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Introduction

When looking scientifically at matter, sooner or later the question of resolution arises.
By resolution we normally think of the smallest distance at which points can be distinctly
detected. This is a very physical description but also transferred to our everyday language
looking at a certain problem usually requires a specific resolution. If you want to distin-
guish the differences between cars, houses, faces and even opinions, you have to have a
’ruler’ with a scale that allows measurement and thus comparison. And every scale we
use to judge our daily problems before we tackle them has an intrinsic resolution. The
better the resolution the more defined do we see the details of a certain topic - be it real
or virtual.

Back to the physical aspects of resolution we mostly deal with temporal and spatial res-
olution. This is because we live in a three-dimensional space and have a one-dimensional
time-axis which clearly orders our life. As argued before, a high resolution is always an
advantage but a high ’resolution of cars’ does not help when it comes to buying a house.
So even better than having a high resolution in only one aspect it is more useful to look
at different topics with an equally high resolution. Switching back to physics - because
the resolution of car-buying or house-pricing is not scientific at all - it is enough to regard
space and time. With time being one dimensional and space three dimensional that results
in a four dimensional resolution problem. And we want the highest resolution possible -
in every dimension.

The problems with the temporal and spatial resolution are for once the different units.
While one millimeter is easy to distinguish from two millimeters and one second from
two seconds, it gets a little complicated when comparing for example 2 seconds with 2
millimeters. Fortunately more than 100 years ago a fundamental relation between time
and space was given by A. Einstein - with the drawback that it only holds for light.
Since the fastest processes and measurements in the universe involve light as well this is a
restriction that one can comply with. Now using light and looking at experiments a little
closer another fundamental relation is quickly discovered: The shorter the wavelength of
light (the higher the photon energy) the better the spatial resolution. Since this does not
include an upper limit, it is necessary to realize that according to Heisenberg’s uncertainty
principle when ’measuring’ with such a high energy, the result is always a sum of the
experiment itself and the effect of the light. This means that the light interacts in a non-
predictable way with the matter and even with vacuum. Thus using the shortest possible
wavelengths comes along with a disadvantage by strongly interfering with the experiment.
Additionally, Heisenberg also pointed out another interesting fact: The more accurately
the wavelength of the light is measured, the less one can say about its temporal structure.
Translated into everyday language this implies that a light beam with only one distinct
wavelength can not be defined by beginning and end. And beginning and end is normally
measured in time. So there is a link between the resolution of space - being defined by
the wavelength - and the resolution of time - being defined by how exact we know the
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wavelength.
Now coming to the end of this introduction one should keep in mind that there is no such
thing as an endlessly high spatial and temporal resolution in the same experiment. What
is demonstrated in this work and has long before been shown by scientists [1, 2] is one
approach to a compromise of resolution in space and time at the same moment. This is
based on the technique of high-order harmonics generation (HHG) which provides an un-
paralleled high temporal and a very high spatial resolution. The challenge of this radiation
is the measurement of its temporal and spatial properties and exactly this characterization
and optimization of high-order harmonics is the topic of this thesis.
In the first chapter the basic theoretical foundations of the physics of near-infrared (NIR)
laser light will be described. Here the mathematical description of laser pulses and nonlin-
ear optics is given as well as ways to generate, measure and change these pulses. Chapter
2 deals with different ways to further compress laser pulses in the time domain and in-
troduces their optimization via an evolutionary algorithm in the space and time domain.
In the third chapter, these short laser pulses are then used for the process of high-order
harmonic generation which resembles the up-conversion of the fundamental laser pulse.
The last part of this work shows methods to optimize this harmonic generation process
and characterize the generated radiation in terms of spatial and temporal distribution.



Chapter 1

Laser Pulses and Nonlinear Optics

Since in this whole work ultrashort laser pulses are the main workhorse, their character-
istics will be described briefly in this chapter. Laser radiation is known since the early
1960s after mainly the workgroup of Townes and Schawlow at the Bell Labs and Gould
at the Columbia University worked on an “optical maser”. The first coherent light source
with very good beam quality was build on the basis of a solid-state flashlamp-pumped
synthetic ruby crystal laser by Maiman at the Hughes Research Lab in 1960. Since then
the laser of course has come a far way and today there are not only solid-state lasers
but also gas-lasers and semi-conductor lasers which all have different purposes and advan-
tages. Because the focus of this work is on ultrashort laser pulses some technical details
involved in generating laser pulses are given here. As already mentioned in the introduc-
tion, Heisenberg formulated a relation between the temporal and energetic uncertainty
which can be written as:

τp∆ω = 2πcb (1.1)

Here τ equals the pulse duration and ∆ω is the spectral bandwidth corresponding to
the temporal and energy uncertainty, respectively. cb is a constant that depends on the
envelope functions of the electric field of the laser pulse. It is ≈ 0.441 [3] for a Gaussian
shaped field-envelope. This equation gives the shortest possible pulse duration for a given
spectrum and is also called the Fourier-limited pulse duration. As shown later this is an
often desired but hard-to-achieve condition.
One major difference between continuous wave (cw) lasers and pulsed lasers can be directly
inferred from Equation 1.1: a pulsed laser system has to include various wavelengths that
are amplified while a cw laser is nearly monochromatic. Since the mid 1960s locking of
the different modes of a pulsed laser was introduced as a technique to gain very short
laser pulses. More detailed information on mode-locking and other methods present in a
state-of-the-art laser system will be given in 1.3.3. Regardless of their ways of operation,
pulsed and cw lasers emit electromagnetic waves which will be described analytically in
the following section.

3



4 CHAPTER 1. LASER PULSES AND NONLINEAR OPTICS

1.1 Mathematical Description

Electromagnetic waves and their dynamics can be described as solutions of Maxwell’s
equations [4]:

∇ ·E =
ρ

ǫ0
(1.2)

∇ · B = 0 (1.3)

∇× E = −∂B
∂t

(1.4)

∇×H = J +
∂D

∂t
(1.5)

where E is the electric field, B is the magnetic flux density, H is the magnetic field, and D
is the electric flux density. From these equations one can derive the general wave equation

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

~E(x, y, z, t) =
1

c
· ∂

2

∂t2
~E(x, y, z, t). (1.6)

Here E is the electric field of a given wave and c is the speed of light. This differen-
tial equation holds for electromagnetic waves that travel through vacuum. For a wave
propagating in a medium, the polarization P(x,y,z,t) must be added on the right side of
the equation. To find a solution for vacuum, one can get away without P (x, y, z, t) for
simplicity reasons. Furthermore, we neglect the dependence of E on x and y - assuming a
plane wave - and thus compute

E(z, t) = E0 cos(kzz − ω(kz)t) = E0 cos(φ(t)) (1.7)

with kz equaling the wave vector ~k in direction z, ω being the angular frequency of the
field, and E0 its amplitude. Using φ(t) is just a more convenient way of writing the phase
of the electromagnetic wave according to φ = kzz − ω(kz)t = n(t)ω

c z − ω(kz)t . Since the
electric field is a measurable quantity, E(t) is a real function. Such a monochromatic wave
is endless in terms of duration because the amplitude does not change in time. What is
needed for a laser pulse is an E0(t) that in this work will be referred to as the field envelope.
Also, most characterization methods of electromagnetic waves (see sections 1.3.1) do not
allow the exact measurement of the electric field of a pulse but only its E0(t). Transformed
with the Euler equations the electric field can be written as

E(t) = E0(t)cos(φ(t)) =
1

2
E0(t)

(

eiφ(t) + e−iφ(t)
)

(1.8)

= E+(t) + E−(t) = 2Re(E+(t)) (1.9)

= E0(t)e
iφ(t) (1.10)

To obtain the frequency dependent electric field E(ω) one can perform a Fourier transfor-
mation on 1.10 and gets an equivalent description of the pulse in the frequency domain.
When using ω in this work the angular frequency is meant and ν stands for the real optical
frequency. The relation between E(ω) and E(t) is given by

E(ω) =
1√
2π

+∞
∫

−∞

E(t)eiωtdt ∧ E(t) =
1√
2π

+∞
∫

−∞

E(ω)e−iωtdω (1.11)
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I(ω) and I(t) are considered spectral and temporal intensity of a laser pulse, respectively.
From 1.11 one can see that a laser pulse can be completely characterized if the phase and
intensity in one domain is known. For example, when the spectrum of a laser pulse is
measured experimentally, the detector sees only the spectral intensity

I(ω) ∝ | E(ω) |2 (1.12)

To measure the spectral phase of a pulse different methods, which will be described in
section 1.3, are necessary. The temporal intensity can also be measured but this I(t) then
is the squared mean electric field over one optical cycle (one wavelength) which only holds
for long enough pulses. This so-called Slowly-Varying Envelope Approximation (SVEA)
[3] is not valid for pulses in the few-cycle regime where the pulse duration is in the regime
of only a few optical cycles (one optical cycle for 800nm = 2.7fs). In this work only laser
pulses longer than 10fs (roughly 4 optical cycles) are generated for experiments so this
approximation can safely be used.
Even for ultra-broad bandwidth pulses, the duration of the optical cycle of the central
wavelength marks the shortest possible pulse. For an 800nm-laser-system, pulses shorter
than ≈ 2.7fs are not possible, unless one uses frequency conversion. Another practical
examination leads to the additional condition, that the electric field of a laser pulse has
to satisfy

+∞
∫

−∞

E(t)dt = 0 (1.13)

in order to have a physical meaning and be reasonable solution to 1.6.
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1.2 Nonlinear Optics

In this section the difference between the ’normal’ linear optics and nonlinear optics is
described. Polarization is the reaction of matter to an incident electromagnetic field. As
long as the electronic shell of the atoms is still bound to the nucleus and even the most
outward valence electrons still rest in a parabolic potential the response of matter to the
wave is linear P = ǫ0χE. But as soon as the atoms are ionized or the atomic potential
becomes distorted, the polarization gets additional terms that depend on higher orders of
the electric field.

P (t) ∝ χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + · · · (1.14)

Here the χs represent the n-th order susceptibilities of the medium and the proportionality
factor is the dielectric constant ǫ0 (and ǫr in non-vacuum). Basically, there are various
nonlinear effects that are caused by a specific χi and in [5] is a listing of applications and
techniques based on these nonlinearities. For this work there are some very important
mechanisms that are based mainly on the second (Pockels and Faraday effect) and third
order (self-focusing and self-phase modulation) susceptibilities. Another way of writing the
E-field dependence is to regard the index of refraction written with the Taylor expansion

n(I) = n0 + n2I(t) + n4I
2(t) + · · · (1.15)

where ni are the coefficients. Typically, the higher order terms of the index of refraction
are relatively small so that their effect is only present when strong electric fields (high
intensities) are used. Considering n2 in terms of nonlinear polarization, it can be written
as:

n2 =
3χ(3)

4ǫ0cn2
0

(1.16)

with χ(3) being the third-order susceptibility and ǫ0 being the vacuum dielectric constant.

1.2.1 Self-focusing

A well-known phenomenon of high-intensity lasers is self-focusing that takes place when-
ever a laser pulse propagates through dispersive media. In addition to ordinary dispersion,
where the index of refraction depends on the wavelength, using high-intensity laser pulses
one also sees a dependence of the refractive index on the local intensity. Regarding the
spatial distribution as described in 1.2.5, a radially symmetric Gaussian intensity distri-
bution causes different indices of refraction for different parts of the beam. This leads to
a lens-like influence on the beam divergence. The self-focusing is based on the nonlinear
optical Kerr effect which can be described with the following equation:

∆n(~r, t) = n2E
2(~r, t) ∝ n2I(~r, t) (1.17)

where ∆n is the the change of the index of refraction depending on the local electric field.
By inserting the proportionality factors in 1.16, one gets an n2 for an 800nm laser in air
of n2 = 3.2 × 10−19cm2/W [6].
When the intensity of the beam is higher in the central part and decreases to the sides
and the laser pulse is travelling through a normally dispersive material (n2 is positive for
almost all media), the laser will see a focusing lens. Knowing the laser parameters, a
critical power Pcrit can be defined above which the laser beam will start to self-focus [7].

Pcrit =
λ2

0

2πn0n2
≈ 3.2GW (1.18)
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Here λ0 = 800nm and n0 and n2 are taken for air. One can enhance the self-focusing
by inserting an ordinary focusing device in the beam line to increase intensity and thus
the self-focusing. Thus the region of the focus can be controlled better than in open air
experiments.

1.2.2 Filamentation

If the laser pulse undergoes self-focusing and a focus in air is generated, the gas molecules
are ionized and a weakly ionized plasma is created (see Fig. 1.1).

Figure 1.1: Image of a typical 20cm-filament in our gas-filled Plexiglas tube is shown. The
visible radiation comes from recombination of the ionized gas.

This plasma has a much higher free electron density than the surrounding medium and
the free electron density is the highest in the central part of the focus decreasing radially
with intensity. The free electron density is connected to the index of refraction by [8]

∆n = −N(I)/Ncrit ∼ 10−4 (1.19)

where N(I) is the intensity dependent free electron density and Ncrit is the critical den-
sity above which the plasma becomes opaque. More details on plasma dispersion can be
found in section 3.2.1. As one can see, the plasma-induced change of the refractive index
is always negative as opposed to the change of the index of refraction due to the Kerr
effect (see Fig. 1.2). Under certain conditions, it may happen that these two mechanisms

Figure 1.2: left: The effect of self-focusing is demonstrated here. The Gaussian beam
profile I(t) causes a higher refractive index where the intensity is higher thus causing a
lens-like focusing. right: Due to the lower index of refraction in the center part of the
beam, the plasma acts like a defocusing lens and the beam diverges.
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counterbalance so that a laser pulses is focused by the Kerr effect and then defocused
by the created plasma and then again focused. Under certain conditions, this long array
of foci forms a so-called filament that might exceed the length of the Rayleigh range by
several orders of magnitude (see Fig 1.1). In this counterbalance region the laser beam
travels in a plasma channel that has a diameter of about 100µm and a very low divergence
after the channel. Filamentation thus provides a technique to have the laser pulse interact
with a gaseous medium [9] or solid [10] or liquid [11, 12] in a very well collimated way.

What is not so clear to date is the role of the background reservoir for the filamenta-
tion process [13]. It seems that a large part of the energy of the laser pulse is propagating
along with the plasma channel and provides the necessary energetic flux while only a small
fraction is actually in the hot core of the filament [14, 13]. Technically more important is
that the energy throughput of a filament is above 90% which makes it a very attractive
nonlinear medium as will be described in more detail in Chapter 2.
Since a single plasma channel can only be stable for a certain amount of energy, for very
high laser powers of more than ≈ 3− 5× Pcrit multifilamentation takes place (see Fig 1.3
and section 2.3). In this case, minor inhomogeneities in the beam profile are amplified
while propagating in the nonlinear medium and multiple parallel foci form multiple fil-
aments. This can be partially controlled for example by changing the beam parameters
[15, 16] or controlling the wave front [17]. Our laser system mainly operates in the single
filament regime and the gas pressure is adjusted likewise. As will be shown in Chapter 4,
the beam profile of a laser pulse after filamentation can be somewhat distorted and multi-
ple filaments produce an even worse beam profile for our experimental setup. When such
a long focus is created, one also sees conical emission [18] which describes the fact that
different wavelengths have different divergences. In our IR-regime and with frequency-
broadened spectra this leads to a bluish outer part of the beam profile and a white inner
part (see Fig 1.3).

Figure 1.3: Beam profiles recorded with a color CCD camera including an IR-filter. Both
pictures show the laser after exiting the gas tube. In (a) intensity inhomogeneities and
spatial chirp occur due to multifilamentation within the gaseous medium. In the single
filament (b) regime there is a homogeneous beam profile with a radial intensity distribu-
tion. Also clearly visible is the white light in the inner part and the bluish outer part due
to conical emission.
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1.2.3 Self-phase modulation

In equation 1.2.1 we already saw that the index of refraction depends not only on the
wavelength but also on intensity. Now analog to the spatial intensity distribution, the
temporal intensity distribution has a similar impact on the refractive index. Like in
equation 1.2.1 we will assume a Gaussian-shaped temporal intensity distribution of the
laser pulse (see Fig 1.4). This results in a rise of the index of refraction at the leading
edge of the pulse and a lowering of the index of refraction at the trailing edge of the
pulse. Thinking of the phase velocity vphase = c/n one sees that vphase is decreasing at the
leading edge of the pulses and increasing at the trailing edge. A smaller phase velocity
causes longer wavelengths whereas the larger phase velocity has the opposite effect. This
means that a Gaussian-shaped laser pulse will have a redshifted ’front’ and a blueshifted
’rear’ part as shown in Fig. 1.4.
Since these two additional frequencies are generated at the same time (meaning in one
pulse) one can measure a broadened spectrum. Because the phase of the laser pulse
described in 1.10 is changing in dependence of the temporal intensity, this process is
called self-phase modulation (SPM). And as was mentioned in the introduction, a broader
spectrum allows shorter pulses and thus SPM is a basic principle to decrease the pulse
duration.
Treating SPM mathematically, we can Taylor-expand the temporal phase φ(t) from section
1.1 and get

φ(t) =

∞
∑

i=0

ai

i!
ti = φ0 + φ1t+

φ2t
2

2
+
φ3t

3

6
+ · · · (1.20)

Everything written here for φ(t) is equally valid for φ(ω) since these two are linked via
the Fourier transform (see 1.11). From the definition of the instantaneous frequency
ω = dφ(t)/dt and φ(t) = ω(kz)t− n(t)ω

c z one can compute with 1.15 and 1.20

ω(t) = ω0 −
dn(t)

dt

ω

c
z = ω0 − n2

dI(t)

dt

ω

c
z (1.21)

where ω0 is the central frequency, ω/c = ~k is the wave vector, z the direction of propaga-
tion, and I(t) the time-dependent intensity of the laser pulse.

t

I(t)

δω(t)

Figure 1.4: On the left the temporal intensity is plotted (grey shaded) with the changing
contribution of n2 (dashed). On the right is an up-chirped pulse (from [19]) and one can
see that detecting only the intensity does not reveal the phase information of the electric
field of the pulse. A highly chirped pulse has a longer duration than a laser pulse with a
flat phase.
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The pulse shown in Fig. 1.4 is also called ’chirped’ pulse, since it resembles the acoustic
analogon of birdsong. A tune that starts with a lower instantaneous frequency and ends
with a higher instantaneous frequency is called up-chirped whereas the opposite is called
down-chirped. This chirp is an effect of a non-flat spectral phase, more specifically of a
quadratic spectral phase φ2 (see 1.20). The term φ0 in 1.20 is called the Carrier-Envelope-
Phase (CEP, see Fig. 1.5) and describes the offset between the envelope (red, on the right
in Fig. 1.4) and the carrier wave (blue, same figure). Usually this offset has a negligi-
ble influence if the pulse duration is longer than 10fs because the electric field strengths’
change is comparably small from fringe to fringe.

Figure 1.5: Two different electric fields of a laser pulse leading to the same envelope (black,
solid). The cosine pulse (red, dotted) has its maximum field strength at φ = 0 and the
neighboring peaks (at opposite sign) do only have ≈ 80% of its amplitude. On the other
hand, the sine pulse (blue, dotted) has two opposing but equally high maxima at φ1 = π

2
and φ2 = −π

2 . The latter pulse is not useful for ionization gating (3.1.3) due to having
the same field strength twice per pulse.

When dealing with pulses shorter than 4-5 optical cycles (one optical cycle at 800nm =
2,7fs), it becomes important to know [20] or even control [21] this phase. Especially for
high-order harmonic generation (see Chapter 3) in the sub-fs regime the CEP plays an
important role [22, 23] (a review on attosecond physics can found here [24, 25, 26]). The
first-order phase φ1 is called linear phase because of its linear dependence on intensity and
works as a temporal shift in the time domain.
One important aspect of filamentation (see 1.2.2) is that self-phase modulation in the in-
teraction medium as well as blueshift in the plasma is changing the laser pulse spectrum
[27, 28, 29]. The former is described by 1.21 and the latter can be explained by the fact,
that the abrupt increase of the free electron density leads to a sudden decrease of the
refractive index. Since for femtosecond laser pulses the recombination time of the elec-
tron is much longer than the pulse duration, the electron density increases monotonically
throughout the laser pulse. Therefore the refractive index of the medium is constantly
decreasing while the laser pulses is passing by, which causes a blueshift.
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1.2.4 Chirped Mirrors

Besides the normal silver or gold mirrors used for 800nm laser pulses with normal anti-
reflex coating, there are dielectric mirrors as well. They are based on the idea of a Bragg
mirror [30] that consists of a sequence of alternating layers of two different optical ma-
terials. These two layers are matched so that the reflections from all interfaces interfere
constructively. This way very high reflectivities for certain wavelengths and/or very broad-
band mirrors can be constructed. Dielectric mirrors are used wherever highest reflectivities
under well-defined (angle, wavelength, bandwidth) conditions have to be realized. In the
laser system in section 1.3.3 such mirrors are used as terminal mirrors in the oscillator
cavity, in the amplifier stage for the seed beam, and between pump laser and amplifier
always minimizing the losses by transmission

For our later described laser pulse compression setup we use a special kind of dielec-
tric mirrors. Here the spacing between the different optical materials is not constant but
changes along the lightpath in the medium (see Fig. 1.6). This has been demonstrated to
perform as a low-loss compression device when used for dispersion control [31]. In Chapter
2, a chirped mirror with a specific quadratic phase φ2 of 200fs2 per reflection is used to
compensate the accumulated chirp from the filament.

Figure 1.6: Schematic of a chirped mirror with different wavelengths being reflected most
efficiently at certain ’depths’ of the mirror. This leads to a specific delay between the
different frequencies of the laser pulse (from [30]).

1.2.5 Spatial Beam Parameters

In 1.1 we considered the laser pulse to be a flat wave with no x and y limitations. Although
this was mathematically correct, for a closer look at the spatial properties of a laser pulse
all three dimensions are important while the temporal dimension can be neglected for this
description. So to compute the behavior of the beam close to a focus or considering the
divergence we should look at 1.7 but with a dependence on x,y,z and t:

E(x, y, z, t) = U(x, y, z)E0 cos(kzz − ω(kz)t) (1.22)

where U(x, y, z) is a scalar that gives the transversal beam profile. Assuming that U(x, y, z)
only changes slowly with z one can use 1.22 in the wave equation 1.6 and separate the
temporal terms:

(

∂2

∂x2
+

∂2

∂y2
− 2ik0

∂2

∂z2

)

U(x, y, z) = 0 (1.23)

This only holds for the paraxial approximation where ∂2U
∂2z

≪ ∂U
∂z . For normal geometries

of laser optics when no strong focusing element (f ≫ beam diameter) is employed, this
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approximation is valid. One set of solutions of 1.23 is called Gaussian beams and they can
be written as:

U(x, y, z) =
U0

√

1 + z2/ρ2
0

e−iθ(z)e−ik0(x2+y2)/2q(z) (1.24)

This solution can be plugged in 1.22 and one gets the electromagnetic field in three spatial
and one temporal dimension. The beam parameter q is defined by

1

q(z)
=

1

R(z)
− iλ0

πw2(z)
(1.25)

where ρ0 = nπw2
0/λ0 is the Rayleigh range, R(z) = z + ρ2

0/z is the curvature of the beam
waist, w(z) = w0

√

1 + z2/ρ2
0 is the beam waist, and θ(z) = arctan(z/ρ0) is the Guoy-

phase. Here w0 = w(z = 0) is defined on the z axis where the beam waist is smallest. These
formulas are only valid assuming a so-called TEM00 mode for the laser beam. However,
one can use this theory and add a term to take care of the non-perfect mode of the laser
beam:

w(z) = w0

√

1 + (M2
z

ρ0
)2 (1.26)

where M2 is the beam quality parameter that is equal to 1 for a TEM00 beam and larger
than 1 for all realistic laser beams. In section 2.3 a way to measure this parameter is
shown as well as the M2 values of our laser system.
This description is the basis for our later experiments for the characterization of the
spatial profile of the high-order harmonic generation radiation. More details on the exact
mathematical computation and experimental realization of soft X-ray wave-front analysis
is given in Chapter 4. The M2-parameter can be computed from the wave front of the
beam if the spatial intensity distribution is detected along with the wave front.
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1.3 Characterization and Generation of Ultrashort Laser
Pulses

One problem that is always present when dealing with ultrashort laser pulses is the problem
of measurement. In the introduction the temporal resolution was already introduced -
though in a very abstract way. For our laser pulse, the temporal resolution becomes
a very real problem because there is no electronic device such as an oscilloscope that
might accurately detect sub-ps pulses. Today, the fastest electronic switches are in the
regime of 100 ps. Therefore another question arises: How are these ultrashort light pulses
generated? These two questions, the measurement - or more precise the temporal and
spectral characterization - as well as the generating processes of femtosecond laser pulses
are treated in this section.

1.3.1 Autocorrelation

An intuitive approach to measure the shortest man-made events is to use a part of the
short pulse itself and measure the overlap between original and copy of the pulse. Like
taking pictures with a camera, it is either possible to use a quick shutter in order to detect
quick processes or the process is only illuminated for a very short time and the detector
measures continuously. This is pretty much the way how an autocorrelation works.
The laser beam is split up into two parts with approximately the same intensity. One part
goes through a delay line before spatially overlapping with the second part of the beam.
Now one can exactly detect the signal of the two beams in dependence of the temporal
delay that may be controlled very accurately. In our setup we use an piezo-driven closed-
loop actuator that has a spatial resolution along its axis of motion of 2nm (Piezosystem
Jena, PX100). This allows for a temporal delay precision of less than 10 attoseconds which
is fully sufficient. A scheme of the setup is shown in Fig. 1.7.

Figure 1.7: On the left is a typical setup of an interferometric autocorrelator using a non-
linear crystal for second-harmonic generation (SHG). The detector measures the intensity
of the the two temporally sheared pulses. On the right is a simulated IAC signal for a 25fs
Gaussian-shaped pulse.

To detect only the combined signal of both beams one can use different methods: second-
harmonic generation in a nonlinear optical medium or a large-bandgap photodiode. In
the first case, both beams are focused into a nonlinear crystal (eg. beta-barium borate,
BBO) and only the sum-frequency of both photons is detected with a photodiode. The
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alternative is to use two-photon photodiode that has a large enough bandgap so that only
two-photon processes contribute to the photocurrent while the single photons’ energies
are below the bandgap energy. While the photodiode is easier to handle it is less sensitive
because two-photon absorption is a much weaker process than sum-frequency generation
in a nonlinear crystal. However, in both cases the signal from frequency-doubling or
two-photon absorption depends quadratically on intensity. The overlap signal of the two
E-fields is given by

E(t, τ)res = E(t) + E(t− τ) (1.27)

where t is the time and τ is the temporal delay between the two pulses. If the two laser
pulses are coherent, which is generally the case, Eres(t, τ) is the result of destructive or
constructive interference. Because this interferometric footprint in dependence of the delay
is measured with the detector, this method is also called interferometric autocorrelation
(IAC). The intensity of the resulting E-field is

Iiac(τ) =

+∞
∫

−∞

| Eres(t, τ)
2 |2 dt =

+∞
∫

−∞

| (E(t) + E(t− τ))2 |2 dt (1.28)

In case Iiac(∞) and Iiac(0) are computed

Iiac(∞) = 2

+∞
∫

−∞

| E(t)2 |2 dt = 2

+∞
∫

−∞

E(t)4dt (1.29)

Iiac(0) =

+∞
∫

−∞

| (2E(t))2 |2 dt = 16

+∞
∫

−∞

E(t)4dt (1.30)

This ratio between the intensities at complete overlap at τ = 0 and at τ = ∞ gives a
characteristic peak-to-background ratio of 8:1 shown on the right in Fig. 1.7.
In the graph in Fig. 1.7, the quickly oscillating part is the carrier signal that is generated
by the interference of the two almost identical pulses (replica). The pulse duration can be
extracted from the envelope of the Iiac but no evidence of the exact temporal shape is given.
Thus all reconstructed pulse durations depend on the pulse shape. For example, if a sech2-
pulse is characterized, the ratio between τiac, the full-width at half maximum (FWHM) of
Iiac, and τpulse, the FWHM of the real pulse duration, is given by the deconvolution factor,
which in this case is ≈ 1.9. A list of more deconvolution factors for many pulse shapes can
be found in [3]. From section 1.1 we know that a pulse is only completely characterized if
temporal or spectral intensity and phase is known. From interferometric autocorrelation,
it is only possible to guess the phase of the original pulse [32] with a very low reliability
and only for the first three orders of φ. To detect the phase, a different method is needed
and the one used in our laboratory is described in 1.3.2.

1.3.2 Spectral Interferometry for Direct Electric-Field Reconstruction

Another method to characterize laser pulses is to make use of spectral interferometry
utilizing the SPIDER [33] technique. In the former setup for autocorrelation we detect
the temporal interference between two replica. It is also possible to measure the spectrum
of two identical pulses which propagate collinearly but have a time delay τ . Their frequency
components will overlap and interfere which causes a modulation in the resulting spectrum;
this is called spectral interferometry (SI). The average fringe-to-fringe distance in the
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spectrum is antiproportional to the delay between the pulses. The phase difference for
each spectral component is also encoded in the deviation from the periodic modulation of
the spectrum.
Now we assume that the spectrum and phase of one of the two initial pulses is known
whereas the second pulse undergoes some kind of unknown phase change. From spectral
interferometry of the two pulses, the phase of the second pulse can be obtained from the
modulation of the spectrum. The interference pattern ISI(ω) can be described by

ISI(ω) =| E1(ω) + E2(ω)e−iωτ |2 (1.31)

ISI(ω) = I1(ω) + I2(ω) + E∗

1(ω)E2(ω)eiωτ + E1(ω)E∗

2(ω)eiωτ (1.32)

ISI(ω) = I1(ω) + I2(ω) + 2
√

I1(ω)I2(ω)cos(Φ1(ω) − Φ2(ω) − ωτ) (1.33)

because it is a superposition of two pulses with e−iωτ being the phase delay caused by the
temporal delay τ . The ∗ indicates the complex conjugate of the E-fields. If one detects
the two single spectra I1(ω) and I2(ω) and subtracts them from the interference term, the
result is

S(ω) = ISI(ω) − I1(ω) − I2(ω) (1.34)

S(ω) = E∗

1(ω)E2(ω)eiωτ + E1(ω)E∗

2(ω)eiωτ (1.35)

S(ω) = 2
√

I1(ω)I2(ω)cos(Φ1(ω) − Φ2(ω) − ωτ) (1.36)

where Φ1(ω) and Φ2(ω) are the phases of the two pulses, respectively. The difference
∆Φ(ω) can be computed either directly or via Fourier transform from 1.34. The reason
for using the Fourier transform and extracting the ∆Φ from S(t) is that experimental
noise, which adds a large error, can be filtered very effectively in the time domain.

Up to now, the reconstruction of an unknown phase Φ2(ω) of a pulse is only possible
if the phase of the reference pulse Φ1(ω) is known. However, normally one wants to char-
acterize a pulse just by itself without providing a special reference pulse. The method that
was introduced by Iaconis and Walmsley in 1998 [33] shows a way out of this dilemma:
They suggested using the SI-setup described above but not only with a time delay be-
tween the pulses but also with a well-defined spectral shear Ω between E1 and E2. In
this case the SPIDER spectrum S(ω) is equal to 1.33, but with I2(ω) = I1(ω + Ω) and
Φ2(ω) = Φ1(ω+Ω). As before the phase difference ∆Φ = Φ1(ω)−Φ2(ω) can be extracted
from a SI-measurement. If Ω is sufficiently small and τ can be determined exactly, one
can write

∆Φ(ω) = Φ1(ω) − Φ2(ω) = Φ1(ω) − Φ1(ω + Ω) (1.37)

Φ1(ω)′ = lim
Φ1(ω + Ω) − Φ1(ω)

Ω
(1.38)

and get Φ1(ω) by simple integration. Since an infinitely small Ω is not accessible one
has to keep in mind the Nyquist ratio (see 1.39) and adjust Ω accordingly to get a valid
reconstruction of the phase. It is crucial that the chirped and thereby temporally stretched
pulse is much longer than the two replica so that each of them has a quasi-constant
frequency. On the other hand the two replica need to be temporally close enough, so
that the fringes recorded with a spectrometer can be detected separately. This is also
formulated in the Nyquist limit of sampling, which says that the maximal measurable
frequency is half the sampling frequency. Thus the spectrometer resolution δω needs to
be better than

δω =
π

τ
(1.39)
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in order to sample the spectral fringes completely. The setup used for our SPIDER mea-
surements is depicted in Fig. 1.8.

glas block

variable

delay

interferometer

spectrometer

nonlinear

crystal

focusing lens

or mirror
long stretched pulse

original delayed pulses

input pulse

Figure 1.8: Schematic of the setup for Spectral Interferometry for Direct Electric-Field
Reconstruction. The laser pulses comes from the left and the spectrally broadened pulse
and the two replica are overlapped in the nonlinear crystal with the sum-frequency being
detected in the spectrometer.

Measured SPIDER data is shown in Fig 1.9 where (a) is the recorded trace of an un-
modulated broadband laser pulse. The fringes indicate the spectral interferometry and
one can see the doubled frequency as X axis. In (b) the measured spectral intensity and
reconstructed phase versus wavelength are plotted. From this we computed the temporal
intensity and phase given in (c) which exhibits a pulse train of about 100fs. Because this
phase function is not smooth and continuous it can obviously not be compensated by a
prism or grating compressor.

(a) (c)(b)

Figure 1.9: A measured SPIDER trace is given in (a). (b) shows the spectral intensity
(top) and reconstructed phase (bottom) versus wavelength. In the right part (c) one can
see the temporal intensity distribution (top) and temporal phase (bottom) also plotted
versus wavelength. The phases are both plotted modulo 2π.

A third technique to measure the intensity and phase of a laser pulse is the frequency-
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resolved optical gating (FROG) [34]. It is basically an autocorrelation measurement with
a spectrally sensitive detector that does not only monitor the intensity changes but also
the spectra at different delays. For the reconstruction of intensity and phase an algorithm
is needed so no real-time reconstruction is possible. However, compared to the SPIDER
setup a FROG is relatively simple to built and implement and is a widely used and re-
liable tool. Since no FROG measurement is used in this work it is just mentioned for
completeness of the major three techniques to analyze ultrashort laser pulses.

A comparison between the three described techniques can be found in [35]. Conclud-
ing, both FROG and SPIDER allow good characterization of spectral phase and intensity
and thus the exact electric field while autocorrelation does only yield the pulse duration.
On the other hand, for both FROG and SPIDER some software and/or iterative fitting is
necessary which makes them vulnerable to numerical or fitting errors. The advantage of
the autocorrelation technique is its robustness and that no data evaluation whatsoever is
needed an the pulse duration can be directly read from the fringe pattern.

1.3.3 A state-of-the-art Laser system

To achieve pulses so much shorter than the fastest electronic switches some tweaking of
optical techniques is necessary. In 1966 mode-locking was demonstrated for the first time
and allowed pulses as short as 100ps [36]. It implies that the longitudinal modes in the
laser cavity are forced into a fixed phase correlation allowing stable temporally periodic
structures (pulses) to be emitted. This and the discovery of titanium-doped sapphire in
1986 [37] as a very broadband lasing medium led to smaller and easier-to-handle tabletop
high-power laser systems. The last major step to even higher intensities and shorter pulse
durations is Kerr-lens modelocking (KLM) which is illustrated in Fig. 1.10.
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Figure 1.10: Schematic of the Kerr-lens modelocking [38]: In a) one can see the self-
focusing of intense laser radiation in media. Part b) shows a cavity build for low peak
intensities, where high losses are caused by the barrier. In c) is demonstrated, that a lens-
like function of the lasing medium is minimizing the losses. And a single pulse contains
the most energy and therefore is focused optimally through the barrier.

As mentioned in 1.2.1, the optical Kerr effect leads to self-focusing of intense laser pulses
in dispersive media. If the cavity is detuned in a way that only high-intensity (pulsed)
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modes have low losses then all modes will sooner or later automatically merge into one
large pulse because of its high intensity. This allows for short pulse durations of about
12fs from the Ti:Sa-based oscillator (Femtopower Femtosource) with a central wavelength
of about 800nm. Usually, a solid-state laser runs in a continuous-wave (cw) modus and
needs to be ’locked’ once after the turn-on-procedure by slightly nudging the cavity mir-
rors. If the cavity is detuned a little bit from running under ideal conditions for cw, this
small perturbation results in different longitudinal modes entering a fixed-phase state; the
modes are locked.
The laser system used in this work consists of a the described oscillator that feeds a
800nm-Ti:Sapphire amplifier (Femtolasers Femtopower Compact Pro) pumped with a fre-
quency doubled Nd-YLF laser (Photonics Industries GM30) at 532nm with energies of 10
mJ at 1 KHz. The amplifier is based on the chirped-pulse amplification (CPA) technique
which was introduced by Strickland and Mourou in 1985. It allows much higher output
intensities of the laser system because the damage threshold of the gain medium is not
the limiting factor anymore. The principle is illustrated in Fig 1.11.

cw pump laser

2W Nd:YVO4 532 nm
Nd:YLF Laser

1kHz, 10 W, 527 nm

Ti:sapphire oscillator

80 MHz, 400 mW, 800 nm

12 fs pulse duration

stretcher amplifier compressor

0.8 mJ, 30 fs

800 nm, 1 kHz

250 ps 1 mJ

amplifier damage

threshold

Figure 1.11: Overview of the working principle of a modern single-stage-amplifier Ti:Sa
laser system. The oscillator generates short and high-repetition rate 800nm laser pulses
from which a single pulse is stretched, amplified and compressed again.

If such short pulses were amplified directly, the laser intensity would exceed the damage
threshold. To prevent this the pulses are chirped before amplification and then recom-
pressed afterwards (see Fig. 1.11). The 80MHz pulses from the oscillator are not all
amplified due to lower possible single-pulse energies since the pumped medium can only
provide a certain amount of photons. Therefore a Pockels cell picks one pulse per 80,000
and this 1kHz laser pulse is then amplified by a factor of approximately one million. Thus
the output is a 25-30fs laser pulse with a central wavelength of 800nm, a pulse energy of
0.8mJ and a repetition rate of 1kHz. For this work the shorter the pulses the better the
experimental conditions and so the next chapter will deal with one way to further decrease
the duration of these already ultrashort pulses.

1.3.4 Applications of Ultrashort Laser Pulses

Although still quite expensive, ultrashort laser systems have become useful tools in a
number of applications. In science, the high temporal resolution is used for time-resolved
spectroscopy in chemical or biological experiments. Here molecular vibrations or chemical
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reactions can be detected and to some extent even influenced by specially tailored laser
pulses. In material science, laser ablation utilizing femtosecond laser pulses shows some
advantages over ablation with longer pulses. Even though the fundamental wavelength
of the described system is fixed at 800nm, many applications allow the frequency con-
version towards longer (difference-frequency mixing) or shorter (sum-frequency mixing or
NOPA [39]) wavelengths. Conversion into a much higher energy regime will be described
in Chapter 3. Only a short overview over some scientific problems that are tackled with
the help of femtosecond lasers will be given here.
The broad spectrum linked with the high temporal resolution allows excitation of a su-
perposition of vibrational modes in molecules. Utilizing pump-probe spectroscopy the
created wave packet can be probed at various positions along its propagation along molec-
ular potential-surfaces [40]. Not only one can analyze this molecular structure but it is
also possible to influence chemical reactions using femtosecond laser pulses [41]. This led
to a complete new branch at the border between physics and chemistry called ’femto-
chemistry’ which was rewarded in 1999 with a Nobel prize to Ahmed Zewail [42].

In optical communication very often the question of how to convert light into an elec-
tronic signal arises. Not only the conversion but in an ideal case even ’steering’ electrons
with laser pulses [43] is a technique that is based on femtosecond laser systems. It was
demonstrated that shaped laser pulses can create and move electron wave packets on a
nanostructured surface. This opens a route towards real quantum computers where quan-
tum mechanics meets conventional integrated electronics.

When it comes to metrology, the measurement of one dimension with very high preci-
sion, one can also employ a femtosecond laser system. Hänsch et al. [44] made use of
the ’frequency comb’ generated by femtosecond pulse trains with a fixed carrier-envelope
phase. With these frequency combs it is possible to link macroscopic microwave frequen-
cies used in our everyday life with the high precision of atomic clocks [45]. John L. Hall and
Theodor W. Hänsch received the Nobel prize “for their contributions to the development
of laser-based precision spectroscopy, including the optical frequency comb technique” in
2005.

One last application with a close link to the scope of this work is the use of femtosec-
ond laser pulses for high-order harmonic generation (see Chapter 3). These soft X rays
do not only carry the laser’s properties, i.e. high spatial and temporal coherence along
with high intensity, but also its temporal resolution. In fact, the duration of the generated
pulses can be as short as a few hundred attoseconds [24, 25, 26] and even single pulses
with this short duration have been created [46, 47, 48]. With this magnificently short light
pulses completely new insights into inner atomic structures can be gained [49].
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1.4 Evolutionary Algorithm

Very often the mathematical question arises of how to find a maximum of some global
quantity F . In this case F is a function of n parameters xn with x′n being the set of
parameters that produce the global maximum. If the xn are unbounded continuous pa-
rameters, as it is the case in general for our optimizations, finding the optimal x′n is a
challenge. Furthermore, F (xi) often depends on the xi in nontrivial ways and then not
even local maxima can be analytically figured out by setting the partial derivatives ∂F/∂xi

equal to zero. Thus it is necessary to employ numerical, computer-based, and often heuris-
tic search algorithms but they are frequently trapped in a local maximum.
The gradient-walk method, for example, will start at an arbitrary position in the n-
dimensional space (x1, x2, ...xn). From then, it follows a constant ’uphill movement’ which
is defined by the direction of the gradient vector ∇. This leads to a maximum at which the
gradient vanishes. The path that has been covered resembles a one-dimensional line from
the starting to the ending point in search space. Since the search space is n-dimensional,
even multiplied applications of this algorithm would not sample a significant part of it and
finding the global maximum would be a lucky strike.

Evolutionary algorithms as used in this work are in a way ideal solutions to this problem.
They are well-suited for global maximum search in a very high-dimensional search space.
In a way, they mimic the natural selection process that has created all known forms of life
on this planet. Any creature on earth is characterized by a very large set of parameters,
commonly called genes. Here we are disregarding the fact, that the same creatures carry
slightly different genetic information but for sake of simplicity, one creature is fully speci-
fied by a sequence of n genes (x1, x2, ..., xn). For some given conditions (climate, feed/prey,
habitat), a creature having the best genetic sequence is best adapted; the environment
serves as a function F (xi) producing higher and higher values F for individual creatures
that are increasingly well adapted to the particular conditions. Evolution is therefore a
constant optimization procedure in this n-dimensional search space. Nature found a way
to manage this large search space by following a few principles building the modern foun-
dation of an evolutionary algorithm:

• “Survival of the fittest” - This is the well-known Darwinian expression for the nat-
ural selection according to which more adapted creatures spread their genes more
successful that unfit ones.

• Genetic crossover will help currently best adapted individuals to ’merge their ex-
perience’ and produce offspring, that carries positive genetic information from both
parents.

• Mutation is very important to prevent a narrowing of the search space. Individuals
can statistically undergo changes of their set of genes which may in principle allow
to reach any spot in the search space.

Iterative application of these principles allows for optimally adapted individuals in nature.
A numerical and computer-based realization of this algorithm is illustrated in Fig. 1.12.
After some iterations, the algorithm converges to a global maximum of the underlying
subset of the search space. Of course, we also do not know whether we found the global
maximum of the complete search space.
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Figure 1.12: Schematic of the working principle of an evolutionary algorithm. In this
example, one individual is defined by four genes (letters) that can take values from a to z.
The goal of these ’word-individuals’ is the word goal itself. The algorithm starts at the
top with an initial population, being called generation 0, in a blue dashed frame. From
this, the fittest individuals - here the fitness has to be defined - are selected; in our case
they have to resemble the letters g-o-a-l. It is noteworthy, that the exact definition of the
fitness has a huge impact (Does the order matter? Is ± one letter ok?) on the progress of
the algorithm.
From these selected individuals (so-called ’parents’) the new population can be generated
by cloning, mutation, and crossover. Thus generation 1 is created (blue dashed frame on
the left) and the cycle starts again with the selection process.

Transferred to our optimization problems, we are dealing with a huge search space includ-
ing for example all parameters of the electric field of a laser pulse. Even if the Hamiltonian
of a nonlinear quantum system is known, F still depends on the electric field in a highly
nontrivial way and cannot easily be computed. For chemical quantum systems, optimal
control theory is dealing with this and tries to solve the optimization problem analyti-
cally. While this is a good theoretical approach, in experiments the systems are not as
well characterized so that very often the exact Hamiltonian is not available. Additionally,
harmonic generation is not just a quantum mechanical process but macroscopic effects
(e.g. phase-matching) have to be taken into consideration, too. Thus the Hamiltonian of
a single gas particle AND the wave equation would have to solved in a self-consistent way
and this exceeds the modelling capability today. But even if a single ideal electric field
could be computed, it would still have to be reproduced by the laser system and the pulse
shaper, which both have their limitations.
Therefore in practice we restrict ourselves to parameterize the laser pulse so that the xi

can be attributed to specific experimental settings or parameters. The resulting F (xi)
is measured experimentally and an evolutionary algorithm provides the tool to solve this
multi-dimensional optimization problem ’in situ’. Thus we do not know the systems exact
control scheme or the sub-fs processes but it is nevertheless possible to steer the system as
previously described. In Fig. 1.13 one can see a typical setup used to shape laser pulses



22 CHAPTER 1. LASER PULSES AND NONLINEAR OPTICS

arbitrarily to prepare them for a certain experiment and maximize whatever the goal is.
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Figure 1.13: Schematic description of an iterative optimization using an input pulse that
is modified by a pulse shaper before it enters the experiment. Its results are then fed back
to the computer that controls the pulse shaper. Thus an optimal pulse shape can be found
without knowing the quantum mechanical explanation.

As external ’tweaking parameters’ one can change the cloning rate, that is the amount of
individuals, that are taken over to the next generation. Normally this is kept constant in
our evolutionary algorithm at a level of 10%. The second important number is the mu-
tation probability (also mutation rate) which should not be too large to prevent positive
and negative mutations to counterbalance. This can occur when for every positive change
at least one negative change is introduced and thus the fitness is not necessarily higher
than for the unchanged individual. On the other hand if the mutation rate is too little,
only local optima rather than the global maximum are discovered. A second mutation
parameter is the mutation amplitude (e.g. in %) that also needs to be chosen reasonably
to balance stagnation with overly-large progress. Crossover, corresponding to sexual re-
production, is not an essential part of our evolutionary algorithm but may help at certain
difficulties. The crossover rate normally is adjusted to the exact experimental conditions
or left out (in some of our experiments). Both crossover and mutation are usually using a
percentage (the fittest part) of the whole population as parental individuals. This ’parent
rate’ is another possibility of fine-tuning.

A big advantage of the evolutionary algorithm over other optimization methods is the
self-teaching effect because of the ’genetic pool’ of information that is always forwarded
to the next generation. For our applications this is extremely useful because we do not
have an analytical solution to our problem but have to rely on the algorithm to find it.
Another advantage of this self-teaching algorithm is that one can neglect the different
phase-to-wavelength ratios. For example, the fact that a 2π jump for 800nm is a 2.2π
jump for 900nm will automatically be included in the optimization.



Chapter 2

Adaptive Pulse Optimization

As previously mentioned a major part of this work is about preparing laser pulses as good
as possible for their application. For high-order harmonic generation (HHG, see Chapter
3) the duration of the laser pulse is a crucial parameter. In this chapter our approach to
compress the pulses temporally as well as to optimize them spatially is described. From
the introduction and 1.1 we know that a broadening of the spectrum e.g. with SPM (1.2.3)
must be achieved in order to decrease the temporal duration. For this, traditionally, the
laser pulse is coupled into a hollow glass fiber which is filled with a gas at defined pressure.
The nonlinear interaction between laser pulse and gas leads to a broadened spectrum as
well as a quadratic chirp due to nonlinear dispersion. The glass tube serves as a waveg-
uide to maintain a high intensity over a long distance. With a prism compressor, a set of
chirped mirrors or an adaptive pulse shaper this chirp is minimized in this work to realize
laser pulses as close to the Fourier limit as possible (described in section 2.2).
What is relatively new in the second part of this experiment is the use of a different
technique for spectral broadening: We use an Ar-filled tube without a hollow-core fiber
where the laser creates a filament (see 1.2.2) in which the SPM takes place. This will be
described in section 2.3 in more detail.
The advantages versus disadvantages between glass capillary and filament are briefly
summed up here:

hollow-core fiber filament

⊕ mode selection ⊕ high transmission (≥90%)
⊕ good beam profile ⊕ very robust
⊖ high losses (≈ 40%) ⊕ good scaling
⊖ sensitive coupling ⊖ spatial chirp

We implemented an experimental setup to compare the ’traditional’ capillary and a newer
filament stage that can be seen in Fig. 2.2. In the first part of this chapter, the pulse
shaper used for all optimizations is described. Then SPM in a gas-filled hollow-core fiber
and the ’newer’ filementation technique to obtain compressible laser pulses will be ex-
plained in a little more detail. The last part is a brief explanation why and how we could
improve the evolutionary algorithm in terms of parameterization and progression.

23
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2.1 Pulse Shaping using a Spatial Light Modulator (SLM)

While the temporal compression of laser pulses using chirped mirrors or a pair of prisms
is straightforward ([50, 51]) we chose to employ a more flexible device in order to control
our laser pulse properties. Our spatial light modulator Hamamatsu Photonics PAL-SLM
X8267 (details see Appendix A) is a reflective pulse shaper. It enables us to arbitrarily
introduce a phase delay of zero to three π for 800nm at a specific position of the active
area. In theory, this phase amplitude allows for arbitrary phase masks because every de-
sired phase can be displayed modulo 2π.

Figure 2.1: Photograph of the 2-D SLM Hamamatsu Photonics X8267. The active area
is the 20x20mm2 squared golden mirror on the left; imaging LCD mask, laser LED, and
connectors are behind on the right side.

The active area consists of 768x768 pixels which are addressed like a monochrome com-
puter screen: each pixel has a ’depth’ of 8 bit corresponding to green values from 0 to
255. The reflectivity of this reflective area is larger than 90% for wavelengths from 700 to
1000nm. When used below 700nm, the absorption grows too large for an effective modula-
tion. In addition to low reflectivity, at wavelength larger than 1000-1100nm the maximum
phase modulation gets smaller than 2π. Another technical reason for our limitation to
a bandwidth of 200nm was the grating-based setup: if a broader spectrum were to be
supported, one pixel would shape to many frequencies. So in terms of a compromise, we
employed a blazed gold grating with 300 groves/mm and a cylindrical mirror to project
the Fourier-plane onto the SLM. Thus the spectral resolution is good enough (< 0.5nm
per pixel) while being able to shape a bandwidth of 200nm.
Also, too high intensity can not only damage the reflective surface but because the phase
mask is ’written’ by a backlight, the laser impinging to the front influences its phase, too.
This results in another ’self-phase modulation’ (different from the one explained in sec-
tion 1.2.3) because the laser’s intensity writes its own phase modulation even without the
intended ’writing light’. For our experiments this means that we have to spread the laser
beam as good as possible over the whole phase modulator to prevent this ’self-writing’. A
complete characterization of this SLM was done in the scope of [50]. Our pulse shaper is
addressed like a 768x768-pixel computer monitor via VGA cable but only the ’green’ pin
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carries the necessary information. Therefore the images of the phase front are monochro-
matic green pictures where a phase offset of 2π ∼ 255 ∼ brightgreen and 0π = 0 = black.
The reason for 2π being not always bright green are the different wavelength we are deal-
ing with.
When used as a temporal pulse shaper (in sections 2.2.2 and 2.3.1) the SLM is placed in the
Fourier plane of a prism or grating compressor [52]. By applying different delays at differ-
ent frequencies it is possible to change the spectral phase arbitrarily. In the spatial shaping
setup (section 2.3.2 and 2.2.2), the laser pulse is simply reflected by the active area like
from a mirror surface. This allows to form the wavefront in a very exact manner to match
its special purpose or correct minor irregularities. Naturally, a combination of both would
allow the most promising approach and in section 2.2.2 this is experimentally realized, too.
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2.2 Optimization after a gas-filled hollow-core Fiber

To compare this SPM via pulse propagation in a gas-filled hollow-core fiber with the later
filament, we built a ’two-mode’ setup for direct comparison. This is shown here:

pulse shaper

PAL-SLM

2-photon

photodiode

evolutionary algorithm

phase

profile

noble gas

spectrally broadened

and chirped pulse

noble gas

unfocused

laser beam
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Figure 2.2: This shows our laboratory setup with the possibility to use a hollow glass
capillary or a filament for spectral broadening. Either way, the spectrally broadened laser
pulses travel through our pulse shaper unit with the PAL-SLM as the high-resolution
phase shaper. Afterwards the pulses are detected with a 2-photon photodiode. The whole
optimization procedure is monitored by an evolutionary algorithm to achieve the best
possible result (global maximum=Fourier-limited pulse) from the given spectrum.

2.2.1 Temporal Shaping

From other experiments [53, 54] we know that octave-broad spectra in the visible/NIR and
compression down to < 4fs have been successfully demonstrated. However, the energy of
the dramatically shortened pulses is mostly on the order of less than 300µJ . Thus, our
first approach to temporally shorten the laser pulses was to couple them into a gas-filled
hollow-core fiber with a diameter of ≈ 200µm (various sizes between 150 and 250 µm
were used) and a length of about 50 − 100cm. At moderate pressures p ≈ 200 − 400mbar
we could observe very clear self-phase modulation around 800nm (see a) in 2.3). The
energy throughput was measured to be between 40% and 55%. Most of the losses can
be attributed to coupling the laser into the capillary and losses from scattering due to
imperfections of the fiber. Ideally we could swap the beam from filament to hollow-core
fiber and back to measure for example spectral phase and intensity after both. Exper-
imentally, the coupling into a 200µm fiber and exciting the proper modes (more about
mode excitation in 3.2.1) is much too sensitive to be repeatable without new adjustment.
Spectral intensity as well as overall throughput depend strongly on proper adjustment
of the coupling process. A typical spectrum with a good beam profile (not shown) and
spectral broadening can be seen in 2.3.
From Fourier transformation of the spectrum in Fig 2.3 a) we can see that the two deep
holes will lead to pre- or postpulses in the time domain. Later on, this will be shown in
a measured IAC. On the right part of Fig 2.3, it is interesting to note that although the
32x32 planes were free to move in any direction, they clearly favored changes in the hor-
izontal direction. Vertical changes are much smaller which leads to an overall stripe-like



2.2. OPTIMIZATION AFTER A GAS-FILLED HOLLOW-CORE FIBER 27

(a) (b)

Figure 2.3: a) shows the spectral intensity of the laser pulse after propagation through
the gas-filled hollow fiber. In b) the phase mask after optimization is given. One can
establish a link between pixels and wavelength but the optimal phase is found arbitrarily.
Also visible is the limit of our setup to a bandwidth from about 695nm to 890nm.

phase modulation. From the background of a horizontally expanded spectrum this proves
that the algorithm found the more important parameters automatically. An explanation
why we used planes instead of simply pixels will be given in section 2.4.
Using the optimization setup described above, we first pre-compensated any chirp of the
pulse by adjusting the pulse shaper setup for a maximum signal at the 2-photon photodi-
ode. This we did by fine-tuning the grating-cylindrical mirror distances and thus changing
the quadratic phase introduced/compensated by the setup. By applying a flat phase to
the SLM this manually optimized signal was measured to be the reference signal. But this
reference was not only measured once at the beginning of the optimization but once per
generation of the evolutionary algorithm. Doing this we could make sure that intensity
deviations of the laser system or changes of the coupling into the fiber would not distort
our optimizations extremely. Of course a certain stability of the whole system (laser, spec-
tral broadening, pulse shaper) is necessary in order to perform these several-hours-long
optimizations.
The results of our optimization are shown in Fig. 2.4.

(a) (b)

Figure 2.4: Interferometric autocorrelations of the laser pulse before (a) and after (b)
optimization. The inset in (b) shows the development of the fitness as computed and
optimized with an evolutionary algorithm.
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From the inset in 2.4 b) one can see the constant increase of the fitness of the fittest
individual (grey) while the reference (black) stays at approximately the same level. The
reference is measured once per generation by applying a flat phase to the SLM and its
fitness corresponds to the black line. The initial pulse in 2.4 a) is about 12fs long but
has a quadratic chirp which can be seen from the hill-shaped ’background’ fringes. From
now on, this will be referred to as ’wing-structure’ because of its bird-like shape. The
already-short pulse duration was achieved by adjusting the pulse-shaper setup to maxi-
mally compensating the phase (see text above). But it was only after optimization with
the evolutionary algorithm that these wing-structures are brought down to weak pre-
and post pulses. As mentioned before, using this spectrum it is not possible to completely
get rid of these pedestals. The pulse duration in 2.4 b) is only a little shorter at about 11fs.

All in all, it was possible to run optimizations by using the SLM as temporal phase
shaper and thereby flattening the spectral phase as presented in 2.4. There is no directly
measured phase but from the pulse duration being close to the Fourier-limit of the spec-
trum a nearly flat phase can be safely assumed. The good temporal structure and useful
beam profile unfortunately come along with drawbacks like low energy-throughput (with
spatial filtering less than 30%) and tedious alignment procedure before and during every
optimization.

2.2.2 Spatio-temporal Shaping

Like many amplified laser systems, our laser has a vertical drift of some mrad/hour. For
most experiments this is not crucial, but using a hollow-core fiber with a diameter of only
a few hundred µ, it can be critical. Not only does the throughput change but the whole
coupling process of the focused laser beam into the fiber is somewhat different. Very of-
ten, high-order fiber modes are excited which then leads to complex intensity profiles with
spatial chirp after the capillary. To compensate this effect, one idea is to let the SLM work
as a 2-D spatial shaper and not only 1-D in the time domain.
Up to now the SLM was capable of applying a temporal phase and at the same time shape
the laser pulse spatially in one dimension (vertically) in the Fourier plane. In [50] a further
improvement of the pulse shaping setup was suggested by dividing the active area of the
phase shaper into a spatial and a temporal part. Because the SLM is not sensitive to
where and how often the laser beam is reflected, only the software needs to be aware of
the double shaping process. On the upper part the laser pulse should be shaped spatially
(means: directly applying a phase to the beam profile) while on the lower part the tem-
poral shaping takes place. We changed the setup to make this dual shaping possible but
due to more reflections and geometrical reasons the throughput of the complete shaper
was reduced to 50%.
Since the evolutionary algorithm is trying to modulate the beam spatially so that the
signal of the photo diode is maximized, it will start focusing the laser beam. This smaller
spot size on the diode can increase the photocurrent and thus seems very ’fit’ although
the pulse shape has not improved. A too small spot size can also bring the photo diode
into saturation and make any further optimization impossible. To get rid of saturating
the diode, we had to use more attenuators which lowers the signal-to-noise ratio. The fo-
cusing could be prevented by placing a pinhole where the detection setup was before and
moving the photo diode backwards. By this spatial filtering the laser beam had to pass
the pinhole always with the smallest diameter (focus) because otherwise the photocurrent
would drop. Now the spatial shaping was somewhat restricted because it could not change
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the divergence of the beam anymore.
The first realization we built had the spatial modulation before the temporal modulation.
This led to the problems described above but after fixing them the spatial shaping in-
fluenced the way the laser hit the temporal section. By changing the spatial profile the
positions of the spectrally dispersed beam on the LCD was shifted accordingly. This did
not give the frequencies a fixed position on the modulation area and the algorithm was not
able to produce reasonable results. The solution to this was simply to do first temporal
then spatial shaping, because the shaping in the Fourier plane does not influence the beam
profile in the far-field directly.

(a) (b)

Figure 2.5: Spectrum (a) of the laser pulses after propagation through the fiber and the
pulse shaping setup. In (b) is the Fourier-transformed temporal intensity distribution with
a pulse duration of ca 9fs. The strong modulation of the spectrum causes the sidewings
in the time domain.

The spectrum displayed in Fig. 2.5 was used because it showed a good long-term stability
and allowed optimizations up to 1000 generations (∼ 7h). Sometimes minor adjustments
were necessary to compensate the laser drift, but overall the reference is quite constant
(see Fig. 2.6 (b)).
In Fig. 2.6 (a), one can see the two-dimensional phase mask that was found to be the
optimum for a minimization of the pulse duration. The spectral shaping is done in the
upper part where the wavelength is plotted and again one can see the stronger horizontal
than vertical modulation like in Fig. 2.3. In the lower part the spatial modulation is
performed and the circle indicates the center of the incident laser beam.

(a) (b)

Figure 2.6: Phase mask (a) after the optimization with the goal of the shortest possible
pulse duration. (b) is the fitness curve over the complete 1000 generations.
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In Fig.2.6 (b) the fitness of the fittest individual is showing some dips at evenly spaced
generations. This can be attributed to the doubling of the resolution at certain times.
Because the mutation rate was controlled manually, after doubling the genes and not
changing the mutation rate the whole population consisting of only 10 individuals was
affected by some changes. This rate had to be changed by hand in order to prevent signal
degradation. Later in section 1.4, it will be demonstrated that the modulation rate is best
adjusted to the resolution whenever it is changed.

(a) (b)

Figure 2.7: Traces of the interferometric autocorrelation of the reference laser pulse (a)
and the spatio-temporally optimized pulse (b). Although the pulse durations are not very
different (both about 11fs), unlike the fittest pulse, graph (a) reveals a strong background
chirp. The grey line in (b) corresponds to the autocorrelation trace of the bandwidth-
limited pulse from the spectrum in Fig.2.5.

In Fig. 2.7 two IACs of the reference pulse and the fittest pulse are presented, respec-
tively. The strong quadratic chirp (giving the hill-like background structure in (a)) can
be reduced significantly to an almost flat temporal profile. Only small wings in the fittest
pulse are remaining and they are caused by a modulation of the spectrum as before in
section 2.2.1. The pulse duration could be compressed to about the Fourier-limit which in
this case is about 9fs. The fact, that our achieved pulse duration seems to be less than the
bandwidth-limit is probably caused by suboptimal experimental conditions. For example,
even though the spatial chirp could be minimized using this setup, it is still present. This
is very likely to be the reason for the autocorrelation amplitude ratio to be not 8:1 as
theoretically expected (compare section 1.3.1).
Another quite substantial problem is due to the setup and the SLM itself: Spatial modu-
lation of a broad spectrum is problematic even if the reflectivity is still high enough. The
LCD-based technique implies a wavelength-sensitive index of refraction and therefore two
different wavelength at one spot undergo different phase shifts.
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2.3 Optimization of the Filament

Since about 2004, many workgroups started investigating the use of femtosecond filamen-
tation for pulse compression [8, 55, 56, 57, 58, 59]. Rarely, even self-compression of the
laser pulse in the filament without any further compression device could be measured [60].
A main attraction of the filament is the ultrabroad generated spectrum that exceeds up
to 2 octaves [61, 62] and could be created in air [63]. However, it is not the case that
filamention is superior to the other technique but both have different advantages and
disadvantages [64]. During the work in this field the two methods were applied but for
simplicity reasons from this point on a filament in Ar is used as spectral broadening device
if not stated differently.
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Figure 2.8: Here are several spectra after the filament in dependence on the Ar-gas pressure
in the setup; one can see a distinct blue shift at high pressures. The used lens has a focal
length of 1.0m.

Some typical spectra recorded after the filament are shown in Fig. 2.8. One can see that
the spectral broadening (SPM) is larger with increasing gas pressure due to n2 depending
on the density of the medium. But the pressure can not be adjusted arbitrarily to match
the desired spectrum because according to equation 1.18 the breakdown-intensity is also
depending on n2, but inversely proportional. When P > 3 × Pcrit, we know that mul-
tiple filaments can be seeded. Normally, this results in an inhomogeneous beam profile
sometimes with an additional spatial chirp. We could easily examine the transition from
no filament at 0 to ≈ 500mbar, to a single filament from about 500mbar to 1500mbar
and then to multiple filaments at pressures above 1500mbar. Of course this depends on
the pulse energy, which was set to 700 ± 50µJ for these observations. Since we are using
a peak power of ≈ 25GW we would expect the beginning of multi-filamentation in air
already at fairly low pressures of around 1.0bar. It is therefore important to note, that
other parameters like beam characteristics (ellipticity [16], diameter [15], wavefront [17]
or phase offset [65]) also have a strong influence.

In Fig 2.9 one can compare the different beam profiles after the filament in dependence
on the gas pressure. Clearly the more homogeneous beam profile with only one intense
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Figure 2.9: Beam profiles recorded after the filament at different pressures with same
input power. The pressure in a) is 1000mbar, in b) 1300mbar, in c) 2000mbar, and in d)
2400mbar. The colors are recorded with a normal CCD camera with an IR-filter. There
is a clear tendency from low pressures to high pressures that the intensity profile gets
inhomogeneous and very un-Gaussian.

point (top left in Fig 2.9) breaks up into a distorted center and even multiple spots with
equally high intensities occur (lower right in Fig 2.9). As mentioned in the caption, in
Fig 2.9 the beam profile is captured with a low-resolution, commercial IR-insensitive CCD
chip. To get a more detailed analysis and not be irritated by false-color representation,
the crossections of the beam are plotted in 2-D in Fig. 2.10.

Figure 2.10: Analytical presentation of the beam profiles at different gas pressures. At
1000mbar only one central peak is visible, while at a slightly higher pressure (1300mbar) a
neighboring peak grows largely. At 1400mbar the two peaks developed into a horizontally
extended high-intensity region with steep slopes. At 2000mbar, there are clearly more
focal spots indicating multiple filaments.
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To summarize our results concerning multi-filamentation in dependence on pressure and
laser power (although this is not shown here), we can sketch pressure versus laser power
and get a schematic like in Fig 2.11.

Figure 2.11: Simplifying map that shows our empirical findings on when multifilamentation
occurs. There is a pressure/laser power region in which a single filament seems to be
reasonably stable.

This is a purely empirical scheme based on the critical pressure/laser power at which the
one-peaked profile turns into a ’smeared’ peak and ultimately in many intensity peaks.
For the map in Fig. 2.11 we observed the beam profile with a CCD camera and as soon
as the single brightest spot started to blur or change in size, we noted the beginning of
multiple filamentation. The lower limit is simply set by spectral broadening and white
light generation, which is a typical indicator of a filament. One can see, that within a
certain pressure ’bandwidth’ (at a given laser power) we can expect no multiple filamen-
tation and this is the regime where our future optimizations will be performed. Naturally,
the transitions from no filamentation over a single light filament to multiple filamentation
are not as well-defined and sharp as shown in Fig. 2.11.
Note that the very broad spectra shown in Fig 2.8 are all within the multi-filamentation
regime on this map. This demonstrates again, that after dramatic spectral broadening in
a filament with high gas pressure one cannot use the complete beam for further experi-
ments. How to prevent or at least limit this inhomogeneity is shown in section 2.3.2.

For our application of the laser pulse we need a Gaussian-like (see section 1.2.5) beam pro-
file that is easy to focus. In order to measure the focusability of our spectrally-broadened
pulses we used an M2 measurement: The laser is focused and at various points along the
axis of propagation the beam profile is recorded. These beam profiles are then analytically
fitted with a Gaussian to get the FWHM at the different z steps (see Fig. 2.12).
The computed M2 parameter from Fig 2.12 before the filament is 1.18±0.91 and after the
filament is 1.21±0.36. One can see that the error is comparably high (keeping in mind the
least possible M2 value of 1.00) but the main information is that the laser modes do not
change enough to influence the focusability in a negative way. So even if the computed
M2 values are not correct, we can definitely conclude that the modal structure after the
filament is not significantly worse.
For analysis of this data we used the software Origin which performed the nonlinear fitting
with the Levenberg-Marquardt algorithm [66, 67]. This fit also gives errors of the fitting
parameter M2 which are the errors named above.
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Figure 2.12: M-square measurement conducted before and after the filament. Each plot
shows the beam waist (FWHM of a beam crossection) versus distance and a fit to compute
the M-square parameter.

At the beginning of section 2.3, the high transmission of the filamentation technique in
contrast to SPM in gas-filled hollow-core fibers is mentioned. The following experiment is
straightforward: We detected the laser power immediately before and after our gas-filled
tube, calculate the energy throughput and it shows the overall very high throughput in
our pressure regime (Fig 2.13).
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Figure 2.13: Energy throughput plotted versus gas pressure. The higher the gas pressure
the more absorption takes place and less energy is transmitted. But even at p = 2bar the
transmission is larger than 90%.

In contrast to spectral broadening with hollow-core fibers where transmission is at most
50 − 60%, with the filament losses < 5% are possible if the correct single-filament regime
is used.
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2.3.1 Temporal Shaping

In Fig. 2.14 a schematic illustration of our setup is shown. Our laser beam is focused
using a 1.3m focal lens into the gas-filled tube. Here SPM (1.2.3) broadens the spectrum
and provides the possibility to decrease the pulse duration. With a grating it is possible
to separate the different spectral components and via a cylindrical mirror each wavelength
is focused onto the SLM. Because the pulse shaper is placed in the Fourier plane a very
high spectral resolution for modulating the phase can be realized.
In the normal temporal shaping setup only one dimension (the horizontal one - vertically,
every pixel has the same phase value) of the active area is used.
As described before, we can now apply arbitrary phases to selected wavelengths in order
to shorten the pulses. After the SLM the spectral components are recombined using the
same grating and the final laser pulse can be characterized with the SPIDER technique
(1.3.2).
Since we have a resolution of 768 vertical lines with each having values from 0 to 255
(corresponding to zero to two pi, respectively), a lot of computing power is needed for
optimization. Basically there are two methods to optimize the pulse duration with this
setup: First one can maximize a signal that is inversely proportional to the pulse du-
ration (e.g. the second harmonic signal [50, 51]) or one can analyze the spectral phase
and apply it with opposite sign to the phase shaper. While the first idea is usually real-
ized with a time-consuming evolutionary algorithm (reference) we decided to choose the
seemingly more efficient way of applying the inverted phase to the SLM. To compare this
method with the well-established optimization via evolutionary algorithm we did such an
’unguided’ optimization as well and this will be described at the end of this section.

Figure 2.14: This setup shows our compression stage using filamentation and the SLM
as a variable dispersion compensation device. After SPM in the gas-filled tube we use a
grating to separate the different wavelengths and then image them onto our pulse shaper.
The success of this shaping is monitored by a SPIDER from where spectral phase and
intensity is given to a PC. Here we use an evolutionary algorithm to improve the shaping
process in a closed loop.

One problem we quickly faced was that it is nearly impossible to measure the spectral
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(a) (b)

Figure 2.15: On the left one can see the measured spectrum after spectral broadening that
can be used for our compression experiment. On the right the spectral phase is plotted
versus wavelength and at different iterations.

phase at high resolution and then apply it inversely to the corresponding wavelength in
one iteration. An easy way to solve this was to do it in several ’steps’. The initially
measured spectral phase is inversely applied to the pulse shaper, the result is measured
with SPIDER and from this result a new phase mask is computed. The first iterations
turned out to approach a flat phase quite fast but not very accurately but with enough
repetitions and smaller phase corrections the resulting phase begins to get comparably
smooth.
In Fig. 2.15 the result of this experiment is presented. The left part (a) shows the mea-
sured spectral intensity used for this compression and the right part (b) shows the spectral
phase after different iterations. While the initial phase features a clear edge at 790nm, it
is possible to correct this to a more smooth and flat phase as desired.

The driving force behind these experiments was to generate as-short-as-possible pulses
with the given spectra while maintaining a well-enough beam profile. Although the spec-
tral phase in Fig 2.15 is reasonably flat the spectrum is quite modulated which results in
pre- and postpulses in the time domain. Thus we decided to use a not-so-broad spectrum
to get short pulses with a very good temporal structure (see Fig 2.16). Here the initial
phase is not as bent as in Fig 2.15 and the phase could be corrected in a way that its
deviation is smaller than π

6 from 740nm up to 860nm. This resulted in a pulse as short
as 15 ± 1 fs without any noticeable pre- or postpulses. The latter is very important for
harmonic generation since the ionization potential is changing dramatically for pre-ionized
atoms. The Fourier-limit of this spectrum is slightly below 14fs FWHM, which is in good
agreement with the result from Fig. 2.16 b). The phase oscillation at about 790nm could
not be corrected, even if the applied phase was manually optimized. That was the last
part of this work: We did modulate the phase manually to optimize the pulse duration.
We simply applied a phase at a certain (estimated) wavelength and watched the result via
SPIDER. Step by step it was possible to flatten the phase very much like before. As ex-
pected, this yielded no shorter pulses than after iterative computer-assisted optimization
while being much more time consuming.

For the second approach we used the evolutionary algorithm to maximize the photo cur-
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(a) (b)

Figure 2.16: In (a) the spectral intensity (in the upper part) and the spectral phase (in the
lower part) are plotted versus wavelength. Part (b) shows the resulting temporal intensity
of the laser pulse. The duration is ≈ 15fs with almost no pedestals before and after the
pulse.

rent of a GaAs diode, which bandgap corresponds to two-photon absorption of 700nm to
900nm photons. Here we had the problem of one-photon excitation resulting in a signal
(photo current) from the diode because of a too broad spectrum. As seen before in chapter
2.8, we have a lot of blue shift which results in spectral components down to 400-500nm
even in the single-filament regime. This is significantly different after using a gas-filled
hollow capillary, where the spectrum broadens symmetrically around the fundamental
wavelength (800nm). Although there is not much spectral intensity below 600nm after
the filament, it is enough to create disturbing one-photon excitations.
Nevertheless, some optimizations of the pulse duration were performed by simply using
the signal from the GaAs diode as fitness. Here we used an evolutionary algorithm to let
it find the (global) maximum of the fitness. Thus the SPIDER setup is not used directly
for the optimization, which can be regarded as an advantage because of its complexity
and sensitivity to misalignment.

2.3.2 Spatial Shaping

As we have seen in Fig. 1.3 (a) and in Fig. 2.10, while filaments feature strong SPM they
also clearly distort the beam profile.
One can not only see the not-so-radial-anymore intensity distribution but additionally
different spots of the wave front have differing spectral intensities. We refer to this as a
’spatial chirp’ because here various wavelength differ not in time (as in 1.4) but in space.
This posts a serious problem because if the spectrum varies over the wavefront, the phase
and thereby the pulse duration is also not constant over the whole pulse front. We mea-
sured this by placing a pinhole before our SPIDER spectrometer and roughly scanning the
laser beam in 3x3 positions (see Fig. 2.17). A complete SPIDER pulse characterization is
not necessary in such a situation, because the spread-out spectral components make such
a laser pulse useless in terms of temporal compression and HHG.
Since the goal was to achieve similar if not identical spectra over the whole pulse front
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Figure 2.17: Spatially-resolved spectra of our beam profile. On the left are two spectra
measured at the positions 4 and 5 from the schematic beam profile on the right. a) shows
the original state and b) is the optimized case achieved with setup in Fig. 2.18.

and have a smooth Gaussian-like intensity distribution we changed our setup from section
2.3.1 a little bit. Instead of adaptively shaping the spectral phase like in Fig. 2.14 we
moved the SLM before the filamentation tube in order to influence the wavefront before
any distortions (see Fig. 2.18).

Due to the highly nonlinear interaction processes within the ionized gas it is unfortu-
nately not possible to simulate the pulse propagation exactly [68]. Again, we employed
our evolutionary algorithm to find the unknown ideal spatial phase that should result in
a more homogeneous and not spatially-chirped output of the filament. We give the beam
profile as an input parameter to the algorithm and let it modulate the phase front until
the input parameter is considered to be much fitter. The fitness was computed from each
recorded image by integrating the intensity in x and y direction (both orthogonal to the
propagation axis). These ’profiles’ were fitted with a Gaussian to compute a ’center of
intensity’ from the two Gaussians central coordinates. From this center of intensity we
defined four quadrants in the four directions from the center (top left, top right, bottom
left, and bottom right). Now the last step was to count the impinging photons in each
quadrant and relate the four intensities to one another. Of course, with an ideal Gaus-
sian beam profile all four quadrants should receive the same amount of photons. So our
fitness was a measure of the inequalities between the four quadrants and needed just one
more additional parameter to provide good results. Obviously, the beam profile before
the filament was homogeneous and not spatially chirped. So the best logical solution for
the SLM was to prevent a filament and let the laser beam propagate undisturbed through
the gas-filled tube. To ’force’ the phase shaper to maintain a filament, we used the blue
part of the spectrum that clipped at the prism compressor. This blue part had to have
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Figure 2.18: Modified setup where the first mirror after the laser system is replaced by
the SLM to perform spatial shaping of the wavefront. This time the pulse compression is
done in the prism compressor and after this a IR-sensitive CCD camera captures a beam
profile. This beam profile is used as a feedback for the evolutionary algorithm on the PC.
SPIDER provides the pulse characterization as before.

a certain intensity (measured with a second CCD) to produce ’fit’ solutions in terms of
phase masks. This way, the algorithm could modulate the beam completely as long as a
filament was present.
The described fitness definition is insensitive to different wavelengths which are at least
part of the problem as described earlier. However, if all incoming photons - regardless of
their energy - are spread like a 2-D Gaussian, it is a fair assumption that the different
frequencies are homogeneously spread over the whole beam profile. Therefore monitoring
the beam profile with just a black-and-white CCD should be sufficient.

Figure 2.19: This is the beam profile recorded after the filament and the compression
stage. On the left is the non-optimized case where the highest intensity is in two distinct
stripe-like regions. After the optimization with an evolutionary algorithm the intensity is
much more concentrated in the center and thus much more Gaussian.

In the experimental realization, our IR-sensitive CCD camera (Sony XC-ST 50) records
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the beam profile after the compression stage. That means, we do not only correct inho-
mogeneities after the filament but also those created by possible nonlinearities within the
prism compressor. Of course, there is only very little adjustment of the latter. One has to
make sure that the prisms are aligned for minimum deviation and consist of low-dispersive
material (in our case FK5), so that not too much third-order phase terms is added onto
the spectral phase of the laser pulse. Our prism compressor has an apex distance of 1m.
Since the interaction with the filament should generate mainly a quadratic phase, we tried
to compensate this with a prism compressor. This allows for positive and negative phase
compensation as opposed to a grating compressor, which can only introduce a negative
quadratic phase.
Shaping the wavefront before filamentation does have many advantages. First of all, the
spectrum is not yet broadened so that the reflectivity (see section 2.1) is higher than 90%.
Not less important is the fact, that the highly nonlinear processes within the filament
seem to depend strongly on distortions of the initial wavefront. Thus, it is feasible to
shape the filament rather than to try to compensate the inhomogeneities afterwards. The
third - and very technical - reason is that the beam diameter right after the laser output
is comparably large and exactly fills the active area of the SLM. After the filament the
beam divergence is so low that the laser is quite collimated for some lengths. Comparing
the beam profile recorded with our monochrome, IR-sensitive CCD before and after the
optimization, one can clearly see an improvement in the intensity distribution (see Fig.
2.19).
Even more important for us is the result shown in Fig 2.17 b. Here the difference between
the spectral changes over the beam profile is very pronounced. While in the upper part
(Fig. 2.17 a) the spectra differ quite a lot from position to position in the lower (opti-
mized) part this spectral differences are much smaller.

We can conclude that it is possible to compensate the spectral chirp after filamentation
by adaptively modifying the wavefront before the filament. The throughput remains very
high and only the spectral broadening is a little limited due to the restriction to stay in
the single-filament regime. Nevertheless pulse duration of around 10fs with pulse energies
of > 600µJ can be realized.
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2.4 Improvements of the Evolutionary Algorithm

As was presented before (see section 1.4), evolutionary algorithms are metaheuristic opti-
mization procedures that are inspired by biological evolution. This means that solutions
to the specific problem play the role of individuals in a population while every individual
includes a set of parameters. Such parameters can be binaries (genetic algorithm) or ar-
bitrary numerical variables (evolutionary algorithm). One major part of these algorithm
is the definition of the fitness. In our case, the fitness could always be measured experi-
mentally and thus it is easy to compute the specific fitness of one set of parameters (one
individual).
To improve the solutions from one generation to the other, the population undergoes cer-
tain changes such as cloning (the ’fittest’ individuals are copied), mutation (minor changes
are applied to the top individuals) and crossover (two of the ’fittest’ individuals mix). Af-
ter every generation the fitness of this ’new’ population is evaluated and the individuals
are sorted accordingly. Then the cloning-mutation-crossover-step follows and this contin-
ues until a maximum is found. What is special about this algorithm is the fact that it does
not necessarily work very fast but it is quite robust against experimental noise and can
find its way out of local maxima due to mutation. For a genetic algorithm there is large
probability for it to find even the global optimum because of its finite parameter range.
Every evolutionary algorithm has a set of parameters that are changed continuously in
order to approach the optimum. The first step is the correct parameterization, for exam-
ple in the setup shown in Chapter 2 each individual corresponds to a phase mask on the
SLM. In doing so, each individual is linked to the pulse duration (optimization value) via
a Fourier transform. In the spatial shaping setups a certain individual stands for a certain
wavefront modulation. The improvements described here are due to a ’learning curve’ of
the experimentalists on how the parameters of the algorithm should look like at what part
of the optimization process.
In this section, our useful adaptions of the evolutionary algorithm are presented and ex-
plained and in the next part of this chapter some simulations were performed to verify our
assumptions. As briefly mentioned above the mutation rate is a critical parameter and
in our case it is linked to the ’resolution’ of our optimization space. Since our SLM does
have a large amount of pixels this not only gives us a high resolution but also demands a
lot of computing power. For our algorithm to be able to run on workstations we have to
limit our resolution to about a tenth of the physical 768x768 pixels.

Planes instead of pixels

Because we could not use the complete resolution in pixels due to computational re-
strictions our fist approach was to define ’meta-pixels’ that extend over for example 8x8
or 16x16 physical pixels. This decreases the computer’s load but we threw away our
high resolution. Therefore the next idea was a parameterization of the wavefront not in
meta-pixels but in planes of the same size. These planes are numerically much easier
to characterize (total of 3 integers per plane) while they incorporated all physical pixels.
This is illustrated in two dimensions in Fig. 2.20 where on top always ten pixels share
the same value and therefore have the same shade of green (on the left). On the lower
part, the pixels are replaced by planes and a much smoother surface can be generated
(again on the left). The sharp black-green transitions in the planes are caused by modulo
phase shifts. Since phase differences larger than 2π over the whole phase front need to be
possible, every plane has a fourth ’gene’ that carries the information at which phase offset
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a wrap to 0π takes place. For any wavefront application apart from being numerically

Figure 2.20: Simplifying model of the difference between parameterization by pixels or
planes. On the right is a side view onto one row of pixels (top) or planes (bottom) and on
the left the corresponding full 2-D phase shape. While the right part is only schematic,
the left images are from real optimizations.

less demanding, the planes also provide a smoother phase modulation which is in general
favored by the laser pulse. In some applications, an additional ’smoothing parameter’ in
introduced: The mutation probability for one plane to mutate ’closer’ to the rim of an-
other plane can be raised above the probability to mutate further apart. As will be shown
in section 2.4.1, this is not always a good feature of the algorithm but partly it may speed
up the optimization process.

Stepwise increase of the resolution

Another big step towards a more time-efficient procedure leads us to a dynamic increase
of the spatial resolution. It is easy to see that, especially for planes, some very large units
at the beginning getting the correct orientation can be of great benefit for the ongoing
optimization. If all planes get a fundamental orientation and start deviating from this, of
course, it is less time-consuming than letting each plane ’find’ its basic alignment by itself.
Our implementation is described in Fig. 2.21 below:

Figure 2.21: A single large plane at the beginning (left) is divided into smaller and smaller
fractions. Each new plane is starting with the tilt of the original larger plane and then
develops to whatever position is best.

In the next section one will see that a dynamic increase of the resolution is absolutely
necessary for every optimization performed in this work. But it is only in the simulations
in 2.4.1 where an automated doubling of the planes is implemented. In the experiments
using this algorithm, the resolution was increased manually.
What is important to note is the fact, that the absolute mutation rate is strongly cou-
pled to the resolution. If the relative mutation rate refers to the changed fraction among
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the complete amount of genes, increasing the genes per individual has a direct influence
on the resulting overall mutations. This number has to be within reasonable boundaries
as explained in section 1.4. Again, for the following simulations, the mutation rate is a
function of the current resolution while in experiments this was adjusted manually.

2.4.1 Simulations

The work presented in this section is purely theoretical, because is was done on computers
only and does not include typical experimental difficulties and sources of errors. Never-
theless, it has a strong connection to the experiments conducted since the problem solved
is generally helpful for all phase shaping devices.
To test our adaptions of the evolutionary algorithm, we defined a certain high-resolution
picture as the ideal phase mask and let the algorithm find the optimal solution. In order
to take different ’ideal’ phase masks into account, we selected three very unlike images as
shown in 2.22:

Figure 2.22: Three sample images that are each set to be the ideal phase for an optimiza-
tion. While the tiger features strong contrasts and very little background, Einstein has a
moderate contrast and a lot of blurred background, and the parabola is a low-contrast,
SLM-typical shape with very smooth transitions.

As explained in the caption of Fig. 2.22, these three samples feature each different char-
acteristics. From this we want to analyze which algorithm settings are universally good
and which are just helpful at specific questions. In the following part, each picture will be
set to be the optimal phase mask and the evolutionary algorithm has to match this given
mask as good as possible. Only in this section, the fitness is not measured experimentally
but computed from the difference between original and simulated image. Thus the fitness
value itself from the three images is not comparable but should only be compared relative
to the reference. As usual in our experiments, the reference (not shown in the graphs)
is measured once per generation by applying a blank phase mask. One more important
fact is the number of planes/meta-pixels used for this comparison: We chose to use 64x64
meta-pixels in the highest resolution stage of the algorithm but only 32x32 planes. This
is because one meta-pixel only needs one numerical value while one plane is characterized
by four numbers (three points and the modulo offset). So four meta-pixels demand ap-
proximately the same computational resources as one plane, which in both cases is exactly
at the limit of our work stations. This means: employing our single-core, 2GHz, 1GB-
RAM laboratory computers, the maximum computable resolution of planes is 32x32 and
of meta-pixels is 64x64.
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Tiger

Starting with the image of the tiger we can see the simulation results displayed in Fig.
2.23. With the naked eye, the tiger face that consists of meta-pixels seems to come closer
to the original from Fig. 2.22 and the plane-based image appears less similar.

Figure 2.23: On the left is the Tiger’s face displayed by meta-pixels and on the right by
planes. Qualitatively, one can see a more detailed and sharper picture on the left while
the right one seems a bit blurry and with lower resolution. The quantitative evaluation
will confirm these results.

Because such a subjective comparison is not necessarily correct, we want to look at the
optimization curves as well. In Fig. 2.24, our results of the different optimizations are
given.

Figure 2.24: This is the plotted fitness of the optimization using meta-pixels (black), planes
(red), and planes with additional smoothing (grey) all versus the number of generations.
The fitness is in arbitrary units.
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One can see that the meta-pixels and planes are rising together until after 10k generations
the meta-pixels are in better agreement with the original picture. The planes seem to be
at a disadvantage here and especially planes that have a strong tendency of building flat
surfaces (smoothing, as explained above) cannot compete with the meta-pixels.
The discrepancy between a clearly better meta-pixel image that only has a ∼ 5% higher
fitness can be explained by a trick our brain plays on us. A higher resolved image ap-
pears to be more accurate and reveals more details, which is the case for the meta-pixel
optimization. However, also more details are introduced that might not be in agreement
with the original picture. Thus, the objective advantage of high-resolution meta-pixels
over low-resolution planes can be smaller than expected.

Einstein

Now the next picture, the one of Einstein in 1913, will be regarded. In Fig. 2.25, both final
results are shown and here it is already a little harder to tell which one is more similar to
the original. Therefore, a qualitative analysis with the optimization data (see Fig. 2.26)
is conducted below.

Figure 2.25: On the left is Einstein’s face displayed by meta-pixels and on the right by
planes. Again, the meta-pixels reveal more details but also show some quite pixelated
areas.

Here, after 2k generations the planes’ fitness is rising faster than the meta-pixels’ and
both planes (grey and red) end up with a higher terminal fitness. Interestingly, the dy-
namic smoothing seems to boost the planes advantage a little more, even though the two
converge after > 50k generations. The dips in the fitness curves, especially the black
one, are caused by a doubling of the genes of the individuals. It is normal, that after so
many new free parameters are added the system takes some time to improve again - even
if the mutation rate is properly adjusted (compare with 2.2.2). The dynamic smoothing,
meaning that the smoothing parameter is a gene itself and optimized accordingly, provides
a very smooth optimization curve. It is understandable, that this technique, which did
not provide good results for the tiger with its high contrast modulation, works better for
Einstein’s picture.
The two static-mutation-rate graphs are no real competition but nontheless reveal inter-
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esting behavior. A larger mutation rate of about 40% starts much quicker than the one
with 15% due to its faster mixing of the genes. But in the end, too much change is pre-
venting to come close to the optimum and so the lower mutation rate is advantageous on
the long run.

Figure 2.26: This is the plotted fitness of the optimization using meta-pixels (black),
planes (red), and planes with additional dynamic smoothing (grey). Also, optimizations
with a fixed mutation rate are shown in blue and in orange, with 40% and 15% mutation
rate, respectively.

Parabola

The last sample is a two-dimensional parabola that would result in a slight focusing if
applied to the pulse shaper. The two final results are shown in Fig 2.27.

Figure 2.27: On the left is a 2-D parabola displayed by meta-pixels and on the right by
planes. The meta-pixels are clearly giving a much more pixelated result while the planes
manage to display the given shaped nearly perfect.
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To confirm the visual impression, we look one last time at the optimization curves in Fig.
2.28. The impression from the images is confirmed by the graphs because the planes show
a much higher increase of the fitness beginning at ≈ 1k generations. The pixelated parts
from the rim of the parabola (caused by a modulo phase jump) where a smooth circle is
not yet formed can be properly sampled by the planes and not by the meta-pixels. The
ongoing rise of the fitness indicates, that the three areas in Fig. 2.27 (right), where the
circular line is disrupted, could also be corrected on the long run. Also, the gradient in
the central part of the parabola is much more homogeneous when displayed with planes.
The optimization that started with 32x32 planes right from the beginning (grey in Fig
2.28) converges to a much lower fitness value than if the resolution is increased dynam-
ically. This is hard to explain, since an evolutionary algorithm should always find the
optimum - in a disadvantageous case infinitely slow. We guessed, that the planes are
simply aligning so slow that our 50k generations are not nearly enough time.

Figure 2.28: This is the plotted fitness of the optimization using meta-pixels (black),
planes (red), and planes with a static resolution. Unlike the meta-pixels, the planes seem
to rise continuously even after more than 50k generations.

2.4.2 Conclusions

Since this is the only theoretical part of this work, a few concluding statements are added
to sum up the impression we got from the optimizations. More simulations than presented
here were conducted, but for the basic message the shown data should be sufficient. First,
it is clear that a stepwise increase of the resolution is maybe not necessary but helps
to accelerate the optimization process significantly. The planes are - as expected - not
advantageous in every situation BUT there are indications that smooth surfaces, that are
likely to be our goals, are better sampled. Smoothing is definitely not a necessity and
it can even inhibit the optimization but there are cases in which it helped to get to the
optimum.
To set these simulations in the right context with our experiments, it is worth mentioning
that due to experimental reasons rarely more than 1000 generations are used. This already
corresponds to a time of about 3-5h in which the laser should not shift at all. And these
optimizations are only preparations for high-order harmonic generation (see Chapter 3)
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and so they should not be too time-consuming. In section 2.2.2 is was also mentioned,
that our amplifier systems has a long-term drift and this is another reason to accelerate
the optimization algorithm as good as possible.



Chapter 3

High-order Harmonic Generation

When an ultrashort laser pulse interacts with gaseous, fluid or solid matter, part of the
radiation can be converted into higher frequencies. Since this generated radiation carries
multiples of the original photon energy, the conversion process is called harmonic gener-
ation. Second-harmonic generation (SHG) is a quite common phenomenon, that is used
for example in microscopy [69] or in our interferometric autocorrelation setup (Fig. 1.7).
When higher orders of this frequency conversion are meant, this is called high-order har-
monic generation (HHG) and its details will be the subject of this chapter. In chapter 4,
some experiments with HHG are presented and characterization methods described.
Harmonic generation in a way is the ultrashort and coherent continuation of the X rays
discovered 1895 by Wilhelm Conrad Röntgen. Just like there are many applications today
for X rays, its much less intense but temporally more precise counterpart reveals a lot of
potential applications. It is not the case that no other technique is competing with HHG
in this field, but no other light source can combine the classic laser properties such as high
temporal and spatial coherence and brilliant time resolution with the short wavelength of
X rays. Additionally, no other source of ultrashort, coherent near-X-ray radiation can be
generated with a tabletop system. The shortest man-made events today are light bursts
as short as a few hundred attoseconds that are also generated via high-order harmonic
generation [24, 25, 26]. But one downside of the frequency conversion is its efficiency
of less than 10−4 and down to 10−8 depending on the energy regime [70, 71]. Also, up
to now only harmonics up to 3keV have been generated [1, 2] from 800nm-fundamental-
wavelength lasers and that only marks the beginning of X rays. Thus being a relatively
young field of research, there is still some need for scientific work before HHG-setups can
be used commercially.

3.1 Process of HHG

High-order harmonic generation was first described in the late eighties [72] when it was
discovered, that with increasing order the conversion efficiency behaved somewhat strange:
In the perturbation regime it falls linearly with energy as expected but then at even higher
energies a region of quite constant conversion efficiency (’plateau’) exists that ends in a
cutoff. This is shown in Fig. 3.1 where one can also see the second oddity about har-
monics: For many materials there are only odd harmonics to be generated while even
harmonics are suppressed. This will be explained in detail later in this chapter. The use
of a filter as in the right part of Fig. 3.1 is a very convenient tool to select specific spectral

49
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components from the generally very broad harmonic spectrum. We are using Al and Zr
filters later in this work, they mainly help to separate the fundamental IR beam from the
generated soft X rays.
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Figure 3.1: On the left is a computed HHG spectrum with no filtering. One can see the
perturbation regime and the plateau that stretches up to the cutoff at the 33th harmonic.
In the plateau, the harmonics reveal a nearly constant intensity over a large energy band.
The highest energies can be gained from the cutoff-harmonics. The right graph shows a
filtered spectrum of harmonics generated in Ne. Due to the Zr filter the longer wavelengths
as well as the fundamental beam are suppressed. Both graphs are from [73].

There are two models explaining high-order harmonic generation and both will be briefly
presented in the following subsections. Since this has not been investigated in this work,
a more detailed description can be found in [24, 25, 26, 74]. The models described here
refer to the single-atom response and naturally do not include realistic experimental con-
ditions. Harmonic radiation is always the macroscopically resulting buildup of coherent
microscopic processes which will be explained in the following subsections. Thus macro-
scopic effects such as phase matching will be dealt with later since this section should just
give a short theoretical background at the atomic scale.

(a) (b) (c)

Figure 3.2: In (a) is the situation of multiphoton ionization if the laser frequency is large
but the electric field is low compared to the ionization potential. If the E-field of the laser
is stronger (Elaser ∼ Epot) and distorts the ionization potential, tunnel ionization may
occur as in (b). For this, the laser frequency has to be low enough to enable the electron
to follow the changes of the potential. When Elaser > Epot, it can suppress the Coulomb
barrier completely and barrier-suppression ionization dominates (c).
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3.1.1 Semi-classical Model

In 1993, Corkum [75] described harmonic generation in a semi-classical model, that has
not lost any of its importance to date. It assumes that the electrons do not interact with
one another (single-electron approximation) and that one electron can be treated as a
free particle after ionization. There are different ways for the electron to leave the atom
which is illustrated in Fig. 3.2. The so-called ’Simple-Mans Model’ predicts the electron’s
motion in an atomic potential that is influenced by a strong linearly polarized laser field.
The three important steps of this model are shown in Fig. 3.3:

tunnel ionization acceleration in

the laser field

Ec~ Ip + 3,17Up

hν

      recombination

and photoemission

E

t
1

2

3x

x

x

step 1 step 2

step 3

Figure 3.3: Three steps of the process of high-order harmonic generation: in step 1 the
electron is tunnel-ionized at a certain phase of E, in step 2 the electron gains momentum
in the laser field, and in step 3 it recombines with the atom and emits a photon. This
photon carries the kinetic energy of the electron plus its ionization potential. The highest
possible energy can be computed to Emax = Epot + 3, 17Upond. At the lower right is a plot
of when the three steps take place in time.

Ionization

When laser intensities are as high as 1014W/cm2, the laser’s electric field starts to distort
the Coulomb potential and thus the barrier holding the electrons back becomes weaker.
One possibility is that the potential is changed in a way that the electron can now tunnel
through the Coulomb barrier with a high probability or the electron is field-ionized if the
laser intensity is strong enough (compare Fig. 3.2). The latter is called barrier-suppression
ionization and is explained in more detail in [76].
This ionization process occurs twice per optical cycle each time the electric field amplitude
is large enough. Which ionization process is the dominant depends on the ionization
potential Ep or Ip of the atom, the maximum electric field strength E0 and the wavelength
of the laser λ. The ponderomotive potential is a quantity defined as Up = E2

0/(4mω)2

and represents the kinetic energy that a charged particle gains on average over the fast
oscillations of the laser field. It is introduced not as a potential but as a potential-like scalar
to simplify the problem. From these two quantities, Ip and Up the Keldysh parameter was
defined in 1965 [77]:

γ =

√

Ip
2Up

(3.1)
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• If γ > 1, Up is small compared to the ionization potential and the predominant
process will be multi-photon ionization of the electron.

• If γ < 1, the ponderomotive potential is comparable or larger than Ip and mainly
tunnel ionization will occur.

Important to note is the fact, that there is no strict separation of the two processes and
the above definitions are more a rule-of-thumb than exact prediction. Some calculations
already suggested tunneling in a regime (γ = 1 . . . 2), where definitely multi-photon ion-
ization should be the main process [78, 79].

Acceleration

After being ionized the electron is free from the binding forces of the atomic potential and
begins to move along with the strong electric field of the laser. Immediately after leaving
the Coulomb potential, the electron will be accelerated away from the atom but as soon
as the field reverses a backward movement takes over. This way the electron accelerates
towards the atom again and may recombine or ’take one more round’. The amplitude of
this movement is in the order of some nanometers and can be generalized to E0/ω

2. Since
rbohr = 5.29 · 10−11m is much smaller than this amplitude, it is reasonable to consider the
electron dynamics free after leaving the atom.
Of course, the energy with which the electron recombines is depending on the time of
ionization and recombination. But the highest kinetic energy that an electron can extract
from the laser field is fixed and depends on the ponderomotive potential Up.

Recombination

For the colliding process of the electron it is assumed that the electron recombines to the
ground state of the atom and thus that its kinetic energy plus the ionization potential is
set free. This energy is emitted as a high-energy photon and it depends on the phase of
the laser field at which the electron left the atom. From the model, it was computed that
the maximum energy after recombination can only be achieved if the electron leaves the
atom at a phase of 18◦ because only then will it have the largest possible contribution
from Up. This phase is close to the peak of the electric field and therefore the ionization
probability is relatively high. The energy of the emitted photon is given by the cut-off
law:

Ecut−off = h̄ωc = 3.17Up + Ip (3.2)

and it has proved to be true for the cut-off harmonics in many experiments. From this
rule and the various phases at which electrons may be ionized, continuous high-energy
radiation is expected that reaches up to the cut-off energy. To understand why not a con-
tinuous spectrum but rather equally-spaced, discrete spectral peaks are generated (Fig.
3.1) one has to consider the macroscopic effects as well.

Why only odd harmonics?

As mentioned before, high-order harmonics are the macroscopic result of a buildup of
microscopic processes. The fundamental laser field will - for long enough pulse durations -
provide the peak field strength to ionize electrons every half-cycle and thus harmonics are
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generated twice per optical cycle [80]. Now if many atoms are contributing to the gener-
ated high-energy radiation and have a constant spatial distance, the propagation direction
has to be collinear with the fundamental laser field. Forming a coherent buildup, a train
of harmonics will develop parallel with the laser beam and the pulse-to-pulse distance will
be T/2 (where T equals one oscillation cycle of the driving laser field). For phase match-
ing reasons, the spectrally-broad emitting atoms will constructively interfere to generate
a temporally coherent spectrum with discrete lines. The spacing between each harmonic
can be calculated from the temporal separation of its generation which is 1

T/2 = 2f . Thus,
the spectral distance between the discrete harmonics depends on the frequency of the fun-
damental laser and is in our case 2 · 1.55eV = 3.1eV for 800nm.
This process can also be explained by transition rules that allow an atom only to absorb
two photons and therefore the emitted energy can only increase stepwise by twice the
driving laser’s photon energy.
The odd-harmonics-only rule can be changed only by breaking the symmetry of either the
medium or the laser pulse. This corresponds to using for example molecules as conversion
medium or mixing the fundamental with a second laser pulse [78], respectively. The latter
is a technique suggested for the generation of single attosecond pulses from multi-cycle
fundamental pulses [81]. The idea behind this is to introduce a temporal gating so that
only from one peak of the electric field harmonics are generated. More about this and
other approaches to the attosecond regime will be discussed in section 3.1.3.

3.1.2 Quantum-mechanical Model

Lewenstein at al. extended the semi-classical model from Corkum quantum-mechanically
one year after its appearance in 1993 [82]. Starting with the time-dependent Schrödinger
equation

i
∂

∂t
|ψ(~r, t)〉 =

(

−1

2
∇2 + V (~r) + ~r ~Ecos(ωt)

)

|ψ(~r, t)〉 (3.3)

in atomic units where V (~r) is the atomic potential, the dipole moment was computed.

~µ(t) = 〈ψ(~r, t)| − ~r|ψ(~r, t)〉 (3.4)

This dipole moment characterizes the dipole that oscillates and generates the harmonics.
Therefore from the Fourier transformation of the dipole acceleration one can compute the
harmonic spectrum.
In [82], some assumptions were made regarding the ionization of the atomic system: First,
the only atomic state that is considered is the ground state |0〉 because all other states
can be neglected. In the strong-field regime (γ < 1) where harmonic generation takes
place, excited bound electronic states are Stark shifted and smeared out. Thus intermedi-
ate resonances should not affect the transition from ground state to the continuum. The
strong-field approximation (SFA) assumes that the laser affects only weakly the states in
which the electrons are strongly bound to the atomic nucleus. For the states in which the
electrons are not bound to the nucleus, the effect of the binding potential is neglected,
whereas that of the laser field is fully considered.
A second assumption is that the ground states’ depletion is neglected due to working
below the saturation level of the medium (Up < Usat). In general, this is a reasonable
approach because in most experiments the laser intensities are smaller than the saturation
intensity of the medium. The third assumption regards the already addressed model, that
the electron can be treated as a free particle after ionization. This argument holds for
Up being large compared to the remainder of the atomic potential, which is assumed to
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be a short-range potential. Also, the harmonic radiation from one atom is assumed to
be generated only by one returning electron (single-active electron approximation, SAEA
[83]).

Under these assumptions, the time-dependent dipole moment can be obtained:

~µ = i

∫ t

0
dt′

∫

d3~pEcos(ωt′) ×
(

~d
(

~p− ~A(t′)
)

× exp(−iS(~p, t, t′)) × ~d∗
(

~p− ~A(t′)
))

+ c.c.

(3.5)
Here ~A(t) is the vector potential of the laser field, ~p = ~ν+ ~A(t) is the canonical momentum
and S stands for the quasi-classical action [4] and is defined as:

S(~p, t, t′) =

∫ t

t′







(

~p− ~A(t′′)
)2

2
+ Ip






dt′′ (3.6)

this represents the phase change of the electron while it is moving in the continuum. Ip
is the atomic potential and is considered the constant ionization potential. ~d(~x) in 3.5
is an expression for the transition probability from the bound electronic state |0〉 to a
continuum state 〈x| - this is ionization. The complex conjugate describes the inverse pro-
cess which is recombination of the electron to its former ground state. So one can write
~d(~x) = 〈~x|~r|0〉 for ionization and ~d∗(~x) = 〈0|~r|~x〉 for recombination which gives us a little
more understandable perspective of equation 3.5. Concluding one can link parts of the
computed ~µ(t) to steps of the three-step-model:

• ~d
(

~p− ~A(t′)
)

corresponds to the ionization of the ground state at time t′.

• exp(−iS(~p, t, t′)) stands for the propagation of the electron in the continuum.

• ~d∗
(

~p− ~A(t′)
)

is the recombination of the electron with the atom at time t.

By Fourier-transformation of the time-dependent dipole moment, one can compute the
harmonic spectra. Interestingly, the quantum-mechanical treatment results in a similar
cut-off photon energy law as previously the three-step-model:

h̄ωc = 3.17Up + f

(

Ip
Up

)

Ip (3.7)

where f(x) is a slowly varying function on the order of one. For example, f(0) ≈ 1.32
for Up >> Ip and f(3) ≈ 1.25 for Up = 1

3Ip so this does not change the resulting cut-off
energy significantly. The reason for this correction term are quantum-mechanical effects
such as tunneling and spreading of the electron wavepacket in the continuum, that are
not included in the semi-classical model. In the end, this factor gives the electron slightly
more energy when returning to the atom than with the three-step-model.

As one can see from equation 3.5, different electron trajectories included in the inte-
gral accumulate different atomic phases (φat = S(~p, t, t′)) while travelling through the
continuum. The resulting shape of the electronic wavepacket on recombination is then
determined by the overlap between these separate quantum paths. Reexamining the idea
of the semi-classical calculation of the kinetic energy of the electron, one can see that
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each harmonic can be generated by the electrons from two different quantum paths (Fig.
3.4). In one of them, the electron spends a longer time (almost one optical cycle) in the
continuum before recombining with the electron; this is called the long trajectory. The
short trajectory is the path of the electron, that is ionized ’later’ and therefore spends less
time in the continuum. In conclusion, one single harmonic depends on the constructive or
destructive interference of the wavepackets of the returning electrons.
Because the electric field is included in the dipole moment, one can control the harmonic
generation process by arbitrarily shaping the laser pulse [84, 85]. The challenge is that
the electric field of the laser is not only capable of interacting with the intra-atomic pro-
cess but also macroscopic phase matching can be employed for selective enhancement or
suppression of single harmonics [86]. This can be understood by exciting different fiber
modes in the capillary where the harmonics were generated [87, 88]. Using another source
of high-order harmonics, the gas jet, one can control the harmonic quantum path by
macroscopically changing the focal position with respect to the gas jet [89]. Additionally,
the harmonics from the two different quantum paths can be separated by spatial filtering
because the contributions have a slightly different divergence and pulse duration [90].
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Figure 3.4: Illustration of the two different quantum paths, which stand for different
periods of time before the electron-ion recombination (left). In (a), one can see the electric
field of the laser in black and the two trajectories all plotted versus the phase. On the
right (b), the graph shows the kinetic energy in Up of the long and the short trajectory.
For every energy (and thus for every harmonic), there are two electrons contributing to it.
Only the highest possible energy in the cut-off regime consists of just one single quantum
path where the electron is ionized at phase 18◦.

From the three-step-model one can see, that the long trajectory is much more influenced
by an additive phase than the short trajectory. After careful analysis [91, 92] the long
trajectory exhibits a phase that is linearly proportional to the laser intensity whereas the
phase of the faster recombining electron is almost constant:

dφatomic,long

dI
= a,

dφatomic,short

dI
≈ 0 (3.8)

Since the laser pulse intensity at the pulse peak varies quadratically with respect to time,
a quadratic temporal phase will be imprinted on the harmonic radiation [93, 94]. This
results in a linear chirp and delays the different harmonics with increasing order in respect
to each other.
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3.1.3 Attosecond Physics

As seen in the previous section, the processes involved in high-order harmonic generation
are in the temporal regime of sub-femtoseconds. The shortest possible pulses for a given
central wavelength are single-cycle pulses. For a Ti:Sa laser system like ours, the central
wavelength is about 800nm which gives a shortest pulse duration of ≈ 2.7fs. In order to
achieve a better time resolution, shorter wavelengths are needed and high-order harmonic
generation is an excellent tool to extend the pulse duration to below one femtosecond. As
already explained in section 3.1.1, the harmonics are created every half-cycle of the laser
pulse, so naturally an attosecond pulse train (APT) is generated [95]. These ultrashort
pulses have already been used for spectroscopy of He [96] or N2 [97].
As shown in Fig. 3.5, by using a short enough driving pulse the harmonics above a certain
energy level are automatically generated at one single moment in time.
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Figure 3.5: Computed time-frequency analysis of the dipole response of H in an intense
5.5 × 1014W/cm2 800nm laser pulse with a duration of 4 fs (a) and 10fs (b), respectively.
This simulation was performed for a two-dimensional quantum-mechanical system using
the split-step-operator technique [98]. As predicted before, two contributions per harmonic
(arc-like structure) are visible. Above the energy of the 75th order of the harmonics
(corresponding to 116eV) are four sub-fs pulses when a 10-fs laser pulse is used (b). By
employing a driving pulse with a duration of 4fs, there is only one isolated attosecond
pulse left in the high-energy regime (a). This gives an idea of how single attosecond pulses
may be generated.

In 2003, Mairesse et al managed to measure only the contribution of the short quantum
path and thus a linear chirp for 14 consecutive harmonics [99]. This purely linear chirp can
be compensated by plasma dispersion of additional ionized gas or by using the negative
group dispersion delay (GDD) of a thin aluminum foil [100]. While every way of harmonic
generation naturally includes a variety of wavelengths and features a temporal pulse-train
structure, achieving single attosecond pulses is rather challenging. In the following, the
generation, characterization, and application of attosecond pulses will be described with
a few selected examples since it is a strong motivation for this work.

Generation of single attosecond pulses

The first approach in 2001 was to use a Mo/Si multilayer mirror that reflects and fo-
cuses selectively the 90-eV part of the harmonic radiation [48]. This mirror is placed on
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a delay stage so that one can measure the cross-correlation between laser and XUV beam
by focusing both onto a Kr target and detecting the photoelectrons. From the electron
momenta distribution, XUV pulse durations of ≈ 500as could be reconstructed in this
setup. Because of its filtering of the cut-off harmonics and using only the peak intensity of
the laser pulse, this technique is referred to as ionization gating. In the last 7 years, this
method has improved a lot in terms of stability, XUV intensity, and pulse duration so that
further below in Applications some experiments based on such a setup are introduced.
The group of Nisoli suceeded in 2006 by applying the so-called polarization gating tech-
nique [47] first suggested in 1994 [101]. They used a 5-fs CEP-stabilized driver pulse that
had a modulated polarization state with an ellipticity, that is only zero at one well-defined
point in time. Since harmonic generation, especially the recombination process, is very
sensitive to a non-linear polarization, making the polarization well-suited for HHG in only
a short time window results in a single attosecond pulse [102]. This is done by shaping
the fundamental laser pulse so that it is elliptically polarized except for one optical cycle.
Only in this cycle, efficient harmonic generation can occur and thus a well-defined tempo-
ral resolution is given.
Apart from these successful experiments, some theoretical suggestions on how to generate
single attosecond pulses have been made. By simulating the experimental conditions from
[48], it was found that far-field spatial filtering played in important role [103]. According to
the authors, it seems possible to generate single attosecond pulses by selecting the correct
section of the spectrum and a corresponding distance from the source. In [104], Dudovich
et al. propose a two-color setup where the delay between the SHG and the fundamental
driver pulse is serving two purposes. First, if the SHG-beam’s intensity is low enough, by
evaluating the resulting even-harmonic spectrum one is able to characterize the attosecond
pulses. As soon as the second harmonic’s intensity is increased, the method turns into
the control-mode and allows switching on and off the odd harmonics. A last up-to-now
only theoretical way is the generation of high-order harmonics from surfaces [105]. The
reason for high-order harmonics from solids - or more accurately from overdense plasma
- is the much higher output of XUV radiation. This is partly due to the fact, that HHG
from overdense plasma is of relativistic origin and the higher intensities induce stronger
nonlinearities resulting thus in higher conversion efficiencies.

Characterization Methods

Not only the generation of attosecond pulses from high-order harmonic generation poses a
problem but the temporal analysis of the generated pulses is another non-trivial aspect in
this regime. In this work, the different techniques are described only briefly but a detailed
review on attosecond detection can be found in [24, 25, 26, 106].
The first measurement is described above and was performed by Hentschel et al [48]. They
used a kind of ’streaking camera’ which corresponds a cross-correlation of the fundamental
and the XUV beam [107]. The problem of many XUV characterization measurements is
the necessary delay between the XUV beam and a second laser pulse (e.g. the funda-
mental beam). Small angles between the two propagation directions result in temporal
smearing of the correlation signal which is proportional to the beam diameter d and the
angle α. To reach a 100-as time resolution one would need an angle smaller than 0.87mrad
that experimentally almost corresponds to a collinear geometry. This brings the second
problem since beamsplitters and recombiners are not easily available in the XUV-regime.
A work-around is a split mirror whose inner multilayer part reflects the desired attosec-
ond pulses and the spatially filtered outer part focuses the fundamental beam [108]. This
way a stable collinear delay was realized and resulted in the first successful correlation
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measurements regarding high-order harmonics. To date, many more techniques have been
suggested and implemented to match the FROG technique (see section 1.3.2) in the XUV-
regime [109, 110]. Also an equivalent of the simple autocorrelation technique has been
realized for attosecond temporal resolution [111]. Pulse durations down to sub-100as have
been measured using those.
Another experiment was suggested in 2002 [112] and realized in 2003 [113] that was also
based on the idea of the overlap between XUV and driver pulse. It utilizes two-photon,
multicolor ionization to analyze the amplitudes and spectral components thus allowing
the reconstruction of an average temporal profile. The name “reconstruction of attosec-
ond beating by interference of two-photon transitions” (RABITT) stands for a successful
technique to characterize attosecond pulse trains down to 250as. The downside is that
no information about the spectral phase within one harmonic can be gained but only the
relative phases between all harmonic orders.
Different versions of the SPIDER (section 1.3.2) technique for the XUV have been im-
plemented as well. In [114], two time-delayed IR pulses with slightly different central
wavelengths are generating almost identical attosecond pulses with a spectral shear. This
shift in frequency produces an interferogram which can be detected directly with an X-ray
spectrometer. The precision of this method is much higher than the detection of pulse
duration via photoionized electrons. However, since the second pulse is following the first
one with a certain temporal delay, the first one must not carry a lot of energy so that
the two harmonic generation processes are not influenced by one another. This can be
circumvented if the setup is changed in a way, that the interferogram is not spectrally but
spatially encoded [106]. Two spatially separated high-order harmonic beam are brought
to overlap in space. Thus the detected carrier modulations do not depend on the temporal
delay but on the spatial separation of the pulses after propagation from the interaction
region. As a further advantage, the spectrum does not need to be resolved at high resolu-
tion which relaxes the constraint of a good spectrometer. This evolution and improvement
of our existing characterization method is called ’spatially-encoded arrangement for SPI-
DER’ (SEA-SPIDER).

Applications of attosecond light pulses

One process that is of vital interest for harmonic generation is the tunneling of the elec-
tron out of the atomic potential. By an attosecond pump-probe experiment multi-electron
excitation (shake-up) and relaxation (cascaded Auger decay) processes are examined [49].
The sub-fs time constant of the Auger decay could be resolved for Neon by using a 5.5-
fs, CEP-stabilized Ti:Sa laser system as pump and ≈ 250as XUV as probe pulses. The
information is gained in real-time by changing the delay between pump and probe pulses
and detecting the ions with a time-of-flight ion spectrometer with high mass and spatial
resolution.
An attosecond double-slit experiment has also been realized in the time-energy domain
rather than the conventional position-momentum domain [115]. The role of slits is played
by windows in time of attosecond duration which can be opened or closed by changing the
temporal evolution of the field of a few-cycle laser pulse. In the plane of the polarization,
two opposing detectors are located which detect the photoelectron spectra of argon as a
function of the CEP. It is possible to accelerate the electrons ionized by the fundamental
laser using the attosecond pulse. Since the orientation of the attosecond pulse depends
on the electric field of the laser - sine or cosine pulse - one can switch the electrons from
right to left by changing the carrier-envelope phase.
The fact, that one can compensate the intrinsic chirp of the harmonics was already de-
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scribed [100] but using the correct thickness and material it is even possible to shape
high-order harmonics in amplitude and phase [116]. Thus attosecond pulses can be opti-
mized in bandwidth or pulse duration by simply using the appropriate filter.
It was suggested in 2007, that using two-color orthogonally polarized laser fields it should
be possible to isolate single attosecond pulses as well as monitor molecules with some kind
of orbital tomography [102]. By crossing two laser beams and monitoring the XUV radi-
ation generated in the focus, the different harmonics are emitted over a range of angles.
This links subcycle temporal resolution with several degrees spatial resolution and allows
for a single-shot orbital tomography of molecules. This also results in attosecond pulses be-
ing spread spatially and thus a spatial filter would be sufficient for single attosecond pulses.
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3.2 Harmonic Generation in the Laboratory

Generally, every nonlinear interaction where an intense laser pulse is focused into matter
is capable of producing high-order harmonic generation. It is the strong absorption of air
in this energy regime (∼ 30 to ∼ 5000eV in our setup) that makes it necessary to work in
vacuum with the generated radiation. The name “vacuum ultraviolet” (VUV) accounts
for the only stable existence of these photons in vacuum chambers.
The second question that arises is the question of the target: solids can be used in vac-
uum but for HHG they require a relativistic energy regime which needs rather high laser
intensity. Fluids are not well-suited for vacuum setups but nevertheless some experiments
were conducted [117] and provided interesting results. Both of these dense media feature
a rather high conversion efficiency along with problematic requirements for our labora-
tory setup. Gaseous media can easily be inserted in vacuum chambers and by differential
pumping the background pressure can be kept at a constant moderate level. One more
advantage of gas is the possibility to switch from one gas to another without complicated
change of the target chamber. The last reason for a gas target is the adjustable pressure
which gives one more parameter for optimization of the harmonic output.

3.2.1 Gas-filled hollow-core Fiber

One technique for high-order harmonic generation is focusing the laser into a gas-filled
hollow-core fiber at a defined pressure. The laser propagates collinearly with the XUV ra-
diation and the buildup of harmonics takes place over the complete length of the capillary
(∼ 5cm) in an ideal case. A schematic setup is illustrated in Fig. 3.6.

Figure 3.6: HHG scheme in a fiber setup. The laser pulse is focused into a capillary
and propagates along with the harmonics. The three-parted glass provides a high-enough
pressure for harmonics in the middle section while the first and last hollow-core fiber serve
as differential pumping stages. After exiting the fiber and propagating some distance in
vacuum, the fundamental beam is separated from the harmonics by an Al filter.

Clearly, when the propagation in the fiber plays such an important role, ’phase-matching’
is crucial in this kind of implementation. By ’phase-matching’ we mean a constructive
overlap of the phases of the fundamental and generated laser pulses so that the conversion
efficiency is as high as possible. For constructive harmonic generation, the phase velocity
of the driving laser pulse must match that of the harmonic. In wave-vector notation this
means ∆k = qklaser − kxuv = 0, where q stands for the harmonic order. This already
illustrates, that efficient generation of more than a few harmonics (∼ 5− 10) is not possi-
ble. Because harmonic generation as a macroscopic phenomenon depends on constructive
microscopic interference, phase matching is a very important aspect. Therefore its back-
ground will be given here in a little more detail.
Due to the propagation within a capillary filled with gas, there are different contributions
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to the cumulative dispersion. Basically, it depends on three effects:

• The neutral dispersion is influenced by the gas pressure and the type of gas used
for HHG. It can be characterized by:

kdisp(λ) =
2πNaδ(λ)

λ
(3.9)

where Na is the atom density and δ(λ) depends on the neutral gas dispersion. As-
suming that the index of refraction is higher in the visible than in the XUV-regime
where the harmonics are generated, one can conclude that ∆kdisp > 0. Thus we have
a positive contribution to the overall dispersion.

• Plasma dispersion is relying on the generated free electrons that will oscillate in
the electric field of the laser with respect to the atomic center. The refractive index
of such a free-electron system is given by

nplasma(ω) =

√

1 −
(ωp

ω

)2
=

√

1 −
(

Ne

Nc(ω)

)

(3.10)

with ωp being the plasma frequency which is the resonance frequency of the laser-

driven plasma. Ne is the free-electron density and Nc(ω) = ǫ0meω2

e2 is the critical
density at which the plasma becomes opaque for radiation with the frequency ω.
Correspondingly, the resonance frequency of the plasma is given by:

ω2
p =

Nee
2

ǫ0me
(3.11)

Here e is the unit charge, ǫ0 is the vacuum dielectric constant, and me is the electron
mass. If we are dealing with a weakly-ionized gas, meaning the relative amount of
free electrons is comparably small, equation 3.10 can be linearly approximated by:

nplasma(ω) ≈ 1 − 1

2

(ωp

ω

)2
⇒ ∆nplasma = −1

2

(ωp

ω

)2
(3.12)

From this change of the refractive index, the contribution to the wave vector ∆kplasma

can be computed by putting equation 3.11 into equation 3.12 as a function of λ:

∆kplasma(λ) =
2π∆n(λ)

λ
= − e2Neλ

4πǫ0mec2
(3.13)

The classical electron radius re = 1
4πǫ0

e2

mec2
helps to simplify equation 3.13 to

∆kplasma = −Nereλ⇒ ∆kplasma < 0. (3.14)

One can see that the plasma dispersion is always a negative contribution to the wave
vector. As with the filament (section 1.2.2), the laser pulse will “see” the creation of
the plasma and thus a fast negative change of the index of refraction. The resulting
SPM causes only a blueshift, since the recombination time of the plasma is much
longer than the pulse duration and the pulse does not “see” it happen.
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• Unlike the previous ∆kplasma and ∆kdisp, the contribution of waveguide disper-

sion is only existing for the propagation in a capillary. Because in this work only
harmonics from a gas-filled tube are used, the waveguide contribution to the wavevec-
tor is introduced here just for completeness. It can be described by

kgeom(λ) = −u
2
nmλ

4πa2
< 0 (3.15)

where unm is the m-th root of the Bessel function Jn−1(z) and a is the inner radius
of the hollow-core fiber. The derivation as well as more explanation of this formula is
given in [118]. Again, our main interest is the negative contribution to the overall ∆k.

Additionally, the propagation term for vacuum, kvac = 2π/λ, has to be added to the
wavevector terms so that the resulting complete dispersion for propagation in a gas-filled
hollow-core fiber can be written as:

k(λ) ≈ 2π

λ
+

2πNaδ(λ)

λ
−Nereλ− u2

nmλ

4πa2
(3.16)

For the gas-filled tube, the last term from the waveguide propagation can be neglected.
The main adjustable parameters for our setup is the gas pressure, the gas type and the
wavelength of the fundamental laser. An additional very important parameter is the beam
quality (e.g. divergence, wavefront) although this is adjusted once to be optimal and then
ideally remains this way. Due to the long interaction range, in gas-filled hollow-core fibers
mostly fairly low gas pressures pfiber ≈ 50 − 150mbar are used. Pulse shaping, especially
temporal, can have a huge impact for harmonics generated in fibers because of the waveg-
uide dispersion depending strongly on the temporal shape of the pulse [84, 86, 119, 120, 85].
Shaping of the waveguide is another approach to influence the phase-matching conditions
as was successfully demonstrated [88]. With this technique, artificial regions of higher
and lower gas-densities are generated which leads to quasi phase-matching (QPM) due to
macroscopic constraints.

3.2.2 Gas-filled Tube

The free-focusing geometry can be realized in different ways. One way is to employ a pulsed
gas-jet that is triggered by the laser and provides just enough gas for harmonic generation
but not too much for strong reabsorption. For this mostly a piezo-driven pulsed pump is
employed
We realized an easier setup by simply filling a nickel tube with gas at a constant pressure
and let the laser drill its own hole through the metal. At spotsizes with diameters of less
than 50µm, the gas flow is adequately low and the interaction region has a high-enough
atom density. The exact gas flow depends significantly on the size of the hole in the nickel
tube which itself depends on the used focusing geometry and the beam profile. To control
the gas pressure, we used a closed-loop pressure monitoring hardware that regulates the
gas flow. Schematically our setup is presented in Fig. 3.7.
Employing the gas-jet setup, temporal pulse shaping does not have such a strong in-
fluence probably because the interaction length is significantly shorter than in the fiber
setup. However, as mentioned earlier, the contributions of the two quantum paths can be
controlled by placing the focal spot slightly before or after the gas tube. This and the
increased sensitivity towards the wavefront of the pulse make it well suited for the spatial
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shaping setup that was presented in section 2.3.2.

Figure 3.7: The IR laser pulse coming from the left is focused by a lens or a mirror right
into the gas-filled nickel tube. The thin-walled metal is ablated very fast so that two holes
on each side of the tube are drilled. Subsequently, the fundamental driver pulse is again
filtered by Al or Zr filters and the generated XUV-radiation propagates to the detector.
The tube can be filled with various gases and most commonly Ar, Ne or He are used.

Also, with the gas-jet higher-order harmonics can be achieved than with the capillary
setup because the limitation on the peak intensity is somewhat less restrictive.

3.2.3 Setup of the “Beamline”

For our harmonic generation setup we decided to build a modular vacuum chamber with
four sections that can be replaced or moved individually. A drawing of our experiment is
given in Fig. 3.8.
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Figure 3.8: Top view onto our modular setup build of four separate chambers. The laser
pulse is coming from the right, generates harmonics in the gas-filled tube which then
propagate to the toroidal mirror in chamber two. The XUV-radiation is subsequently
focused in our experimental chamber and afterwards recollimated by a second toroidal
mirror. By passing a reflective grating and placing a 2-D X-ray CCD in the Fourier plane,
the spectral and 1-D spatial properties of the generated harmonics can be analyzed.

The first chamber is build for harmonic generation in a nickel tube whose gas pressure can
be controlled to within 0.1 mbar from 0 to 300 mbars. To get rid of the high gas load, a
rotary vane pump and a roots pump are sequentially attached to the chamber and achieve
pressures of 4×10−3mbar with no gas load and during operation still less than 10−2mbar.
If the gas pressure is much higher than that, absorption “eats up” most of the generated
harmonics. After the nickel tube a variable, electronically controlled pinhole is located to
remove the outer parts of the more divergent IR-beam. The harmonics are propagating
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almost collinearly with the IR-beam but due to their much shorter wavelength their di-
vergence is only a fraction of the driver beam’s.
In the next chamber, approximately 550 mm behind the nickel tube, the harmonic beam
is supposed to have a diameter of about 1mm. In the bead linking the first and second
chamber is a pinhole (diameter: 2 mm) for diffractive evacuation reasons. Thus it is pos-
sible to have a fairly low pressure (10−5 − 10−7mbar) in all chambers but the first. The
second and third chamber are evacuated by Pfeiffer 1000l/min turbo pumps allowing for
off-duty pressures down to 10−8mbar. The divergent harmonic beam is focused using a
toroidal mirror (see Fig. 3.9) under grazing incidence. This is a necessary feature because
focusing broadband XUV radiation is not possible with any transmissive optical elements.
Therefore a focusing mirror must be employed and for a high reflectivity (> 60%) is it
mounted in a grazing incidence geometry under an angle of ≈ 5◦. Because such a geometry
is bound to create astigmatism, a specifically designed toroidal mirror (see Fig. 3.9) is
placed onto a 3-D, piezo-driven mount that can be addressed electronically.

Figure 3.9: A toroidal mirror (gold coated) can be envisioned as a part of the surface of
a doughnut. It is a mirror with two different radii for the sagittal and meridional plane
which enables the mirror for a correct angle of incidence θ to focus a beam almost without
astimatism.

The third chamber is the place for the experiments e.g. a gas target or a M-square appa-
ratus. It has many connectors so that subsequently a time-of-flight spectrometer or other
devices can be attached.
The last ’detector’ chamber is for characterizing the spatial and spectral properties of the
harmonics. As shown in Fig. 3.10 from [121], the XUV radiation is hitting the second
toroidal mirror with the identical specifications as the one in the focusing chamber.
Directly after the mirror, the harmonics hit the reflective grating (Au, 300 lines/mm,
blazed for 300nm at 3◦) and are focused onto the X-ray CCD (Andor DO420BN) camera.
The 1024x255 pixels allow for spectral as well as spatial detection with a resolution of
26x26µm2 (pixel size). The spectrum incident on the camera can be adjusted by tilting
the grating via a goniometer. Thus in the current configuration without an entrance slit
the resolution λ/∆λ at the 51th harmonic is about 300.

Between the first and the second chamber as well as between second and third cham-
ber, VAT vacuum valves are included that have a circular hole in the middle where our
filters can be mounted. It is important to put the first filter as far away as possible from
the harmonic generation point, since too high laser intensity will destroy the 200nm-thick
metal foils. Thus a position as close to the toroidal mirror as possible is favorable. Of
course during the pumping process the filters have to be protected from any direct airflow
and therefore the vacuum valves are serving two purposes at a time: they allow moving the
filters in and out of the beampath and completely shut the beamline for the fundamental
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laser radiation once they are in operating position.

Figure 3.10: Photographic top view of the spectrometer chamber with an illustrated ray-
tracing. The divergent harmonics hit the second toroidal mirror (identical in construction
to the first one) which images the spectrally split XUV beams onto the X-ray CCD camera.
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3.3 Filtering of High-order Harmonics

Since we need to separate the fundamental 800nm radiation from the generated harmonics,
a filter that has a high transmissivity for sub-80nm (10th harmonic) radiation is needed.
Basically, in this work we used Aluminum and Zirconium foils with a thickness of 200nm
and 300nm, respectively. In Fig. 3.11, one can see that both filters do absorb strongly in
the low-energy regime at longer than 90nm. Furthermore, the Al filter features a very large
spectral window with comparably high transmission (> 50%) from 20nm to 70nm which is
very convenient for broadband experiments such as spectroscopy. The disadvantage about
the aluminum foil is the strong absorption below 20nm (41th harmonic) that is within our
generated harmonic spectrum.
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Figure 3.11: Plotted transmission of a 300nm Zr foil and a 200nm Al foil versus wavelength,
respectively. Data from [122].

The Zr filter has a lot lower transmission and a smaller bandwidth of transmission but it
allows higher-order harmonics (> 41th) to be used for experiments. The region below 5
nm is not of great importance for this work, because due to our pulse energy of at most
700µJ (at a pulse duration of 25-30fs) and a 30-cm focusing lens our cut-off energy is at
about 200eV (corresponding to the 131th harmonic or 6nm). The exact cut-off energy is
of course depending on the used gases since the ionization potential contributes directly
to it (e.g. Ip,Ar = 15.8eV and Ip,Ne = 21.6eV ).
The metal foils used to separated the fundamental from the XUV beam are not the only
’spectral shaping’ elements in our setup. Since the harmonics are generated in a gas jet by
interaction of the 800nm laser with ionized Ar atoms, the absorption from this needs to
be taken into account as well. We assume a 2mm long interaction region with a constant
pressure to estimate a realistic absorption from the gas. In reality, the pressure is far from
constant but more or less rises up to the set value but decreases over about 10mm before
and after the gas-filled tube. Therefore the interaction region is also hard to measure. But
even though the exact conditions are not known, looking at the measured absorption [122]
of for example Argon gas helps to explain the experimentally measured spectra. In Fig.
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3.12 the throughput of harmonic radiation from 5 to 40 nm is plotted. If one considers
that the Ar gas is effectively suppressing harmonics above 28nm and the Al foil the ones
below 18nm, a fairly small window of harmonics (29th to the 43th order) appears possible.
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Figure 3.12: Plotted transmission of a 200nm Al foil and 2mm of 300mbar Ar gas versus
wavelength. Data from [122].

The influence of different gas pressures is also interesting, but from Fig. 3.13 one can see
that an increased pressure only results in higher absorption as expected. Thus the exact
length of the way the harmonics travel through the gas does not matter; it is more the
highest pressure that has an impact on the efficiency of the harmonic generation process.
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Figure 3.13: Plotted transmission of 2mm of Ar gas at various pressures versus wavelength.
Data from [122].

Another important issue is the length of the interaction medium. One can see from 3.16
that the propagation through the medium is a crucial aspect of phase-matching. Therefore
in our experiments, we often squeezed the gas-filled tube a little bit to decrease the high-
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gas-pressure interaction region. An exact simulation of this is not conducted in this work,
but it is worth noting that the dependence on the interaction length is not only a question
of re-absorption (as shown in Fig. 3.14) but even more one of phase-matching.
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Figure 3.14: Plotted transmission of 300mbar Ar gas in dependence on the interaction
length. Data from [122].

An interaction length of less than 1.0mm is not realistic in our setup because then too
high gas pressures would be needed for HHG. This would result in a very high background
pressure, because the overall gas that needs to be evacuated is just a function of the hole
size (which can be assumed to be constant) and the gas pressure in the tube. So if the
sample pressures increases over a certain level, our pump system is no longer capable of
maintaining a rational background pressure in the first chamber. Thus only interaction
lengths between approximately 1.0mm and 3.0mm are feasible where the difference of
absorption is about a factor ten.



Chapter 4

Characterization and
Optimization of HHG

At the beginning of this chapter is seems reasonable to sum up some existing results for
control of high-order harmonics to date. It was already demonstrated in 2000 [84] that
temporally shaping the laser pulse can influence the harmonic spectra if they are generated
in a hollow-core fiber (see Fig. 3.6). In subsequent experiments in Würzburg [87, 86, 123],
a further control of the efficiently generated XUV radiation could be shown. The setup is
schematically illustrated in Fig. 4.1:

x-ray

spectrometer

hollow fiber

Ar
temporally shaped

fs laser pulse
HHG

Figure 4.1: Temporal shaping setup for harmonic generation. The arbitrarily shaped
laser pulses can excite different fiber modes which then generate specific harmonics more
efficiently than others. The produced XUV radiation is analyzed spectrally to gain a
feedback signal for the evolutionary algorithm.

In Fig. 4.2, the results of these optimizations are presented. They were performed using a
closed loop algorithm and a deformable mirror with 19 independent degrees of freedom at
the Fourier plane of a pulse shaper. The algorithm works as explained in Fig. 1.13 where
the outcome of the experiment is supposed to depend not only on the temporal shape of
the input pulse but also allows limited control of the output.
For the first experiment (shown on the left in Fig. 4.2), the fitness of a single laser pulse
is defined by the intensity in the spectral region I divided by the intensity in II (in a) or
vice versa (in b). The evolutionary algorithm adaptively changes the temporal phase of
the laser pulse to maximize the fitness. Thus without analytical knowledge it is possible
to achieve a specifically designed spectrum.
On the right side of Fig. 4.2 this ability to control the spectrum is even more pronounced.
The first spectrum d) shows again the reference spectrum and in e) and f) the goal was to
suppress one and two harmonics, respectively. The experiment works sufficiently although
one must admit that the overall intensity is decreased along with the optimization. This

69
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Figure 4.2: On the left (a-c) is shown selective control of HHG by defining the fitness of
a driving laser pulse as the intensity at the desired part (marked as I) of the spectrum
divided by the intensity at the unwanted part (marked as II). A typical harmonic spectrum
is given in a) and the spectrum in b) was created by defining the fitness as II/I. c) shows
the opposite definition of the fitness. On the right the selective suppression of one or two
harmonics is presented. Again, a typical reference spectrum is given in d), while e) and f)
show the spectra after the optimization process.

can be explained by the necessary excitation of less efficient fiber modes for the desired
spectra. This is also underlined by a frequency shift of the two optimized measurements
due to a somewhat different blueshift compared to the reference spectrum. Since the
blueshift is indirectly proportional to the laser intensity, less intense fiber modes explain
this behavior well.
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4.1 Spatial Optimization

After the optimization of the beam profile after the filament (see 2.3.2) the next important
step was to measure the impact of this on the harmonic generation process. To conduct
these experiments we simply combined the filamentation setup for pulse compression (Fig.
2.18) with the HHG vacuum chamber (see Fig. 3.8). A no-to-scale setup is presented in
Fig. 4.3.
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Figure 4.3: A combination of the formerly described spatial shaping and temporal com-
pression scheme and the harmonic generation vacuum system is shown here. The laser
pulse is spatially shaped by the SLM, spectrally broadened in a filament and afterwards
compressed temporally. Some characterization tools are optional to measure pulse du-
ration and/or spectrum. The ’prepared’ pulse is then focused into the gas-filled tube in
the first chamber, focused by the toroidal mirror onto a target and then analyzed in the
spectrometer section. A Hartmann sensor is the upgrade described in section 4.2. One
possible target is a knife-edge scanner to quantify the beam profile and it will be dealt
with in the next section as well.

As demonstrated in Fig.4.4, an overall increase of harmonic generation can be seen. The
reason for the abnormally broad harmonic peaks is a misalignment in the setup. The
two toroidal mirrors are not hit on the same height and thus the beam is incident non-
orthogonally to the lines of the grating but under a certain angle. This and the fact, that
the CCD is not adjusted to compensate these twisted spectra somewhat leads to the very
broad spectral peak of each harmonic.
Also one can see a certain blueshift from the optimized spectrum with respect to the
reference one. This can be attributed to a higher intensity in the focus and therefore
more free electrons in the plasma. The larger background radiation of the fittest (red)
compared to the black line is probably due to scattered XUV radiation from the zeroth
order. What appears interesting is the fact, that seemingly an increased intensity in the
focus causes more harmonic generation to be effectively generated without changing the
cut-off energy. This paradoxon can be explained by the previously discussed use of filters
and the reabsorption from the gas (in this case Ar). The harmonics measured here are
in good agreement with the ones theoretically expected from the energy window from the
two constraining materials.
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So we could confirm experimentally that spatial phase shaping of the filament can con-
tribute to an increase of XUV radiation. A characterization of the harmonics’ beam profile
would give further insight into the dependence of HHG on wavefront shaping.

Figure 4.4: Harmonic spectrum before and after spatial optimization of the wavefront
before the filament. The intensity is plotted versus wavelength and the numbers above
the peaks indicate each harmonic. The overall increase is about one order of magnitude
from the reference to the optimized spectrum.

What remains to be analyzed is the spectrum of the optimized harmonics in terms of a
shift of the cut-off to shorter wavelengths. If the only improvement achieved by the spatial
shaping is a higher intensity, this should result in a changed cut-off energy according to
3.2. Unfortunately, at the time of this experiment the available and usable filters were
made of Al and the only Zr filter was damaged.
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4.2 Wavefront Measurements

As we have shown before, the beam profile is an important criterion for pulse compression
and thus for HHG. In addition to the M2-measurement described in section 1.2.5, a wave-
front measurement that actually allows spatially resolved wavevector analysis seems inter-
esting. For the visible, such a wavefront analyzer can be realized like a Shack-Hartmann-
sensor [124]. This is typically a microlens-array with a CCD chip at the focal distance
of the lenses. A plane wavefront will create evenly spaced spots on the camera while for
a somewhat distorted wavefront the spot array will not be perfectly symmetric anymore.
The center of each focus will move depending on the k-vector of the incident wavefront.
From this deviation from the plane wave, which is needed for calibration, one can compute
the wavefront of the ’real’ incident beam.
For XUV radiation, naturally, no microlenses are available and so a very simple trick is
employed: One uses the shadows cast by a hole-array placed in front of the X-ray CCD
camera and evaluates their centers. If the spacing between the holes and the diameter of
the holes are small enough one can get an array of spots that do not overlap. Diffraction is
not a problem here because of the wavelength that is several orders of magnitude smaller
than the diameter of the holes. In our case, we are using 40µm holes and expect harmonics
with less than 50nm wavelength. An image of the commercially available hole-array is
shown in Fig. 4.5.

Figure 4.5: Hole array from the company Lumera, manufactured to our specifications. On
the left one can see the size relative to the fingerprints at the left rim of the molybdenum
plate. The right image shows an enlarged section of the array where the very symmetric
spacing and shape of the holes is illustrated.

Theoretically, a much finer grid of the holes would result in a more detailed picture of the
wavefront. Apart from the diffraction that might occur, the shadow of one single spot
needs to illuminate more than one or two pixels in order to allow computing of the center.
Since our CCD-pixels are 26µm × 26µm, a 50µm spot diameter is about the lower limit.
Additionally, the detected intensity is fairly low when too small holes are used.
For the experiment, first of all a plane wave has to be realized for the calibration of the
wavefront analysis. This is done by inserting a 1µm pinhole in the XUV beam and choos-
ing a large enough distance to the hole array which is placed directly before the X-ray CCD
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chip. Alternatively, the sun can be regarded as a source of plane waves as well and this
can also be used for the calibration. The reference spot-pattern now can reveal whether
the pinhole is parallel to the detector and the harmonics are incident perpendicular to the
hole array. Calibration here means setting these spots as reference points from which the
deviation ∆x and ∆y is measured after removing the pinhole. From the change of the
center of each spot one can compute the k-vector at this small fraction of the beam profile
(see Fig. 4.6).

Figure 4.6: Side view of the one-dimensional change of the center of one illuminated spot.
The deviation from the former center ∆x is linked to the tilt of the wavefront indicated
by the angle α. The distance D is only important for the calibration measurements when
only a tiny part of the beam is incident on the hole array.

Using a software that is capable of interpreting the spot patterns after a given wave-
front distortion (e.g. spherical, astigmatic, and comatic abberation) should help at the
automated analysis. Alternatively, the program can be fed with simulated wavefronts to
illustrate what to expect for evaluation. Two results of simulated wavefront are given
below in Fig. 4.7.

Figure 4.7: On the left image is a reference spot pattern with equally spaced spots in x-
and y-direction. The middle image shows a strongly convergent beam with much smaller
distances between the single spots. On the right is a simulated spot pattern for astigmatism
where the spacings are different in vertical and horizontal direction.

But the wavefront can not only be constructed quantitatively by summing over the tilt
of the different small part of the beam profile. Another method is the description of the
generated pattern by Zernike polynomials [125]. These polynomials represent a 2-D basis
system that characterizes the wavefront. Numerically, a wavefront can generally be writ-
ten as the vertical offset z in dependence of the horizontal coordinates x and y :
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z = W (x, y) (4.1)

and knowing the z(x, y) or the gradients in x- (∂W
∂x ) and y-direction (∂W

∂y ) the phase front
is positively defined. The wavefront can be expanded as follows:

W (x, y) =
∞

∑

i=0

cifi(x, y) (4.2)

While as basis functions Fourier- or Taylor-expansions can be employed, the use of Zernike

polynomials Z
(n)
i implies a significant advantage: lower order Zernike polynomials repre-

sent directly the basic aberrations. Therefore one can rewrite 4.2 to

W (x, y) =
∞
∑

i=0

ciZ
(n)
i (x, y). (4.3)

The Z
(n)
i are derived from Legendre polynomials Pn(x) and defined on the unit circle;

they make up a complete orthogonal normal basis system. The Zernike polynomials are
defined in the polar coordinate system as follows:

Zm
n = Rm

n (r)cos(mθ) for m > 0 (4.4)

Zm
n = R−m

n (r)sin(−mθ) for m < 0 (4.5)

Zm
n = Rm

n (r) for m = 0 (4.6)

with

Rm
n =

(n−m)/2
∑

s=0

(−1)s(n− s)!

s!((n +m)/2 − s)! ((n −m)/2 − s)!
rn−2s (4.7)

Although looking quite elongated, the first few Zernike polynomials that are relevant for
the later analysis will be computed here. Along with the specific order the physical mean-
ing in terms of abberation is given.

Z
(0)
0 = 1 movement in z-direction

Z
(1)
1 = x tilt in x-direction

Z
(1)
2 = y tilt in y-direction

Z
(2)
3 = 2xy astigmatism in 45◦

Z
(2)
4 = 2x2 + 2y2 − 1 defocus

Z
(2)
5 = −x2 + y2 astigmatism 0/90◦

Z
(3)
6 = −x3 + 3xy2 trefoil in x-direction

Z
(3)
7 = 3x3 + 3xy2 − 2x comatic-abberation in x-direction

Z
(3)
8 = 3y3 + 3x2y − 2y comatic-abberation in y-direction

Z
(3)
9 = y3 − 3x2y trefoil in y-direction
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Z
(4)
12 = 6x4 + 12x2y2 + 6y4 − 6x2 − 6y2 + 1 spherical aberration of the 3rd order

Z
(6)
24 = 20x6 + 60x4y2 + 60x2y4 + 20y6

30x460x2y230y4 + 12x2 + 12y21 spherical aberration of the 4rd order

Thus one can link the coefficients directly to a certain wavefront distortion which is demon-
strated above for up to the third order and two more terms. In this listing, the upper
index corresponds to the radial order m while the lower index is a commonly used for
enumeration of the polynomial terms. One has to mention, that there is no convention on
a consistent ongoing denomination so the one used here is only one interpretation.

Figure 4.8: The simulated wavefronts show a tilt (a), an astigmatism (b), a comatic-
aberration (c), a trefoil (d), spheric aberration (e), and higher order terms (f,g, and h).
They have been computed with the evaluation software used to interpret the spot pattern
on the detector.
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Higher order terms than the sixth order, which are evaluated by our software, can be
neglected due to the small beam diameters we are using. In astronomical context at very
large beam diameters, higher order terms are necessary because they can carry important
information about the distortion. Some of the numerical terms are illustrated in Fig. 4.8.

4.2.1 Computational Evaluation

To evaluate the measured spot pattern we developed a LabView program which constructs
the aberrations. The first steps are universal and have to be performed for the step-by-step
reconstruction of the wavefront and for the analytical Zernike-based computation of the
aberrations.

Finding the correct spots

Since our hole array has squared unit cells, the pixels of the CCD chip are separated into
N ×N squares with one spot of light in each of them. If the spots are very large or the
distortions are strong, two spots might overlay or one spot can be located between two
squares. Given our beam parameters and our specific hole-array setup this seems unlikely
but the problem could then be solved by bringing the mask closer to the CCD. From the
mathematical point of view, it is important to have a quite circular spot pattern on the
detector due to the orthogonality of the basis functions (in case of Zernike-based analysis).

Detecting the centers

To compute the wavefront, the center of each casted shadow-spot has to be determined.
This is achieved by summing over the pixels in x- and y-direction:

Cx =
∑

i

xiIi
Itot

∧ Cy =
∑

j

yjIj
Itot

(4.8)

where Cx and Cy are the coordinates of the centers in x- and y-direction, respectively. Ii,j
is the intensity at pixel xi or yj, respectively. By summing over one dimension (x or y)
and dividing by the total intensity Itot =

∑

i Ii, we compute a numerical mean value for
the coordinate in one direction. Using this averaging, it is theoretically possible to achieve
sub-pixel resolution for the centers’ coordinates. The radius of the beam is normalized to
match the unit circle so that the coordinates are scaled to this as well. The so-calculated
centers of the spots are then compared to the reference values (corresponding to the cen-
ters of the spots from a plane wave). From the difference ∆Sx/y = Sx/y − Sx0/y0 the
pointing direction of the wave-vector can be deduced as shown in Fig. 4.6.

Summing up the deviations

Because of D >> ∆x, the far-field approximation can be used and tan(α) ≈ α = ∆x
D (see

Fig. 4.6). Using this and tan(α) =
∆zx,y

a the deviations of the centers of the spots can be
transformed into local changes of the wavefront ∆z(x, y) where a is the center-to-center
distance between the holes on the mask.
These small ∆z(x, y) must now be combined to represent a complete phase mask. Math-
ematically, this is done by summing over the deviations in x- and y-direction and thus
generating one array with the deviations of all spots in x-direction X and one array with
the deviations in y-direction Y . By adding the single components one can get the com-
plete wavefront representation. Since the wavefront is continuous, any addition of ∆xij
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and ∆yij allows to compute the wavefront at a certain i and j and the result is indepen-
dent of the way of integration. For simplicity reasons, we used the X0 or Y0 rows/columns
as illustrated in Fig. 4.9.

Figure 4.9: The second step of the algorithm combines all z(x, y) from the two directions.
This means, that the phase offset at a certain point Zkl is computed by adding up the
values of the offsets along the way. Thus the Zkl is independent of the exact path of
’integration’ and any chosen way results in the same wavefront offset at the coordinates k
and l.

Zernike polynomials

To quantitatively analyze the wavefront of the harmonics, the above-described Zernike
polynomials are used as a basis system for the spot pattern. The necessary fitting is done
by a Singular Value Decomposition (SVD) algorithm from the Least Square Fit package
from LabView 7.1. Unfortunately, this only works reasonable for low-order polynomials.
Simulations with spot patters from pure Zernike polynomials (e.g. astigmatism) revealed
that different other modes are added to the solution owing to the non-unique hole pattern.
This means, that the polynomials are not yet approximated well enough. For example,
from a pattern of 30 illuminated holes from the array, the circular rim of the spots is not
circular enough. Correspondingly, the error of adding non-existing modes to the solution
decreases when more holes are illuminated and for lower-order polynomials. By using an
additional fitting routine, these minor inconsistencies could be reduced to a neglectable
size.
Alternatively, one can also compute the low-order aberrations from fitting to the deriva-
tives of the Zernike polynomials [126]. The fit is integrated in the end to resolve the
complete wavefront. This method is only practical for up to n = 3 (astigmatism) because
the derivatives of the higher order polynomials are no longer linearly independent. There-
fore when a clean high-order aberration is given to this algorithm, additional modes are
’detected’. While with the procedure described above only mathematical fitting errors are
contributing to this, this latter technique [126] intrinsically includes non-existing modes
as a result. The advantage is probably a higher speed due to lower necessary computing
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power.
We chose to evaluate the wavefronts by directly fitting to the Zernike polynomials be-
cause computing time is not crucial for our applications yet and the mathematical errors
turned out to be controlable. For a closed-loop realization, fitting to the derivatives might
actually prove to be the better suited technique if it is considerably faster.

4.2.2 Simulation Results

For the first simulations, we again used our LabView fitting software with idealized spot
patterns. This means that the image that is handed to our algorithm contains the centers
of the spots already so that it does not have to evaluate them before fitting. Thus different
interpretations or deviations of the raw data are excluded to have an impact on the result
of the algorithms.
The patterns are generated by calculating the partial derivatives of the Zernike polyno-
mials in x- and y-directions at the centers of the apertures. By arbitrarily choosing the
coefficients and thus the amplitude of each mode, the ’integration’ process and the fitting
routine can be tested. Figure 4.10 shows the front end of the evaluation software with
which the patterns are constructed as well as analyzed.

Figure 4.10: Screenshots of the evaluation software front panel for two simulated pure
Zernike polynomials. On the left is an astigmatism with different tilts of the phase front
in two directions. The right image shows a trefoil aberration. In both cases, the parameters
at the top characterize the generated spot pattern, while the lower resulting parameters
are the fitted coefficients.

A fairly good agreement between the ’applied’ coefficient and the fit results is given.
However, for trefoil the first coefficient corresponding to a shift in z-direction is still pro-
nounced. Also, the other coefficients are not null and this leads to the assumption, that
the approximation of orthogonality of the basis functions is not necessarily valid. This
seems more crucial at higher orders of the polynomials and it seems to depend on the
quality of the circular boundary of the pattern. To prove this, simulations were conducted
with different amounts of illuminated apertures and the results are given in table 4.2.2.
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One can see that even at very high numbers of illuminated apertures (> 100) the ’wrong’
coefficients have significant contributions to the fit. As expected this error decreases
with increasing spots. Additionally, higher order modes suffer more from virtually added
Zernike polynomials than a simple tilt (see Fig. 4.10). For example, at 30 holes per di-
ameter, the false coefficients make up ≈ 8% of the real z8-mode for a comatic aberration
but more than 50% of the real z12-mode for a spherical aberration.

number of holes z2 z4 z5 z8 z9 z4 z5 z12
10 0.0496 0.0682 0.1364 1 0 0.4463 1.0909 1
20 0.0136 0.0357 0.0714 1 0 0.2585 0.5714 1
30 0.0062 0.0242 0.0484 1 0 0.1811 0.3871 1
50 0.0023 0.0147 0.0294 1 0 0.1130 0.2353 1
75 0 0.0091 0.0073 0.998 0.002 0.0769 0.1579 1
100 0.0006 0.0074 0.0149 1 0 0.0582 0.1190 1
200 0.0001 0.0037 0.0075 1 0 0.0296 0.0597 1
300 0 0.0025 0.0050 1 0 0.0198 0.0399 1
500 0 0.0015 0.0030 1 0 0.0119 0.0240 1

Table 4.1: Reconstruction of the Zernike coefficients from a comatic aberration (z8, left
table) and from a spherical aberration (z12, right table). Both tables refer to the amount
of apertures per line (left column). The initial coefficient is normalized to 1.

To illustrate the influence of illuminated apertures on the fitting quality one can compare
a low and a high ’resolution’ wavefront each with a pure comatic aberration in Fig. 4.11.
Even if the visible quality of the wavefront is quite similar, the coefficients (lower right ta-
ble in both screen shots) reveal significant differences between the two fit qualities. Again,
only z8 = 1 is the initially given parameter for the wavefront distortion.

Figure 4.11: Comparison between the same given aberration but analyzed with a differ-
ent amount of illuminated apertures. The left one uses very few spots while the right
corresponds to our setup when the hole array is completely hit by the harmonic beam.
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So concluding one can say that the higher the amount of apertures and the lower the order
of the Zernike-polynomial distortion, the easier it is to achieve a reasonable fitting result
with our evaluation software.
However, one more important insight was gained by the simulations: Since the fit is the
best when a smooth circular area of spots is generated, the absolute positioning of the
center of the beam on the hole array is also important. We have computed the difference
between an even and an odd number of illuminated apertures per diameter of the circle.
Interestingly, some ’false’ aberration coefficients (astigmatism) can be reduced by 20%
while others stay approximately on the same level. This is demonstrated in Fig. 4.12,
where some coefficients are plotted with even number of spots (left) or odd number of
spots (right), respectively.

Figure 4.12: On the left are the virtual coefficients plotted versus the number of holes
when the diameter always contains an even number of spots. The right shows the same
plot but with an odd number of illuminated spots.

This problem can be solved by careful alignment and an additional pinhole that spatially
filters all but a circular central part of the beam.
On the other hand, this would decrease the amount of illuminated apertures and thus
decreases the quality of the fit again. A perfect hole array with a radially symmetric
orientation could also help to minimize the fitting error but it would complicate the eval-
uation software significantly.
Last but not least, a certain resolution (regarding the number of spots) is necessary for
a detailed description of the wavefront. In these simulations, we always evaluated the
spots from one aberration (just one non-zero Zernike coefficient) without any experimen-
tal noise. Of course, the presence of more than one aberration is only detectable, if a good
resolution can be provided. Therefore we simulated a pure spherical aberration with a
coarse mask (left, Fig. 4.13) and with the hole array we are employing in the experiment
(right, Fig. 4.13).

Iterative elimination of virtual Zernike polynomials

For better fitting results, it would be desirable to eliminate the non-existing modes from
the output of the evaluation software. This is non-trivial, because there is no obvious way
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Figure 4.13: Comparison of low-resolution wavefront measurement with pixelation effects
at the outer beam area (left) and high-resolution analysis (right).

to tell apart the existing from the misleadingly reconstructed coefficients and real modes
must not be deleted. Especially if two basis functions (Zernike polynomials) influence one
another, a reasonable correction seems impossible.
After a number of simulations, fortunately, it was found that existant modes of the order n
in the worst case only generate artifacts of the order n−1. Thus the highest reconstructed
orders can be assumed to be characterized correctly which simplifies an iterative ’cleaning’
process significantly. A schematic overview of the correction looks as follows:

Figure 4.14: Illustration of the iterative cleaning procedure for the reconstructed Zernike
polynomial coefficients.

The experimentally reconstructed, highest-order coefficient of the fit is used as the starting
parameter for the simulation (see Fig. 4.14). From this simulation one gets the typical
artifacts from zeroth to (n − 1)-th order just like the ones from fitting the experimental
data. By subtracting the simulated artifacts from the experimental ones it is possible to
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see how adequate the Zn coefficient is. Thus the first - and highest-order - coefficient n is
found and one can go on to the (n− 1)-th coefficient. This can be continued until there is
no difference between the simulated and experimental artifacts because then theoretically
the simulation describes the experiment correctly. To check this procedure, more simula-
tions were conducted for a realistic number of apertures (46 on the diameter) which are
given in Fig. 4.15. One can see the large improvement after the correction in terms of less
’noisy’ Zernike coefficients. The reconstruction accuracy is in the one-tenth-of-a-percent
regime and thus the overall precision is increased about three orders of magnitude.

Figure 4.15: Comparison between the absolute values of the artifacts versus number of
the Zernike polynomial. The black squares indicate the falsely reconstructed coefficients
before the iterative correction and the red dots show the final amplitude of the artifacts.
Note the different scales.

For these simulations, the centers of the intensity spots were not computed but given to
the algorithm directly and any kind of experimental noise like movement of the source of
radiation is not considered.

4.2.3 Experimental Results

To apply our wavefront measurement device, we set it up directly after the XUV genera-
tion chamber (see Fig. 4.16), so that the aberrations from the toroidal mirror and possible
clipping from differential pumping would not occur. We focus the 500µJ, 40fs laser pulses
with a fused silica lens (f = 0.3m) into the nickel tube, which can be filled arbitrarily with
gas. Before this, the laser passes our 2-D SLM in order to be capable of spatial shaping
and measuring its impact on the resulting wavefronts. The spectrum of the XUV radiation
has constraints (compare section 3.3) which let us assume that the spectrum looks very
much like the one measured before with harmonics from the 29th to the 41st order. Such
a spectrum is given in Fig 4.17 with a characteristic intensity distribution that depends
on the gas and filter material.



84 CHAPTER 4. CHARACTERIZATION AND OPTIMIZATION OF HHG

Figure 4.16: Extremely shortened ’beamline’ to monitor the high-order harmonics directly
after their generation without focusing or collimating devices.
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Figure 4.17: Typical harmonic spectrum of the XUV photons used for wavefront measure-
ments and characterization where the numbers correspond to the harmonic order.

Changing the gas pressure

The next step is to characterize the beam profile while changing the gas pressure in the
nickel tube. A feedback system allows regulating the pressure in 0.1mbar steps but due to
a very time-consuming data evaluation a stepsize of 5mbar was considered reasonable.
In Fig. 4.18, two intensity graphs are plotted versus the gas pressure. Only one has errors
bars because the systematic error can be assumed to be the same because both intensities
are evaluations of the same data set. One can see a characteristic trend where no harmon-
ics are generated at zero pressure and than the XUV radiation peaks at about 100 to 120
mbar before declining again. The red curve represents the the overall counts of the X-ray
CCD camera which corresponds to the total number of photons hitting the detector. The



4.2. WAVEFRONT MEASUREMENTS 85

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

0

5

10

15

20

25

0,000190

0,000195

0,000200

0,000205

0,000210

0,000215

0,000220

0,000225

int
en

sit
y i

n a
rb.

 u.

Ar gas pressure in mbar

 peak intensity in 10^3
 integrated counts in 10^6
 divergence

 Ze
rni

ke
 co

eff
ici

en
t

Figure 4.18: Overall photons (red) and peak intensity (black) plotted versus gas pressure.
The blue graph shows the divergence of the beam computed with the Hartmann sensor.

black curve with the error bars gives the peak intensity, meaning the highest counts at one
pixel on the CCD chip. It is not trivial that both curves have their maxima at roughly the
same pressure, which indicates that the optimal pressure in terms of conversion efficiency
is also the best in terms of brilliance. This statement is underlined by the third graph
in Fig. 4.18 showing the divergence computed from the Hartmann image. Naturally, the
generated harmonics have an intrinsic divergence because of the fundamental laser beam
being focused into the gas. But apart from this the blue graph shows that a minimum
divergence is present in the region from 110 to about 140 mbar which is in agreement with
the peak intensity data. Together this leads to the conclusion that - as stated above - the
best pressure for the overall harmonic generation provides the best beam quality in the
XUV regime, too.

Figure 4.19: This plot shows the behavior of the reconstructed horizontal/vertical (black)
and diagonal (red) astigmatism when the gas pressure is changed.
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The astigmatism of the harmonic beam in dependency on the gas pressure reveals some in-
teresting behavior (see Fig. 4.19). The black curve (45◦-astigmatism) refers to a different
divergence of the laser beam along the two diagonal axes; for example, the laser propa-
gates and at one z-position a focus looks like a ’forward slash’ and at a second z-position
a second focus looks like a ’backslash’. One can see that this abberation remains nearly
constant and shows only little ’quadratic’ behavior when the pressure is changed. The red
curve (90◦ astigmatism) describes the same ’two-focal-points’ phenomenon but this time
the foci look like vertical and horizontal bars, respectively. Of course, in both cases the
beam profiles at the focal spots do not form an exact bar but more an ellipse-like struc-
ture. However, it is important to notice that this second abberation depends much more
on the gas pressure and its minimum coincides with the maximum intensity (see Fig. 4.18).

Changing the z-position

The second macroscopically adjustable parameter is the position of the focal spot with
respect to the nickel tube. In Fig. 4.16, one can see that by moving the focusing lens
along the z-direction one can place the focal spot in arbitrary distances to the gas medium.
As described earlier, the focal spot position is very important for phase matching of fun-
damental and harmonic radiation and offers selectivity over the dominant quantum path
(see section 3.1.3).
The z-position at all these measurements refers to the absolute scale of the micrometer
table on which the focusing lens is mounted. When the focal spot and the gas-filled nickel
tube coincide, we have a z-position of about 9 mm. It is hard to measure this exactly
because of the self-focusing effect in air and no easy way to directly measure it in vacuum.
Thus, this number is an estimate given with the naked eye and should not be considered
absolutely correct.
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Figure 4.20: Integrated (red, in 106 counts) and peak intensity (black, in 103 counts)
plotted versus the z-position of the focus in respect to the gas tube. The gas tube is
located at about 9mm. The blue, dashed graph gives the divergence in dependence on the
longitudinal position.
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Nevertheless, we know that this ’overlap position’ is at lower z numbers and that more
millimeters mean moving the focal spot away from the gas.
When we look at the same observables (peak intensity, overall counts and divergence) as
before in 4.18, we see a similar behavior with some peculiarities. First, peak intensity
and integrated counts are very much alike and differ only in magnitude which is natu-
ral. The dashed blue curve depicts the divergence and has a minimum at approximately
z = 10mm. This aberration does not increase overly towards the maximum counts but
at much larger distances between focal spot and gas tube the divergence grows while the
harmonic intensity decreases. Interestingly, the counts fall steeper when moving the focal
spot towards the gas tube and do not decrease as fast when the lens is moved away from
the jet. This can be explained by the importance of phase matching: when going near
the gas jet, very little harmonics can be generated efficiently and the optimal conditions
require a focus before the interaction medium. Another reason why we can safely assume
that bad phase matching is the main reason for the steeper drop closer to the gas is the
still acceptable divergence. If the lower count rate were caused by a distorted wavefront,
this would have been detected which is not the case.

Figure 4.21: Horizontal/vertical (red, 90◦) and diagonal (black, 45◦) astigmatism plotted
at various z positions that correspond to different distances between focal spot and gas
jet.

The astigmatisms in Fig 4.21 are not easily interpreted. If we neglect the diagonal one
(assuming it is intrinsic in the fundamental beam), the 90◦-astigmatism shows a clear
plateau between 10.0 and 11.0 millimeters; in this regime the abberation is very little.
Going further away from the gas jet, the astimatism grows and probably causes some of
the decrease in intensity. When we look at smaller distances, the astimatism is not quite
as strong which again indicates that the drop in intensity might be caused by bad phase-
matching.
What is unfortunately not visible is the regime where the focus is exactly at and behind
the gas jet, because of the too low count rates. We expect to be able to measure this in
the next few months and would like to see the influence of the z-position on the wavefront
distortion and evaluate its impact on short and long trajectories.
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Applying phase masks

We also applied different phase masks with our SLM and reconstructed the harmonic
waveforms with the Hartmann sensor. Using extreme values (Zernike coefficients were set
equal to one) for astigmatism, tilt, divergence, trefoil, or comatic abberation mostly de-
creased the detected counts significantly. This can be explained by very poor focus quality
and/or shifting the harmonic beam off the CCD chip. In the few cases where an applied
wavefront distortion improved the harmonic intensity, we assume that somehow an exist-
ing aberration was effectively compensated. This was only the case when the coefficient
was not set 1.0 but about 0.1.
If pure aberrations are introduced by the SLM, in almost all cases the reconstruction failed.
It was not possible to ’recognize’ the applied wavefront distortion by the Hartmann sensor
even though divergence and astigmatism had been successfully reconstructed before. This
means that either a systematic error in the evaluation process occurred or harmonics do
not automatically assume the whole wavefront properties of the fundamental beam. We
consider it more likely, that macroscopic parameters have a larger and more systematical
effect on the harmonic wavefront than minor spatial shaping. This does not mean that
spatially shaping the wavefront would not be a way to improve the XUV output. On the
contrary: we could show that spatial shaping can improve the macroscopic parameters
(e.g. intensity, see Fig. 4.4) but in this section we learned it cannot automatically influ-
ence the wavefront of the harmonics as well.



Summary and outlook

High-order harmonic generation provides a robust and easy-to-handle technique to gener-
ate ultrashort light pulses with wavelength down to the water window (2.4-4.2nm). Apart
from its usefulness for spectroscopy, coherent control and attosecond physics to name just
a few, some fundamental investigations were yet to be conducted. For example, we could
show that the comparably new technique of spectral broadening after a filamentation stage
allows compression of laser pulses down to about 10fs. A comparison between self-phase
modulation in hollow-core fibers and filamentation reveals that each realization brings it’s
own advantages and disadvantages. The higher throughput and better scalability of a
filament on the one hand and better spatial beam quality and less spatial chirp after the
capillary on the other hand. However, both techniques allow efficient compression of laser
pulses afterwards and the emerging laser pulses are well-suited for HHG.
By the technique of temporal, spatial and spatio-temporal adaptive pulse shaping, to a
certain extent the harmonic’s properties can be controlled. Formerly, the spectrum of
the generated XUV radiation was demonstrated to be controlled arbitrarily by shaping
the spectral phase of the fundamental laser pulse. Spatial shaping did not result in any
spectral selectivity but it provided a useful tool to counter the spatial inhomogeneities
after the filament. These spatially optimized laser pulses revealed a strong increase of the
efficiency of the harmonic generation process.
For all the adaptive shaping experiments an evolutionary algorithm was employed that was
specifically parameterized to meet the demands of the experiment. A simulation was con-
ducted that benchmarked the newly developed algorithm with the unmodified one. Some
changes are clearly improvements and speed up the optimization process while other ad-
vances are only of limited use for very specific applications.
Since most of the preceding experiments and simulations are aimed at high-order harmonic
generation, XUV radiation was generated and the formerly developed techniques were ap-
plied. Besides some optimization of the conversion efficiency, a newly adapted method for
wavefront characterization of harmonics was tested. By the use of a Hartmann sensor,
the wavefront of an arbitrarily shaped XUV pulse can be analyzed. Because this char-
acterization procedure is not trivial due to experimental and theoretical constraints, an
evaluation program was written that solves many of the numerical difficulties. We could
show the influence of pressure and position changes on the harmonic output and prove
that a high peak intensity corresponds to the best conversion efficiency at the same time.
Furthermore, these macroscopic tuning parameters exhibited a more profund and system-
atic impact on the harmonics’ wavefront than spatial phase shaping of the fundamental
laser pulse.

What remains to be done is a complete characterization of the spatial (wavefront), spectral
(spectrometer) and temporal (see section 3.1.3) properties of the harmonics. From this,
one should gain more insight into the complex process itself and be able to optimize the
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generated pulse duration, its spatial profile or the conversion efficiency.
The use of a phase shaper for temporally-resolved phase contrast microscopy for example
is just one application that yet awaits to be realized. The quite new field of attosecond
physics allows for investigation of inner-atomic processes and can greatly benefit from in-
creased conversion efficiencies and spatial characterization methods as well.

This field of physics is a combination of many exciting aspects of material science. It
deals with fundamental generation processes of ultrashort light pulses, nonlinear processes
in gaseous, fluid or solid matter, and analysis of atoms and molecules with unprecedented
high temporal and fairly high spatial resolution. And in a way, a high resolution in ev-
ery aspect is ’all that matters’ for getting to know any existing system that needs to be
investigated.



Zusammenfassung und Ausblick

Kurzwellige Laserstrahlen, die durch Frequenzkonversion erzeugten “hohen Harmonis-
chen”, stellen eine zuverlässige und einfach handhabbare Strahlquelle bis hinunter ins
“Wasserfenster“ (2,4nm bis 4,2nm) dar. Trotz ihrer vielfältigen bisherigen Anwendungs-
möglichkeiten in der Spektroskopie, der kohärenten Kontrolle und der Attosekunden-
Physik sind noch einige grundsätzliche Fragen im Bereich der ultrakurzen Laserpulse zu
beantworten. Zum Beispiel gelang es uns mit der Filamentierung eine neue Technik zur
spektralen Verbreiterung einzusetzen und Laserpulse bis zu 10fs hinunter zu verkürzen.
Dabei wurde im Rahmen dieser Arbeit auch ein Vergleich zwischen dieser neuen und der
häufig verwendeten gasgefüllten Hohlkern-Kapillare durchgeführt der zeigte, dass beide
eine effektive Komprimierung von Laserpulse erlauben und jede Realisierung ihre Vor-
und Nachteile mit sich bringt.
Durch zeitliche, räumliche und raumzeitliche, adaptive Pulsformung war es möglich in
gewissen Grenzen die Eigenschaften der erzeugten hohen Harmonischen zu kontrollieren.
Wie schon vor einiger Zeit demonstriert wurde, kann man die spektrale Struktur der gener-
ierten Strahlung durch geeignete Modulation der spektralen Phase des erzeugenden Laser-
pulses verändern. Durch räumliche Formung der Phasenfront der Pulse war zwar keine
Selektivität der Harmonischen zu erreichen, allerdings erwies sie sich als probates Mittel
um Inhomogenitäten im Strahlprofil auszugleichen. Auf diese Weise war eine Verbesserung
des Harmonischenintensität um fast eine Grössenordnung möglich.
Bei all diesen ”Pulsformungs“-Experimenten griffen wir auf einen evolutionären Algorith-
mus zurück, der genau für diese Zwecke von uns geschrieben beziehungsweise weiteren-
twickelt wurde. Verbesserungen am Berechnungsprozedere konnten durch Simulationen
verifiziert werden und dienten uns bei den weiteren Experimenten als Optimierungshilfe.
Dabei waren selbstverständlich nicht alle neu eingeführten Parameter bei allen Fragestel-
lungen hilfreich und es stellte sich heraus, dass für die optimale Lösung eines jeden Prob-
lems eine kleine Anpassung des Algorithmus nötig ist.
Da fast alle vorherigen Experimente darauf ausgerichtet waren in irgendeiner Weise die
Erzeugung der hohen Harmonischen nach gewissen Kriterien zu verbessern, wurde im
Vakuum eine XUV-Strahlquelle realisiert. Neben einer verbesserten Konversionseffizienz
konnten wir auch ein neues Verfahren zur Wellenfrontvermessung im XUV-Bereich testen.
Da die Auswertung dieser Messmethode sehr aufwendig ist, wurde sie mittels eigener Soft-
ware durchgeführt, die auch einige numerische Schwierigkeiten ausräumen konnte. Als
Ergebnis konnten wir den Einfluss von Gasdruck und Längsposition des Wechselwirkungs-
bereichs auf die erzeugten Harmonischen vermessen. Es ergab sich, dass beste Konver-
sionseffizienz und maximale Spitzenintensität bei fast gleichen Bedingungen auftreten. Die
Parameter Gasdruck und Längsposition stellten sich auch als systematischer und stabiler
heraus als eine Veränderung der räumlichen Phase des Laserpulses.

Noch ausstehende Messungen umfassen die komplette Charakterisierung der räumlichen
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(Wellenfront), spektralen (Spektrometer) und zeitlichen (siehe Abschnitt 3.1.3) Eigen-
schaften der Harmonischen. Dadurch sollte man mehr Einblick in den komplexen Erzeu-
gungsprozess selbst und eventuelle Optimierungsmöglichenkeiten gewinnen. Die Verwen-
dung eines Phasenformers für zeitaufgelöste Phasenkontrastmikroskopie ist dabei nur eine
vielversprechende neue Anwendung. Das relativ neue Feld der Attosekundenphysik er-
laubt die Untersuchung der inneratomaren Prozesse und profitiert selbstverständlich auch
von verbesserter Konversionseffizienz und räumlicher Charakterisierung des XUV-Pulses.

Dieses Arbeitsfeld der Physik stellt sich als Kombination von vielen interessanten Aspek-
ten der ”Werkstoffkunde“ im allgemeinsten Sinn dar: Es befasst sich mit grundliegen-
den laserphysikalischen Umwandlungsprozessen, nichtlinearer Lichtwechselwirkung mit
gasförmiger, flüssiger und fester Materie und Analyse von Atomen und Molekülen mit
höchstmöglicher zeitlicher und hoher räumlicher Präzision. Und - wie schon in der Ein-
leitung geschrieben - eine hohe Auflösung in jeder Dimension ist ein entscheidender Vorteil
bei der wissenschaftlichen Erforschung von Systemen aller Art.



Appendix A

Pulse Shaper

The spatial light modulator used in this work is a Hamamatsu Photonics PAL-SLM X8267
with an addressable resolution of 768x768 pixels. The device is a reflective shaper that
receives its mask from a LCD (1024x768 pixels) that is illuminated by a laser diode. The
desired phase mask is fed to the LCD unit and then imaged onto a thin layer of hydro-
genated, amorphous silicon (αSi : H).

Figure A.1: (a) is a side view of the pulse shaper shown in 2.1. It consists of the laser
diode that illuminates a LCD unit from where the picture is imaged onto the SLM unit
via the coupling lens. (b) shows only the front part - the SLM unit - which is described
in the text below.

This special material has an intensity-dependent dielectric constant and thus the local
ǫr(I) can be modulated. Because of a driving voltage applied between the Si-layer and
the LCD-layer on the other side of the dielectric mirror, the LCD is influenced by the
light incident on the ’rear’ part (see (b) in A.1). The liquid crystals are parallelly aligned
and with a voltage they tilt and change the refractive index with essentially no rotation
along the optical axis. Thus, linearly polarized light will be phase-modulated if parallel
to the liquid crystals and no polarization change is induced. With this technique we can
image a phase mask given to the LCD unit to the ’front’ part and thus to the laser beam
without pixelation. Between 700-900nm the reflectivity for the readout light is above 95%
and therefore we can best shape the pulses before spectral broadening. After a filament
or gas-filled capillary, the spectra are sometimes too broad for optimal phase modulation.
The smoothness of the active area is also enhanced because of a slightly blurry projection
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of the 1024x768 pixels of the LCD to the 768x768 pixels of the SLM. This results in a link
between neighboring pixels and thus large phase jumps extend over a few pixels.
To test this, a stripe-like phase pattern with 0π−3π−0π−3π and so on was applied to the
phase mask. One can see from A.2 that such a steep gradient seems to influence 2-3 pixels
which then deflect the incident light. This results in the visible cuts in the spectrum at
the transition from one phase to another. Very interesting is the increase of the spectral
intensity in parts of the spectrum, here in section 5 and 7 of the phase mask (in Fig. A.2).
This effect can be contributed to a change of the polarization of the laser beam due to
interaction with the modulation area. A twisted polarization leads to reduced transmis-
sion through the whole setup. From A.2 (b) one can see that this effect is very dominant
at zero offset (write light is weak/off). Then the strong readout-light (the IR-laser) will
act as a write light itself and affect the PAL-SLM and change the polarization. When
the input level is 255 (corresponds to green, 3π, and a strong write light), the laser diode
will overrule this effect and dominates the modulation. As long as this is the case the
polarization is nearly unchanged and the transmission is high.

Figure A.2: On the left is a spectrum plotted with and without applying an alternating
mask of zero and maximum phase offset. This was realized in the temporal shaping
geometry. In black is the original spectrum and in red is the spectrum after modulation
of the phase. The bar below the spectrum indicates where the input level was 0 (white,
corresponding to 0π) and 255 (black, corresponding to 3π). In (b) is the spectrum plotted
versus the modulation depth to show that this phenomenon really depends on the SLM.

As already mentioned, a downside of the optical backlight writing is the fact that trans-
mitted light from the readout side can ’self-modulate’ its phase.
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Figure A.3: SPM from the SLM is given in (a) and (b) when the incident laser is acting
as a ’write-light’. In (c) is the phase offset as a function of intensity.
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This effect seems to be very strong when no write light is applied. Therefore we let the
laser beam hit the active area without any signal from the write light and measured the
phase change (see Fig. A.3) employing a second laser. As shown before, the laser diode is
able to compensate this self-phase modulation of the laser beam, but still it is important
for no-offset measurements. Another intrinsic problem is the fact, that the phase modu-
lation depends on the wavelength and thus a certain applied phase will result in different
offsets for the different frequencies. Nevertheless, this SLM proved to be a useful tool in
this work and its high resolution in Fig. A.4 is a step in the direction of high versatility
and sensitivity.

Figure A.4: On the right is the intensity modulation of the Windows Explorer picture on
the left. Even small details are visible and the limiting factor of this image was the low
resolution of the CCD camera.

During this work no permanent damage of the SLM was detected, so the damage thresh-
old for 10fs laser pulses is assumed to be > 3.5 × 1010W/cm2. The technical problems
described here and more tests and calibration measurements have been studied in detail
in [50].
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students Matthias Weger, Marisa Mäder, and Christian Kern, who challenged our knowl-
edge over and over again and who helped me to understand the difficulties that arise when
one looks at ultrashort phenomena for the first time. But not only their engagement but
also Ron Kemmer, Thomas Sokollik, and Frank Dimler always had time for fruitful dis-
cussions and their diploma work helped a lot to gain insight into the basic facts. I thank
you for your contributions!
I do not want to forget our alumni: the inspirating Dr. Thomas Pfeifer, with whom



110 BIBLIOGRAPHY

I could discuss almost everything and come to a useful conclusion, Dr. Carsten Win-
terfeldt, whose neverending patience whenever a question arose helped to get ’into the
matter’, and Alexander Paulus, who was the most cheerful and good-humored guy I have
seen in this department.
In the background but nevertheless of great importance are our secretaries Monika Seifer,
Helga Schwark, and Diep Phan who managed to protect us from too much administrative
bureaucracy and thus supported our scientific work in every possible way. Another more
abstract but also crucial help did often come from our machine shop that managed to
construct much lab equipment in such a good way and sometimes even on a very short
time scale. Without your support this work would have been much more strenuous or
completely impractical.

In a way, friendship is like physics: it is not one big thing but rather a million little
things. Thus, last but not least I want to dearly thank my family and Sabrina Franz for
their continuous moral support and inspiration whenever experiments did not work right
away or any other setback occurred.


