of consistent estimators for common factor models that built on
composites increased their acceptance in the field of SEM and expanded the world of
composite-based estimators for common factor models.

The second strand of composite-based SEM to be established, differs from the first
that uses composites to estimate the model parameters of common factor models.
With the introduction of the composite model (Dijkstra, 2013b, 2017) and confirma-
tory composite analysis (Henseler and Schuberth, 2021b; Schuberth et al., 2018a) as
a method of assessing these models and thus assessing whether the components act
as a whole or rather merely as loose parts, composites can be embedded in models
which enable the modeling of theoretical concepts (Henseler and Schuberth, 2021a).
This was strengthened when new theoretical frameworks such as the concept-proxy

framework (Rigdon, 2012) and the synthesis theory (Henseler and Schuberth, 2021a)
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were introduced. All these instances assume that the composites are not only linear
combinations of observed variables, but also convey all information between their ob-
served variables and all other variables in the model. This thesis contributes to both
strands of composite-based SEM in a methodological sense, and thus contributes to
the wider distribution of composite-based SEM.

Chapter 2 provides guidelines for conducting Monte Carlo simulations with PLS-
PM and other variance-based estimators for structural equation models using the R
package ¢SEM (Rademaker and Schuberth, 2020). The R package ¢SEM was chosen
as the tool to perform these Monte Carlo simulations because it was introduced by
researchers in the field of composite-based SEM and is open to other researchers’
contributions, making the latest developments related to composite-based SEM pub-
licly available. Moreover, ¢cSEM is now widely applied in research and is gaining
increasing attention in academia (Chuah et al., 2021; Fabbricatore et al., 2021; Klesel
et al., forthcoming). This chapter illustrates the guidelines by means of an illustra-
tive Monte Carlo simulation that investigates PLS-PM’s and PLSc’s finite sample
behavior, particularly regarding the consequences of sample correlations among mea-
surement errors on statistical inference. This example was included in particular
because PLS-PM is arguably the most dominant approach to obtaining parameter
estimates for composite models, and thus the most prominent approach in composite-
based SEM. Consequently, using PLS-PM for illustration provides researchers with a
perfect outline for their own Monte Carlo simulations using ¢SEM.

Chapter 3 presents versions of PLS-PM and its consistent version PLSc, which
are robust in responding to outlier distortion. Thus, the chapter contributes to the
composite-based SEM literature by offering an improvement to an existing estimator.
Empirical data is rarely clean in the sense that researchers lack knowledge of how to
clean — often referred to as manipulate — data in a sense that model parameters are
appropriately estimable. By demonstrating that PLS-PM and PLSc lead to biased
estimates with high variances when unsystematic outliers are present in a dataset, we
contribute to the critical discussion of composite-based SEM methods’ performance.
As a remedy, we introduce robust PLS and robust PLSc (Schamberger et al., 2020)
which do not show such a bias and high variances for samples with unsystematic out-
liers. Both robust PLS and robust PLSc use the minimum covariance determinant

(MCD) estimator to obtain the observed variables’ correlation matrix. Their tradi-
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tional counterparts use the Pearson correlation for this purpose. We give an overview
of other possible estimators for the observed variables’ correlations. Using a Monte
Carlo simulation, we show that robust PLS and robust PLSc can handle samples
containing unsystematic outliers of almost 50%. In addition, we illustrate the use of
robust PLS and robust PLSc by means of an empirical example. Robust PLS and
robust PLSc open the possibility for applied researchers to solve their analytical prob-
lems, which has already been demonstrated in the literature (Ramirez-Correa et al.,
2020). In addition, the introduction of robust PLS and robust PLSc has served as in-
spiration for other researchers to develop robust versions for PLS-PM and PLSc. For
example, Abdullaha et al. (2020) replaced the MCD correlation with the Spearman
correlation to obtain a robust version of PLS-PM. Given the higher breakdown point
of the MCD correlation compared to the Spearman correlation, it can be surmised
that the robust versions of PLS-PM and PLSc presented in Chapter 3 perform better
than the versions presented by Abdullaha et al. (2020) in terms of robustness to out-
liers. Nevertheless, this should be further verified, e.g., by means of a Monte Carlo
simulation. In addition, robust PLS and robust PLSc allow researchers to compare
the results of the traditional estimators with those of the robust estimators to see if
outliers are even a problem in their data set. Future research should develop valid
test procedures for this purpose.

Chapter 4 presents a way of performing out-of-sample predictions based on mod-
els’ estimates by ordinal partial least squares (OrdPLS) and ordinal consistent partial
least squares (OrdPLSc). In recent years, performing out-of sample predictions has
gained increasing attention in PLS-PM literature (Shmueli et al., 2016, 2019). In con-
trast, out-of-sample predictions cannot be performed using traditional factor-based
techniques. Consequently, discussing the predictive performance of composite-based
SEM methods also contributes to their spread. Nevertheless, current guidelines for
performing out-of sample predictions based on models estimated with PLS-PM or
PLSc — called PLSpredict and PLScpredict respectively — cannot explicitly account
for the ordinal categorical nature of the observed variables. As a remedy, Chapter 4
presents approaches for performing out-of sample predictions based on models esti-
mated by OrdPLS and OrdPLSc, namely OrdPLSpredict and OrdPLScpredict, which
allow us to account for the ordinal categorical nature of the observed variables. The

performance of OrdPLSpredict and OrdPLScpredict are compared to PLSpredict and
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PLScpredict, which ignore the categorical nature of the variables by means of a Monte
Carlo simulation using the R package ¢SEM. The results show that OrdPLSpredict
and OrdPLScpredict outperform their traditional counterparts when the MAE or the
concordance is used to evaluate the predictive performance. Besides presenting Ord-
PLSpredict and OrdPLScpredict, this chapter provides guidelines on OrdPLScpredict
using the R package ¢SEM, also giving an empirical example. OrdPLSpredict and
OrdPLScpredict open the possibility for researchers to take into account the scaling
of observable variables when making predictions. Furthermore, OrdPLSpredict and
OrdPLScpredict could serve as inspiration for other researchers to develop further
prediction methods for other composite-based estimators.

Chapters 5 and 6 intentionally contribute to the second strand of composite-based
SEM in using the composite model and assuming the composites to comprise theo-
retical concepts. Specifically, Chapter 5 presents a method to assess composites in
human development research, namely confirmatory composite analysis (CCA). The
chapter explains the different steps of CCA: model specification, model identification,
model estimation, and model assessment. In addition, we use the Henseler-Ogasawara
specification (Henseler, 2021; Schuberth, forthcoming) of the composite model which
allows us to estimate the model with a maximum likelihood estimator known from
factor-based SEM (Joreskog, 1969). Moreover, this chapter provides guidelines for as-
sessing these kinds of models and illustrates CCA by means of an empirical example.
Still, CCA using the Henseler-Ogasawara specification has some limitations. First,
the specification of the composite model in terms of loadings might be less intuitive
than the specification in terms of weights that directly allows for the interpretation
of composites as linear combinations of their observed variables. Second, although
standard tools of factor-based SEM can be applied to estimate composite models us-
ing the Henseler-Ogasawara specification, some tools like the R package lavaan run
into convergence issues (Schuberth, forthcoming). Further, the choice for appropriate
starting values is not straightforward. Future research should explore new tactics
for setting starting values for composite models. In addition, future research should
develop simple ways to obtain the standard errors of the composite weights to allow
users to perform inference on the parameter estimates.

Chapter 6 presents an alternative specification of the composite model that also

allows the model parameters to be estimated using a maximum likelihood estimation.
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As in Chapter 5, we assume the composites to comprise theoretical concepts in Chap-
ter 6. Unlike the Henseler-Ogasawara specification, this specification allows direct
estimation of weights, thus it is more intuitive than the other with respect to the
interpretation of composites. We derive an ML estimator along the lines of the ML
estimator for common factor models (Joreskog, 1967). Besides the ML estimator, we
derive a closed form for the model-implied variance covariance matrix for composite
models and present a way to test the overall model fit. Moreover, the results based
on this ML estimator are compared to those of a traditional estimator for compos-
ite models, namely PLS-PM, using a Monte Carlo simulation, which shows that the
estimators yield similar results in terms of bias and efficiency.

Chapters 5 and 6 provide researchers with the possibility to assess composites
with the same degree of rigor as known from factor-based SEM. Moreover, both the
presented ML estimator and the Henseler-Ogasawara specification offer researchers
the possibility to apply many developments known from the ML estimator for com-
mon factor models to composite models. Future research should therefore investigate
which and to what extent these methods are transferable from factor-based SEM to
composite-based SEM.

Overall, this thesis concludes that by introducing the composite model and other
theoretical frameworks such as the concept-proxy framework (Rigdon, 2012) and the
synthesis theory (Henseler and Schuberth, 2021a), the use of composite-based SEM
has increased. Even so, traditional composite-based techniques are also still gaining
attention and contributing to the spread of composite-based SEM. Moreover, other
strands like out-of-sample predictions have gained increasing attention in various re-
search fields. Consequently, we can expect that other strands of composite-based SEM
will develop and methodological advances will continue to contribute to the spread

and use of composite-based SEM.
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Chapter 8

Appendix

8.1 Conducting Monte Carlo simulations with PLS-PM and

model

other variance-based estimators for structural equation

8.1.1 Observed variables’ population correlations for the

population model with 4 constructs

Table 8.1: Observed variables’ population correlations for the population model with
4 constructs

Z11 T12 Z13 T21 T22 T23 31 32 33 T41 T42 T43
1.000

0.720  1.000

0.630 0.560 1.000

0.000 0.000 0.000 1.000

0.000 0.000 0.000 0.500 1.000

0.000 0.000 0.000 0.500 0.500 1.000

0.000 0.000 0.000 0.108 0.096 0.084 1.000

0.000 0.000 0.000 0.216 0.192 0.168 0.200 1.000

0.000 0.000 0.000 0.216 0.192 0.168 0.000 0.400 1.000

0.196 0.174 0.152 0.000 0.000 0.000 0.000 0.000 0.000 1.000

0.184 0.163 0.143 0.000 0.000 0.000 0.000 0.000 0.000 0.250 1.000
0.200 0.178 0.155 0.000 0.000 0.000 0.000 0.000 0.000 0.400 0.160 1.000
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8.1.2 Simulation code for the population model with 4 constructs

library (cSEM)

library (cSEM.DGP)

# Model definition in lavaan syntax for the csem function
model <- '

# Relations between the constructs and the observed variables
etal =~ x11 + x12 + x13

eta2 <~ x21 + x22 + x23

eta3d <~ x31 + x32 + x33

etad <~ x41 + x42 + x43

# Relations between the constructs
eta2 ~ etal + etal3
etal ~ eta4d'

# Population model with the population values in lavaan syntazx
model_dgp <- '

# Relations between the constructs and the observed variables
etal =~ 0.9%x11 + 0.8%x12 + 0.7*x13

eta2 <~ 0.6*x21 + 0.4*x22 + 0.2%x23

eta3 <~ 0.3*x31 + 0.5*x32 + 0.6%x33

etad <~ 0.4x*x41 + 0.5*x42 + 0.5%x43

# Intra block correlations of the observed variables
x21 ~~ 0.5%x22 + 0.5%x23
x22 ~~ 0.5%x23

x31 ~~ 0.2%x32 + 0.0*x33
x32 ~~ 0.4%x33

x41 ~~ 0.25%x42 + 0.4%x43
x42 ~~ 0.16%x43

# Relations between the constructs
eta2 ~ 0.0xetal + 0.3*eta3
etal ~ 0.3*xeta4d'

# Lists for the simulation results
res_PLS <- list()
res_PLSc <- list()
i<-1
j <=0
set.seed(123)
while(i < 501){
data <- generateData(.model = model_dgp, .N = 200)
res_PLSc_temp <- csem(.model = model, .data = data)
res_PLS_temp <- csem(.model = model, .data = data, .disattenuate = FALSE)

if (sum(verify(res_PLSc_temp)) == 0 && sum(verify(res_PLS_temp)) == 0){

res_PLSc[[i]] <- csem(.model = model, .data = data, .resample_method = "bootstrap",
.handle_inadmissibles = "replace", .seed = 123)

res_PLS[[i]] <- csem(.model = model, .data = data, .resample_method = "bootstrap",
.disattenuate = FALSE, .handle_inadmissibles = "replace",
.seed = 123)

i <= i+l

Yelse{
j<—j+1
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8.1.3 Simulation results

Table 8.2: Share of significant path coefficients for the 95% confidence interval

Number of n Estimator Share of significant path
constructs coefficients
2 200 PLS-PM 0.080
PLSc 0.102
500 PLS-PM 0.062
PLSc 0.088
4 200 PLS-PM 0.030
PLSc 0.024
500 PLS-PM 0.038
PLSc 0.044

Table 8.3: Share of significant path coefficients for the t-tests

Share of sign. path coeff.

Number of constructs n Estimator
a=1% a=5% a=10%
2 200 PLS-PM 0.040 0.094 0.134
PLSc 0.056 0.108 0.152
500 PLS-PM 0.042 0.084 0.104
PLSc 0.044 0.088 0.118
4 200 PLS-PM 0.008 0.026 0.060
PLSc 0.006 0.022 0.056
500 PLS-PM 0.006 0.042 0.090
PLSc 0.006 0.042 0.086
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8.2 Robust partial least squares path modeling

8.2.1 Empirical example

Table 8.4: Estimated weights and factor loadings for the Corporate Reputation Model

with and without missing values

with missing values

without missing values

Parameter
traditional robust traditional robust
PLSc PLSc PLSc PLSc
w11 0.205** 0.168° 0.203** 0.119
W12 0.038 -0.020 0.054 -0.018
w13 0.102° 0.083 0.095 0.084
W14 -0.007 0.086 -0.011 0.097
w1y 0.159** 0.140° 0.156** 0.166°
W1g 0.399** 0.410** 0.398** 0.415**
w7 0.230** 0.119° 0.228** 0.119°
w1g 0.194** 0.224** 0.205** 0.219**
Wa1 0.463** 0.479** 0.463** 0.507**
Wao 0.179** 0.174* 0.171* 0.128*
Wa3 0.197** 0.144* 0.188** 0.169*
Woy 0.342** 0.218* 0.351** 0.216*
Was 0.199** 0.235* 0.201** 0.221*
w31 0.309** 0.270** 0.275** 0.250*
w32 0.038 0.031 0.035 0.037
w33 0.406** 0.349* 0.418** 0.403*
W34 0.081 0.099 0.095 0.128
w3s 0.413** 0.427** 0.420** 0.366**
Wy 0.419** 0.446** 0.420** 0.449**
W42 0.199** 0.156* 0.203** 0.175*
W43 0.655** 0.637** 0.655** 0.622**
As1 0.792** 0.911** 0.824** 0.915**
As2 0.679** 0.738** 0.668** 0.736**
As53 0.715** 0.772** 0.687** 0.776**
A61 0.859** 0.917** 0.857** 0.920**
A2 0.755** 0.811** 0.758** 0.823**
A63 0.749** 0.829** 0.745** 0.823**
A71 1.000** 1.000** 1.000** 1.000**
As1 0.009 0.878** 0.788** 0.882**
Ag2 0.708** 0.881** 0.849** 0.893**
As3 0.834** 0.752** 0.739** 0.755**

*kk

(o)

: significant on a 1% level; *: significant on a 5% level;
: significant on a 10% level
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8.2.2 Additional population models

Population model containing five common factors

T11
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T42

T22
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T26

T55
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Figure 8.1: Population model containing five common factors
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Population model containing five composites
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Figure 8.2: Population model containing five composites
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8.2.3 Complete results of the Monte Carlo simulation

Tables 8.5 - 8.20 show the complete results of the Monte Carlo simulation®, where:
e Par.: Model parameter
o Appr.: estimator used during the estimation (robust or traditional* PLS/PLSc).

The experimental design was full factorial and we varied the following experimental

conditions:

¢ concept operationalization (all constructs are specified either as composites or

common factors),
o model complexity (model containing either three or five constructs),
o sample size (n = 100, 300 and 500),
o share of outliers (0%, 5%, 10%, 20%, 40% and 50%),
« kind of outliers (unsystematic and systematic) and

o number of observed variables that are contaminated by outliers (either all or

two observed variables).

The unsystematic outliers were drawn from a continuous univariate uniform distribu-
tion with a lower bound -10 and an upper bound 10 while the systematic outliers were

drawn from the same distribution, but with a lower bound 2 and an upper bound 5.

3 All results are rounded on three decimal places.
4Note that for simplicity, traditional PLS-PM is referred to as traditional PLS in the following
tables.
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Unsystematic outliers
This subsection shows the complete results for unsystematic outliers.

Table 8.5: Results for traditional and robust PLSc for three common factors and
unsystematic outliers in all observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 40% 50%
Y21 100 trad. 0.018 -0.038 -0.198 -0.317 -0.457 -0.401 0.097 0.614 0.649 0.628 0.620
rob. 0.034 0.046 0.030 0.033 0.034 -0.131 0.124 0.124 0.125 0.126 0.626
300 trad. 0.003 0.057 -0.067 -0.216 -0.333 -0.350 0.060 0.429 0.545 0.561 0.567
rob. 0.006 0.010 0.003 0.003 0.006 -0.016 0.069 0.068 0.068 0.075 0.349
500 trad. -0.000 0.087 0.007 -0.131 -0.287 -0.317 0.045 0.321 0.464 0.536 0.541
rob. -0.001 0.003 0.001 0.003 -0.003 -0.062 0.051 0.053 0.055 0.058 0.240
Y31 100 trad. 0.039 0.051 -0.121 -0.181 -0.221 -0.251 0.152 0.827 0.752 0.757 0.862
rob. 0.064 0.062 0.052 0.049 0.060 -0.082 0.238 0.229 0.221 0.207 0.829
300 trad. 0.010 0.132 -0.049 -0.164 -0.227 -0.204 0.081 0.719 0.729 0.744 0.718
rob. 0.010 0.005 0.011 0.017 0.020 0.016 0.095 0.093 0.090 0.107 0.549
500 trad. 0.004 0.141 0.044 -0.093 -0.193 -0.209 0.062 0.658 0.759 0.693 0.684
rob. 0.004 0.004 0.004 0.006 0.006 -0.039 0.069 0.072 0.073 0.078 0.368
Y32 100 trad. 0.013 0.182 0.075 0.093 0.034 0.097 0.176 0.814 0.766 0.778 0.860
rob. 0.013 0.007 0.006 0.010 -0.001 0.048 0.271 0.274 0.248 0.249 0.813
300 trad. -0.001 0.075 0.151 0.107 0.013 0.072 0.092 0.747 0.763 0.724 0.731
rob. 0.001 0.014 0.006 0.001 -0.000 0.014 0.109 0.110 0.107 0.119 0.612
500 trad. -0.000 0.017 0.107 0.119 0.069 0.062 0.069 0.721 0.780 0.694 0.688
rob. 0.002 0.005 0.005 -0.000 -0.002 0.029 0.078 0.080 0.081 0.090 0.433
A1 100 trad. -0.026 -0.395 -0.524 -0.611 -0.694 -0.698 0.066 0.391 0.400 0.364 0.365
rob. -0.037 -0.033 -0.032 -0.030 -0.034 0.082 0.081 0.084 0.082 0.383
300 trad. -0.010 -0.431 -0.539 -0.674 -0.729 0.046 0.323 0.324 0.301 0.289
rob. -0.010 -0.007 -0.005 -0.009 -0.010 0.052 0.052 0.053 0.058 0.267
500 trad. -0.002 -0.419 -0.549 -0.656 -0.737 -0.758 0.036 0.289 0.287 0.274 0.258
rob. -0.002 -0.004 -0.003 -0.003 -0.004 -0.185 0.040 0.039 0.042 0.047 0.224
A12 100 trad. -0.000 -0.337 -0.431 -0.545 -0.590 -0.602 0.089 0.398 0.390 0.362 0.342
rob. -0.003 -0.009 0.003 -0.005 -0.002 -0.246 0.110 0.109 0.116 0.111 0.420
300 trad. -0.001 -0.358 -0.493 -0.591 -0.622 -0.638 0.054 0.332 0.334 0.291 0.287
rob. -0.001 0.001 0.003 0.000 -0.001 -0.213 0.062 0.063 0.062 0.071 0.307
500 trad. -0.001 -0.353 -0.483 -0.592 -0.645 -0.646 0.044 0.294 0.291 0.269 0.267
rob. -0.001 -0.001 0.000 -0.001 -0.000 -0.168 0.048 0.047 0.052 0.058 0.252
A13 100 trad. 0.011 -0.264 -0.337 -0.443 -0.502 -0.504 0.105 0.421 0.408 0.384 0.359
rob. 0.013 0.015 0.006 0.014 0.019 -0.183 0.137 0.139 0.139 0.130 0.424
300 trad. 0.006 -0.304 -0.397 -0.484 -0.538 -0.549 0.064 0.321 0.314 0.317 0.290
rob. 0.006 0.004 -0.001 0.003 0.006 -0.170 0.075 0.075 0.074 0.082 0.336
500 trad. -0.000 -0.304 -0.415 -0.493 -0.543 -0.553 0.050 0.288 0.294 0.271 0.249
rob. -0.000 0.004 0.002 0.002 -0.000 -0.151 0.055 0.058 0.060 0.067 0.287
A21 100 trad. -0.015 -0.308 -0.363 -0.447 -0.502 -0.489 0.131 0.416 0.410 0.371 0.358
rob. -0.021 -0.001 -0.006 -0.017 -0.014 -0.209 0.169 0.156 0.157 0.171 0.440
300 trad. 0.002 -0.306 -0.413 -0.495 -0.526 -0.539 0.076 0.326 0.328 0.291 0.285
rob. 0.001 0.000 0.002 -0.007 -0.001 -0.219 0.087 0.089 0.091 0.098 0.317
500 trad. 0.001 -0.325 -0.414 -0.492 -0.554 -0.565 0.057 0.282 0.287 0.268 0.257
rob. 0.001 -0.001 0.002 -0.007 -0.005 -0.199 0.062 0.064 0.066 0.074 0.287
A2z 100 trad. 0.000 -0.290 -0.372 -0.436 -0.493 -0.496 0.124 0.431 0.410 0.370 0.354
rob. -0.011 -0.022 -0.013 -0.014 -0.015 -0.207 0.161 0.158 0.154 0.164 0.428
300 trad. -0.002 -0.320 -0.398 -0.509 -0.534 -0.549 0.073 0.328 0.334 0.292 0.283
rob. -0.004 0.001 0.003 0.002 -0.007 -0.212 0.084 0.087 0.090 0.099 0.319
500 trad. -0.004 -0.311 -0.419 -0.507 -0.548 -0.574 0.058 0.285 0.283 0.265 0.261
rob. -0.005 -0.002 -0.003 0.001 0.003 -0.204 0.065 0.065 0.066 0.074 0.284
A23 100 trad. -0.015 -0.265 -0.364 -0.462 -0.504 -0.503 0.121 0.412 0.409 0.386 0.353
rob. -0.022 -0.011 -0.022 -0.011 -0.017 -0.213 0.160 0.161 0.162 0.161 0.439
300 trad. -0.006 -0.334 -0.425 -0.488 -0.510 -0.540 0.077 0.328 0.312 0.307 0.275
rob. -0.004 -0.000 -0.008 -0.002 -0.002 -0.203 0.087 0.087 0.089 0.096 0.303
500 trad. 0.001 -0.320 -0.414 -0.492 -0.544 -0.553 0.058 0.283 0.297 0.267 0.251
rob. 0.000 -0.001 0.001 -0.003 -0.010 -0.181 0.067 0.066 0.068 0.078 0.271
As1 100 trad. -0.042 -0.388 -0.448 -0.546 -0.606 -0.607 0.164 0.412 0.393 0.378 0.343
rob. -0.060 -0.058 -0.058 -0.065 -0.051 -0.269 0.190 0.193 0.199 0.198 0.417
300 trad. -0.017 -0.432 -0.515 -0.592 -0.650 -0.632 0.094 0.342 0.330 0.296 0.297
rob. -0.019 -0.011 -0.009 -0.017 -0.016 -0.271 0.107 0.113 0.112 0.129 0.331
500 trad. -0.002 -0.426 -0.530 -0.597 -0.647 -0.658 0.079 0.313 0.298 0.281 0.260
rob. -0.003 -0.008 -0.004 -0.005 -0.010 -0.277 0.089 0.087 0.094 0.099 0.316
As2 100 trad. -0.036 -0.363 -0.457 -0.547 -0.573 -0.582 0.158 0.402 0.404 0.357 0.359
rob. -0.063 -0.054 -0.071 -0.063 -0.072 -0.263 0.202 0.210 0.206 0.211 0.411
300 trad. -0.005 -0.422 -0.527 -0.585 -0.621 -0.649 0.092 0.331 0.319 0.302 0.281
rob. -0.011 -0.008 -0.018 -0.011 -0.019 -0.281 0.102 0.118 0.113 0.125 0.346
500 trad. -0.006 -0.431 -0.539 -0.594 -0.655 -0.664 0.080 0.318 0.301 0.273 0.250
rob. -0.008 -0.010 -0.005 -0.010 -0.009 -0.253 0.089 0.089 0.093 0.101 0.324
As3 100 trad. 0.004 -0.280 -0.343 -0.458 -0.490 -0.483 0.181 0.407 0.415 0.371 0.356
rob. -0.009 -0.034 -0.033 -0.024 -0.034 -0.222 0.218 0.247 0.241 0.247 0.450
300 trad. 0.007 -0.353 -0.423 -0.484 -0.553 -0.549 0.114 0.335 0.322 0.303 0.295
rob. 0.009 -0.001 0.004 0.008 0.007 -0.218 0.128 0.135 0.137 0.144 0.359
500 trad. -0.001 -0.360 -0.447 -0.517 -0.552 -0.556 0.094 0.303 0.289 0.279 0.259
rob. -0.001 0.008 0.001 0.002 0.004 -0.225 0.104 0.105 0.108 0.117 0.335
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Table 8.6: Results for traditional and robust PLSc for three common factors and
unsystematic outliers in two observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 40% 50%
Y21 100 trad. 0.027 0.061 0.073 0.065 0.073 0.077 0.096 0.115 0.124 0.121 0.121 0.132
rob. 0.036 0.033 0.040 0.032 0.044 0.094 0.125 0.128 0.125 0.127 0.126 0.157
300 trad. 0.001 0.018 0.016 0.014 0.018 0.010 0.059 0.068 0.068 0.068 0.067 0.052
rob. 0.003 0.006 0.003 0.002 0.011 0.002 0.069 0.067 0.065 0.068 0.077 0.055
500 trad. -0.001 0.006 0.009 0.007 0.010 0.013 0.045 0.054 0.056 0.054 0.052 0.052
rob. -0.001 0.000 0.001 -0.002 0.004 0.011 0.050 0.051 0.054 0.053 0.055 0.067
Y31 100 trad. 0.047 0.076 0.084 0.073 0.072 0.078 0.150 0.186 0.223 0.197 0.221 0.218
rob. 0.066 0.071 0.077 0.071 0.071 0.094 0.233 0.213 0.218 0.223 0.221 0.313
300 trad. 0.008 0.012 0.012 0.016 0.017 0.001 0.078 0.088 0.092 0.088 0.088 0.069
rob. 0.008 0.008 0.008 0.015 0.016 0.001 0.090 0.093 0.096 0.097 0.107 0.079
500 trad. 0.004 0.009 0.009 0.005 0.008 0.003 0.061 0.069 0.069 0.067 0.068 0.069
rob. 0.005 0.004 0.006 0.003 0.007 0.005 0.069 0.070 0.071 0.071 0.081 0.089
V32 100 trad. 0.007 -0.021 -0.035 -0.012 -0.019 -0.025 0.179 0.219 0.263 0.232 0.264 0.262
rob. 0.014 -0.002 -0.017 0.011 -0.000 -0.025 0.275 0.265 0.260 0.259 0.269 0.364
300 trad. 0.003 -0.001 0.000 -0.003 -0.003 0.003 0.092 0.102 0.107 0.105 0.104 0.077
rob. 0.005 0.007 0.005 -0.002 -0.001 0.004 0.108 0.108 0.108 0.112 0.120 0.085
500 trad. 0.001 -0.003 -0.005 0.002 -0.001 0.003 0.070 0.075 0.080 0.078 0.079 0.081
rob. 0.002 0.003 -0.001 0.003 0.001 0.004 0.079 0.078 0.079 0.077 0.091 0.099
A11 100 trad. -0.027 -0.057 -0.061 -0.055 -0.054 -0.055 0.069 0.095 0.093 0.086 0.079 0.084
rob. -0.034 -0.037 -0.040 -0.035 -0.042 -0.081 0.086 0.081 0.084 0.082 0.088 0.122
300 trad. -0.004 -0.020 -0.018 -0.015 -0.019 -0.012 0.046 0.058 0.056 0.049 0.049 0.037
rob. -0.005 -0.009 -0.006 -0.009 -0.017 -0.007 0.050 0.050 0.051 0.053 0.061 0.043
500 trad. -0.001 -0.011 -0.009 -0.011 -0.008 -0.012 0.036 0.045 0.044 0.040 0.038 0.038
rob. -0.002 -0.005 -0.003 -0.005 -0.005 -0.011 0.041 0.040 0.041 0.041 0.047 0.053
A12 100 trad. -0.000 -0.030 -0.027 -0.024 -0.022 -0.016 0.088 0.110 0.102 0.094 0.088 0.087
rob. -0.003 -0.001 -0.003 0.001 -0.004 -0.032 0.109 0.111 0.109 0.104 0.105 0.128
300 trad. 0.002 -0.010 -0.012 -0.009 -0.004 -0.004 0.054 0.065 0.058 0.050 0.048 0.040
rob. 0.003 0.002 0.003 -0.002 -0.003 0.001 0.061 0.064 0.064 0.064 0.068 0.052
500 trad. -0.002 -0.006 -0.004 -0.005 -0.008 -0.005 0.043 0.046 0.043 0.038 0.038 0.038
rob. -0.003 -0.002 0.001 0.002 -0.003 -0.002 0.048 0.045 0.049 0.049 0.056 0.061
A13 100 trad. 0.010 -0.250 -0.370 -0.477 -0.585 -0.612 0.101 0.222 0.212 0.208 0.203 0.200
rob. 0.018 0.017 0.007 0.004 -0.039 -0.237 0.123 0.134 0.133 0.136 0.168 0.263
300 trad. -0.001 -0.271 -0.381 -0.496 -0.588 -0.550 0.063 0.126 0.123 0.120 0.121 0.094
rob. -0.001 0.001 -0.003 -0.010 -0.048 -0.024 0.073 0.071 0.076 0.078 0.097 0.065
500 trad. 0.002 -0.286 -0.392 -0.491 -0.585 -0.618 0.051 0.096 0.093 0.092 0.091 0.098
rob. 0.003 -0.001 -0.006 -0.016 -0.060 -0.171 0.056 0.056 0.055 0.061 0.078 0.104
A1 100 trad. -0.009 -0.274 -0.386 -0.490 -0.596 -0.608 0.120 0.226 0.215 0.213 0.199 0.197
rob. -0.018 -0.025 -0.029 -0.034 -0.073 -0.268 0.145 0.167 0.163 0.163 0.188 0.261
300 trad. -0.001 -0.280 -0.390 -0.492 -0.591 -0.552 0.076 0.123 0.122 0.121 0.123 0.092
rob. -0.003 -0.006 -0.011 -0.014 -0.067 -0.032 0.086 0.084 0.089 0.090 0.113 0.076
500 trad. -0.003 -0.288 -0.393 -0.491 -0.593 -0.619 0.056 0.094 0.094 0.093 0.099 0.095
rob. -0.003 -0.006 -0.006 -0.013 -0.071 -0.194 0.063 0.067 0.066 0.069 0.084 0.113
A2z 100 trad. -0.012 -0.037 -0.045 -0.047 -0.048 -0.053 0.126 0.143 0.137 0.143 0.132 0.138
rob. -0.013 -0.018 -0.020 -0.018 -0.027 -0.066 0.157 0.159 0.164 0.167 0.159 0.172
300 trad. -0.003 -0.011 -0.014 -0.014 -0.012 -0.007 0.071 0.083 0.079 0.072 0.075 0.056
rob. -0.004 -0.000 -0.003 -0.002 -0.004 -0.001 0.080 0.084 0.081 0.087 0.101 0.071
500 trad. 0.000 -0.004 -0.006 -0.009 -0.011 -0.009 0.057 0.066 0.061 0.062 0.057 0.056
rob. 0.000 -0.001 -0.000 -0.002 -0.008 -0.005 0.063 0.069 0.064 0.070 0.072 0.080
A2z 100 trad. -0.002 -0.042 -0.047 -0.048 -0.045 -0.051 0.121 0.137 0.137 0.139 0.132 0.137
rob. -0.004 -0.018 -0.016 -0.022 -0.026 -0.065 0.149 0.164 0.163 0.167 0.161 0.172
300 trad. -0.002 -0.015 -0.016 -0.013 -0.016 -0.011 0.075 0.083 0.080 0.079 0.073 0.057
rob. -0.000 -0.003 -0.003 -0.002 -0.010 -0.005 0.087 0.084 0.085 0.091 0.098 0.070
500 trad. 0.002 -0.007 -0.008 -0.009 -0.008 -0.010 0.058 0.063 0.061 0.060 0.055 0.056
rob. -0.000 -0.001 -0.003 -0.002 0.000 -0.009 0.066 0.064 0.065 0.068 0.075 0.081
Azl 100 trad. -0.034 -0.037 -0.034 -0.033 -0.030 -0.038 0.156 0.153 0.160 0.153 0.148 0.153
rob. -0.059 -0.062 -0.048 -0.057 -0.054 -0.065 0.197 0.199 0.179 0.191 0.188 0.201
300 trad. -0.009 -0.010 -0.015 -0.008 -0.013 -0.008 0.097 0.093 0.098 0.095 0.090 0.083
rob. -0.013 -0.012 -0.022 -0.013 -0.019 -0.010 0.109 0.111 0.110 0.113 0.113 0.096
500 trad. -0.009 -0.008 -0.005 -0.006 -0.003 -0.010 0.082 0.084 0.080 0.081 0.081 0.079
rob. -0.009 -0.009 -0.002 -0.009 -0.008 -0.018 0.092 0.094 0.087 0.094 0.100 0.102
A3z 100 trad. -0.034 -0.044 -0.035 -0.038 -0.043 -0.032 0.149 0.157 0.154 0.159 0.157 0.156
rob. -0.057 -0.063 -0.057 -0.057 -0.066 -0.060 0.189 0.189 0.186 0.187 0.207 0.202
300 trad. -0.014 -0.011 -0.008 -0.008 -0.013 -0.005 0.099 0.099 0.103 0.097 0.098 0.081
rob. -0.016 -0.014 -0.016 -0.014 -0.014 -0.011 0.107 0.115 0.115 0.116 0.121 0.093
500 trad. -0.002 -0.005 -0.007 -0.002 -0.009 -0.006 0.080 0.081 0.080 0.079 0.079 0.081
rob. -0.005 -0.005 -0.007 -0.001 -0.012 -0.008 0.086 0.089 0.090 0.091 0.096 0.105
As3 100 trad. 0.005 -0.001 -0.021 -0.004 -0.005 0.008 0.172 0.196 0.207 0.197 0.190 0.170
rob. -0.018 -0.008 -0.035 -0.005 -0.017 -0.007 0.223 0.222 0.247 0.212 0.221 0.222
300 trad. 0.006 0.001 0.007 0.003 0.011 0.001 0.121 0.121 0.113 0.117 0.111 0.094
rob. 0.009 -0.001 0.015 0.003 0.002 0.004 0.134 0.134 0.127 0.141 0.145 0.113
500 trad. 0.002 0.006 0.004 -0.002 0.003 0.008 0.090 0.093 0.097 0.093 0.092 0.091
rob. 0.004 0.005 -0.002 -0.003 0.004 0.007 0.100 0.108 0.107 0.106 0.119 0.125
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Table 8.7: Results for traditional and robust PLS for three composites and unsystem-
atic outliers in all observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 50%
Y21 100 trad. 0.018 -0.133 -0.235 -0.366 -0.475 -0.486 0.075 0.495 0.479 0.418 0.303
rob. 0.031 0.031 0.034 0.038 0.036 -0.050 0.112 0.108 0.105 0.099 0.565
300 trad. 0.006 -0.150 -0.256 -0.378 -0.445 -0.466 0.044 0.222 0.246 0.238 0.174
rob. 0.010 0.010 0.007 0.010 0.010 -0.063 0.050 0.049 0.052 0.049 0.257
500 trad. 0.004 -0.182 -0.284 -0.387 -0.450 -0.456 0.033 0.167 0.182 0.178 0.131
rob. 0.004 0.005 0.006 0.006 0.008 -0.078 0.037 0.038 0.037 0.038 0.143
Y31 100 trad. 0.016 -0.106 -0.162 -0.206 -0.266 -0.278 0.120 0.402 0.425 0.392 0.293
rob. 0.028 0.031 0.019 0.024 0.017 -0.120 0.205 0.191 0.188 0.184 0.468
300 trad. 0.006 -0.090 -0.166 -0.219 -0.268 -0.276 0.065 0.271 0.262 0.232 0.170
rob. 0.009 0.009 0.009 0.008 0.012 -0.077 0.075 0.074 0.076 0.076 0.296
500 trad. 0.002 -0.105 -0.163 -0.225 -0.267 -0.275 0.048 0.214 0.208 0.181 0.133
rob. 0.004 0.006 0.006 0.005 0.006 -0.072 0.054 0.055 0.055 0.055 0.219
Y32 100 trad. 0.033 0.104 0.067 0.014 -0.014 0.018 0.137 0.378 0.416 0.401 0.289
rob. 0.052 0.058 0.058 0.053 0.051 0.105 0.238 0.218 0.211 0.207 0.435
300 trad. 0.012 0.097 0.083 0.043 0.019 0.000 0.068 0.289 0.289 0.243 0.177
rob. 0.013 0.015 0.020 0.015 0.016 0.091 0.079 0.077 0.079 0.082 0.315
500 trad. 0.004 0.086 0.056 0.027 0.014 0.009 0.052 0.227 0.228 0.188 0.131
rob. 0.006 0.006 0.008 0.008 0.015 0.067 0.057 0.059 0.058 0.060 0.227
w1y 100 trad. -0.017 -0.360 -0.395 -0.365 -0.353 -0.355 0.185 0.610 0.588 0.563 0.540
rob. -0.030 -0.035 -0.043 -0.042 -0.045 -0.414 0.296 0.301 0.261 0.276 0.617
300 trad. -0.008 -0.291 -0.341 -0.346 -0.356 -0.349 0.097 0.543 0.534 0.530 0.528
rob. -0.010 -0.012 -0.001 -0.006 -0.013 -0.210 0.114 0.116 0.112 0.121 0.534
500 trad. -0.001 -0.226 -0.269 -0.328 -0.332 -0.353 0.075 0.513 0.514 0.524 0.529
rob. -0.001 -0.003 0.000 -0.009 -0.008 -0.111 0.085 0.086 0.084 0.091 0.429
w1z 100 trad. -0.012 -0.240 -0.208 -0.171 -0.196 -0.137 0.194 0.581 0.598 0.561 0.536
rob. -0.045 -0.052 -0.020 -0.028 -0.021 -0.184 0.302 0.301 0.290 0.289 0.626
300 trad. -0.004 -0.138 -0.167 -0.175 -0.138 -0.148 0.109 0.550 0.540 0.535 0.521
rob. -0.005 0.006 -0.008 -0.005 -0.008 -0.151 0.126 0.125 0.127 0.131 0.549
500 trad. -0.007 -0.097 -0.124 -0.153 -0.136 -0.152 0.081 0.508 0.508 0.507 0.523
rob. -0.007 0.001 -0.006 -0.000 -0.003 -0.056 0.090 0.095 0.092 0.097 0.426
w13 100 trad. -0.003 -0.061 -0.008 0.013 0.020 0.021 0.208 0.598 0.592 0.561 0.538
rob. -0.012 0.004 -0.010 0.001 -0.016 -0.059 0.320 0.306 0.296 0.284 0.601
300 trad. 0.002 -0.027 0.042 0.017 0.031 0.033 0.106 0.559 0.549 0.551 0.532
rob. 0.004 -0.007 -0.005 -0.003 0.006 -0.073 0.125 0.130 0.128 0.134 0.538
500 trad. 0.004 -0.003 0.030 0.073 0.032 0.069 0.085 0.494 0.515 0.524 0.509
rob. 0.002 -0.005 -0.001 0.003 0.003 -0.035 0.094 0.091 0.094 0.098 0.443
wa1 100 trad. -0.005 -0.102 -0.072 -0.063 -0.064 -0.041 0.189 0.511 0.548 0.531 0.525
rob. -0.026 -0.021 -0.026 -0.029 -0.033 -0.101 0.285 0.286 0.268 0.265 0.527
300 trad. -0.008 -0.087 -0.069 -0.057 -0.032 -0.063 0.105 0.504 0.513 0.520 0.537
rob. -0.010 -0.008 -0.005 -0.006 -0.011 -0.089 0.123 0.126 0.124 0.129 0.486
500 trad. -0.002 -0.095 -0.098 -0.041 -0.053 -0.048 0.078 0.469 0.494 0.512 0.511
rob. -0.003 -0.000 -0.000 -0.002 -0.001 -0.032 0.090 0.094 0.093 0.095 0.409
w23 100 trad. -0.021 -0.293 -0.286 -0.235 -0.250 -0.286 0.194 0.571 0.560 0.544 0.533
rob. -0.046 -0.029 -0.035 -0.058 -0.053 -0.305 0.298 0.290 0.272 0.278 0.573
300 trad. -0.006 -0.221 -0.224 -0.241 -0.248 -0.258 0.105 0.539 0.540 0.533 0.512
rob. -0.006 -0.006 -0.004 -0.009 -0.005 -0.188 0.120 0.127 0.131 0.130 0.499
500 trad. -0.000 -0.139 -0.189 -0.242 -0.245 -0.232 0.083 0.485 0.522 0.522 0.513
rob. -0.002 -0.004 -0.004 -0.006 -0.006 -0.116 0.093 0.093 0.094 0.100 0.408
wa3 100 trad. -0.023 -0.342 -0.366 -0.354 -0.352 -0.346 0.179 0.555 0.569 0.564 0.550
rob. -0.051 -0.067 -0.047 -0.023 -0.040 -0.338 0.277 0.279 0.271 0.251 0.552
300 trad. -0.004 -0.268 -0.312 -0.335 -0.347 -0.367 0.099 0.505 0.525 0.529 0.541
rob. -0.005 -0.008 -0.013 -0.009 -0.015 -0.246 0.112 0.117 0.118 0.120 0.518
500 trad. -0.006 -0.203 -0.278 -0.316 -0.313 -0.345 0.073 0.469 0.512 0.514 0.529
rob. -0.006 -0.006 -0.006 -0.003 -0.007 -0.121 0.084 0.087 0.086 0.094 0.403
w31 100 trad. -0.043 -0.257 -0.239 -0.190 -0.138 -0.150 0.357 0.580 0.589 0.575 0.539
rob. -0.094 -0.068 -0.059 -0.085 -0.105 -0.213 0.464 0.440 0.445 0.440 0.605
300 trad. -0.016 -0.166 -0.157 -0.169 -0.156 -0.161 0.196 0.568 0.547 0.541 0.533
rob. -0.021 -0.017 -0.010 -0.031 -0.018 -0.182 0.229 0.237 0.237 0.252 0.546
500 trad. -0.007 -0.169 -0.168 -0.154 -0.140 -0.131 0.155 0.557 0.540 0.531 0.531
rob. -0.009 -0.009 -0.008 -0.019 -0.014 -0.165 0.178 0.174 0.186 0.181 0.540
w32 100 trad. -0.067 -0.319 -0.248 -0.256 -0.272 -0.258 0.305 0.563 0.559 0.540 0.522
rob. -0.105 -0.110 -0.118 -0.119 -0.101 -0.323 0.414 0.395 0.402 0.393 0.557
300 trad. -0.026 -0.272 -0.239 -0.283 -0.283 -0.240 0.172 0.522 0.526 0.530 0.532
rob. -0.034 -0.024 -0.028 -0.023 -0.034 -0.272 0.203 0.213 0.202 0.208 0.549
500 trad. -0.011 -0.229 -0.244 -0.256 -0.238 -0.254 0.142 0.501 0.511 0.531 0.515
rob. -0.016 -0.022 -0.011 -0.017 -0.024 -0.190 0.156 0.155 0.158 0.162 0.491
w33 100 trad. -0.069 -0.294 -0.310 -0.267 -0.272 -0.257 0.339 0.565 0.569 0.557 0.539
rob. -0.120 -0.125 -0.130 -0.087 -0.105 -0.337 0.433 0.430 0.435 0.414 0.578
300 trad. -0.011 -0.302 -0.279 -0.258 -0.239 -0.255 0.185 0.555 0.539 0.541 0.513
rob. -0.017 -0.033 -0.034 -0.026 -0.039 -0.238 0.219 0.220 0.226 0.225 0.558
500 trad. -0.013 -0.236 -0.208 -0.244 -0.234 -0.239 0.148 0.528 0.516 0.516 0.513
rob. -0.015 -0.008 -0.024 -0.010 -0.018 -0.210 0.167 0.163 0.172 0.176 0.521

153



Table 8.8: Results for traditional and robust PLS for three composites and unsystem-
atic outliers in two observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 50%
Y21 100 trad. 0.022 0.016 0.011 -0.000 0.000 -0.008 0.070 0.076 0.082 0.075 0.078
rob. 0.039 0.029 0.038 0.029 0.034 0.043 0.101 0.103 0.103 0.100 0.122
300 trad. 0.010 -0.010 -0.012 -0.015 -0.018 -0.021 0.042 0.044 0.045 0.045 0.044
rob. 0.014 0.011 0.011 0.013 0.005 -0.003 0.048 0.048 0.050 0.051 0.055
500 trad. 0.005 -0.014 -0.018 -0.021 -0.023 -0.024 0.034 0.034 0.034 0.033 0.035
rob. 0.006 0.006 0.005 0.004 0.000 -0.010 0.037 0.037 0.039 0.039 0.045
Y31 100 trad. 0.012 0.003 0.004 0.010 0.008 0.009 0.122 0.127 0.131 0.117 0.127
rob. 0.030 0.024 0.019 0.023 0.013 0.012 0.207 0.204 0.195 0.174 0.193
300 trad. 0.006 0.003 0.003 -0.001 0.001 -0.001 0.066 0.061 0.064 0.063 0.062
rob. 0.009 0.008 0.009 0.007 0.010 0.004 0.077 0.076 0.076 0.076 0.086
500 trad. 0.003 -0.002 0.000 -0.003 -0.001 -0.002 0.048 0.048 0.047 0.049 0.048
rob. 0.004 0.002 0.006 0.002 0.006 0.007 0.054 0.056 0.056 0.059 0.065
Y32 100 trad. 0.037 0.039 0.049 0.044 0.041 0.041 0.136 0.137 0.139 0.131 0.136
rob. 0.060 0.055 0.057 0.058 0.059 0.054 0.229 0.218 0.213 0.200 0.202
300 trad. 0.007 0.014 0.014 0.015 0.016 0.017 0.071 0.064 0.068 0.067 0.065
rob. 0.011 0.015 0.015 0.013 0.016 0.021 0.082 0.079 0.082 0.082 0.090
500 trad. 0.006 0.011 0.010 0.013 0.010 0.010 0.051 0.049 0.049 0.051 0.049
rob. 0.008 0.010 0.009 0.013 0.010 0.011 0.057 0.055 0.057 0.059 0.068
w1y 100 trad. -0.022 -0.006 0.008 0.038 0.057 0.055 0.189 0.205 0.200 0.177 0.183
rob. -0.049 -0.050 -0.037 -0.031 -0.014 -0.065 0.294 0.298 0.257 0.266 0.314
300 trad. -0.000 0.044 0.055 0.069 0.067 0.076 0.102 0.100 0.091 0.096 0.093
rob. -0.003 -0.002 -0.006 -0.002 0.009 0.037 0.124 0.113 0.111 0.121 0.135
500 trad. -0.004 0.048 0.055 0.069 0.070 0.072 0.076 0.073 0.072 0.072 0.072
rob. -0.006 -0.006 -0.006 0.001 0.012 0.040 0.086 0.086 0.088 0.091 0.098
w1z 100 trad. -0.012 0.010 0.040 0.056 0.045 0.048 0.202 0.215 0.203 0.196 0.206
rob. -0.039 -0.035 -0.019 -0.012 -0.022 -0.037 0.320 0.303 0.295 0.276 0.308
300 trad. -0.010 0.047 0.060 0.059 0.068 0.060 0.108 0.110 0.103 0.104 0.105
rob. -0.011 -0.004 -0.002 -0.009 0.016 0.025 0.129 0.126 0.122 0.128 0.142
500 trad. -0.004 0.048 0.064 0.064 0.069 0.069 0.084 0.080 0.080 0.081 0.081
rob. -0.001 -0.003 0.007 -0.000 0.017 0.033 0.093 0.090 0.093 0.100 0.110
w13 100 trad. -0.001 -0.078 -0.114 -0.158 -0.176 -0.186 0.208 0.332 0.282 0.222 0.193
rob. 0.003 -0.001 -0.019 -0.032 -0.049 -0.066 0.317 0.314 0.303 0.292 0.454
300 trad. -0.001 -0.102 -0.131 -0.154 -0.175 -0.186 0.113 0.136 0.115 0.104 0.098
rob. -0.002 -0.007 -0.004 -0.000 -0.040 -0.078 0.129 0.124 0.122 0.136 0.160
500 trad. 0.002 -0.100 -0.130 -0.160 -0.177 -0.182 0.085 0.099 0.090 0.078 0.073
rob. 0.000 0.003 -0.007 -0.008 -0.033 -0.081 0.096 0.098 0.098 0.099 0.113
wa1 100 trad. -0.005 -0.083 -0.131 -0.212 -0.240 -0.253 0.192 0.320 0.288 0.244 0.223
rob. -0.003 -0.029 -0.014 -0.034 -0.038 -0.061 0.282 0.280 0.262 0.271 0.427
300 trad. -0.008 -0.110 -0.159 -0.211 -0.261 -0.266 0.107 0.135 0.129 0.121 0.118
rob. -0.010 -0.006 -0.007 -0.013 -0.049 -0.103 0.123 0.124 0.125 0.133 0.170
500 trad. -0.002 -0.120 -0.162 -0.206 -0.256 -0.264 0.080 0.096 0.098 0.090 0.087
rob. -0.003 -0.004 -0.005 -0.013 -0.046 -0.104 0.089 0.094 0.090 0.097 0.122
waz 100 trad. -0.028 -0.002 0.031 0.058 0.077 0.069 0.199 0.218 0.213 0.202 0.193
rob. -0.063 -0.038 -0.031 -0.034 -0.011 -0.060 0.293 0.287 0.281 0.278 0.304
300 trad. 0.000 0.051 0.068 0.088 0.087 0.086 0.104 0.111 0.108 0.109 0.107
rob. -0.002 -0.006 -0.007 0.002 0.016 0.035 0.125 0.124 0.124 0.124 0.146
500 trad. -0.007 0.054 0.074 0.083 0.093 0.092 0.083 0.084 0.083 0.082 0.083
rob. -0.008 -0.008 0.001 0.001 0.021 0.051 0.095 0.094 0.094 0.098 0.111
was 100 trad. -0.015 -0.050 -0.056 -0.037 -0.042 -0.031 0.183 0.199 0.215 0.197 0.197
rob. -0.038 -0.048 -0.057 -0.044 -0.078 -0.105 0.267 0.274 0.260 0.255 0.285
300 trad. -0.010 -0.013 -0.013 -0.019 -0.009 -0.009 0.099 0.106 0.105 0.109 0.107
rob. -0.011 -0.010 -0.007 -0.017 -0.013 -0.011 0.119 0.116 0.114 0.120 0.140
500 trad. 0.001 -0.003 -0.008 -0.006 -0.009 -0.007 0.075 0.080 0.079 0.081 0.083
rob. 0.000 -0.000 -0.008 -0.005 -0.009 -0.012 0.085 0.089 0.086 0.092 0.107
w31 100 trad. -0.051 -0.045 -0.081 -0.059 -0.042 -0.066 0.376 0.370 0.365 0.376 0.364
rob. -0.071 -0.100 -0.102 -0.080 -0.071 -0.108 0.462 0.434 0.435 0.446 0.470
300 trad. -0.019 -0.015 -0.008 -0.024 -0.019 -0.016 0.202 0.206 0.202 0.206 0.207
rob. -0.019 -0.024 -0.012 -0.025 -0.033 -0.027 0.233 0.244 0.232 0.240 0.269
500 trad. -0.007 -0.015 -0.015 -0.013 -0.002 -0.011 0.156 0.161 0.160 0.163 0.162
rob. -0.010 -0.015 -0.016 -0.015 -0.008 -0.025 0.172 0.182 0.180 0.184 0.214
w32 100 trad. -0.054 -0.061 -0.052 -0.055 -0.074 -0.057 0.309 0.321 0.321 0.316 0.324
rob. -0.123 -0.074 -0.091 -0.093 -0.118 -0.124 0.418 0.395 0.392 0.402 0.425
300 trad. -0.017 -0.022 -0.028 -0.019 -0.019 -0.033 0.174 0.185 0.178 0.183 0.188
rob. -0.030 -0.031 -0.032 -0.025 -0.029 -0.049 0.201 0.218 0.200 0.209 0.238
500 trad. -0.012 -0.010 -0.002 -0.005 -0.017 -0.008 0.138 0.142 0.138 0.144 0.145
rob. -0.015 -0.015 -0.004 -0.008 -0.023 -0.019 0.155 0.159 0.156 0.166 0.186
w33 100 trad. -0.085 -0.095 -0.064 -0.081 -0.085 -0.075 0.343 0.358 0.348 0.337 0.358
rob. -0.136 -0.122 -0.092 -0.135 -0.111 -0.127 0.454 0.423 0.416 0.431 0.451
300 trad. -0.017 -0.021 -0.018 -0.014 -0.017 -0.009 0.190 0.196 0.198 0.197 0.193
rob. -0.023 -0.026 -0.026 -0.027 -0.034 -0.021 0.217 0.226 0.226 0.229 0.247
500 trad. -0.012 -0.008 -0.015 -0.016 -0.013 -0.015 0.145 0.153 0.152 0.155 0.152
rob. -0.012 -0.011 -0.021 -0.023 -0.016 -0.015 0.158 0.166 0.171 0.181 0.196
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Table 8.9: Results for traditional and robust PLSc for five common factors and un-
systematic outliers in all observed variables

Mean Value Standard Deviation
Par. n Appr.
10% 20% 40% 50% 0% 5% 10% 20% 40% 50%
P12 100 trad. -0.260 -0.313 -0.436 -0.456 0.082 0.562 1.065 1.888 2.446 4.790
rob. 0.001  0.007 0010 -0.359  0.109  0.07  0.08  0.11  0.103 0.910
300 trad. -0.206 -0.273 -0.454 -0.514 0.052 0.240 0.342 0.494 0.910 0.889
rob. 0.004 0.005 0.001 -0.054 0.056 0.059 0.056 0.059 0.064 0.347
500 trad. 20163 -0.265  -0.439  -0.533  0.040  0.196  0.264 0411  0.508 0.708
rob. 0.003 0.002 0.002 -0.020 0.043 0.043 0.043 0.046 0.049 0.194
Y32 100 trad. -0.074 -0.041 -0.078 -0.080 0.164 0.486 0.417 0.524 0.645 0.731
rob. 20.045  -0.038  -0.038  -0.053  0.233  0.243 0225 0239  0.220 0.712
300 trad. -0.018 -0.039 -0.057 -0.043 0.079 0.817 0.173 0.193 0.303 0.311
rob. -0.010 -0.011 -0.016 -0.043 0.097 0.096 0.095 0.101 0.109 0.241
500  trad. 20012 -0.028  -0.039  -0.045 0061  0.093  0.108  0.133  0.203 0.239
rob. -0.007 -0.009 -0.010 -0.004 0.068 0.068 0.071 0.074 0.078 0.159
Y41 100 trad. 0.234 0.222 -0.084 0.087 0.229 0.633 0.752 0.895 7.039 0.809
rob. 0.013  -0.005  -0.024 0342 0319 0306 0316  0.308  0.297 2.953
300 trad. 0.105 0.105 0.151 0.123 0.123 0.453 0.432 0.469 0.486 0.597
rob. -0.017 -0.026 -0.021 -0.032 0.154 0.150 0.150 0.153 0.176 0.606
500 trad. 0.072 0.112 0.117 0.128 0.098 0.375 0.390 0.392 0.462 0.469
rob. -0.007 -0.016 -0.012 -0.163 0.102 0.111 0.112 0.113 0.129 0.425
Ya2 100 trad -0.258 k -0.151 3 0.228 0.632 0.735 0.900 7.034 0.844
rob 0.003 0.013 0.030 -0.485 0.304 0.288 0.299 0.295 0.278 2.990
300 trad. -0.122 -0.159 -0.234 -0.300 0.126 0.413 0.371 0.419 0.445 0.606
rob 0.020 0029 0024 -0.194 0153 0147 0153 0153  0.172 0.600
500 trad. -0.092 -0.154 -0.180 -0.220 0.098 0.345 0.334 0.334 0.397 0.432
rob 0.011 0.019 0.014 -0.067 0.106 0.111 0.109 0.116 0.129 0.412
Y51 100 trad -0.243 -0.268 -0.358 -0.772 0.223 0.728 0.980 1.161 1.111 14.454
rob -0.009 0.025 0.005 -0.390 0.322 0.302 0.309 0.321 0.290 2.423
300 trad. -0.134 -0.159 -0.268 -0.241 0.116 0.497 0.492 0.502 0.455 0.807
rob. ©0.000  0.001  0.004 0027 0142 0140  0.143  0.137  0.159 0.638
500 trad. -0.074 -0.178 -0.231 -0.277 0.086 0.419 0.518 0.394 0.459 0.424
rob -0.006 -0.003 -0.011 0.095 0.098 0.099 0.100 0.102 0.119 0.460
Y52 100 trad. 0.243 0305 0463  -0.002 0214 0973 1359  1.256  1.271  14.462
rob. -0.035 -0.075 -0.056 0.419 0.318 0.308 0.310 0.313 0.295 2.532
300 trad. 0.103 0.161 0.281 0.341 0.113 0.452 0.440 0.468 0.444 0.964
rob 20.020  -0.026  -0.033  0.04 0140  0.140  0.143  0.37  0.157  0.640
500 trad. 0.058 0.171 0.239 0.312 0.086 0.390 0.476 0.342 0.420 0.437
rob -0.015 -0.020 -0.015 0.038 0.099 0.096 0.098 0.102 0.119 0.452
Y53 100 trad ©0.020  -0.002  -0.006  -0.149  0.116  0.698  1.015  0.902  0.610 2.334
rob 0.007 -0.005 0.003 0.086 0.195 0.187 0.178 0.195 0.169 1.343
300 trad. -0.041 -0.048 -0.052 -0.033 0.061 0.116 0.127 0.150 0.198 0.534
rob 20.035  -0.037  -0.032  -0.017 0070 0071 0070  0.074  0.081 0.174
500 trad -0.045 -0.052 -0.053 -0.053 0.046 0.079 0.089 0.097 0.140 0.187
rob -0.042 -0.043 -0.040 -0.027 0.051 0.054 0.055 0.055 0.061 0.126
A1 100 trad 20273 -0.368  -0.457  -0.484  0.059 0276 0451 0417 0417  0.397
rob 0.012 0.014 0.011 -0.179 0.076 0.078 0.076 0.078 0.073 0.528
300 trad. -0.000 -0.250 -0.357 -0.413 -0.519 -0.536 0.036 0.179 0.269 0.244 0.297 0.326
rob. -0.000  -0.000  0.002  0.000  0.002 -0.065  0.042  0.043 0042 0044  0.048 0.186
500 trad. -0.001 -0.278 -0.379 -0.454 -0.516 -0.550 0.030 0.136 0.148 0.194 0.260 0.281
rob. 0.000 0.000 0.002 0.001 0.001 -0.046 0.032 0.031 0.033 0.034 0.037 0.125
A2 100 trad -0.010 -0.237 -0.214 -0.457 -0.553 0.056 0.361 3.704 0.378 0.447 0.426
rob. -0.019 -0.018 -0.013 0.069 0.066 0.071 0.069 0.065 0.416
300 trad. -0.387 -0.488 -0.571 -0.606 0.036 0.178 0.208 0.263 0.303 0.317
rob -0.002 0.002 -0.002 -0.127 0.040 0.042 0.042 0.042 0.045 0.177
500 trad. -0.403 -0.513 -0.596 -0.619 0.029 0.151 0.172 0.208 0.254 0.271
rob ©0.000  -0.001  -0.003  -0.091  0.032 0031 0032 0032  0.036 0.131
A21 100 trad. -0.205 -0.255 -0.291 -0.297 0.102 0.276 0.287 0.285 0.251 0.249
rob -0.005 -0.009 -0.003 -0.201 0.148 0.152 0.150 0.148 0.137 0.399
300 trad. 20196 -0.243  -0.303  -0.319  0.062  0.131  0.132  0.137  0.158 0.159
rob -0.003 0.004 -0.006 -0.144 0.069 0.071 0.072 0.071 0.087 0.244
500 trad. -0.198 -0.253 -0.304 -0.313 0.048 0.092 0.092 0.097 0.116 0.128
rob. 0.000  -0.004  -0.005  -0.124  0.054  0.053  0.052  0.057  0.062 0.172
A2z 100 trad -0.187 -0.241 -0.297 -0.314 0.107 0.276 0.301 0.278 0.247 0.240
rob -0.009 -0.002 -0.006 -0.223 0.144 0.154 0.146 0.139 0.140 0.406
300 trad. 20190 -0.239  -0.302  -0.317  0.061  0.123  0.29 0134  0.157  0.162
rob. -0.005 -0.003 -0.004 -0.148 0.067 0.071 0.070 0.075 0.083 0.246
500 trad. -0.197 -0.251 -0.304 -0.323 0.047 0.091 0.091 0.098 0.118 0.122
rob 0.000  -0.002  -0.000  -0.138  0.053  0.052  0.056  0.058  0.064 0.173
A23 100 trad. -0.187 -0.244 -0.298 -0.306 0.104 0.264 0.295 0.277 0.255 0.241
rob -0.001 -0.005 -0.003 -0.198 0.151 0.152 0.143 0.152 0.144 0.411
300 trad. 20187 -0.244  -0.2908  -0.326  0.061  0.127  0.130  0.138  0.156 0.156
rob -0.005 -0.004 -0.003 -0.138 0.072 0.072 0.072 0.072 0.081 0.249
500 trad -0.202 -0.247 -0.296 -0.321 0.049 0.094 0.092 0.104 0.119 0.124
rob -0.004 -0.003 -0.002 -0.118 0.052 0.052 0.053 0.056 0.062 0.171
A24 100 trad -0.292 -0.386 -0.465 -0.492 0.090 0.289 0.304 0.284 0.255 0.246
rob -0.009 -0.009 0.002 -0.347 0.122 0.121 0.120 0.115 0.109 0.410
300 trad -0.285 -0.372 -0.448 -0.488 0.051 0.129 0.140 0.141 0.153 0.166
rob -0.005 -0.005 -0.008 -0.184 0.056 0.057 0.058 0.057 0.066 0.237
500 trad -0.297 -0.373 -0.449 -0.487 0.039 0.096 0.096 0.103 0.121 0.122
rob ©0.004  -0.003  -0.003  -0.166  0.041  0.045 0044  0.044  0.052 0.164
A2s 100 trad -0.269 -0.387 -0.460 -0.486 0.085 0.282 0.295 0.282 0.267 0.250
rob -0.008 -0.006 0.003 -0.323 0.117 0.118 0.121 0.118 0.113 0.416
300 trad -0.290 -0.370 -0.454 -0.488 0.050 0.129 0.138 0.144 0.158 0.164
rob -0.004 -0.006 -0.005 -0.175 0.056 0.058 0.060 0.063 0.065 0.246
500 trad -0.294 -0.381 -0.455 -0.479 0.038 0.096 0.093 0.103 0.121 0.124
rob -0.002 -0.004 -0.007 -0.162 0.042 0.043 0.043 0.044 0.050 0.165
A26 100 trad -0.290 -0.376 -0.460 -0.488 0.086 0.279 0.292 0.273 0.255 0.247
rob 0.000  -0.003  -0.006 2 0118 0120 0121 0120 0117 0.403
300 trad. -0.283 -0.365 -0.448 -0.490 0.048 0.128 0.135 0.141 0.156 0.156
rob -0.002 -0.004 -0.008 -0.177 0.058 0.060 0.057 0.060 0.067 0.257
500 trad 20296 -0.369  -0.453  -0.483  0.038  0.097 0092 0105  0.120 0.126
rob -0.002 -0.003 -0.004 -0.160 0.043 0.043 0.042 0.046 0.052 0.169
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0.001

0.001
-0.004

0.000
-0.001
-0.011
-0.002
-0.002
-0.002
-0.002
-0.024
-0.007
-0.003
-0.005
-0.000
-0.005
-0.014
-0.019
-0.003
-0.005
-0.001
-0.001
-0.069
-0.049
-0.021
-0.010
-0.014
-0.006
-0.066
-0.046
-0.022
-0.008
-0.014
-0.004

-0.320
-0.031
-0.343
-0.016
-0.331

0.001
-0.064
-0.071
-0.014
-0.010
-0.009
-0.003
-0.116
-0.127
-0.034
-0.043
-0.019
-0.025
-0.154
-0.181
-0.056
-0.068
-0.033
-0.043

0.033
-0.018

0.038
-0.032

0.024
-0.033
-0.117
-0.035
-0.090
-0.032
-0.073
-0.028
-0.002
-0.004

0.010
-0.002
-0.001
-0.000
-0.011
-0.009
-0.003
-0.002

0.003
-0.002
-0.015
-0.016
-0.001
-0.008
-0.006
-0.001
-0.027
-0.007
-0.008
-0.006
-0.002
-0.002
-0.071
-0.037
-0.030
-0.013
-0.017
-0.008
-0.082
-0.043
-0.028
-0.014
-0.021
-0.008

-0.331
-0.206
-0.369
-0.153
-0.357
-0.146
-0.038
-0.143
-0.020
-0.069
-0.006
-0.041
-0.118
-0.241
-0.035
-0.110
-0.021
-0.070
-0.159
-0.290
-0.057
-0.149
-0.035
-0.092

0.002

0.018

0.044

0.004

0.039
-0.017
-0.134
-0.107
-0.114
-0.054
-0.098
-0.041

0.001
-0.029

0.005
-0.002
-0.002
-0.002

0.007
-0.029

0.005
-0.001

0.001
-0.005
-0.027
-0.063
-0.002
-0.005
-0.003
-0.002
-0.021
-0.056
-0.004
-0.005
-0.003

0.001
-0.075
-0.117
-0.037
-0.033
-0.023
-0.022
-0.073
-0.107
-0.034
-0.039
-0.017
-0.020

0.415
0.344
0.233
0.201
0.174
0.153
0.244
0.294
0.144
0.156
0.105
0.118
0.225
0.246
0.125
0.127
0.090
0.087

0.116
0.097
0.079
0.072
0.213
0.128
0.067
0.062
0.050
0.047
0.193
0.113
0.075
0.064
0.059
0.049
0.173
0.182
0.095
0.088
0.074
0.068
0.169
0.188
0.093
0.088
0.072
0.066
0.142
0.151
0.082
0.079
0.063
0.057
0.155
0.149
0.084
0.079
0.065
0.058
0.100
0.093
0.053
0.049
0.042
0.038
0.097
0.091
0.051
0.049
0.040
0.039

0.418
0.341
0.250
0.201
0.179
0.147
0.239
0.291
0.147
0.147
0.107
0.116
0.233
0.235
0.129
0.116
0.090
0.087
0.232
0.217
0.123
0.091
0.077
0.074
0.180
0.122
0.078
0.064
0.060
0.047
0.257
0.111
0.087
0.066
0.070
0.049
0.192
0.181
0.104
0.092
0.079
0.069
0.187
0.184
0.109
0.090
0.082
0.067
0.168
0.151
0.088
0.081
0.069
0.060
0.166
0.157
0.091
0.077
0.070
0.058
0.125
0.093
0.057
0.051
0.046
0.038
0.123
0.092
0.056
0.049
0.044
0.037

0.336
0.518
0.213
0.366
0.160
0.287
0.210
0.268
0.135
0.187
0.099
0.159
0.202
0.277
0.100
0.183
0.077
0.146
0.183
0.282
0.089
0.184
0.068
0.140
0.447
0.340
0.181
0.108
0.158
0.081
0.578
0.398
0.194
0.115
0.146
0.090
0.204
0.272
0.131
0.155
0.111
0.112
0.201
0.267
0.136
0.147
0.108
0.115
0.186
0.230
0.112
0.129
0.091
0.099
0.178
0.238
0.120
0.133
0.091
0.097
0.120
0.198
0.075
0.088
0.060
0.061
0.124
0.190
0.074
0.091
0.058
0.063

156



Table 8.10: Results for traditional and robust PLSc for five common factors and
unsystematic outliers in two observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 40% 50%
12 100 trad. 0.007 0.008 0.015 0.026 0.025 0.010 0.082 0.111 0.114 0.122 0.127 0.127
rob. 0.012 0.007 0.007 0.004 0.005 -0.005 0.110 0.108 0.108 0.110 0.125 0.154
300 trad. 0.002 0.005 0.007 0.023 0.038 0.044 0.051 0.071 0.087 0.099 0.111 0.119
rob. 0.005 0.006 0.001 0.006 0.004 0.036 0.056 0.058 0.057 0.061 0.071 0.105
500 trad. 0.001 0.006 0.008 0.018 0.041 0.045 0.039 0.060 0.070 0.093 0.108 0.113
rob. 0.003 0.003 0.001 -0.001 0.004 0.028 0.043 0.044 0.045 0.045 0.054 0.088
Y32 100 trad. -0.025 -0.029 -0.022 -0.025 -0.018 -0.021 0.159 0.161 0.162 0.159 0.163 0.163
rob. -0.046 -0.036 -0.029 -0.045 -0.045 -0.041 0.237 0.243 0.234 0.229 0.230 0.248
300 trad. -0.014 -0.007 -0.008 -0.007 -0.010 -0.004 0.077 0.080 0.081 0.083 0.082 0.077
rob. -0.012 -0.007 -0.009 -0.013 -0.009 -0.012 0.092 0.091 0.094 0.094 0.108 0.103
500 trad. -0.009 -0.004 -0.001 -0.006 -0.002 -0.004 0.062 0.063 0.059 0.062 0.063 0.061
rob. -0.002 -0.004 -0.006 -0.010 -0.006 -0.008 0.068 0.070 0.069 0.070 0.077 0.076
Ya1 100 trad. -0.020 -0.006 0.011 0.020 0.045 0.030 0.222 0.302 0.344 0.371 0.404 0.373
rob. -0.018 -0.000 0.008 0.006 -0.004 0.025 0.341 0.311 0.309 0.300 0.378 0.436
300 trad. -0.013 -0.017 -0.023 -0.007 0.014 0.010 0.122 0.164 0.199 0.240 0.296 0.334
rob. -0.012 -0.018 -0.015 -0.026 -0.026 -0.044 0.145 0.155 0.156 0.159 0.185 0.314
500 trad. -0.010 -0.013 -0.013 -0.016 -0.004 -0.005 0.097 0.122 0.132 0.182 0.253 0.257
rob. -0.009 -0.011 -0.007 -0.009 -0.013 -0.048 0.108 0.111 0.110 0.120 0.136 0.208
Yaz 100 trad. 0.022 0.020 0.008 -0.002 -0.028 -0.020 0.220 0.279 0.318 0.343 0.375 0.349
rob. 0.021 0.012 -0.004 0.005 0.023 -0.008 0.320 0.294 0.295 0.280 0.345 0.391
300 trad. 0.013 0.016 0.025 0.009 -0.004 -0.003 0.125 0.156 0.192 0.228 0.282 0.320
rob. 0.014 0.019 0.018 0.029 0.028 0.042 0.144 0.157 0.153 0.160 0.177 0.295
500 trad. 0.011 0.014 0.010 0.016 0.006 0.008 0.099 0.114 0.125 0.173 0.243 0.245
rob. 0.012 0.010 0.008 0.008 0.010 0.048 0.105 0.108 0.108 0.120 0.133 0.197
51 100 trad. 0.017 0.049 0.042 0.062 0.057 0.041 0.219 0.311 0.357 0.434 0.419 0.434
rob. 0.016 0.020 0.002 0.005 0.018 -0.031 0.344 0.329 0.313 0.328 0.368 0.459
300 trad. -0.007 0.019 0.031 0.062 0.099 0.145 0.112 0.177 0.208 0.284 0.384 0.430
rob. 0.005 -0.000 -0.006 -0.000 0.013 0.088 0.143 0.142 0.136 0.152 0.174 0.331
500 trad. -0.010 -0.001 0.009 0.044 0.125 0.142 0.087 0.123 0.157 0.265 0.384 0.391
rob. -0.011 -0.004 -0.009 -0.016 0.002 0.075 0.096 0.104 0.100 0.106 0.124 0.255
V52 100 trad. -0.051 -0.084 -0.083 -0.102 -0.098 -0.078 0.219 0.298 0.340 0.423 0.398 0.409
rob. -0.059 -0.064 -0.051 -0.050 -0.066 -0.037 0.355 0.334 0.316 0.330 0.351 0.430
300 trad. -0.016 -0.039 -0.055 -0.086 -0.124 -0.167 0.110 0.164 0.201 0.273 0.373 0.417
rob. -0.031 -0.025 -0.018 -0.028 -0.039 -0.116 0.144 0.140 0.133 0.149 0.165 0.315
500 trad. -0.012 -0.020 -0.031 -0.068 -0.147 -0.162 0.087 0.117 0.146 0.260 0.380 0.382
rob. -0.013 -0.018 -0.013 -0.007 -0.023 -0.094 0.094 0.102 0.095 0.102 0.122 0.242
V53 100 trad. -0.023 -0.024 -0.016 -0.020 -0.015 -0.019 0.124 0.123 0.130 0.138 0.132 0.136
rob. 0.012 0.008 0.008 -0.007 0.001 -0.008 0.193 0.193 0.188 0.188 0.177 0.203
300 trad. -0.042 -0.043 -0.041 -0.039 -0.043 -0.040 0.059 0.065 0.066 0.069 0.073 0.079
rob. -0.037 -0.036 -0.036 -0.036 -0.032 -0.038 0.070 0.070 0.072 0.071 0.083 0.091
500 trad. -0.044 -0.044 -0.044 -0.047 -0.044 -0.047 0.046 0.050 0.048 0.051 0.059 0.061
rob. -0.041 -0.045 -0.042 -0.042 -0.040 -0.043 0.051 0.053 0.054 0.053 0.063 0.063
A11 100 trad. 0.006 -0.011 -0.018 -0.035 -0.036 -0.028 0.061 0.100 0.113 0.123 0.126 0.130
rob. 0.017 0.016 0.017 0.009 -0.020 -0.039 0.077 0.076 0.078 0.080 0.113 0.143
300 trad. -0.001 -0.001 -0.001 -0.021 -0.029 -0.036 0.038 0.087 0.105 0.116 0.119
rob. 0.002 0.003 0.001 -0.001 -0.003 -0.025 0.042 0.043 0.044 0.058 0.102
500 trad. 0.001 -0.002 -0.001 -0.007 -0.030 -0.038 0.029 0.072 0.096 0.111 0.117
rob. 0.001 0.000 0.000 0.000 0.002 -0.015 0.031 0.033 0.034 0.042 0.088
A12 100 trad. -0.007 -0.337 -0.465 -0.591 -0.725 -0.759 0.054 0.129 0.132 0.156 0.153
rob. -0.020 -0.021 -0.025 -0.032 -0.283 -0.638 0.070 0.072 0.079 0.220 0.245
300 trad. 0.003 -0.364 -0.498 -0.626 -0.731 -0.768 0.036 0.072 0.074 0.075 0.083
rob. -0.000 -0.006 -0.008 -0.020 -0.112 -0.510 0.041 0.044 0.046 0.079 0.153
500 trad. 0.000 -0.366 -0.506 -0.633 -0.742 -0.777 0.030 0.056 0.057 0.056 0.059
rob. 0.000 -0.004 -0.006 -0.020 -0.105 -0.471 0.031 0.033 0.037 0.055 0.125
A21 100 trad. -0.003 -0.166 -0.219 -0.279 -0.337 -0.351 0.105 0.134 0.134 0.129 0.126
rob. -0.005 -0.008 -0.011 -0.014 -0.177 -0.312 0.158 0.148 0.148 0.204 0.196
300 trad. -0.003 -0.160 -0.224 -0.286 -0.333 -0.348 0.059 0.083 0.074 0.072 0.075
rob. -0.001 -0.004 -0.006 -0.021 -0.081 -0.270 0.070 0.074 0.077 0.099 0.134
500 trad. -0.000 -0.163 -0.223 -0.287 -0.338 -0.347 0.049 0.061 0.059 0.059 0.061
rob. -0.003 -0.005 -0.009 -0.020 -0.075 -0.250 0.052 0.055 0.056 0.072 0.107
A2z 100 trad. 0.001 -0.007 -0.003 -0.009 -0.003 -0.005 0.108 0.112 0.109 0.112 0.109
rob. -0.008 0.006 0.005 -0.001 -0.012 -0.000 0.146 0.146 0.140 0.138 0.150
300 trad. -0.005 -0.004 -0.005 -0.002 -0.002 -0.000 0.063 0.064 0.064 0.064 0.061
rob. -0.006 -0.001 -0.004 -0.003 -0.001 -0.006 0.072 0.075 0.072 0.080 0.075
500 trad. -0.001 -0.003 -0.001 -0.001 -0.004 -0.002 0.047 0.050 0.050 0.050 0.049 0.049
rob. -0.003 -0.001 -0.003 -0.001 -0.001 -0.005 0.053 0.053 0.053 0.058 0.060 0.061
A23 100 trad. -0.004 -0.006 0.002 -0.005 -0.008 -0.006 0.110 0.108 0.111 0.112 0.112 0.111
rob. -0.012 -0.010 0.004 0.001 -0.003 -0.004 0.157 0.153 0.147 0.148 0.144 0.156
300 trad. 0.002 -0.004 -0.003 -0.003 -0.002 -0.001 0.061 0.065 0.062 0.065 0.064 0.066
rob. -0.002 -0.002 -0.003 0.001 -0.005 -0.006 0.072 0.070 0.072 0.071 0.082 0.078
500 trad. -0.002 -0.004 0.002 -0.003 0.002 -0.001 0.048 0.049 0.047 0.050 0.049 0.050
rob. -0.000 -0.002 -0.001 -0.002 -0.004 -0.002 0.052 0.054 0.054 0.055 0.061 0.061
A24 100 trad. -0.006 -0.009 -0.008 -0.007 -0.007 -0.006 0.086 0.092 0.093 0.088 0.095 0.092
rob. -0.002 -0.001 -0.001 -0.006 -0.011 -0.013 0.122 0.116 0.123 0.117 0.117 0.121
300 trad. -0.005 -0.005 -0.005 -0.004 -0.005 -0.004 0.049 0.051 0.054 0.052 0.050 0.053
rob. -0.006 -0.006 -0.002 -0.004 -0.006 -0.008 0.056 0.058 0.059 0.057 0.061 0.066
500 trad. -0.001 -0.001 -0.004 -0.001 -0.004 -0.003 0.039 0.041 0.041 0.042 0.040 0.040
rob. -0.002 -0.002 -0.001 -0.002 -0.004 -0.008 0.043 0.044 0.043 0.046 0.050 0.049
A2s 100 trad. -0.009 -0.011 -0.008 -0.009 -0.007 -0.006 0.090 0.089 0.094 0.092 0.088 0.091
rob. -0.010 -0.003 -0.013 -0.008 -0.004 -0.010 0.123 0.120 0.115 0.114 0.118 0.129
300 trad. -0.003 -0.005 -0.006 -0.002 -0.002 -0.003 0.049 0.053 0.053 0.054 0.051 0.053
rob. -0.004 -0.003 -0.006 -0.002 -0.007 -0.011 0.058 0.056 0.058 0.058 0.066 0.064
500 trad. -0.002 -0.003 -0.004 -0.003 -0.002 -0.002 0.040 0.041 0.040 0.040 0.041 0.042
rob. -0.000 -0.001 -0.004 0.001 -0.003 -0.009 0.043 0.043 0.044 0.045 0.052 0.050
Az26 100 trad. -0.001 -0.003 -0.004 -0.014 -0.012 -0.010 0.088 0.088 0.091 0.095 0.088 0.092
rob. -0.013 -0.003 0.003 -0.003 0.000 -0.013 0.125 0.126 0.115 0.114 0.116 0.126
300 trad. -0.003 -0.005 -0.005 -0.005 0.000 -0.004 0.050 0.052 0.054 0.054 0.052 0.053
rob. -0.004 -0.005 -0.003 -0.005 -0.007 -0.008 0.057 0.056 0.059 0.063 0.066 0.062
500 trad. -0.002 -0.002 -0.003 -0.000 -0.004 -0.003 0.039 0.040 0.043 0.040 0.040 0.040
rob. -0.003 -0.004 -0.002 -0.003 -0.005 -0.005 0.043 0.044 0.042 0.047 0.049 0.049
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-0.021
-0.004
-0.005
-0.003

0.004

0.008
-0.036
-0.071
-0.010
-0.012

0.000
-0.005
-0.079
-0.134
-0.017
-0.033
-0.017
-0.026
-0.124
-0.174
-0.043
-0.061
-0.025
-0.037
-0.022
-0.007
-0.032
-0.030
-0.029
-0.030
-0.033
-0.045
-0.030
-0.030
-0.028
-0.030
-0.008
-0.001

0.002
-0.004
-0.004
-0.002
-0.002

0.003
-0.002
-0.006

0.000
-0.002
-0.014
-0.016
-0.004
-0.000
-0.002
-0.005
-0.002
-0.008
-0.002
-0.001
-0.001
-0.006
-0.028
-0.049
-0.008
-0.011
-0.006
-0.007
-0.029
-0.044
-0.009
-0.008
-0.005
-0.006

0.287
0.344
0.170
0.196
0.132
0.141
0.231
0.292
0.136
0.154
0.101
0.115
0.195
0.242
0.103
0.111
0.079
0.088
0.174
0.235
0.078
0.094
0.063
0.069
0.090
0.125
0.056
0.064
0.041
0.047
0.091
0.114
0.056
0.067
0.046
0.049
0.134
0.177
0.077
0.088
0.059
0.067
0.130
0.179
0.081
0.090
0.059
0.067
0.117
0.156
0.067
0.081
0.051
0.058
0.117
0.163
0.067
0.075
0.051
0.057
0.065
0.096
0.044
0.048
0.034
0.037
0.071
0.093
0.042
0.047
0.034
0.038

0.293
0.334
0.173
0.198
0.135
0.150
0.230
0.293
0.136
0.154
0.100
0.115
0.187
0.247
0.105
0.118
0.082
0.088
0.174
0.235
0.085
0.094
0.065
0.072
0.094
0.119
0.055
0.059
0.041
0.046
0.095
0.114
0.060
0.065
0.047
0.051
0.133
0.173
0.078
0.091
0.062
0.067
0.134
0.185
0.081
0.089
0.062
0.068
0.115
0.162
0.067
0.080
0.054
0.060
0.119
0.156
0.067
0.081
0.050
0.059
0.067
0.089
0.043
0.051
0.034
0.038
0.067
0.093
0.046
0.050
0.035
0.038

0.287
0.334
0.165
0.195
0.130
0.155
0.222
0.284
0.135
0.157
0.104
0.117
0.190
0.238
0.102
0.119
0.082
0.095
0.164
0.228
0.084
0.095
0.065
0.074
0.092
0.121
0.053
0.061
0.042
0.046
0.092
0.112
0.058
0.069
0.045
0.048
0.131
0.181
0.078
0.096
0.062
0.067
0.133
0.182
0.082
0.091
0.063
0.068
0.114
0.153
0.070
0.078
0.053
0.059
0.114
0.152
0.072
0.079
0.052
0.059
0.064
0.092
0.042
0.051
0.033
0.038
0.068
0.093
0.042
0.049
0.034
0.038

0.268
0.350
0.182
0.211
0.131
0.153
0.227
0.274
0.139
0.158
0.102
0.121
0.181
0.226
0.104
0.129
0.078
0.093
0.154
0.229
0.084
0.098
0.065
0.074
0.096
0.118
0.058
0.063
0.043
0.050
0.094
0.107
0.060
0.071
0.044
0.053
0.129
0.182
0.080
0.091
0.061
0.070
0.131
0.179
0.081
0.088
0.059
0.070
0.109
0.146
0.065
0.079
0.052
0.060
0.111
0.147
0.068
0.083
0.052
0.058
0.066
0.089
0.044
0.049
0.033
0.040
0.071
0.085
0.044
0.050
0.034
0.038

0.281
0.317
0.171
0.218
0.130
0.165
0.240
0.278
0.131
0.177
0.105
0.129
0.189
0.245
0.104
0.135
0.077
0.098
0.160
0.216
0.081
0.110
0.068
0.079
0.099
0.117
0.056
0.068
0.042
0.052
0.092
0.113
0.060
0.074
0.044
0.058
0.134
0.177
0.079
0.104
0.064
0.078
0.137
0.176
0.080
0.098
0.063
0.079
0.117
0.152
0.068
0.086
0.055
0.066
0.117
0.154
0.070
0.086
0.055
0.068
0.070
0.091
0.044
0.054
0.035
0.042
0.069
0.094
0.043
0.053
0.034
0.043

0.281
0.334
0.176
0.205
0.134
0.158
0.247
0.282
0.134
0.164
0.107
0.129
0.182
0.228
0.102
0.125
0.083
0.100
0.168
0.210
0.083
0.099
0.064
0.079
0.095
0.124
0.055
0.067
0.043
0.053
0.094
0.114
0.056
0.070
0.046
0.056
0.132
0.175
0.079
0.093
0.063
0.075
0.142
0.171
0.079
0.094
0.062
0.075
0.122
0.154
0.067
0.083
0.053
0.063
0.118
0.149
0.070
0.085
0.054
0.066
0.071
0.093
0.043
0.053
0.034
0.041
0.070
0.089
0.043
0.049
0.035
0.041
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Table 8.11: Results for traditional and robust PLS for five composites and unsystem-
atic outliers in all observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 40% 50%
12 100 trad. 0.005 -0.172 -0.319 -0.507 -0.623 -0.664 0.051 0.332 0.445 0.456 0.374 0.332
rob. 0.011 0.012 0.009 0.008 0.008 -0.245 0.071 0.071 0.072 0.071 0.066 0.576
300 trad. 0.001 -0.331 -0.447 -0.551 -0.635 -0.654 0.030 0.172 0.221 0.218 0.195 0.185
rob. 0.002 0.005 0.002 0.004 0.002 -0.047 0.034 0.033 0.035 0.035 0.039 0.180
500 trad. 0.001 -0.382 -0.489 -0.585 -0.646 -0.661 0.022 0.139 0.134 0.138 0.132 0.132
rob. 0.001 -0.000 0.002 0.002 0.003 -0.061 0.025 0.026 0.026 0.026 0.028 0.099
Y32 100 trad. -0.072 -0.093 -0.109 -0.076 -0.068 -0.027 0.146 0.334 0.356 0.324 0.274 0.270
rob. -0.114 -0.121 -0.106 -0.114 -0.096 -0.115 0.230 0.239 0.234 0.216 0.212 0.496
300 trad. -0.025 -0.025 -0.027 -0.024 -0.020 -0.026 0.064 0.116 0.127 0.103 0.112 0.108
rob. -0.032 -0.034 -0.032 -0.034 -0.044 -0.057 0.077 0.078 0.078 0.082 0.092 0.253
500 trad. -0.012 -0.013 -0.011 -0.013 -0.015 -0.014 0.048 0.073 0.066 0.066 0.068 0.072
rob. -0.014 -0.016 -0.016 -0.017 -0.025 -0.025 0.053 0.053 0.055 0.058 0.063 0.139
Ya1 100 trad. -0.005 -0.047 0.020 0.062 0.057 0.044 0.101 0.237 0.224 0.187 0.150 0.152
rob. -0.007 0.003 0.005 0.005 0.000 -0.030 0.153 0.155 0.148 0.137 0.136 0.324
300 trad. -0.004 0.038 0.060 0.065 0.048 0.041 0.060 0.115 0.109 0.092 0.083 0.086
rob. -0.006 -0.001 -0.002 0.000 -0.001 -0.102 0.068 0.065 0.068 0.072 0.076 0.189
500 trad. -0.002 0.065 0.077 0.073 0.049 0.042 0.045 0.089 0.073 0.067 0.059 0.062
rob. -0.001 -0.001 -0.001 -0.002 -0.000 -0.075 0.049 0.050 0.052 0.054 0.059 0.131
Ya2 100 trad. 0.010 -0.141 -0.289 -0.418 -0.513 -0.560 0.088 0.229 0.237 0.201 0.169 0.188
rob. 0.019 0.010 0.011 0.005 0.011 -0.313 0.134 0.139 0.132 0.123 0.119 0.342
300 trad. 0.006 -0.176 -0.292 -0.410 -0.527 -0.561 0.052 0.082 0.089 0.090 0.088 0.089
rob. 0.008 0.006 0.004 0.004 0.005 -0.154 0.059 0.058 0.060 0.062 0.068 0.182
500 trad. 0.002 -0.197 -0.296 -0.407 -0.526 -0.563 0.038 0.058 0.054 0.055 0.060 0.068
rob. 0.002 0.003 0.004 0.005 0.002 -0.166 0.041 0.042 0.046 0.046 0.051 0.121
51 100 trad. -0.068 -0.147 -0.220 -0.254 -0.249 -0.249 0.116 0.193 0.188 0.165 0.161 0.167
rob. -0.118 -0.132 -0.135 -0.119 -0.105 -0.180 0.179 0.173 0.168 0.166 0.153 0.243
300 trad. -0.037 -0.203 -0.239 -0.254 -0.254 -0.247 0.062 0.098 0.092 0.082 0.079 0.077
rob. -0.045 -0.045 -0.041 -0.043 -0.047 -0.082 0.072 0.075 0.071 0.075 0.086 0.160
500 trad. -0.028 -0.221 -0.250 -0.259 -0.251 -0.248 0.048 0.077 0.064 0.059 0.056 0.057
rob. -0.030 -0.030 -0.032 -0.033 -0.036 -0.077 0.052 0.053 0.055 0.053 0.062 0.121
v52 100 trad. 0.029 0.210 0.349 0.467 0.559 0.592 0.103 0.202 0.222 0.206 0.204 0.214
rob. 0.054 0.060 0.066 0.059 0.039 0.389 0.172 0.175 0.177 0.157 0.149 0.333
300 trad. 0.007 0.258 0.359 0.456 0.558 0.587 0.055 0.073 0.081 0.081 0.092 0.097
rob. 0.012 0.013 0.011 0.012 0.014 0.208 0.064 0.067 0.066 0.070 0.073 0.166
500 trad. 0.004 0.276 0.364 0.459 0.556 0.590 0.044 0.056 0.050 0.050 0.055 0.064
rob. 0.005 0.004 0.006 0.006 0.009 0.210 0.047 0.049 0.049 0.049 0.055 0.114
V53 100 trad. -0.057 -0.115 -0.118 -0.074 -0.048 -0.034 0.109 0.179 0.195 0.182 0.167 0.163
rob. -0.069 -0.068 -0.077 -0.064 -0.082 -0.141 0.178 0.185 0.196 0.185 0.169 0.255
300 trad. -0.049 -0.054 -0.054 -0.039 -0.035 -0.026 0.047 0.077 0.083 0.070 0.069 0.063
rob. -0.050 -0.051 -0.049 -0.048 -0.051 -0.090 0.060 0.054 0.056 0.060 0.067 0.150
500 trad. -0.050 -0.052 -0.045 -0.044 -0.038 -0.036 0.035 0.049 0.045 0.046 0.041 0.041
rob. -0.050 -0.050 -0.047 -0.048 -0.050 -0.059 0.039 0.038 0.040 0.041 0.045 0.091
w11 100 trad. -0.011 -0.260 -0.426 -0.547 -0.579 -0.587 0.112 0.390 0.484 0.562 0.563 0.590
rob. -0.013 -0.005 -0.016 -0.014 -0.011 -0.324 0.166 0.168 0.164 0.160 0.151 0.502
300 trad. -0.001 -0.247 -0.337 -0.449 -0.556 -0.548 0.066 0.230 0.341 0.458 0.549 0.547
rob. -0.001 -0.005 0.000 -0.000 -0.005 -0.058 0.075 0.076 0.076 0.079 0.085 0.256
500 trad. 0.001 -0.240 -0.291 -0.369 -0.489 -0.515 0.051 0.187 0.252 0.377 0.504 0.515
rob. -0.000 0.002 0.002 0.003 0.002 -0.007 0.055 0.057 0.055 0.058 0.066 0.191
w1z 100 trad. -0.006 -0.258 -0.391 -0.482 -0.555 -0.554 0.116 0.345 0.465 0.526 0.574 0.551
rob. -0.007 -0.019 -0.011 -0.011 -0.006 -0.369 0.172 0.165 0.162 0.157 0.149 0.546
300 trad. 0.000 -0.249 -0.330 -0.441 -0.529 -0.552 0.065 0.227 0.329 0.460 0.539 0.552
rob. 0.001 -0.001 -0.001 -0.003 -0.002 -0.054 0.076 0.074 0.076 0.077 0.087 0.272
500 trad. 0.000 -0.234 -0.315 -0.401 -0.508 -0.538 0.050 0.176 0.273 0.382 0.505 0.541
rob. 0.000 -0.001 -0.003 -0.001 -0.002 0.007 0.055 0.054 0.058 0.059 0.067 0.177
wa1 100 trad. 0.001 0.030 0.011 -0.011 -0.022 -0.059 0.075 0.306 0.369 0.402 0.410 0.403
rob. 0.001 -0.006 0.000 -0.000 -0.003 0.002 0.118 0.120 0.118 0.112 0.101 0.415
300 trad. -0.001 0.080 0.105 0.097 0.023 0.015 0.041 0.191 0.223 0.259 0.329 0.353
rob. -0.002 -0.000 0.001 0.000 -0.001 0.045 0.047 0.046 0.048 0.049 0.055 0.234
500 trad. -0.001 0.087 0.116 0.117 0.079 0.038 0.031 0.148 0.155 0.183 0.266 0.307
rob. -0.001 0.001 -0.002 0.000 -0.000 0.043 0.034 0.033 0.035 0.038 0.041 0.169
wa3 100 trad. 0.001 -0.031 -0.100 -0.138 -0.205 -0.245 0.075 0.286 0.385 0.393 0.388 0.411
rob. -0.004 -0.020 -0.008 -0.009 -0.007 -0.107 0.122 0.116 0.114 0.109 0.102 0.419
300 trad. -0.002 0.004 -0.016 -0.041 -0.128 -0.166 0.041 0.176 0.208 0.254 0.328 0.345
rob. -0.004 -0.002 -0.001 -0.002 -0.000 0.049 0.047 0.046 0.046 0.049 0.055 0.233
500 trad. -0.000 0.008 -0.000 0.006 -0.062 -0.113 0.031 0.151 0.168 0.262 0.309
rob. 0.000 0.002 -0.001 0.000 -0.001 0.069 0.035 E 0.036 0.037 0.041 0.152
wa3 100 trad. -0.006 -0.034 -0.085 -0.155 -0.215 -0.213 0.072 0.305 0.369 0.401 0.394 0.401
rob. -0.004 -0.001 -0.006 -0.008 -0.013 -0.126 0.112 0.111 0.110 0.110 0.101 0.408
300 trad. -0.000 0.008 -0.007 -0.044 -0.107 -0.161 0.041 0.187 0.217 0.260 0.321 0.355
rob. -0.001 -0.005 -0.003 -0.002 -0.002 0.054 0.046 0.047 0.047 0.048 0.055 0.219
500 trad. -0.000 0.009 0.009 0.002 -0.056 -0.111 0.030 0.137 0.148 0.170 0.264 0.314
rob. -0.001 -0.000 -0.002 0.000 0.001 0.080 0.033 0.034 0.036 0.035 0.041 0.150
waq 100 trad. 0.000 0.015 -0.037 -0.062 -0.132 -0.153 0.078 0.316 0.395 0.394 0.394 0.400
rob. -0.010 -0.002 -0.001 -0.007 -0.009 -0.068 0.123 0.118 0.118 0.120 0.106 0.451
300 trad. -0.002 0.047 0.052 0.045 -0.040 -0.071 0.043 0.194 0.219 0.254 0.327 0.372
rob. -0.002 0.003 -0.001 -0.000 0.000 0.050 0.050 0.048 0.050 0.051 0.056 0.252
500 trad. -0.002 0.062 0.087 0.088 0.034 -0.007 0.033 0.144 0.147 0.172 0.257 0.320
rob. -0.002 -0.001 0.003 -0.001 -0.001 0.068 0.035 0.035 0.036 0.037 0.043 0.167
was 100 trad. -0.004 0.044 0.021 0.009 -0.048 -0.050 0.078 0.324 0.378 0.400 0.405 0.404
rob. -0.005 -0.006 -0.010 0.001 -0.000 -0.035 0.123 0.121 0.121 0.117 0.107 0.429
300 trad. 0.002 0.087 0.107 0.092 0.059 0.007 0.044 0.189 0.223 0.269 0.326 0.335
rob. 0.004 -0.004 -0.003 -0.002 -0.001 0.036 0.049 0.047 0.049 0.049 0.059 0.242
500 trad. 0.002 0.086 0.127 0.130 0.100 0.050 0.032 0.151 0.150 0.175 0.265 0.321
rob. 0.002 -0.001 0.000 0.000 -0.001 0.044 0.036 0.035 0.036 0.038 0.043 0.174
wae 100 trad. -0.100 -0.031 -0.011 -0.020 -0.045 -0.053 0.078 0.314 0.387 0.394 0.398 0.396
rob. -0.103 -0.092 -0.106 -0.103 -0.098 -0.097 0.122 0.119 0.123 0.119 0.112 0.433
300 trad. -0.102 0.025 0.046 0.064 0.029 -0.019 0.042 0.201 0.227 0.263 0.332 0.357
rob. -0.100 -0.098 -0.098 -0.102 -0.101 -0.062 0.050 0.050 0.049 0.052 0.056 0.249
500 trad. -0.099 0.024 0.064 0.082 0.058 0.023 0.033 0.155 0.163 0.190 0.277 0.311
rob. -0.099 -0.102 -0.101 -0.103 -0.101 -0.056 0.036 0.037 0.037 0.038 0.042 0.170
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-0.168
-0.018
-0.113
-0.098
-0.040
-0.040
-0.019
-0.015
-0.191
-0.203
-0.032
-0.083

0.008
-0.023
-0.124
-0.104

0.007
-0.010

0.027
-0.020
-0.253
-0.006
-0.113
-0.003
-0.041

0.002
-0.118
-0.008
-0.078
-0.002
-0.049
-0.006
-0.073
-0.026
-0.033
-0.017
-0.023
-0.004
-0.139
-0.047
-0.043
-0.007
-0.015
-0.007
-0.142
-0.035
-0.043
-0.010
-0.017
-0.003
-0.145
-0.034
-0.048
-0.009
-0.021
-0.010
-0.076
-0.018
-0.013
-0.003
-0.002
-0.000
-0.037
-0.008

0.003

0.000
-0.006
-0.003

-0.156
-0.000
-0.171
-0.001
-0.183
-0.069
-0.125
-0.193
-0.023
-0.089
-0.008
-0.034
-0.180
-0.355
-0.004
-0.153

0.003
-0.070
-0.086
-0.183
-0.014
-0.096

0.025
-0.014
-0.328
-0.190
-0.154
-0.016
-0.137
-0.010
-0.139
-0.119
-0.115
-0.009
-0.038
-0.000
-0.071
-0.101
-0.016
-0.022
-0.003
-0.010
-0.166
-0.197
-0.046
-0.049
-0.027
-0.014
-0.141
-0.164
-0.038
-0.036
-0.016
-0.022
-0.116
-0.152
-0.034
-0.042
-0.018
-0.012
-0.081
-0.097
-0.025
-0.027
-0.014
-0.009
-0.042
-0.046
-0.007

0.005
-0.001
-0.008

0.592
0.427
0.282
0.242
0.192
0.164
0.415
0.545
0.243
0.284
0.191
0.214
0.518
0.668
0.298
0.348
0.221
0.251
0.583
0.788
0.352
0.404
0.263
0.293
0.444
0.134
0.202
0.062
0.124
0.048
0.446
0.161
0.251
0.073
0.148
0.059
0.357
0.255
0.182
0.119
0.129
0.083
0.352
0.238
0.169
0.104
0.128
0.083
0.367
0.244
0.169
0.105
0.126
0.079
0.351
0.242
0.161
0.104
0.125
0.082
0.346
0.254
0.179
0.109
0.131
0.082
0.371
0.243
0.179
0.114
0.130
0.085

0.530
0.407
0.286
0.268
0.180
0.204
0.441
0.543
0.284
0.322
0.187
0.226
0.570
0.644
0.322
0.389
0.215
0.267
0.609
0.734
0.386
0.456
0.253
0.315
0.564
0.124
0.394
0.071
0.273
0.053
0.576
0.152
0.447
0.085
0.322
0.063
0.390
0.233
0.232
0.126
0.163
0.093
0.371
0.227
0.221
0.119
0.144
0.090
0.366
0.224
0.215
0.122
0.151
0.093
0.371
0.224
0.210
0.116
0.149
0.091
0.371
0.229
0.214
0.123
0.150
0.090
0.366
0.225
0.226
0.121
0.158
0.093

0.493
0.721
0.265
0.529
0.173
0.365
0.465
0.424
0.258
0.317
0.184
0.253
0.571
0.492
0.309
0.403
0.225
0.313
0.645
0.575
0.354
0.432
0.270
0.356
0.618
0.501
0.472
0.153
0.421
0.104
0.622
0.524
0.513
0.186
0.410
0.124
0.391
0.441
0.222
0.235
0.162
0.150
0.389
0.410
0.203
0.216
0.140
0.143
0.363
0.396
0.223
0.210
0.150
0.148
0.364
0.401
0.204
0.218
0.147
0.140
0.371
0.396
0.211
0.214
0.160
0.146
0.382
0.415
0.227
0.223
0.161
0.149
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Table 8.12: Results for traditional and robust PLS for five composites and unsystem-
atic outliers in two observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 40% 50%
12 100 trad. 0.007 -0.031 -0.047 -0.053 -0.063 -0.064 0.050 0.057 0.060 0.059 0.060 0.062
rob. 0.009 0.011 0.009 0.007 -0.031 -0.050 0.074 0.070 0.072 0.070 0.082 0.085
300 trad. 0.002 -0.045 -0.055 -0.063 -0.071 -0.069 0.030 0.033 0.033 0.036 0.035 0.035
rob. 0.003 0.001 0.001 -0.003 -0.021 -0.058 0.033 0.033 0.034 0.036 0.041 0.042
500 trad. 0.001 -0.045 -0.056 -0.065 -0.069 -0.071 0.024 0.026 0.026 0.028 0.028 0.027
rob. 0.002 0.001 0.000 -0.003 -0.019 -0.057 0.027 0.025 0.026 0.026 0.032 0.033
Y32 100 trad. -0.075 -0.066 -0.064 -0.079 -0.067 -0.064 0.137 0.143 0.141 0.143 0.140 0.146
rob. -0.120 -0.103 -0.115 -0.109 -0.099 -0.101 0.227 0.242 0.231 0.216 0.227 0.241
300 trad. -0.025 -0.022 -0.020 -0.026 -0.018 -0.020 0.065 0.067 0.065 0.063 0.067 0.065
rob. -0.033 -0.031 -0.028 -0.036 -0.028 -0.030 0.075 0.078 0.078 0.079 0.091 0.080
500 trad. -0.014 -0.010 -0.014 -0.015 -0.014 -0.012 0.048 0.049 0.048 0.047 0.047 0.049
rob. -0.017 -0.012 -0.018 -0.019 -0.022 -0.020 0.054 0.056 0.053 0.055 0.060 0.059
Ya1 100 trad. -0.001 0.099 0.119 0.139 0.151 0.153 0.105 0.101 0.106 0.104 0.102 0.102
rob. -0.005 0.005 0.006 0.010 0.098 0.147 0.156 0.145 0.150 0.152 0.145 0.147
300 trad. -0.003 0.103 0.134 0.146 0.154 0.160 0.058 0.060 0.057 0.055 0.057 0.058
rob. -0.002 -0.000 0.005 0.011 0.055 0.140 0.066 0.067 0.069 0.069 0.077 0.071
500 trad. -0.000 0.108 0.133 0.148 0.156 0.157 0.044 0.046 0.045 0.044 0.045 0.043
rob. -0.000 0.000 0.004 0.012 0.056 0.132 0.048 0.051 0.051 0.052 0.061 0.053
Ya2 100 trad. 0.009 -0.097 -0.122 -0.140 -0.155 -0.159 0.090 0.092 0.097 0.093 0.095 0.089
rob. 0.017 0.009 0.006 0.006 -0.094 -0.140 0.135 0.125 0.134 0.130 0.133 0.136
300 trad. 0.004 -0.111 -0.143 -0.154 -0.164 -0.170 0.050 0.054 0.051 0.053 0.052 0.054
rob. 0.004 0.001 -0.003 -0.008 -0.055 -0.147 0.057 0.059 0.059 0.061 0.069 0.067
500 trad. 0.002 -0.116 -0.143 -0.159 -0.167 -0.169 0.038 0.040 0.041 0.040 0.041 0.039
rob. 0.003 0.001 -0.004 -0.012 -0.057 -0.141 0.041 0.043 0.044 0.045 0.055 0.049
51 100 trad. -0.078 -0.161 -0.188 -0.204 -0.210 -0.207 0.112 0.115 0.113 0.110 0.113 0.108
rob. -0.127 -0.129 -0.123 -0.134 -0.204 -0.237 0.177 0.169 0.172 0.162 0.170 0.171
300 trad. -0.036 -0.139 -0.167 -0.181 -0.186 -0.188 0.064 0.064 0.063 0.060 0.061 0.063
rob. -0.043 -0.042 -0.048 -0.056 -0.100 -0.176 0.073 0.075 0.073 0.075 0.081 0.074
500 trad. -0.030 -0.139 -0.159 -0.175 -0.185 -0.185 0.048 0.048 0.048 0.047 0.049 0.048
rob. -0.030 -0.035 -0.033 -0.045 -0.093 -0.163 0.053 0.054 0.055 0.057 0.065 0.061
v52 100 trad. 0.027 0.118 0.149 0.165 0.174 0.174 0.101 0.107 0.106 0.107 0.104 0.105
rob. 0.055 0.058 0.060 0.069 0.140 0.178 0.172 0.174 0.173 0.166 0.168 0.169
300 trad. 0.009 0.120 0.147 0.162 0.167 0.174 0.057 0.058 0.057 0.056 0.057 0.058
rob. 0.012 0.013 0.016 0.024 0.068 0.157 0.066 0.067 0.064 0.069 0.077 0.070
500 trad. 0.002 0.121 0.145 0.163 0.172 0.174 0.045 0.045 0.045 0.044 0.045 0.046
rob. 0.002 0.008 0.009 0.019 0.068 0.147 0.049 0.049 0.049 0.051 0.059 0.057
V53 100 trad. -0.060 -0.058 -0.056 -0.054 -0.048 -0.054 0.109 0.110 0.118 0.114 0.111 0.117
rob. -0.076 -0.085 -0.075 -0.064 -0.060 -0.065 0.195 0.195 0.188 0.171 0.178 0.202
300 trad. -0.049 -0.047 -0.045 -0.048 -0.043 -0.044 0.045 0.048 0.048 0.047 0.047 0.047
rob. -0.051 -0.050 -0.047 -0.049 -0.044 -0.042 0.054 0.058 0.057 0.057 0.062 0.058
500 trad. -0.051 -0.048 -0.047 -0.047 -0.047 -0.048 0.034 0.036 0.036 0.038 0.035 0.036
rob. -0.051 -0.049 -0.049 -0.048 -0.048 -0.048 0.038 0.040 0.040 0.040 0.043 0.046
w11 100 trad. -0.002 -0.010 -0.007 -0.010 -0.014 -0.002 0.113 0.114 0.116 0.118 0.120 0.119
rob. -0.003 -0.013 -0.016 -0.011 -0.016 -0.007 0.157 0.156 0.163 0.161 0.156 0.167
300 trad. 0.000 0.000 -0.003 -0.001 -0.000 -0.001 0.065 0.067 0.065 0.067 0.067 0.067
rob. -0.002 -0.001 -0.001 0.002 -0.003 -0.001 0.074 0.071 0.076 0.078 0.083 0.079
500 trad. -0.003 -0.001 -0.001 0.001 -0.002 -0.000 0.051 0.050 0.051 0.052 0.053 0.050
rob. -0.004 -0.000 -0.000 -0.000 -0.001 0.001 0.055 0.054 0.059 0.059 0.065 0.061
w1z 100 trad. -0.006 -0.010 -0.009 -0.003 -0.004 -0.006 0.115 0.114 0.117 0.118 0.119 0.112
rob. -0.009 -0.011 -0.011 -0.006 -0.012 -0.018 0.163 0.157 0.165 0.157 0.161 0.162
300 trad. 0.002 0.003 -0.000 -0.003 0.002 -0.002 0.064 0.066 0.066 0.069 0.065 0.067
rob. 0.001 0.002 -0.001 -0.002 0.003 -0.002 0.073 0.074 0.074 0.080 0.082 0.079
500 trad. 0.000 -0.002 0.001 0.001 -0.002 -0.001 0.050 0.050 0.053 0.051 0.053 0.052
rob. 0.001 -0.002 0.001 0.001 -0.002 -0.002 0.055 0.056 0.056 0.059 0.064 0.060
wa1 100 trad. -0.001 -0.047 -0.083 -0.125 -0.159 -0.167 0.077 0.132 0.108 0.099 0.092 0.094
rob. 0.000 -0.010 -0.001 -0.010 -0.059 -0.140 0.123 0.118 0.115 0.115 0.208 0.172
300 trad. -0.002 -0.056 -0.088 -0.128 -0.161 -0.171 0.041 0.067 0.059 0.055 0.051 0.051
rob. -0.003 -0.002 0.003 -0.006 -0.026 -0.102 0.046 0.048 0.047 0.051 0.068 0.107
500 trad. 0.000 -0.059 -0.095 -0.127 -0.159 -0.170 0.031 0.049 0.044 0.040 0.038 0.038
rob. 0.000 -0.001 -0.002 -0.005 -0.022 -0.097 0.034 0.035 0.037 0.038 0.052 0.089
wa3 100 trad. -0.007 -0.134 -0.205 -0.274 -0.333 -0.343 0.074 0.110 0.107 0.095 0.093 0.091
rob. -0.019 -0.015 -0.015 -0.017 -0.143 -0.290 0.117 0.119 0.117 0.112 0.194 0.175
300 trad. -0.000 -0.144 -0.209 -0.272 -0.332 -0.349 0.040 0.058 0.053 0.051 0.052 0.051
rob. -0.001 -0.001 -0.005 -0.012 -0.062 -0.236 0.047 0.048 0.048 0.050 0.063 0.106
500 trad. -0.001 -0.150 -0.214 -0.274 -0.331 -0.349 0.030 0.044 0.041 0.039 0.039 0.039
rob. -0.001 -0.002 -0.004 -0.013 -0.061 -0.208 0.033 0.036 0.036 0.037 0.048 0.082
wa3 100 trad. -0.007 0.055 0.070 0.094 0.103 0.101 0.076 0.087 0.093 0.091 0.092 0.093
rob. -0.013 -0.001 -0.011 0.002 0.051 0.085 0.116 0.116 0.114 0.114 0.132 0.134
300 trad. -0.001 0.063 0.086 0.100 0.106 0.106 0.041 0.049 0.049 0.050 0.051 0.050
rob. -0.002 -0.002 0.003 0.005 0.031 0.088 0.048 0.047 0.047 0.049 0.058 0.062
500 trad. -0.001 0.069 0.087 0.102 0.110 0.109 0.031 0.037 0.037 0.039 0.041 0.038
rob. -0.001 0.001 0.001 0.007 0.033 0.088 0.034 0.034 0.034 0.036 0.045 0.046
waq 100 trad. -0.003 0.063 0.093 0.102 0.109 0.111 0.079 0.092 0.094 0.100 0.101 0.103
rob. -0.003 -0.006 0.001 -0.003 0.061 0.100 0.125 0.125 0.126 0.117 0.141 0.152
300 trad. -0.000 0.072 0.092 0.104 0.118 0.120 0.042 0.052 0.054 0.055 0.056 0.056
rob. 0.000 -0.000 0.000 0.006 0.036 0.102 0.049 0.050 0.050 0.052 0.061 0.069
500 trad. -0.001 0.072 0.097 0.107 0.116 0.119 0.031 0.039 0.040 0.041 0.043 0.040
rob. -0.001 0.001 0.004 0.006 0.034 0.095 0.035 0.037 0.036 0.037 0.046 0.051
was 100 trad. 0.002 0.054 0.077 0.093 0.100 0.107 0.078 0.095 0.097 0.099 0.102 0.104
rob. 0.001 -0.002 -0.005 0.002 0.053 0.094 0.127 0.131 0.125 0.116 0.141 0.159
300 trad. 0.001 0.066 0.083 0.097 0.104 0.105 0.041 0.052 0.052 0.055 0.055 0.056
rob. 0.001 0.003 0.002 0.008 0.032 0.088 0.047 0.050 0.049 0.053 0.062 0.066
500 trad. 0.000 0.065 0.083 0.097 0.104 0.108 0.033 0.039 0.040 0.042 0.042 0.041
rob. -0.001 0.000 0.000 0.006 0.030 0.086 0.036 0.035 0.036 0.038 0.047 0.052
wae 100 trad. -0.101 -0.047 -0.031 -0.024 -0.012 -0.010 0.078 0.090 0.102 0.099 0.106 0.104
rob. -0.100 -0.103 -0.098 -0.098 -0.043 -0.019 0.121 0.125 0.125 0.121 0.146 0.159
300 trad. -0.101 -0.045 -0.026 -0.014 -0.009 -0.007 0.042 0.053 0.054 0.057 0.057 0.056
rob. -0.100 -0.100 -0.099 -0.095 -0.074 -0.021 0.048 0.050 0.049 0.053 0.062 0.066
500 trad. -0.099 -0.043 -0.025 -0.014 -0.008 -0.008 0.032 0.039 0.043 0.043 0.044 0.043
rob. -0.098 -0.100 -0.097 -0.093 -0.072 -0.028 0.035 0.036 0.037 0.039 0.046 0.051
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-0.001
-0.007
-0.002
-0.004
-0.031
-0.069
-0.008
-0.013
-0.007
-0.008
-0.021
-0.037
-0.007
-0.011
-0.001
-0.002
-0.024
-0.055
-0.007
-0.010
-0.003
-0.004
-0.013
-0.024
-0.008
-0.008
-0.004
-0.006
-0.005
-0.015
-0.001

0.004
-0.001

0.000

0.330
0.417
0.195
0.229
0.144
0.158
0.423
0.540
0.237
0.277
0.184
0.206
0.514
0.669
0.282
0.325
0.210
0.228
0.608
0.770
0.342
0.396
0.261
0.286
0.094
0.141
0.056
0.063
0.042
0.046
0.113
0.169
0.066
0.075
0.049
0.053
0.179
0.265
0.095
0.111
0.069
0.075
0.167
0.255
0.086
0.102
0.066
0.073
0.166
0.246
0.087
0.101
0.068
0.074
0.158
0.248
0.091
0.105
0.066
0.073
0.166
0.261
0.091
0.108
0.070
0.077
0.165
0.258
0.091
0.105
0.071
0.078

0.352
0.425
0.199
0.232
0.144
0.168
0.429
0.540
0.238
0.290
0.175
0.199
0.527
0.669
0.288
0.334
0.213
0.245
0.606
0.765
0.334
0.389
0.247
0.284
0.102
0.130
0.056
0.062
0.045
0.048
0.120
0.155
0.068
0.074
0.054
0.057
0.187
0.252
0.100
0.119
0.077
0.085
0.173
0.250
0.094
0.108
0.071
0.080
0.184
0.239
0.097
0.109
0.073
0.079
0.172
0.241
0.093
0.104
0.073
0.079
0.180
0.259
0.101
0.110
0.075
0.082
0.180
0.258
0.101
0.110
0.078
0.086

0.344
0.427
0.191
0.242
0.147
0.187
0.442
0.508
0.230
0.293
0.179
0.236
0.520
0.659
0.274
0.346
0.212
0.264
0.615
0.749
0.325
0.412
0.260
0.329
0.106
0.148
0.057
0.068
0.043
0.053
0.127
0.172
0.068
0.082
0.052
0.064
0.198
0.268
0.099
0.122
0.078
0.091
0.176
0.249
0.095
0.114
0.070
0.085
0.180
0.256
0.096
0.119
0.077
0.091
0.178
0.244
0.096
0.115
0.070
0.083
0.184
0.254
0.098
0.120
0.078
0.093
0.185
0.260
0.097
0.119
0.075
0.091

0.351
0.457
0.192
0.236
0.151
0.180
0.430
0.557
0.235
0.292
0.175
0.219
0.519
0.658
0.262
0.321
0.210
0.260
0.607
0.752
0.318
0.393
0.241
0.306
0.100
0.149
0.058
0.068
0.044
0.051
0.118
0.171
0.069
0.082
0.052
0.063
0.195
0.283
0.109
0.126
0.077
0.092
0.175
0.272
0.097
0.117
0.074
0.089
0.184
0.270
0.094
0.112
0.074
0.089
0.176
0.256
0.094
0.112
0.072
0.087
0.181
0.271
0.101
0.120
0.077
0.091
0.188
0.272
0.104
0.125
0.076
0.091
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Systematic outliers
This subsection shows the complete results for systematic outliers.

Table 8.13: Results for traditional and robust PLSc for three common factors and
systematic outliers in all observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 40% 50%
Y21 100 trad. 0.018 0.269 0.347 0.410 0.450 0.459 0.097 0.052 0.033 0.022 0.016 0.015
rob. 0.034 0.035 0.037 0.042 0.248 0.455 0.124 0.125 0.123 0.130 0.201 0.019
300 trad. 0.002 0.263 0.344 0.407 0.449 0.458 0.059 0.029 0.021 0.014 0.010 0.009
rob. 0.003 0.006 0.005 0.005 0.094 0.454 0.067 0.066 0.070 0.071 0.114 0.010
500 trad. 0.001 0.260 0.342 0.407 0.449 0.458 0.046 0.023 0.016 0.011 0.007 0.007
rob. 0.001 -0.001 -0.003 0.002 0.075 0.455 0.051 0.053 0.052 0.056 0.083 0.008
Y31 100 trad. 0.039 0.172 0.212 0.231 0.247 0.254 0.152 0.153 0.174 0.190 0.286 0.330
rob. 0.064 0.053 0.063 0.056 0.145 0.230 0.238 0.225 0.243 0.227 0.266 0.440
300 trad. 0.006 0.154 0.196 0.221 0.239 0.234 0.080 0.089 0.091 0.102 0.132 0.151
rob. 0.008 0.004 0.010 0.008 0.068 0.219 0.090 0.089 0.093 0.097 0.117 0.150
500 trad. 0.004 0.156 0.195 0.221 0.238 0.240 0.063 0.067 0.072 0.080 0.098 0.115
rob. 0.003 0.003 0.004 0.006 0.055 0.225 0.069 0.071 0.071 0.073 0.094 0.112
Y32 100 trad. 0.013 0.257 0.314 0.369 0.400 0.401 0.176 0.162 0.180 0.194 0.286 0.330
rob. 0.013 0.016 0.000 0.023 0.227 0.423 0.271 0.269 0.288 0.263 0.327 0.440
300 trad. 0.003 0.260 0.325 0.376 0.405 0.421 0.089 0.094 0.094 0.104 0.133 0.151
rob. 0.004 0.009 0.003 0.007 0.082 0.434 0.105 0.106 0.103 0.111 0.146 0.151
500 trad. 0.002 0.257 0.326 0.376 0.406 0.415 0.068 0.069 0.074 0.081 0.098 0.115
rob. 0.002 0.002 0.004 0.005 0.069 0.428 0.075 0.076 0.079 0.082 0.107 0.112
A1l 100 trad. -0.026 -0.004 0.014 0.031 0.036 0.032 0.066 0.039 0.026 0.017 0.014 0.013
rob. -0.037 -0.032 -0.036 -0.038 0.010 0.042 0.082 0.083 0.084 0.088 0.071 0.018
300 trad. -0.007 -0.000 0.016 0.031 0.036 0.031 0.045 0.023 0.016 0.011 0.008 0.008
rob. -0.008 -0.006 -0.008 -0.008 -0.001 0.038 0.052 0.051 0.052 0.053 0.049 0.010
500 trad. -0.003 0.000 0.016 0.031 0.036 0.031 0.036 0.017 0.012 0.008 0.006 0.006
rob. -0.003 -0.003 -0.003 -0.003 -0.002 0.037 0.040 0.041 0.042 0.042 0.041 0.007
A12 100 trad. -0.000 0.072 0.100 0.123 0.131 0.127 0.089 0.043 0.031 0.019 0.015 0.014
rob. -0.003 -0.007 0.003 0.006 0.071 0.137 0.110 0.110 0.105 0.102 0.100 0.019
300 trad. 0.000 0.071 0.100 0.121 0.130 0.127 0.057 0.026 0.018 0.011 0.008 0.008
rob. 0.000 0.001 0.001 -0.002 0.021 0.133 0.065 0.062 0.067 0.065 0.066 0.010
500 trad. -0.000 0.071 0.098 0.122 0.131 0.127 0.043 0.020 0.013 0.009 0.007 0.006
rob. 0.001 -0.000 0.000 -0.001 0.020 0.131 0.049 0.047 0.049 0.051 0.053 0.007
A1z 100 trad. 0.011 0.143 0.183 0.213 0.226 0.223 0.105 0.049 0.032 0.022 0.016 0.015
rob. 0.013 0.017 0.018 0.016 0.129 0.231 0.137 0.133 0.125 0.140 0.137 0.019
300 trad. 0.003 0.139 0.181 0.212 0.225 0.223 0.062 0.029 0.019 0.013 0.009 0.009
rob. 0.004 -0.001 0.003 0.006 0.047 0.227 0.069 0.074 0.077 0.077 0.081 0.010
500 trad. 0.001 0.139 0.181 0.212 0.225 0.223 0.049 0.021 0.015 0.010 0.007 0.007
rob. 0.000 -0.002 0.001 -0.000 0.039 0.226 0.056 0.056 0.057 0.059 0.064 0.008
A1 100 trad. -0.015 0.116 0.164 0.201 0.218 0.217 0.131 0.055 0.038 0.024 0.016 0.017
rob. -0.021 -0.025 -0.007 -0.005 0.109 0.224 0.169 0.162 0.153 0.162 0.148 0.019
300 trad. 0.002 0.116 0.162 0.200 0.218 0.217 0.076 0.032 0.022 0.014 0.010 0.009
rob. 0.001 -0.004 -0.003 -0.002 0.035 0.221 0.088 0.085 0.090 0.088 0.091 0.010
500 trad. 0.001 0.118 0.162 0.199 0.218 0.217 0.058 0.025 0.017 0.010 0.008 0.007
rob. 0.000 -0.002 -0.003 -0.002 0.030 0.219 0.065 0.066 0.060 0.067 0.070 0.008
A2z 100 trad. 0.000 0.117 0.161 0.199 0.219 0.217 0.124 0.054 0.037 0.024 0.016 0.016
rob. -0.011 -0.015 -0.017 -0.018 0.110 0.223 0.161 0.165 0.152 0.151 0.161 0.020
300 trad. -0.001 0.117 0.163 0.199 0.218 0.217 0.073 0.031 0.021 0.014 0.009 0.010
rob. -0.002 -0.004 -0.001 -0.001 0.033 0.220 0.086 0.086 0.086 0.092 0.088 0.010
500 trad. 0.000 0.117 0.162 0.200 0.218 0.217 0.060 0.026 0.016 0.011 0.007 0.007
rob. 0.000 -0.001 -0.001 0.000 0.027 0.220 0.068 0.067 0.066 0.068 0.070 0.008
A23 100 trad. -0.015 0.114 0.162 0.199 0.218 0.218 0.121 0.054 0.038 0.024 0.017 0.016
rob. -0.022 -0.013 -0.012 -0.007 0.106 0.225 0.160 0.160 0.156 0.155 0.159 0.020
300 trad. -0.008 0.118 0.162 0.199 0.218 0.217 0.077 0.032 0.021 0.014 0.010 0.009
rob. -0.008 -0.002 -0.002 -0.006 0.035 0.220 0.085 0.087 0.088 0.090 0.092 0.010
500 trad. -0.002 0.117 0.162 0.198 0.218 0.217 0.059 0.025 0.017 0.011 0.008 0.007
rob. -0.003 -0.002 -0.003 -0.005 0.027 0.219 0.066 0.064 0.065 0.066 0.072 0.008
A3l 100 trad. -0.042 0.055 0.090 0.116 0.127 0.126 0.164 0.056 0.036 0.023 0.016 0.016
rob. -0.060 -0.063 -0.063 -0.058 0.031 0.135 0.190 0.200 0.194 0.212 0.192 0.019
300 trad. -0.008 0.056 0.090 0.116 0.127 0.124 0.097 0.032 0.021 0.013 0.009 0.009
rob. -0.010 -0.016 -0.012 -0.009 0.010 0.129 0.108 0.108 0.115 0.114 0.097 0.010
500 trad. -0.008 0.058 0.089 0.116 0.128 0.124 0.077 0.028 0.017 0.010 0.007 0.007
rob. -0.006 -0.011 -0.008 -0.001 0.012 0.128 0.086 0.094 0.090 0.091 0.082 0.008
As2 100 trad. -0.036 0.055 0.089 0.116 0.128 0.125 0.158 0.055 0.036 0.022 0.017 0.016
rob. -0.063 -0.060 -0.064 -0.070 0.035 0.134 0.202 0.204 0.213 0.212 0.177 0.020
300 trad. -0.012 0.059 0.090 0.117 0.128 0.124 0.100 0.033 0.020 0.013 0.009 0.009
rob. -0.017 -0.009 -0.011 -0.009 0.007 0.129 0.116 0.109 0.113 0.113 0.104 0.010
500 trad. -0.003 0.059 0.089 0.116 0.127 0.124 0.078 0.027 0.017 0.010 0.008 0.007
rob. -0.004 -0.001 -0.007 -0.010 0.006 0.128 0.086 0.091 0.088 0.092 0.087 0.008
Ass. 100 trad. 0.004 0.140 0.182 0.209 0.224 0.223 0.181 0.059 0.039 0.025 0.018 0.016
rob. -0.009 -0.032 -0.018 -0.034 0.110 0.230 0.218 0.243 0.250 0.248 0.197 0.021
300 trad. 0.002 0.138 0.178 0.210 0.224 0.222 0.123 0.038 0.024 0.014 0.009 0.010
rob. 0.002 -0.001 -0.002 -0.005 0.046 0.226 0.135 0.138 0.136 0.142 0.132 0.010
500 trad. 0.001 0.139 0.179 0.210 0.224 0.222 0.093 0.028 0.017 0.011 0.008 0.007
rob. -0.001 -0.000 0.001 0.000 0.035 0.225 0.104 0.103 0.106 0.106 0.107 0.008
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Table 8.14: Results for traditional and robust PLSc for three common factors and
systematic outliers in two observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 50%
Y21 100 trad. 0.023 0.123 0.200 0.302 0.336 0.321 0.094 0.095 0.098 0.099 0.131
rob. 0.038 0.035 0.046 0.064 0.296 0.308 0.120 0.121 0.122 0.116 0.131
300 trad. -0.001 0.105 0.186 0.312 0.408 0.393 0.060 0.058 0.057 0.064 0.096
rob. -0.003 0.010 0.011 0.033 0.285 0.378 0.068 0.067 0.067 0.068 0.102
500 trad. 0.002 0.104 0.184 0.310 0.430 0.427 0.047 0.046 0.045 0.048 0.064
rob. 0.002 0.004 0.010 0.028 0.269 0.417 0.053 0.050 0.050 0.053 0.071
Y31 100 trad. 0.059 0.080 0.131 0.344 0.473 0.527 0.155 0.199 0.302 0.657 1.019
rob. 0.080 0.055 0.044 0.068 0.355 0.373 0.249 0.221 0.232 0.206 0.934
300 trad. 0.008 0.044 0.090 0.286 1.011 1.036 0.082 0.100 0.131 0.409 1.292
rob. 0.010 0.010 0.011 0.014 0.490 0.830 0.090 0.093 0.095 0.098 1.349
500 trad. 0.005 0.035 0.089 0.253 1.278 1.359 0.066 0.078 0.097 0.232 1.406
rob. 0.006 0.004 0.009 0.012 0.523 1.132 0.072 0.070 0.074 0.074 1.278
V32 100 trad. -0.013 -0.044 -0.101 -0.325 -0.424 -0.445 0.184 0.229 0.334 0.696 1.053
rob. -0.018 0.017 0.035 0.015 -0.264 -0.243 0.278 0.261 0.263 0.252 0.972
300 trad. 0.003 -0.053 -0.114 -0.333 -1.062 -1.077 0.091 0.113 0.144 0.419 1.311
rob. 0.004 0.002 0.002 -0.001 -0.503 -0.862 0.105 0.105 0.109 0.110 1.366
500 trad. 0.000 -0.049 -0.114 -0.305 -1.366 -1.447 0.070 0.086 0.107 0.241 1.401
rob. -0.001 0.001 -0.000 -0.003 -0.560 -1.216 0.077 0.078 0.082 0.083 1.276
A11 100 trad. -0.026 -0.128 -0.196 -0.271 -0.271 -0.250 0.068 0.086 0.100 0.126 0.164
rob. -0.035 -0.034 -0.032 -0.040 -0.218 -0.224 0.087 0.083 0.084 0.086 0.174
300 trad. -0.007 -0.124 -0.212 -0.322 -0.407 -0.385 0.044 0.053 0.068 0.088 0.171
rob. -0.007 -0.007 -0.014 -0.022 -0.270 -0.373 0.050 0.051 0.053 0.054 0.183
500 trad. -0.002 -0.126 -0.209 -0.319 -0.451 -0.463 0.037 0.043 0.050 0.069 0.146
rob. -0.003 -0.005 -0.009 -0.016 -0.264 -0.460 0.041 0.039 0.041 0.042 0.156
A12 100 trad. -0.001 -0.104 -0.160 -0.229 -0.230 -0.202 0.087 0.104 0.110 0.129 0.163
rob. -0.006 -0.005 -0.006 -0.009 -0.176 -0.172 0.115 0.111 0.116 0.106 0.173
300 trad. -0.000 -0.106 -0.185 -0.283 -0.357 -0.336 0.054 0.062 0.071 0.088 0.162
rob. -0.001 -0.002 -0.005 -0.013 -0.233 -0.324 0.064 0.063 0.063 0.067 0.173
500 trad. -0.000 -0.110 -0.184 -0.281 -0.399 -0.410 0.044 0.049 0.057 0.071 0.137
rob. -0.000 -0.002 -0.005 -0.012 -0.231 -0.406 0.049 0.050 0.049 0.048 0.147
A13 100 trad. 0.015 0.027 0.031 0.024 -0.081 -0.156 0.101 0.121 0.135 0.162 0.298
rob. 0.025 0.019 0.019 0.037 -0.055 -0.188 0.127 0.136 0.132 0.129 0.333
300 trad. 0.002 0.039 0.060 0.076 0.068 0.004 0.066 0.066 0.078 0.091 0.213
rob. 0.003 0.007 0.012 0.029 0.090 -0.009 0.074 0.073 0.073 0.079 0.246
500 trad. 0.004 0.041 0.062 0.079 0.107 0.083 0.051 0.052 0.060 0.074 0.155
rob. 0.003 0.005 0.012 0.028 0.121 0.084 0.056 0.056 0.056 0.055 0.175
A1 100 trad. -0.013 -0.007 -0.005 -0.019 -0.116 -0.182 0.127 0.130 0.143 0.160 0.295
rob. -0.018 -0.017 -0.007 0.020 -0.087 -0.211 0.169 0.149 0.152 0.143 0.330
300 trad. -0.004 0.017 0.024 0.027 0.021 -0.036 0.075 0.076 0.080 0.093 0.211
rob. -0.006 0.002 0.006 0.028 0.062 -0.044 0.085 0.091 0.086 0.086 0.243
500 trad. 0.001 0.016 0.026 0.029 0.054 0.037 0.059 0.057 0.061 0.074 0.151
rob. 0.001 -0.000 0.010 0.028 0.097 0.040 0.066 0.065 0.064 0.066 0.169
A2z 100 trad. 0.003 -0.101 -0.161 -0.222 -0.207 -0.181 0.120 0.127 0.131 0.132 0.157
rob. -0.009 -0.009 -0.017 -0.030 -0.159 -0.156 0.153 0.156 0.155 0.152 0.175
300 trad. -0.001 -0.103 -0.179 -0.260 -0.317 -0.302 0.072 0.075 0.078 0.087 0.142
rob. -0.003 -0.002 -0.011 -0.018 -0.213 -0.291 0.082 0.087 0.084 0.087 0.152
500 trad. -0.001 -0.106 -0.175 -0.264 -0.357 -0.360 0.056 0.055 0.063 0.068 0.119
rob. -0.003 -0.002 -0.007 -0.018 -0.216 -0.356 0.062 0.062 0.066 0.066 0.128
A2z 100 trad. -0.013 -0.100 -0.158 -0.221 -0.202 -0.185 0.127 0.121 0.131 0.136 0.155
rob. -0.017 -0.011 -0.020 -0.022 -0.149 -0.159 0.166 0.158 0.154 0.148 0.172
300 trad. -0.006 -0.107 -0.178 -0.261 -0.319 -0.297 0.076 0.074 0.078 0.087 0.145
rob. -0.008 -0.004 -0.009 -0.016 -0.216 -0.286 0.088 0.087 0.087 0.086 0.156
500 trad. 0.002 -0.106 -0.175 -0.263 -0.357 -0.361 0.056 0.060 0.060 0.068 0.120
rob. 0.004 -0.004 -0.007 -0.016 -0.214 -0.357 0.063 0.066 0.065 0.070 0.130
Azl 100 trad. -0.034 -0.039 -0.040 -0.046 -0.039 -0.044 0.142 0.161 0.166 0.169 0.173
rob. -0.051 -0.053 -0.056 -0.051 -0.050 -0.057 0.186 0.185 0.188 0.165 0.184
300 trad. -0.009 -0.013 -0.011 -0.012 -0.021 -0.022 0.096 0.099 0.107 0.109 0.133
rob. -0.015 -0.016 -0.015 -0.013 -0.020 -0.027 0.106 0.107 0.112 0.112 0.151
500 trad. -0.009 -0.003 -0.008 -0.006 -0.014 -0.021 0.083 0.084 0.089 0.093 0.117
rob. -0.009 -0.005 -0.007 -0.010 -0.011 -0.025 0.091 0.089 0.091 0.093 0.130
A3z 100 trad. -0.033 -0.040 -0.046 -0.040 -0.042 -0.036 0.145 0.169 0.166 0.164 0.165
rob. -0.054 -0.061 -0.059 -0.039 -0.056 -0.047 0.186 0.181 0.183 0.166 0.179
300 trad. -0.009 -0.011 -0.009 -0.010 -0.026 -0.019 0.097 0.104 0.106 0.115 0.123
rob. -0.012 -0.015 -0.013 -0.010 -0.023 -0.028 0.111 0.114 0.110 0.106 0.139
500 trad. -0.000 -0.004 -0.005 -0.010 -0.010 -0.016 0.078 0.083 0.087 0.093 0.117
rob. -0.003 -0.003 -0.007 -0.009 -0.007 -0.018 0.086 0.089 0.090 0.095 0.124
As3 100 trad. -0.001 -0.012 0.003 -0.012 -0.008 -0.006 0.188 0.205 0.188 0.209 0.198
rob. -0.015 -0.010 -0.013 -0.012 -0.023 -0.011 0.218 0.227 0.218 0.221 0.224
300 trad. 0.002 0.003 0.003 -0.001 0.006 0.003 0.112 0.125 0.130 0.139 0.149
rob. 0.006 0.005 0.007 0.001 0.004 0.001 0.128 0.137 0.137 0.133 0.169
500 trad. 0.001 -0.003 0.003 0.004 -0.000 0.010 0.093 0.098 0.100 0.107 0.132
rob. 0.002 -0.004 0.004 0.005 -0.005 0.006 0.106 0.107 0.109 0.106 0.149
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Table 8.15: Results for traditional and robust PLS for three composites and systematic
outliers in all observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 50%
Y21 100 trad. 0.021 0.254 0.331 0.388 0.420 0.425 0.071 0.034 0.024 0.016 0.011
rob. 0.034 0.037 0.029 0.033 0.282 0.432 0.097 0.096 0.103 0.098 0.014
300 trad. 0.006 0.248 0.326 0.385 0.419 0.422 0.045 0.021 0.014 0.009 0.007
rob. 0.008 0.010 0.012 0.010 0.037 0.425 0.052 0.052 0.050 0.052 0.007
500 trad. 0.004 0.247 0.325 0.385 0.418 0.422 0.034 0.016 0.012 0.007 0.005
rob. 0.005 0.007 0.005 0.008 0.019 0.423 0.037 0.037 0.038 0.038 0.007
Y31 100 trad. 0.016 0.137 0.158 0.171 0.183 0.181 0.124 0.103 0.109 0.104 0.103
rob. 0.020 0.022 0.025 0.017 0.129 0.186 0.211 0.203 0.189 0.170 0.156
300 trad. 0.005 0.132 0.156 0.168 0.177 0.182 0.063 0.061 0.061 0.061 0.058
rob. 0.007 0.009 0.007 0.007 0.025 0.181 0.073 0.072 0.078 0.078 0.066
500 trad. 0.004 0.130 0.155 0.171 0.180 0.181 0.049 0.046 0.047 0.048 0.045
rob. 0.006 0.006 0.006 0.006 0.016 0.180 0.054 0.053 0.057 0.058 0.049
Y32 100 trad. 0.030 0.301 0.375 0.429 0.455 0.463 0.138 0.105 0.110 0.105 0.103
rob. 0.057 0.057 0.047 0.066 0.309 0.465 0.232 0.227 0.225 0.194 0.156
300 trad. 0.015 0.296 0.373 0.429 0.458 0.459 0.068 0.062 0.061 0.061 0.058
rob. 0.017 0.012 0.016 0.019 0.044 0.465 0.081 0.081 0.083 0.083 0.066
500 trad. 0.008 0.296 0.373 0.425 0.455 0.461 0.050 0.048 0.048 0.048 0.045
rob. 0.008 0.008 0.009 0.006 0.022 0.464 0.059 0.060 0.060 0.061 0.048
w1y 100 trad. -0.004 -0.148 -0.166 -0.195 -0.220 -0.222 0.185 0.124 0.108 0.096 0.077
rob. -0.030 -0.064 -0.048 -0.025 -0.163 -0.225 0.291 0.300 0.282 0.263 0.110
300 trad. -0.006 -0.137 -0.166 -0.193 -0.218 -0.222 0.100 0.070 0.061 0.051 0.043
rob. -0.006 -0.006 -0.006 -0.002 -0.025 -0.221 0.112 0.116 0.114 0.117 0.050
500 trad. -0.004 -0.134 -0.169 -0.193 -0.215 -0.222 0.074 0.053 0.047 0.041 0.033
rob. -0.007 -0.005 -0.005 -0.001 -0.011 -0.223 0.085 0.085 0.087 0.091 0.036
w1z 100 trad. -0.024 -0.017 -0.037 -0.044 -0.045 -0.048 0.197 0.125 0.111 0.095 0.074
rob. -0.053 -0.000 -0.021 -0.029 -0.037 -0.050 0.301 0.296 0.304 0.274 0.110
300 trad. -0.003 -0.023 -0.041 -0.044 -0.045 -0.047 0.110 0.072 0.063 0.052 0.042
rob. -0.006 -0.006 -0.006 -0.005 -0.000 -0.048 0.127 0.128 0.123 0.125 0.049
500 trad. 0.001 -0.023 -0.034 -0.044 -0.047 -0.049 0.080 0.054 0.049 0.042 0.033
rob. 0.002 0.002 -0.002 -0.007 0.000 -0.049 0.091 0.090 0.095 0.100 0.036
w13 100 trad. -0.005 0.084 0.093 0.104 0.119 0.125 0.199 0.124 0.114 0.100 0.077
rob. 0.004 -0.014 -0.011 -0.017 0.071 0.124 0.306 0.297 0.315 0.282 0.113
300 trad. 0.000 0.084 0.099 0.105 0.118 0.125 0.111 0.072 0.067 0.054 0.041
rob. -0.000 -0.002 -0.001 -0.007 -0.000 0.124 0.130 0.130 0.134 0.129 0.048
500 trad. -0.003 0.082 0.097 0.105 0.118 0.128 0.081 0.054 0.048 0.040 0.033
rob. -0.002 -0.006 -0.000 -0.002 -0.003 0.128 0.092 0.093 0.095 0.101 0.036
wa1 100 trad. -0.011 0.080 0.070 0.062 0.057 0.054 0.202 0.098 0.084 0.074 0.069
rob. -0.033 -0.025 -0.020 -0.023 0.025 0.055 0.295 0.291 0.290 0.263 0.098
300 trad. -0.002 0.079 0.072 0.065 0.057 0.055 0.105 0.055 0.047 0.042 0.040
rob. -0.004 -0.008 -0.003 -0.002 0.004 0.054 0.124 0.123 0.125 0.124 0.046
500 trad. -0.003 0.079 0.072 0.063 0.054 0.057 0.082 0.045 0.037 0.033 0.031
rob. -0.004 -0.005 -0.001 -0.003 -0.000 0.059 0.091 0.094 0.095 0.095 0.033
waz 100 trad. -0.016 -0.142 -0.162 -0.177 -0.173 -0.169 0.194 0.118 0.104 0.089 0.072
rob. -0.038 -0.037 -0.054 -0.049 -0.127 -0.174 0.296 0.298 0.283 0.278 0.108
300 trad. -0.002 -0.137 -0.160 -0.177 -0.172 -0.168 0.111 0.072 0.057 0.049 0.042
rob. -0.005 -0.002 -0.003 -0.011 -0.021 -0.169 0.127 0.132 0.127 0.131 0.049
500 trad. -0.002 -0.136 -0.161 -0.175 -0.171 -0.169 0.081 0.054 0.043 0.040 0.033
rob. -0.001 -0.003 -0.005 -0.003 -0.008 -0.170 0.093 0.091 0.092 0.099 0.035
waz 100 trad. -0.027 -0.120 -0.156 -0.183 -0.211 -0.215 0.182 0.105 0.092 0.081 0.069
rob. -0.051 -0.068 -0.048 -0.031 -0.158 -0.218 0.278 0.289 0.278 0.251 0.103
300 trad. -0.010 -0.118 -0.156 -0.184 -0.209 -0.214 0.104 0.065 0.052 0.044 0.040
rob. -0.010 -0.014 -0.014 -0.008 -0.023 -0.216 0.119 0.123 0.114 0.121 0.046
500 trad. -0.004 -0.117 -0.153 -0.184 -0.208 -0.216 0.072 0.047 0.040 0.035 0.031
rob. -0.007 -0.006 -0.004 -0.008 -0.014 -0.218 0.082 0.084 0.086 0.091 0.034
w31 100 trad. -0.047 -0.062 -0.068 -0.082 -0.076 -0.072 0.356 0.150 0.126 0.102 0.081
rob. -0.079 -0.104 -0.060 -0.091 -0.076 -0.072 0.465 0.444 0.455 0.428 0.116
300 trad. -0.009 -0.059 -0.077 -0.078 -0.075 -0.068 0.201 0.084 0.068 0.059 0.047
rob. -0.009 -0.027 -0.033 -0.010 -0.036 -0.069 0.224 0.239 0.242 0.242 0.054
500 trad. -0.019 -0.054 -0.072 -0.079 -0.075 -0.069 0.162 0.067 0.053 0.045 0.036
rob. -0.024 -0.004 -0.011 -0.004 -0.007 -0.068 0.177 0.175 0.174 0.185 0.039
w32 100 trad. -0.057 -0.056 -0.080 -0.097 -0.113 -0.120 0.303 0.123 0.104 0.090 0.073
rob. -0.128 -0.111 -0.141 -0.111 -0.126 -0.122 0.414 0.402 0.399 0.398 0.104
300 trad. -0.020 -0.049 -0.074 -0.096 -0.113 -0.121 0.177 0.070 0.059 0.050 0.045
rob. -0.025 -0.021 -0.030 -0.029 -0.027 -0.122 0.203 0.208 0.213 0.204 0.051
500 trad. -0.012 -0.053 -0.076 -0.095 -0.114 -0.120 0.141 0.054 0.045 0.040 0.034
rob. -0.013 -0.022 -0.016 -0.019 -0.019 -0.121 0.158 0.159 0.156 0.163 0.036
w33 100 trad. -0.074 -0.092 -0.117 -0.128 -0.143 -0.141 0.348 0.140 0.114 0.094 0.080
rob. -0.121 -0.089 -0.119 -0.088 -0.145 -0.146 0.447 0.428 0.442 0.408 0.114
300 trad. -0.025 -0.091 -0.106 -0.131 -0.142 -0.143 0.194 0.081 0.062 0.054 0.045
rob. -0.035 -0.026 -0.013 -0.037 -0.038 -0.144 0.227 0.220 0.217 0.222 0.050
500 trad. -0.001 -0.090 -0.110 -0.131 -0.140 -0.143 0.151 0.062 0.050 0.042 0.035
rob. -0.003 -0.015 -0.013 -0.022 -0.032 -0.143 0.167 0.167 0.165 0.170 0.038
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Table 8.16: Results for traditional and robust PLS for three composites and systematic
outliers in two observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 50%
Y21 100 trad. 0.020 0.060 0.130 0.230 0.299 0.307 0.072 0.066 0.063 0.047 0.029
rob. 0.036 0.033 0.034 0.054 0.308 0.321 0.107 0.111 0.109 0.105 0.046
300 trad. 0.008 0.040 0.115 0.228 0.295 0.301 0.042 0.040 0.036 0.025 0.016
rob. 0.011 0.012 0.017 0.027 0.290 0.310 0.049 0.047 0.049 0.050 0.018
500 trad. 0.004 0.036 0.112 0.227 0.295 0.301 0.033 0.032 0.027 0.018 0.012
rob. 0.005 0.007 0.009 0.021 0.293 0.308 0.038 0.038 0.037 0.038 0.013
Y31 100 trad. 0.019 0.006 -0.043 -0.120 -0.152 -0.151 0.122 0.137 0.166 0.197 0.211
rob. 0.025 0.026 0.026 0.020 -0.121 -0.109 0.213 0.198 0.195 0.188 0.332
300 trad. 0.008 -0.005 -0.055 -0.153 -0.195 -0.200 0.064 0.069 0.102 0.118 0.117
rob. 0.011 0.007 0.013 0.008 -0.171 -0.194 0.075 0.075 0.075 0.079 0.138
500 trad. 0.000 -0.007 -0.064 -0.155 -0.207 -0.215 0.048 0.052 0.077 0.091 0.094
rob. 0.000 0.006 0.003 0.005 -0.194 -0.212 0.056 0.054 0.057 0.057 0.104
Y32 100 trad. 0.032 0.026 0.024 0.030 0.036 0.027 0.136 0.144 0.163 0.179 0.206
rob. 0.056 0.054 0.057 0.042 0.053 0.040 0.223 0.222 0.207 0.197 0.326
300 trad. 0.007 -0.002 -0.015 -0.007 0.007 0.010 0.066 0.073 0.083 0.105 0.115
rob. 0.011 0.014 0.009 0.010 0.008 0.011 0.077 0.082 0.079 0.084 0.132
500 trad. 0.009 -0.005 -0.022 -0.022 -0.003 -0.000 0.051 0.054 0.061 0.079 0.089
rob. 0.010 0.008 0.010 0.006 0.001 0.002 0.057 0.060 0.059 0.060 0.102
w1y 100 trad. -0.008 -0.148 -0.344 -0.536 -0.584 -0.589 0.184 0.245 0.289 0.225 0.161
rob. -0.056 -0.059 -0.049 -0.085 -0.555 -0.566 0.312 0.295 0.265 0.268 0.214
300 trad. -0.001 -0.115 -0.322 -0.547 -0.602 -0.599 0.096 0.126 0.172 0.124 0.090
rob. -0.001 -0.004 -0.014 -0.039 -0.573 -0.603 0.113 0.113 0.114 0.118 0.100
500 trad. -0.002 -0.113 -0.327 -0.548 -0.601 -0.603 0.076 0.094 0.125 0.094 0.065
rob. 0.000 -0.010 -0.013 -0.037 -0.584 -0.605 0.087 0.089 0.089 0.091 0.069
w1z 100 trad. -0.018 -0.123 -0.264 -0.395 -0.422 -0.416 0.207 0.230 0.234 0.191 0.136
rob. -0.036 -0.030 -0.040 -0.077 -0.397 -0.400 0.317 0.295 0.294 0.285 0.190
300 trad. -0.001 -0.100 -0.255 -0.409 -0.432 -0.424 0.103 0.117 0.142 0.104 0.072
rob. -0.007 -0.011 -0.012 -0.034 -0.412 -0.426 0.120 0.122 0.120 0.129 0.081
500 trad. -0.003 -0.095 -0.260 -0.414 -0.431 -0.427 0.083 0.091 0.107 0.077 0.054
rob. -0.004 -0.004 -0.011 -0.032 -0.421 -0.428 0.093 0.090 0.092 0.093 0.058
w13 100 trad. -0.016 0.241 0.484 0.686 0.752 0.746 0.212 0.331 0.394 0.313 0.230
rob. -0.005 0.012 0.013 0.094 0.685 0.683 0.325 0.314 0.317 0.333 0.363
300 trad. -0.009 0.264 0.566 0.766 0.795 0.791 0.113 0.173 0.188 0.119 0.066
rob. -0.007 0.002 0.016 0.070 0.759 0.790 0.129 0.128 0.130 0.150 0.067
500 trad. 0.001 0.268 0.592 0.780 0.799 0.798 0.083 0.129 0.128 0.041 0.012
rob. -0.003 0.008 0.020 0.073 0.779 0.798 0.094 0.097 0.097 0.109 0.013
wa1 100 trad. -0.021 0.174 0.385 0.573 0.647 0.645 0.194 0.320 0.379 0.308 0.232
rob. -0.026 -0.022 0.009 0.070 0.583 0.588 0.293 0.280 0.297 0.301 0.363
300 trad. -0.003 0.211 0.475 0.652 0.687 0.686 0.108 0.162 0.169 0.114 0.065
rob. -0.004 0.013 0.027 0.066 0.658 0.686 0.125 0.125 0.123 0.142 0.066
500 trad. -0.007 0.215 0.502 0.665 0.691 0.693 0.083 0.122 0.109 0.033 0.011
rob. -0.004 0.009 0.030 0.076 0.674 0.693 0.094 0.090 0.093 0.104 0.012
w23 100 trad. -0.018 -0.123 -0.282 -0.435 -0.486 -0.490 0.201 0.237 0.250 0.200 0.136
rob. -0.054 -0.054 -0.055 -0.079 -0.457 -0.472 0.306 0.289 0.287 0.287 0.194
300 trad. 0.000 -0.091 -0.266 -0.451 -0.500 -0.496 0.109 0.129 0.154 0.108 0.077
rob. 0.000 -0.010 -0.014 -0.032 -0.475 -0.499 0.129 0.127 0.125 0.132 0.086
500 trad. 0.002 -0.080 -0.274 -0.458 -0.499 -0.502 0.083 0.092 0.111 0.080 0.056
rob. -0.000 0.001 -0.015 -0.037 -0.483 -0.503 0.093 0.092 0.094 0.094 0.060
waz 100 trad. -0.015 -0.096 -0.239 -0.406 -0.491 -0.514 0.180 0.206 0.214 0.175 0.129
rob. -0.052 -0.043 -0.059 -0.081 -0.465 -0.503 0.296 0.284 0.266 0.257 0.180
300 trad. -0.012 -0.064 -0.210 -0.409 -0.501 -0.516 0.099 0.101 0.130 0.099 0.071
rob. -0.017 -0.016 -0.022 -0.031 -0.479 -0.522 0.116 0.114 0.117 0.122 0.080
500 trad. -0.007 -0.061 -0.206 -0.409 -0.497 -0.518 0.077 0.079 0.095 0.075 0.054
rob. -0.009 -0.014 -0.013 -0.024 -0.483 -0.521 0.087 0.088 0.089 0.086 0.059
w31 100 trad. -0.055 -0.055 -0.120 -0.230 -0.271 -0.291 0.358 0.401 0.486 0.564 0.619
rob. -0.081 -0.068 -0.078 -0.084 -0.243 -0.282 0.451 0.457 0.446 0.441 0.637
300 trad. -0.008 -0.024 -0.049 -0.151 -0.235 -0.243 0.200 0.219 0.328 0.506 0.580
rob. -0.014 -0.025 -0.013 -0.024 -0.217 -0.241 0.228 0.229 0.236 0.247 0.587
500 trad. -0.006 -0.011 -0.032 -0.111 -0.185 -0.245 0.154 0.181 0.256 0.460 0.568
rob. -0.005 -0.010 -0.023 -0.012 -0.194 -0.262 0.175 0.180 0.180 0.191 0.580
w32 100 trad. -0.083 -0.072 -0.153 -0.230 -0.325 -0.351 0.321 0.349 0.445 0.521 0.575
rob. -0.131 -0.116 -0.116 -0.086 -0.319 -0.339 0.423 0.406 0.404 0.398 0.582
300 trad. -0.025 -0.026 -0.055 -0.200 -0.296 -0.338 0.177 0.199 0.291 0.477 0.568
rob. -0.032 -0.032 -0.027 -0.027 -0.284 -0.356 0.211 0.213 0.210 0.220 0.567
500 trad. -0.010 -0.015 -0.031 -0.150 -0.245 -0.281 0.139 0.149 0.239 0.419 0.541
rob. -0.013 -0.019 -0.010 -0.016 -0.243 -0.289 0.157 0.154 0.155 0.160 0.546
w33 100 trad. -0.049 -0.117 -0.157 -0.263 -0.312 -0.336 0.333 0.375 0.459 0.554 0.609
rob. -0.105 -0.125 -0.106 -0.132 -0.332 -0.314 0.421 0.432 0.427 0.432 0.620
300 trad. -0.020 -0.019 -0.070 -0.172 -0.311 0.191 0.213 0.321 0.482 0.575
rob. -0.026 -0.017 -0.036 -0.032 -0.293 -0.325 0.222 0.215 0.226 0.236 0.591
500 trad. -0.015 -0.012 -0.032 -0.133 -0.245 -0.262 0.146 0.158 0.230 0.450 0.572
rob. -0.022 -0.011 -0.005 -0.015 -0.244 -0.269 0.168 0.164 0.160 0.176 0.582
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Table 8.17: Results for traditional and robust PLSc for five common factors and
systematic outliers in all observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 0% 10% 20% 40% 50%
12 100 trad. 0.011 0.151 0.202 0.240 0.265 0.085 0.027 0.018 0.013 0.012
rob. 0.010 0.008 0.006 0.011 0.263 0.109 0.109 0.113 0.016 0.015
300 trad. 0.004 0.150 0.199 0.239 0.266 0.050 0.016 0.011 0.008 0.008
rob. 0.001 0.005 0.002 0.004 0.255 0.057 0.057 0.060 0.055 0.009
500 trad. 0.000 0.149 0.199 0.239 0.267 0.038 0.013 0.008 0.006 0.006
rob. 0.002 0.000 0.001 -0.001 0.243 0.042 0.043 0.046 0.075 0.006
Y32 100 trad. -0.030 0.139 0.370 0.634 0.750 0.161 0.531 0.512 0.474 0.412
rob. -0.054 -0.049 -0.052 -0.032 0.582 0.233 0.223 0.253 0.623 0.594
300 trad. -0.003 0.253 0.725 0.869 0.920 0.079 0.273 0.097 0.041 0.072
rob. -0.006 -0.013 -0.008 -0.014 0.874 0.092 0.093 0.093 0.223 0.071
500 trad. -0.003 0.292 0.784 0.872 0.920 0.062 0.108 0.055 0.039 0.036
rob. -0.006 -0.006 -0.006 -0.006 0.838 0.063 0.071 0.070 0.271 0.144
Ya1 100 trad. -0.028 0.113 0.174 0.312 0.369 0.231 0.415 0.563 0.956 1.352
rob. 0.025 -0.004 0.009 -0.012 0.350 0.319 0.319 0.334 1.172 1.552
300 trad. -0.008 0.116 0.191 0.271 0.333 0.132 0.219 0.289 0.463 0.606
rob. -0.015 -0.025 -0.016 -0.020 0.330 0.150 0.151 0.157 0.520 0.697
500 trad. -0.007 0.128 0.192 0.264 0.322 0.098 0.166 0.225 0.366 0.427
rob. -0.013 -0.002 -0.007 -0.012 0.259 0.108 0.110 0.115 0.365 0.470
Yaz 100 trad. 0.030 -0.400 -0.547 -0.761 -0.892 0.223 0.422 0.567 0.952 1.353
rob. -0.009 0.016 0.001 0.014 -0.855 0.304 0.307 0.321 1.165 1.539
300 trad. 0.009 -0.422 -0.584 -0.749 -0.879 0.131 0.217 0.288 0.466 0.606
rob. 0.020 0.027 0.017 0.025 -0.842 0.148 0.150 0.154 0.547 0.698
500 trad. 0.007 -0.437 -0.589 -0.745 -0.873 0.097 0.166 0.227 0.365 0.428
rob. 0.012 0.002 0.008 0.011 -0.755 0.105 0.109 0.113 0.428 0.469
51 100 trad. 0.028 -0.035 -0.011 0.031 0.041 0.233 0.452 0.626 1.201 3.452
rob. -0.004 0.017 0.004 -0.014 -0.101 0.322 0.308 0.314 1.351 2.543
300 trad. -0.004 -0.037 0.013 0.061 0.094 0.112 0.259 0.352 0.594 0.741
rob. -0.002 -0.003 -0.005 -0.000 0.046 0.143 0.133 0.150 0.668 0.829
500 trad. -0.009 -0.044 0.020 0.069 0.103 0.088 0.191 0.289 0.419 0.544
rob. -0.007 -0.014 -0.008 -0.008 0.095 0.100 0.101 0.106 0.457 0.605
V52 100 trad. -0.062 0.148 0.021 -0.152 -0.063 0.230 0.793 1.140 1.839 9.797
rob. -0.045 -0.057 -0.043 -0.027 0.131 0.318 0.303 0.317 1.746 2.832
300 trad. -0.017 0.115 -0.248 -0.555 -0.610 0.112 0.590 0.852 1.422 1.590
rob. -0.024 -0.020 -0.019 -0.027 -0.463 0.143 0.130 0.149 1.398 1.565
500 trad. -0.014 0.113 -0.294 -0.587 -0.754 0.084 0.512 0.849 1.227 1.365
rob. -0.013 -0.008 -0.014 -0.016 -0.663 0.098 0.098 0.105 1.198 1.461
V53 100 trad. -0.023 0.139 0.265 0.387 0.270 0.127 0.520 0.798 1.152 6.783
rob. -0.000 0.003 0.007 0.016 0.318 0.195 0.176 0.184 0.997 1.089
300 trad. -0.039 0.107 0.295 0.541 0.582 0.062 0.443 0.675 1.127 1.219
rob. -0.036 -0.036 -0.037 -0.036 0.477 0.070 0.072 0.073 1.052 1.240
500 trad. -0.046 0.106 0.288 0.567 0.725 0.048 0.422 0.691 1.047 1.117
rob. -0.042 -0.044 -0.043 -0.040 0.624 0.050 0.051 0.055 0.974 1.156
A11 100 trad. 0.002 0.078 0.105 0.126 0.135 0.061 0.026 0.018 0.015 0.015
rob. 0.016 0.015 0.015 0.018 0.142 0.076 0.078 0.076 0.020 0.020
300 trad. 0.001 0.076 0.104 0.125 0.134 0.037 0.016 0.011 0.008 0.008
rob. 0.002 0.002 0.002 0.002 0.131 0.043 0.042 0.043 0.029 0.009
500 trad. 0.001 0.075 0.104 0.125 0.134 0.029 0.012 0.008 0.006 0.006
rob. -0.000 -0.001 -0.001 0.001 0.124 0.030 0.033 0.035 0.038 0.007
A12 100 trad. -0.007 0.020 0.034 0.043 0.042 0.057 0.024 0.018 0.015 0.015
rob. -0.018 -0.017 -0.018 -0.013 0.051 0.069 0.070 0.065 0.019 0.020
300 trad. -0.000 0.022 0.034 0.042 0.042 0.037 0.015 0.010 0.008 0.008
rob. -0.002 -0.001 -0.002 -0.002 0.043 0.041 0.041 0.042 0.015 0.010
500 trad. -0.001 0.023 0.033 0.043 0.042 0.028 0.012 0.008 0.006 0.006
rob. -0.001 0.002 0.001 0.000 0.041 0.030 0.032 0.034 0.018 0.007
A21 100 trad. -0.005 0.260 0.362 0.444 0.490 0.102 0.048 0.032 0.023 0.022
rob. 0.000 -0.009 0.004 0.011 0.495 0.148 0.147 0.159 0.033 0.030
300 trad. -0.001 0.262 0.369 0.446 0.489 0.061 0.026 0.017 0.013 0.012
rob. -0.004 -0.005 -0.003 0.002 0.472 0.072 0.071 0.073 0.100 0.012
500 trad. -0.001 0.261 0.369 0.446 0.490 0.049 0.021 0.013 0.009 0.009
rob. -0.001 -0.004 -0.003 0.001 0.449 0.051 0.055 0.054 0.137 0.009
A2z 100 trad. 0.001 0.261 0.364 0.445 0.490 0.108 0.048 0.033 0.022 0.022
rob. 0.000 0.004 0.002 0.012 0.495 0.144 0.146 0.159 0.032 0.029
300 trad. -0.002 0.260 0.367 0.445 0.489 0.060 0.027 0.018 0.012 0.012
rob. -0.003 -0.002 0.001 -0.002 0.471 0.071 0.072 0.075 0.104 0.012
500 trad. 0.001 0.259 0.369 0.445 0.489 0.047 0.019 0.013 0.009 0.009
rob. -0.000 -0.002 -0.003 -0.003 0.448 0.052 0.053 0.056 0.140 0.009
A23 100 trad. -0.010 0.261 0.365 0.446 0.490 0.110 0.047 0.033 0.023 0.021
rob. -0.005 0.001 -0.009 0.012 0.496 0.151 0.147 0.160 0.032 0.030
300 trad. -0.002 0.263 0.369 0.445 0.490 0.062 0.027 0.017 0.012 0.011
rob. -0.002 -0.005 -0.001 -0.002 0.471 0.068 0.070 0.071 0.101 0.013
500 trad. -0.003 0.261 0.369 0.446 0.490 0.049 0.021 0.013 0.009 0.009
rob. -0.005 -0.001 -0.000 0.001 0.449 0.051 0.053 0.056 0.138 0.009
A24 100 trad. -0.008 0.181 0.237 0.279 0.307 0.085 0.040 0.028 0.020 0.020
rob. 0.000 0.002 0.000 0.004 0.312 0.122 0.113 0.123 0.028 0.028
300 trad. -0.003 0.181 0.230 0.277 0.305 0.050 0.023 0.015 0.011 0.011
rob. -0.002 -0.003 -0.002 0.001 0.294 0.057 0.059 0.058 0.067 0.012
500 trad. -0.003 0.181 0.230 0.278 0.305 0.039 0.017 0.012 0.009 0.008
rob. -0.003 -0.001 -0.000 -0.001 0.281 0.043 0.044 0.045 0.086 0.009
A2s 100 trad. -0.007 0.181 0.233 0.280 0.307 0.088 0.041 0.027 0.021 0.020
rob. 0.002 -0.001 -0.003 0.005 0.313 0.117 0.114 0.126 0.029 0.027
300 trad. -0.002 0.181 0.231 0.279 0.305 0.051 0.022 0.015 0.011 0.011
rob. -0.004 -0.003 -0.002 -0.005 0.294 0.058 0.057 0.060 0.066 0.012
500 trad. -0.001 0.181 0.230 0.278 0.305 0.037 0.017 0.012 0.008 0.008
rob. 0.001 -0.002 -0.005 -0.003 0.280 0.042 0.044 0.045 0.091 0.008
Az26 100 trad. -0.011 0.180 0.235 0.281 0.307 0.085 0.040 0.028 0.020 0.020
rob. -0.002 -0.001 -0.002 0.001 0.313 0.118 0.119 0.124 0.029 0.027
300 trad. -0.002 0.179 0.231 0.279 0.305 0.050 0.022 0.015 0.011 0.011
rob. -0.001 -0.004 -0.003 -0.006 0.294 0.058 0.056 0.061 0.065 0.011
500 trad. -0.002 0.180 0.229 0.278 0.305 0.039 0.017 0.011 0.008 0.008
rob. -0.002 -0.003 -0.004 -0.002 0.280 0.043 0.043 0.045 0.089 0.009
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0.230
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0.185
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0.148
0.077
0.132
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0.196
0.144
0.144
0.081

0.118
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0.087
0.091
0.051
0.074
0.037
0.139
0.090
0.091
0.050
0.074
0.037

0.494
0.354
0.088
0.203
0.055
0.157
0.217
0.284
0.061
0.154
0.049
0.120
0.241
0.240
0.056
0.121
0.044
0.095
0.252
0.230
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0.095
0.044
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0.065
0.095
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0.152
0.111
0.120
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0.233
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0.195
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0.153
0.213
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0.162
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0.237
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0.051
0.103
0.039
0.236
0.092
0.129
0.050
0.093
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0.465
0.642
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0.156
0.040
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0.193
0.250
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0.151
0.042
0.186
0.214
0.277
0.071
0.183
0.042
0.232
0.222
0.292
0.074
0.198
0.041
0.258
0.171
0.230
0.134
0.130
0.117
0.117
0.167

0.125
0.123
0.350
0.363
0.325
0.337
0.273
0.273
0.362
0.380
0.323
0.335
0.276
0.289
0.344
0.339
0.285
0.300
0.234
0.247
0.342
0.346
0.297
0.311
0.248
0.239
0.311
0.296
0.218
0.258
0.162
0.174
0.295
0.310
0.222
0.249
0.170
0.170
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Table 8.18: Results for traditional and robust PLSc for five common factors and
systematic outliers in two observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 10% 20% 40% 50%
12 100 trad. 0.004 0.061 0.088 0.096 0.069 0.059 0.087 0.096 0.107 0.120 0.119
rob. 0.002 0.011 0.013 0.045 0.041 0.039 0.112 0.115 0.115 0.150 0.143
300 trad. -0.000 0.077 0.121 0.142 0.117 0.109 0.050 0.061 0.071 0.095 0.101
rob. 0.003 0.006 0.012 0.043 0.107 0.092 0.059 0.058 0.062 0.100 0.108
500 trad. 0.001 0.077 0.130 0.158 0.143 0.126 0.039 0.049 0.056 0.084 0.094
rob. 0.000 0.005 0.013 0.038 0.133 0.122 0.042 0.044 0.047 0.088 0.097
Y32 100 trad. -0.025 -0.026 -0.032 -0.029 -0.023 -0.019 0.155 0.159 0.164 0.160 0.169
rob. -0.044 -0.042 -0.044 -0.028 -0.057 -0.060 0.241 0.251 0.238 0.248 0.242
300 trad. -0.007 -0.009 -0.007 -0.015 -0.010 -0.012 0.079 0.084 0.080 0.085 0.086
rob. -0.011 -0.009 -0.012 -0.008 -0.017 -0.014 0.095 0.094 0.094 0.098 0.097
500 trad. -0.007 -0.009 -0.003 -0.005 -0.008 -0.005 0.061 0.061 0.063 0.061 0.062
rob. -0.009 -0.005 -0.003 -0.004 -0.014 -0.004 0.067 0.069 0.074 0.070 0.068
Ya1 100 trad. -0.029 -0.140 -0.179 -0.217 -0.129 -0.063 0.241 0.386 0.460 0.427 0.415
rob. 0.024 -0.013 -0.014 -0.044 -0.040 -0.022 0.315 0.334 0.399 0.703 0.570
300 trad. -0.020 -0.165 -0.286 -0.384 -0.260 -0.191 0.130 0.281 0.361 0.434 0.416
rob. -0.018 -0.019 -0.028 -0.084 -0.209 -0.167 0.147 0.161 0.194 0.398 0.360
500 trad. -0.008 -0.150 -0.306 -0.409 -0.305 -0.224 0.096 0.245 0.315 0.353 0.374
rob. -0.011 -0.009 -0.030 -0.057 -0.294 -0.222 0.106 0.110 0.134 0.376 0.378
Yaz 100 trad. 0.038 0.120 0.154 0.192 0.121 0.067 0.233 0.365 0.430 0.403 0.390
rob. -0.015 0.020 0.026 0.033 0.060 0.030 0.306 0.311 0.379 0.682 0.541
300 trad. 0.022 0.138 0.245 0.344 0.237 0.173 0.132 0.268 0.345 0.413 0.398
rob. 0.017 0.018 0.027 0.070 0.188 0.151 0.146 0.163 0.188 0.376 0.337
500 trad. 0.008 0.124 0.268 0.363 0.276 0.206 0.097 0.234 0.301 0.340 0.357
rob. 0.011 0.010 0.028 0.051 0.265 0.203 0.106 0.110 0.132 0.359 0.362
51 100 trad. 0.018 0.178 0.261 0.301 0.211 0.200 0.229 0.414 0.545 0.486 0.492
rob. -0.005 0.024 0.034 0.096 0.086 0.049 0.339 0.317 0.477 0.596 0.709
300 trad. -0.007 0.177 0.380 0.522 0.417 0.388 0.113 0.333 0.420 0.511 0.518
rob. -0.010 -0.000 0.007 0.080 0.386 0.341 0.141 0.149 0.216 0.500 0.516
500 trad. -0.014 0.171 0.394 0.598 0.562 0.459 0.086 0.270 0.416 0.543 0.518
rob. -0.013 -0.005 0.007 0.056 0.510 0.469 0.095 0.107 0.139 0.512 0.571
V52 100 trad. -0.051 -0.195 -0.272 -0.318 -0.244 -0.228 0.229 0.394 0.524 0.464 0.468
rob. -0.044 -0.071 -0.072 -0.139 -0.130 -0.108 0.335 0.317 0.462 0.576 0.692
300 trad. -0.015 -0.181 -0.374 -0.519 -0.424 -0.397 0.112 0.324 0.408 0.496 0.506
rob. -0.017 -0.025 -0.028 -0.096 -0.396 -0.350 0.139 0.146 0.212 0.483 0.501
500 trad. -0.006 -0.173 -0.384 -0.587 -0.562 -0.466 0.085 0.261 0.407 0.533 0.506
rob. -0.011 -0.017 -0.027 -0.070 -0.510 -0.474 0.095 0.105 0.133 0.499 0.563
V53 100 trad. -0.018 -0.023 -0.032 -0.029 -0.027 -0.023 0.118 0.148 0.155 0.143 0.155
rob. 0.010 -0.003 -0.001 0.001 -0.006 -0.015 0.185 0.191 0.191 0.220 0.247
300 trad. -0.043 -0.040 -0.041 -0.052 -0.044 -0.039 0.062 0.082 0.093 0.096 0.094
rob. -0.037 -0.037 -0.039 -0.038 -0.049 -0.038 0.071 0.074 0.083 0.110 0.109
500 trad. -0.046 -0.048 -0.045 -0.047 -0.050 -0.049 0.047 0.061 0.076 0.081 0.073
rob. -0.049 -0.045 -0.043 -0.043 -0.050 -0.046 0.051 0.053 0.056 0.083 0.089
A11 100 trad. 0.008 -0.045 -0.062 -0.063 -0.044 -0.038 0.059 0.101 0.110 0.121 0.120
rob. 0.016 0.012 0.002 -0.020 -0.036 -0.036 0.080 0.082 0.104 0.141 0.140
300 trad. 0.001 -0.051 -0.078 -0.092 -0.077 -0.074 0.038 0.060 0.073 0.092 0.100
rob. 0.001 -0.001 -0.004 -0.013 -0.069 -0.059 0.042 0.043 0.049 0.104 0.105
500 trad. 0.001 -0.051 -0.082 -0.104 -0.099 -0.089 0.030 0.046 0.054 0.078 0.089
rob. 0.001 -0.002 -0.003 -0.011 -0.090 -0.084 0.032 0.033 0.036 0.083 0.091
A12 100 trad. -0.009 -0.168 -0.273 -0.414 -0.600 -0.660 0.054 0.118 0.136 0.163 0.167
rob. -0.017 -0.019 -0.023 -0.105 -0.561 -0.656 0.070 0.078 0.178 0.239 0.255
300 trad. -0.002 -0.171 -0.273 -0.412 -0.588 -0.643 0.036 0.069 0.082 0.080 0.088
rob. -0.001 -0.002 -0.004 -0.022 -0.580 -0.643 0.039 0.042 0.065 0.097 0.099
500 trad. -0.000 -0.172 -0.274 -0.408 -0.579 -0.642 0.027 0.053 0.061 0.066 0.066
rob. 0.001 -0.001 -0.004 -0.011 -0.574 -0.640 0.031 0.031 0.037 0.072 0.071
A1 100 trad. -0.007 0.017 -0.002 -0.050 -0.168 -0.207 0.106 0.120 0.141 0.164 0.172
rob. 0.001 0.011 0.018 0.042 -0.149 -0.224 0.150 0.147 0.159 0.229 0.245
300 trad. -0.005 0.019 0.015 -0.032 -0.139 -0.177 0.063 0.070 0.085 0.090 0.101
rob. -0.000 0.007 0.017 0.053 -0.136 -0.184 0.070 0.071 0.074 0.109 0.109
500 trad. -0.002 0.023 0.015 -0.023 -0.124 -0.172 0.047 0.051 0.063 0.075 0.078
rob. -0.001 0.009 0.020 0.057 -0.124 -0.172 0.054 0.055 0.055 0.083 0.085
A2z 100 trad. -0.004 -0.017 -0.023 -0.022 -0.014 -0.004 0.110 0.106 0.107 0.106 0.107
rob. 0.003 0.003 -0.007 0.003 -0.013 -0.005 0.149 0.150 0.144 0.153 0.151
300 trad. -0.000 -0.019 -0.024 -0.022 -0.015 -0.013 0.063 0.062 0.062 0.064 0.065
rob. 0.001 -0.001 -0.002 -0.004 -0.014 -0.014 0.069 0.073 0.072 0.070 0.071
500 trad. -0.001 -0.019 -0.024 -0.024 -0.019 -0.010 0.049 0.047 0.046 0.048 0.048
rob. -0.001 -0.001 0.001 -0.005 -0.017 -0.014 0.051 0.053 0.053 0.054 0.053
Az23 100 trad. 0.000 -0.009 -0.022 -0.016 -0.010 -0.014 0.107 0.109 0.106 0.110 0.112
rob. 0.002 0.000 -0.014 -0.010 -0.001 -0.002 0.147 0.156 0.151 0.150 0.145
300 trad. -0.003 -0.022 -0.026 -0.025 -0.015 -0.010 0.065 0.061 0.061 0.062 0.063
rob. -0.003 -0.004 -0.004 -0.007 -0.016 -0.016 0.071 0.071 0.073 0.071 0.074
500 trad. -0.002 -0.019 -0.024 -0.024 -0.017 -0.010 0.048 0.049 0.048 0.050 0.050
rob. -0.001 -0.002 -0.003 -0.004 -0.017 -0.016 0.051 0.052 0.055 0.054 0.055
A24 100 trad. -0.008 -0.032 -0.031 -0.030 -0.023 -0.018 0.086 0.091 0.090 0.093 0.089
rob. -0.005 -0.008 -0.014 -0.019 -0.015 -0.012 0.119 0.120 0.114 0.123 0.123
300 trad. -0.002 -0.025 -0.037 -0.036 -0.023 -0.020 0.050 0.050 0.052 0.053 0.054
rob. -0.005 -0.000 -0.007 -0.010 -0.028 -0.015 0.059 0.058 0.061 0.059 0.058
500 trad. -0.000 -0.028 -0.038 -0.039 -0.027 -0.021 0.039 0.038 0.040 0.041 0.042
rob. -0.002 -0.001 -0.003 -0.009 -0.025 -0.020 0.042 0.043 0.045 0.044 0.045
A2s 100 trad. -0.004 -0.027 -0.032 -0.028 -0.021 -0.012 0.083 0.090 0.087 0.088 0.089
rob. -0.012 -0.003 -0.005 -0.017 -0.019 -0.012 0.125 0.125 0.120 0.116 0.121
300 trad. -0.005 -0.029 -0.037 -0.038 -0.024 -0.017 0.052 0.052 0.052 0.051 0.055
rob. -0.003 -0.005 -0.002 -0.016 -0.025 -0.018 0.056 0.059 0.060 0.059 0.061
500 trad. -0.001 -0.023 -0.035 -0.038 -0.024 -0.017 0.039 0.040 0.040 0.040 0.043
rob. 0.001 -0.002 -0.005 -0.012 -0.025 -0.021 0.043 0.045 0.044 0.045 0.045
A26 100 trad. -0.012 -0.028 -0.032 -0.024 -0.022 -0.015 0.084 0.091 0.089 0.087 0.089
rob. -0.007 -0.012 -0.013 -0.017 -0.017 -0.015 0.120 0.123 0.120 0.124 0.129
300 trad. 0.001 -0.025 -0.038 -0.036 -0.025 -0.023 0.049 0.052 0.053 0.052 0.053
rob. -0.004 -0.006 -0.006 -0.013 -0.022 -0.018 0.056 0.058 0.063 0.060 0.060
500 trad. -0.002 -0.028 -0.038 -0.038 -0.025 -0.018 0.039 0.041 0.040 0.040 0.043
rob. 0.000 -0.001 -0.005 -0.008 -0.025 -0.019 0.043 0.044 0.043 0.046 0.044
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0.127
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0.118
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0.051
0.140
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0.079
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0.060
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0.134
0.185
0.080
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0.114
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0.076
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0.080
0.051
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0.044
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0.038
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0.278
0.330
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0.208
0.128
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0.236
0.295
0.139
0.154
0.103
0.117
0.182
0.250
0.102
0.122
0.079
0.087
0.169
0.230
0.083
0.094
0.064
0.072
0.095
0.130
0.057
0.062
0.043
0.048
0.094
0.116
0.060
0.068
0.048
0.050
0.139
0.182
0.079
0.089
0.062
0.068
0.137
0.187
0.076
0.088
0.061
0.071
0.115
0.155
0.068
0.078
0.054
0.061
0.114
0.152
0.069
0.079
0.054
0.058
0.070
0.091
0.044
0.050
0.037
0.037
0.070
0.094
0.045
0.049
0.035
0.037

0.295
0.339
0.177
0.198
0.134
0.153
0.245
0.287
0.141
0.163
0.102
0.120
0.197
0.233
0.109
0.124
0.080
0.091
0.169
0.215
0.084
0.100
0.067
0.077
0.090
0.122
0.056
0.063
0.043
0.051
0.095
0.128
0.061
0.067
0.048
0.048
0.139
0.180
0.080
0.095
0.062
0.070
0.140
0.180
0.079
0.094
0.064
0.072
0.115
0.153
0.071
0.080
0.054
0.062
0.124
0.157
0.072
0.082
0.052
0.063
0.072
0.093
0.044
0.051
0.035
0.040
0.071
0.091
0.044
0.052
0.036
0.039

0.281
0.345
0.164
0.199
0.137
0.144
0.226
0.295
0.135
0.153
0.110
0.113
0.187
0.253
0.103
0.116
0.081
0.083
0.160
0.234
0.081
0.094
0.067
0.072
0.097
0.123
0.055
0.063
0.045
0.047
0.098
0.117
0.059
0.067
0.047
0.052
0.142
0.182
0.079
0.090
0.057
0.067
0.134
0.189
0.078
0.086
0.060
0.066
0.113
0.161
0.071
0.081
0.052
0.055
0.117
0.153
0.070
0.081
0.056
0.059
0.072
0.093
0.043
0.049
0.036
0.038
0.070
0.089
0.043
0.050
0.034
0.038

0.271
0.335
0.168
0.191
0.128
0.144
0.242
0.293
0.132
0.153
0.109
0.116
0.189
0.248
0.098
0.110
0.078
0.087
0.181
0.231
0.080
0.094
0.065
0.072
0.093
0.121
0.056
0.065
0.043
0.047
0.093
0.115
0.059
0.068
0.047
0.052
0.135
0.179
0.083
0.094
0.060
0.067
0.136
0.189
0.080
0.092
0.062
0.068
0.115
0.151
0.067
0.076
0.054
0.061
0.117
0.153
0.068
0.075
0.054
0.057
0.071
0.093
0.043
0.049
0.034
0.039
0.070
0.089
0.043
0.049
0.035
0.037
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Table 8.19: Results for the model with five composites and systematic outlier in all
observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 40%
12 100 trad. 0.007 0.182 0.219 0.242 0.250 0.248 0.050 0.018 0.012 0.009 0.007
rob. 0.013 0.008 0.009 0.015 0.253 0.250 0.073 0.074 0.071 0.075 0.011
300 trad. 0.003 0.181 0.219 0.243 0.250 0.248 0.029 0.010 0.007 0.005 0.004
rob. 0.004 0.002 0.002 0.003 0.253 0.251 0.034 0.033 0.035 0.036 0.021
500 trad. 0.002 0.181 0.219 0.242 0.250 0.248 0.023 0.008 0.006 0.004 0.003
rob. 0.002 0.001 0.001 0.002 0.247 0.250 0.026 0.027 0.026 0.026 0.040
Y32 100 trad. -0.066 0.324 0.592 0.753 0.841 0.857 0.144 0.391 0.297 0.196 0.122
rob. -0.113 -0.116 -0.104 -0.100 0.804 0.845 0.238 0.230 0.233 0.248 0.314
300 trad. -0.023 0.459 0.644 0.768 0.841 0.852 0.066 0.168 0.049 0.019 0.013
rob. -0.031 -0.031 -0.030 -0.029 0.841 0.859 0.080 0.077 0.078 0.082 0.070
500 trad. -0.012 0.479 0.641 0.766 0.840 0.851 0.048 0.091 0.022 0.015 0.010
rob. -0.015 -0.015 -0.021 -0.018 0.820 0.856 0.053 0.053 0.058 0.057 0.145
Ya1 100 trad. 0.001 -0.493 -0.603 -0.615 -0.406 -0.300 0.104 0.205 0.265 0.343 0.378
rob. 0.005 0.001 0.006 -0.021 -0.437 -0.358 0.159 0.155 0.147 0.167 0.575
300 trad. -0.001 -0.519 -0.673 -0.700 -0.474 -0.362 0.059 0.112 0.143 0.183 0.213
rob. -0.001 -0.002 -0.004 -0.001 -0.571 -0.401 0.066 0.069 0.067 0.072 0.284
500 trad. 0.001 -0.524 -0.679 -0.722 -0.508 -0.374 0.044 0.086 0.111 0.135 0.163
rob. 0.001 -0.000 -0.001 -0.003 -0.589 -0.406 0.047 0.048 0.051 0.053 0.211
Ya2 100 trad. 0.007 0.170 0.186 0.121 -0.156 -0.283 0.087 0.199 0.270 0.356 0.401
rob. 0.010 0.011 0.005 0.024 -0.117 -0.227 0.137 0.133 0.133 0.137 0.618
300 trad. 0.004 0.187 0.246 0.195 -0.094 -0.231 0.051 0.107 0.140 0.184 0.222
rob. 0.006 0.006 0.006 0.003 0.013 -0.194 0.058 0.059 0.059 0.062 0.297
500 trad. 0.001 0.187 0.250 0.213 -0.068 -0.224 0.038 0.080 0.110 0.135 0.169
rob. 0.001 0.001 0.003 0.004 0.033 -0.192 0.040 0.042 0.045 0.046 0.198
51 100 trad. -0.072 0.161 0.136 0.055 -0.088 -0.098 0.111 0.243 0.309 0.363 0.365
rob. -0.123 -0.120 -0.121 -0.101 -0.045 -0.088 0.175 0.173 0.177 0.175 0.545
300 trad. -0.032 0.287 0.322 0.210 -0.009 -0.073 0.065 0.124 0.185 0.253 0.247
rob. -0.037 -0.045 -0.045 -0.042 0.041 -0.061 0.074 0.073 0.074 0.076 0.319
500 trad. -0.030 0.312 0.385 0.311 0.033 -0.051 0.047 0.092 0.122 0.186 0.211
rob. -0.032 -0.032 -0.030 -0.033 0.081 -0.042 0.052 0.053 0.053 0.057 0.254
v52 100 trad. 0.024 -0.069 0.025 0.154 0.413 0.452 0.105 0.286 0.408 0.482 0.481
rob. 0.051 0.050 0.062 0.048 0.354 0.444 0.178 0.173 0.180 0.182 0.701
300 trad. 0.002 -0.198 -0.214 -0.049 0.282 0.389 0.057 0.121 0.208 0.345 0.361
rob. 0.004 0.012 0.014 0.011 0.224 0.387 0.066 0.065 0.068 0.066 0.426
500 trad. 0.005 -0.220 -0.281 -0.185 0.211 0.344 0.041 0.086 0.126 0.232 0.327
rob. 0.006 0.006 0.006 0.005 0.153 0.350 0.046 0.048 0.049 0.052 0.376
V53 100 trad. -0.061 -0.191 -0.225 -0.209 -0.232 -0.249 0.110 0.194 0.197 0.223 0.241
rob. -0.073 -0.084 -0.077 -0.079 -0.227 -0.239 0.186 0.191 0.195 0.180 0.373
300 trad. -0.052 -0.155 -0.137 -0.151 -0.205 -0.228 0.046 0.123 0.119 0.144 0.157
rob. -0.051 -0.051 -0.049 -0.048 -0.208 -0.231 0.056 0.052 0.059 0.058 0.171
500 trad. -0.049 -0.143 -0.118 -0.108 -0.178 -0.213 0.034 0.089 0.087 0.111 0.132
rob. -0.050 -0.050 -0.048 -0.050 -0.176 -0.222 0.038 0.038 0.040 0.042 0.143
w11 100 trad. -0.000 -0.316 -0.386 -0.429 -0.459 -0.464 0.114 0.075 0.067 0.061 0.065
rob. -0.006 -0.002 -0.007 -0.013 -0.459 -0.470 0.155 0.170 0.158 0.162 0.108
300 trad. 0.000 -0.318 -0.384 -0.430 -0.457 -0.462 0.066 0.041 0.034 0.032 0.032
rob. 0.001 -0.006 0.000 -0.002 -0.454 -0.465 0.077 0.076 0.074 0.074 0.047 0.036
500 trad. 0.000 -0.315 -0.383 -0.430 -0.455 -0.459 0.049 0.032 0.027 0.024 0.023 0.024
rob. 0.001 -0.001 -0.001 -0.003 -0.442 -0.461 0.053 0.055 0.055 0.057 0.082 0.026
w1z 100 trad. -0.005 -0.317 -0.385 -0.432 -0.454 -0.458 0.116 0.074 0.066 0.060 0.065 0.064
rob. -0.013 -0.010 -0.015 -0.022 -0.460 -0.461 0.165 0.172 0.155 0.158 0.108 0.116
300 trad. -0.001 -0.315 -0.385 -0.430 -0.455 -0.458 0.065 0.041 0.034 0.032 0.032 0.031
rob. 0.000 -0.002 -0.006 -0.000 -0.454 -0.460 0.075 0.075 0.073 0.077 0.053 0.037
500 trad. -0.002 -0.317 -0.383 -0.430 -0.457 -0.461 0.050 0.032 0.027 0.025 0.024 0.024
rob. -0.003 -0.003 -0.001 -0.004 -0.445 -0.462 0.054 0.057 0.054 0.060 0.079 0.026
wa1 100 trad. -0.002 -0.035 -0.039 -0.033 -0.031 -0.026 0.071 0.077 0.080 0.081 0.088 0.088
rob. -0.001 -0.005 -0.006 -0.001 -0.031 -0.032 0.116 0.118 0.118 0.108 0.144 0.146
300 trad. 0.001 -0.036 -0.038 -0.035 -0.028 -0.025 0.042 0.041 0.040 0.044 0.045 0.044
rob. 0.001 -0.002 0.001 -0.001 -0.032 -0.026 0.048 0.046 0.047 0.048 0.050 0.050
500 trad. -0.000 -0.038 -0.038 -0.037 -0.028 -0.026 0.030 0.031 0.032 0.033 0.034 0.033
rob. -0.000 -0.001 0.000 -0.000 -0.029 -0.028 0.032 0.034 0.036 0.036 0.038 0.036
wa3 100 trad. -0.005 -0.094 -0.120 -0.157 -0.177 -0.182 0.076 0.076 0.075 0.077 0.086 0.090
rob. -0.010 -0.017 -0.011 -0.009 -0.174 -0.178 0.120 0.118 0.115 0.110 0.143 0.148
300 trad. -0.001 -0.086 -0.120 -0.151 -0.179 -0.185 0.040 0.039 0.041 0.041 0.043 0.044
rob. -0.002 -0.002 -0.004 -0.003 -0.173 -0.185 0.046 0.047 0.046 0.048 0.053 0.050
500 trad. 0.000 -0.086 -0.119 -0.149 -0.175 -0.185 0.032 0.031 0.031 0.031 0.033 0.033
rob. 0.000 -0.001 -0.001 -0.001 -0.168 -0.185 0.034 0.036 0.035 0.037 0.044 0.036
wa3 100 trad. -0.003 -0.088 -0.121 -0.153 -0.177 -0.186 0.076 0.075 0.078 0.080 0.085 0.084
rob. -0.006 -0.005 -0.007 -0.011 -0.179 -0.187 0.118 0.118 0.119 0.111 0.142 0.149
300 trad. -0.003 -0.086 -0.120 -0.149 -0.174 -0.185 0.040 0.039 0.040 0.042 0.042 0.044
rob. -0.003 0.000 -0.002 -0.001 -0.169 -0.184 0.046 0.047 0.048 0.049 0.050 0.051
500 trad. -0.001 -0.087 -0.120 -0.147 -0.177 -0.185 0.030 0.030 0.031 0.030 0.032 0.034
rob. -0.000 -0.002 -0.001 -0.002 -0.169 -0.184 0.034 0.034 0.034 0.035 0.045 0.037
wag 100 trad. -0.001 -0.064 -0.094 -0.110 -0.122 -0.123 0.078 0.084 0.085 0.088 0.088 0.087
rob. -0.005 0.003 -0.009 -0.006 -0.123 -0.125 0.127 0.123 0.123 0.122 0.151 0.149
300 trad. -0.001 -0.064 -0.087 -0.107 -0.121 -0.121 0.042 0.041 0.043 0.044 0.048 0.047
rob. -0.001 -0.000 -0.001 -0.001 -0.120 -0.121 0.049 0.048 0.049 0.051 0.055 0.053
500 trad. -0.001 -0.064 -0.089 -0.108 -0.122 -0.123 0.032 0.033 0.033 0.034 0.035 0.035
rob. -0.001 -0.001 -0.001 -0.001 -0.116 -0.123 0.036 0.037 0.037 0.039 0.044 0.038
was 100 trad. -0.004 -0.040 -0.042 -0.047 -0.041 -0.044 0.078 0.086 0.083 0.087 0.086 0.092
rob. -0.011 -0.001 -0.003 -0.008 -0.048 -0.045 0.126 0.128 0.129 0.117 0.139 0.153
300 trad. -0.002 -0.038 -0.046 -0.048 -0.042 -0.039 0.043 0.042 0.044 0.043 0.046 0.047
rob. -0.002 -0.001 -0.001 0.001 -0.042 -0.040 0.050 0.050 0.052 0.050 0.053 0.052
500 trad. -0.001 -0.036 -0.044 -0.047 -0.043 -0.038 0.033 0.033 0.033 0.034 0.035 0.036
rob. -0.001 0.002 -0.001 -0.001 -0.044 -0.038 0.036 0.036 0.037 0.037 0.038 0.039
wae 100 trad. -0.099 -0.112 -0.103 -0.082 -0.066 -0.054 0.076 0.079 0.083 0.089 0.094 0.093
rob. -0.097 -0.112 -0.097 -0.100 -0.070 -0.061 0.124 0.123 0.122 0.114 0.149 0.152
300 trad. -0.100 -0.113 -0.101 -0.086 -0.066 -0.056 0.040 0.045 0.046 0.046 0.048 0.046
rob. -0.099 -0.102 -0.097 -0.099 -0.072 -0.059 0.045 0.052 0.049 0.048 0.056 0.053
500 trad. -0.098 -0.112 -0.100 -0.086 -0.064 -0.053 0.031 0.031 0.034 0.035 0.037 0.035
rob. -0.098 -0.101 -0.099 -0.098 -0.072 -0.056 0.034 0.034 0.037 0.037 0.041 0.038
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0.796
-0.017
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0.001
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-0.205
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-0.017
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0.000
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-0.008
-0.032
-0.004
-0.071
-0.023
-0.037
-0.006
-0.015
-0.008
-0.047
-0.016
-0.013
-0.002
-0.009

0.001

0.759
-0.059

0.801
-0.015

0.802
-0.003
-0.299
-0.111
-0.294
-0.012
-0.292
-0.023
-0.563
-0.225
-0.561
-0.046
-0.558
-0.027
-0.362
-0.092
-0.363
-0.039
-0.364
-0.008
-0.121
-0.009
-0.036
-0.000
-0.024
-0.003
-0.053
-0.006
-0.019
-0.004
-0.008
-0.000
-0.091
-0.016
-0.074
-0.002
-0.043
-0.005
-0.225
-0.068
-0.135
-0.009
-0.074
-0.005
-0.211
-0.058
-0.130
-0.009
-0.079
-0.004
-0.164
-0.032
-0.101
-0.010
-0.063

0.001
-0.091
-0.021
-0.067
-0.010
-0.033
-0.003
-0.040
-0.003
-0.011

0.001
-0.032
-0.007

0.782

0.719

0.799

0.794

0.800

0.778
-0.293
-0.296
-0.296
-0.295
-0.299
-0.293
-0.540
-0.529
-0.542
-0.539
-0.543
-0.531
-0.343
-0.337
-0.344
-0.344
-0.340
-0.331
-0.217
-0.286
-0.080
-0.108
-0.049
-0.054
-0.077
-0.076
-0.068
-0.061
-0.048
-0.046
-0.098
-0.119
-0.102
-0.104
-0.098
-0.084
-0.279
-0.281
-0.224
-0.235
-0.181
-0.186
-0.252
-0.237
-0.191
-0.201
-0.158
-0.167
-0.196
-0.219
-0.173
-0.163
-0.124
-0.134
-0.138
-0.100
-0.106
-0.102
-0.097
-0.090
-0.071
-0.046
-0.049
-0.052
-0.058
-0.051

0.790
0.754
0.798
0.798
0.800
0.799
-0.298
-0.296
-0.296
-0.296
-0.298
-0.299
-0.536
-0.528
-0.534
-0.532
-0.536
-0.535

-0.337
-0.333
-0.332
-0.251
-0.258
-0.151
-0.160
-0.080
-0.104
-0.071
-0.101
-0.047
-0.063
-0.055
-0.047
-0.102
-0.084
-0.082
-0.113
-0.097
-0.102
-0.289
-0.282
-0.237
-0.238
-0.208
-0.226
-0.273
-0.269
-0.210
-0.215
-0.185
-0.189
-0.172
-0.184
-0.206
-0.227
-0.163
-0.178
-0.132
-0.138
-0.123
-0.127
-0.104
-0.099
-0.050
-0.062
-0.063
-0.040
-0.065
-0.067

0.346
0.437
0.195
0.225
0.148
0.163
0.430
0.569
0.240
0.279
0.181
0.200
0.525
0.695
0.279
0.330
0.210
0.235
0.597
0.782
0.336
0.389
0.249
0.277
0.093
0.135
0.053
0.061
0.039
0.042
0.111
0.157
0.065
0.075
0.047
0.051
0.172
0.271
0.098
0.110
0.074
0.083
0.167
0.254
0.089
0.102
0.067
0.074
0.179
0.261
0.091
0.107
0.069
0.075
0.161
0.251
0.090
0.105
0.067
0.073
0.172
0.269
0.092
0.108
0.071
0.077
0.172
0.256
0.094
0.108
0.072
0.078

0.413
0.444
0.063
0.228
0.010
0.171
0.172
0.547
0.092
0.273
0.074
0.205
0.228
0.672
0.116
0.320
0.089
0.245
0.245
0.772
0.125
0.405
0.098
0.295
0.297
0.135
0.147
0.060
0.124
0.048
0.344
0.163
0.183
0.072
0.145
0.058
0.404
0.262
0.271
0.106
0.204
0.082
0.383
0.248
0.250
0.104
0.202
0.076
0.388
0.257
0.249
0.107
0.200
0.078
0.367
0.248
0.246
0.096
0.192
0.073
0.398
0.254
0.259
0.106
0.209
0.078
0.390
0.255
0.268
0.107
0.199
0.077

0.238
0.454
0.009
0.236
0.007
0.173
0.123
0.514
0.065
0.293
0.051
0.220
0.157
0.677
0.081
0.340
0.064
0.263
0.174
0.775
0.089
0.386
0.071
0.310
0.408
0.135
0.227
0.064
0.172
0.049
0.436
0.163
0.266
0.076
0.206
0.059
0.435
0.268
0.372
0.114
0.302
0.084
0.408
0.245
0.339
0.112
0.282
0.081
0.421
0.232
0.338
0.112
0.281
0.080
0.421
0.244
0.332
0.106
0.271
0.081
0.417
0.252
0.345
0.113
0.289
0.086
0.409
0.253
0.340
0.109
0.283
0.081

0.136
0.344
0.007
0.068
0.005
0.133
0.094
0.149
0.051
0.068
0.039
0.067
0.118
0.185
0.061
0.078
0.046
0.116
0.128
0.199
0.071
0.090
0.053
0.104
0.523
0.587
0.353
0.394
0.286
0.297
0.544
0.596
0.414
0.434
0.343
0.344
0.459
0.465
0.421
0.428
0.405
0.404
0.450
0.472
0.416
0.419
0.390
0.387
0.459
0.474
0.423
0.428
0.382
0.387
0.437
0.464
0.386
0.388
0.367
0.372
0.451
0.472
0.416
0.424
0.388
0.389
0.440
0.479
0.417
0.427
0.386
0.378

0.064
0.238
0.006
0.007
0.004
0.005
0.093
0.141
0.049
0.055
0.038
0.041
0.113
0.177
0.059
0.064
0.045
0.048
0.126
0.194
0.067
0.074
0.052
0.056
0.557
0.575
0.445
0.457
0.345
0.377
0.552
0.588
0.454
0.489
0.400
0.419
0.469
0.492
0.427
0.434
0.417
0.424
0.448
0.467
0.420
0.436
0.402
0.411
0.435
0.467
0.424
0.422
0.402
0.410
0.440
0.445
0.405
0.412
0.395
0.411
0.450
0.472
0.440
0.448
0.400
0.401
0.446
0.471
0.434
0.438
0.421
0.424
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Table 8.20: Results for the model with five composites and systematic outliers in two
observed variables

Mean Value Standard Deviation
Par. n Appr.
0% 5% 10% 20% 40% 50% 0% 5% 10% 20% 40% 50%
12 100 trad. 0.006 -0.030 -0.042 -0.046 -0.059 -0.058 0.050 0.056 0.059 0.058 0.060 0.060
rob. 0.010 0.012 0.004 -0.017 -0.050 -0.049 0.073 0.072 0.074 0.080 0.087 0.088
300 trad. 0.002 -0.035 -0.047 -0.058 -0.064 -0.066 0.030 0.032 0.034 0.035 0.034 0.034
rob. 0.002 0.003 0.001 -0.009 -0.064 -0.066 0.034 0.032 0.035 0.040 0.040 0.040
500 trad. 0.001 -0.037 -0.049 -0.059 -0.066 -0.068 0.022 0.024 0.027 0.026 0.027 0.026
rob. 0.001 -0.000 -0.001 -0.006 -0.066 -0.067 0.024 0.024 0.027 0.028 0.029 0.029
Y32 100 trad. -0.072 -0.069 -0.077 -0.068 -0.074 -0.078 0.138 0.138 0.141 0.142 0.144 0.137
rob. -0.108 -0.108 -0.122 -0.105 -0.114 -0.137 0.236 0.231 0.232 0.240 0.244 0.230
300 trad. -0.023 -0.020 -0.021 -0.019 -0.017 -0.020 0.064 0.064 0.065 0.065 0.065 0.067
rob. -0.029 -0.028 -0.030 -0.030 -0.024 -0.028 0.075 0.078 0.081 0.080 0.078 0.077
500 trad. -0.010 -0.014 -0.010 -0.013 -0.012 -0.012 0.047 0.049 0.047 0.048 0.049 0.048
rob. -0.012 -0.017 -0.014 -0.019 -0.014 -0.015 0.052 0.055 0.055 0.056 0.054 0.052
Ya1 100 trad. -0.007 0.089 0.113 0.121 0.145 0.143 0.102 0.101 0.096 0.100 0.103 0.101
rob. -0.008 0.005 0.009 0.067 0.141 0.133 0.156 0.156 0.147 0.155 0.153 0.152
300 trad. -0.000 0.090 0.118 0.135 0.148 0.153 0.059 0.060 0.058 0.058 0.058 0.056
rob. -0.000 -0.002 0.011 0.031 0.147 0.150 0.067 0.067 0.066 0.077 0.067 0.064
500 trad. 0.001 0.092 0.121 0.137 0.149 0.152 0.046 0.047 0.045 0.043 0.045 0.043
rob. -0.000 0.004 0.012 0.030 0.147 0.150 0.051 0.052 0.052 0.054 0.049 0.048
Ya2 100 trad. 0.013 -0.085 -0.112 -0.123 -0.148 -0.147 0.090 0.093 0.085 0.093 0.094 0.092
rob. 0.020 0.010 0.004 -0.055 -0.138 -0.133 0.134 0.140 0.132 0.142 0.138 0.138
300 trad. 0.003 -0.097 -0.122 -0.145 -0.158 -0.163 0.050 0.054 0.052 0.053 0.053 0.053
rob. 0.004 0.002 -0.006 -0.029 -0.157 -0.160 0.057 0.060 0.058 0.070 0.062 0.060
500 trad. 0.001 -0.097 -0.125 -0.146 -0.159 -0.163 0.040 0.043 0.041 0.041 0.039 0.040
rob. 0.003 -0.003 -0.006 -0.025 -0.158 -0.161 0.044 0.045 0.045 0.051 0.044 0.044
51 100 trad. -0.074 -0.150 -0.179 -0.186 -0.201 -0.217 0.112 0.113 0.110 0.116 0.109 0.108
rob. -0.124 -0.126 -0.140 -0.173 -0.238 -0.244 0.172 0.176 0.173 0.184 0.174 0.174
300 trad. -0.037 -0.125 -0.151 -0.168 -0.181 -0.186 0.063 0.063 0.063 0.063 0.062 0.059
rob. -0.042 -0.045 -0.052 -0.075 -0.183 -0.189 0.073 0.075 0.076 0.081 0.074 0.071
500 trad. -0.030 -0.120 -0.147 -0.164 -0.178 -0.177 0.049 0.049 0.049 0.047 0.047 0.046
rob. -0.033 -0.036 -0.043 -0.063 -0.178 -0.178 0.053 0.054 0.055 0.058 0.052 0.051
v52 100 trad. 0.027 0.113 0.141 0.152 0.165 0.182 0.103 0.106 0.105 0.105 0.105 0.107
rob. 0.058 0.056 0.073 0.118 0.174 0.188 0.180 0.172 0.170 0.189 0.179 0.179
300 trad. 0.010 0.105 0.129 0.151 0.166 0.170 0.057 0.057 0.057 0.056 0.059 0.057
rob. 0.013 0.017 0.018 0.043 0.165 0.170 0.066 0.066 0.070 0.074 0.068 0.067
500 trad. 0.006 0.102 0.129 0.148 0.165 0.165 0.044 0.044 0.045 0.043 0.043 0.042
rob. 0.008 0.009 0.014 0.033 0.165 0.164 0.047 0.048 0.050 0.052 0.047 0.046
V53 100 trad. -0.058 -0.049 -0.056 -0.050 -0.054 -0.047 0.106 0.107 0.111 0.114 0.108 0.105
rob. -0.061 -0.074 -0.081 -0.068 -0.062 -0.060 0.182 0.198 0.191 0.197 0.198 0.208
300 trad. -0.048 -0.048 -0.045 -0.044 -0.044 -0.046 0.047 0.047 0.046 0.048 0.049 0.048
rob. -0.048 -0.049 -0.048 -0.047 -0.045 -0.045 0.057 0.055 0.056 0.057 0.058 0.058
500 trad. -0.047 -0.046 -0.047 -0.048 -0.048 -0.048 0.035 0.035 0.037 0.037 0.036 0.036
rob. -0.046 -0.047 -0.048 -0.049 -0.047 -0.048 0.039 0.039 0.041 0.042 0.040 0.041
w11 100 trad. -0.008 -0.001 -0.012 -0.005 -0.004 -0.005 0.113 0.115 0.117 0.116 0.120 0.116
rob. -0.017 -0.007 -0.018 -0.012 -0.012 -0.009 0.164 0.162 0.159 0.161 0.172 0.169
300 trad. 0.001 -0.002 -0.002 -0.001 -0.000 -0.005 0.065 0.066 0.067 0.067 0.067 0.065
rob. 0.000 -0.003 -0.001 -0.003 0.002 -0.002 0.074 0.076 0.075 0.076 0.077 0.075
500 trad. -0.001 -0.001 -0.001 0.000 0.002 -0.001 0.051 0.053 0.051 0.050 0.051 0.054
rob. -0.001 -0.001 -0.002 -0.003 0.002 -0.001 0.056 0.056 0.059 0.056 0.055 0.059
w1z 100 trad. -0.004 -0.009 -0.009 -0.005 -0.007 -0.011 0.116 0.114 0.113 0.117 0.117 0.118
rob. -0.015 -0.013 -0.013 -0.022 -0.024 -0.012 0.167 0.159 0.156 0.167 0.173 0.169
300 trad. -0.003 0.003 0.000 0.002 -0.004 0.001 0.062 0.064 0.066 0.065 0.067 0.065
rob. -0.003 0.002 -0.001 -0.001 -0.005 -0.001 0.071 0.072 0.072 0.074 0.076 0.074
500 trad. -0.003 0.002 0.002 -0.000 -0.002 -0.001 0.052 0.049 0.052 0.052 0.052 0.052
rob. -0.002 0.003 -0.000 -0.004 -0.002 -0.002 0.058 0.055 0.057 0.060 0.057 0.057
wa1 100 trad. -0.006 -0.159 -0.210 -0.266 -0.282 -0.257 0.076 0.092 0.113 0.132 0.160 0.158
rob. -0.004 -0.016 -0.029 -0.176 -0.289 -0.267 0.118 0.117 0.134 0.210 0.265 0.256
300 trad. 0.000 -0.152 -0.215 -0.264 -0.271 -0.272 0.040 0.053 0.062 0.073 0.079 0.088
rob. 0.001 -0.008 -0.022 -0.062 -0.273 -0.273 0.047 0.051 0.054 0.081 0.095 0.101
500 trad. -0.002 -0.152 -0.213 -0.259 -0.276 -0.263 0.032 0.046 0.056 0.064 0.066
rob. -0.001 -0.008 -0.019 -0.051 -0.277 -0.265 0.035 0.039 0.055 0.070 0.072
waz 100 trad. -0.005 -0.094 -0.128 -0.150 -0.205 -0.247 0.074 0.116 0.131 0.163 0.163
rob. -0.008 -0.007 -0.014 -0.085 -0.199 -0.249 0.119 0.119 0.189 0.263 0.271
300 trad. -0.001 -0.092 -0.123 -0.151 -0.212 -0.233 0.040 0.060 0.072 0.081 0.087
rob. -0.002 -0.002 -0.011 -0.030 -0.207 -0.235 0.046 0.049 0.065 0.096 0.103
500 trad. -0.001 -0.094 -0.125 -0.154 -0.207 -0.241 0.031 0.048 0.057 0.064 0.065
rob. -0.001 -0.006 -0.011 -0.029 -0.204 -0.241 0.034 0.037 0.042 0.071 0.071
wa3 100 trad. 0.000 0.063 0.078 0.088 0.096 0.098 0.076 0.088 0.091 0.090 0.095
rob. -0.009 0.002 -0.001 0.044 0.089 0.090 0.118 0.115 0.134 0.142 0.144
300 trad. 0.000 0.062 0.083 0.098 0.104 0.108 0.040 0.048 0.048 0.051 0.049
rob. -0.000 -0.000 0.004 0.019 0.103 0.107 0.047 0.047 0.049 0.057 0.058 0.057
500 trad. 0.001 0.064 0.086 0.098 0.107 0.107 0.031 0.035 0.037 0.037 0.038 0.039
rob. 0.000 0.002 0.005 0.014 0.107 0.108 0.034 0.035 0.035 0.039 0.041 0.044
wag 100 trad. -0.003 0.057 0.078 0.103 0.102 0.110 0.078 0.090 0.092 0.094 0.099 0.100
rob. -0.009 -0.007 0.005 0.059 0.087 0.102 0.124 0.123 0.123 0.148 0.156 0.155
300 trad. 0.000 0.064 0.084 0.099 0.116 0.115 0.042 0.047 0.052 0.053 0.054 0.055
rob. 0.000 0.001 0.006 0.016 0.115 0.116 0.048 0.047 0.048 0.059 0.062 0.063
500 trad. -0.002 0.067 0.083 0.101 0.112 0.117 0.033 0.037 0.038 0.041 0.042 0.042
rob. -0.002 0.003 0.004 0.015 0.112 0.116 0.036 0.035 0.036 0.041 0.046 0.045
was 100 trad. 0.000 0.053 0.070 0.081 0.100 0.098 0.078 0.092 0.093 0.099 0.103 0.102
rob. -0.003 -0.007 0.005 0.040 0.094 0.088 0.127 0.119 0.123 0.146 0.157 0.158
300 trad. -0.001 0.058 0.075 0.089 0.100 0.100 0.041 0.047 0.048 0.055 0.056 0.054
rob. -0.001 0.002 0.004 0.016 0.100 0.098 0.048 0.047 0.050 0.060 0.065 0.063
500 trad. 0.001 0.054 0.077 0.089 0.101 0.103 0.031 0.039 0.040 0.040 0.043 0.042
rob. 0.001 0.000 0.006 0.014 0.100 0.103 0.034 0.037 0.038 0.041 0.046 0.047
wae 100 trad. -0.103 -0.053 -0.034 -0.029 -0.013 -0.011 0.080 0.092 0.093 0.098 0.100 0.100
rob. -0.102 -0.103 -0.098 -0.063 -0.019 -0.013 0.124 0.125 0.128 0.147 0.166 0.162
300 trad. -0.100 -0.052 -0.034 -0.019 -0.015 -0.011 0.043 0.049 0.052 0.056 0.053 0.056
rob. -0.100 -0.099 -0.096 -0.083 -0.016 -0.011 0.050 0.049 0.050 0.056 0.062 0.067
500 trad. -0.101 -0.051 -0.035 -0.021 -0.013 -0.012 0.031 0.038 0.041 0.040 0.043 0.043
rob. -0.101 -0.099 -0.097 -0.088 -0.014 -0.013 0.035 0.036 0.037 0.040 0.046 0.048
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8.2.4 Inadmissible solutions

Table 8.21 - 8.28 show the share of inadmissible solutions for the different simulation

conditions.

Unsystematic Outliers

Table 8.21: Inadmissible solutions with unsystematic outliers in all observed variables
for three common factors/ three composites

Share of inadmissible solutions

Construct types/ Estimator n Appr.
0% 5% 10% 20% 40% 50%
common factors/ PLSc 100 trad. 0.349 0.934 0.960 0.964 0.962 0.960
rob. 0.508 0.504 0.492 0.484 0.501 0.943
common factors/ PLSc 300 trad. 0.074 0.811 0.900 0.938 0.950 0.950
rob. 0.126 0.141 0.142 0.144 0.196 0.738
common factors/ PLSc 500 trad. 0.022 0.635 0.842 0.915 0.938 0.944
rob. 0.042 0.053 0.055 0.053 0.089 0.579
composites/ PLS 100 trad. 0.000 0.045 0.053 0.045 0.046 0.044
rob. 0.012 0.009 0.007 0.010 0.005 0.047
composites/ PLS 300 trad. 0.000 0.042 0.049 0.038 0.035 0.037
rob. 0.000 0.000 0.000 0.000 0.000 0.020
composites/ PLS 500 trad. 0.000 0.037 0.034 0.032 0.034 0.036
rob. 0.000 0.000 0.000 0.000 0.000 0.021

Table 8.22: Inadmissible solutions with unsystematic outliers in all observed variables
for five common factors/ five composites

Share of inadmissible solutions

Construct types/ Estimator n Appr.
0% 5% 10% 20% 40% 50%
common factors/ PLSc 100 trad. 0.370 0.907 0.934 0.942 0.945 0.945
rob. 0.649 0.642 0.644 0.622 0.570 0.962
common factors/ PLSc 300 trad. 0.128 0.679 0.779 0.842 0.879 0.885
rob. 0.174 0.159 0.158 0.190 0.224 0.770
common factors/ PLSc 500 trad. 0.072 0.534 0.648 0.758 0.821 0.836
rob. 0.076 0.086 0.085 0.081 0.120 0.525
composites/ PLS 100 trad. 0.004 0.043 0.073 0.090 0.121 0.110
rob. 0.007 0.007 0.010 0.005 0.004 0.121
composites/ PLS 300 trad. 0.000 0.007 0.011 0.021 0.038 0.049
rob. 0.000 0.000 0.000 0.001 0.000 0.017
composites/ PLS 500 trad. 0.000 0.000 0.004 0.002 0.015 0.029
rob. 0.000 0.000 0.000 0.000 0.001 0.005
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Table 8.23: Inadmissible solutions with unsystematic outliers in two observed vari-

ables for three common factors/ three composites

Share of inadmissible solutions

Construct types/ Estimator n Appr.
0% 5% 10% 20% 40% 50%
common factors/ PLSc 100 trad. 0.342 0.364 0.330 0.338 0.153 0.311
rob. 0.502 0.511 0.494 0.476 0.250 0.462
common factors/ PLSc 300 trad. 0.084 0.089 0.095 0.079 0.039 0.025
rob. 0.155 0.133 0.139 0.139 0.096 0.078
common factors/ PLSc 500 trad. 0.032 0.038 0.030 0.028 0.011 0.028
rob. 0.055 0.039 0.048 0.046 0.039 0.107
composites/ PLS 100 trad. 0.000 0.020 0.011 0.003 0.002 0.005
rob. 0.004 0.004 0.006 0.003 0.010 0.020
composites/ PLS 300 trad. 0.000 0.000 0.000 0.000 0.000 0.000
rob. 0.000 0.000 0.000 0.000 0.000 0.000
composites/ PLS 500 trad. 0.000 0.000 0.000 0.000 0.000 0.000
rob. 0.000 0.000 0.000 0.000 0.000 0.000

Table 8.24: Inadmissible solutions with unsystematic outliers in two observed vari-
ables for five common factors/ five composites

Share of inadmissible solutions

Construct types/ Estimator n Appr.
0% 5% 10% 20% 40% 50%
common factors/ PLSc 100 trad. 0.366 0.463 0.530 0.645 0.746 0.765
rob. 0.632 0.627 0.634 0.612 0.708 0.852
common factors/ PLSc 300 trad. 0.144 0.123 0.182 0.276 0.498 0.577
rob. 0.173 0.178 0.170 0.190 0.227 0.407
common factors/ PLSc 500 trad. 0.071 0.063 0.089 0.151 0.376 0.457
rob. 0.104 0.077 0.084 0.106 0.113 0.165
composites/ PLS 100 trad. 0.004 0.001 0.003 0.005 0.001 0.003
rob. 0.008 0.010 0.009 0.006 0.007 0.019
composites/ PLS 300 trad. 0.000 0.000 0.000 0.000 0.001 0.001
rob. 0.000 0.000 0.000 0.000 0.000 0.001
composites/ PLS 500 trad. 0.000 0.000 0.000 0.000 0.000 0.000
rob. 0.000 0.000 0.000 0.000 0.000 0.000

Systematic Outliers

Table 8.25: Inadmissible solutions with systematic outliers in all observed variables

for three common factors/ three composites

Share of inadmissible solutions

Construct types/ Estimator n Appr.
0% 5% 10% 20% 40% 50%
common factor/PLSc 100 trad. 0.349 0.032 0.008 0.000 0.001 0.000
rob. 0.508 0.497 0.490 0.483 0.300 0.023
common factor/PLSc 300 trad. 0.087 0.000 0.000 0.000 0.000 0.000
rob. 0.124 0.145 0.141 0.142 0.127 0.000
common factor/PLSc 500 trad. 0.021 0.000 0.000 0.000 0.000 0.000
rob. 0.045 0.049 0.057 0.061 0.042 0.000
composites/ PLS 100 trad. 0.000 0.000 0.000 0.000 0.000 0.000
rob. 0.007 0.005 0.002 0.008 0.002 0.000
composites/ PLS 300 trad. 0.000 0.000 0.000 0.000 0.000 0.000
rob. 0.000 0.000 0.000 0.000 0.000 0.000
composites/ PLS 500 trad. 0.000 0.000 0.000 0.000 0.000 0.000
rob. 0.000 0.000 0.000 0.000 0.000 0.000
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Table 8.26: Inadmissible solutions with systematic outliers in all observed variables
for five common factors/ five composites

Share of inadmissible solutions

Construct types/ Estimator n Appr.
0% 5% 10% 20% 40% 50%
common factors/ PLSc 100 trad. 0.358 0.696 0.890 0.960 0.969 0.968
rob. 0.649 0.627 0.614 0.642 0.962 0.966
common factors/ PLSc 300 trad. 0.146 0.733 0.933 0.962 0.981 0.982
rob. 0.184 0.155 0.174 0.155 0.981 0.980
common factors/ PLSc 500 trad. 0.071 0.800 0.945 0.959 0.979 0.983
rob. 0.071 0.085 0.097 0.091 0.979 0.984
composites/ PLS 100 trad. 0.004 0.007 0.002 0.001 0.000 0.000
rob. 0.006 0.016 0.007 0.011 0.000 0.001
composites/ PLS 300 trad. 0.000 0.000 0.002 0.002 0.001 0.000
rob. 0.000 0.000 0.000 0.000 0.000 0.000
composites/ PLS 500 trad. 0.000 0.000 0.000 0.001 0.000 0.003
rob. 0.000 0.000 0.000 0.000 0.002 0.000

Table 8.27: Inadmissible solutions with systematic outliers in two observed variables
for three common factors/ three composites

Share of inadmissible solutions

Construct types/ Estimator n Appr.
0% 5% 10% 20% 40% 50%
common factor/PLSc 100 trad. 0.354 0.308 0.324 0.442 0.523 0.781
rob. 0.511 0.479 0.482 0.460 0.539 0.824
common factor/PLSc 300 trad. 0.078 0.082 0.100 0.143 0.429 0.794
rob. 0.129 0.153 0.145 0.133 0.332 0.804
common factor/PLSc 500 trad. 0.027 0.030 0.043 0.055 0.413 0.821
rob. 0.040 0.049 0.057 0.061 0.236 0.826
composites/ PLS 100 trad. 0.001 0.030 0.065 0.052 0.034 0.029
rob. 0.003 0.002 0.007 0.012 0.035 0.039
composites/ PLS 300 trad. 0.000 0.002 0.037 0.022 0.003 0.002
rob. 0.000 0.000 0.000 0.000 0.006 0.005
composites/ PLS 500 trad. 0.000 0.000 0.017 0.009 0.001 0.002
rob. 0.000 0.000 0.000 0.000 0.002 0.001

Table 8.28: Inadmissible solutions with systematic outliers in two observed variables
for five common factors/ five composites

Share of inadmissible solutions

Construct types/ Estimator n Appr.
0% 5% 10% 20% 40% 50%
common factors/ PLSc 100 trad. 0.383 0.424 0.551 0.713 0.825 0.834
rob. 0.643 0.633 0.628 0.736 0.911 0.923
common factors/ PLSc 300 trad. 0.125 0.123 0.197 0.464 0.646 0.646
rob. 0.167 0.163 0.183 0.203 0.680 0.692
common factors/ PLSc 500 trad. 0.059 0.068 0.086 0.339 0.558 0.558
rob. 0.082 0.093 0.103 0.097 0.599 0.598
composites/ PLS 100 trad. 0.002 0.001 0.007 0.000 0.000 0.001
rob. 0.011 0.007 0.011 0.005 0.012 0.013
composites/ PLS 300 trad. 0.000 0.000 0.000 0.000 0.000 0.000
rob. 0.000 0.001 0.001 0.000 0.000 0.000
composites/ PLS 500 trad. 0.000 0.000 0.000 0.000 0.000 0.000
rob. 0.000 0.000 0.000 0.000 0.000 0.000
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8.3 Performing out-of-sample predictions based on models

estimated by ordinal consistent partial least squares

Table 8.29: Average performance of PLSpredict, PLScpredict, OrdPLSpredict and
OrdPLScpredict in the case of ordinal categorical observed variables

Categ. Distribution  Approach MABE RMSE concordance
Z21 22 T3 Z32 33 Z21 L3 31 32 Z33 21 Z23 33
4 200 extreme OrdPLScpredict (mean) 0.707 0.757 0.718 0.785 0.733 1.156 1.175 0.972 0.975 1.200 0.554 0.551
OrdPLScpredict (median)  0.708 0756 0.719 0784 0733 1156 1174 0971 0975 1200 0551 0549
OrdPLSpredict (mean) 0704 0755 0.714 0783 0729 1166 11770971 0973 1212 0564 0565
OrdPLSpredict (median) 0.704 0.755 0.714 0.783 0.730 1.165 1.176 0.971 0.973 1.213 0.563 0.565
PLSpredict 0.994 0.839 0.998 0.825 0.982 1.131 1.141 1.004 1.027 1.113 0.150 0.156 0.149
PLScpredict 1.025 0.893 1.024 0.848 1.011 1.176 1.174 1.011 1.055 1.153 0.154 0.153 0.150
n 200  symmetic  OrdPLScpredict (mean) 0599 0754 0.612 0791 0.635 0842 0850 0.990 0989 0877 0457 0445 0434
OrdPLScpredict (median)  0.599 0751 0.612 0791 0.635 0841 0850  0.990 0989 0877 0457 0444 0434
OrdPLSpredict (mean) 0600 0752 0.611 0790 0637 0.811 0819 0959 0985 0880 045 0445 0433
OrdPLSpredict (median) 0.600 0.752 0.611 0.790 0.637 0.842 0.849 0.989 0.988 0.879 0.456 0.445 0.433
PLSpredict 0.728 0.973 0.741 0.874 0.710 0.978 0.989 1.054 1.089 0.961 0.388 0.379 0.397
PLScpredict 0768 1061 0.790 0899 0731 1020 104 1059 LIT 0982 0369 0355 0387
1 500 extreme OrdPLScpredict (mean)  0.699 0746 0.705 0774 0711 1140 11470999 0.967 1178 0549 0,562
OrdPLScpredict (median) 0700 0.746  0.705 0774 0711 110 114 0999 0967 1177 0547 0562
OrdPLSpredict (mean) 0.699 0.746 0.699 0.774 0.710 1.152 1.150 0.999 0.966 1.197 0.557 0.579
OrdPLSpredict (median) 0.701 0.746 0.699 0.773 0.711 1.152 1.148 0.999 0.966 1.198 0.556 0.579
PLSpredict 0989 0843 0998 0809 0964 1129 1135 1031 1010 1092 0157 0.151
PLScpredict 1014 0898 0825 0992 1165 1179 1038 1028 1129 0159 0152
1 500 symmetric  OrdPLScpredict (mean)  0.398  0.748 0781 0.626 0837 0837 0.983 0950 0870 0455 0.441
OrdPLScpredict (median) 0.598 0.748 0.781 0.625 0.837 0.837 0.983 0.980 0.870 0.456
OrdPLSpredict (mean) 0.5! 0.747 0.780 0.838 0.837 0.984 0.980 0.869 0.455
OrdPLSpredict (median) 0,599 0.747 0.781 0.838 0838 0984 0980 0870 0455
PLSpredict 0723 0965 0.885 0.980 0981 1053 1101 0957 0397
PLScpredict 0774 1046 0915 1031 1039 1050 1135 0973 0369
4 1000 extreme OrdPLScpredict (mean) 0.672 0.763 0.791 1.113 1.150 0.976 0.985 1.189 0.567
OrdPLScpredict (median) 0.674 0.763 0.791 0.730 1.113 1.148 0.976 0.985 1.190 0.564
OrdPLSpredict (mean) ~ 0.671 0,763 0791 0727 112 115 0975 0985 1208 0577
OrdPLSpredict (median)  0.671 0,764 0791 0727 112 1156 0975 0985 1208 0576
PLSpredict 0979 0869 0823 0959 1118 1137 1003 1028 1093 0157
PLScpredict 1.019 0.937 0.840 0.977 1.170 1.175 1.011 1.050 1.122 0.156
4 1000 symmetric OrdPLScpredict (mean) 0.594 0.750 0.774 0.616 0.832 0.822 0.958 0.969 0.855 0.456
OrdPLScpredict (median)  0.594 0,750 0774 0613 0832 0822 0958 0969 0853 0457
OrdPLSpredict (mean) 0592 0.749 0774 0617 0832 0821 0958 0969 0857 0458
OrdPLSpredict (median) — 0.591 0,749 0773 0616 0832 095 0969 0.856 0457
PLSpredict 0.737 0.980 0.852 0.686 0.987 1.019 1.062 0.936 0.382
PLScpredict 0.786 1.063 0.872 0.691 1.038 1.020 1.085 0.942 0.358
5 200 extreme OrdPLScpredict (mean) 0.993 0.753 0.781 1.015 1.462 0.987 0.977 1.495 0.418
OrdPLScpredict (median)  0.992 0,753 0781 1016 1455 0957 0976 1491 0414
OrdPLSpredict (mean) ~ 0.986  0.752 0780 1011 1456 098 0975 1499 0419
OrdPLSpredict (median) 0.986 0.752 0.790 0.780 1.011 1.451 0.986 0.975 1.494 0.415
PLSpredict 1.347 0.900 0.832 0.842 1.263 1.572 1.038 1.047 1.463 0.149
PLScpredict 1.439 0.985 0.841 0.871 1.335 1.687 1.048 1.080 1.547 0.145
5 200 symmetric  OrdPLSepredict (mean) 0744 0.768 0800 0786 0759 1008 0994 0988 1019 0390
OrdPLScpredict (median)  0.745 0,768 0800 0786 0758 1009 0994 0958 1017 0389
OrdPLSpredict (mean) ~ 0.745  0.767 0799 0785 0759 1005 0993 0957 1015  0.387
OrdPLSpredict (median) 0.747 0.767 0.799 0.785 0.757 1.006 0.993 0.987 1.014 0.386
PLSpredict 1.029 1.055 0.894 0.921 0.914 1.311 1.113 1.147 1.197 0.274
PLScpredict 1092 1154 0906 0953 0999 1377 1127 1182 1289 0.256
5 500 extreme OrdPLScpredict (mean) ~ 0.965  0.748 0794 0762 1016 1.446 0993 0950 1512
OrdPLScpredict (median) 0,965 0.747 0791 0762 1013 1440 0993 0.950 1504
OrdPLSpredict (mean) 0.960 0.747 0.793 0.762 1.020 0.992 0.950 1.531
OrdPLSpredict (median) 0.962 0.747 0.793 0.762 1.019 0.992 0.949 1.525
PLSpredict 1295 0894 0821 0812 1242 1032 1009 1438
PLScpredict 1316 0.960 0826 0820 1303 1038 1030 1511
5 500 symmetric  OrdPLScpredict (mean)  0.749  0.741 0786 0796 0.745 0990 0995  0.995
OrdPLScpredict (median) 0.748 0.741 0.786, 0.795 0.745 0.990 0.995 0.995
OrdPLSpredict (mean) 0.744 0.740 0.786 0.795 0.748 0.990 0.994 1.000
OrdPLSpredict (median)  0.744 0,740 0786 0795 0748 0990 0994  1.000
PLSpredict 1067 1053 0870 0926 0938 1090 1152 1219
PLScpredict 1137 1159 0866 0946 1.030 1085 1175 1316
5 1000 extreme OrdPLScpredict (mean) 0.962 0.745 0.790 0.772 1.028 0.986 0.968 1.503
OrdPLScpredict (median) 0.960 0.744 0.789 0.772 1.029 0.985 0.968 1.498
OrdPLSpredict (mean) ~ 0.950 0,744 0790 0772 1028 0986 0963 1512
OrdPLSpredict (median)  0.958 0,744 0790 0772 1028 0986 0963 1507
PLSpredict 1315 0903 0820 082 1239 102 1037 1439
PLScpredict 1.407 1.000 0.826 0.850 1.301 1.029 1.066 1.512
5 1000 symmetric OrdPLScpredict (mean) 0.754 0.751 0.785 0.780 0.748 0.986 0.980 0.974 1.015
OrdPLScpredict (median) 0.754 . 751 0.785 0.780 0.747 0.984 0.980 0.974 1.014
OrdPLSpredict (mean) ~ 0.753 0,749 0785 0780 0739 0973 0950 0973 1005
OrdPLSpredict (median)  0.753 0,749 0785 0780 0738 0975 0.950 0973 1005
PLSpredict 1.043 1.067 0.865 0.915 0.938 1.299 1.081 1.130 1.225
PLScpredict 1.141 1.173 0.867 0.941 1.021 1.403 1.083 1.160 1.309 0.254
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8.4 A maximum likelihood estimator for composite models

Table 8.30: Simulation results

Par. Fstimat Mean Standard Deviation RMSE
n =100 n = 200 n = 500 n = 1000 n =100 n = 200 n = 500 n = 1000 n =100 n = 200 n = 500 n = 1000
o) ML -0.018 0.006 0.001 0.001 0.405 0310 0.200 0.133 0.406 0310 0.199 0.133
PLS -0.018 0.006 0.001 0.001 0.405 0310 0.200 0.133 0.406 0310 0.199 0.133
HE;) ML -0.020 0.010 0.003 -0.002 0.319 0.209 0.148 0.454 0.319 0.209 0.148
PLS -0.020 0.010 0.003 -0.002 0.319 0.209 0.148 0.454 0319 0.209 0.148
o) ML -0.020 0.020 0.008 -0.003 0478 0.310 0.227 0.713 0478 0.310 0.227
PLS -0.020 0.020 0.008 -0.003 0478 0.310 0.227 0.713 0478 0.310 0.227
052,) ML -0.013 0.009 -0.002 0.003 0.402 0.247 0.179 0.577 0.401 0.247 0.179
PLS -0.013 0.009 -0.002 0.003 0.402 0.247 0.179 0.577 0.401 0.247 0.179
oy ML -0.007 0.008 -0.001 -0.003 0.261 0.160 0.117 0.347 0.261 0.160 0.117
PLS -0.007 0.008 -0.001 -0.003 0.261 0.160 0.117 0.347 0.261 0.160 0.117
nig) ML -0.010 0.008 -0.006 -0.004 0.452 0.284 0.198 0.656 0.452 0.284 0.198
PLS -0.010 0.008 -0.006 -0.004 0.452 0.284 0.198 0.656 0.452 0.284 0.198
o) ML 0.012 0.010 -0.004 0.005 0.299 0.191 0.134 0.422 0.299 0.191 0.134
PLS 0.012 0.010 -0.004 0.005 0.299 0.191 0.134 0.422 0.299 0.191 0.134
n;g) ML 0.010 0.006 0.000 0.001 0.367 0.241 0.161 0.537 0.241 0.161
PLS 0.010 0.006 0.000 0.001 0.367 0.241 0.161 0.537 0.241 0.161
o) ML 0.014 0.025 -0.006 -0.011 0.891 0.412 1.262 0.573 0412
PLS 0.014 0.025 -0.006 -0.011 0.891 0.412 1.262 0.573 0412
nﬁ) ML 0.006 0.002 -0.002 -0.001 0.197 0.091 0.280 0.197 0.124 0.091
PLS 0.006 0.002 -0.002 -0.001 0.197 0.091 0.280 0.197 0.124 0.091
o) ML 0.003 0.007 -0.004 -0.003 0.226 0.106 0.327 0.150 0.106
PLS 0.003 0.007 -0.004 -0.003 0.226 0.106 0.327 0.150 0.106
UE? ML 0.004 0.011 -0.002 -0.010 0.304 0.135 0.422 0.191 0.136
PLS 0.004 0.011 -0.002 -0.010 0.304 0.135 0.422 0.191 0.136
o) ML -0.002 0.007 -0.006 0.001 0325 0.149 0.453 0.209 0.149
PLS -0.002 0.007 -0.006 0.001 0325 0.149 0.453 0.209 0.149
né‘z) ML 0.009 -0.008 0.011 0.008 0.497 0.309 0.227 0.725 0.309 0.227
PLS 0.009 -0.008 0.011 0.008 0.497 0.309 0.227 0.725 0.497 0.309 0.227
o) ML -0.021 -0.003 -0.007 -0.006 0.461 0.306 0213 0.696 0.461 0.306 0213
PLS -0.021 -0.003 -0.007 -0.006 0.461 0.306 0213 0.696 0.461 0.306 0213
né‘:‘) ML 0.014 0.009 0.008 -0.001 0.710 0.515 0.320 0.242 0.710 0.514 0.320 0.242
PLS 0.014 0.009 0.008 -0.001 0.710 0.515 0.320 0.242 0.710 0514 0.320 0.242
o) ML -0.013 -0.010 0.003 0.001 1117 0.791 4 0353 1117 0.791 0.524 0352
PLS -0.013 -0.010 0.003 0.001 1117 0.791 1 0353 1117 0.791 0.524 0352
Uéi) ML -0.001 0.005 -0.019 -0.010 0.873 0.618 0.389 0.275 0.872 0.618 0.390 0.275
PLS -0.001 0.005 -0.019 -0.010 0.873 0.618 0.389 0275 0.873 0.618 0.390 0275
o) ML 0.018 0.046 0.013 0.017 1.260 0914 0.552 0.410 1.259 0914 0.552 0.410
PLS 0.018 0.013 -0.017 1.260 0914 0.552 0.410 1.259 0914 0.552 0.410
wi ML -0.003 -0.005 -0.003 0.222 0.162 0.098 0.070 0.222 0.162 0.098 0.070
PLS -0.003 -0.005 -0.003 0.221 0.162 0.098 0.070 0.221 0.163 0.098 0.070
w2 ML 0.025 0.000 0.000 0.192 0.126 0.078 0.057 0.193 0.126 0.078 0.057
PLS -0.025 0.000 0.000 0.192 0.126 0.078 0.057 0.193 0.126 0.078 0.057
wy ML -0.004 -0.002 -0.002 0.115 0.073 0.045 0.032 0.115 0.073 0.045 0.032
PLS -0.004 -0.002 -0.002 0.114 0.073 0.045 0.032 0.114 0.073 0.045 0.032
wao ML -0.009 -0.001 -0.001 0.121 0.075 0.046 0.032 0.122 0.075 0.046 0.032
PLS -0.010 -0.001 -0.001 0.121 0.074 0.046 0.032 0.121 0.074 0.046 0.032
wy ML -0.013 -0.001 0.001 0.070 0.046 0.029 0.021 0.071 0.046 0.029 0.021
PLS -0.013 -0.001 0.000 0.070 0.046 0.029 0.021 0.071 0.046 0.029 0.021
wy ML -0.023 -0.004 -0.004 0.182 0.121 0.078 0.055 0.183 0.121 0.078
PLS 0.023 -0.004 0.004 0.182 0.121 0.078 0.055 0.183 0.121 0.078
wgz ML -0.008 0.000 0.001 0.127 0.089 0.053 0.038 0.127 0.089 0.053
PLS -0.008 0.000 0.001 0.127 0.089 0.053 0.038 0.127 0.089 0.053
wz ML -0.018 -0.004 -0.001 0.084 0.061 0.036 0.027 0.086 0.062 0.036
PLS -0.018 -0.004 -0.001 0.084 0.061 0.036 0.027 0.086 0.062 0.036
wy ML -0.005 0.000 -0.001 0.065 0.041 0.030 0.093 0.065 0.041
PLS -0.005 0.000 -0.001 .09: 0.065 0.041 0.030 0.093 0.065 0.041 0.030
M2 ML 0.019 0.006 0.004 0.100 0.065 0.042 0.029 0.102 0.066 0.043 0.030
PLS 0.021 0.006 0.004 0.099 0.065 0.042 0.020 0.101 0.066 0.043 0.030
by ML 0.042 0.007 0.004 0.089 0.054 0.037 0.026 0.098 0.058 0.038 0.026
PLS 0.041 0.007 0.003 0.089 0.054 0.037 0.026 0.098 0.058 0.038 0.026
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