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Abstract

Novel deep learning (DL) architectures, better data availability, and a signifi-

cant increase in computing power have enabled scientists to solve problems

that were considered unassailable for many years. A case in point is the “pro-

tein folding problem”, a 50-year-old grand challenge in biology that the DL-

system AlphaFold recently solved. Other examples comprise the development

of large DL-based language models that, for instance, generate newspaper ar-

ticles that hardly di�er from those written by humans. However, developing

unbiased, reliable, and accurate DL models remains a major challenge for var-

ious practical applications – and many promising DL projects never advance

beyond the piloting stage. In light of these observations, this dissertation in-

vestigates the practical challenges encountered throughout the life cycle of DL

projects and proposes solutions to develop and deploy rigorous DL models.

The first part of the dissertation is concerned with prototyping DL solutions

in di�erent domains. First, I conceptualize guidelines for applied image recog-

nition and showcase their application in a biomedical research project. Next,

I illustrate the bottom-up development of a DL backend for an augmented in-

telligence system in the manufacturing sector. Turning to the fashion domain,

I present an artificial curation system for individual fashion outfit recommen-

dations that leverages DL techniques and unstructured data from social media

and fashion blogs. After that, I showcase how DL solutions can assist fashion

designers in the creative process. Finally, I present my award-winning DL so-

lution for the segmentation of glomeruli in human kidney tissue images that

was developed for the Kaggle data science competition HuBMAP – Hacking the
Kidney.

The second part continues the development path of the biomedical re-

search project beyond the prototyping stage. Using data from five laborato-

ries, I show that ground truth estimation from multiple human annotators and
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Abstract

training of DL model ensembles help to establish objectivity, reliability, and

validity in DL-based bioimage analyses.

In the third part, I present deepflash2, a DL solution that addresses the typ-

ical challenges encountered during training, evaluation, and application of DL

models in bioimaging. The tool facilitates the objective and reliable segmenta-

tion of ambiguous bioimages through multi-expert annotations and integrated

quality assurance. It is embedded in an easy-to-use graphical user interface

and o�ers best-in-class predictive performance for semantic and instance seg-

mentation under economical usage of computational resources.
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Kurzzusammenfassung

Die Entwicklung neuer Deep Learning (DL) Architekturen, flankiert durch eine

bessere Datenverfügbarkeit und eine enorme Steigerung der Rechenleistung,

ermöglicht Wissenschaftler:innen die Lösung von Problemen, die lange Zeit

als unlösbar galten. Ein Paradebeispiel hierfür ist das 50 Jahre alte “Protein-

faltungsproblem” in der Biologie, das vor Kurzem duch das DL-System Alpha-

Fold gelöst wurde. Andere Beispiele sind moderne, DL-basierte Sprachmodel-

le. Diese können unter anderem Zeitungsartikel verfassen, die nur schwer von

Artikeln menschlicher Autoren:innen unterscheidbar sind. Die Entwicklung un-

voreingenommener, zuverlässiger und präziser DL-Modelle für die praktische

Anwendung bleibt jedoch eine große Herausforderung. Dies wird an zahlrei-

chen vielversprechenden DL-Projekten sichtbar, die nicht über die Pilotphase

herauskommen. Vor diesem Hintergrund untersuche ich in dieser Dissertation

die Herausforderungen, die während des Lebenszyklus von DL-Projekten auf-

treten, und schlage Lösungen für die Entwicklung und den Einsatz verlässlicher

DL-Modelle vor.

Der erste Teil der Arbeit befasst sich mit dem Prototyping von DL-Lösungen

für verschiedene Anwendungsgebiete. Zunächst werden Richtlinien für die

angewandte Bilderkennung konzipiert und deren Anwendung in einem bio-

medizinischen Forschungsprojekt gezeigt. Dem folgt die Darstellung einer

Bottom-up-Entwicklung eines DL-Backends für ein Augmented-Intelligence-

System im Fertigungssektor. Im Anschluss wird der Entwurf eines künstli-

chen Fashion-Curation-Systems für individuelle Outfit-Empfehlungen vorge-

stellt, das DL-Techniken und unstrukturierte Daten aus sozialen Medien und

Modeblogs nutzt. Es folgt ein Abschnitt darüber, wie DL-Lösungen Modedesi-

gner:innen im kreativen Prozess unterstützen können. Schließlich stelle ich

meine prämierte DL-Lösung für die Segmentierung von Glomeruli in menschli-

chen Nierengewebe-Bildern vor, die für den Kaggle Data Science-Wettbewerb

HuBMAP - Hacking the Kidney entwickelt wurde.
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Kurzzusammenfassung

Im zweiten Teil wird der Entwicklungspfad des biomedizinischen For-

schungsprojekts über das Prototyping-Stadium hinaus fortgesetzt. Anhand von

Daten aus fünf Laboren wird gezeigt, dass die Schätzung einer Ground-Truth
durch die Annotationen mehrerer Experten:innen und das Training von DL-

Modell-Ensembles dazu beiträgt, Objektivität, Zuverlässigkeit und Validität in

DL-basierten Analysen von Mikroskopie-Bildern zu manifestieren.

Im dritten Teil der Dissertation stelle ich die DL-Lösung deepflash2 vor, wel-

che die typischen Herausforderungen beim Training, der Evaluation und der

Anwendung von DL-Modellen in der biologischen Bildgebung adressiert. Das

Tool erleichtert die objektive und zuverlässige Segmentierung von mehrdeu-

tigen Mikroskopie-Bildern durch die Integration von Annotationen mehrerer

Experten:innen und integrierte Qualitätssicherung.
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1 Introduction

The COVID-19 pandemic has become an unprecedented public health emer-

gency. Beyond the spread of the disease itself, its far-reaching consequences

a�ect society, economy, culture, ecology, politics, and science on a global scale.

To mitigate the impact of the pandemic, thousands of scientists – virologists,

epidemiologists, public health scholars, statisticians, and others – are working

toward understanding the SARS-CoV-2 virus, the disease, and its evolution.

Fueled by the recent success of machine learning (ML) and deep learning

(DL) methods in particular, the computer science community and associated or-

ganizations have rushed to contribute to the fight against the pandemic. The

COVID-19 High-Performance Computing (HPC) Consortium1, for instance, pro-

vides researchers access to the world’s most powerful computing resources. It

enables ML projects that aim to predict the spread of COVID-19 or analyze large

numbers of chemical compounds to develop a therapy. The COVID Moonshot

– a non-profit, open-science consortium – combines crowdsourcing with ML

and robotic experiments to develop a globally accessible antiviral pill against

COVID-19 (Chodera et al. 2020). Other initiatives involve the organization of ML

competitions, e.g., to detect fake news related to COVID-19 (Patwa et al. 2021)

or to identify informative COVID-19 tweets (Nguyen et al. 2020).

However, ML solutions do not always live up to their lofty promises.

Wynants et al. (2020) analyze predictive ML models that are supposed to sup-

port medical decision making. This comprises, among other things, the detec-

tion of COVID-19 (based on medical imaging) and the prediction of mortality

risk, progression to severe disease, or intensive care unit admission. Their re-

view of 232 prediction models is a scathing verdict on the usefulness of such

approaches, as most “proposed models are poorly reported and at high risk

of bias such that their reported predictive performance is probably optimistic”

(Wynants et al. 2020, p.1) and they “cannot recommend any model for use in

1https://covid19-hpc-consortium.org/

1
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1 Introduction

practice at this point” (Wynants et al. 2020, p.10). The majority of the reviewed

models are diagnostic DL models trained on medical images (CT images or

chest radiographs) to support the diagnosis of pneumonia. These models fre-

quently lack external validation and are repeatedly criticized in subsequent

studies (Roberts et al. 2021; DeGrave, Janizek, and Lee 2021).

While these findings may seem disillusioning, they are by no means spe-

cific to COVID-19 research. According to the 2020’s McKinsey Global Survey

on artificial intelligence (AI) by Balakrishnan et al. (2020), 50 percent of the

responding companies report having adopted AI in at least one business func-

tion. However, a more detailed questioning revealed that only 16 percent had

adopted DL models in a business function, as most projects got stuck in the

piloting stage. In addition, the adoption of DL capabilities across di�erent tech-

nology sectors is highly imbalanced, with 30 percent of DL adoption occurring

in high-tech and telecom companies.

Conducting research at the intersection of computer science and domain

sciences (Figure 1.1), information systems (IS) scholars can play a key role in

bringing DL solutions into practice.

1.1 Research Focus

In the forthcoming editorial of the Management Information Systems Quar-

terly journal, Padmanabhan, Fang, and Sahoo (2022)2 discuss the opportuni-

ties for ML research in IS and propose three di�erent categories of contribu-

tions: (i) ML methods development, (ii) understanding phenomena using ML,

and (iii) ML in complex systems.

The contributions in this thesis can best be attributed to the first category,

ML methods development in IS. As a subset of ML, DL “allows computational

models that are composed of multiple processing layers to learn representa-

tions of data with multiple levels of abstraction” (LeCun, Bengio, and Hinton

2015, p.436). Complementing this, computational design science research (DSR)

in IS is “concerned with solving business and societal problems by developing

computational models and algorithms” (Rai 2017, p.iii). A methodological con-

tribution in the context of DL in IS includes the development of novel DL mod-

2Information taken from the MIS Quarterly Master class on ML in IS Research
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Machine
Learning

Computer 
Science

Deep
Learning

Domain Science 
(e.g., Business and Social Science)

Information Systems

Design Science

Computational 
Design Science

Research
Focus

Figure 1.1: Research focus, inspired by Ullman (2021). Circles not to scale.

els and algorithms as well as the nontrivial extension of an existing DL method

(Padmanabhan, Fang, and Sahoo 2022). That is, for instance, the development

of a DL model for understanding medication nonadherence (Xie et al. 2017).

As illustrated in Figure 1.1, this thesis’ research is located at the intersec-

tion of DL (computer science), computational DSR (IS), and di�erent domain

sciences. The guiding research objective can be summarized as:

Solving business and societal problems by developing rigorous
deep learning models.

To this end, I will follow a broad definition of business and societal problems,

which may imply considerable overlap with other domains. For example, de-

veloping an objective and reliable DL-based model for diagnosing COVID-19

pneumonia may originate in the medical domain, however, it could eventually

also solve a societal problem by mitigating the impacts of the pandemic.
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1 Introduction

This thesis combines the evidence given in several research articles pub-

lished in outlets of di�erent research domains.3 While sections based on pa-

pers published in the IS domain explicitly follow a DSR approach (e.g., Sections

2.3 and 2.2), other parts that are based on papers published in other areas

(e.g., life sciences in Chapter 3 and life science methods in Chapter 4) follow

the methodology of the respective area (but may implicitly contain DSR ele-

ments).

From a technical perspective, the Machine Learning Lifecycle concept

presents a suitable approach to establish a common denominator for all re-

search presented in this thesis.

1.2 Machine Learning Life Cycle

Over the past 20 years, the Cross-Industry Standard Process for Data Mining

(CRISP-DM, Chapman et al. 2000) has become a well-established methodology

with solid industry support (Studer et al. 2021). CRISP-DM is a manifestation of

best practices for conducting data mining and knowledge discovery. In addi-

tion, it is commonly applied in dedicated ML projects. To overcome hurdles

typically encountered in ML projects, CRISP-DM has been extended several

times to better address tasks such as model testing and monitoring (Breck

et al. 2017), as well as quality assurance (Studer et al. 2021). Due to their it-

erative nature, these end-to-end ML workflows are frequently termed ML life
cycle models.

Large organizations have also published their internal ML workflows. For

instance, Microsoft has presented its machine learning workflow (Amershi et

al. 2019) and the Team Data Science Process lifecycle4. Uber has introduced its

Machine Learning Platform, Michelangelo, which implements an ML workflow

to build, deploy, and operate machine learning solutions at scale (Hermann

and Del Balso 2018). The workflow has been tried and tested in practice and

is well suited to conceptually organize the status of ML or DL-based research

projects. Thus, I have adapted the ML life cycle of Uber’s Michelangelo for

this thesis (Figure 1.2). Similar to the Business Understanding phase in CRISP-

3See Appendix A for a comprehensive list of articles.
4https://docs.microsoft.com/bs-latn-ba/azure/architecture/data-science-process/
lifecycle

4
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Figure 1.2: Machine learning life cycle adapted from Uber’s Michelangelo (Her-

mann and Del Balso 2018).

DM, this ML life cycle starts with understanding the (business) needs and a

definition of project requirements and objectives. The subsequent steps can

be organized into three groups: prototyping a solution, productionizing the

solution, and measuring the impact of the solution (Hermann and Del Balso

2018):

• Prototype: Prototyping a solution comprises most CRISP-DM phases. A

prototyping cycle typically starts with get data (data collection), followed

by prepare data to consolidate, clean, and transform the data. The train
models step describes the Modeling phase when various modeling tech-

niques are selected and applied. Finally, evaluate models covers the Eval-
uation phase to test the models for predictive accuracy, speed, robust-

ness, or scalability.

• Productionize: Productionizing the solution means to deploy models and

data pipelines into a staging or production environment. Once the mod-

els are successfully deployed, they are prepared to make predictions for

new data (on demand).

5
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• Measure: Measuring the impact of the solution requires to monitor pre-
dictions in the first place. This step is critical in real-world environ-

ments as models are typically trained and evaluated on a limited data

set. Therefore, it is not guaranteed that they will work correctly for new

data. The data collected during model monitoring should be gathered
and analyzed to provide insights.

The three main concepts of the ML life cycle – Prototype, Productionize, Mea-

sure – form the backbone of this thesis. In this context, it should be noted

that some of the presented steps in the ML life cycle (e.g., deploy models or

monitor predictions) are typically attributed to the fields of ML engineering

or MLOps. This thesis, however, emphasizes the theoretical and conceptual

aspects of these steps.

1.3 Structure

This work addresses a variety of challenges that are encountered along the

life cycle of DL models. Chapter 2 is primarily concerned with prototyping DL

solutions for problems from di�erent domains. In Section 2.1, I conceptualize

guidelines for applied image recognition spanning task definition, deep neural

network configuration, and training procedures. I showcase the guidelines by

means of a biomedical research project for image recognition. Section 2.2 il-

lustrates the bottom-up development of a DL backend for an augmented intel-

ligence system in the manufacturing sector. A wearable device equipped with

highly sensitive sensors is paired with a deep convolutional neural network

to monitor connector system assembly processes in real-time. Turning to the

fashion domain in Section 2.3, I present an artificial curation system for indi-

vidual outfit recommendations that leverages DL techniques and unstructured

data from social media and fashion blogs. Here, I lay out the artifact design

and provide a comprehensive evaluation strategy to assess the system’s util-

ity. Section 2.4 provides a perspective on the possible role of AI in the creative

sphere. Here, I explore how di�erent DL algorithms can contribute to the cre-

ative process, and I specifically investigate the domain of fashion design to

showcase how AI can assist designers. Finally, Section 2.5 presents my award-

winning solution for the segmentation of glomeruli in human kidney tissue

6



1 Introduction

images. The DL prototype was developed for the Kaggle data science compe-

tition HuBMAP - Hacking the Kidney hosted by the HuBMAP consortium.

Chapter 3 continues the development path of the biomedical research

project of Section 2.1 beyond the prototyping phase. Here, I investigate how

di�erent data annotation and training strategies a�ect the objectivity, relia-

bility, and validity of DL-based bioimage analysis. I evaluate the results with

data from two model organisms and five laboratories and provide guidelines

for reproducible DL-based bioimage analyses.

Chapter 4 is concerned with all phases of the ML life cycle. Here, I present

an easy-to-use DL tool that facilitates the objective and reliable segmenta-

tion of ambiguous bioimages through multi-expert annotations and integrated

quality assurance (monitoring predictions and out-of-distribution detection).

Thereby, the tool addresses typical challenges that may arise during training,

evaluation, and application of DL models in bioimaging.

Lastly, Chapter 5 summarizes the findings and outlines future research di-

rections for DL-based bioimage analyses and the potential role of DL solutions

in the creative process.

7



2 Deep Learning Prototypes

This chapter is primarily concerned with prototyping DL solutions for problems

from various domains. The presented DL solutions have passed one or more

prototyping iterations, from data collection over data preparation and model

training to model evaluation. Thus, they exhibit di�erent levels of maturity.

Prepare 
Data

Evaluate 
Models

Deploy 
Models

Make 
Predictions

Monitor 
Predictions

Gather and 
Analyze Insights

PROTOTYPE

Understand 
and Define

Train 
Models

Get 
Data

Machine learning life cycle stages covered in Chapter 2.

Summary. Applied Image Recognition (Section 2.1), adapted from Griebel,

Dürr, and Stein (2019): In recent years, novel DL techniques, greater data avail-

ability, and significant growth in computing power have enabled AI researchers

to tackle problems that had remained unassailable for many years. Further-

more, the advent of comprehensive AI frameworks o�ers a unique opportu-

nity for adopting these new tools in applied fields. Information systems re-

search can play a vital role in bridging the gap to practice. To this end, we con-

8



2 Deep Learning Prototypes

ceptualize guidelines for applied image recognition spanning task definition,

deep neural network configuration, and training procedures. We showcase our

guidelines by means of a biomedical research project for image recognition.

Augmented Intelligence for Industrial Assembly Processes (Section 2.2),

adapted from Krenzer et al. (2019): Empowered by machine learning and ar-

tificial intelligence innovations, IoT devices have become a leading driver of

digital transformation. A promising approach are augmented intelligence so-

lutions that seek to enhance human performance in complex tasks. However,

there are no turn-key solutions for developing and implementing such systems.

One possible avenue is to complement multi-purpose hardware with flexible

AI solutions which are adapted to a given task. We illustrate the bottom-up

development of a machine learning backend for an augmented intelligence

system in the manufacturing sector. A wearable device equipped with highly

sensitive sensors is paired with a deep convolutional neural network to moni-

tor connector system assembly processes in real-time. Our initial study yields

promising results in an experimental environment. While this establishes the

feasibility of the suggested approach, further evaluations in more complex test

cases and ultimately, in a real-world assembly process have to be performed.

Designing a Fashion Curation System (Section 2.3), adapted from Griebel

et al. (2019): Online retailing has been experiencing explosive growth for years

and is dramatically reshaping the way people shop. Given the lack of personal

interactions fashion retailers have to establish compelling service and infor-

mation o�erings to sustain this growth trajectory. A recent manifestation of

this is the emergence of shopping curation as a service. For this purpose, ex-

perts manually craft individual outfits based on customer information from

questionnaires. For the retailers as well as for the customers, this process

entails severe weaknesses, particularly regarding immediateness, scalability,

and perceived financial risks. To overcome these limitations, we present an

artificial fashion curation system for individual outfit recommendations that

leverages DL techniques and unstructured data from social media and fash-

ion blogs. Here, we lay out the artifact design and provide a comprehensive

evaluation strategy to assess the system’s utility.

Idea Generation in the Creative Sphere (Section 2.4), adapted from Griebel,

Flath, and Friesike (2020): The continuing attention that artificial intelligence

has received in recent years has given rise to a debate about its possible role in

9
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creativity. Positions di�er widely. Some argue that algorithms will replace hu-

man creativity altogether, while others claim that creativity is genuinely human

and thus cannot be replaced. With this work, we want to leave this philosoph-

ical debate behind by looking at the specific challenges of creative processes.

We distinguish between two essential aspects of creative action: divergent

and convergent thinking. We investigate how di�erent artificial intelligence

algorithms can contribute to these two aspects of the creative process and

unite creative AI with the existing IS design theory. We specifically investigate

the domain of fashion design to showcase how artificial intelligence can assist

designers. In divergent thinking, this would mean that artificial intelligence de-

velops a large number of possible solutions/designs and therefore supports

creatives in idea generation. In convergent thinking, this would mean help in

idea selection. The application of artificial intelligence in creative processes

could have far-reaching consequences for practices in creative domains. We

are currently at the beginning of a possibly fundamental change in what con-

stitutes a creative profession.

Kaggle Competition: Hacking the Kidney (Section 2.5): We present our

award-winning solution for the segmentation of glomeruli in human kidney

tissue images. The DL prototype was developed for the Kaggle data science

competition HuBMAP - Hacking the Kidney hosted by the HuBMAP consortium.

Our approach allows super-fast model training and achieves top results on the

leaderboard. Our final submission (10th place, gold medal rank) consists of a

DL model ensemble trained on data with di�erent zoom scales. These results

were facilitated by our e�cient sampling strategy that focuses on relevant re-

gions (e.g., tiles that contain glomeruli and cortex). Our training procedure

uses best practices for training schedules, DL architectures, augmentations,

and inference leveraging the PyTorch ecosystem. Moreover, our solution imple-

ments capabilities for energy-based uncertainty estimation to enable human-

in-the-loop refinement of di�cult specimens. To test the generalizability of

our approach, we tested our pipeline on image data of another tissue type.

Our work is fully open source and reproducible.

10
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2.1 Applied Image Recognition

J
This section is adapted from the article of Griebel, M., Dürr, A., &

Stein, N. Applied image recognition: guidelines for using deep learn-
ing models in practice published in the proceedings of the 14th In-

ternational Conference on business informatics (WI) 2019.

In recent years, novel deep learning techniques, greater data availability, and

a significant growth in computing power have enabled AI researchers to tackle

problems that had remained unassailable for many years. This holds espe-

cially true for voice or image recognition tasks where deep learning has demon-

strated its remarkable capability of revealing structures in unstructured high-

dimensional data. Given the wide availability of such data, deep learning ap-

plications can be used in many areas of science, business and administration

(LeCun, Bengio, and Hinton 2015). At this point, a McKinsey study estimates

the potential of AI applications to create between $3.5 trillion and $5.8 trillion

in value annually across nine business functions in 19 industries (Parker et

al. 2018). A case in point for image recognition applications is the health care

sector where deep learning in conjunction may o�er a critical complement to

the gold standard of randomized controlled trials by supporting massive obser-

vational studies that were not feasible before (Agarwal and Dhar 2014). While

there are already many successful biomedical applications enabled by deep

learning applications, there is still a great need for innovative solutions. Grand

Challenge5 lists 167 data science competitions for biomedical image analysis

over the last decade. These challenges comprise a wide range of applications,

from ultrasound nerve segmentation, determination of skeletal age, and mul-

tiple sclerosis segmentation to di�erent sorts of cancer detection and clas-

sification. A recent example is the Kaggle Data Science Bowl 2018 (Caicedo

et al. 2019) that aims to develop algorithms to speed up research for almost

every disease, from lung cancer and heart disease to rare disorders or to the

common cold. While the IS community actively engages in various healthcare-

oriented fields such as health care management (Wager, Lee, and Glaser 2017),

health care services (Yaraghi et al. 2015) or mental health therapy programs

5https://grand-challenge.org/challenges/, accessed 10.10.2018
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(Lederman et al. 2014), there has been little activity towards supporting re-

searchers with cutting-edge tools such as advanced image recognition. Yet,

our community should assume a more active role in this field as it is “uniquely

positioned to provide the appropriate mix of rigor along with humanistic and

instrumental relevance” (Abbasi, Sarker, and Chiang 2016).

In recent years, comprehensive new AI frameworks such as Keras (Chollet

et al. 2015) have emerged. They focus on fast experimentation and prototyp-

ing through user-friendliness, modularity, and extensibility. The correspond-

ing democratization of AI allows non-AI researches to easily access powerful

deep learning applications. This shifts the focus of attention from the technol-

ogy to the use case. We feel that this development o�ers a unique opportu-

nity for information systems researchers in facilitating the use of these tools

in practical applications. Alongside this development, the availability of un-

structured data, notably image data, is increasing dramatically. Images are

not only present on social media platforms (Instagram, Facebook), video plat-

forms (YouTube), satellite images (such as Planet.com), but also a growing con-

stituent in scientific research (Chen, Chiang, and Storey 2012). As the volume

of image data has vastly exceeded the capacity of manual analysis, AI is hence-

forth a key component for automated evaluation (Provost and Fawcett 2013).

For research purposes, AI applications, as with traditional machine learning

applications, are typically embedded in data mining pipelines. Existing data

mining frameworks such as the guidelines put forward by Müller et al. (2016)

or CRISP-DM (Chapman et al. 2000) only vaguely describe machine learning

applications as part of the modeling phase, whereas they focus on tasks such

as feature engineering in the data preparation phase and the data mining pro-

cess itself. However, modeling is a critical and extremely complex task for

the distinctive nature of deep learning (AI) methods. To this end, we seek to

outline the current state of advanced image recognition and contribute to the

literature by providing tangible guidelines for non-AI researchers on how to in-

corporate state-of-the-art AI algorithms into data mining pipelines. Thereby,

we follow up on the call for embracing the value of unstructured data in the

design of analytical information systems put forward by Müller et al. (2016).
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2.1.1 Building Blocks for Image Recognition Applications

Supervised learning for image recognition requires a data set of labeled im-

ages (e.g., magnetic resonance or microscopy images labeled healthy or in-

fected). To facilitate the usage by researchers outside the AI world, we want

to establish general guidelines for setting up computer vision projects. To this

end, we break down the image recognition into its primary building blocks

– task definition, the design of the neural network, and finally, the training

approach. The design task features several sub-tasks (choice of architecture,

loss function, evaluation metric). To o�er concise recommendations for these

highly technical sub-tasks, we link the design of the neural net to the initial

task definition.

Defining the Task

To e�ectively address the abundance of image recognition applications, it is

imperative to understand the underlying problem set. Consequently, any ap-

plied computer vision project must ultimately start with a proper definition of

the image recognition task at hand. The majority of applications are captured

by the following main task categories:

1. Image classification assigns the whole image to a particular class (Haral-

ick, Shanmugam, and Dinstein 1973).

2. Semantic segmentation (also referred to as pixel-wise classification)

identifies every pixel that is part of a specific class while neglecting dis-

tinct instances (Provost and Fawcett 2013; Noh, Hong, and Han 2015).

3. Object classification (also referred to as object detection) distinguishes

between di�erent objects (instances) of classes in a picture, returning

their approximate location using a bounding box (Girshick et al. 2014).

4. Instance segmentation localizes objects on a pixel basis (He et al. 2017a).

We want to illustrate these categories by means of a histology image con-

taining cancer cells (Figure 2.1.1). The histology images were adapted from “The

GlaS Challenge Contest” data set (Sirinukunwattana et al. 2017). Depending on

the focus of the study the following questions can be addressed using image

recognition:

13
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Applied Image Recognition

Defining the task

In order to effectively address the abundance of image recognition applications, it is imperative to under-
stand the underlying problem set. Consequently, any applied computer vision project must ultimately start
with a proper definition of the image recognition task at hand. The majority applications are capture by the
following main task categories:

• Image classification (Haralick et al. 1973) assigns the whole image to a particular class.
• Semantic segmentation (also referred to as pixel-wise classification) identifies every pixel that is part
of a specific class, while neglecting distinct instances (Long et al. 2015; Noh et al. 2015).

• Object classification (also referred to as object detection) distinguishes between different objects (in-
stances) of classes in a picture, returning their approximate location using a bounding box (Girshick
et al. 2014).

• Instance segmentation localizes objects on a pixel basis (He et al. 2017).

We want to illustrate these categories by means of a histology image containing cancer cells (Figure 1). The
histology images were adapted from ”The GlaS Challenge Contest” data set (Sirinukunwattana et al. 2017).
Depending on the focus of the study the following questions can be addressed using image recognition:

• Classification: Does this image contain any cancer cells? If yes, assign this image to the class “cancer.”
• Semantic Segmentation: What pixels belong tho the class “cancer?”
• Object Classification: Howmany cancer cells are in the image and what is their approximate location?
• Instance segmentation: Howmany cancer cells are in the image andwhat is the exact (pixel) position?
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Figure 1. Taxonomy of image recognition tasks using the example of histology images that
show cancer cells.

Thirty Ninth International Conference on Information Systems, San Francisco 2018 2

Figure 2.1.1: Taxonomy of image recognition tasks using the example of histol-

ogy images that show cancer cells.

1. Classification: Does this image contain any cancer cells? If yes, assign

this image to the class “cancer”.

2. Semantic Segmentation: What pixels belong to the class “cancer”?

3. Object Classification: How many cancer cells are in the image, and what

is their approximate location?

4. Instance segmentation: How many cancer cells are in the image, and

what is the exact (pixel) position?
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Composing the Neural Network

Having identified the image recognition task, the underlying neural network

for image analysis must be set up. Unlike other classification or regression

techniques, this is a highly non-trivial task and requires interacting with fre-

quently cryptic concepts and an overwhelming number of design options.

While artificial neural networks, i.e., multilayer perceptrons, have been suc-

cessfully applied to various tasks since the 1980s, convolutional neural net-

works (CNN) have emerged as the standard for image recognition in the last

decade (LeCun, Bengio, and Hinton 2015). Consequently, we focus on explain-

ing the essential building blocks of this class of neural networks and establish

best practices for each task category.

! Def-pooling

Handling deformation is a fundamental challenge in computer
vision, especially for the object recognition task. Max pooling and
average pooling are useful in handling deformation but they are
not able to learn the deformation constraint and geometric model
of object parts. To deal with deformation more efficiently, Ouyang
et al. [27] introduced a new deformation constrained pooling layer,
called def-pooling layer, to enrich the deep model by learning the
deformation of visual patterns. It can substitute the traditional
max-pooling layer at any information abstraction level.

Because of the different purposes and procedures the pooling
strategies are designed for, various pooling strategies could be
combined to boost the performance of a CNN.

2.1.1.3. Fully-connected layers. Following the last pooling layer in
the network as seen in Fig. 2, there are several fully-connected

layers converting the 2D feature maps into a 1D feature vector, for
further feature representation, as seen in Fig. 5.

Fully-connected layers perform like a traditional neural net-
work and contain about 90% of the parameters in a CNN. It enables
us to feed forward the neural network into a vector with a pre-
defined length. We could either feed forward the vector into cer-
tain number categories for image classification [6] or take it as a
feature vector for follow-up processing [29].

Changing the structure of the fully-connected layer is uncom-
mon, however an example came in the transferred learning
approach [30], which preserved the parameters learned by Ima-
geNet [6], but replaced the last fully-connected layer with two
new fully-connected layers to adapt to the new visual
recognition tasks.

The drawback of these layers is that they contain many para-
meters, which results in a large computational effort for training
them. Therefore, a promising and commonly applied direction is to
remove these layers or decrease the connections with a certain
method. For example, GoogLeNet [20] designed a deep and wide
network while keeping the computational budget constant, by
switching from fully connected to sparsely connected
architectures.

2.1.2. Training strategy
Compared to shallow learning, the advantage of deep learning

is that it can build deep architectures to learn more abstract
information. However, the large amount of parameters introduced
may also lead to another problem: overfitting. Recently, numerous
regularization methods have emerged in defense of overfitting,
including the stochastic pooling mentioned above. In this section,
we will introduce several other regularization techniques that may
influence the training performance.

2.1.2.1. Dropout and DropConnect. Dropout was proposed by Hin-
ton et al. [38] and explained in-depth by Baldi et al. [39]. During
each training case, the algorithm will randomly omit half of the
feature detectors in order to prevent complex co-adaptations on
the training data and enhance the generalization ability. This
method was further improved in [40–45]. Specifically, research by

…
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Fig. 2. The pipeline of the general CNN architecture.
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Fig. 5. The operation of the fully-connected layer.
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Figure 2.1.2: Example of a CNN architecture

Architectures for convolutional neural networks. The general CNN architec-

ture is composed of three main neural layers, namely convolutional, pooling,

and fully connected layers as shown in Figure 2.1.2 (LeCun, Bengio, and Hin-

ton 2015). Convolutional layers consist of filters (“neurons”) and feature maps

to discover conspicuous local pattern-like edges, lines, and other visual ele-

ments. Pooling layers are typically considered as a technique to compress or

generalize feature representations and reduce the overfitting on the training

data by the model (Krizhevsky, Sutskever, and Hinton 2012). Fully connected

layers are used at the end of the network after feature extraction and con-

solidation by the convolutional and pooling layers. They integrate all feature

responses and provide the final classification results (Krizhevsky, Sutskever,

and Hinton 2012).
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The overwhelming success of AlexNet (Krizhevsky, Sutskever, and Hinton

2012), a large CNN for image classification, in the ILSVRC 2012 challenge (Rus-

sakovsky et al. 2015) has sparked significant interest in the CNN approach.

Since then a vast number of architecture tweaks have emerged, each o�er-

ing incremental improvements of image classification for di�erent data sets.

By using their original configuration, these networks perform the task of im-

age classification. Due to their remarkable ability to extract features from im-

ages, they are also used as a backbone architecture for other image recogni-

tion tasks. Figure 2.1.3 provides an overview of the current main architecture

choices.
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)−x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 33, 48] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[35] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [35], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [40]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 47]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [44, 45], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 44, 45] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 33, 48] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [33, 48]. In [43, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [38, 37, 31, 46] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [43], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [41, 42]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2771

(c) Residual building

block

Figure 2.1.3: Backbone architecture characteristics

The basic VGG family, introduced by Simonyan and Zisserman (2015), is

typically used for its simple and easily understandable architecture (see Fig-

ure 2.1.3a). The Inception family of networks (Szegedy et al. 2015) relies on

Inception modules (Figure 2.1.3b), where the input is processed by several par-

allel convolutional layers of di�erent sizes whose outputs are then merged

back. This enables the network itself to converge towards an optimal level of

abstraction to represent a feature. Finally, the ResNet family (He et al. 2016)

introduces residual blocks to the CNN (see Figure 2.1.3c). Their special fea-

tures are shortcut connections parallel to the convolutional layers. This facil-

itates the e�cient training of even deeper and more powerful networks (He

et al. 2016). Moreover, these architectures are frequently used as a foundation

to tailor customized CNN architectures towards a specific use.
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Next, we want to match CNN architectures to the image recognition task

categories. These suggestions should provide an informative starting point

for determining a suitable architecture:

1. Classification: At present, the best performing classification models are,

e.g., Inception-Resnet-V2 (Szegedy et al. 2016) or di�erent versions of

ResNet (i.e., ResNet51, ResNet101) or VGG.

2. Semantic segmentation: Depending on the purpose, variants of the U-

Net (Ronneberger, Fischer, and Brox 2015) perform well on biomedical

images such as 2D light microscopy cell segmentation. The 3D version of

the U-Net is called V-Net (Milletari, Navab, and Ahmadi 2016). For more

general-purpose applications we suggest a VGG based architecture such

as a Fully Convolutional Network (Long, Shelhamer, and Darrell 2015).

3. Object classification and instance segmentation: As the approach of

Mask R-CNN (He et al. 2017a) allows both object detection and instance

segmentation within the same setting it is the best option for most multi-

class segmentation applications. However, the U-Net variants can be ex-

tended by additional post-processing steps to enable instance segmen-

tation. In particular, this approach showed very strong performance in

the Kaggle Data Science Bowl 2018 (Caicedo et al. 2019). Depending on

the problem at hand, it can be rewarding to implement and evaluate both

approaches.

Loss function and optimizer. The loss function (objective) and optimizer are

the main components to configuring the learning process of a neural network.

During the learning phase, the weights are adjusted so that the loss decreases.

The loss function has to be chosen according to the task, the number of classes,

or potential class imbalances. Due to its robustness and ability to handle non-

linear e�ects, the binary cross-entropy loss is commonly used as the standard

loss for binary classification tasks (picture- or sub-picture-wise). Accordingly,

the categorical cross-entropy loss works well for all multi-class classification

tasks

In pixel-wise segmentation tasks, there is typically an imbalance between

pixel classes (i.e., many background pixels and few foreground pixels). There
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are two common approaches to cope with this problem. On the one hand,

Ronneberger, Fischer, and Brox (2015) propose the use of the weighted cross-

entropy loss. On the other hand, the dice coe�cient loss yields promising

results as it handles true negatives as uninteresting defaults (Milletari, Navab,

and Ahmadi 2016).

The optimizer determines the update process of the CNN by calculating

the gradient. To tackle the high volumes of image recognition tasks, it is of

paramount importance that the optimizer is computationally e�cient, has

little memory usage, and requires little tuning. We suggest using the opti-

mizer Adam as it outperforms other common choices (e.g., SGD, AdaDelta, and

RMSProp) with respect to computational overhead (Kingma and Ba 2015).

Evaluation metrics. A suitable evaluation metric is needed to assess a

model’s performance on the image recognition task. In contrast to the loss

function, metrics do neither require to be mathematically di�erentiable nor

used to train the model. Understanding the importance of the evaluation met-

ric is fundamental for every data science project (Davis et al. 2007), including

image recognition tasks.

Accuracy and the area under the curve (AUC) are metrics to evaluate the

quality of classification results. For class-imbalanced problems, the Mathew

correlation coe�cient (MCC) is considered a robust measure (Powers 2011).

Recall, precision, and F-Measure focus on the positive examples to capture

information about the rates and kinds of errors made. The intersection-over-

union (IoU) metric measures the similarity between the predicted region and

the ground-truth region for an object present in the set of images. This is

particularly suited for pixel-wise image segmentation tasks. There is clearly

no gold standard for evaluation metrics, as they have to account for the spe-

cific properties of the given task and underlying data set. We suggest using

a combination of di�erent metrics in order to cover di�erent aspects of the

evaluation requirements. An exemplary combination of metrics for instance

segmentation could be the IoU and recall. While the IoU measures the qual-

ity of the segmentation task, the recall accounts for the ability to detect all

relevant instances.
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Training Strategy

Having determined the composition of the neural network (by choosing an

appropriate CNN architecture, loss function, optimizer, and evaluation metric)

the final task of training this network on the data needs to be tackled. To this

end, we introduce di�erent concepts and best practices for model generaliza-

tion, hyperparameter optimization, and hardware requirements.

Model generalization. The advantage of deep and complex CNN architec-

tures is to better extract information from unstructured data. However, a

large number of available parameters (weights) renders these networks prone

to overfitting which prevents the model from generalizing well to unseen in-

stances (Guo et al. 2016). We consider data-oriented techniques, transfer learn-

ing, and architectural tweaks to limit the overfitting tendencies of a model.

Data-oriented techniques prevent overfitting by restricting full access of

the network to the training data. To this end, we apply methods such as data

splitting and data augmentation. Data splitting partitions the data set into two

subsets: training and validation. The model is then trained on the training data

and evaluated on the validation data. Thus, it is possible to stop the training

as soon as overfitting occurs. In a k-fold cross validation, this procedure is

repeated k times (Kohavi et al. 1995).

Data augmentation artificially generates additional data without incurring

extra labeling costs. In the case of image recognition, this is easily achieved

by means of transformative methods, such as rotation, shearing, translation,

flipping, elastic deformations, and random intensity jitter. This is especially

useful for small data sets (Ronneberger, Fischer, and Brox 2015). Depending

on the data set, some transformations should not be performed, i.e., in case

of an object recognition task where objects are characterized by their shape,

the shape should not be distorted.

Moreover, transfer learning leverages a pre-trained model as a feature ex-

tractor. To this end, the CNN is initialized with pre-trained parameters of a

network that has been trained on another data set such as ImageNet (Rus-

sakovsky et al. 2015) or MS COCO (Andriluka et al. 2014). There are plenty of

pre-trained models publicly available, e.g., in the repository of Keras (Chollet

et al. 2015). The pre-trained model is fine-tuned subsequently. Thereby, the
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pre-trained parameters of the initialized network are gradually adjusted to the

new images during additional training steps. Depending on the problem, of-

tentimes the parameters of the majority of the layers are fixed while only a

few parameters on top layers are adjusted. Optionally, some custom layers

can be introduced and trained in parallel to fine-tune these layers on the new

data set. In general, transfer learning accelerates the learning process and

improves the generalization ability of a network (Guo et al. 2016).

Finally, architectural considerations such as dropout layers (Srivastava et

al. 2014) can incorporate generalization approaches within the CNN composi-

tion. Dropout layers prevent the network from overfitting by randomly deacti-

vating a share of the neurons during the training phase. Thereby, the model is

forced to learn the same patterns using di�erent neurons. During the predic-

tion phase, the dropout is deactivated and all neurons can be utilized.

Hyperparameter optimization. There are numerous configuration settings in

a CNN that can be tuned to improve the performance. Such parameters include,

e.g., the activation function, learning rate, the number of training epochs, the

batch size, the initial weight choices, and many more.

1. Each weight layer in a CNN is typically ensued by a non-linear activation

function. The simplest activation function for binary classification deci-

sions is the sigmoid function which is bounded between 0 and 1. The

ReLU (Rectified Linear Unit) activation function (Nair and Hinton 2010)

is commonly used for all layers except for the output layer in practice

because of the constant slope for positive values.

2. The learning rate controls the magnitude weights adjustment after each

iteration. If the learning rate is low, the training progresses slowly. In

contrast, a high learning rate can prevent from converging to a possible

minimum loss.

3. One epoch is when an entire dataset is passed through the neural net-

work for training.

4. The batch size defines the number of samples propagated through the

network in each step of gradient descent, i.e., learning.

20



2 Deep Learning Prototypes

Given the vast number of parameters manual tuning is impossible. Conse-

quently, we suggest conducting an automated hyperparameter search based

on either a random grid search (Bergstra and Bengio 2012) or a Bayesian op-

timization search (Golovin et al. 2017) to identify the promising parameter

choices. Hardware Requirements. The training of CNNs requires a vast number

of convolutional operations resulting in an enormous demand for computing

power. Training the model on purpose-built hardware such as GPUs or TPUs is

far more e�cient than training on a universal CPU. The increased availability

and reliability of cloud-computing services provide a strategic dynamic capa-

bility to scale up or down the IT infrastructure (Bharadwaj et al. 2013). There-

fore, we suggest using Machine Learning as a Service (MLaaS) solutions. Such

services are o�ered by all leading cloud operators.

2.1.2 A Biomedical Case Study

We illustrate the execution of an image recognition project based on the guide-

lines put forward above. To this end, we report learnings from a research col-

laboration with a group of neuroscientists. In a joint project, we developed

a DL pipeline to automatically detect fluorescently stained neurons in tissue

images of mice brains (Segebarth et al. 2018).

Defining the Task

To define the task, we first need to understand the underlying problem and

data set. Figure 2.1.4 shows an excerpt of the image dataset obtained using a

confocal microscope. The data comprises three di�erent sub-regions of the

dorsal hippocampus: dentate gyrus (DG), Cornu ammonis 1 (CA1), and CA3. As

there is no ground truth for fluorescent signal segmentation, neurons are de-

termined by their relative brightness (signal strength) to the background. For

this purpose, the resulting segmentation maps are generated either by means

of a heuristic, manual identification process, or by means of a (partially) au-

tomated threshold-based analysis. Due to the low signal-to-noise ratio of the

data, threshold-based approaches do not work reliably as they fail to detect

most of the fluorescent areas (see Figure 2.1.4).
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CA1 CA3 DG
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mask
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Figure 2.1.4: Di�erent sub-regions of the dorsal hippocampus and the cor-

responding segmentation masks (here, the threshold only considers the

5% brightest pixels per image)

The goal of our image recognition is to automatically detect fluorescent

neurons within a microscopy image. For biomedical evaluation, researchers

require the position, size, and signal intensity of fluorescent neurons. Thus,

our model needs to identify (i) object instances as well as (ii) the exact area

(segmentation mask) rendering instance segmentation suitable for our task.

Composing the Neural Network

CNN architecture. According to the task definition we first used the Mask R-

CNN approach based on a ResNet backbone architecture for instance segmen-
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tation. This already yielded reasonably good results but also required a huge

amount of computational resources. We also tried a U-Net-based approach

similar to the winning solution of the Kaggle Data Science Bowl 2018 (Caicedo

et al. 2019). In this particular case, instance segmentation is achieved by (i) per-

forming pixel-wise binary classification with the U-Net and (ii) post-processing

the resulting binary segmentation map. The post-processing pipeline includes

a Watershed algorithm (Beucher 1979) and the removal of biologically implausi-

ble regions (i.e., too small or misshapen). As the U-Net approach yields better

results we continue with it for the remainder of the study.

Loss and optimizer. As shown in Figure 2.1.4 the total number of fluorescent

neurons (positive pixel class) is far less than the background (negative pixel

class) resulting in high class imbalances among the whole dataset. Thus, we

optimize (Adam algorithm) our model by minimizing a weighted combination

of the cross-entropy loss and the dice loss to take advantage of their respec-

tive benefits. Here, the dice coe�cient loss is particularly valuable as it han-

dles true negatives as uninteresting defaults. We found that the outcome of

the whole pipeline depends on a well-suited loss function.

Metrics. To evaluate the quality of our model we compare the expert seg-

mentation masks to the post-processed output masks of our network. This

comparison can either be performed pixel-wise or on an aggregated neuron

level. For the pixel-wise comparison, we need to take the class imbalance into

account. Hence, we leverage the IoU as we are mainly interested in identifying

instances of the positive class (fluorescent neurons).

Considering the biomedical use case, researchers are particularly inter-

ested in the position and size of each neuron. However, in high-resolution

images the exact boundaries of the neurons are di�cult to define for human

experts on a pixel level. As a result, there are often minimal deviations on

pixel-level even though the same neuron is detected. To address this issue,

we introduce another comparison process that (i) matches the corresponding

neurons of two segmentation masks and (ii) calculates the accuracy as the pro-

portion of matches divided by the total number of unique neurons found on

both segmentation masks.
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Training Strategy

Due to the high cost of both manual labeling and mice experiments, only a lim-

ited amount of training samples are available. Thus, we apply data augmenta-

tion as a combination of randomly rotating, flipping, and shifting the original

image-mask pairs. As the shape of the neurons is important in the identifica-

tion process, we do not use techniques that distort the shape (e.g., shearing).

Figure 2.1.5 exemplifies this process with random parameters. Here, the origi-

Original Flip Rotation

Image

Mask

Shift

Figure 2.1.5: Data augmentation methods used in our project.

nal image-mask pair is horizontally flipped, rotated by 90 degrees clockwise

and 20 percent shifted to the top and right. In light of the small dataset, data

augmentation prevents overfitting and generalizes the model, e.g. by learning

to detect neurons independent of their position. To further remedy the issue

of limited training data we pre-trained our model on the Kaggle Data Science

Bowl 2018 data set, which contains similar microscopy tissue images. To tune

the parameters of the network we use a Bayesian optimization search. The

model is trained and evaluated on multiple Nvidia Tesla V-100 GPUs.

To communicate our research, we provide a Jupyter-Notebook that requires

no ML and almost no programming expertise. It can be executed on Google

Colab with free access to high computing power6.

6https://colab.research.google.com/github/matjesg/DeepFLaSH/blob/master/
DeepFLaSH.ipynb
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2.1.3 Prototype Summary

The DL solution for the segmentations of fluorescent neurons in microscopy

images (Section 2.1.2) has already passed through several prototyping iter-

ations, including data collection and annotation. The model demonstrates

the potential of DL in biomedical applications and already achieves human-

like performance in some cases. Automating the conventional (manual) im-

age analysis process could reduce the workload and allow highly qualified

researchers to focus on essential activities instead of tedious image labeling

work. However, there are still issues regarding the reliability of the model train-

ing and the reproducibility of the results. Due to its paramount importance to

the life sciences, we continue the development of this DL project along the ML

life cycle in Chapter 3 and 4.

2.2 Augmented Intelligence for Industrial Assembly
Processes

J
This section is adapted from the article of Krenzer, A., Stein, N.,

Griebel, M., & Flath, C. Augmented Intelligence for Quality Control of
Manual Assembly Processes using Industrial Wearable Systems pub-

lished in the proceedings of the International Conference on Infor-

mation Systems (ICIS) 2019. I was primarily responsible for outlining

the conceptual approach as well as for developing and documenting

the DL solution (data preparation, modeling, and evaluation).

Recent advances in sensor technology, a continuing decline of hardware prices

and ubiquitous networking capabilities have led to significant growth in In-

ternet of Things (IoT) devices and applications. Fueled by innovations in ma-

chine learning and artificial intelligence, these new IoT devices become a lead-

ing driver of the ongoing digital transformation and enable a plethora of au-

tonomous systems (Gubbi et al. 2013; Patel, Ali, and Sheth 2017). Driven by the

digital transformation, an increasing number of tasks can be automated substi-

tuting human work and forcing workers to adapt to this changing environment.

The impact of increasing automation has often been discussed controversially

25



2 Deep Learning Prototypes

(David and Dorn 2013; Rajnai and Kocsis 2017; Loebbecke and Picot 2015) and

is attracting significant media attention. Still, many tasks cannot be fully auto-

mated. A case in point are complex assembly processes which easily surpass

motion capabilities of current robot generations (David 2015; Gibbs 2016; Pfeif-

fer 2016). In these settings, digital transformation is not about automation but

rather about assisting and improving human performance by means of smart

IoT devices. As pointed out by Pavlou (2018) and Pan (2016), human-computer

symbiosis, also referred to as augmented intelligence, has the potential to

leverage the complementary strengths of humans and computers.

However, there is no one-size-fits-all solution to develop and implement

augmented intelligence systems. As smart IoT devices have to be newly devel-

oped or at least redesigned for many use-cases, the unique combination of

hardware (sensors, motors, signals) and data processing during highly special-

ized processes will most of the time limit the direct applicability of existing

training data or pre-trained machine learning models.

By means of a use case from the manufacturing sector, we illustrate the

bottom-up development process of an augmented intelligence system and

highlight the important steps as well as the obstacles. Specifically, we design

a wearable device for real-time quality control in an electronics assembly pro-

duction step. Our example applications seeks to detect if connector systems

(plugs) are properly connected during a manual assembly process. Driven by

the “Poka-Yoke” principle, manufacturing companies strive to design fail-safe

production processes (Dvorak 1998). It is for this reason that connector sys-

tems mechanically emit a distinctive acoustic signal (“click”) to signify success-

ful connections. However, such connections often have to be made under ag-

gravated circumstances and outside a worker’s line of sight (e.g., plugs have to

be connected behind the glove compartment or in the drivetrain) while loud

ambient noises overpower the click sound. Consequently, neither visual nor

acoustic Poka-Yoke solutions are applicable. One way to overcome this obsta-

cle is to augment the worker by means of a multi-use structure-borne noise

sensor that can detect object vibrations beyond superhuman levels. Such sen-

sors can be embedded in a wearable device that is positioned at the workers’

wrist (close enough for reliable detection, not impairing assembly motions).

The device can then continuously record a broad band of frequencies trans-

mitted via air (acoustic signals) or vibrations (structure-borne noise). This
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hardware needs to be paired with an analytic backend that identifies valid

click sounds from the sensor data stream. In turn, the system can o�er direct

feedback with respect to the success of connections. Figure 2.2.1 illustrates a

prototype of this IoT device.

Figure 2.2.1: Prototype of the wearable IoT device

2.2.1 Conceptual Approach

We seek to complement a wearable sensor equipment with a data analytics

backend to establish a real-time quality control system. To this end, we follow

the Design Science Research paradigm which puts forward the development

of useful artifacts as the central research goal (Baskerville et al. 2018; Hevner

et al. 2004). Such artifacts can either embody (i) new solutions for known

problems, (ii) known solutions extended to new problems, (iii) new solutions

for new problems, or (iv) known solutions for a known problem (Gregor and

Hevner 2013). Along these lines, our artifact instantiates as a new solution for

a known problem as we combine existing components from di�erent domains

(information systems research, artificial intelligence) to a well-known problem

from quality control. Gregor and Hevner (2013) refer to such an artifact as

improvement.

The structure-borne noise sensor combined with a Raspberry Pi module

is worn on the worker’s wrist without restricting mobility. The device continu-

ously streams sensor readings to a server using the Message Queuing Teleme-

try Transport protocol (MQTT), one of the standard IoT communication proto-

cols (Al-Fuqaha et al. 2015). The predictive backend queries the data prepara-

tion module every second using the last five seconds of recording data. Based
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on the prepared data, the classification module provides real-time feedback

to the worker. Our artifact is outlined in Figure 2.2.2.

Real-time Quality Control System 5 seconds

Data PreparationClassificationFeedback

MQTT

Figure 2.2.2: Artifact overview

2.2.2 Experimental Design and Data Collection

Following Basili (1996), the quality and e�cacy of a system has to be rigor-

ously demonstrated by means of an appropriately selected evaluation method.

While we aim to evaluate the artifact in a real production environment, we first

have to show its viability. Hence, our initial case study relies on an experimen-

tal replication of the real-world assembly process.

To collect su�cient training data, we created a training program that re-

peatedly instructs the test person to perform one of the following actions in

the next five seconds:

• Assemble the plug appropriately and thereby generate a positive sample.

• Perform some other movement and generate a negative sample.

In order to ensure a similar distribution of the environmental sounds, the pro-

gram randomly selects the action to be performed. Note that we opted for

oversampling of negative examples as there is only one way to successfully

connect the plugs but many ways to generate non-successful sounds (incom-

plete clicks, drops, walking, speaking, background noise).

Following this procedure, we collected a data set of 4,375 samples (1,525

positive and 2,850 negative). Each 5-second sample comprises an array of

160,000 sensor readings as well as a binary label (positive or negative). Figure
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2.2.3 visualizes two examples of the raw data. In the right panel, a “click” is

located between the two vertical dotted lines. Comparing the two samples it

becomes obvious that there is a lot of noise in the data and that the correct

assembly of the connector systems cannot readily be identified from raw data.

Figure 2.2.3: Sensor raw data without (left) and with “click” (right).

2.2.3 Data Preparation and Modeling

We apply a deep convolutional neural network (CNN) to classify whether or not

a given sound sequence corresponds to a correct assembly of the plugs. In line

with Agarwal and Dhar (2014)’s call to action, we primarily focus on problems

and outcomes while limiting development e�orts for new algorithms. Thereby,

we follow Griebel, Dürr, and Stein (2019) and do not design new network ar-

chitectures from scratch but select one from state-of-the-art research papers

solving similar problems.

Data Preparation

Even though CNNs render the task of manual feature engineering obsolete, the

raw data still needs to be transformed in order to e�ectively train meaningful

models.

On the one hand, network architectures for sound classification are de-

signed to classify an acoustic signal based on its frequency spectrum. To ob-

tain this, we decompose each recorded five-second time window into its indi-

vidual frequencies by means of the short-time Fourier transformation (Sejdić,

Djurović, and Jiang 2009). This transformation splits a function of time (the sen-

sor readings) into its frequencies (Bracewell and Bracewell 1986). Performing
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the Fourier Transformation on our one-dimensional raw sensor data returns a

two-dimensional spectrogram. On the other hand, neural networks converge

faster and therefore perform better if the input variables follow a standard nor-

mal distribution (LeCun et al. 2012). Hence, we perform a log transformation

on the spectrogram and subsequently standardize the input variables. Figure

2.2.4 shows the data preparation pipeline on a negative as well as on a positive

example.
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Figure 2.2.4: Data preparation pipeline

Modeling and Training

As stated above, DCASE provides best practice models for sound classification.

Therefore, we adopt the current DCASE-19 baseline model7 (Kong et al. 2018),

which proved to be successful in the 2016 DCASE challenge (Valenti et al. 2017),

to tackle the classification problem at hand. This CNN comprises two convolu-

tional layers and one dense layer, followed by a sigmoid binary classification

layer. For regularization, we included batch normalization (Io�e and Szegedy

2015) after each convolutional layer and dropout (Srivastava et al. 2014) after

all layers.

In order to avoid overfitting we split our data into a training set (3500 sam-

ples) and a test set (875 samples). This is done in a stratified manner, main-

taining the ratio of positive and negative samples from the original data. We

7https://github.com/qiuqiangkong/dcase2018_task1
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additionally draw a random validation set (350 samples) from the training data

to monitor the performance during model training and tuning. We preserve the

test set for the final evaluation.

To increase generalizability as well as training stability, data augmentation

is commonly applied to train deep neural networks. For image recognition

tasks, this involves random transformations of each image such as rotation,

shearing, or flipping. In contrast to images, a spectrogram carries di�erent in-

formation on each axis (i.e, frequency, amplitude, and time). Hence, we can

only apply transformations that do not change the sequence of the data. This

renders the addition of Gaussian noise to each training sample as a valid re-

maining option for our case.

We implement the final model using the Tensorflow framework (Abadi et

al. 2016). The training is performed on an Nvidia Tesla P100 GPU to minimize

the binary cross-entropy loss by means of the Adam optimizer (Kingma and Ba

2015).

2.2.4 Results

We implement di�erent state-of-the-art audio classification approaches to as-

sess the performance of our CNN. In contrast to deep neural networks, these

models are based on hand-crafted features. Therefore, we extract 645 fea-

tures from the spectrogram, namely the arithmetic mean, minimum, maximum,

and median value for each frequency. We chose four di�erent baseline mod-

els. These comprise two tree-based ensembles, a gradient tree boosting (XGB)

(Chen and Guestrin 2016) and a random forest (RF) (Breiman 2001), as well as a

support-vector machine (SVM) (Cortes and Vapnik 1995) and a Gaussian naive

Bayes classifier (GNB) (Chan, Golub, and LeVeque 1982).

We chose the following evaluation metrics considering the class imbalance

(more negative than positive samples) in our data set:

• Matthews correlation coe�cient (MCC) is generally regarded as a good

measure for imbalanced data (Powers 2011). It takes true positives (in-

stances of correctly classified properly connected plugs), false positives

(instances that contain falsely connected plug events but are erroneously

classified as properly connected), true negatives (instances of falsely as-

sembled plugs classified as falsely assembled plugs), and false negatives
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(instances of properly assembled plugs that are erroneously classified as

falsely assembled) into account.

• Precision reports the fraction of correctly classified correctly assembled

plugs among all instances that are classified as correctly assembled, i.e.,

true positives divided by the sum of true positives and false positives.

• Recall indicates the fraction of correctly assembled plugs that are cor-

rectly classified (true positives) among all correctly assembled plugs

(true positives and false negatives).

• F-Measure considers both, precision and recall, and is calculated as the

harmonic mean of the two evaluation criteria.

Table 2.2.1: Classification results on the test set

Model MCC Precision Recall F-Measure

CNN 98.74% 99.67% 98.69% 99.18%
XGB 92.93% 96.32% 94.43% 95.36%

RF 90.98% 98.56% 89.51% 93.81%

SVM 76.58% 100.00% 68.52% 81.32%

GNB 25.22% 39.12% 99.67% 56.19%

As depicted in Table 2.2.1 the CNN achieves the best overall performance

with an MCC of 98.74%, surpassing the second-best model (XGB) by 5.81%. No-

tably, the SVM yields a precision of 100% (CNN 99.67%). It flawlessly classified

all correctly assembled plug instances as correctly assembled. This can be

particularly interesting for quality control systems that require high reliability.

However, such systems should preferably yield a high recall as well. This holds

true for the CNN, but not for the SVM.

2.2.5 Prototype Summary

The presented prototype combines dedicated hardware with a deep convo-

lutional neural network to perform real-time classification of the assembled

plugs based on structure-borne noise signals. The prototype has completed
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several development cycles and the evaluation results underline the feasibil-

ity of the suggested approach. However, our study was conducted with only

a single plug and data collected from a limited number of test persons. Go-

ing forward, the test setting needs to be expanded to more complex scenarios

using di�erent plugs and additional test persons.

2.3 Designing a Fashion Curation System

J
This section is adapted from the article of Griebel, M., Welsch, G.,

Greif, T., & Flath, C. A picture is worth more than a thousand pur-
chases: designing an image-based fashion curation system pub-

lished in the proceedings of the European Conference on Informa-

tion Systems (ECIS) 2019.

E-commerce has dramatically changed the retailing landscape and online re-

tail continues exhibiting explosive growth in recent years (Doherty and Ellis-

Chadwick 2010). This applies in particular to the fashion industry, where online

sales are currently growing at an annual rate of ten percent (Amed et al. 2017).

Vis-a-vis stationary retail, online fashion retail must overcome deficits with

respect to product presentation as well as ancillary service o�erings. Ad-

dressing these issues researchers have highlighted the importance of foster-

ing the online shopping experience through social integration (Kim, Suh, and

Lee 2013), improved visualization (Won Jeong et al. 2009) as well as optimized

search (Mathwick and Rigdon 2004) and recommendations (Lin 2014). Amed et

al. (2017) highlights the emergence of a new service with increasing importance

to customers – curation.

Sebald and Jacob (2018) refer to such service as “[c]urated retailing [which]

combines convenient online shopping with personal consultation service to

provide a more personalized online experience through curated product selec-

tions, orientation and decision aids, and tailor-made solutions based on the

customer’s preferences”. The increasing popularity of start-ups with curated

retail logic (Modomoto or Outfittery) and the market entry of major players

such as Zalando (Zalon) underline the potential of this service. In addition,
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the next generation of customers is particularly open to new shopping models

such as curated shopping (Heinemann 2017).

Clearly, these curation o�erings critically depend on human stylists evalu-

ating customer looks and proposing suitable outfits. Ultimately, such solutions

cannot properly scale in an e-commerce environment. A naïve solution to ad-

dress this scalability challenge is to replace the curator with a conventional rec-

ommendation system. One can distinguish between content-based methods

and collaborative-filtering approaches (Adomavicius and Tuzhilin 2005). The

former exploit similarities between item features, whereas the latter gener-

ate product suggestions based on the purchase behavior of users with similar

preferences or frequently bought item pairs. Consequently, these algorithms

o�er a very limited form of personalization compared to curated shopping as

they do not understand or even consider the style of the customer. Similarly,

classic recommendation engines typically cannot incorporate cues from out-

side sources which are particularly relevant in the fashion domain, e.g., social

media and influencers (Amed et al. 2017).

Computational understanding of fashion and clothing is fundamentally a

challenge of computer vision requiring extensive analysis of unstructured im-

age data. Not long ago, the execution of such tasks would have required an in-

dividually designed solution and extensive computational resources. However,

the recent artificial intelligence (AI) revolution has brought forward compre-

hensive deep learning frameworks such as TensorFlow (Abadi et al. 2016) and

PyTorch (Paszke et al. 2019) as well as powerful cloud-based computing plat-

forms. Together they facilitate fast experimentation and prototyping through

user-friendliness, modularity, and extensibility (Griebel, Dürr, and Stein 2019).

Several authors propose such AI-based solutions for fashion outfit recom-

mendations (Vasileva et al. 2018; Han et al. 2017b; Wang et al. 2018) or trend

forecasting (Matzen, Bala, and Snavely 2017; Al-Halah, Stiefelhagen, and Grau-

man 2017). However, these approaches do not explore the end-to-end automa-

tion of the curation process. Against this backdrop, our research is concerned

with building and evaluating an AI-based curation system. To this end, we

leverage deep learning techniques and follow up on the call for embracing

the value of unstructured data in the design of analytical information systems

put forward by Müller et al. (2016). Our research seeks to explore how AI com-

ponents can be employed to instantiate an automated curation system.
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2.3.1 Theoretical and Practical Background

Recently, deep learning enabled AI solutions for fashion have attracted great

attention. While earlier computer vision models (Wang and Zhang 2011; Chen,

Gallagher, and Girod 2012; Kiapour et al. 2014) mostly rely on handcrafted fea-

tures, modern applications are typically build on top of deep convolutional

neural networks (CNNs) that automatically learn features with multiple levels

of abstraction (LeCun, Bengio, and Hinton 2015). Until today, approaches al-

ready cover fields such as clothing parsing and categorization (Yamaguchi et

al. 2012; Yang, Luo, and Lin 2014; Yamaguchi et al. 2015), clothing attributes

detection (Kiapour et al. 2014; Al-Halah, Stiefelhagen, and Grauman 2017) and

object detection via fashion landmarks (Liu et al. 2016a; Liu et al. 2016b; Wang

et al. 2018), bounding boxes (Huang et al. 2015; Hadi Kiapour et al. 2015) or

semantic segmentation (Zheng et al. 2018). Moreover, researchers tackle the

challenge of fashion trend forecasting using images from online shops (Al-

Halah, Stiefelhagen, and Grauman 2017) or from social media (Matzen, Bala,

and Snavely 2017; Gabale and Subramanian 2018). Finally, many authors focus

on fashion recommendations.

Existing recommendation systems either seek to identify similar or com-

plementary fashion items. Similar items are useful for cross-domain image

retrieval, i.e., matching street clothing photos in online shops (Hadi Kiapour

et al. 2015; Shankar et al. 2017; Huang et al. 2015; Liu et al. 2016a). In con-

trast, complementary fashion items are worn in the same outfit, for instance,

a shirt that goes well with pair of pants. To this end, many approaches measure

the pairwise compatibility of two items based on graphs (McAuley et al. 2015),

Conditional Random Fields (Simo-Serra et al. 2015), Siamese networks (Veit et

al. 2015; Tautkute et al. 2019), Conditional Similarity Networks (Veit, Belongie,

and Karaletsos 2017), or unsupervised models (Hsiao and Grauman 2017).

However, an outfit is typically composed of more than two fashion items

(e.g., a top, a pair of pants, and shoes), which renders pairwise compatibility

insu�cient. Vasileva et al. (2018) address this problem by jointly learning sim-

ilarity and compatibility. Han et al. (2017b) model an outfit as a series of mul-

tiple fashion items using a bidirectional long term short term memory (LSTM)

network. This approach can generate entire outfits and also processes input

based on text or images or both. Nakamura and Goto (2018) extend this ap-
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proach by adding a style component that is capable of learning and controlling

the styles of generated outfits.

While all studies address important topics of visual fashion understand-

ing they do not explore the end-to-end automation of the curation process.

This process is commonly structured as follows (Sebald and Jacob 2018): First,

customers register online and fill in a questionnaire about their fashion pref-

erences. Afterwards, customers chose a curator, who is responsible for outfit

selection. In case of special requests, customers optionally contact their cu-

rator via phone or chat. Then, based on the information on the customer, the

curator selects and triggers the shipment of the personalized outfit. Finally,

customers choose which garments to keep and which to return.

A closer inspection of the curation process reveals central weaknesses

which can potentially limit its growth potentials.

• Lack of immediateness: In current curated shopping services customers

may have to wait up to two weeks for delivery.

• Lack of scalability: Curated Shopping relies heavily on human expertise

embodied by curators. Having humans in crucial positions of the process

significantly limits growth potentials in times of very high employment.

• Perceived financial risks: Customers may expect curated shopping to be

more expensive than regular online shopping due to the cost of curation

(Cha and You 2018).

To address these weaknesses, we want to design a system that is at first ca-

pable of detecting fashion items in an image. Furthermore, it should learn from

social media data about current fashion trends to recommend entire outfits,

and finally, obtain similar articles from the recommended outfit in the product

catalog of the retailer.

2.3.2 Methodology

As our research aims at building an artificial fashion curator, we follow the

Design Science Research (DSR) paradigm which is particularly concerned

with the development of useful artifacts (Hevner et al. 2004; Baskerville et
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Figure 2.3.1: Conceptual approach

al. 2018). Such artifacts can either embody (i) new solutions for known prob-

lems, (ii) known solutions extended to new problems, or (iii) new solutions for

new problems (Gregor and Hevner 2013). As we want to enrich the known do-

main of curated shopping with an innovative fashion curation system, we con-

sider our artifact as a new solution for a known problem. Gregor and Hevner

(2013) refer to such type of artifact as improvement.

Artifact overview

Figure 2.3.2 illustrates the three components of the artifact and their respec-

tive outputs (white boxes) by means of an exemplary user query. Here, the

input comprises a picture of the user and a text query with contextual infor-

mation (outfit style: casual, reference item in picture: pants). First, the picture

passes through the detection engine that identifies four distinct fashion items:

a blazer, a t-shirt, a pair of pants and a pair of high heels. Secondly, this in-

formation as well as the context information is fed into the style engine. This

engine generates a casual outfit that goes with the previously detected pants

based on its knowledge about (current) styles and trends. Finally, the images

of the new outfit are forwarded into the matching engine that finds articles in

the retailer’s product database that are as similar as possible to the ones in

the generated outfit. Subsequently, these products are recommended to the

user.
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detection engine style engine

Casual outfit 
that goes with 

my pants matching engine

image
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Curation System

Figure 2.3.2: Functionalities of the components on an exemplary user query.

It is illustrative to describe our artifact as a guidance system following the

taxonomy of Morana et al. (2017) for guidance design features in information

systems. The target of our curation system is to support the customer in choos-

ing an outfit in form of a suggestive fashion recommendation. The system

works in a participative mode after a user-invoked request with concurrent

timing. The intention is to recommend fashion items to a mostly novice au-

dience. As the system incorporates the knowledge of fashion bloggers and

influencers, it provides expert knowledge on outfit recommendations, which

renders the content type as terminological.

Design Science Process

To carry out our study and build the artifact, we follow the DSR methodology

introduced by Pe�ers et al. (2007). Besides conceptual principles and prac-

tice rules, the methodology provides a process for executing and presenting a

DSR project. Figure 2.3.3 depicts the current status of our study within the pro-

cess. At the current state, our artifact has a prototypical character and will be

Identify 
Problem & 
Motivate

Define 
Objectives Evaluation Communi-

cation

Process Iteration

Design & Development

detection 
engine

style 
engine

matching
engine

Demonstration

detection 
engine

style 
engine

matching
engine

current progress

future work

Figure 2.3.3: Project status mapped to Pe�ers et al. (2007) DSR process.
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gradually improved on the basis of our experience and findings from the eval-

uation. Notably, this involves feedback from both the fashion retailer and the

customer. The following sections explore the artifact’s components in more

detail.

2.3.3 Detection Engine

We design the detection engine for automated and reliable identification of

fashion items and their exact position within images. To this end, we leverage

state-of-art image recognition techniques based on supervised deep learn-

ing. Supervised learning requires a dataset of labeled images (LeCun, Bengio,

and Hinton 2015), e.g., fashion images with attributes considering shape, color,

or pattern. There are plenty of fashion datasets addressing various applica-

tions such as cross-scenario clothing retrieval, attributes recognition, clothing

parsing, image retrieval, and aesthetic evaluation (Zou, Wong, and Mo 2018).

To implement our detection engine, we utilize the brand-new street fashion

dataset ModaNet (Zheng et al. 2018). It is built on top of the Paperdoll dataset

(Yamaguchi et al. 2015) and adds large-scale polygon-based fashion product

annotations for 52,377 training images and a 2,799 validation images. These

annotations render ModaNet the only publicly available dataset that enables

semantic image segmentation8. Figure 2.3.4 depicts some training images and

the corresponding segmentation masks.

Figure 2.3.4: Training images and corresponding segmentation masks of

ModaNet (Zheng et al. 2018).

Zheng et al. (2018) benchmark several deep learning approaches for seman-

tic image segmentation on the Modanet dataset for which DeepLabv3+ (Chen

et al. 2018b) yields the best results. As the ModaNet dataset only consists of

images showing a single person (and a single outfit respectively), the choice

8Semantic segmentation means understanding an image at pixel level. For instance, a pixel is

assigned to the class dress or background
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of semantic image segmentation is appropriate and also applicable for detect-

ing our user input images. However, we expect our fashion trend data to be

more diversified, e.g., containing multiple persons in one image. To reuse our

detection module for processing the trend data, it is necessary to combine the

concepts of instance detection (e.g., di�erentiation between two persons in an

image) and semantic segmentation. Several approaches such as Mask R-CNN

(He et al. 2017a), MaskLab (Chen et al. 2018a) or PANet (Liu et al. 2018) have

been proposed for this task. These instance segmentation methods detect ob-

jects in an image while simultaneously generating a high-quality segmentation

mask for each instance.

Our detection engine rests upon the popular TensorFlow (Abadi et al. 2016)

implementation of Mask-RCNN (Abdulla 2017), this setup provides deployment

into production systems via TensorFlow-serving. It is based on a Feature Pyra-

mid Network (Lin et al. 2017a), ResNet101 backbone (He et al. 2016) and uses

pre-trained weights from the COCO dataset (Lin et al. 2014b). To adopt our

model for fashion purposes, we used the ModaNet dataset for further train-

ing. This enables our model to distinguish between 13 meta fashion categories

(bag, belt, boots, footwear, outer, dress, sunglasses, pants, top, shorts, skirt,
headwear, scarf/tie). We demonstrate the detection engine in the section be-

low.

Demonstration. Figure 2.3.5 highlights the detection functionality and limita-

tions of our detection engine by means of two example images. In the upper

picture, all five garments are detected and masked accurately. The person in

the lower picture wears six di�erent kinds of garments and accessories partly

hidden from each other. Notwithstanding the high di�culties, the detection

engine recognizes all garments. However, the mask of the coat (class outer)

only classifies the left part correctly and adds the bag instead of the coat’s

right part. Such misclassification errors occasionally occur on photographs

that contain multi-layered outfits or are captured under di�cult light condi-

tions. Assuming that customers use photos on which the relevant clothing is

easily recognizable, we consider the detection engine to be fully functional

for our purposes. In addition, we expect that further training, improved al-

gorithms, and more training data will improve the model performance in the

future.
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detection engineinput images

outer (0.97)

outer (0.96) top (0.99) pants (0.99)

footwear (0.99) bag (0.90) headwear (0.97)

pants (0.99) top (0.98)

footwear (0.99 & 0.99)

Figure 2.3.5: Demonstration of the detection engine (example images taken

from zalando.com). The detected garment class names and probabilities are

shown in the white box.

2.3.4 Style Engine

Our style engine creates fashionable outfits based on image and/or textual

inputs. Therefore, we follow the approach of Han et al. (2017b) and Naka-

mura and Goto (2018) for outfit generation and style extraction. The deep

learning approach comprises multiple convolutional neural networks, a visual-

semantic embedding space (VSE) (Han et al. 2017a), a bidirectional LSTM and

a style extraction autoencoder (SE) He et al. (2017b). The CNNs are used to ex-

tract features of the input images. These features are combined with contex-

tual information (i.e., text input) within the VSE. Simultaneously, the SE module

extracts the style of the images. Finally, the LSTM combines all information to

model an outfit as a series of fashion items.

For training, we feed complete outfits (i.e., series of single fashion items)

into the model. We utilize the Polyvore dataset, which comprises 21,889 outfits

from polyvore.com, a former fashion website where users could create and

upload outfit data (Han et al. 2017b). In order to adapt the model to current

fashion trends, we are constantly scraping images from relevant social media

platforms, fashion blogs, and magazines. These images are preprocessed by

our detection engine (having a series of single fashion items as output) and
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put into the style engine for further training. Figure 2.3.6 depicts the training

procedure of the style engine.

style enginedetection engine

Polyvore datset

+
text annotations

Fashion Trends
(Images from Social

Media, Fashion Blogs, 
etc.)

pretraining

extract fashion items learn outfit

Figure 2.3.6: Training procedure of the style engine.

During inference, one or more fashion items and/or contextual information

serve as input. Subsequently, the model calculates the remaining items and

returns the corresponding images. This approach also enables the evaluation

of a complete outfit (Han et al. 2017b).

As fashion photographs often contain multi-layered outfits that are partly

hiding garments of the lower layers (see Figure 2.3.5), we need to carefully eval-

uate the style engine performance on such fashion items. A potential strategy

to avoid malfunction of the style engine is to learn an additional model that

replaces the partly visible item with a picture of a fully visible, similar item

using generative models.

2.3.5 Matching Engine

As the user is interested in buying the generated outfit, the matching engine

has to find similar products in the retailer’s product database. Simple sim-

ilarity measures such as pixel-wise comparison often fail this task given the

variety of clothes. Our matching engine needs to learn abstract high-level con-

cepts as well as low-level details.

To this end, we adapted the approach by Shankar et al. (2017) who designed

a specific CNN based on the VGG-16 architecture (Simonyan and Zisserman

2015). Using the triplet-based deep ranking paradigm (Wang et al. 2014), this

method is capable of ranking the images concerning their similarity. In this

context, triplets are sets of three images containing a street photo and two

shop photos. Street photos are real-world photos of people wearing fashion

items, captured in everyday uncontrolled settings, whereas shop photos are
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captured by professionals in more controlled settings. One of the shop photos

matches the street photo (positive) while the other one is di�erent (negative).

Similar to Shankar et al. (2017), we train the model with two types of triplets.

On the one hand, there are out-of-class triplets containing negatives that di�er

significantly from our street photos. On the other hand, there are in-class

triplets containing negative images which are very similar to the street photo.

While the out-of-class triplets train the model to learn coarse di�erences, the

in-class triplets let the model pay attention to minor di�erences as well.

The Exact Street2Shop dataset created by Hadi Kiapour et al. (2015) is the

most popular dataset containing triplets. With only 39,479 exact matching

street-to-shop pairs, this dataset is comparatively small and we need to pre-

train the model. We use street-to-shop pairs (only street photo and positive)

from the DeepFashion dataset (Liu et al. 2016a) for this task. The missing nega-

tive photos for the triplets are sampled based on a set of basic image similarity

scoring techniques (Shankar et al. 2017).

During inference, our style engine matches the street photo to the article

in the retailer’s product database by finding the nearest neighbor in the em-

bedding space of the model.

2.3.6 Proposed Evaluation Strategy

To evaluate the extent to which a DL-based curation system achieves the rec-

ommendation quality and acceptance of a human curator, we envision multi-

ple studies. To evaluate the recommendation quality, we will ask a group of

stylists (i.e., curators) to create several outfits based on di�erent “input im-

ages” and context information. For comparison, our DL curation system gen-

erates outfits based on the same information. Hereafter, the stylists evaluate

outfits (except for their own creations) without knowing the source. Another

study will be based on extensive curation A/B testing. Here, one part of the

customers is directed to the expert-based curation system website (A) and its

traditional curation process. The other part of the customers is directed to the

website with our AI curation system (B). This enables the comparison of key

indicators such as turnover, return rate, and repurchases. A final study com-

prises a survey among the participants. It aims to measure satisfaction, trust,

perceived usefulness, and ease of use based on Xiao and Benbasat (2007).
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2.3.7 Prototype Summary

In Section 2.3, we sketch an artificial curation system that leverages DL tech-

niques and unstructured data. The system design consists of three compo-

nents: the detection, style, and matching engine. The detection engine has

already passed through some prototyping iterations and we demonstrate its

functionality. The style and matching engines are still at a conceptual stage.

Further development and evaluation of the di�erent engines would require

collaboration with real-world partners, e.g., fashion retailers. This would facil-

itate the collection of the required training data and provide resources for the

envisioned evaluation.

2.4 Idea Generation in the Creative Sphere

J
This section is adapted from the article of Griebel, M., Flath, C., &

Friesike, S. Augmented Creativity: Leveraging Artificial Intelligence
for Idea Generation in the Creative Sphere published in the pro-

ceedings of the European Conference on Information Systems (ECIS)

2020.

October 25th, 2018 was a noteworthy date for those gauging the rise of artificial

intelligence (AI). But this time there was no high-profile match of Poker, Chess

or Go, no improvement of the predictive performance on a large dataset, or

the demonstration of the newest generation of self-driving cars. The event was

the first successful auction of a computer-generated piece of art. “Edmond de

Belamy” is a distinctly blurred portrait of a man dressed in a black robe with a

striking white collar. Yet what made headlines was not the man’s 18th-century

attire but the fact that the painting changed hands for over US$ 400,000 in an

auction hosted by Christie’s9.

There had been previous instances of intelligent systems creating images,

music, and texts but those were primarily confined to the demonstration of

what is technically possible. However, the result of the auction confirmed for

9https://www.christies.com/features/A-collaboration-between-two-artists-one-human-one-

a-machine-9332-1.aspx
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the first time, in a sense, that the creativity of AI can make a real contribution

to human culture in general and to the art world in particular.

The example is also part of a larger trend, which extents what humans can

expect of IT systems. Traditionally, computer systems were utilized to execute

well-defined tasks at speeds far beyond human capabilities (e.g., calculations)

or to manage structured data assets (e.g., databases). With the rise of more

“intelligent” systems the realm of computerized assistance expanded to also

cover knowledge management on unstructured data (e.g., automated tagging

or classification). The ability of AI systems to produce unique creative results

(e.g., images, music, or text) now presents the newest addition to the skillset

of IT systems.

This presents an intriguing challenge to the traditional concepts and tax-

onomies of IT support for knowledge workers. Caught in the tension between

cutting-edge technology, human behavior, and business needs, this is an excit-

ing opportunity for information systems (IS) research to explore new forms of

human-computer collaboration. And thus, to investigate how AI can best sup-

port creative activities. Designers, artists, and researchers have already turned

their eyes to the use of AI in creative processes (Du Sautoy 2019; Miller 2019).

Surrounding debates cover a wide range of possible consequences of using AI

in creative processes. These range from the analogy of a powerful tool to the

replacement of human creative activities by machines. For the most part, the

discussions are extrapolations of a few cases and exude a touch of science

fiction. A more rigorous, academic engagement with the topic might lead us

to insights that promise a more direct implementation.

Within the IS domain, there is a strong record of creativity-related research

(Couger, Higgins, and McIntyre 1993; Seidel, Müller-Wienbergen, and Becker

2010; Muller and Ulrich 2013). The major research strand focuses on the cre-

ative environment, i.e., how IS can support creativity through a combination

of creativity management techniques and computer technology (Muller and

Ulrich 2013). As a result, several design theories for creativity support sys-

tems have emerged (Müller-Wienbergen et al. 2011; Voigt, Niehaves, and Becker

2012).

To expand this literature in the context of AI technology, we investigate

how di�erent algorithms of AI can contribute to the creative process. Further-

more, we unite creative AI with the IS design theory of Müller-Wienbergen et
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al. (2011), which we consider being particularly well suited for mapping AI meth-

ods. Building upon these insights we illustrate the findings in the context of

fashion design.

2.4.1 AI in the Creative Process

Creative processes are typically characterized by two complementary stages.

First, a divergent stage in which many ideas are generated and, subsequently,

a convergent stage in which the most promising idea is selected and devel-

oped further. This creative “diamond” approach (see Figure 2.4.1) is the back-

bone of the “Creative Problem Solving” model originally introduced by Osborn

in his book Applied Imagination (Osborn 1953). The divergence-convergence-

dualism is to this day a prevailing pattern to structure creative processes. It is,

for instance, part of the widely used design thinking method (Lindberg, Meinel,

and Wagner 2011). Idea generation typically takes place in an almost random

fashion, where quantity (as many ideas as possible) is aimed at. The goal is

to generate as many options as possible which individually might be trivial or

even inadequate. Yet, by not filtering ideas at this stage, truly di�erent and

novel ideas can emerge. They are not automatically shut down, rather they

can inspire follow-up ideas and therefore open up novel ways of looking at a

given problem. Once the idea generation stage is completed and a su�cient

number of ideas has been generated the process shifts towards selecting a

solution. Convergent thinking is then the process of singling out the best can-

didate among all available options. To this end, the generated ideas have to

Problem Solution
Diverge:
create choices

Converge:
make choices

Figure 2.4.1: Divergence-convergence dualism in creative thinking.
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be validated against the requirements, available resources, and technical con-

straints. Beyond these basic feasibility checks, quality needs to be assessed

or predicted for instance by applying a suitable metric.

To scope the research context of augmenting creative processes with in-

formation technology we next map AI applications to the two stages of the

creative process. We start with the converging phase as it is by its very nature

a more structured process which seems more naturally reflected in IT systems.

Supervised Learning as a Form of Convergent Thinking

The convergent thinking stage seeks to identify the single best available so-

lution to a particular problem. Traditionally, this type of thinking is therefore

associated with existing knowledge as this knowledge is used in the decision-

making process (Cropley 2006). The natural equivalent in the realm of machine

learning and artificial intelligence is supervised learning. This class of machine

learning procedures infers a function from labeled training data consisting

of a set of training examples to subsequently predict previously unknown in-

stances (Mohri, Rostamizadeh, and Talwalkar 2012). Supervised learning can

be further separated with respect to the nature of the target variable: If it is

categorical, we refer to the setting as a classification task, if it is numerical

one is faced with a regression task.

Casting these instances to the setting of convergent thinking in creative

processes is straightforward: If we assess solution suitability in a binary evalu-

ation scheme (suitable vs. not suitable) the process corresponds to a classifica-

tion system. Conversely, if we seek to assess idea quality along a continuum,

we are in the regression learning setting. Such supervised learning applica-

tions are already commonly used in creative processes across di�erent indus-

tries. Notable examples include Burbidge et al. (2001), who describe how clas-

sification algorithms can support drug design research. Similarly, (Christensen

et al. 2017) leverage text mining to identify promising new product ideas in on-

line communities.

Unsupervised Learning as a Form of Divergent Thinking

As highlighted above the divergent thinking stage is about generating many

options. (Müller-Wienbergen et al. 2011) note that “divergent thinking requires
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imagination, provocation, unstructured syntheses, serendipitous discovery,

and answers that break with conformity”. Human brains achieve divergent

thinking by virtue of accessing and associating concepts stored in long-term

memory systems.

Given the analogy between convergent thinking and supervised learn-

ing one is tempted to draw a direct analogy between the divergent thinking

paradigm and the AI research area of unsupervised learning. Here, systems

learn from unlabeled data by either identifying common structures in the data

(clustering) or by establishing compact representations (dimensionality reduc-

tion). Fundamentally, both variants of unsupervised learning o�er means for

organizing knowledge more e�ciently. Notably, (Tassoul and Buijs 2007) argue

that such activities may constitute a phase of their own between divergent and

convergent thinking.

Interestingly, for structured creation tasks which are characterized by

reusable patterns such as music or text, variational auto-encoders (VAE) (Bow-

man et al. 2016; Roberts, Engel, and Eck 2017) as well as recurrent neural net-

works (Eck and Schmidhuber 2002; Sutskever, Martens, and Hinton 2011) have

successfully been applied to generate new content. Similarly, there have been

successful instantiations of neural style transfer (Gatys, Ecker, and Bethge

2016; Huang and Belongie 2017), where properties of some object (e.g., im-

pressionistic painting style) are “transferred” upon another input image as il-

lustrated in Figure 2.4.2. The style transfer paradigm o�ers a powerful tool for

Figure 2.4.2: Example of style transfer (Huang and Belongie, 2017).
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what-if questions circling around alternative design variants of a given visual

instantiation. Such divergent AI systems are typically referred to as generative.

While both forms of generative models are impressive in their own ways,

they fundamentally su�er from a narrow scope as framed by the rigid underly-

ing structure - music and text are generated from discrete building blocks while

style transfer boils down to a mapping from input to output. Consequently, tra-

ditional unsupervised learning approaches have been unable to reflect the full

range of creative activities as necessitated by divergent thinking.

The GAN Revolution

Generative AI systems have exhibited impressive performance in structured,

repetitive tasks of content creation but were fundamentally incapable of syn-

thesizing completely new contents. This conventional wisdom of AI limitations

was torn apart when Goodfellow et al. (2014) introduced the ground-breaking

concept of generative adversarial networks (GAN). Facebook’s chief AI scien-

tist Yann LeCun called GANs “the coolest idea in deep learning in the last 20

years”. GANs pit two neural networks – the generator and the discriminator

– against each other in a competitive manner. The main idea is typically ex-

emplified by a stylized setting where the generator acts as an art forger and

the discriminator works as an art curator. The forger creates artworks trying

to fool the curator into believing that these are authentic. Initially, the forger

has essentially no clue and will have all of his paintings rejected by the cura-

tor. However, over (a very long) time the forger understands which image traits

are successful and which are not and continuously improves the quality of the

counterfeit paintings. Simultaneously, the curator has to step up his game and

get better at telling apart fake and real artworks. Ultimately, we end up with a

very skilled forger and a very skilled curator. Note that these two roles exactly

mimic the spheres of divergent (generative) and convergent (discriminative)

thinking. This is illustrated in Figure 2.4.3.

Current standard implementations (e.g., DC-GAN by Radford, Metz, and

Chintala 2016) instantiate both generator and discriminator by means of con-

volutional neural networks – very similar to auto-encoder structures. However,

decoupled training of the encoding and decoding parts in the architecture un-

leashes the creative power of GANs. This essentially resembles the necessity
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Random
noise

Generator Discriminator

Real images

Generated
image

Mix of real
and fake
images

Training feedback

Figure 2.4.3: Basic DC-GAN architecture.

of separating idea generation and idea evaluation in human brainstorming

processes to ensure a large variety of ideas. The GAN technology has seen

wide adoption in various areas of research as well as very unique practical

applications. For instance, Hwang et al. (2018) built a GAN for dental restora-

tions. Their model creates dental crowns by considering natural spatial pro-

files between opposing teeth, which is hard to account for by technicians but

important for proper biting and chewing.

The chAIr project10 constitutes a further application. Here, the designer

trained a GAN on a dataset of iconic 20th-century chairs to “generate a classic”.

The resulting model was used to generate new chairs which in turn were used

for the actual creation of prototypical chair designs.

2.4.2 Uniting Creative AI and Design Theory

Müller-Wienbergen et al. (2011) positioned the importance of information sys-

tems as a central source of inspiration for new ideas and creative problem-

solving. Their design theory puts forward the need for supporting both con-

vergent and divergent thinking in systems that facilitate creative work through

knowledge provision. As proposed by Gregor, Jones, et al. (2007) the theory is

based on eight components, including the design requirements depicted in Ta-

10https://philippschmitt.com/work/chair
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ble 2.4.1. The usefulness of the systems they describe ultimately rests on struc-

turing and presenting the underlying knowledge base. We argue that state-of-

the-art AI algorithms can go a step further and support converging and di-

verging creativity through automatic curation and creation of ideas. Thereby

enormous potential in the creative process can be unleashed.

Table 2.4.1 maps the design requirements by Müller-Wienbergen et al. (2011)

to their corresponding AI applications. We will highlight these opportunities

in the next section.

Table 2.4.1: Design requirements and their corresponding AI applications.

Creative
Component

Design
Requirement

Exemplary AI Approach

Convergent C1: Organize knowl-

edge hierarchically;

C2: Provide diverse

perspective on existing

knowledge

Sorting and exploring unstruc-

tured data (images/text) via

unsupervised learning methods

such as T-distributed Stochastic

Neighbor Embedding (Van der

Maaten and Hinton 2008)

C3: Enable dynamic fil-

tering of the knowledge

database

Supervised Learning for auto-

mated classification (tagging)

Divergent D1: Provide external

stimuli

VAE and DC-GANs to recombine

and create new ideas

D2: Provide di�erent

levels of stimuli

Customizable and controllable lev-

els of content generation, e.g., us-

ing conditional GANs (cGAN) (Mirza

and Osindero 2014)

D3: stimulate both sym-

bolic systems of human

cognition

Content generation using Visual

Semantic Embeddings for images

and text (Frome et al. 2013)

2.4.3 AI-assisted Fashion Design

To illustrate the practical relevance of AI for supporting creative processes we

now turn to one of the oldest trades in humankind – fashion design. Over

the last decades, this industry has seen a constant shift towards a quicker
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turnover of collections (fast fashion) as well as increasing customer desire

for individual design. It is hence not surprising that leading innovators have

started to explore the possibilities of artificial intelligence across all parts of

the fashion value chain. Fashion technology companies such as StitchFix or

Zalando already rely on AI as a crucial component of their business model and

employ large research teams to retain their competitive edge. Here, we want

to highlight concrete AI application opportunities in the context of the fashion

design process.

Fashion Design Process

Due to its myriad of individual approaches, changing contexts, and altering en-

vironments, the fashion design process is very complex and hardly traced. To

establish a common understanding, McKelvey and Munslow (2011) summarize

the fashion design process as depicted in Figure 2.4.4.

Brief Research Design Prototype Solution

Figure 2.4.4: Fashion Design Process (McKelvey and Munslow 2011).

The design brief phase emerges from the design situation and defines the

goals and constraints as well as the problems to be dealt with. The research

phase sketches the period of collecting materials for creative inspiration and

experimentation. This comprises general topics such as market analysis and

trend forecasting, as well as specific product-related topics such as colors,

shape, pattern, texture, and fabrication. The results are further tested during

prototyping. Here, an additional emphasis is placed on construction, propor-

tion, cut, drape, fastening, movement, and stretch of the samples. Finally, the

design and quality of the samples are realized in the solution phase. At this

point, the performance, sales, and merchandising of the potential products

are evaluated.
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Selected Fashion AI Applications

Given this fashion design process, we seek to carve out opportunities for aug-

menting human creative processes. Natural candidates include the research

phase which has to process huge amounts of data as well as the design phase

where designers need to create a meaningful solution space for an upcoming

selection. We will also relate our findings to the design principles from the

previous section. The fashion AI applications outlined below are only of a pro-

totypical nature and need to be adapted and evaluated in further studies.

Research: Style Forecasting and Exploration. As stated above, trend fore-

casting usually happens during the research phase. AI presents a great op-

portunity to support this process. Every day, billions of photos are uploaded

to social media platforms and blogs. These images are crammed with infor-

mation on people’s lives and preferences – as well as the clothes they are

wearing. Matzen, Bala, and Snavely (2017) leverage this abundance of data to

understand fashion and style trends by analyzing clothing and fashion across

millions of images. Leveraging state-of-the-art supervised deep learning tech-

niques, they discover visually consistent style clusters that capture useful vi-

sual correlations. Thus, they derive visual insight, producing global and per-

city fashion choices, and spatio-temporal trends. Following this trajectory, the

European Union established the FashionBrain project, envisioning to under-

stand Europe’s fashion data universe. The project aims at combining data from

di�erent sources, comprising manufacturers and distribution networks, online

shops, large retailers, market observers, call centers, press, magazines, and so-

cial media to predict upcoming fashion trends (Checco et al. 2017).

Another helpful application for (fashion) research is to explore data

through visualization of embeddings. Conditional Similarity Networks (CSNs),

introduced by Veit, Belongie, and Karaletsos (2017) learn embeddings that are

di�erentiated into semantically distinct subspaces. These subspaces can be

trained to capture di�erent notions of similarities, such as sleeve length (Fig-

ure 2.4.5a) or sleeve color (Figure 2.4.5b). Dimension reduction and visualiza-

tion techniques, e.g., TSNE (Van der Maaten and Hinton 2008), allow a low di-

mensional representation of the high dimensional embedding space. These

examples address the convergent design requirements C1-3.
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(a) Sleeve length subspace (b) Color subspace

Figure 2.4.5: TSNE visualization of the CSN subspaces

Design Phase: Inspiration. In contrast to the forecasting problem, we need to

generate AI tools to support the development of inspiration for themes, color,

texture, or shape. To this end, we train a DC-GAN to create new T-shirts de-

signs as depicted in Figure 2.4.6. The DC-GAN is trained on a dataset compris-

ing about 6,000 di�erent T-shirts (mainly short, but also long-sleeved). The

generator of the DC-GAN does not have any information on existing fashion

conventions, which surprisingly leads to the creation of T-shirts with one long

and one short sleeve. This little idiosyncrasy depicts the potential of AI to ex-

plore new concepts of fashion by enabling the designer to think about new

concepts.

Based on a DC-GAN, Kato et al. (2017) pitch a first draft of a GAN enabled

clothes design, framed as DeepWear. Their model learns the feature of spe-

cific brand clothes and then generate images of new clothes. These images

Figure 2.4.6: T-shirts created by a DC-GAN trained on T-Shirts and long sleeves.
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are used as a basis for pattern and clothes design. Beyond the capabilities

of the simple DC-GAN, BigGAN (Brock, Donahue, and Simonyan 2019) presents

another great opportunity. It creates high-resolution images and allows fine

control over the trade-o� between sample fidelity and variety by truncating

the latent space. Moreover, it is possible to create interpolation images be-

tween the di�erent classes it is trained on. Figure 2.4.7 shows the results of an

interpolation between category T-shirt and space rocket of a BigGAN trained

on the Imagenet dataset (Russakovsky et al. 2015). The images in the center

could have inspired the designer for a space-related theme. DC-GANs relate to

design requirement D1, whereas BigGAN relates to D1 and D2 as it also provides

controllable stimuli on di�erent levels.

(a)

(b) 

Figure 2.4.7: BigGAN interpolation results from T-shirt to rocket.

Design Phase: Experimentation. Finally, neural networks also facilitate the

task of experimentation with shape, color, and pattern leveraging style trans-

fer concepts. Yildirim, Seward, and Bergmann (2018) propose a method that

disentangles the e�ects of multiple input conditions in such systems. Thereby,

their model allows control over color, texture, and shape of a generated gar-

ment image. This method is capable of generating novel and realistic images

of clothing articles. It constitutes a variant of a cGAN as proposed for design

requirement D2.
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2.4.4 Prototype Summary

In Section 2.4.3 we showcase several DL prototypes that have the potential to

enhance the traditional fashion design process. The first prototype addresses

the style exploration problem. The presented CSN facilitates the visualiza-

tion of embeddings that capture di�erent notions of similarity, such as sleeve

length or color. The second prototype, a DC-GAN that designs T-shirts, can be

used for inspiration during the design phase. The last prototype, BigGAN, can

also be applied for inspirational purposes. It allows interpolating between dif-

ferent visual concepts to develop new ideas (e.g., T-shirt to rocket). However,

these applications are still at an early prototyping stage of their life cycle.

2.5 Kaggle Competition: Hacking the Kidney

J
This section outlines our approach for the Kaggle data science com-

petition HuBMAP – Hacking the Kidney hosted by the HuBMAP con-

sortium. Our solution for the segmentation of glomeruli in hu-

man kidney tissue images won a gold medal (10th place on the pri-

vate leaderboard11), the Innovation Prize, and the Most Entertaining
award12.

Team deepflash2 leader: Matthias Griebel (matjes); Team members:

Philipp Sodmann (theudas), Thomas Lux (maddonix)

Competition Overview13 The adult human body contains about 37 trillion

cells. Determining the function and relationships among these cells is a mon-

umental endeavor, and many areas of human health could be impacted if we

better understood cellular activities. Similar to the way the Human Genome

Project maps all human DNA, the Human BioMolecular Atlas Program (HuBMAP)

is working to catalyze the development of a framework for mapping the human

body at the level of glomeruli functional tissue units for the first time in his-

tory. HuBMAP aims to be an open map of the human body at the cellular level.

11https://www.kaggle.com/c/hubmap-kidney-segmentation/leaderboard
12https://hubmapconsortium.github.io/ccf/pages/kaggle.html
13adapted from https://www.kaggle.com/c/hubmap-kidney-segmentation/overview

56

https://www.kaggle.com/c/hubmap-kidney-segmentation/leaderboard
https://hubmapconsortium.github.io/ccf/pages/kaggle.html
https://www.kaggle.com/c/hubmap-kidney-segmentation/overview


2 Deep Learning Prototypes

Figure 2.5.1: Image “b9a3865fc” (31295×40429 pixel) including annotations for

glomeruli (red) and anatomical regions (cortex:blue; medulla:green).

The competition Hacking the Kidney starts by mapping the human kidney at

single-cell resolution. The challenge is to detect functional tissue units (FTUs)

across di�erent tissue preparation pipelines. An FTU is defined as a “three-

dimensional block of cells centered around a capillary, such that each cell in

this block is within di�usion distance from any other cell in the same block”

(Bono et al. 2013). The competition’s goal is to implement a successful and

robust glomeruli FTU detector.

Data Description14 The competition data includes 11 fresh frozen and 9

Formalin-Fixed Para�n-Embedded (FFPE) PAS kidney images. Glomeruli FTU

annotations exist for all 20 tissue samples; 15 are shared for training, five are

used for testing (public test images). The private test set (undisclosed) is larger

than the public test set. All images are provided as very large (>500MB - 5GB)

TIFF files. Both the training and public test sets also include anatomical struc-

ture segmentations. Teams are invited to develop segmentation algorithms

that identify glomeruli in microscopy data. Figure 2.5.1 shows an exemplary

competition image, including annotations.

14adapted from https://www.kaggle.com/c/hubmap-kidney-segmentation/data
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Competition Metric15 The competition is evaluated with the Dice score, which

is commonly used to compare the pixel-wise agreement between a predicted

segmentation and its corresponding ground truth. The dice score is defined as

2|X X Y |

|X| ` |Y |
,

where X is the predicted set of pixels and Y is the ground truth set of pixels.

The leaderboard score is the average Dice score for each image in the test set.

2.5.1 Methodology

Our solution follows the workflow depicted in Figure 2.5.2. The results can

be reproduced using di�erent Jupyter notebooks (kernels) that are publicly

available on Kaggle (Appendix Table B.1). The File Conversion and Sampling
Preparation notebooks convert the images and masks into .zarr arrays to al-

low memory-e�cient sampling during Training and Validation. The Inference
kernel is primarily designed for predictions on the public and private test set.

§ File Conversion
§ Sampling Preparation

§ Training
§ Validation

§ Inference

Prepare Data Train Models Evaluate Models

Figure 2.5.2: Proposed workflow.

2.5.2 E�cient Sampling

A common approach for DL model training on very large (>500MB - 5GB) image

files is to decompose the images into smaller patches (tiles), for instance, by

using a sliding window approach. However, the whole slide images in the com-

petition data only contain a few relevant regions. In contrast, large areas of

the images are either blank or contain tissue without the target class. Instead

of preprocessing the images by saving them into fixed tiles, we combine two

sampling approaches that are performed at runtime:

15adapted from https://www.kaggle.com/c/hubmap-kidney-segmentation/overview/
supervised-ml-evaluation
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Segmentation mask Probability density function for sampling

Exemplary sampling in one training epoch

Figure 2.5.3: Exemplary sampling of 512×512 pixel tiles from image “0486052bb”

during one training epoch, showing the segmentation masks of the annotated

glomeruli (top left) and anatomical region probabilities (top right). The colors

indicate the sampling probabilities, from low (purple) to high (yellow). The

sampled tiles (squares) during one training epoch are depicted at the bottom.

1. Sampling tiles via center points in the proximity of every glomerulus. This

ensures that each glomerulus is seen during one training epoch at least

once.

2. Sampling random tiles based on region probabilities (e.g., medulla, cor-

tex, other).

We use the provided anatomical information to sample examples of the cortex

region more often than the medulla regions, as glomeruli have a higher abun-
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dance in this region. We also sample a few tiles outside the anatomic regions

to ensure that our model can interpret these. Figure 2.5.3 depicts the sampling

results of one image during one training epoch.

This biologically inspired sampling exhibits some desired properties dur-

ing model training. Considering the exemplary batch of 16 images and the

corresponding pixel distribution (Figure 2.5.4), we see that the data distribu-

tion loosely follows a normal distribution. This property is beneficial when us-

ing pre-trained models and generally speeds up learning and leads to faster

convergence during the training of artificial neural networks. Moreover, the

sampling is model-agnostic and can be used with any model on several other

tasks (e.g., classification, object detection).

In addition, a beneficial side e�ect of our sampling method is that FTUs

that were missed during the annotation process are rarely sampled during

training.

2.5.3 Training and Evaluation

Our training procedure is based on best practices for training schedules (fas-
tai), architecture (segmentation-models.pytorch), image augmentations (al-
bumentations) and inference (tile shift and gaussian weighting, Isensee et

al. 2021).

Hyperparameter search. We trained and validated our models using five-fold

cross-validation to find the best hyperparameter settings. Each fold is trained

on twelve and validated on three whole slice images. During training, we

logged all parameters as well as pixel-level metrics (precision, recall, (soft)

dice score, loss) for each epoch using wandb16. Throughout the challenge, we

trained and tested di�erent DL architectures for image segmentation, such

as U-Net (Ronneberger, Fischer, and Brox 2015), U-Net++ (Zhou et al. 2018) or

DeepLabV3+ (Chen et al. 2018b). We also tried di�erent encoders, e.g., ResNets

(He et al. 2016) and E�cientNets (Tan and Le 2019). However, we found no sig-

nificant di�erence in performance. Therefore, we decided to use a reasonable

small encoder (E�cientNet-b2) and a standard U-Net in the end. We also tried

di�erent optimizers (SGD, AdamW, Ranger, Madgrad) and found that Ranger

16https://wandb.ai

60

https://wandb.ai


2 Deep Learning Prototypes
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Figure 2.5.4: The upper part depicts a single batch of 16 512×512 pixel patches

downscaled by factor 3. Due to our sampling strategy, 14 out of 16 examples

contain the foreground class “glomerulus”. The lower plot depicts the corre-

sponding pixel distribution after normalization. Colors indicate the respective

channel (RGB).
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(Yong et al. 2020) performed most consistently. In addition, we compared a

variety of loss functions and chose to train our final models using a balanced

dice cross-entropy loss. Moreover, we considered di�erent magnifications of

the training images. While a higher resolution might be beneficial to iden-

tify the glomerular border (bowman’s capsule) correctly, a reduced resolution

(equal to less magnification) provides more context for the annotated area.

We compared a resolution reduction of factors 2, 3, 4, 6, and 8. The factor

3 resolution reduction resulted in the best dice score for a single model. Our

data augmentation strategy comprises random rotation, flipping, deformation,

brightness and contrast adjustments, desaturation, and contrast limited adap-

tive histogram equalization.

Inference. To achieve reliable predictions during test time, we combined sev-

eral best practices such as overlapping tiles (shift factor 0.8), gaussian weight-

ing (Isensee et al. 2021), pre-filtering of empty tiles, and test-time augmenta-

tion (horizontal and vertical flip). These “tricks” removed almost any predic-

tion artifacts, such as half cut-o� glomeruli or noise.

We additionally compared di�erent softmax probability post-processing

variants in our cross-validation experiment and compared them with a 0.5

threshold value as our baseline. Using a conditional random field had a nega-

tive impact on the dice score. We found no benefit in removing positive areas

that were significantly smaller than the average glomeruli size. This is most

likely due to the negligible amount of pixels a�ected compared with the total

amount of positive pixels. We observed promising results when the softmax

score was locally thresholded with Otsu’s method. However, this did not im-

prove the average dice when applied to all data. Thus, we did not use any

post-processing in the final submission. However, we used post-processing

to approximate better uncertainty scores based on the visual results during

cross-validation. We decided to post-process areas with less than 10k pixel (at

scale 2) with Otsu’s method and “fill holes” for all other regions.

Competition results. The competition rules allow selecting two submissions

for the final score on the private (undisclosed) test set. Our first submission

was based on five models that were trained via cross-validation, and the image

resolution was downscaled with factor 3. The second submission consisted
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Table 2.5.1: Parameters for the best model ensemble.

Hyperparameter Value

Architecture U-Net with E�cientNet-b2 enoder

Pretraining imagenet

Loss Dice-CrossEntropy

Optimizer ranger (max. learning rate 1e-3)

Batch size 16 with 512×512 tiles

Training iterations 3000

Ensembling 3 models trained on all data

Resolution downscaling Factor 2,3, and 4

of only three models trained on all available data (training data and public

test data with refined pseudo labels, see Section 2.5.4) but with di�erent zoom

scales (downscaling factors 2,3, and 4) . The latter approach produced an av-

erage dice score of 0.9485 on the private test set, ranking 10th on the final (pri-

vate) leaderboard. The most important settings for our final model ensemble

are specified in Table 2.5.1.

Detection performance on instance level. In addition to the pixel level eval-

uation (dice score) in the competition, we computed instance level (glomeruli

level) metrics that account for the detection quality of our model. Here, we cal-

culatedMRecall, MPrecision, andMF1score (see Section 3.2.2). The cross-validation

results on instance level are depicted in Figure 2.5.5. The high recall indicates

Figure 2.5.5: Cross-validation results with instance level metrics.
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that the models detect almost all annotated glomeruli. The precision is slightly

lower, which indicates that the models are sometimes misled by vessels or

other tissue that look similar to a glomerulus.

2.5.4 Uncertainty Estimation

To robustly estimate the confidence of our prediction, we adapted the energy-

based approach of Liu et al. (2020) for the image segmentation task. When

applying a softmax prediction, neural networks often overestimate their con-

fidence when predicting out of distribution data. Using the energy score can

help to find false positives in such cases. Liu et al. (2020) define the free energy

function as

Epx; fq :“ ´T ¨ logp
K
ÿ

i

efipxq{T q, (2.1)

where K is the number of classes, x the logits and f the function (here the

neural network). As suggested by the authors, we chose the temperature pa-

rameter T “ 1. To allow a more intuitive interpretation of the energy (which

means generating mostly positive numbers), we calculated the negative en-

ergy score ´E in our experiments. Thus, our reported energy scores always

describe the negative energy.

Figure 2.5.6 shows an example of a correctly detected glomerulus (true pos-

itive, top row) and a falsely detected glomerulus (false positive, bottom row).

The predicted probability is similar in both examples. However, the true posi-

tive example exhibits a high mean energy score, while the false positive’s mean

energy score is relatively low. The mean energy score is defined as the average

(pixel) energy for a single glomerulus instance.

Figure 2.5.7 summarizes the mean energy score values (based on cross-

validation results) and confirms the visual impression from Figure 2.5.6. The

values show a positive correlation between the intersection-over-union (IoU)

metric17 and the mean energy score. Low IoU values indicate a false positive.

The results show that high energy values are a strong indicator for correct pre-

dictions. In turn, predicted instances with low energy values should be treated

with caution.

17Similar to the dice score, the IoU accounts for the overlap of prediction and ground truth but

is only used on instance level in this context; see Section 3.2.2 for a detailed description.
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Figure 2.5.6: True positive and false positive examples. Colors indicate the re-

spective values, from low (purple) to high (yellow). Probability and energy

values are at di�erent scales.
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Figure 2.5.7: Cross-validation results of IoU scores and mean energy values.

Colors indicate the di�erent validation images.
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Pseudo labels and annotation refinement. To extend our training data, we

predicted labels on the publicly available test set as well as on the unused

whole slide images published on the HuBMAP Portal18. The resulting predic-

tions were manually refined by a physician in uncertain regions using qupath
and a Wacom drawing tablet. The uncertainty was estimated by computing the

energy score on the logits (Equation 2.5.4). Positive instances with a low energy

score were explicitly reviewed. Glomeruli were excluded if more than half of

their area was destroyed. The entire workflow is depicted in Figure 2.5.8.

Predict Train

New Image

Review Glomerulus New Image 
+ Annotations

Challenge Images 
+ Annotations

Low 
Energy

High 
Energy

Figure 2.5.8: Proposed human-in-the-loop annotation refinement.

Reference glomeruli. Our approach also provides valuable insights to gen-

erate reference glomeruli for inclusion into a Human Reference Atlas (Figure

2.5.9). To identify typical glomeruli in an image, we utilize their energy score. A

high energy score helps to locate typical and artifact-free glomeruli on a whole

slide image.

Figure 2.5.9: Proposed reference glomeruli with high energy scores.

18https://portal.hubmapconsortium.org/
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2.5.5 Generalizability

To test the generalizability of our approach, we applied our pipeline to tissue

images from another organ, the pancreas.

Data. Similar to the glomeruli in the challenge data, pancreatic islets are

FTUs of the pancreas. They function as the endocrinologic system of the pan-

creas and produce insulin. The cells of the pancreatic islets are destroyed in

cases of diabetes type 1. A major di�erence to the challenge data is that the

slides are stained with hematoxylin and eosin and not PAS. We annotated pan-

creatic islets in three whole slice images in the same way as the challenge

data. Figure 2.5.10 shows an exemplary image and the corresponding annota-

tion data from the pancreas dataset.

Whole slide image of pancreas tissue Segmentation mask

Figure 2.5.10: Exemplary image and segmentation mask from the pancreas

dataset.

Figure 2.5.11 shows a zoom-in on the manual annotation (green line) of a

pancreatic islet. The data was downloaded from The Cancer Imaging Archive19

and only cancer-free tissue was included. Again, our notebooks for the seg-

mentation of the pancreatic islets follow the workflow described in Section

2.5.1 and an overview is provided in Table B.2.

Training and evaluation. We trained the models using a three-fold cross-

validation approach with the same model architecture and training routine

19https://www.cancerimagingarchive.net/
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Figure 2.5.11: Manual annotation of a pancreatic islet.

as for the competition data. We only adjusted the mean and standard devia-

tion of the image data. Even though the training was performed on only two

images and validation on only one image, the cross-validation results (Figure

2.5.12) are remarkably stable and indicate high predictive performance.
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Figure 2.5.12: Cross-validation results (instance level) on the pancreas dataset.

Uncertainty estimation. We used the same code for validation and uncer-

tainty estimation for the pancreas data. Figure 2.5.13 depicts exemplary predic-

tions. The visual impression is very similar to the impression in the competi-

tion dataset (Figure 2.5.6). The positive correlation between the mean energy

and the detection performance is confirmed in Figure 2.5.14.
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Figure 2.5.13: True positive examples from the pancreas dataset. Colors indi-

cate the respective values, from low (purple) to high (yellow). Probability and

energy values are at di�erent scales.
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Figure 2.5.14: Cross-validation results of IoU scores and mean energy values

from the pancreas dataset.

2.5.6 Limitations

Since our models are not trained on the entire data, it is possible that rare

artifacts like small air bubbles are not seen during training and get misclas-

sified by the model for glomeruli. These regions have a lower energy score

than normal glomeruli and can easily be found with human-in-the-loop qual-
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ity control. When retraining the model, these regions can be upsampled as

well. Furthermore, we wanted to keep our solution as simple as possible and

thus refrained from stacking di�erent architectures or di�erently trained mod-

els with, for instance, deviating loss functions.

2.5.7 Prototype Summary

This section describes the development of two DL prototypes for the semantic

segmentation of tissue in whole slide images. The model agnostic sampling

strategy enables fast and reliable model training on standard GPUs. Moreover,

the energy-based uncertainty scores facilitate a semi-automated annotation

to create more training data painlessly. The first prototype detects glomeruli in

human kidney tissue images and has passed through many development iter-

ations during the Kaggle challenge. The second prototype detects Langerhans

islets in pancreas tissue images and has only passed through the prototyping

cycle once, reusing the settings from the first prototype. The detection and

segmentation performance of the presented prototypes is auspicious. How-

ever, their application in medical research would require further evaluation

regarding their reliability and robustness.

2.6 Discussion

In this chapter, I present DL prototypes addressing di�erent problems from

di�erent domains. The prototypes are all based on DL architectures with con-

volutional layers. The models for biomedical image segmentation (fluorescent

neurons in microscopy images, Section 2.1; glomeruli in human kidney tissue

images, Section 2.5) both leverage variants of the U-Net architecture. The de-

tection engine for the segmentation of fashion images (Section 2.3) is based

on the Mask-RCNN architecture. The DL system for classifying structure-borne

noise signals (Section 2.2) uses a typical CNN architecture for sound classifica-

tion. The prototypes for the enhancement of the fashion design process (Sec-

tion 2.4.3) leverage CNN architectures for feature extraction (CSNs for fashion

similarity) and generative processes (DC-GAN for T-Shirt design, BigGAN for in-

terpolation between di�erent visual concepts). The CNN architectures were
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selected simply because they represented the best available model architec-

ture when the prototype was developed. Thus, these architectures only reflect

a snapshot of the current developments.

Having passed one or more prototyping iterations, the presented DL solu-

tions exhibit di�erent maturity levels. Even though the development of some

prototypes is already at an advanced stage, they have never been production-

ized or reached another phase of the ML life cycle. This status is to some extent

due to the academic environment. Yet it also illustrates the complexity of DL

model development and why the majority of promising DL projects never get

beyond the piloting phase (see Section 1). To investigate the challenges of the

ML life cycle phases beyond prototyping, I continue with the development of

the biomedical image segmentation project from Section 2.1 in the following

chapters.
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3 On the Objectivity, Reliability, and
Validity of Deep Learning enabled
Bioimage Analyses

J
This chapter is adapted from the article of Segebarth, D., Griebel,

M., Stein, N., et al. On the objectivity, reliability, and validity of deep
learning enabled bioimage analyses published in Elife (9) 202020. All

data can be accessed via Dryad21. The source code is available on

GitHub22. Please refer to the original article for detailed information

on animal experiments and data acquisition.

This chapter conceptually covers all phases of the ML life cycle (Section 1.2) un-

til Make Predictions. Thereby, it follows the typical structure of a life science

article (Introduction, Methods, Results, Discussion). Section 3.1 introduces the

primary concepts of this chapter – objectivity, reliability, and validity – and

foremost constitutes the Understand and Define phase. Section 3.2 provides

the methodological details from data preparation until the statistical evalua-

tion of the predictions. Section 3.3 covers the results of the Prototyping phase

as well as the resulting predictions once the model is deployed. Finally, Sec-

tion 3.4 discusses the results and limitations.

Summary. Bioimage analysis of fluorescent labels is widely used in the life

sciences. Recent advances in DL allow automating time-consuming manual im-

20D. Segebarth and M. Griebel contributed equally. Thereby, D. Segebarth was primarily re-

sponsible for the biological aspects of the paper. M. Griebel was responsible for DL model

development and evaluation.
21www.doi.org/10.5061/dryad.4b8gtht9d
22www.github.com/matjesg/bioimage_analysis
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Machine learning life cycle stages covered in Chapter 3.

age analysis processes based on annotated training data. However, manual an-

notation of fluorescent features with a low signal-to-noise ratio is somewhat

subjective. Training DL models on subjective annotations may be unstable or

yield biased models. In turn, these models may be unable to reliably detect bi-

ological e�ects. An analysis pipeline integrating data annotation, ground truth

estimation, and model training can mitigate this risk. To evaluate this inte-

grated process, we compare di�erent DL-based analysis approaches. With data

from two model organisms and five laboratories, we show that ground truth

estimation from multiple human annotators helps to establish objectivity in

fluorescent feature annotations. Furthermore, ensembles of multiple models

trained on the estimated ground truth establish reliability and validity. Our

research provides guidelines for reproducible DL-based bioimage analyses.

3.1 Introduction

Modern microscopy methods enable researchers to capture images that de-

scribe cellular and molecular features in biological samples at an unprece-

dented scale. One of the most frequently used imaging methods is fluores-
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cent labeling of biological macromolecules, both in vitro and in vivo. In order

to test a biological hypothesis, fluorescent features have to be interpreted

and analyzed quantitatively, a process known as bioimage analysis (Meijering

et al. 2016). However, fluorescence does not provide clear signal-to-noise bor-

ders, forcing human experts to utilize individual heuristic criteria, such as mor-

phology, size, or signal intensity to classify fluorescent signals as background,

or to, often manually, annotate them as a region of interest (ROI). This cognitive

decision process depends on the graphical perception capabilities of the indi-

vidual annotator (Cleveland and McGill 1985). Constant technological advances

in fluorescence microscopy facilitate the automatized acquisition of large im-

age datasets, even at high resolution and with high throughput (Li et al. 2010;

McDole et al. 2018; Osten and Margrie 2013). The ever-increasing workload as-

sociated with image feature annotation therefore calls for computer-aided au-

tomated bioimage analysis. However, attempts to replace human experts and

to automate the annotation process using traditional image thresholding tech-

niques (e.g., histogram shape-, entropy-, or clustering-based methods; Sezgin

and Sankur 2004) frequently lack flexibility, as they rely on a high signal-to-

noise ratio in the images or require computational expertise for user-based

adaptation to individual datasets (Chamier, Laine, and Henriques 2019). In

recent years, DL and in particular deep convolutional neural networks have

shown remarkable capacities in image recognition tasks, opening new pos-

sibilities to perform automatized image analysis. DL-based approaches have

emerged as an alternative to conventional feature annotation or segmentation

methods (Caicedo et al. 2019) and are even capable of performing complex

tasks such as artificial labeling of plain bright-field images (Chamier, Laine,

and Henriques 2019; Christiansen et al. 2018; Ounkomol et al. 2018). The main

di�erence between conventional and DL algorithms is that conventional algo-

rithms follow predefined rules (hard-coded), while DL algorithms are flexible

to learn the respective task on the basis of a training dataset (LeCun, Bengio,

and Hinton 2015). Yet, the deployment of DL approaches necessitates both

computational expertise and suitable computing resources. These require-

ments frequently prevent non-AI experts from applying DL to routine image

analysis tasks. Initial e�orts have already been made to break down these

barriers, for instance, by integration into prevalent bioimaging tools such as

ImageJ (Falk et al. 2019) and CellProfiler (McQuin et al. 2018), or using cloud-
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based approaches (Haberl et al. 2018). To harness the potentials of these DL-

based methods they require integration into the bioimage analysis pipeline.

We argue that such integration into the scientific process ultimately necessi-

tates DL-based approaches to meet the same standards as any method in an

empirical study. We can derive these standards from the general quality crite-

ria of qualitative and quantitative research: objectivity, reliability, and validity

(Frambach, Vleuten, and Durning 2013).

Objectivity refers to the neutrality of evidence, with the aim to reduce per-

sonal preferences, emotions, or simply limitations introduced by the context in

which manual feature annotation is performed (Frambach, Vleuten, and Durn-

ing 2013). Manual annotation of fluorescent features has long been known

to be subjective, especially in the case of weak signal-to-noise thresholds

(Schmitz, Korr, and Heinsen 1999; Collier et al. 2003; Niedworok et al. 2016).

Notably, there is no objective ground truth reference in the particular case of

fluorescent label segmentation, causing a critical problem for the training and

evaluation of DL algorithms. As multiple studies have pointed out that annota-

tions of low quality can cause DL algorithms to either fail to train or to repro-

duce inconsistent annotations on new data (Chamier, Laine, and Henriques

2019; Falk et al. 2019) this is a crucial obstacle for applying DL to bioimage

analysis processes.

Reliability is concerned with the consistency of evidence (Frambach,

Vleuten, and Durning 2013). To allow an unambiguous understanding of this

concept, we further distinguish between repeatability and reproducibility. Re-

peatability or test-retest reliability is defined as “closeness of the agreement

between the results of successive measurements of the same measure and

carried out under the same conditions” (Taylor and Kuyatt 1994, 14), which is

guaranteed for any deterministic DL model. Reproducibility, on the other hand,

is specified as “closeness of the agreement between the results of measure-

ments of the same measure and carried out under changed conditions” (Taylor

and Kuyatt 1994, 14), e.g., di�erent observer, or di�erent apparatus. This is a

critical point since the output of di�erent DL models trained on the same train-

ing dataset can vary significantly. This is caused by the stochastic training pro-

cedure (e.g., random initialization, random sampling, and data augmentation),

the choice of model parameters (e.g., model architecture, weights, activation

functions), and the choice of hyperparameters (e.g., learning rate, mini-batch
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size, training epochs). Consequently, the reproducibility of DL models merits

careful investigation.

Finally, validity relates to the truth value of evidence, i.e, whether we in

fact measured what we intended to. Moreover, validity implies reliability -

but not vice versa (Frambach, Vleuten, and Durning 2013). On a basis of a

given ground truth, validity is typically measured using appropriate similarity

measures such as F1 score for detection and Intersection over Union (IoU) for

segmentation purposes (Ronneberger, Fischer, and Brox 2015; Falk et al. 2019;

Caicedo et al. 2019). In addition, the deep learning community has estab-

lished widely accepted standards for training models. These comprise, among

other things, techniques to avoid overfitting (regularization techniques and

cross-validation), tuning hyperparameters, and selecting appropriate metrics

for model evaluation. However, these standards do not apply for the training

and evaluation of a DL model in the absence of a ground truth, like in the case

of fluorescent features.

Taken together and with regard to the discussion about a reproducibil-

ity crisis in the fields of biology, medicine, and artificial intelligence (Siebert,

Machesky, and Insall 2015; Baker 2016; Ioannidis 2016; Hutson 2018; Fanelli

2018; Chen et al. 2019), these limitations indicate that DL could aggravate this

crisis by adding even more unknowns and uncertainties to bioimage analyses.

However, the present study asks whether DL, if instantiated in an appro-

priate manner, also holds the potential to instead enhance the objectivity, re-

producibility, and validity of bioimage analysis. To tackle this conundrum, we

investigated di�erent DL-based strategies on five fluorescence image datasets.

We show that training of DL models on the pooled input of multiple human ex-

perts utilizing ground truth estimation (consensus models) increases the ob-

jectivity of fluorescent feature segmentation. Furthermore, we demonstrate

that ensembles of consensus models are even capable of enhancing the re-

liability and validity of bioimage analysis of ambiguous image data, such as

fluorescence features in histological tissue sections.
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3.2 Methods

This section covers the topics of ground truth estimation (Section 3.2.1), evalua-

tion metrics (Section 3.2.2), details on the DL approach (Section 3.2.3), quantifi-

cation of fluorescent features (Section 3.2.4), and statistical analysis (Section

3.2.5).

3.2.1 Ground Truth Estimation

In absence of an objective ground truth, we derived a probabilistic estimate

of the ground truth by running the expectation-maximization algorithm for

simultaneous truth and performance level estimation (STAPLE, Warfield, Zou,

and Wells 2004). The STAPLE algorithm iteratively estimates the ground truth

segmentation (est. GT) based on the expert segmentation maps. During each

algorithm iteration 2 steps are performed:

1. Estimation step The ground truth segmentation’s conditional probability

is estimated based on the expert decisions and previous performance

parameter estimates.

2. Maximization step The performance parameters (sensitivity and speci-

ficity) for each expert segmentation are estimated by maximizing the con-

ditional expectation.

Iterations are repeated until convergence is reached. We implemented the

algorithm using the Simplified interface to the Insight Toolkit (SimpleITK 1.2.4,

Lowekamp et al. 2013).

3.2.2 Evaluation Metrics

All evaluation metrics were calculated using Python (version 3.7.3), SciPy (ver-

sion 1.4.1), and scikit-image (version 0.16.2).

Segmentation and detection

Following Caicedo et al. (2019) we based our evaluation on identifying segmen-

tation and detection similarities on object-level (ROI-level). In a segmentation
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mask, we define an object as a set of pixels that were horizontally, vertically,

and diagonally connected (8-connectivity). We only considered ROIs at a bio-

logically justifiable size, depending on the data set characteristics. We approx-

imated the minimum size based on the smallest area that was annotated by

a human expert (Lab-Mue: 30px, Lab-Inns1: 16px, Lab-Inns2: 60px, Lab-Wue1:

30px, Lab-Wue2: 112px).

To compare the segmentation similarity between a source and a target

segmentation mask, we first computed the intersection-over-union (IoU) score

for all pairs of objects. The IoU, also known as Jaccard similarity, of two sets of

pixels a “ t1, ..., Au and b “ t1, ..., Bu is defined as the size of the intersection

divided by the size of the union:

MIoUpa, bq :“
|aX b|

|aY b|
(3.1)

Second, we used the pairwise IoUs to match the objects of each mask. We

solved the assignment problem by maximizing the sum of IoUs by means of the

Hungarian Method (Kuhn 1955). This ensures an optimal matching of objects

in the case of ambiguity, i.e., an overlap of one source object with one or more

targets object. We reported the segmentation similarity of two segmentation

masks by calculating the arithmetic mean of MIoU over all matching objects:

M̄IoU “
1

N

N
ÿ

i“1

M i
IoU

(3.2)

where i P t0, ..., Nu is an assigned match and N denotes the number of match-

ing objects. By this definition, the Mean IoU only serves as a measure for the

segmentation similarity of matching objects and neglects objects that do not

overlap at all.

To address this issue, we additionally calculated measures to account for

the detection similarity. Therefore, we define a pair of objects with an IoU is

above a threshold t as correctly detected (true positive - TP ). Objects that

match with an IoU at or below t or have no match at all are considered to be

false negative (FN ) for the source mask and false positive (FP ) for the target

mask. This allows us to calculate the Precision MPrecision, Recall MRecall, and F1
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score MF1 score as the harmonic mean of MPrecision and MRecall:

MPrecisionptq :“
TP ptq

TP ptq ` FP ptq
(3.3)

MRecallptq :“
TP ptq

TP ptq ` FNptq
(3.4)

MF1 scoreptq :“ 2 ¨
MPrecisionptq ¨MRecallptq

MPrecisionptq `MRecallptq
(3.5)

with t P r0, 1s as a fixed IoU threshold. If not indicated di�erently, we used

t “ 0.5 in our calculations.

Inter-rater reliability

To quantify the reliability of agreement between di�erent annotators we cal-

culated Fleiss’ κ (Fleiss and Cohen 1973). In contrast to the previously intro-

duced metrics, Fleiss’ κ accounts for the agreement that would be expected by

chance. For a collection of segmentation masks of the same image, each ob-

ject (ROI) i P t1, ..., Nu is assigned to a class j P t0, ..., Ku. Here, N denotes the

total number of unique objects (ROIs) and K the number of categories (K “ 1

for binary segmentation). Then, nij represents the number of annotators who

assigned object i to class j. We again leveraged the IoU metric to match the

ROIs from di�erent segmentation masks above a given threshold t P r0, 1s. Fol-

lowing Fleiss and Cohen (1973) we define the proportion of all assignments for

each class:

pjptq :“
1

Nd

N
ÿ

i“1

nijptq (3.6)

where d denotes the count of the annotators. We define the extent to which

the annotators agree on the i-th object as

Piptq :“
1

dpd´ 1q

K
ÿ

j“1

nijptq pnijptq ´ 1q (3.7)

Subsequently, we define the mean of the Piptq as

P̄ ptq :“
1

N

N
ÿ

i“1

Piptq (3.8)
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and

P̄eptq :“
K
ÿ

j“1

pjptq
2

(3.9)

Finally, Fleiss’ κ at a given threshold t is defined as

κptq :“
P̄ ptq ´ P̄eptq

1´ P̄eptq
(3.10)

where 1´ P̄eptq denotes the degree of agreement attainable above chance and

P̄ ptq ´ P̄eptq the actually achieved agreement in excess of chance. To allow a

better estimate of the chance we randomly added region proposals of class

j “ 0 (background). If not indicated di�erently, we use t “ 0.5 in our calcula-

tions.

3.2.3 Deep Learning Approach

The deep learning pipeline was implemented in Python (version 3.7.3), Ten-

sorFlow (version 1.14.0), Keras (version 2.2.4), scikit-image (version 0.16.2), and

scikit-learn (version 0.21.2).

Network Architecture

We instantiated all DL models with a U-Net architecture (Ronneberger, Fischer,

and Brox 2015), a fully convolutional neural network for semantic segmenta-

tion. The key principle of a U-Net is that one computational path stays at

the original scale, preserving the spatial information for the output, while

the other computational path learns the specific features necessary for clas-

sification by applying convolutional filters and thus condensing information

(Ronneberger, Fischer, and Brox 2015). We adopted the model hyperparame-

ters (e.g., hidden layers, activation functions, weight initialization) from Falk et

al. (2019) as these are extensively tested and evaluated on di�erent biomedi-

cal data sets. The layers of the U-Net architecture are logically grouped into an

encoder and a decoder.Following Falk et al. (2019) the VGG-like encoder con-

sists of five convolutional modules. Each module comprises two convolution

layers with no padding, each followed by a leaky ReLU with a leakage factor

of 0.1 and a max-pooling operation with a stride of two. The last module, how-
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ever, does not contain the max-pooling layer and constitutes the origin of the

decoder. The decoder consists of four (up-) convolutional modules. Each of

these modules comprises a transposed convolution layer (also called up- or

deconvolution), a concatenate layer for the corresponding cropped encoder

feature map, and two convolution layers. Again, each layer is followed by a

leaky ReLU with a leakage factor of 0.1. The final layer consists of a 1 x 1 convo-

lution with a softmax activation function. The resulting (pseudo-) probabilities

allow a comparison to the target segmentation mask using cross-entropy on

pixel level. Unless indicated di�erently, we used a kernel size of 3 x 3. To al-

low faster convergence during training we included batch normalization layers

(Io�e and Szegedy 2015) after all (up-) convolutions below the first level. By

this, an unnormalized path from the input features to the output is remaining

to account for absolute input values, e.g., the brightness of fluorescent labels.

Weighted soft-max cross-entropy loss

Fluorescent microscopy images typically exhibit more background than fluo-

rescent features of interest. To control the impacts of the resulting class im-

balance we implemented a pixel-weighted softmax cross-entropy loss. Thus,

we compute the loss from the raw score (logits) of the last 1x1 convolution

without applying the softmax. As proposed by Falk et al. (2019) we define the

weighted cross-entropy loss for an input image I as

LwcepIq :“ ´
ÿ

xPΩ

wpxq log
exp

`

ŷypxqpxq
˘

řK
k“0 exp pŷkpxqq

(3.11)

where x is a pixel in image domain Ω, w : Ω Ñ Rě0 the pixel-wise weight map,

y : Ω Ñ t0, ..., Ku the target segmentation mask, ŷk : Ω Ñ R the predicted

score for class k P t0, ..., Ku, and K the number of classes (K “ 1 for binary

classification). Consequently, ŷypxqpxq is the predicted score for the target class

ypxq at position x.

Similar to Falk et al. (2019) we compose the weight mapw from two di�erent

weight maps wbal and wsep. The former allows mitigating the class imbalances

by decreasing the weight of background pixels by the factor vbal P r0, 1s. We

add a smoothly decreasing Gaussian function at the edges of the foreground
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objects accordingly and define

wbalpxq :“

#

1 ypxq ą 0

vbal ` p1´ vbalq exp
´

´
d21pxq

2σ2
bal

¯

ypxq “ 0
(3.12)

where d1pxq denotes the distance to the closest foreground object and σbal the

standard deviation of the Gaussian function.

By definition, semantic segmentation performs a pixel-wise classification

and is unaware of di�erent object instances (ROIs). Following Falk et al. (2019)

we the force learning of the di�erent instances by increasing the weight of the

separating ridges. We estimate the width of a ridge by adding d1 (distance to

nearest ROI) and d2 (distance to second nearest ROI) at each pixel. We define

wseppxq :“ exp

˜

´
pd1pxq ` d2pxqq

2

2σ2
sep

¸

(3.13)

where σsep defines the standard deviation of the decreasing Gaussian function.

The final weight map is given by

w :“ wbal ` λwsep (3.14)

where λ P Rě0 allows to control the focus on instance separation. We used the

following parameter set in our experiments: λ “ 50, vbal “ 0.1, σbal “ 10 and

σsep “ 6.

Tile sampling and augmentation

Given limited training data availability, we leveraged e�ective data augmenta-

tion techniques for biomedical images as proposed by (Falk et al. 2019). These

comprise transformations and elastic deformations by means of a random de-

formation field. To become invariant to the input sizes (image shapes) we lever-

aged the overlap tile strategy introduced by (Ronneberger, Fischer, and Brox

2015). Thus, images of any size can be processed. Both data augmentation and

overlap tile strategy were adopted from a TensorFlow implementation of (Falk

et al. 2019). We used an input tile shape of 540×540×1 (height×width×channels)

and a corresponding output tile shape of 356×356×1 for all our experiments.
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Training, evaluation, and model selection

We trained, evaluated, and selected all deep learning models for our di�erent

strategies – expert models, consensus models, consensus ensembles – follow-

ing the same steps:

1. Determining an appropriate learning rate using the learning rate finder
(Smith 2018)

2. Splitting the data into train and validation set (random stratified sam-

pling)

3. Training the model on the train set according to the fit-one-cycle policy

of Smith (2018)

4. Selecting the model with the highest MF1 score median on the validation

set (post-hoc evaluation).

We used the annotations from individual experts to train the expert mod-
els and the consensus annotations (est. GT) for the consensus models and

consensus ensembles. The post-hoc evaluation on the validation set was per-

formed using the saved model weights (checkpoints) from each epoch. For the

similarity analysis, we converted the model output (pixel-wise softmax score)

to a segmentation mask by assigning each pixel to the class with the highest

softmax score. For the consensus ensemble approach, we repeated the steps

above according to the principle of k-fold cross-validation. We ensembled the

resulting k models by averaging the softmax predictions.

Our initial experimental results have indicated that an adequately trained

DL-model performs on par with a human expert. However, insu�cient training

data may impair the model performance. As there were only five annotated

training images for the external laboratories (Lab-Mue, Lab-Inns1, Lab-Inns2,

and Lab-Wue2), we additionally defined a model selection criterion to estab-

lish trust in our consensus ensemble approaches: A selected consensus model

must at least match the performance of the “worst” human expert for each val-

idation image (measured as the MF1 score to the estimated ground truth). This

selection criterion serves as a lower bound for individual model performance.

In those cases where the criterion discarded models, the issue was typically

due to a validation image being very di�erent from the training data for a given
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train-validation split. This issue was often resolved when pretrained model

weights were used. For the frozen approach (see 3.2.3) the models never met

the selection criterion. Yet, we decided to retain these models to facilitate

a comparison among the di�erent approaches. We also indicated that these

models and ensembles should be considered with caution and did not use

them for further biological analyses.

We trained all models on an NVIDIA GeForce GTX 1080 TI with 11 GB GDDR5X

RAM using the Adam optimizer (Kingma and Ba 2015) and a mini-batch size of

four. If not indicated di�erently, the initial weights were drawn from a trun-

cated normal distribution (He et al. 2015). We chose the appropriate maximum

learning rates according to the learning rate finder (step two). For Lab-Wue1 we

selected a maximum learning rate of 4e-4 and a minimum learning rate of 4e-5

over a training cycle length of 972 iterations within k “ 4 validation splits. For

Lab-Mue, Lab-Inns1, Lab-Inns2, and Lab-Wue2 we chose a maximum learning

rate of 1e-4 and a minimum learning rate of 1e-5 over a training cycle length

of 972 iterations within k “ 5 validation splits.

Transfer Learning

To implement transfer learning we adapted the training procedure from above.

For the fine-tuning approach, we initialized the weights from the consensus
models of Lab-Wue1 and performed all steps for model training, evaluation,

and selection. For the frozen approach we also initialized the weights from

the consensus models of Lab-Wue1 but skipped steps two (finding a learning

rate) and three (model training). Hence, we did not adjust the model weights

to the new training data. Hardware and training hyperparameters remained

unchanged.

3.2.4 Quantification of Fluorescent Features

Fluorescent features were analyzed on the base of the binary segmentation

masks derived from the output of DL models or model ensembles or counted

manually by lab-specific experts. In order to compare the number of fluores-

cent features across images, we normalized in each image the number of an-

notated fluorescent features to the area of the analyzed region (e.g. the num-
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ber of cFOS-positive features per NeuN-positive area for Lab-Wue1). For one

set of experiments, we pooled this data for each condition (e.g. H, C- and C+

for Lab-Wue1) and the analyzed brain region (e.g. whole DG, infrapyramidal

DG, suprapyramidal DG, CA3, or CA1 for Lab-Wue1). To compare di�erent sets

of experiments with each other, we normalized all relative fluorescent feature

counts to the mean value of the respective control group (e.g. H for Lab-Wue1).

The mean signal intensity for each image was calculated as the mean sig-

nal intensity of all ROIs annotated within the analyzed NeuN-positive region

(only performed for Lab-Wue1). Subsequent pooling steps were identical as

described above for the count of fluorescent features.

3.2.5 Statistical Analysis

All statistical analyses were performed using Python (version 3.7.3), SciPy (ver-

sion 1.4.1), and Pingouin (version 0.3.4). In box plots, the area of the box rep-

resents the interquartile range (IQR, 1st to 3rd quartile) and whiskers extend to

the maximal or minimal values, but no longer than 1.5 ˆ IQR.

Statistical analysis of fluorescent feature quantifications

All DL-based quantifications of fluorescent features were tested for significant

outliers (Grubb’s test). If an image was detected as a significant outlier in sev-

eral DL-based quantification results, it was visually inspected by an expert and

excluded from the analysis if abnormalities (e.g. clusters of fluorescent parti-

cles or folding of the tissue) were detected. Throughout all bioimage analy-

ses, N represents the number of investigated animals and n the number of

analyzed images. Normality (Shapiro-Wilk) and homogeneity of variance (Lev-

enes) were tested for all DL-based quantification results. For the comparison

of multiple quantifications of the same image dataset, non-parametric statis-

tical tests were applied to all bioimage analyses. This ensured comparability

of the results. To compare two experimental conditions (Lab-Mue, Lab-Inns1,
and Lab-Wue2), Mann-Whitney-U tests were used. In case of three experimen-

tal conditions (Lab-Wue1 and Lab-Inns2), Kruskal-Wallis-ANOVA followed by

Mann-Whitney-U tests with Bonferroni correction for multiple comparisons

was applied.
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E�ect size calculation

E�ect sizes (η2) were calculated for each pairwise comparison. First, the Z-

statistic (Z) was calculated from the U-statistic (U ) of the Mann-Whitney-U

test as:

Z “
U ´ n1¨n2

2
b

n1¨n2¨pn1`n2`1q
12

(3.15)

where n1 and n2 are the numbers of analyzed images of the two compared

groups, group 1 and group 2, respectively. Following Rosenthal and DiMatteo

(2002), η2 was calculated as:

η2
“

Z2

n1 ` n2

(3.16)

Furthermore, the three critical values of η2 that mark the borders between

the four significance levels (e.g. for p = 0.05, p = 0.01, and p = 0.001 for a

pairwise comparison without Bonferroni correction for multiple comparisons)

were calculated from the chi-square distribution.

All other statistical analyses

Data were tested for normal distribution (Shapiro-Wilk) and homoscedasticity

(Levenes) and parametric or non-parametric tests were used accordingly, as

reported in the figure legends (parametric: one-way ANOVA, followed by T-

tests (or Welchs T-test for unequal sample sizes) with Bonferroni correction

for multiple comparisons; non-parametric: Kruskal-Wallis ANOVA, followed by

Mann-Whitney tests with Bonferroni correction for multiple comparisons).

3.3 Results

To evaluate the impact of DL on bioimage analysis results, we instantiated

three exemplary DL-based strategies (Figure 3.1; strategies color-coded in gray,

blue, and orange) and investigate them in terms of objectivity, reliability, and

validity of fluorescent feature annotation. The first strategy, expert models
(gray), reflects mere automation of the annotation process of fluorescent fea-
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Figure 3.1: Schematic illustration of bioimage analysis strategies and corre-
sponding hypotheses. Four bioimage analysis strategies are depicted. Manual

(white) refers to manual, heuristic fluorescent feature annotation by a human

expert. The three DL-based strategies for automatized fluorescent feature an-

notation are based on expert models (gray), consensus models (blue), and

consensus ensembles (orange). For all DL-based strategies, a representative

subset of microscopy images is annotated by human experts. Here, we de-

pict labels of cFOS-positive nuclei and the corresponding annotations (pink).

These annotations are used in either individual training datasets (gray: expert

models) or pooled in a single training dataset by means of ground truth es-

timation from the expert annotations (blue: consensus models, orange: con-

sensus ensembles). Next, deep learning models are trained on the training

dataset and evaluated on a holdout validation dataset. Subsequently, the pre-

dictions of individual models (gray and blue) or model ensembles (orange) are

used to compute binary segmentation masks for the entire bioimage dataset.

Based on these fluorescent feature segmentations, quantification and statisti-

cal analyses are performed. The expert model strategy enables the automation

of a manual analysis. To mitigate the bias from subjective feature annotations

in the expert model strategy we introduce the consensus model strategy. Fi-

nally, the consensus ensembles alleviate the random e�ects in the training

procedure and seek to ensure reliability and eventually, validity.

tures in microscopy images. Here, manual annotations of a single human ex-

pert are used to train an individual (and hence expert-specific) DL model with

a U-Net (Ronneberger, Fischer, and Brox 2015) architecture. U-Net and its vari-

ants have emerged as the de facto standard for biomedical image segmenta-

tion purposes (McQuin et al. 2018; Falk et al. 2019; Caicedo et al. 2019). The sec-
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ond strategy, consensus models (blue), addresses the objectivity of signal an-

notations. Contrary to the first strategy, simultaneous truth and performance

level estimation (STAPLE) (Warfield, Zou, and Wells 2004) is used to estimate a

ground truth and create consensus annotations. The estimated ground truth

(est. GT) annotation reflects the pooled input of multiple human experts and is

therefore thought to be less a�ected by a potential subjective bias of a single

expert. We then train a single U-Net model to create a consensus model. The

third strategy, consensus ensembles (orange), seeks to ensure reliability and

eventually validity. Going beyond the second strategy, we train multiple con-

sensus U-Net models to create a consensus ensemble. Such model ensembles

are known to be more robust to noise (Dietterich 2000). Hence, we hypothe-

size that the consensus ensembles mitigate the randomness in the training

process. Moreover, deep ensembles are supposed to yield high-quality predic-

tive uncertainty estimates (Lakshminarayanan, Pritzel, and Blundell 2017).

For each of the three strategies, we complete the bioimage analysis by

performing quantification and hypothesis testing on a typical fluorescent mi-

croscopy image datasetThese images describe changes in fluorescence sig-

nal abundance of a protein called cFOS in brain sections of mice. cFOS is an

activity-dependent transcription factor and its expression in the brain can be

modified experimentally by behavioral testing of the animals (Gallo et al. 2018).

The low signal-to-noise ratio of this label, its broad usage in neurobiology, and

the well-established correlation of its abundance with behavioral paradigms

render it an ideal bioimage dataset to test our hypotheses (Shuvaev et al. 2017;

Gallo et al. 2018).

3.3.1 Similarity Analysis for Validity and Reproducibility

The primary goal in bioimage analysis is to rigorously test a biological hypoth-

esis. To leverage the potentials of DL models within this procedure, we need to

trust our model – by establishing objectivity, reliability, and validity. Pertain-

ing to the case of fluorescent labels, validity (measuring what is intended to

be measured) requires objectivity to know what exactly we intend to measure

in the absence of a ground truth. Similarly, reliability in terms of repeatability

and reproducibility is a prerequisite for a valid and trustworthy model. Start-

ing from the expert model strategy, we seek to establish objectivity (consensus

88



3 Objectivity, reliability, and validity

Figure 3.2: Similarity analysis of fluorescent feature annotations by manual
or DL-based strategies. (A) Representative example of MIoU calculations on a

field of view (FOV) in a bioimage. Image raw data show the labeling of cFOS in

a maximum intensity projection image of the CA1 region in the hippocampus

(brightness and contrast enhanced). The similarity of estimated ground truth

(est. GT) annotations (green), derived from the annotations of five expert neu-

roscientists, are compared to those of one human expert, an expert model,

a consensus model, and a consensus ensemble (magenta, respectively). IoU

results of two ROIs are shown in detail for each comparison (magnification of

cyan box). Scale bar: 100 µm. (B) F1 score MF1 score calculations on the same

FOV as shown in (A). [Caption continues on next page]
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Figure 3.2: [continued] The est. GT annotations (green; 53 ROIs) are compared

to those of a consensus ensemble (magenta; 48 ROIs). IoU-based matching of

ROIs at an IoU-threshold of t “ 0.5 is depicted in three magnified subregions

of the image (cyan boxes 1-3). Scale bar: 100 µm. (C-H) All comparisons are

performed exclusively on a separate test set which was withheld from model

training and validation. (C) Color coding refers to the individual strategies, as

introduced in Figure 3.1: white: manual approach, gray: expert models, blue:

consensus models, orange: consensus ensembles. (D) MF1 score between indi-

vidual manual expert annotations and their overall reliability of agreement

given as the mean of Fleiss’ κ. (E) MF1 score between annotations predicted by

individual models and the annotations of the respective expert (or est. GT),

whose annotations were used for training. (F) MF1 score between manual expert

annotations, the respective expert models, consensus models, and consensus

ensembles compared to the est. GT as reference. A horizontal line denotes

the human expert average. (G) Means of MF1 score of the individual DL-based

strategies and of the human expert average compared to the est. GT plotted

for di�erent IoU matching thresholds t. A dashed line indicates the default

threshold t “ 0.5. (H) Annotation reliability of the individual strategies as-

sessed as the similarities between annotations within the respective strategy.

We calculated M̄IoU, MF1 score and Fleiss’ κ.

models) and, successively, reliability and validity in the consensus ensemble

strategy. In the following analysis, we first turn towards a comprehensive eval-

uation of objectivity and its relation to validity before moving on to the concept

of reliability.

To assess the three di�erent strategies, a training dataset of 36 images

and a test set of nine microscopy images (1024 x 1024 px, 1.61 px / µm, on

average „35 nuclei per image) showing cFOS immunoreactivity were manually

annotated by five independent experts (experts 1-5). In absence of a rigorously

objective ground truth, we used STAPLE (Warfield, Zou, and Wells 2004) to com-

pute an estimated ground truth (est. GT) based on all expert annotations for

each image. First, we trained a set of DL models on the 36 training images

and corresponding annotations, either made by an individual human expert

or as reflected in the est. GT (see methods for the data set and detailed train-

ing, evaluation, and model selection strategy). Then, we used our test set to

evaluate the segmentation (Mean IoU) and detection (F1 score) performance

of human experts and all trained models by means of similarity analysis on

the level of individual images.
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For the pairwise comparison of annotations (segmentation masks) we cal-

culated the intersection over union (IoU) for all overlapping pairs of ROIs be-

tween two segmentation masks (Figure 3.2A; see Section 3.2.2). Following Maška

et al. (2014), we consider two ROIs with an IoU of at least 0.5 as matching and

calculated the F1 score MF1 score as the harmonic mean of precision and recall

(3.2B; see Figure 3.2.2). As bioimaging studies predominantly use measures re-

lated to counting ROIs in their analyses, we also focused on the feature detec-

tion performance (MF1 score). The color coding (gray, blue, orange) introduced in

Figure 3.2C refers to the di�erent strategies depicted in Figure 3.1 and applies

to all figures, if not indicated otherwise.

To better grasp the di�culties in annotating cFOS-positive nuclei as flu-

orescent features in these images, we first compared manual expert annota-

tions (Figure 3.2D). The analysis revealed substantial di�erences between the

annotations of the di�erent experts and shows varying inter-rater agreement

(Schmitz, Korr, and Heinsen 1999; Collier et al. 2003; Niedworok et al. 2016). The

level of inter-rater variability was inversely correlated with the relative signal

intensities (see Figure 3.3).

By comparing the annotations of the expert models (gray) to the anno-

tations of the respective expert (Figure 3.2E) we observed a higher MF1 score

median compared to the inter-rater agreement (Figure 3.2D) in the majority of

cases. Furthermore, comparing the similarity analysis results of human experts

with those of their respective expert-specific models revealed that they are

closely related (Figure 3.2F). As pointed out by Chamier, Laine, and Henriques

(2019), this indicates that our expert models are able to learn and reproduce

the annotation behavior of the individual experts. This becomes particularly

evident in the annotations of the DL models trained on expert 1 (Figure 3.2F).

Overall, the expert models yield a lower similarity to the est. GT compared

to the consensus models (blue) or consensus ensembles (orange). Notably,

both consensus models and consensus ensembles perform on par with human

experts. Hereby, the consensus ensembles outperform all other strategies,

even at varying IoU thresholds (Figure 3.2F and Figure 3.2G).

In order to test for the reliability of our analysis, we measured the repeata-

bility and reproducibility of fluorescent feature annotation of our DL strate-

gies. We assumed that the repeatability is assured for all our strategies due

to the deterministic nature of our DL models (unchanged conditions imply un-
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Figure 3.3: Annotation subjectivity analysis. The subjectivity analysis depicts

the relationship between the relative intensity di�erence of a florescent fea-

ture (ROI) to the background and the annotation count of human experts. A

visual interpretation indicates that the annotation probability of a ROI is pos-

itively correlated with its relative intensity. The relative intensity di�erence

is calculated as
µinner´µouter

µinner
, where µinner is the mean signal intensity of the

ROI and µouter the mean signal intensity of its nearby outer area. We consid-

ered matching ROIs at an IoU threshold of t “ 0.5. The expert in the title of the

respective plot was used to create the region proposals of the ROIs, i.e., the an-

notations served as the origin for the other pairwise comparisons. (A) Legend

of color codes: blue depicts that a ROI was only annotated by one or more

human experts; yellow depicts the ROIs that were present in the estimated

ground truth; green shows the ROIs that are only present in an exemplary con-

sensus ensemble; pink depicts ROIs that are present in both estimated ground

truth and consensus ensemble. [Caption continues on next page]
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Figure 3.3: [continued] (B-I) All calculations are performed on the test set which

was withheld from model training and validation. (B-F) The individual expert

analysis shows the e�ects of di�erent heuristic evaluation criteria. (G) The

analysis of the est. GT annotations reveals the limitations of the ground truth

estimation algorithm, which is based on the human annotations. An expert

count of zero can result from merging di�erent ROIs. (H) The analysis of a

representative consensus ensemble shows that human annotators may have

missed several ROIs (green) even with a large relative di�erence to the back-

ground. (I) Cumulative summary of B-F.

changed model weights). Hence, our evaluation was focused on the repro-

ducibility, meaning the impact of the stochastic training process on the out-

put. Inter-expert and inter-model comparisons within each strategy unveiled

a better performance of the consensus ensembles strategy concerning both

detection (MF1 score) and segmentation (M̄IoU) of the fluorescent features (Fig-

ure 3.2H). Calculating the Fleiss’ kappa value (Fleiss and Cohen 1973) revealed

that consensus ensemble annotations show a high reliability of agreement

(Figure 3.2H). Following the Fleiss’ kappa interpretation from Landis and Koch

(1977) the results for the consensus ensembles indicate a substantial or almost

perfect agreement. In contrast, the Fleiss’ kappa values for human experts re-

fer to a fair agreement, while the results for the alternative DL strategies lead

to a moderate agreement (Figure 3.2H).

To determine an appropriate size for the consensus ensembles, we ana-

lyzed the homogeneity of the results through a similarity analysis. Therefore,

we calculated the MF1 score at an IoU matching threshold of t “ 0.5 for each

ensemble size i P t1, ..., 10u on the holdout test set. Stratified on the cross-

validation splits we randomly sampled the ensembles from a collection of

trained consensus models. We repeated this procedure five times to mitigate

the random e�ect of the ensemble composition (Nensembles=5 for each i). The

results are depicted in Figure 3.4.

In summary, the similarity analysis of the three strategies shows that train-

ing DL models solely on the input of a single human expert imposes a high

risk of incorporating an intrinsic bias and therefore resembles a mere automa-

tion of manual image annotation. Both consensus models and consensus en-

sembles perform on par with human experts regarding the similarity to the

est. GT, but the consensus ensembles yield by far the best results regarding
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Figure 3.4: Ensemble size and reliability. The blue box depicts the variability

between di�erent consensus models. The orange box shows the variability

of the finally chosen size for the consensus ensembles, as no substantial re-

duction in variation can be observed for larger i. The black line denotes the

standard deviation of MF1 score, which is scaled at the right y-Axis. The dashed

black line denotes the best fitting function of type fpxq “ a{
?
x with a “ 0.096

for the standard deviation.

their reproducibility. We conclude that, in terms of similarity metrics, only the

consensus ensemble strategy meet the bioimaging standards for objectivity,

reliability, and validity.

3.3.2 Bioimage Analysis Results

Similarity analysis is inevitable to assess the quality of a model’s output, i.e.,

the predicted segmentations (Ronneberger, Fischer, and Brox 2015; Caicedo

et al. 2019; Falk et al. 2019). However, the primary goal of bioimage analysis

is the unbiased quantification of distinct image features that correlate with

experimental conditions. So far, it has remained unclear whether objectivity,

reliability, and validity for bioimage analysis can be inferred directly from sim-

ilarity metrics.

In order to systematically address this question, we used our image dataset

to quantify the abundance of cFOS in brain sections of mice after Pavlovian
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Figure 3.5: Application of di�erent DL-based strategies for fluorescent feature
annotation. The figure introduces how three DL-based strategies are applied

for annotation of a representative fluorescent label, here cFOS, in a represen-

tative image data set. Raw image data show behavior-related changes in the

abundance and distribution of the protein cFOS in the dorsal hippocampus, a

brain center for encoding of context-dependent memory. (A) Three experimen-

tal groups were investigated: Mice kept in their homecage (H), mice that were

trained to a context, but did not experience an electric foot shock (C-), and

mice exposed to five foot shocks in the training context (C+). 24 hours after

the initial training (TR), mice were re-exposed to the training context for mem-

ory retrieval (RET). Memory retrieval induces changes in cFOS levels. [Caption
continues on next page]
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Figure 3.5: [continued] (B-D) Brightness and contrast enhanced maximum in-

tensity projections showing cFOS fluorescent labels of the three experimental

groups (H, C-, C+) with representative annotations of a consensus ensemble, for

each hippocampal subregion. The annotations are used to quantify the num-

ber of cFOS-positive nuclei for each image (#) per mm2 and their mean signal

intensity (mean int., in bit-values) within the corresponding image region of

interest, here the neuronal layers in the hippocampus (outlined in cyan). In

B: granule cell layer (supra- and infrapyramidal blade), dotted line: suprapyra-

midal blade, solid line: infrapyramidal blade. In C: pyramidal cell layer of CA3;

in D: pyramidal cell layer in CA1. Scale bars: 200 µm. (E) Analyses of cFOS-

positive nuclei per mm2, representatively shown for stratum pyramidale of CA1.

Corresponding e�ect sizes are given as η2 for each pairwise comparison. Two

quantification results are shown for each strategy and were selected to repre-

sent the lowest (model 1 or ensemble 1) and highest (model 2 or ensemble 2)

e�ect sizes (increase in cFOS) reported within each annotation strategy. ***: p

< 0.001 with Mann-Whitney-U test.

contextual fear conditioning. It is well established in the neuroscientific lit-

erature that mice show changes in the distribution and abundance of cFOS

in a specific brain region, namely the hippocampus, after processing informa-

tion about places and contexts (Keiser et al. 2017; Campeau et al. 1997; Hu� et

al. 2006; Ramamoorthi et al. 2011; Tayler et al. 2013; Murawski, Klintsova, and

Stanton 2012; Guzowski et al. 2001). Consequently, our experimental dataset

o�ered us a second line of evidence, the objective analysis of mouse behav-

ior, in addition to the changes of fluorescent features to validate the bioimage

analyses results of our DL-based strategies.

Our dataset comprised three experimental groups (Figure 3.5A). In one

group, mice were directly taken from their home cage as naïve learning con-

trols (H). In the second group, mice were re-exposed to a previously explored

training context as context controls (C-). Mice in the third group underwent

Pavlovian fear conditioning and were also re-exposed to the training context

(C+) (Figure 3.5A). These three groups of mice showed di�erent behavioral re-

sponses. For instance, fear (threat) conditioned mice (C+) showed increased

freezing behavior after fear acquisition and showed strong freezing responses

when re-exposed to the training context 24 h later. After behavioral testing,

brain sections of the di�erent groups of mice were prepared and labeled for

the neuronal activity-related protein cFOS by indirect immunofluorescence.
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Sections were also labeled with the neuronal marker NeuN (Fox3), allowing

the anatomical identification of hippocampal subregions of interest. Images

were acquired as confocal microscopy image stacks (x,y-z) and maximum in-

tensity projections were used for subsequent bioimage analysis. Overall, we

quantified the number of cFOS-positive nuclei and their mean signal inten-

sity in five regions of the dorsal hippocampus (DG as a whole, suprapyramidal

DG, infrapyramidal DG, CA3, and CA1), and tested for significant di�erences be-

tween the three experimental groups (3.5B-D). To extend this analysis beyond

hypothesis testing at a certain significance level, we calculated the e�ect size

(η2) for each of these 30 pairwise comparisons.

We illustrate our metrics with the detailed quantification of cFOS-positive

nuclei in the stratum pyramidale of CA1 as a representative example and show

two analyses for each DL strategy (Figure 3.5E). These two examples represent

those two models of each strategy that yielded the lowest and the highest

e�ect sizes, respectively (Figure 3.5E). Despite a general consensus of all mod-

els and ensembles on a context-dependent increase in the number of cFOS-

positive nuclei, these quantifications already indicate that the variability of

e�ect sizes decreases from expert models to consensus models and is lowest

for consensus ensembles (3.5E).

The analysis in Figure 3.6 allows us to further explore the impact of the

di�erent DL strategies on the bioimage analysis results for each hippocampal

subregion. Here, we display a high-level comparison of the e�ect sizes and

corresponding significance levels of 20 independently trained expert models

(four per expert), 36 consensus models, and nine consensus ensembles (each

derived from four consensus models). In contrast to the detailed illustration

of selected models in Figure 3.5E, Figure 3.6A, for instance, summarizes the re-

sults for all analyses of the stratum pyramidale of CA1. As indicated before, all

models and ensembles show a highly significant context-dependent increase

in the number of cFOS-positive nuclei, but also a notable variation in e�ect

sizes for both expert and consensus models. Moreover, we identify a signifi-

cant context-dependent increase in the mean signal intensity of cFOS-positive

nuclei for all consensus models and ensembles. The expert models, by con-

trast, yield a high variation in e�ect sizes at di�erent significance levels. In-

terestingly, all four expert models trained on the annotations of expert 1 (and

two other expert models only in the case of H vs. C+) did not yield a significant
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Figure 3.6: Consensus ensembles significantly increase reliability of bioimage
analysis results. (A-E) Single data points represent the calculated e�ect sizes

for each pairwise comparison of all individual bioimage analyses for each DL-

based strategy (gray: expert models, blue: consensus models, orange: consen-

sus ensembles) in indicated hippocampal subregions. Three horizontal lines

separate four significance intervals (n.s.: not significant, *: 0.05 ě p > 0.01, **:

0.01 ě p > 0.001, ***: p ď 0.001 after Bonferroni correction for multiple com-

parisons). The quantity of analyses of each strategy that report the respective

statistical result of the indicated pairwise comparison (e�ect, x-axis) at a level

of p ď 0.05 are given below each pairwise comparison in the corresponding

color coding. (A) Analyses of cFOS-positive nuclei in stratum pyramidale of CA1.

[Caption continues on next page]
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Figure 3.6: [continued] (B) Analyses of cFOS-positive nuclei in stratum pyrami-

dale of CA3. (C) Analyses of cFOS-positive nuclei in the granule cell layer of

the whole DG. (D) Analyses of cFOS-positive nuclei in the granule cell layer of

the suprapyramidal blade of the DG. (E) Analyses of cFOS-positive nuclei in

the granule cell layer of the infrapyramidal blade of the DG. (F) The reliability

of bioimage analysis results is assessed as variation per e�ect (left side) and

variation per model (right side). For the variation per e�ect, single data points

represent the standard deviation of reported e�ect sizes (η2), calculated within

each DL-based strategy for each of the 30 pairwise comparisons. Consensus

ensembles show significantly lower standard (std.) deviations of η2 per pair-

wise comparison compared to alternative strategies (X2(2) = 26.472, p <0.001,

Kruskal-Wallis ANOVA followed by pairwise Mann-Whitney tests with Bonfer-

roni correction, *: p <0.05, ***: p <0.001). For the variation per model, the stan-

dard deviation of centered η2 across all pairwise comparisons was calculated

for each individual model and ensemble (y-axis). In addition, the number of

deviations from the congruent majority vote (at p ď 0.05 after Bonferroni cor-

rection for multiple comparisons) were determined for each individual model

and ensemble across all pairwise comparisons (x-axis). Visualizing the interac-

tion of both measures for each model or model ensemble individually reveals

that consensus ensembles show the highest reliability of all three DL-based

strategies.

increase, indicating that expert 1’s annotation behavior was incorporated into

the expert-1-specific models and that this also a�ects the bioimage analysis

results (Figure 3.6A).

The meta-analysis discloses a context-dependent increase of cFOS in al-

most all analyzed hippocampal regions (Figure 3.6A-D), except for the infrapyra-

midal blade of the dentate gyrus (Figure 3.6E). Notably, the majority votes of all

three strategies at a significance level of p ď 0.05 (after Bonferroni correction

for multiple comparisons) are identical for each pairwise comparison (Figure

3.6A-E). However, the results can vary between individual models or ensembles

(Figure 3.6A-E).

In order to assess the reliability of bioimage analysis results of the individ-

ual strategies, we further examined the variation per e�ect and variation per

model in Figure 3.6F. For the variation per e�ect, we calculated the standard

deviation of reported e�ect sizes within each strategy for every pairwise com-

parison (e�ect). This confirmed the visual impression from Figure 3.6A-E as

the consensus ensembles yield a significantly lower standard deviation com-
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pared to both alternative strategies (Figure 3.6F). To illustrate the variation per

model, we show the interaction between the number of biological e�ects that

the corresponding model (or ensemble) reported di�erently compared to the

congruent majority votes versus the standard deviation of its centered e�ect

sizes across all 30 analyzed e�ects. This analysis shows that no expert model

detected all biological e�ects in the microscopy images that were defined by

the majority votes of all models. This is in stark contrast to the consistency of

e�ect interpretation across the consensus ensembles (Figure 3.6F).

Consequently, we conclude that the consensus ensemble strategy is best

suited to satisfy the bioimaging standards for objectivity, reliability, and valid-

ity.

3.3.3 Bioimage Analysis of External Datasets

Bioimage analysis of fluorescent labels comes with huge variability in terms

of investigated model organisms, analyzed fluorescent features, and applied

image acquisition techniques (Meijering et al. 2016). In order to assess our

consensus ensemble strategy across these varying parameters, we tested it on

four external datasets that were created in a fully independent manner and ac-

cording to individual protocols (Lab-Mue, Lab-Inns1, Lab-Inns2, and Lab-Wue2).

Due to limited dataset sizes, the lab-specific training datasets consisted of just

five microscopy images each and the corresponding est. GT based on the an-

notations from multiple experts. In the biomedical research field, the limited

availability of training data is a common problem when training DL algorithms.

For this reason, extensive data augmentation and regularization techniques, as

well as transfer learning strategies are widely used to cope with small datasets

(Ronneberger, Fischer, and Brox 2015; Christiansen et al. 2018; Falk et al. 2019).

Transfer learning is a technique that enables DL models to reuse the image

feature representations learned on another source, such as a task (e.g. image

segmentation) or a domain (e.g. the fluorescent feature, here cFOS-positive

nuclei). This is particularly advantageous when applied to a task or domain

where limited training data is available (Yosinski et al. 2014; Oquab et al. 2014).

Moreover, transfer learning might be used to reduce observer variability and to

increase feature annotation objectivity (Bayramoglu and Heikkilä 2016). There

are typically two ways to implement transfer learning for DL models, either by
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Figure 3.7: Consensus ensembles for DL-based feature annotation in external
bioimage data sets. (A) Schematic overview depicting three initialization vari-

ants for creating consensus ensembles on new datasets. Data annotation by

multiple human experts and subsequent ground truth estimation are required

for all three initialization variants. In the from scratch variant, a U-Net model

with randomly initialized weights is trained on pairs of microscopy images and

estimated ground truth annotations. This variant was used to create consen-

sus ensembles for the initial Lab-Wue1 dataset. [Caption continues on next
page]
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Figure 3.7: [continued] Alternatively, the same training dataset can be used to

adapt a U-Net model with pretrained weights by means of transfer learning

(fine-tuned). In both variants, models are evaluated and selected on the basis

of a validation set after model training. In a third variant, U-Net models with

pretrained weights can be evaluated directly on a validation dataset, without

further training (frozen). In all three variants, consensus ensembles of the re-

spective models are then used for bioimage analysis. (B) Overall reliability of

bioimage analysis results of each variant assessed as variation per e�ect. In all

three strategies, consensus ensembles (orange) showed lower standard devia-

tions than consensus models (blue). The frozen results need to be considered

with caution as they are based on models that did not meet the selection cri-

terion. (C-E) Detailed comparison of the two external datasets with highest

(Lab-Mue) and lowest (Lab-Wue2) similarity to Lab-Wue1. (C) Representative

microscopy images. Orange: representative annotations of a lab-specific from
scratch consensus ensemble. PVT: para-ventricular nucleus of thalamus, eRet:

early retrieval, lRet: late retrieval, HB: hindbrain, wt: wildtype, kd: gad1b knock-

down. Scale bars: Lab-Mue 100 µm and Lab-Wue2 6 µm. (D) Mean MF1 score of

from scratch (solid line) and fine-tuned (dashed line) consensus models on

the validation dataset over the course of training (iterations). Mean MF1 score

of frozen consensus models are indicated with arrows. Box plots show the

MF1 score among the annotations of human experts as reference and the mean

MF1 score of selected consensus models. Two dotted horizontal lines mark the

whisker ends of the MF1 score among the human expert annotations. (E) E�ect

sizes of all individual bioimage analyses (black: manual experts, blue: consen-

sus models, orange: consensus ensembles). Three horizontal lines separate

the significance levels (n.s.: not sign., *: 0.05 ě p > 0.01, **: 0.01 ě p > 0.001,

***: p ď 0.001 with Mann-Whitney-U tests).

fine-tuning or by freezing features (i.e., model weights) (Yosinski et al. 2014).

The latter approach, if applied to the same task (e.g., image segmentation),

does not require any further model training. These out-of-the-box models re-

duce time and hardware requirements and may further increase the objectivity

of image analysis, by altogether excluding the need for any additional manual

input.

Consequently, we hypothesized that transfer learning from pretrained

model ensembles would substantially reduce the training e�orts (Falk et

al. 2019) and might even increase objectivity of bioimage analysis. To test this,

we followed three di�erent initialization variants of the consensus ensemble

strategy (Figure 3.7A). In addition to starting the training of DL models with
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Figure 3.8: Performance of consensus ensembles on feature annotation in im-
age dataset Lab-Inns01. (A) Representative microscopy images. Orange: repre-

sentative annotations of a lab-specific from scratch consensus ensemble. BLA:

basolateral amygdala, Ctrl: control, Ext: extinction. Scale bar: 80 µm. (B) Mean

MF1 score of from scratch (solid line) and fine-tuned (dashed line) consensus

models on the validation dataset over the course of training (iterations). Mean

MF1 score of frozen consensus models are indicated with an arrow. Box plots

show the MF1 score among the annotations of human experts as reference and

the mean MF1 score of selected consensus models. Two dotted horizontal lines

mark the whisker ends of the MF1 score among the human expert annotations.

(C) E�ect sizes of all individual bioimage analyses (black: manual experts, blue:

consensus models, orange: consensus ensembles). Three horizontal lines sep-

arate four selected significance intervals (n.s.: not significant, *: 0.05ě p > 0.01,

**: 0.01 ě p > 0.001, ***: p ď 0.001).

randomly initialized weights (Figure 3.7A - from scratch), we reused the consen-

sus ensemble weights from the previous evaluation (Lab-Wue1) by means of

fine-tuning (A). In addition to starting the training of DL models with randomly

initialized weights (Figure 3.7A - fine-tuned) and freezing of all model layers

(Figure 3.7A - frozen). Although no training of the frozen model is required,

we tested and evaluated the performance of frozen models to ensure their

validity. After performing the similarity analysis, we compared the full bioim-

age analyses, including quantification and hypothesis testing, of the di�erent

initialization variants. Finally, to establish a notion of external validity, we

also compared these results with the manually and independently performed

bioimage analysis of a lab-specific expert (Figures 3.7, 3.8, 3.9).
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Figure 3.9: Performance of consensus ensembles on fluorescent feature an-
notation in image dataset Lab-Inns02. (A) Representative microscopy images.

Orange: representative annotations of a lab-specific from scratch consensus

ensemble. Resp: responders, nResp: non-responders. Scale bar: 40 µm. (B)

Mean MF1 score of from scratch (solid line) and fine-tuned (dashed line) consen-

sus models on the validation dataset over the course of training (iterations).

Mean MF1 score of frozen consensus models are indicated with an arrow. Box

plots show the MF1 score among the annotations of human experts as reference

and the mean MF1 score of selected consensus models. Two dotted horizontal

lines mark the whisker ends of the MF1 score among the human expert anno-

tations. (C-E) E�ect sizes of all individual bioimage analyses (black: manual

experts, blue: consensus models, orange: consensus ensembles). Three hori-

zontal lines separate four selected significance intervals (n.s.: not significant,

*: 0.05ě p > 0.01, **: 0.01ě p > 0.001, ***: pď 0.001 after Bonferroni correction

for multiple comparisons).
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Dataset characteristics

The first dataset (Lab-Mue) represents very similar image parameters com-

pared to our original Lab-Wue1 dataset (Figure 3.7C - Lab-Mue). Mice ex-

perienced restraint stress and subsequent Pavlovian fear conditioning (cue-

conditioning, tone-footshock association) and the number of cFOS-positive

cells in the paraventricular thalamus (PVT) was compared between early (eRet)

and late (lRET) phases of fear memory retrieval. In the context of transfer learn-

ing, this dataset originates from a very similar domain and requires the same

task (image segmentation). Another two external datasets are focused on the

quantification of cFOS abundance (similar domain), albeit showing less simi-

larity in image parameters to our initial dataset (Figure 3.8, Figure 3.9). In Lab-
Inns1, mice underwent Pavlovian fear conditioning and extinction in the same

context. The image dataset of Lab-Inns2 shows cFOS immunoreactivity in the

infralimbic cortex (IL) following fear renewal, meaning return of extinguished

fear in a context di�erent from the extinction training context. Since hetero-

geneity in this behavioral response was observed, mice were classified as re-

sponders (Resp) or non-responders (nResp), based on freezing responses (see

methods). The image dataset of Lab-Wue2 shows the least similarity of image

parameters to the dataset of Lab-Wue1. This dataset represents another com-

monly used model organism in neurobiology, the zebrafish. Here, cell bodies

of specific neurons (GABAergic neurons) instead of nuclei were fluorescently

labeled (Figure 3.8C - Lab-Wue2). Hence, this dataset originates from a di�er-

ent domain but was acquired using the same technique.

Similarity analysis

As only limited training data was available we executed the similarity analy-

sis for all external datasets by means of k-fold cross-validation. We observed

that the inter-rater variability di�ered between laboratories and di�erent ex-

perts but remained comparable as previously for Lab-Wue1 (Figure 3.7D). Both

from scratch and fine-tuned initiation variants resulted in individual consen-

sus models that reached human expert-level performance (Figures 3.7D, 3.8,

3.9). However, models adapted from pretrained weights yielded a higher valid-

ity in terms of similarity to the estimated ground truth. They either exceeded

the maximal MF1 score reached by from scratch models (Figures 3.7D - Lab-Mue,
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3.8, 3.9) or reached them after less training iterations (Figure 3.7D - Lab-Wue2).

As expected, the performance of frozen Lab-Wue1-specific consensus models

was highly dependent on the image similarity between the original and the

new dataset. Consequently, the out-of-the-box segmentation performance of

the frozen Lab-Wue1 models was very poor on dissimilar images (Figure 3.7D

- Lab-Wue2), but we found it to be on par with human experts and adapted

models on images that are highly similar to the original dataset (Figure 3.7D -

Lab-Mue - very similar domain and the same task).

Bioimage analysis results

To further strengthen the validity of our workflow, we compared all DL-based

bioimage analyses to the manual analysis of a human expert from the individ-

ual laboratory (Figures 3.7E, 3.8, 3.9, and Table 3.1).

For Lab-Mue, the bioimage analyses of all DL-based approaches, includ-

ing the frozen consensus models and ensembles pretrained on Lab-Wue1, re-

vealed a significantly higher number of cFOS-positive cells in the PVT of mice

24h after fear conditioning (lRET), which was confirmed by the manual expert

analysis (Figure 3.7E - Lab-Mue, Table 3.1). Yet again, the formation of model

ensembles increased the reproducibility of results by yielding less or almost

no variation in the e�ect sizes (Figure 3.7E - Lab-Mue).

The manual expert analysis of the Lab-Inns1 dataset revealed a signifi-

cantly higher number of cFOS-positive nuclei in the basolateral amygdala (BLA)

after extinction of a previously learned fear, which was also reliably detected

by all consensus ensembles, regardless of initiation variant (Figure 3.8, Table

3.1). However, this significant di�erence was only present in the analyses of

most individual consensus models, both from scratch and fine-tuned (Figure

3.8). Again, this could be attributed to a higher variability between the e�ect

sizes of individual models, compared to a higher homogeneity among ensem-

bles (Figure 3.8).

For Lab-Inns2, the manual expert analysis as well as all deep-learning

based approaches that were adapted to the Lab-Inns2 dataset show increased

numbers of cFOS-positive cells in the infralimbic cortex of L-DOPA/MS-275 re-

sponders (Resp) compared to control (Sal) mice (Figure 3.9, Table 3.1). However,

in L-DOPA/MS-275 non-responders (nResp), we did not observe a significant
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Table 3.1: Bioimage analyses results of external datasets. Data are based ei-

ther on manual analysis or on annotations by a consensus ensemble. The

results are given for the individual consensus ensemble initialization variants

(from scratch, fine-tuned). P-values of Lab-Inns2 are corrected for multiple

comparisons using Bonferroni correction. µ1: mean group 1, µ2: mean group 2

Lab groups
initialization

variant
µ1 µ2 U

significance

level (p)
η2

Mue eRet „ lRet manual 1.00 1.65 19.0 ** (0.002) 0.39

from scratch 1.00 1.70 25.0 ** (0.007) 0.31

fine-tuned 1.00 1.68 24.0 ** (0.006) 0.32

Inns1 Ctrl „ Ext manual 1.00 3.92 10.0 ** (0.005) 0.43

from scratch 1.00 2.26 13.0 * (0.010) 0.35

fine-tuned 1.00 1.85 14.0 * (0.013) 0.33

Inns2 Sal „ Resp manual 1.00 1.83 5.0 ** (0.002) 0.59

from scratch 1.00 1.96 0.0 *** (ă0.001) 0.71

fine-tuned 1.00 2.07 0.0 *** (ă0.001) 0.71

Sal „ nResp manual 1.00 1.05 27.0 n.s. (1.000) 0.00

from scratch 1.00 1.63 8.0 n.s. (0.130) 0.29

fine-tuned 1.00 1.42 12.0 n.s. (0.377) 0.16

Res „ nRes manual 1.83 1.05 42.0 n.s. (0.130) 0.29

from scratch 1.96 1.63 41.0 n.s. (0.173) 0.26

fine-tuned 2.07 1.42 42.0 n.s. (0.130) 0.29

Wue2 wt „ kd manual 1.00 0.28 227.5 * (0.010) 0.19

from scratch 1.00 0.45 220.0 * (0.021) 0.16

fine-tuned 1.00 0.37 216.0 * (0.029) 0.14

increase of cFOS-positive nuclei (Figure 3.9, Table 3.1). Furthermore, the high

e�ect sizes of the comparison between L-DOPA/MS-275 responders and non-

responders further indicate that the di�erences observed in the behavioral

responses of Resp and nResp mice were also reflected in the abundance of

cFOS in the infralimbic cortex (Figure 3.9, Table 3.1).

Manual expert analysis of the fourth external dataset revealed a signifi-

cantly lower amount of GABA-positive somata in gad1b knock-down zebrafish,

compared to wildtypes (Figure 3.7E - Lab-Wue2, Table 3.1). Again, this e�ect was

reliably detected by all deep-learning based approaches that included training

on the Lab-Wue2-specific training dataset and the e�ect sizes of ensembles

showed less variability (Figure 3.7E - Lab-Wue2). Despite its poor segmenta-
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tion performance and hence, poor validity, this e�ect was also present in the

bioimage analysis of the frozen consensus models and ensembles pretrained

on Lab-Wue1 (Figure 3.7E - Lab-Wue2).

As with our initial dataset, we assessed reliability by calculating the vari-

ation per e�ect as the standard deviation of the reported e�ect sizes within

each group and pooled these results across all external datasets. Consistent

with the higher reliability of from scratch and fine-tuned ensemble annota-

tions, this analysis shows that the formation of model ensembles reduced the

variation per e�ect in both variants, compared to the respective individual

models (Figure 3.7B). The frozen models and ensembles exhibit a similar ef-

fect but need to be considered with caution as they are based on models that

did not meet the selection criterion (reliably performing on par with human

experts; see 3.2.3 for a detailed explanation).

In summary, we assessed the reproducibility of our consensus ensemble

strategy by using four external datasets. These datasets were acquired with

di�erent image acquisition techniques, investigate two common model organ-

isms, and analyze the two main cellular compartments (nuclei and somata) at

varying resolutions. In line with the results obtained on our initial dataset, we

observed an increased reproducibility for the consensus ensembles compared

to individual consensus models after training on all four external datasets (Fig-

ure 3.7B).

Moreover, our data also suggests that pretrained consensus models can

even be deployed out-of-the-box, but only when carefully validated. Thus,

sharing pretrained model weights across di�erent laboratories reduces lab-

specific biases within the bioimage analysis and may further increase objec-

tivity and validity.

Ultimately, we conclude that our proposed ensemble consensus workflow

is reproducible for di�erent data sets and laboratories and increases the ob-

jectivity, reliability, and validity of DL-based bioimage analyses.

3.4 Discussion

The present study contributes to bridging the gap between “methods” and “bi-

ology” oriented studies in image feature analysis (Meijering et al. 2016). We ex-
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plored the potentials and limitations of DL models utilizing the general quality

criteria for quantitative research: objectivity, reliability, and validity. Thereby,

we put forward an e�ective but easily implementable strategy that aims to es-

tablish reproducible, DL-based bioimage analysis within the life science com-

munity.

The number of DL-based tools for bioimage annotations and their accessi-

bility for non-AI specialists is gradually increasing (McQuin et al. 2018; Haberl

et al. 2018; Falk et al. 2019). DL models can hold advantages over conventional

algorithms (Caicedo et al. 2019) and have the potential to be commonly used

for bioimage analysis tasks throughout the life sciences. Usually, the perfor-

mance of new bioimage analysis tools or methods is assessed by means of

similarity measures to a certain ground truth (Ronneberger, Fischer, and Brox

2015; McQuin et al. 2018; Haberl et al. 2018; Falk et al. 2019; Caicedo et al. 2019).

However, this is rarely su�cient to establish trust in the use of DL models for

bioimage analysis, as the vast amount of parameters and flexibility to adapt

DL models to virtually any task renders them prone to internalize unintended,

but subjective human biases (Chamier, Laine, and Henriques 2019). This is par-

ticularly true in the case of fluorescent feature analysis in bioimage datasets,

as an objective ground truth is not available. In conjunction with the stochas-

tic training process, this is a very critical point, because it holds the potential

for intended or unintended tampering similar to p-hacking (Head et al. 2015),

e.g., by training DL models until non-significant results become significant.

To investigate the e�ects of DL-based strategies on the bioimage anal-

ysis of fluorescent features, we acquired a typical bioimage dataset (Lab-
Wue1), and five experts manually annotated corresponding ROIs (here cFOS-

positive nuclei) in a representative subset of images. Then, we tested three

DL-based strategies for automatized feature segmentation. DL models were

either trained on the manual annotations of a single expert (expert models) or

on the input of multiple experts pooled by ground truth estimation (consensus

models). In addition, we formed ensembles of consensus models (consensus

ensembles).
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3.4.1 Similarity Analysis of Fluorescent Feature Annotation

In accordance with previous studies, similarity analyses revealed a substantial

level of inter-rater variability in the heuristic annotations of the single experts

(Schmitz, Korr, and Heinsen 1999; Collier et al. 2003; Niedworok et al. 2016).

Furthermore, we confirmed the concerns already put forward by others (Falk

et al. 2019; Chamier, Laine, and Henriques 2019) that training of DL models

solely on the input of a single human expert imposes a high risk of incorporat-

ing an individual human bias into the trained models. We therefore conclude

that models trained on single expert annotations resemble an automation of

manual image annotation, but cannot remove subjective biases from bioim-

age analyses. Importantly, only consensus ensembles led to a coincident sig-

nificant increase also in the reliability and validity of fluorescent feature an-

notations. Our analyses also show that annotations of multiple experts are

imperative for two reasons: first, they mitigate or even eliminate the bias of

expert-specific annotations and, secondly, are essential for the assessment of

the model performance.

3.4.2 Reproducibility and Validity of Bioimage Analyses

Our bioimage dataset from Lab-Wue1 enabled us to look at the impact of dif-

ferent DL-based strategies on the results of bioimage analyses. This revealed

a striking model-to-model variability as the main factor impairing the repro-

ducibility of DL-based bioimage analyses. Convincingly, the majority votes for

each e�ect were identical for all three strategies. However, the variance within

the reported e�ect sizes di�ered significantly for each strategy. This entailed,

for example, that no expert model was in full agreement with the congruent

majority votes. On the contrary, consensus ensembles detected all e�ects with

significantly higher reliability. Thus, our data indicates that bioimage analysis

performed with a consensus ensemble significantly reduces the risk of obtain-

ing irreproducible results.

3.4.3 Evaluation of consensus ensembles on external datasets

We then tested our consensus ensemble approach and three initialization vari-

ants on four external datasets with limited training data and varying similari-
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ties in terms of image parameters to our original dataset (Lab-Wue1). In line

with previous studies on transfer learning, we demonstrate that the adapta-

tion of models from pretrained weights to new, yet similar data requires less

training iterations, compared to the training of models from scratch (Falk et

al. 2019). We extend these analyses and show that the reliability of fine-tuned
ensembles was at least equivalent to from scratch ensembles, if not higher.

Furthermore, we also provide initial evidence that pretrained ensembles can

be used even without any adaptation, if task similarity is su�ciently high. Our

data suggest that this component in the analysis pipeline could further in-

crease the objectivity of bioimage analyses.

3.4.4 Potentials of Open Source Model Libraries

Sharing model weights from validated models in open-source libraries, simi-

larly to TensorFlow Hub23 or PyTorch Hub24, o�ers a great opportunity to pro-

vide annotation experience across labs in an open science community. In this

study, for instance, we used the nuclear label of cFOS, an activity-dependent

transcription factor, as fluorescent feature of interest. This label is in its signa-

ture indistinguishable from a variety of other fluorescent labels, like those of

transcription factors (CREB, phospho-CREB, Pax6, NeuroG2 or Brain3a), cell di-

vision markers (phospho-histone H3), apotposis markers (Caspase-3), and mul-

tiple others. Similarly to the pretrained and shared models of Falk et al. (2019),

we surmise that the learned feature representations (i.e., model weights) of

our cFOS consensus ensembles may serve as a good initialization for models

that aim at performing nucleosomatic fluorescent label segmentation in brain

slices.

In line with the results of the Kaggle Data Science Bowl 2018 (Caicedo et

al. 2019), however, our findings indicate that a model adapted to a specific data

set usually outperforms a general model trained on di�erent datasets from

di�erent domains. To use and share frozen out-of-the-box models across the

science community, we therefore need to create a well-documented library

that contains validated model weights for each specific task and domain (e.g.,

for each organism, marker type, image resolution, etc.). In conjunction with

23www.TensorFlow.org/hub
24www.pytorch.org/hub/
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data repositories, this would also allow retrospective data analysis of prior

studies.

In summary, open-source model libraries may contribute to better repro-

ducibility of scientific experiments (Fanelli 2018) by improving the objectivity

in bioimage analyses, by o�ering openness to analysis criteria, and by sharing

pretrained models for (re-)evaluation.

3.4.5 Limitations

This paper describes a blueprint for the evaluation of DL models in biomedical

imaging. Therefore, some of our methodological decisions were shaped by

standardization considerations concerning the future deployment in bioimage

analysis pipelines.

The project was triggered by segmentation tasks for fluorescent labels

(cFOS) in the cell nucleus. These are rather simple features, and we could read-

ily annotate data from di�erent labs, which facilitated the evaluation. However,

this limits the generalizability to more complex image segmentation tasks,

where training data annotation is slow and tedious. In particular human per-

ceptive capabilities for richer graphical features, such as area, volume, or den-

sity, is much worse than for regular, linear image features (Cleveland and McGill

1985; Feldman-Stewart et al. 2000). A case in point is the annotation of images

showing ramified neurons or astrocytes. Such tasks would cause an enormous

workload rendering complete human annotation virtually impossible. In this

respect, we concur with prior research asserting that DL models based on hu-

man annotations will not be an option in these settings (Driscoll et al. 2019).

The characteristics of our examined strategies are based on best practices

in the field of DL and derived from the extant literature (Meijering et al. 2016;

Falk et al. 2019; Caicedo et al. 2019). The focus on the U-Net model architecture

(Ronneberger, Fischer, and Brox 2015) is a direct consequence of this standard-

ization idea. Yet, it is also an important limitation of our study. Unlike more

conventional studies that introduce a new method and provide a comprehen-

sive performance comparison to the state of the art, we rely on U-net as the

widely studied de facto standard for biomedical image segmentation purposes

(McQuin et al. 2018; Falk et al. 2019; Caicedo et al. 2019). Similarly, we chose

to use (STAPLE, Warfield, Zou, and Wells 2004) as the benchmark procedure
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for ground truth estimation. Thereby, we forwent considering alternatives and

variants (Lampert, Stumpf, and Gançarski 2016). In addition, we tried di�erent

ways to incorporate the single expert annotations into one DL model. For in-

stance, we followed the approach of Guan et al. (2018) by modeling individual

experts in a multi-head DL model instead of pooling them in the first place.

However, we decided to discard the approach as our tests did not improve the

results but increased complexity.

3.4.6 Accessibility

To enable other researchers to easily access, interact with, and reproduce our

results and to share our trained models, we provide an open-source Python
library that is easily accessible for both local installation and cloud-based de-

ployment.

With Jupyter Notebooks becoming the computational notebook of choice

for data scientists (Perkel 2018) we also implemented a training pipeline for

non-AI experts in a Jupyter Notebook optimized for Google Colab, providing

free access to the required computational resources (e.g., GPUs and TPUs). In

summary, we recommend using the annotations of multiple human experts to

train and evaluate DL consensus model ensembles. In such a way, DL can be

used to increase the objectivity, reliability, and validity of bioimage analyses

and pave the way for higher reproducibility in science.
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4 Deep learning in the bioimaging
wild: Handling ambiguous data
with deepflash2

J
This chapter is adapted from the article of Griebel, M., Segebarth,

D., Stein, N., Schukraft, N., Tovote, P., Blum, R., & Flath, C. M. Deep-
learning in the bioimaging wild: Handling ambiguous data with
deepflash2 published as a preprint25. The tool can easily be ac-

cessed in Google Colab26. All data and source code are avail-

able on GitHub27. The repository also contains Jupyter notebooks

with instructions to reproduce the paper’s analyses and benchmark

methods easily. Additionally, the documentation28 provides walk-

through tutorials and videos for using the GUI as well as information

on the deepflash2 Python API. Please refer to the original article for

detailed information on animal experiments and data acquisition.

This chapter covers all elements of the ML life cycle. It particularly empha-

sizes the Monitor Predictions and Gather and Analyze Insights phases as the

presented DL solution, deepflash2, provides capabilities for integrated qual-

ity assurance and out-of-distribution detection during inference. This chapter

follows the typical structure of a life science article similar to Chapter 3.

25https://arxiv.org/abs/2111.06693; currently under review at Nature Methods
26https://colab.research.google.com/github/matjesg/deepflash2/blob/master/
deepflash2_GUI.ipynb

27https://github.com/matjesg/deepflash2
28https://matjesg.github.io/deepflash2/
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Machine learning life cycle stages covered in Chapter 4.

Summary. deepflash2 is a deep learning solution that facilitates the objec-

tive and reliable segmentation of ambiguous bioimages through multi-expert

annotations and integrated quality assurance. Thereby, deepflash2 addresses

typical challenges that arise during training, evaluation, and application of

deep learning models in bioimaging. The tool is embedded in an easy-to-use

graphical user interface and o�ers best-in-class predictive performance for se-

mantic and instance segmentation under economical usage of computational

resources.

4.1 Introduction

Partitioning images into meaningful segments (e.g., cells, cellular compart-

ments, or other anatomical structures) is one of the most ubiquitous tasks

in bioimage analysis (Meijering 2020). Segmentation facilitates downstream

tasks such as (3D) detection, tracking, quantification, and statistical evalua-

tion of image features. Performing segmentation tasks manually is tedious

and time-consuming. Conversely, its automation promises additional insights,

more precise analyses, and more rigorous statistics (Falk et al. 2019). DL has
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proven to be a flexible method to analyze large amounts of bioimage data

(Ronneberger, Fischer, and Brox 2015) and numerous solutions for automated

segmentation have been proposed (Falk et al. 2019; Haberl et al. 2018; Berg

et al. 2019; Chamier et al. 2021; Bannon et al. 2021; Isensee et al. 2021; Stringer

et al. 2021; Lucas et al. 2021). Depending on annotated training data, these

tools and analysis pipelines are well suited for settings where the observable

phenomena exhibit a high signal-to-noise ratio (SNR), for instance, in monodis-

persed cell cultures. However, the SNR in bioimages is often low, influenced by

experimental conditions, sample characteristics, and imaging trade-o�s. Such

image material is inherently ambiguous which hampers a reliable analysis. A

case in point is the analysis of fluorescent images of complex brain tissue

– a core technique in modern neuroscience – which is frequently subject to

various sources of ambiguity such as cellular and structural diversity, hetero-

geneous staining conditions, and challenging image acquisition processes.

With deepflash2, we introduce a DL-based analysis tool for fast and reli-

able segmentation of ambiguous microscopy images. By integrating annota-

tions from multiple experts and providing quality assurance for the analysis

of new images, the tool bridges key challenges during model training, eval-

uation, and application. Training and evaluation challenges commence with

the manual annotation process. Here, human experts rely on heuristic criteria

(e.g., morphology, size, signal intensity) to cope with low SNRs. Relying on a

single human expert’s annotations for training can result in biased DL models

(Segebarth et al. 2020a). At the same time, inter-expert agreement su�ers in

such settings, which, in turn, leads to ambiguous training annotations (Falk

et al. 2019; Niedworok et al. 2016). Without reliable annotations, there is no

obvious ground truth, which complicates both model training and evaluation.

The application challenge emerges when DL models are deployed for analyz-

ing large numbers of bioimages. This scaling-up step is a crucial leap of faith

for users as it e�ectively means delegating control over the study to a black

box system. DL models will generate segmentations for any image. However,

the segmentation quality is unknown as the reliability of model generaliza-

tions beyond the training data cannot be guaranteed. Selecting a represen-

tative subset of images for training and evaluation in a single experiment is

already challenging. Maintaining a representative training set across multiple

experiments with possibly varying conditions compounds these problems and
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two-step evaluation on 
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Reference 
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Quality assurance based on uncertainty 
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Predictions for semantic or instance 
segmentation 

Images from one or more 
experiments

Figure 4.1: deepflash2 pipelines. Proposed integration into the bioimage anal-

ysis workflow.

may eventually prevent reliable automation. For this reason, a viable deploy-

ment needs e�ective quality assurance, or as Ribeiro et al. (Ribeiro, Singh, and

Guestrin 2016, p. 1135) put it “if the users do not trust [...] a prediction, they

will not use it.”

We address these challenges in two consecutive pipelines for training &
evaluation and application that seamlessly integrate into the bioimage anal-

ysis workflow (Figure 4.1). We illustrate the capabilities of deepflash2 using

five representative fluorescence microscopy datasets of mouse brain tissue

with varying degrees of ambiguity (Figure 4.1, Section 4.2.4). We benchmark the

tool against other common analysis tools (Figures 4.2, 4.4, Table 4.1), achiev-

ing best-in-class predictive performance under economical usage of computa-

tional resources. The deepflash2 pipelines are embedded in a lightweight and

easy-to-use graphical user interface (GUI).

4.2 Methods

The deepflash2 code library is implemented in Python 3, using numpy, scipy,

and opencv for the base operations. The ground truth estimation function-

alities are based on the simpleITK (Lowekamp et al. 2013). The DL related

part is built upon the rich ecosystem of PyTorch (Paszke et al. 2019) libraries,

comprising fastai (Howard and Gugger 2020) for the training procedure, seg-
mentation models pytorch (Yakubovskiy 2020) for segmentation architectures,

timm (Wightman 2019) for pre-trained encoders, and albumentations (Buslaev

et al. 2020) for data augmentations. Instance segmentation capabilities are

complemented using the cellpose library (Stringer et al. 2021). The GUI addi-
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tionally leverages the Jupyter Notebook environment and ipywidgets (Kluyver

et al. 2016).

4.2.1 Ground Truth Estimation

To train reproducible and unbiased models deepflash2 relies on GT estimation

from the annotations of multiple experts. deeepflash2 o�ers GT estimation via

simultaneous truth and performance level estimation (STAPLE) (Warfield, Zou,

and Wells 2004) (default in our analyses) or majority voting. This GT estimation

is the basis for achieving predictions as close as possible to the unobservable

GT. In contrast, recent work on the segmentation of ambiguous data focuses

on explicitly modeling the disagreement between the experts (Kohl et al. 2018;

Ji et al. 2021), which is not the main objective of our study. Note that, due to

the ambiguities in the data, GT estimation can yield biologically implausible

results (e.g., by merging the areas of two cells). We corrected such artifacts in

our test sets.

4.2.2 Training

Network architecture. Powered by the segmentation models pytorch pack-

age (Yakubovskiy 2020), deepflash2 allows the user to select from various archi-

tectures, such as U-Net (Ronneberger, Fischer, and Brox 2015), U-Net++ (Zhou

et al. 2018), or DeepLabV3+ (Chen et al. 2018b). It also supports a wide range

of encoders, e.g., ResNet (He et al. 2016), E�cientNet (Tan and Le 2019), or

ResNeSt (Zhang et al. 2020). During the development of deepflash2 we evalu-

ated the performance of di�erent architecture and encoder combinations. We

then chose a U-Net architecture with a ResNet-34 encoder as a baseline for all

experiments of this study. There was no combination that outperformed this

baseline on all datasets in a stable training regime. However, we found that

switching to more current encoders such as ResNeSt can improve the results

on some datasets. If available, the encoders can be initialized with pre-trained

weights to allow better feature extraction and fast training convergence. The

remaining weights are initialized from a truncated normal distribution (He et

al. 2015). This approach combines the desirable properties of pretraining and
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random initialization that facilitate diversity in model ensembles. We used

imagenet (Deng et al. 2009) pre-trained weights in all our experiments.

Training procedure. Each model is trained using the fine-tune policy of the

fastai library (Howard and Gugger 2020). This entails freezing of the encoder

weights, one-cycle training (Smith 2018) of one epoch, unfreezing the weights,

and again one-cycle-training. The epochs of the second training cycle depend

on the number of training images and are computed such that a fixed number

of training iterations is reached. During each epoch, we sample equally sized

patches from each image in the training data. To address the issue of class

imbalances, we use a weighted random sampling approach that ensures that

the center points of the patches are sampled equally from each class. This

kind of sampling also contributes to the data augmentation pipeline, along

with other random augmentations such as rotating, flipping, and gamma cor-

rection. Users can adjust these augmentations or add more augmentations

(e.g., contrast limited adaptive histogram equalization or grid distortions). We

use the mean of the cross-entropy and Dice loss (Drozdzal et al. 2016) as

learning objective. deepflash2 also provides options for common segmenta-

tion loss functions such as Focal (Lin et al. 2017b), Tversky (Salehi, Erdogmus,

and Gholipour 2017), or Lovasz (Berman, Triki, and Blaschko 2018). We trained

each model with 100 iterations in the first (frozen encoder weights) cycle and

2500 iterations in the second cycle using a mini-batch size of four (patch size

512ˆ512), the Adam optimizer (Kingma and Ba 2015) with decoupled weight de-

cay (0.001) (Loshchilov and Hutter 2019), and a base learning rate of 0.001. The

training and validation data for the di�erent models are shu�ed by means of

a k-fold cross-validation (with k “ 5 in our experiments). Users can customize

all training settings, for example, by opting for a di�erent optimizer or setting

a dataset-specific learning rate using the learning rate finder.

4.2.3 Prediction

Semantic segmentation. For the semantic segmentation of a new image with

features X P Rdˆc deepflash2 predicts a semantic segmentation map y P

t1, . . . , Kud, with K being the number of classes, d the dimensions of the input

and c the input channels. Without loss of generality class 1 is defined as back-
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ground. We use the trained ensemble of M deep neural networks to model

the probabilistic predictive distribution pθ py | Xq, where θ “ pθ1, . . . , θMq are

the parameters of the ensemble. Here, we leverage a sliding window ap-

proach with overlapping borders and Gaussian importance weighting (Isensee

et al. 2021). We improve the prediction accuracy and robustness using T deter-

ministic test-time augmentations (rotating and flipping the input image). Each

augmentation t P t1, ..., T u applied to an input image creates an augmented

feature matrix Xt. To combine all predictions we follow Lakshminarayanan,

Pritzel, and Blundell (2017) and treat the ensemble as a uniformly-weighted

mixture model to derive

ppy | Xq “
1

T

T
ÿ

t“1

1

M

M
ÿ

m“1

pθm py | Xt, θmq (4.1)

with pθm py | Xt, θmq “ Softmax pfθmpXtqq and fθm representing the neural net-

work parametrized with θm. We use M “ 5 models and T “ 4 augmentations

in all our experiments. Finally, we obtain the predicted segmentation map

ŷ “ arg max
kPt1,...,Kud

ppy “ k | Xq. (4.2)

Uncertainty quantification. The uncertainty is typically categorized into

aleatoric (statistical or per-measurement) uncertainty and epistemic (system-

atic or model) uncertainty (Der Kiureghian and Ditlevsen 2009). To approxi-

mate the uncertainty maps of the predicted segmentations we follow the ap-

proach of Kwon et al. (2020). Here, we replace the Monte-Carlo dropout ap-

proach of Gal and Ghahramani (2016) with deep ensembles, which have proven

to produce well-calibrated uncertainty estimates and a more robust out-of-

distribution detection (Lakshminarayanan, Pritzel, and Blundell 2017). In com-

bination with test-time augmentations (inspired by Wang et al. 2019) we ap-

proximate the predictive (hybrid) uncertainty the for each class k P t1, . . . , Ku

as
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Varppy“k|Xq «
1

T

T
ÿ

t“1

1

M

M
ÿ

m“1

“

pθm py “ k | Xt, θmq ´ pθm py “ k | Xt, θmq
2
‰

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

epistemic uncertainty

`
1

T

T
ÿ

t“1

1

M

M
ÿ

m“1

rpθm py “ k | Xt, θmq ´ p py “ k | Xqs2

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

aleatoric uncertainty

(4.3)

where p py “ k | Xq denotes probabilities of a single class k. To allow an in-

tuitive visualization and e�cient calculation in multi-class settings, we aggre-

gate the results of the single classes to retrieve the final predictive uncertainty

map:

Varppy|X,θq “
1

K

K
ÿ

k“1

Varppy“k|X,θq (4.4)

Note that, due to symmetries, the results may only di�er from the general

formulation in Kwon et al. (2020) for K ą 2.

The aleatoric uncertainty is low for probabilities close to zero or one, and

high for probabilities around 0.5. This results, for instance, in high aleatoric
uncertainties for the border regions of the segmented cell nuclei or somata.

In contrast, epistemic (model) uncertainty foremost captures the uncertainty

of planar areas that are entirely ambiguous. In these areas, the models’ pre-

dictions may di�er considerably as a clear distinction between the foreground

and background classes is not feasible.

For the heuristic sorting and out-of-distribution detection, we define an

aggregated uncertainty metric on image level. Let ŷi be the predicted segmen-

tation of pixel i, xi the feature vector of pixel i and N the total number of

pixels defined by d. We define the scalar valued foreground uncertainty score

for all predicted Nf “

!

i P t1, ..., Nu | ŷi ą 1
)

as

Uppy|X,θq :“
1

|Nf |

ÿ

iPNf

Varppyi|xi,θq . (4.5)

Instance segmentation. If the segmented image contains touching objects

(e.g., cells that are in close proximity), deepflash2 o�ers an option for reliable
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instance segmentation. For this, we use the combined predictions of each

class p py “ k | Xq to predict the flow representations using the cellpose library

(Stringer et al. 2021). We then leverage the post-processing pipeline of cellpose
to derive instance segmentations by combining the flow representations with

the predicted segmentation maps ŷ. This procedure scales to an arbitrary num-

ber of classes and is, in contrast to the original cellpose implementation, not

limited to one (or two) of input channels.

4.2.4 Evaluation

Evaluation metrics. For semantic segmentation, we calculate the similarity

of two segmentation masks ya and yb using the dice score. For binary masks,

this metric is defined as

DS :“
2TP

2TP ` FP ` FN
, (4.6)

where the true positives (TP ) are the sum of all matching positive (pixels) ele-

ments of ya and yb, and the false positives (FP ) and false negatives (FN ) the

sum of positive elements that only appear in ya or yb, respectively. In multi-

class settings we use macro averaging, i.e., we calculate the metrics for each

class and then find their unweighted mean. The dice score is commonly used

for semantic segmentation tasks but is unaware of di�erent instances (sets of

pixels belonging to a class and instance).

For instance segmentation, let yIa and yIb be two instance segmentation

masks that contain a finite number of instances Ia and Ib, respectively. An

instance Ia is considered a match (true positive – TPη) if an instance Ib exists

with an Intersection of Union (also known as Jaccard index) IoUpIa, Ibq “
IaXIb
IaYIb

exceeding a threshold η P r0, 1s. Unmatched instances Ia are considered as

false positives (FPη), unmatched instances Ib as false negatives (FNη). We

define the Average Precision at a fixed threshold η as APη :“ TPη
TPη`FNη`FPη

. To

become independent of fixed values for η it is common to average the results

over di�erent η. The resulting metric is known as mean Average Precision and

defined as

mAP :“
1

|H|

ÿ

ηPH

APη. (4.7)
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We use a set of 10 thresholds H “ tη P r0.50, . . . , 0.95s | η ” 0 mod 0.05u for all

evaluations. This corresponds to the metric used in the COCO object detection

challenge (Lin et al. 2014a). Additionally, we exclude all instances I that are

below a biologically viable size from the analysis. The minimum size is derived

from the smallest area annotated by a human expert: 61 pixel (PV in HC), 30

pixel (cFOS in HC), 385 pixel (mScarlet in PAG), and 193 pixel (YFP in CTX).

Evaluation datasets. We evaluate our pipeline on five datasets that repre-

sent common bioimage analysis settings. The datasets exemplify a range of

fluorescently labeled (sub-)cellular targets in mouse brain tissue with varying

degrees of data ambiguity.

The PV in HC dataset published by Segebarth et al. (2020a) describes in-

direct immunofluorescence labeling of Parvalbumin-positive (PV-positive) in-

terneurons in the hippocampus. Morphological features are widely ramified ax-

ons projecting to neighbored neurons for soma-near inhibition of excitatory

neuronal activity (Hu, Gan, and Jonas 2014). The axonal projections densely

wrap around the somata of target cells. This occasionally causes data ambigu-

ities when the somata of the PV-positive neurons need to be separated from

the PV-positive immunofluorescent signal around the soma of neighboured

cells. Thresholding approaches such as Otsu’s method (see Figure 4.4a) typ-

ically fail at this task as it requires to di�erentiate between rather brightly

labeled somata that express PV in the cytosol vs. brightly labeled PV-positive

axon bundles that can appear in the neighborhood.

The publicly available cFOS in HC dataset (Segebarth et al. 2020b) describes

indirect immunofluorescent labeling of the transcription factor cFOS in dif-

ferent subregions of the hippocampus after behavioral testing of the mice

(Segebarth et al. 2020a). The counting or segmentation of cFOS-positive nu-

clei is an often used experimental paradigm in the neurosciences. The stain-

ing is used to investigate information processing in neural circuits (Ruediger

et al. 2011). The low SNR of cFOS labels for most but not all image features

renders its heuristic segmentation a very challenging task. This results in a

very high inter-expert variability after manual segmentation (see (Segebarth

et al. 2020a).We use 280 additional images of this dataset to demonstrate

the out-of-distribution detection capabilities of deepflash2. There are no ex-

pert annotations available for the additional images, however, 24 images com-
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Blood vessels Folded tissue Fluorescent particles

no tissue
folded tissue

Figure 4.1: Partly out-of-distribution images. Image crops and zoom-ins of

three error categories in the extended cFOS in HC dataset.

prise characteristics that do not occur in the training data. Such partly out-of-

distribution images exhibit elements that may distort the analysis, e.g., blood

vessels, folded tissue, and fluorescent particles. Representative samples of

these categories are depicted in Figure 4.1.

The optogenetic mScarlet in PAG dataset shows an indirect immunofluores-

cent post-labeling of the red-fluorescent protein mScarlet, after viral expres-

sion in the peri-aqueductal gray. Here, microscopy images visualize mScarlet,

tagged to the light-sensitive inhibitory opsin OPN3. The recombinant protein

was delivered via stereotactic injection of an adeno-associated viral vector to

the PAG. Recombinant opsins are often used for optogenetics, a key technol-

ogy in the neurosciences (Rost et al. 2017). This allows control of neuronal

activity in selected neuron populations. Due to a plethora of factors (e.g. virus

injection, virus titer at the locus of injection, experiment-specific success), the

resulting (sub-)cellular distribution and intensity of the fluorescent signals re-

sults in highly ambiguous images, such as those depicted in Figure 4.1. This

renders the segmentation of infected neurons in optogenetics challenging and

tedious (Falk et al. 2019).

The YFP in CTX dataset shows direct fluorescence of yellow fluorescent pro-

tein (YFP) in the cortex of so-called thy1-YFP mice. In thy1-YFP mice, a fluores-

124



4 Deep learning in the bioimaging wild

Table 4.1: Comparison of datasets

PV in HC cFOS in HC mScarlet in PAG YFP in CTX GFAP in HC

Annotation target somata nuclei somata somata morphology

Semantic segmentation yes yes yes yes yes

Instance segmentation yes yes yes yes no

Train images 36 36 12 12 12

Test images 8 8 8 8 8

Experts 5 5 4-5 4-5 3

Additional images – 280 – – –

Fluorescence Microsc. confocal confocal light light light

Size (pixel) 1024ˆ1024 1024ˆ1024 2752ˆ2208 2752ˆ2208 580ˆ580

Resolution (px/µm) 1.61 1.61 3.7 3.7 3.7

cent protein is expressed in the cytosol of neuronal subtypes with the help

of promoter elements from the thy1 gene (Feng et al. 2000). This provides

a fluorescent Golgi-like vital stain that can be used to investigate disease-

related changes in neuron numbers or neuron morphology, for instance for

hypothesis-generating research in neurodegenerative diseases (e.g. Alzheimers

disease). Here, computational bioimage analysis is aggravated by the pure in-

tensity of the label that causes strong background signals by light scattering

or out-of-focus light. Both can blur the signal borders in the image plane.

Finally, the GFAP in HC dataset shows indirect immunofluorescence signals

of glial acidic fibrillary protein (GFAP) in the hippocampus. Anti-GFAP label-

ing is one of the most commonly used stainings in the neurosciences and is

also used for histological examination of brain tumor tissue. Here, the exten-

sions of the GFAP-labeled astrocytic skeleton cannot be separated from parts

of neighboring astrocytes, rendering a reliable instance separation and thus

instance segmentation impossible. Albeit the signal is typically bright and very

clear around the center of the cell, the signal borders of the radial fibers be-

come ambiguous due to the 3D-ball-like structure, low SNR at the end of the

fibers, and out-of-focus light interference. Table 4.1 provides a high-level com-

parison of the key dataset characteristics.

Performance benchmarks. We benchmark the predictive performance of

deepflash2 against a select group of well-established algorithms and tools.

These comprise the U-Net of (Falk et al. 2019) and nnunet (Isensee et al. 2021)

for both semantic and instance segmentation as well as two out-of-the-box
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baselines. We utilize Otsu’s method (Otsu 1979) as a simple baseline for se-

mantic segmentation and cellpose (Stringer et al. 2021) as a generic base-

line for (cell) instance segmentation. Additionally, we benchmark deepflash2
against fine-tuned cellpose models and ensembles, showing superior perfor-

mance of our method (Table 4.1). cellpose has previously proven to outperform

other well-known methods for instance segmentation, e.g., Mask-RCNN (He et

al. 2017a) or StarDist (Schmidt et al. 2018).

For each dataset, we apply the tools as described by their developers to

render the comparison as fair as possible. We train the U-Net of (Falk et

al. 2019) on a 90/10 train-validation-split for 10,000 iterations (learning rate of

0.00001 and the Adam optimizer (Kingma and Ba 2015) using the authors’ Ten-
sorFlow 1.x implementation. This includes all relevant features such as over-

lapping tile strategy and border-aware loss function. We derive the parameter

values for the loss function (border weight factor (λ), border weight sigma (σ),

and foreground-background-ratio (ν) by means of Bayesian hyperparameter

tuning: PV in HC: λ=25, σ=10, ν=0.66; cFOS in HC: λ=44, σ=2, ν=0.23; mScarlet

in PAG: λ=15, σ=10, ν=0.66; YFP in CTX: λ=15, σ=5, ν=0.85; GFAP in HC: λ=1, σ=1,

ν=0.85.

We train the self-configuring nnunet (version 1.6.6) model ensemble

(Isensee et al. 2021) following the authors’ instructions provided on GitHub.

cellpose provides three pretrained model ensembles (nuclei, cyto, and

cyto2) for out-of-the-box usage (Stringer et al. 2021). We select the ensem-

ble with the highest score on the training data: cyto for PV in HC and YFP in

CTX; cyto2 for cFOS in HC and mScarlet in PAG. During inference we fix the cell

diameter (in pixel) for each dataset: PV in HC: 24; cFOS in HC: 15; mScarlet in

PAG: 55; YFP in CTX: 50. In addition to the out-of-the-box cellpose* approach,

(Stringer et al. 2021) we include fine-tuned cellpose models and ensembles

in our comparison. We train the cellpose models via five-fold cross-validation

with the default training settings from the command line interface (500 epochs,

0.2 learning rate, batch size of 8). The resulting cellpose ensemble consists

of five models similar to the deepflash2 model ensembles. As the cellpose
command-line interface does not implement training via cross-validation, we

also include models trained on a single train-validation split into our analysis.

These models are simply selected from the trained model ensembles. We use
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the cellpose GitHub version with commit hash 316927e (August 26, 2021) for our

experiments.

We repeat our experiments with di�erent seeds to ensure that our results

are robust and reproducible. The experiments for training duration compari-

son are executed on the free platform Google Colaboratory (Nvidia Tesla K80

GPU, 2 vCPUs; times were extrapolated when the 12-hour limit was reached)

and the paid Google Cloud Platform (Nvidia A100 GPU, 12 vCPUs). The remain-

ing experiments are executed locally (Nvidia GeForce RTX 3090) or in the cloud

(Google Cloud Platform on Nvidia Tesla K40 GPUs).

4.2.5 Quality Assurance

Once the deepflash2 model ensemble is deployed for predictions on new data,

the quality assurance process helps the user prioritize the review of more am-

biguous or out-of-distribution images. The predictions on such images are typ-

ically error-prone and exhibit a higher uncertainty score U . Thus, deepflash2
automatically sorts the predictions by decreasing uncertainty score. Depend-

ing on the ambiguities in the data and the expected prediction quality (inferred

from the hold-out test set), a conservative protocol could require scientists to

verify all images with an uncertainty score exceeding a threshold Umin. Given

the the hold-out test set Q “ tpX1,y1q, . . . , pXL,yLqu where L is the number of

samples we define

Umin :“ min
 

Uppy|X,θq | py,Xq P Q,Spy, ŷq ă τ
(

. (4.8)

with Spy, ŷq being an arbitrary evaluation metric (e.g.,DS ormAP ) and τ P r0, 1s

a threshold that satisfies the prediction quality requirements. From a practical

perspective, this means selecting all predictions from the test set with a score

below the pre-defined threshold (e.g., DS “ 0.8) and taking their minimum

uncertainty score value U as Umin. The verification process of a single image is

simplified by the uncertainty maps that allow the user to quickly find di�cult

or ambiguous areas within the image.
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4.3 Results

Training and evaluation build upon a representative sample of the bioimage

dataset under analysis, annotated by multiple experts (the annotations can

be performed with any tool). Depending on the biological analysis setting,

we distinguish between semantic and instance segmentation. Semantic seg-

mentation means subdividing the image into meaningful categories (Falk et

PV in HC cFOS in HC mScarlet in PAG YFP in CTX GFAP in HC
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Figure 4.1: Ambiguous bioimaging datasets. Representative image sections

from the test sets of five immunofluorescence imaging datasets (first row) with

corresponding expert annotations and ground truth (GT) estimation (second

row). The predicted segmentations and the similarity to the estimated GT are

depicted in the third row, the corresponding uncertainty maps, and uncertainty

scores U for quality assurance in the fourth row. Areas with a low expert agree-

ment (blue) or di�erences between the predicted segmentation and the esti-

mated GT typically exhibit high uncertainties. The maximum pixel uncertainty

is limited to 0.25.
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mScarlet in PAG

GFAP in HC

cFOS in HC

PV in HC

free (Colab)

Platform

12 hours

1 hour
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Dataset colors 

YFP in CTX

paid (GCP)

Figure 4.2: Training duration comparison. Training durations on di�erent plat-

forms: Google Colaboratory (Colab, free Nvidia Tesla K80 GPU) and Google

Cloud Platform (GPC, paid Nvidia A100 GPU).

al. 2019). Instance segmentation further di�erentiates between multiple in-

stances of the same category by assigning the segmented structures to unique

entities (e.g., cell 1, cell 2, ...). To derive objective training annotations from

multi-annotator data deepflash2 estimates the ground truth (Section 4.2.1) via

STAPLE. deepflash2 subsequently computes the similarity scores (Section 4.2.4)

between expert segmentations and the estimated GT. These measures of inter-

expert variation serve as a proxy for data ambiguity as illustrated in Figure

4.1 (first and second row). Well-defined fluorescent labels are typically unan-

imously annotated (green), whereas more ambiguous signals are marked by

fewer experts (blue).

DL model training in deepflash2 capitalizes on model ensembles to ensure

high accuracy and reproducibility in the light of data ambiguity (Segebarth et

al. 2020a). Furthermore, it facilitates reliable uncertainty quantification (Lak-

shminarayanan, Pritzel, and Blundell 2017). To ensure training e�ciency deep-
flash2 leverages pre-trained models and advanced training strategies (Section

4.2.2). This approach yields very competitive training durations (Figure 4.2).

The model ensemble then predicts semantic segmentation maps which are

evaluated on a hold-out test set (Figure 4.1, third row). If required, deepflash2
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maximum disagreement

𝑟 = −0.80	(𝑝 < 0.001)

mScarlet in PAG

GFAP in HC
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Dataset colors 

YFP in CTX
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Figure 4.3: Uncertainty evaluation. (a) Relationship between pixel-wise uncer-

tainty and expert agreement (at least one expert with di�ering annotation; up-

per plot) and average prediction error rate (relative frequency of deviations be-

tween di�erent expert segmentations and the predicted segmentation; lower

plot) on the test set. (b) Correlation between dice scores and uncertainties on

the test set (right). We quantify the linear correlation using Pearson’s r and a

two-tailed p-value for testing non-correlation.

combines these maps with the flow representations of the cellpose library to

derive reliable instance segmentations (i.e., separation of touching objects).

Each segmentation is accompanied by a predictive uncertainty map and the

average foreground uncertainty score U (Figure 4.1, fourth row; Section 4.2.3).

Note that the model ensembles are solely trained on the estimated GT, that is,

there is no longer a concept of ambiguous annotations. However, Figure 4.3a

confirms that the uncertainty maps reliably capture expert disagreement: Low

pixel uncertainty is indicative of high expert agreement, whereas high pixel un-

certainty arises in settings where experts submitted ambiguous annotations.

To assess the model validity for bioimage analysis, deepflash2 implements

the following two-step evaluation process:

1. Calculate the similarity scores between the predicted segmentations and

the estimated GT on the test set.

2. Relate the performance scores to data ambiguity. The experts’ perfor-

mance scores are used to establish the desired performance range.
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4.3.1 Segmentation Performance

Across all evaluation datasets, we find that deepflash2 achieves best-in-class

performance vis-a-vis state-of-the-art benchmark tools for both semantic (Fig-

ure 4.4a) and instance segmentation (Figure 4.4b) tasks. To ensure that our

results are robust and reproducible we repeat our experiments with di�erent

seeds. This changes the train-validation splits and weight initialization for

each repetition. The results of three experiment repetitions for all methods

are depicted in Table 4.1.

The results show that the ensemble-based methods nnunet and deep-
flash2 yield very stable results (low std. deviations) across all datasets, while

the U-Net of (Falk et al. 2019), based on a single model, is subject to higher per-

formance variability. We also report the results of the detection task, which is

commonly measured by the APIoU“0.50. In contrast to the mAP that provides

mScarlet in PAG, GFAP in HCcFOS in HC, PV in HC, 

p = 0.007 

p < 0.001

p < 0.001
p < 0.001

p < 0.001

p < 0.001

Dataset colors: YFP in CTX, 

a b

Figure 4.4: Segmentation performance comparison. Predictive performance

on the test sets for (a) semantic segmentation (N=40) and (b) instance segmen-

tation (N=32), measured by similarity to the estimated GT. The grayscale filling

depicts the comparison against the expert annotation scores. The p-values

result from a two-sided Wilcoxon signed-rank test. *indicates out-of-the-box

methods (not fine-tuned to the respective dataset)
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Table 4.1: Detailed performance comparison. Average predictive performance

measured by similarity to the estimated ground truth (STAPLE) on the hold-

out test sets (N=8 images for each dataset) over three repetitions. *indicates

out-of-the-box methods (not fine-tuned to the respective dataset)

PV in HC cFOS in HC mScarlet in PAG YFP in CTX GFAP in HC

Method Semantic Segmentation - Mean DS (std. deviation)

Otsu* 0.101 (–) 0.033 (–) 0.156 (–) 0.743 (–) 0.600 (–)

U-Net (2019) 0.863 (0.010) 0.769 (0.010) 0.756 (0.008) 0.850 (0.037) 0.762 (0.015)

nnunet 0.891 (0.002) 0.797 (0.000) 0.821 (0.002) 0.883 (0.000) 0.799 (0.000)

deepflash2 (ours) 0.914 (0.003) 0.813 (0.002) 0.824 (0.002) 0.886 (0.002) 0.811 (0.001)

Instance Segmentation - Mean mAP (std. deviation)

cellpose* 0.541 (–) 0.268 (–) 0.148 (–) 0.304 (–) – (–)

cellpose (single) 0.610 (0.012) 0.329 (0.010) 0.415 (0.004) 0.499 (0.014) – (–)

cellpose (ensemble) 0.628 (0.028) 0.350 (0.004) 0.432 (0.002) 0.511 (0.010) – (–)

U-Net (2019) 0.548 (0.024) 0.305 (0.016) 0.337 (0.003) 0.455 (0.059) – (–)

nnunet 0.643 (0.004) 0.368 (0.002) 0.443 (0.002) 0.527 (0.003) – (–)

deepflash2 (ours) 0.696 (0.007) 0.404 (0.004) 0.460 (0.003) 0.538 (0.001) – (–)

Detection - APIoU“0.50 (std. deviation)

cellpose* 0.701 (–) 0.404 (–) 0.237 (–) 0.536 (–) – (–)

cellpose (single) 0.844 (0.025) 0.662 (0.008) 0.666 (0.011) 0.805 (0.027) – (–)

cellpose (ensemble) 0.851 (0.031) 0.688 (0.015) 0.686 (0.009) 0.823 (0.018) – (–)

U-Net (2019) 0.844 (0.016) 0.566 (0.017) 0.573 (0.004) 0.755 (0.044) – (–)

nnunet 0.825 (0.003) 0.647 (0.011) 0.670 (0.003) 0.807 (0.005) – (–)

deepflash2 (ours) 0.857 (0.008) 0.695 (0.003) 0.713 (0.008) 0.824 (0.004) – (–)

a measure for the quality of the segmentation, the APIoU“0.50 metric measures

the “counting” performance of a method. That is, for instance, whether the

same cell is annotated or not. The cellpose ensemble performs on par with the

deepflash2 model on the detection task on the YFP in CTX dataset. Fine-tuned

cellpose models yield similar results to deepflash2 at low IoU-thresholds η but

constantly perform worse for higher thresholds (see Figure 4.5).

To disentangle the di�culty of the prediction task (driven by data ambi-

guity) from the predictive performance we scrutinize the “gross” performance

by comparing it against the underlying expert annotation scores (Figure 4.4).

We find that deepflash2 reliably achieves human expert performance and in

some cases even outperforms the best available expert annotation. The U val-

ues of the test set serve as a reference for the quality assurance procedure

for the application step (Section 4.2.5). We find that the uncertainty score U

is a strong predictor for the obtained predictive performance as measured by

the dice score (Figure 4.3b). Consequently, U can be used as a proxy for the

expected performance on unlabeled data.
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Figure 4.5: deepflash2 vs. cellpose The lines depict the instance segmenta-

tion performance using the mean of the Average Precision (N=8 hold-out test

images for each dataset) at a certain IoU-threshold η over 3 repetitions. The

fine-tuned cellpose models (single and ensemble) yield similar results to deep-
flash2 at low η but constantly perform worse at higher η.

4.3.2 Quality Assurance

During application, scientists typically aim to analyze a large number of bioim-

ages without ground truth information. To establish trust in its predictions,

deepflash2 enables quality assurance in the following manner: First, the pre-

dictions are sorted by decreasing uncertainty score. In situations with high

uncertainty scores, scientists may want to check predictions through manual

inspection using the provided uncertainty maps. Examples of the di�erent un-

certainty types are depicted in Figure 4.6. Also, deepflash2 facilitates a single

click export-import to ImageJ ROIs (regions of interest), with ROIs sorted by

uncertainty. This quality assurance process helps the user prioritize the re-

view of more ambiguous instances. Moreover, it facilitates the detection of

out-of-distribution images, i.e., images that di�er from the training data and

are thus prone to erroneous predictions. We showcase the out-of-distribution
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Figure 4.6: Visualization of uncertainty types. Representative image sections

from the test sets of five immunofluorescence imaging datasets (first row) and

corresponding ensemble probability map ppy “ k | Xq for the foreground

class k (second row). The aleatoric (third row) and epistemic (fourth row) un-

certainty maps are combined into the predictive uncertainty map V arppy|X,θq
(fifth row). Aleatoric uncertainties foremost emerge in the border regions of

the segmented cell nuclei or somata. High epistemic uncertainties typically

occur in planar areas where a clear distinction between the foreground and

background classes is not feasible. deepflash2 computes the predictive uncer-

tainty by default. The maximum pixel uncertainty is limited to 0.25.
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detection on a large bioimage dataset comprising 256 in-distribution images

(same properties as training images, Figure 4.7b), 24 partly out-of-distribution

images (same properties with previously unseen structures such as blood ves-

sels, Figure 4.7c), and 32 fully out-of-distribution images (di�erent immunoflu-

orescent labels, Figure 4.7d). Using the uncertainty score for sorting, all fully

mScarlet in PAG Uncertainty map

Fully out-of-distribution example

cFOS in HC Uncertainty map
In-distribution example

low signal-to-
noise examples

cFOS in HC Uncertainty map
Partly out-of-distribution example

blood vessels

a b

c d

Figure 4.7: Out-of-distribution detection. (a) Out-of-distribution (ood) detec-

tion performance using heuristic ranking via uncertainty score. Starting the

manual verification of the predictions at the lowest rank all images with de-

viant fluorescence labels (fully ood, N=32 images) are detected first. The partly

ood images (with previously unseen structures, N=24) are mostly located in the

lower ranks and the in-distribution images (similar to training data of cFOS in

HC, N=264) in the upper ranks. (b, c, d) Representative image crops of the three

categories used in a.

135



4 Deep learning in the bioimaging wild

out-of-distribution images are ranked within the first 32 ranks, and most partly

out-of-distribution images are ranked within the first 150 ranks (Figure 4.7a). A

conservative protocol could require scientists to verify all images with an un-

certainty score exceeding the reference uncertainty scores (Section 4.2.5). Out-

of-distribution images may then be excluded from the analysis or annotated

for re-training in an active learning manner (Gal, Islam, and Ghahramani 2017).

p < 0.001

Figure 4.8: Uncertainty scores and out-of-distribution error categories. Un-

certainty score comparison for the cFOS in HC out-of-distribution dataset. The

p-value results from a two-sided non-parametric Mann–Whitney U test.

A more detailed analysis in Figure 4.8 reveals that the uncertainty scores U

of the partly out-of-distribution images are significantly higher than the uncer-

tainty scores of the in-distribution images (No error). However, the error cate-

gories are not distributed evenly. On the one hand, blood vessels and folded

tissue images cover a high and relatively wide range of uncertainty scores. On

the other hand, fluorescent particle images exhibit uncertainty scores close to

the median of the in-distribution images. A possible explanation is the small

proportion of unseen structures (a single strongly fluorescent particle unre-

lated to the actual fluorescent label) in these images. Using the proposed

heuristic search strategy (Figure 4.7) such images would be detected at a later

stage. However, the inclusion of such images into the bioimage analysis would

possibly not impair the results.
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4.4 Discussion

Our deep learning solution facilitates the objective and reliable segmenta-

tion of ambiguous bioimages through multi-expert annotations and integrated

quality assurance. The GUI of deepflash2 runs as a web application inside a

Jupyter Notebook, the de-facto standard of computational notebooks in the

scientific community (Perkel 2018). deepflash2 can be installed locally or in

cloud environments such as Google Colaboratory (Colab), enabling quick setup

in less than a minute and providing free access to graphics processing units

(GPUs) for fast training. In contrast to other tools that are only optimized for

Colab (e.g., ZeroCostDL4Mic Chamier et al. 2021), the deepflash2 GUI is based

on interactive HTML widgets (Kluyver et al. 2016), providing a clean interface

and limiting cognitive overload by leveraging tool-tips and links to the doc-

umentation29. deepflash2 allows users to execute all analysis steps directly

in the GUI or use the export functionality to Fiji or spreadsheet software for

a more detailed analysis. The GUI is built on top of the deepflash2 Python
API and leverages established open-source libraries in the PyTorch (Paszke et

al. 2019) ecosystem (Section 4.2). While our evaluation data focuses on am-

biguous fluorescent images, deepflash2 can be used for 2D images with an

arbitrary number of input channels. For example, the deepflash2 Python API
was successfully used on periodic acid–Schi� stained 3-channel images. The

implementation won a Gold Medal and the Innovation Award in a Kaggle data

science competition hosted by the HuBMAP consortium (Section 2.5).

In summary, deepflash2 o�ers an end-to-end integration of DL pipelines

for bioimage analysis of ambiguous data. An easy-to-use GUI allows re-

searchers without programming experience to rapidly train performant and

robust DL model ensembles and monitor their predictions on new data. We

are confident that deepflash2 can help establish more objectivity and repro-

ducibility in natural sciences while lowering the overall workload for human

annotators.

29https://matjesg.github.io/deepflash2/
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Novel DL architectures, better data availability, and significant increases in

computing power have enabled AI researchers to solve problems that were

considered unassailable for many years. And yet, the 2020’s McKinsey Global

Survey on AI (Balakrishnan et al. 2020) revealed that still only 16 percent of

the responding companies had adopted DL models in at least one business

function, and most projects never got beyond the piloting stage (see Chapter

1). In light of these observations, I defined the guiding research objective of

this thesis as solving business and societal problems by developing rigorous
deep learning models (Section 1.1). Consequently, this thesis examines the

challenges encountered throughout the life cycle of DL projects and proposes

solutions to develop objective and reliable DL models.

5.1 Prototype, Productionize, Measure

The three main concepts of the ML life cycle – Prototype, Productionize, Mea-

sure – form the backbone of this thesis (Figure 1.2). Following these concepts,

the main contributions and key findings are summarized below.

5.1.1 Deep Learning Prototypes

Chapter 2 is primarily concerned with prototyping DL solutions for problems

from di�erent domains. The prototypes are all based on DL architectures with

convolutional layers and mainly address di�erent kinds of image recognition

tasks. Therefore, I conceptualize guidelines for applied image recognition in

Section 2.1. These guidelines span task definition, deep neural network con-

figuration, and training procedures. I showcase the guidelines by means of a

biomedical research project that aims to automate the segmentation of fluo-
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rescent neurons in microscopy images. The case study demonstrates the po-

tential of DL in biomedical applications, which I further explore in Chapters

3 and 4. Section 2.2 illustrates the bottom-up development of a DL backend

for an augmented intelligence system in the manufacturing sector. A wearable

device equipped with highly sensitive sensors is paired with a convolutional

neural network to monitor connector system assembly processes in real-time.

Turning to the fashion domain in Section 2.3, I present an artificial curation

system for individual outfit recommendations that leverages DL techniques

and unstructured data from social media and fashion blogs. Here, I lay out

the artifact design and provide a comprehensive evaluation strategy to assess

the system’s utility. I also demonstrate the capabilities of a DL prototype for

fashion image segmentation. The study’s findings may inspire the design of DL

solutions for other use cases, such as fashion style assessment, recommenda-

tions in online shops, or curated design of new collections. In Section 2.4 I map

(primarily DL-enabled) AI solutions against typical challenges in creative pro-

cesses and highlight the unparalleled capabilities of GANs in content creation.

On the one hand, AI promotes diverging thinking by creating various design op-

tions. On the other hand, AI approaches o�er tools for informative summariza-

tion and visualization, which in turn can inform decision-making processes. To

further emphasize the potential of AI-augmented creativity processes, I show-

case several possible applications facilitating and improving the traditional

fashion design process. Finally, I present my award-winning solution for the

segmentation of glomeruli in human kidney tissue images (Section 2.5). The

DL prototype was developed for the Kaggle data science competition HuBMAP
- Hacking the Kidney. The main contributions comprise a model agnostic sam-

pling strategy that enables fast and reliable model training and energy-based

uncertainty scores that facilitate a semi-automated annotation.

To date, only one of the presented prototypes from Chapter 2 has been pro-

ductionized. This situation somehow illustrates the fact that many promising

DL projects never get deployed, in spite of their potential.

5.1.2 From Prototype to Production

Chapter 3 continues the development path of the biomedical research project

of Section 2.1 beyond the prototyping phase. Here, I investigate how di�erent
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data annotation and training strategies a�ect the objectivity, reliability, and

validity of DL-based bioimage analysis. Training DL models on subjective an-

notations may be unstable or yield biased models. Consequently, these mod-

els may be unable to detect biological e�ects reliably. An analysis pipeline

integrating data annotation, ground truth estimation, and model training can

mitigate this risk. To evaluate this integrated process, I compare di�erent DL-

based analysis approaches. With data from two model organisms and five labo-

ratories, I show that ground truth estimation from multiple human annotators

helps to establish objectivity in fluorescent feature annotations. Furthermore,

ensembles of multiple models trained on the estimated ground truth establish

reliability and validity.

In terms of the ML life cycle, Chapter 3 covers both the development of

various prototypes and their deployment. The predictions of these models

are used for further statistical analysis of biological e�ects.

5.1.3 Considering the entire Machine Learning Life Cycle

Based on the findings described in Chapters 2 and 3, I present a DL solution in

Chapter 4 that addresses typical challenges encountered throughout the en-

tire ML life cycle. The DL pipeline, named deepflash2, facilitates the objective

and reliable segmentation of ambiguous bioimages through multi-expert an-

notations. Notably, it emphasizes the life cycle phases Monitor Predictions and

Gather and Analyze Insights as it provides capabilities for integrated quality

assurance and out-of-distribution detection during inference. deepflash2 is

embedded in an easy-to-use graphical user interface and o�ers best-in-class

predictive performance for semantic and instance segmentation under eco-

nomical usage of computational resources.

5.2 Future Research Directions

In the rapidly expanding field of DL, the potential for future research remains

extensive. As a major part of this thesis is concerned with biomedical image

segmentation, I first outline the most promising research directions in this

field and continue with an outlook on GANs in the creative process.

140



5 Conclusion and Outlook

5.2.1 Deep Learning based Bioimage Analysis

Integration of transformers. The transformer architecture (Vaswani et

al. 2017) is presumably the most impactful DL architecture of the past years.

Based on transformers, BERT (Devlin et al. 2019) and its successors continue

to set new standards in natural language processing (NLP) tasks. Transform-

ers are also increasingly being applied in fields such as speech, vision, and

reinforcement learning. For biomedical image segmentation, traditional DL ar-

chitectures (e.g., variants of the U-Net) have long prevailed and still deliver

excellent results. However, novel architectures, such as the SegFormer (Xie

et al. 2021), are challenging their position. To be prepared for future develop-

ments, I integrated the transformers library of Hugging Face30 into a develop-

ment version of deepflash231. This enables easy integration of the pre-trained

SegFormer (or other models from the Hugging Face Model Hub) into the bioim-

age analysis workflow. However, preliminary experiments with the SegFormer

have not yielded competitive results on the data from Chapter 4.

Self-supervised learning. As outlined in Chapter 3, DL models should be

trained on data annotations that are as objective as possible. The acquisi-

tion of such annotations is, however, tedious and eventually expensive. The

self-supervised learning (SSL) paradigm bypasses the data annotation require-

ments by predicting parts of the input from other parts of the input. This con-

cept has profoundly impacted NLP as it allows pre-training on large corpora of

unlabeled data (e.g., training of BERT). New SSL methods are also closing the

performance gap to supervised models in the computer vision domain (Goyal

et al. 2021). Based on the vision transformer (Dosovitskiy et al. 2021), BERT Pre-

Training of Image Transformers (BEIT, Bao, Dong, and Wei 2021) shows promis-

ing results for training transformers using the SSL paradigm.

Active learning. The concept of active learning is another way of addressing

the hurdles of expensive data annotation. Once an initial ML model is trained,

active learning focuses on labeling examples with high uncertainty to improve

the predictive performance. There are a variety of active learning approaches,

30https://huggingface.co/docs/transformers/index
31https://github.com/matjesg/deepflash2/tree/transformers
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and some specifically address DL-based active learning for image data (Gal,

Islam, and Ghahramani 2017). As mentioned in Chapter 4.3.2, the uncertainty

estimates of deepflash2 can be used in an active learning manner. However,

the exact procedure has yet to be developed and evaluated carefully in fur-

ther studies. As outlined by Karamcheti et al. (2021) in the context of a visual

question answering task, active learning can possibly impair the predictive

performance if out-of-distribution images are not excluded from the analy-

sis and annotated for retraining. Another interesting finding of Karamcheti et

al. (2021) should also be examined in the context of biomedical image segmen-

tation: simply removing di�cult examples from the training set can improve

the overall performance.

5.2.2 Generative Adversarial Networks in the Creative Process

In Section 2.4, I establish a promising field at the confluence of design and

AI and showcase how GANs and other DL technologies can assist fashion de-

signers. However, the presented GAN prototypes generate rather low-quality

images (see Figures 2.4.6 and 2.4.7). In recent years, researchers have been

working on removing the characteristic artifacts and developing better DL ar-

chitectures to achieve photorealistic results. A case in point is Nvidia’s style-

based generator for unconditional image modeling (StyleGAN, Karras, Laine,

and Aila 2019), which has been continuously improved with StyleGAN2 (Karras

et al. 2020) and StyleGAN3 (Karras et al. 2021) to redefine the state-of-the-art

in terms of distribution quality metrics as well as perceived image quality.

Moreover, OpenAI’s CLIP (Radford et al. 2021) opens up opportunities for

a more “targeted” (conditional) image modeling by learning visual concepts

from natural language supervision. VQGAN (Esser, Rombach, and Ommer 2021)

in combination with CLIP creates high-resolution images from text prompts

(see Figure 5.1). Further studies may explore how these technologies can be

leveraged to tap into the best of human and computational creativity.
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Figure 5.1: Image generated by VQGAN and CLIP32 with input text space collec-
tion and fashion show.

5.3 Implications for Practice

To conclude this thesis, I would like to touch upon a few topics that are often

neglected in scientific studies yet play an essential role in the day-to-day work

of ML or DL projects.

The importance of data. The collection of representative and unbiased data

is one of the most critical aspects of a DL project. Moreover, correctly under-

standing the data is essential to creating reliable DL models and often requires

domain knowledge. Many prototypes presented in Chapter 2 did not proceed

beyond the prototyping stage because of data issues. The DL system for the

classification of structure-borne noise signals (Section 2.2), for instance, would

have required data from more complex scenarios using di�erent plugs and ad-

ditional test persons. The prototype for the semantic segmentation of tissue

in whole slide images (Section 2.5) would have required more clinical data, at

least for validation. The style and matching engines of the fashion curation sys-

32https://colab.research.google.com/drive/1ZAus_gn2RhTZWzOWUpPERNC0Q8OhZRTZ. The

video capture of the training iteration results is available at https://vimeo.com/664750002.
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tem (Section 2.3) remained at a conceptual stage as no appropriate data were

available. In contrast, the biomedical project for the segmentation of fluores-

cent neurons in microscopy images (Section 2.1) could continue successfully

(Chapter 3) because data from many di�erent laboratories were available, and

the objectivity issues of data annotations could be resolved. However, most

DL research focuses on algorithmic advances and neglects a systematic inves-

tigation of data-related aspects. The data-centric AI movement33 presents a

potential remedy as it breaks with the algorithm-centered paradigm and fo-

cuses on data instead of model architectures and training procedures.

Deep learning frameworks. When I started my first DL project – the segmen-

tation of fluorescent neurons in microscopy images from Section 2.1 – I chose

a rather new combination of Python libraries, Keras and Tensorflow, as my first

toolset to create and train a U-Net from scratch. The models from Chapter 3

are also based on these frameworks, however, I had already started using Ten-
sorflow 2 during this phase. Hereafter, I switched to PyTorch and fastai. During

the development of deepflash2 (Chapter 4), I stopped building custom architec-

tures and utilized libraries such as timm and segmentation-models.pytorch to

fine-tune models from pretrained weights. Currently, it is also possible to fine-

tune task-specific DL pipelines, e.g., using the transformers library of Hugging

Face or the detectron2 library of Meta Research. These advances are opening

up DL to a much wider audience. It remains exciting to see how DL frameworks

and development paradigms continue to evolve.

33https://landing.ai/data-centric-ai/
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B Kaggle Kernels

Table B.1: Kernels to reproduce the results of Section 2.5 on the competition

dataset.

Step URL

Overview https://www.kaggle.com/matjes/
hubmap-deepflash2-judge-price

File Conversion https://www.kaggle.com/matjes/hubmap-zarr
Sampling Preparation https://www.kaggle.com/matjes/

hubmap-efficient-sampling-ii-deepflash2
Ensemble Training https://www.kaggle.com/matjes/

hubmap-deepflash2-train
Validation https://www.kaggle.com/matjes/

hubmap-deepflash2-validation
Inference https://www.kaggle.com/matjes/

hubmap-deepflash2-scaled-ensemble-sumbission

Table B.2: Kernels to reproduce the results of Section 2.5 on the pancreas

dataset.

Step URL

File Conversion https://www.kaggle.com/matjes/
cptac-pda-to-zarr

Sampling Preparation https://www.kaggle.com/matjes/
cptac-pda-pancreas-efficient-sampling-deepflash2

Ensemble Training https://www.kaggle.com/matjes/
cptac-pda-train-deepflash2

Validation https://www.kaggle.com/matjes/
cptac-pda-deepflash2-validation/output
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