f_f algorithms

Article

Optical Medieval Music Recognition Using
Background Knowledge

Alexander Hartelt *

check for
updates

Citation: Hartelt, A.; Puppe, F.;
Optical Medieval Music Recognition
Using Background Knowledge.
Algorithms 2022, 15, 221. https://
doi.org/10.3390/a15070221

Academic Editor: Frank Werner

Received: 30 May 2022
Accepted: 19 June 2022
Published: 22 June 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Frank Puppe

Department for Artificial Intelligence and Knowledge Systems, University of Wuerzburg,
D-97074 Wuerzburg, Germany; frank.puppe@uni-wuerzburg.de
* Correspondence: alexander.hartelt@uni-wuerzburg.de

Abstract: This paper deals with the effect of exploiting background knowledge for improving an
OMR (Optical Music Recognition) deep learning pipeline for transcribing medieval, monophonic,
handwritten music from the 12th—14th century, whose usage has been neglected in the literature.
Various types of background knowledge about overlapping notes and text, clefs, graphical connec-
tions (neumes) and their implications on the position in staff of the notes were used and evaluated.
Moreover, the effect of different encoder/decoder architectures and of different datasets for training
a mixed model and for document-specific fine-tuning based on an extended OMR pipeline with an
additional post-processing step were evaluated. The use of background models improves all metrics
and in particular the melody accuracy rate (mAR), which is based on the insert, delete and replace
operations necessary to convert the generated melody into the correct melody. When using a mixed
model and evaluating on a different dataset, our best model achieves without fine-tuning and without
post-processing a mAR of 90.4%, which is raised by nearly 30% to 93.2% mAR using background
knowledge. With additional fine-tuning, the contribution of post-processing is even greater: the basic
mAR of 90.5% is raised by more than 50% to 95.8% mAR.

Keywords: Optical Music Recognition; historical document analysis; medieval manuscripts; neume
notation; fully convolutional neural networks; background knowledge

1. Introduction

As most musical compositions in the western tradition have been written rather
than recorded, the preservation and digitization of those musical documents by hand is
time-consuming and often error-prone. Optical Music Recognition (OMR) is one of the
key technologies to accelerate and simplify this task in an automatic way. Typically, an
OMR system takes an image or manuscript of a musical composition and transforms its
content encoded in some digital format such as MEI or MusicXML. Since the process of
automatically recognizing musical notations is rather difficult, the usual OMR approach
divides the problem in several sub-steps: (1) Preprocessing and deskewing, (2) staff line
detection, (3) symbol detection and (4) finally the reconstruction and generation of the
target encoding.

On modern documents, the OMR process already obtains very good results. However,
on historical handwritten documents the performance is much worse and requires expert
knowledge in some cases. This is due to the fact that those documents are much more
heterogeneous, often differ in their quality, and are affected from various degradations such
as bleed-through. Furthermore, the notation of early music documents had been developed
and thus changed several times, requiring different solutions. The main contribution is
formalizing parts of this expert knowledge and incorporating it into a post-processing
pipeline to improve the symbol detection task.

This work focuses on symbol detection and segmentation tasks and deals with
manuscripts written in square notation, an early medieval notation, which was used

Algorithms 2022, 15, 221. https:/ /doi.org/10.3390/a15070221

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070221
https://doi.org/10.3390/a15070221
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9093-5077
https://orcid.org/0000-0002-7106-3223
https://doi.org/10.3390/a15070221
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070221?type=check_update&version=1

Algorithms 2022, 15, 221

20f19

from the 11th—12th century onwards. A staff usually contains four lines and three spaces
and in most cases a clef marker at the start. Sample images of such manuscripts can be seen
in Section 3.

The extraction of the symbols is addressed as a segmentation task. For this, a Fully
Convolutional Network (FCN), which predicts pixel-based locations of music symbols,
is used. Further post-processing steps extract the actual positions and symbol types.
Furthermore, the pitch of the symbols can be derived from the position on the staff of
the symbol relative to the position of the clef on the staff and other pitch alterations. The
fundamental architecture used for this task resembles the U-Net [1] structure. The U-Net
structure is symmetric and consists of two major parts: an encoder part consisting of general
convolutions and a decoder part consisting of transposed convolutions (upsampling). For
the encoder part, several architectures, which are often used for image classification tasks,
are evaluated. The decoder part was expanded so that it fits the architecture of the encoder
part. Furthermore, a post-processing pipeline is introduced that aims to improve the
symbol recognition using background knowledge.

Background knowledge comprises implicit knowledge used by human experts to
decide ambiguous situations in addition to the direct notation. The knowledge covers
various sources, e.g., conventions, melodic knowledge, constraints based on the notation,
knowledge about the scan process, and may be general- or source-document-specific,
respectively. It ranges from quite simple conventions, e.g., every text syllable needs at least
one note over context dependent decisions, e.g., translucent notes in a scan with a different
appearance on each page, to rather complex knowledge, e.g., about typical melodies. In
this work, a post-processing pipeline uses background knowledge to correct wrong clefs
and symbols, graphical connections and wrong note pitches caused by an incorrect staff
line assignment.

The rest of this paper is structured as follows: First, the related work for OMR on
historical manuscripts, focusing on the music symbol segmentation task, is presented.
Afterwards, the used datasets are introduced, followed by the description of the proposed
workflow and the post-processing pipeline. Finally, the results are presented and discussed
and the paper is concluded by giving an outlook for future work.

2. Related Work

The use of Deep Neural Network techniques has reported outstanding results in many
areas related to computer vision, including OMR. Pacha et al. treated this problem as
an object detection task [2,3]. Their pipeline uses an existing deep convolutional neural
network for object detection such as Faster R-CNN [4] or YOLO [5] and yields the bounding
boxes of all detected objects along with their most likely class. Their dataset consists of
60 fully annotated pages from the 16th—18th century with 32 different classes written in
mensural notation. Typically, for object detection methods, the mean Average Precision
(mAP) was used as the evaluation metric. A bounding box is considered as correctly
detected if it overlaps 60% of the ground-truth box. Their proposed algorithm yielded
66% mAP. Further observation showed that especially small objects such as dots or rests
posed a significant challenge to the network.

Alternatively, the challenge can be approached as a sequence-to-sequence task [6-9].
Van der Wel et al. [6] used a Convolutional Sequence-to-Sequence model to segment musical
symbols. A common problem for segmentation tasks is the lack of ground truth. Here, the
model is trained with the Connectionist Temporal Classification (CTC) loss function [10],
which has the advantage that it is not necessary to provide information about the location
of the symbols in the image; just pairs of input scores and their corresponding transcripts
are enough. The model was trained on user generated scores from the MuseScore Sheet
Music Archive (Musescore: https://musescore.org/, accessed on 30 May 2022) to predict a
sequence of pitches and durations. In total, the dataset consisted of about 17,000 MusicXML
scores, of which 60% were used for training. Using data augmentation, a pitch and duration

https://musescore.org/

Algorithms 2022, 15, 221

30f19

accuracy of 81% and 94% was achieved, respectively. The note accuracy, where both pitch
and duration are correctly predicted, was 80%.

Calvo-Zaragoza et al. [11] used Convolutional Neural Networks for automatic doc-
ument processing of historical music images. Similar to our task, the corpus used for
training and evaluation was rather small, consisting of 10 pages of the Salzinnes Antiphonal
(https:/ /cantus.simssa.ca/manuscript/133/, accessed on 30 May 2022) and 10 pages of the
Einsiedeln (http:/ /www.e-codices.unifr.ch/en/sbe/0611/, accessed on 30 May 2022). Both
of them are also written in square notation. The task was addressed as a classification task,
where each pixel in the image was assigned one of four selected classes: text, symbol, staff
line or background. The input to the network were small patches extracted from the pages
centered at the point of interest. Each pixel was evaluated with the Fj-metric for the four
classes. This yielded an average F;-score of around 90%, while the music symbols’ specific
F;-score was about 87.46%.

Similar to that, Wick et al. [12] also considered this as a segmentation task. A FCN
was used to detect staff lines and symbols in documents. The staff line detection achieved a
F;-score of over 99%. For the symbol detection task, they achieved an F;-score of over 96%
if the type is ignored. By using a sequence-to-sequence metric, the so-called diplomatic
symbol accuracy rate (dSAR) [12] (see Section 8.2), they reached an accuracy of about 87%.
A similar approach can be observed in [13].

Other approaches use handcrafted features or heuristics for the symbol recognition
task, such as in [14] using Kalman filters or [15,16] using projections.

To the best of our knowledge, we are not aware of any other publications that attempt
to incorporate background knowledge about medieval documents in order to improve the
recognition rate.

3. Datasets

A typical staff picture can be observed in Figure 1. For training and evaluation, a
combination of different manuscripts is used. One of the larger one was presented in [12]
(Available under: https:/ /github.com/OMMRA4all/datasets, accessed on 30 May 2022). It
consists of 49 pages of the manuscript “Graduel de Nevers”, which was published in the
12th century. A total of six different classes are stored in the dataset. These include C-clef,
F-clef, Flat-accidentals, and three different types of Note Components (NC), being either a
neume start, a gapped or looped NC.

1.0 N ‘ﬂll- & 3"“-..

1:c- Clef 2 Neume Start 3 Looped 4 Gapped 5 Flat Acudental

Figure 1. Staff image written in square notation of the Pa904 (Page 13) dataset. One instance for each
class has been marked with a small white number in the picture. There are no instances for the classes
F-clef, sharp- and natural-accidental in the example image.

This dataset is divided into three parts with varying layouts and difficulty, based on
human intuition [12]. The first part contains scans with the best notation quality available.
The symbols are visually more distinct and separated than in the other parts. Part 2 is
the most difficult one, since the notation of the musical components is more dense and
the contrast of the staff lines is worse, compared to part 1. Part 3 is similar to part 1, but
consists of wavy staff lines and some more challenging musical components.

The “Latin14819” dataset consists of 182 pages of the manuscript “Latin14819” (Avail-
able under: https:/ /gallica.bnf.fr/ark: /12148 /btv1b84229841/, accessed on 30 May 2022),
which was published between the 12th—14th century. The notation layout of the available
pages is similar to part 1 of “Graduel de Nevers”. The symbols and lines are distinct, the
contrast of the musical components is good and the symbols are often separated by space,
which reduces the danger of confusion.

https://cantus.simssa.ca/manuscript/133/
http://www.e-codices.unifr.ch/en/sbe/0611/
https://github.com/OMMR4all/datasets
https://gallica.bnf.fr/ark:/12148/btv1b84229841/

Algorithms 2022, 15, 221

40f19

The Pa904 dataset consists of 20 pages of the manuscript “Pa904” (Available under:
https:/ /gallica.bnf.fr/ark: /12148 /btv1b84324657, accessed on 30 May 2022). It was pub-
lished between the 12th—13th century. The symbols are much denser here, which makes
segmentation more difficult. The ratio of faded to non-faded symbols is also greater than in
the other datasets. An overview of the datasets is given in Table 1, an example page for

each dataset is shown in Figure 2.

Table 1. Overview of dataset properties (Nevers P1 means Part 1). All datasets except Pa904 consist of
8 classes (Notes: looped, gapped, neume start; Clef: C-Clef, F-Clef, Accents: Flat, Sharp and Natural).
For Pa904, graphical connections between notes (GCN) are not annotated, resulting in only 6 classes.

Dataset Pages Symbols Symbols/ Page Clefs Accidentals GCN Annotated?
Nevers P1 14 3911 279 152 24 Yes
Nevers P2 27 10,265 380 345 37 Yes
Nevers P3 8 1669 209 83 1 Yes
Latin14819 182 34,762 191 2108 291 Yes

Pa904 20 9025 451 264 28 No

Nevers - Part 2 ...

- Latin 14819

Figure 2. Sample example pages for the used datasets

Nevers - Part 3 ...

L R e —Y B Cooa :
i

B

U PAO0A e

https://gallica.bnf.fr/ark:/12148/btv1b84324657

Algorithms 2022, 15, 221

50f19

4. Workflow

Figure 3 illustrates the general workflow. As depicted, the inputs to the general
workflow are the raw documents. Since the scale of the systems can be different for each
page, the staff line distance dg;, which is the average distance from one staff line to the next
staff line, is calculated as a preprocessing step in order to normalize the raw input pages
to an equal scale. Additionally, the inputs are converted to grayscale color space. Since
the input of the proposed symbol detection algorithm is based on staffs, the next step is
the extraction of each individual staff image. This can be conducted with a FCN as shown
in [12] with an automatic detection rate of the staff lines in historical documents of 99.7%
of all staff lines and detection of the correct length with a 98.2% F;-Score. As this work
focuses on the symbol detection part of the OMR pipeline, the encoded system lines of the
dataset are used directly instead of the detected ones, even though the detection rates are
very good, as shown in [12].

Raw document
as input

Staff-
extraction

Grayscale
conversion

Probability
map

CC-
extraction

Symbol-
extraction

] Input (for
comparison)

oW :'.' —
) tn,""‘ Output

Ei: e
i !",""'*'!.' o +

- Qutput

Figure 3. The schematic workflow of the proposed symbol detection. Additionally to the input
and output of the algorithm, the output of the major intermediate steps is displayed. This includes
the staff line extraction from the original images, the padding of the line images and the grayscale
conversion. Furthermore, the segmentation and further post-processing steps are shown, which
includes the probability map generation, the connected component and finally the symbol extraction.
The symbols are segmented two times from the background, using two different thresholds. Squares
with an additional red box are “uncertain” symbols, which are used within post-processing to correct
errors automatically.

Algorithms 2022, 15, 221

6 of 19

Furthermore, the bounding box of the extracted staff is calculated and extended by
the addition of a margin of one dg; . Since the position of clefs is often at the start of a staff,
the bounds of the bounding box are therefore extended to the left by an additional 3dg; .
Afterwards, the calculated bounding boxes are extracted and scaled to a fixed height of
80 pixels, in order to normalize the resolution of the symbols. The extracted images are
optionally augmented and are fed to the FCN. The augmentations used for training are
rotate, shift, shear and zoom transformations on the input images. The FCN trained to
discriminate between music symbols and background pixels predicts a heat map. Each
pixel is then labeled to the class with the highest probability. Afterwards, CCs are extracted
and classified according to the label with the highest amount of pixels.

The FCN is trained on Ground Truth containing the human-annotated music symbols,
which are drawn as a circle with a radius of 1/8 of the average space between two lines of
the staff and using the negative-loss-likelihood as a loss function. The radius is calculated
for every staff independently. The center of the extracted CCs determines the position of
the symbols. The position in line assignment (PIS) (including the auxiliary lines) of the
symbols is based solely on the distance to the closest staff line and space. Even though the
notes are visually closer to space, they are likely to intersect the area of the line. Therefore,
the area of the non-auxiliary lines is extended to take this fact into account. Finally, the
pitch is calculated based on the position of the symbols on the staff, the previous clef and
other alterations.

5. Post-Processing Pipeline

In this section, the post-processing pipeline is introduced. This pipeline uses the
symbols extracted from the probability map. Using the probability map, each pixel in the
image is labeled to the symbol class with the highest probability (excluding background).
This results in a symbol label map. Next, the system decides whether there is background
or a symbol. This is conducted in a separate step where the pixels are suppressed when the
background class is above a certain threshold (pg). The new filtered symbol label map is
then used by a connected component analysis [17] to extract the symbols. As mentioned
previously, the symbols are segmented using two different thresholds for pp: To extract
the baseline symbols, the threshold is set to pp = 0.5 . To extract additional symbols, the
threshold is set to pp = 0.9 and filtered afterwards using the baseline symbols such that
only the additional “uncertain” symbols remain. There are many False Positives (FP) in
these uncertain symbols, but also False Negatives (FN) symbols that were not segmented
with the lower threshold. These additional symbols are used in the post-processing steps
to improve the recognition rate with the usage of background knowledge. In Figure 4,
examples of issues the system tries to fix with the post-processing pipeline are shown. Our
post-processing steps are described below:

1. Correct symbols in wrong layout blocks: Sometimes FP are recognized inside in-
correct layout blocks, such as drop capitals, lyrics, or paragraphs. Such symbols
are removed from the baseline symbols and the uncertain symbols if they are inside
drop capitals. If symbols appear in text regions, they are also removed if the vertical
distance to the nearest staff line is greater than a constant dg; .

2. Overlapping symbols: In this post-processing step, symbols that overlap are re-
moved. Since only the centers are recognized by our symbol recognition, the outline
for each symbol depending on dg; is calculated. Due to the fact that notes appear as
squares in the original documents, a box around the center with a width and height
of 2- (dsp/4) - 0.8 can be drawn. Because clefs are bigger and also differ in height and
width, this value is modified slightly. For C-Clefs, a box with a width of 2 - (dsy - 0.3)
and a height of 2 - (dg - 0.8) is drawn. For F-Clefs, a width of 2 - (dg; - 0.4) and a
height of 2 - (dgy, - 0.8) is used. If a clef overlaps a symbol, the clef is prioritized and
the symbol is removed. If two symbols overlap each other, and they have the same
PIS, one of them is removed.

Algorithms 2022, 15, 221

7 of 19

Position in staff of clefs: In the datasets, all clefs appear to be only on top of a staff
line and not in between. If the algorithm has detected that the PIS of a clef is in
between two staff lines, then the clef is moved to the closest staff line.

Missing clefs in the beginning of a staff line: Normally, a staff always begins with
a clef. If this is not the case, the system tries to fix it:

(@) Additional symbols: If no clef is recognized by the algorithm at the beginning,
it is checked if a clef has been recognized in the uncertain symbols. If so, this
clef is added to the baseline symbols.

(b) Merging symbols: The C and F-clef consists of two boxes. It can happen that
a clef is mistaken for two notes. Therefore, two vertically stacked symbols
that appear at the beginning of a staff are replaced by a clef. This is only
performed when the position of the two symbols is right at the beginning,
which means that the symbols are no more than 2/3 - dg;, away from the start
of the staff lines.

(c) Prior knowledge: If the above steps did not help, a clef is then inserted at the
beginning, based on the clefs of previous staves. This can lead to FP for the
segmentation task, even if a clef has to be inserted at this position, because the
exact center position can only be guessed. Nevertheless, it has a positive effect
on the recognized melody.

Looped graphical connection: This post-processing step aims to fix errors in the
graphical connection, i.e., fixes between neume start, gapped and looped classes.

(a) Additional symbols: The algorithm looks for consecutive notes that have a
graphical connection between them. If the horizontal distance between these
symbols is larger than dg;, it is corrected. If there is an uncertain symbol in
between, it is added to the baseline symbols.

(b) Replace class: If there is none, the class of the symbol is changed from “looped”
to “neume start”

(c) Stacked symbols: In addition to that, the system also recognizes stacked
symbols. If the horizontal distance between them is less than dg;, /3, a graphical
connection is inserted between them.

PIS of stacked notes: The PIS of the notes is often distorted due to the limited space
on the staffs, because the author of the handwritten manuscripts wanted to maintain
some structural characteristic of some neumes (e.g., in Podatus or Clivis neumes (https:
/ /music-encoding.org/guidelines/v3/content/neumes.html), accessed on 30 May
2022). However, due to the lack of space and to preserve the characteristics, the notes
cannot be placed directly on the staff where they should be, but are slightly shifted.
Since the system uses the distance of the symbols to the staff lines and the space
to calculate the position in the staff lines (PIS), this shift can lead to FP. The system
corrects the PIS in borderline cases based on the confidence of the PIS algorithm for
the notes of the respective neumes.

https://music-encoding.org/guidelines/v3/content/neumes.html
https://music-encoding.org/guidelines/v3/content/neumes.html

Algorithms 2022, 15, 221

8of 19

5(a) 5 (b) 5(c) 6

Figure 4. Common errors of the symbol detection, which are corrected by the post-processing
pipeline. The yellow and green boxes indicate whether the symbol is on the staff line or between a
staff line. Notes, which also have a red border, are the symbols that are “uncertain” and are used
for correcting missing symbols in the baseline symbols. The green, red and purple overlay indicates
the region. Areas in the first image with green overlay are music-, red are lyric- and purple are drop
capital regions. The numbers (1, 2, 4a, 4b, 5a, 5b, 5¢, 6) under each image refer to the post-processing
step in Section 5 that is intended to fix this error.

6. Architecture

As already mentioned, the pipeline takes advantage of the U-Net [1] architecture to
segment the symbols from images. The U-Net is symmetric and consists of two parts: (i) The
encoder (contracting path [1]), which is used to encode the input image into the feature
representation at multiple different levels and (ii) the decoder, which projects the context
information features [1] (expansive path) learned by the encoder onto the pixel space. For
our experiments, several U-Net architectures were evaluated and compared. Details of
the architectures can be found in the cited papers of Table 2. Two of the architectures that
have been examined were already available as a complete U-Net with both the encoder and
decoder part (i.e., FCN, U-Net). For the other architectures (MobileNet, ResNet, EfficientNet
with different scaling factors: Eff-b1, Eff-b3, Eff-b5 and Eff-b7), only the encoder part was
used, as these were originally designed for classification tasks. The decoder part was added
to these architectures. The decoder part consists of a bridge block and upsample blocks.
The bridge block consists of convolutional layers with 256 kernels with a size of 3 x 3. The
number of upsamble blocks depends on the number of downsample blocks of the encoder.
Each upsample block has two convolutional layers. The first upsample block consists of
two layers with 256 kernels with a size of 3 x 3, each. The number of kernels is halved
with each additional upsample block. In addition to that, skip-connections between the
upsample blocks and the downsample blocks were added. Finally, a convolutional layer is
added, which converts the output nodes at each position into 9 (8 classes + background)
target probabilities at each pixel position of the image.

Algorithms 2022, 15, 221

90f19

Table 2. Overview of the evaluated architectures. For each architecture, the publication is cited that
describes it. Some architectures have been expanded to include a decoder part so that they reflect a
U-Net. In addition, the number of parameters is specified and states whether there were pre-trained
weights for the encoder part available.

Id Encoder Decoder Parameters ImageNet-Weights
FCN [12] [12] 603,649 None
U-Net [1] [1] 31,032,265 None
MobileNet [18] Own 6,584,033 Encoder
ResNet [19] Own 34,345,545 Encoder
Eff-bl (https:/ /github.com/qubvel/efficientnet,
accessed on 30 May 2022) [20] Own 6,237,253 Encoder
Eff-b3 (https:/ /github.com/qubvel/efficientnet,
accessed on 30 May 2022) [20] Own 7,851,275 Encoder
Eff-b5 (https:/ /github.com/qubvel/efficientnet,
accessed on 30 May 2022) [20] Own 12,005,305 Encoder
Eff-b7 (https:/ /github.com/qubvel/efficientnet,
accessed on 30 May 2022) [20] Own 20,141,881 Encoder

7. Layout Analysis

Since the symbol post-processing pipeline partially uses the layout, e.g., drop capitals
or lyric regions of a page to correct symbols, this section briefly presents the layout analysis
of the system. The aim of the layout analysis is to split the page into music regions and text
regions. Text regions can be further split into lyric, paragraph and drop capitals. However,
this is not mandatory. Figure 5 shows an example of such a layout recognition. The pipeline
consists of two simple steps and uses the encoded staff lines of the dataset:

H

-

R TIPS PR R T SRR e
e -
)]

Figure 5. Example of the layout detection. Red regions are lyric regions. Green areas are music
regions and purple areas are drop capital regions. We divided the drop capitals into two classes. Big
ornated (left one) and smaller ones, which still clearly intrude the music regions (right one).

1. Music-Lyric: The bounding box for each encoded stave on a page is calculated and
is padded with dg; /2 on the top and bottom side of the box. These are marked as
music regions. Regions that lie between two music regions are marked as lyric regions.
Since the bottom lyric line is not between two music regions, it is added separately.
To do this, the average distance between two music regions (staffs) is calculated and
afterwards used to determine the lowest music region.

2. Drop-Capital: Drop capitals (compare Figure 5) often overlap music regions, so
these must be recognized separately. The pipeline uses a Mask-RCNN [21] with a
ResNet-50 [19] encoder to detect drop capitals on the page.

(a) Training: Since only limited data are available, the weights of the model
trained on the COCO dataset [22] is used to fine-tune the model. For training,
only horizontal flip augmentations are used. The network is then fine-tuned
on the “Latin 14819” dataset. A total of 320 instances of drop capitals are
included there. The model is trained with positive (images with drop capitals)
and negative (images without drop capitals) examples. Inputs are the raw
documents. SGD was used as the optimizer, with hyperparameters of learning
rate = 0.005, momentum = 0.9 and weight decay = 0.0005.

(b) Prediction: The raw documents are the input. A threshold of 0.5 is applied to
the output of the model. Next, the output is used to calculate the concave hulls
of the drop capitals on the document. If hulls overlap, all but one are removed
and only the one with the smallest area is kept.

https://github.com/qubvel/efficientnet
https://github.com/qubvel/efficientnet
https://github.com/qubvel/efficientnet
https://github.com/qubvel/efficientnet

Algorithms 2022, 15, 221

10 of 19

(o) Qualitative Evaluation: A qualitative analysis on the Pa904 dataset was con-
ducted. A total of 43 drop capitals were available on the pages. These could
be subdivided into large, ornated ones and smaller ones, which still clearly
protrude into the music regions. Afterwards, the recognized drop capitals
were counted. It should be noted that the algorithm rarely recognized holes or
inkblots as initials. These errors were ignored because the system only uses the
drop capitals for the post-processing pipeline anyway and they do not cause
errors for the symbol detection task. Results from the drop capital detection
can be taken from Table 3. The error analysis showed that no FPs, such as
neumes, were detected. Further experiments demonstrated similar results on
other datasets without further fine-tuning. This is important because otherwise
errors could be induced by the post-processing pipeline.

Table 3. Overview of the qualitative evaluation of the drop capital detection.

Big Drop Capital Small Drop Capital
TP 18 15
FP 0 0
FN 1 9

8. Results

In this section, the setting for the performed experiments is described, as well as their
interpretation and the experimental conclusions that can be drawn. First, an overview of
the experiments is presented, for which the results in this chapter are reported:

1. Evaluation of different encoder/decoder architectures within our complete OMR pipeline
with data from the same dataset as the training data by a 5-fold cross validation (i.e.,
80% of the data used for training, the remaining 20% for evaluation) with a large dataset
(Nevers Part 1-3 + Latin 14,819 with 50,607 symbols; compare Table 1 (Table 4).

Table 4. Preliminary experiments for the symbol detection using different network architectures. All
results are the averages of a five fold of each dataset part. The used backbone is stated on the left.
The results of the detection accuracy of all symbols, of solely the notes and the clef, the type accuracy
(Notes: looped, gapped, neume start; Clef: C-Clef, F-Clef), the position in staff accuracy of notes
and clefs and the h'SAR, dSAR and melody, given in percent are computed using all datasets except
the Pa904. The bold numbers highlight the best value for each metric.

Detection Type Position in Staff Sequence
Archit. Fl Fprote Ee! Ffccids Accyore AcCeief AcCuote Acccey hSAR dSAR mAR
FCN 97.9 98.1 93.0 23.0 97.7 99.0 98.8 99.8 944 924 84.6
. MobileNet 98.4 98.5 96.4 75.0 97.8 99.1 98.9 99.7 95.4 93.5 89.6
§ ResNet 98.8 98.9 97.3 80.2 98.0 99.2 98.9 99.8 96.2 94.5 91.9
E* Eff-bl 98.7 98.8 97.0 87.6 98.3 99.1 98.9 99.8 96.3 94.7 91.7
3 Eff-b3 99.0 99.0 97.5 89.8 98.1 99.5 98.9 99.8 96.7 95.1 92.8
E Eff-b5 99.0 99.0 97.8 89.7 98.2 99.5 98.9 99.7 96.7 95.1 93.6
2 Eff-b7 99.1 99.1 98.0 90.0 98.3 99.4 99.0 99.8 96.7 95.3 93.8
U-Net 99.2 99.3 98.2 86.0 98.4 99.1 99.0 99.8 97.2 95.8 94.1
Mean 98.6 98.8 96.9 777 98.1 99.2 98.9 99.8 96.2 94.5 91.5
FCN 98.1 98.5 95.0 23.0 97.5 98.1 98.8 99.6 95.1 93.0 89.2
MobileNet 98.5 98.6 97.0 74.4 97.4 99.0 99.1 99.8 95.8 93.8 92.5
8 ResNet 98.9 99.0 97.8 80.2 97.7 99.1 99.1 99.8 96.7 94.8 94.2
5 Eff-bl 98.8 98.9 97.4 86.8 98.0 99.2 99.1 99.8 96.5 94.9 94.0
< Eff-b3 99.1 99.1 97.7 88.6 97.8 99.3 99.1 99.8 96.7 95.0 94.4
I~ Eff-b5 99.0 99.1 98.0 89.9 97.9 99.6 99.1 99.9 97.0 95.2 95.3
Eff-b7 99.1 99.2 98.1 90.0 98.0 99.1 99.0 99.9 96.8 95.2 94.7
U-Net 99.3 99.4 98.2 87.0 98.0 99.3 99.2 99.9 97.3 95.7 95.1
Mean 98.9 99.0 97.4 77.5 97.9 99.1 95.0 99.8 96.5 94.7 93.7

Algorithms 2022, 15, 221

11 0f 19

For the following evaluations, the simple baseline architecture (FCN) and the most
promising architecture (Eff-b3) were used.

2. Evaluation of the OMR pipeline similar to experiment 1 on a smaller dataset (Nevers
Part 1-3 with 15,845 symbols) with 5-fold cross validation, repeating an evaluation
from the literature (Table 5);

3. Evaluation of the OMR pipeline on a different, challenging dataset (Pa904 with
9025 symbols on 20 pages) as a real-world use case:

(@) With pretrained mixed model and document specific fine-tuning: Starting
with the mixed model of experiment 1 and using 16 pages of the dataset for
fine-tuning while evaluating on the remaining 4 pages (5-fold cross validation;
Table 6)

(b) With document specific training without a pretrained model: Using solely the
Pa904 dataset for training and evaluation in a 5-fold cross validation similar
to experiment 1. Here 4 architectures (FCN, U-Net, Eff-b3, Eff-b7; Table 6) are
compared;

(c) With a mixed model without fine-tuning: Using the mixed model of experiment
1 and evaluation of the 20 pages of the dataset Pa904 (Table 7).

Table 5. Experiments on the Nevers dataset, which was used for evaluation in [12]. Using the post-
processing pipeline, the dSAR has improved by about 1%. The melody accuracy rate has improved
by 8%. Using more advanced encoders, the mAR could further be improved by about 3%.

Detection Type Position in Staff Sequence
Post-Processing Archit. Fl“l ! Fjrote 1—“1” lef 1—"{“““”S Accpote Accelef AcCnote AcCelef hSAR dSAR mAR
no FCN 97.8 97.9 89.5 30 96.1 98.7 97.9 99.3 92.9 89.6 79.7
Eff-b3 98.3 98.4 94.8 65 96.3 99.2 97.8 99.4 94.1 90.9 87.7
s FCN 98.2 98.3 94.3 30 95.4 98.0 98.0 99.2 93.7 90.2 88.0
y Eff-b3 98.6 98.6 96.4 65 95.6 99.3 97.9 99.8 94.5 91.1 91.3
Table 6. In this experiment, training and evaluating was conducted only on the Pa904 dataset (all
metrics in %). The mixed model of the previous experiment was optionally used for a document
specific fine-tuning. This experiment is most similar to a real world scenario, where only a limited
number of pages for training is available.
Detection Type Position in Staff Sequence
Archit. F Fjrote E! Ejecids Accuote AcCief AcCuote Accaer hSAR dSAR mAR
8 FCN 99.1 99.2 93.2 222 n/a 96.9 95.8 1 93.3 n/a 84.8
.S‘ Eff-b3 99.6 99.6 98.0 39.9 n/a 97.5 95.7 1 94.0 n/a 91.2
"g‘ Eff-b7 99.4 99.5 97.4 23.8 n/a 97.6 95.7 1 93.8 n/a 91.4
~ U-Net 99.3 99.3 96.0 36.2 n/a 96.5 95.5 1 93.3 n/a 87.8
o
Z Mean 99.3 99.4 96.2 29.5 n/a 97.1 95.7 1 93.6 n/a 88.3
. FCN 99.2 99.3 97.0 222 n/a 95.3 98.8 1 96.4 n/a 91.3
é Eff-b3 99.6 99.7 98.0 39.9 n/a 97.0 98.8 1 97.0 n/a 94.0
_f?_j Efft-b7 99.5 99.6 98.7 23.8 n/a 97.7 98.5 1 96.7 n/a 92.4
é U-Net 99.5 99.6 98.0 36.2 n/a 95.4 98.6 1 96.6 n/a 94.7
Mean 99.4 99.6 97.9 29.9 n/a 96.4 98.7 1 96.7 n/a 93.1
1’0 g FCN 99.1 99.2 96.0 0.03 n/a 98.7 98.8 1 93.8 n/a 88.8
k= ‘9*_‘ Eff-b3 99.5 99.6 98.0 333 n/a 98.0 98.8 1 94.5 n/a 90.5
§ "%’ Eft-b7 99.5 99.6 98.7 34.7 n/a 95.3 98.5 1 94.4 n/a 90.3
‘é' A~ U-Net 99.5 99.5 97.0 32.3 n/a 97.0 98.6 1 94.4 n/a 90.3
R)
B Z Mean 99.4 99.5 97.4 25.1 n/a 97.3 98.7 1 94.3 n/a 90.0
S FCN 99.2 99.2 98.3 26.7 n/a 97.9 98.7 1 96.6 n/a 94.6
g % Eff-b3 99.5 99.6 98.8 333 n/a 98.0 99.0 1 97.4 n/a 95.8
“:TS 2 Eff-b7 99.5 99.6 98.0 34.7 n/a 95.3 98.9 1 97.3 n/a 93.0
2L U-Net 99.5 99.6 98.5 323 n/a 97.0 99.0 1 97.3 n/a 94.3
o Mean 99.4 99.5 98.4 31.8 n/a 97.1 98.9 1 97.2 n/a 94.4

Algorithms 2022, 15, 221 12 of 19

Table 7. Mixed model experiments on the Pa904 dataset with and without post-processing; that is,
no training data for fine-tuning were used. Only the model of Table 4 was used for predictions and
evaluated solely on the Pa904 dataset (all metrics in %). The recognition rate of the accidents is very
low, especially with the FCN, since this was already low in the “mixed model” due to the low amount

of training instances.

Detection Type Position in Staff Sequence
Post-Processing Archit. Fpl Fjote Flclef Fpccids Accyote AcCelef AcCpote Acceer hSAR - dSAR mAR
no FCN 98.3 98.4 93.3 3.0 n/a 96.4 96.7 1 93.0 n/a 84.4
Eff-b3 99.2 99.4 98.3 48.0 n/a 96.4 96.9 99.9 95.0 n/a 90.4
FCN 98.5 98.6 96.2 3.0 n/a 94.9 98.9 1 95.3 n/a 89.4
yes Eff-b3 993 99.4 99.1 46 n/a 9.1 98.9 1 97.0 n/a 93.2

4. Evaluation how effective the different parts of post-processing pipeline are for the
mixed model with and without fine-tuning on the Pa904 dataset (Table 8);

5. Evaluation of the frequency of remaining error types with and without post-processing
on the Pa904 dataset using the mixed model with fine-tuning (Table 9).

Table 8. Influence of the individual post-processing steps on the mAR in % of the Pa904 dataset.
Each post-processing step is evaluated individually. The entry marked with a plus has improved,
but the improvement was too small to be shown in the table. Two models are evaluated: The
“Document specific” model which adds a document specific fine-tuning to the mixed model and the
“Mixed model”, without fine-tuning, which has been trained on different datasets and subsequently
evaluated on this dataset.

Model Document Specific (Section 8.3) Mixed Model (Section 8.4)
Architecture FCN Eff-b3 FCN Eff-b3
Post-processing step (compare Section 5)

None 88.8 90.5 84.4 90.4
(1) Correct symbols in wrong layout blocks 88.8+ 90.5 84.5 90.4
(2) Correct overlapping symbols 89.3 90.6 84.7 90.5
(3) Correct position in staff of clefs 88.8 90.5 84.6 90.4
(4) Correct missing clefs 91.2 91.8 86.3 91.3
(5) Correct looped graphical connection n/a n/a 85.9 90.7
(6) Correct PIS of stacked notes 91.3 93.2 87.8 92.5
All combined 94.6 95.8 89.4 93.2

Table 9. Listing of symbol segmentation error types of the models and their quantity in %. The
+/— columns indicate the improvement percentage by which the error type can be reduced by
post-processing. The best performing model of the “FCN” and the “Eff-b3” architecture were used
(fine-tuning + post-processing). The edit-distance of the predicted sequence and the GT without the
usage of replacements is computed. Thus, PIS errors were treated as a TP and a FP.

FCN +— Eff-b3 +—
Post-proc. no yes no yes
TP (hsar) 93.78 96.59 94.55 97.42
Missing Notes 1.10 1.10 0% 0.93 0.74 20%
Wrong PiS 2.08 0.74 64% 1.80 0.63 65%
FN Missing Clef 0.14 0.10 28% 0.08 0.05 29%
Missing Accid 0.16 0.16 0% 0.09 0.09 0%
Sum 3.48 2.10 39% 2.90 1.51 48%
Add. Notes 0.63 0.52 17% 0.71 0.39 45%
Wrong PiS 2.08 0.74 64% 1.80 0.63 65%
FP Add. Clef 0.04 0.03 9% 0.04 0.04 0%
Add. Accid 0 0 0% 0 0 0%
Sum 2.75 1.30 53% 2.55 1.06 59%

FP + FN Overall Sum 6.23 3.40 45% 5.45 2.57 53%

Algorithms 2022, 15, 221

13 0of 19

8.1. Metrics

It is common to evaluate the performance of the symbol detection rate of musical
documents in a sequence-to-sequence manner, as can be observed in [12]. Therefore,
the three main metrics used for evaluation are the diplomatic accuracy rate (dSAR), the
harmonic symbol accuracy rate (hRSAR) and the melody symbol accuracy rate (mAR). The
normalized edit distance is used to compute those metrics: The algorithm is counting each
insert, delete, and replace operation necessary to convert the output into the Ground Truth
as one error and afterwards normalizes the total errors by the maximum length of the two
sequences. Next, dSAR, hSAR and mAR is the corresponding accuracy rate by calculating
1 — error, where error is the respective normalized error rate of the sequence using the edit
distance (dSER, hSER or mER). The only difference is how the sequences are calculated
from the predicted symbols:

e dSAR: The diplomatic transcription compares the staff position and types of notes
and clefs and their order; however, the actual horizontal position is ignored [12];

* hSAR: Similar to dSAR, but only evaluates the correctness of the harmonic properties,
by ignoring the graphical connections of all note components (NC). [12];

* mAR: Evaluates the melody sequence. The melody sequence is generated from the
predicted symbols by calculating the pitch for each note symbol.

The melody metric is quite harsh, but realistic. For example, in the Corpus Monodicum
(https:/ /corpus-monodicum.de, accessed 30 May 2022) project the transcription takes place
with an editor [23] at pitch level. For a complete automatic transcription with later post-
correction in this editor, this metric comes closest to the amount of corrections that are
needed.

Additionally to these sequence metrics, three additional metrics are evaluated:

* Symbol detection accuracy: A predicted symbol is counted as correctly detected (TP)
if the distance to its respective ground truth symbol is less than 5 px.

e Type accuracy: Only TP pairs are considered. Here, the correctness of the predicted
graphical connection is evaluated.

¢ Position in staff accuracy: Only TP pairs are considered as well. Here, the correctness
of the predicted position in staff is evaluated.

These three metrics are further subdivided in all, note and clef to respectively consider
all symbols, only the notes or only the clefs.

8.2. Preliminary Experiments

All preliminary experiments were carried out using 5-fold cross validation, which
splits each dataset into five smaller slices. Four slices are used for training and the remaining
part is used for evaluating the algorithm. Since several datasets are used, each dataset is
split individually into five folds and afterwards the corresponding folds of each part are
merged to generate the training and the test set, in order to include every single dataset in
a fair manner.

Table 4 shows the performance of the different network architectures. In this exper-
iment, the weights are initialized with the pretrained weights from the ImageNet [24]
dataset, if possible. All models were trained for a maximum of 30,000 steps, and a learning
rate of 1 x 10~% was chosen. Adam [25] is used as the optimizer. The upper block shows
the results when no post-processing is used. The lower block display the results with the
proposed post-processing steps. As a result of using a post-processing pipeline, the overall
accuracy of each evaluated model improves on most metrics. Since our post-processing
is also correcting clefs, the melody metric improved the most from 84.6% to 89.2% for the
FCN architecture. Slightly poorer results can be observed for the “type” section. This can
be explained by the fact that more symbols are detected with the post-processing pipeline.
Hereby, symbols can be inserted, which have the correct position in the staff in most cases
but also can have, e.g., the wrong note connection type. For calculating the correct melody,
this is less important.

https://corpus-monodicum.de

Algorithms 2022, 15, 221

14 of 19

Moreover, in comparison to the baseline model (FCN), the usage of more advanced
encoders yielded improved results, as well. Here, the model with the Eff-b5 encoder
achieved the best accuracy with a mAR of 95.3%. By using larger encoders for the model,
the post-processing effect is lower when enough training data are available.

The experiment from [12] is repeated to observe exactly how big the impact is of the
post-processing using background knowledge. The experiment was run with and without
the post-processing pipeline. Results are presented in Table 5. As in [12], the training
and evaluation took place only on the Nevers datasets. No pretraining was used. The
post-processing pipeline improved the dSAR by about 1%. The melody accuracy rate has
improved by 8%. Using more advanced encoders, the mAR could further be improved by
about 3%. This also shows that the post-processing is very robust and can be applied to
other datasets as well.

8.3. Document-Specific Fine-Tuning

The Pa904 dataset was used for training and evaluation in this experiment. Each
fold was trained on 16 pages. Evaluations were carried out on four pages each. In this
experiment, the weights of the mixed model from the experiment in Table 4 were optionally
used as a starting point for the document specific fine-tuning. This experiment reflects a
real live scenario as closely as possible, in which only a few pages, if any, are available for
training.

The results of the experiment can be observed in the Table 6. In general, it can be
observed that both pretraining and post-processing improves the recognition rate of the
symbol detection task. With the EfficientNet-b3 [20] encoder, the highest accuracy with a
melody accuracy of 95.8% was achieved. It is noticeable that the post-processing improves
the melody accuracy significantly, especially in simpler architectures such as the FCN.
Here, the accuracy improves from 84.3% to 91.3%. The reason is that the simple encoders
make more mistakes, and so there is a greater basis for improvement. Above all, wrong
or missing clefs lead to the wrong segmentation of a complete sequence. A substantial
improvement can also be observed in the more complex architectures.

8.4. Mixed Model Training without Fine-Tuning

This experiment evaluates the performance of an existing model when applied to new
datasets. For this purpose, training was carried out on all datasets (compare the experiment
in Table 4) except for the Pa904 and was subsequently evaluated exclusively on the Pa904
dataset. Results of this experiment can be observed in the Table 7. Interestingly, the mAR
value is comparable to the model, which was trained exclusively on the Pa904 dataset.
This shows that the models generalize very well and can be easily applied to new datasets.
The highest accuracy without post-processing of the system was achieved with the Eff-b3
encoder with a mAR of 90.4%. By adding the post-processing pipeline, a mAR of 93.2%
was achieved, which is 2.5% less than using document specific fine-tuning (see above).

8.5. Evaluation of the Contribution of the Different Post-Processing Steps

The post-processing steps were evaluated on the Pa904 dataset. In addition, two
models were compared with each other. On the one hand, the “fine-tuned” model, derived
from Table 6, has been trained on all datasets (except Pa904) and is subsequently fine-tuned
and evaluated on the Pa904 dataset. On the other hand, the “mixed-train” model from
Table 7 is only evaluated on the Pa904 dataset, but is not trained on it. In Table 8, the
influence on the mAR of the individual post-processing steps can be observed.

Steps one through three of the post-processing pipeline have only a small direct effect
on the accuracy of the fine-tuned model, probably because document-specific fine-tuning
helps the model to avoid very obvious mistakes, such as detecting symbols in text. This
can also be observed in the mixed model, where such errors occur more frequently and can
therefore be corrected through post-processing. Nevertheless, it should also be noted here
that the fact that pretraining was conducted on a relatively large dataset. This allowed both

Algorithms 2022, 15, 221

15 0f 19

models to generalize well to separate music symbols from text. We assume that pretraining
with a smaller dataset would have resulted in more errors and therefore also a greater
impact of those post-processing steps. It should also be noted that those post-processing
steps also indirectly help to avoid errors, as, in addition to the baseline symbols, the unsafe
symbols are also filtered and therefore not incorrectly used for a post-correction. Step six
has the highest positive effect, which makes sense since the dataset has a lot of vertically
stacked neumes, whereby the PIS of the symbols is often difficult to recognize. Step four
also has a great impact, because correcting a clef can avoid many consequential errors. Step
5 has a similarly large improvement as step 4.

8.6. Error Analysis

The error distribution of the best performing “FCN” and “Eff-b3” model of the Pa 904
dataset is listed in Table 9. Both the error rate with and without post-processing is specified.

The edit distance was used to count the number of insertions, deletions and replace-
ments to obtain the Ground Truth sequence. Replacements are counted as one insertion and
one deletion. Therefore, correctly segmented symbols, that were predicted with a wrong
type (e.g., instead of a c-clef, an f-clef), are counted as two errors (FN and FP). In general,
more errors are caused by missing symbols rather than by the detection of additional
symbols. This is the case for the models without post-processing as well as for those with
post-processing. The post-processing pipeline balances the ratio between FN and FP, but is
still in favor of FN.

Missing notes are one of the main errors of the symbol recognition. This was expected,
since some of the documents are heavily affected by bleed-through noise. Because the
contrast between the background and the symbols is sometimes too weak, this effect is
intensified. In addition to that, symbols can protrude the text, often overlapping them,
which means that they can only be recognized with the usage of context knowledge. After
that, the most probable errors were wrongly predicted PIS of symbols with a relative
amount of 24.5% (absolute 0.63%) in total (FP and FN). This is reasonable, because the
decision if a note is, for example, on a staff line or between two lines can often only be
decided based on context. Especially with single note neumes, it is difficult to correct
PIS errors. Some first experiments were conducted using a simple language model with
transitional probabilities of n-gram sequence pitches of the notes to correct those errors.
However, we did not manage to incorporate this knowledge with a positive effect to the
mAR, since it caused about the same number of errors that we were able to correct with it.

Without post-processing, clefs were the third-largest source of error on average, with
an error rate of about 0.12%. This is still high, considering that clefs usually occur at most
1-2 times per line. Using post-processing, the error-rate decreases by about 25%. That was
also to be expected, since a missing clef, especially those at the beginning, can be corrected
relatively well with background knowledge. Altogether, errors concerning accidentals
occur the least, which is not surprising since they only occur very rarely. That is also the
reason why additional accidentals are not recognized, since the network has to be very
confident to segment an accidental.

With the different encoder architectures, two things in particular could be observed:
The more complex architectures recognize symbols better with a sufficient amount of
training. Additionally, a finer localization of the note components could be observed when
using these networks. This resulted in less PIS errors, since a poor localization of symbols
sharing roughly the same horizontal position (this can, for example, be observed in a
Podatus neume) can result in a sequence error. Moreover, reading order errors happen less,
and are mainly caused by stacked NCs (e.g., a so-called PES or Scandicus neume), in which,
e.g., the upper note is sung first because of a poor localization segmentation, but should in
reality be sung later.

Since it is very important to recognize the clef correctly because wrong or unrecognized
clefs cause subsequent errors, these errors were examined more closely. Without post-
processing, one-third to one-fourth of all clef errors were missing clefs in the beginning

Algorithms 2022, 15, 221

16 of 19

of a staff line. In most cases, the clefs are located close to the text, whereby it is missed
or recognized as one symbol. Clef errors that can be attributed to drop capitals, as these
are close to each other, amount to about 10%. That seems logical, since a clef often occurs
after a drop capital and can cause errors as a result. The second most common mistakes are
wrong symbol types in the staff. Here, the most common cause is that a clef is mistaken
as two symbols. Using the post-processing pipeline, the error rate of those errors can be
reduced by quite a large margin. In particular, clefs that are missing at the beginning or
are recognized as symbols can be corrected very well. Clefs in the middle of a staff, on the
other hand, are quite difficult to correct.

In Table 10, a break-down of the missing and additional symbols is given, which
amounts for 28.8% and 15.1% of the errors, respectively. Most errors related to both FP
and FN are due to text proximity. Certain text errors are treated by the post-processing
pipeline. In some cases, however, errors can only be corrected, if at all, with additional
expert knowledge. At such points, the correction through background knowledge fails.
(e.g., does a square belong to the text (i-dot) or is it a single note neume). The second most
common error are horizontally adjacent symbols. We assume that this error is generated
by a combination of the selected threshold value and the connected component analysis.
With a perfectly tuned threshold, this error would presumably disappear. The same applies
to symbols which are vertically close together. Faded symbols and rare symbols are also
responsible for a big part of the errors. Correcting such an error would require either more
context (e.g., syllables) or background knowledge of common melodies in order to know if
a note is missing or not.

Table 10. Break down of FP and FN errors for additional and missing notes into several causes, which
amount for 15.1% and 28.8% of the errors, respectively.

Error Type FN Examples FP Examples

57% ‘

0%

Symbols that are
close to the
text/ Text that is 23%
mistaken as
symbols

symbols 23%

Vertically dense

symbols 6%

0%

ﬁ
Horizontal dense ﬁ

Faded symbols or

. 12%
noise

0%

Rare symbols 16% 0%

Algorithms 2022, 15, 221 17 of 19

Table 10. Cont.

Error Type FN Examples FP Examples
Clef mistaken as —
symbols/symbols 5% 29%

mistaken as clef

A
——
[

No apparent
reason

4% 0%

Outside of staff

. 4%
lines

0%

Drop capitals 3% 14.2%

9. Conclusions

In this paper, we demonstrated the benefits of using background knowledge in combi-
nation with fully convolutional neural networks to tackle the automatic segmentation of
symbols in historical musical documents. The following types of background knowledge
were applied and evaluated: Adjust symbols in wrong layout blocks (drop capitals, lyrics
and paragraphs), remove overlapping symbols, move clefs always on top of a staffline and
not in between, add missing clefs in the beginning of a staff line, correct looped graphical
connections, and change the position in the staff of stacked notes in borderline cases. Vari-
ous architectures and datasets for an OMR pipeline were investigated and in all settings, the
use of background knowledge increased the melody rate (mAR) by around 30% to 50%. In
the best experiment, using an EfficientNet-b3 encoder with a mixed model and document
specific fine-tuning, the background knowledge improves the mAR on the challenging
Pa904 dataset from 90.5% to 95.8%. Compared to the previous works [12], the proposed
method increased the dSAR metric on the “Graduel de Nevers” dataset by around 30%. Im-
provements are primarily achieved by recognizing more symbols and the post-processing
pipeline, but also because the horizontal location of the networks is more accurate, which
results in fewer sequence errors. An error analysis demonstrated that the main source
of remaining errors are missing symbols and the predicted staff positions of the symbols
indicated targets for further improvements. In conclusion, the post-processing has greatly
improved the accuracy and is also very robust. Nevertheless, the post-processing still has
a lot of potential for further improvements. Promising approaches will decide whether a
note is translucent or not based on local context, in order to use rules about conventions
over neumes and to use full or partial transcriptions from similar songs, if available. An-
other topic is the adaption of background knowledge to different types of manuscripts
and notation styles. An ambitious goal is to add a step in the post-processing pipeline
that incorporates a language model with knowledge of the most common melodies and
transition probabilities between notes in order to correct further errors. This would even

Algorithms 2022, 15, 221

18 of 19

References

allow us to tackle previously uncorrectable errors, e.g., missing symbols caused by noise,
and also to refine the existing post-processing steps with further background knowledge.
Finally, such knowledge could be used not only to correct the automatic transcription but
also to highlight ambiguous decisions for manual inspection and even to create a second
opinion on already manually transcribed documents.

Author Contributions: A.H. conceived and performed the experiments and created the GT data.
A H. designed the symbol detection of the post-processing pipeline. A.H. and EP. analysed the results.
A H. wrote the paper with substantial contributions of EP. All authors have read and agreed to the
published version of the manuscript.

Funding: This publication was supported by the Open Access Publication Fund of the University
of Wuerzburg. The work is partly funded by the Corpus Monodicum project supported of the
German academy of science, Mainz, Germany.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available from https:/ /github.com/OMMRA4all/datasets for
the Nevers datasets, https://gallica.bnf.fr/ark: /12148 /btv1b84229841/ for the Latin14819 dataset and
https://gallica.bnf.fr/ark: /12148 /btv1b84324657 for the Pa904 dataset (All accessed on 29 May 2022).

Acknowledgments: We would like to thank Tim Eipert and Andreas Haug for helping to resolve
ambiguities in the dataset and the contribution of expert knowledge.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

P True Positive

FpP False Positive

FN False Negative

GT Ground Truth

OMR Optical Music Recogniton

CNN Convolutional Neural Network
FCN Fully Convolutional Network
dSAR Diplomatic Symbol Accuracy Rate
dSER Diplomatic Symbol Error Rate
hSAR Harmonic Symbol Accuracy Rate
hSER Harmonic Symbol Accuracy Rate
NC Note Component

mAR Melody Accuracy Rate

mER Melody Error Rate

SGD Stochastic gradient descent

PIS Position in staff

GCN Graphical connection between notes

1. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015,

arXiv:1505.04597.

2. Pacha, A.; Calvo-Zaragoza, J]. Optical Music Recognition in Mensural Notation with Region-Based Convolutional Neu-
ral Networks. In Proceedings of the 19th International Society for Music Information Retrieval Conference, Paris, France,
23-27 September 2018; pp. 240-247.

3. Pacha, A,; Choi, K\Y,; Cotiasnon, B.; Ricquebourg, Y.; Zanibbi, R.; Eidenberger, H.M. Handwritten Music Object Detection: Open
Issues and Baseline Results. In Proceedings of the 2018 13th IAPR International Workshop on Document Analysis Systems (DAS),
Vienna, Austria, 24-27 April 2018; pp. 163-168.

4. Ren,S.; He, K;; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv

2015, arXiv:1506.01497.

https://github.com/OMMR4all/datasets
https://gallica.bnf.fr/ark:/12148/btv1b84229841/
https://gallica.bnf.fr/ark:/12148/btv1b84324657

Algorithms 2022, 15, 221 19 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. arXiv 2015,
arXiv:1506.02640.

Wel, E.; Ullrich, K. Optical Music Recognition with Convolutional Sequence-to-Sequence Models. arXiv 2017, arXiv:1707.04877.
Calvo-Zaragoza, J.; Haji¢, J., Jr.; Pacha, A. Understanding Optical Music Recognition. ACM Comput. Surv. 2021, 53, 1-35.
[CrossRef]

Baré-Mas, A. Optical Music Recognition by Long Short-Term Memory Recurrent Neural Networks. Master’s Thesis, Universitat
Autonoma de Barcelona, Bellaterra, Spain, 2017.

Calvo-Zaragoza, J.; Rizo, D. End-to-End Neural Optical Music Recognition of Monophonic Scores. Appl. Sci. 2018, 8, 606.
[CrossRef]

Graves, A.; Fernandez, S.; Gomez, F; Schmidhuber, J. Connectionist Temporal Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks. In Proceedings of the Proceedings of the 23rd International Conference on Machine
Learning (ICML ’06), Pittsburgh, PA, USA, 25-29 June 2006; Association for Computing Machinery: New York, NY, USA, 2006;
pp. 369-376. [CrossRef]

Calvo-Zaragoza,].; Castellanos, F]J.; Vigliensoni, G.; Fujinaga, I. Deep Neural Networks for Document Processing of Music Score
Images. Appl. Sci. 2018, 8, 654. [CrossRef]

Wick, C.; Hartelt, A.; Puppe, F. Staff, Symbol and Melody Detection of Medieval Manuscripts Written in Square Notation Using
Deel Fully Convolutional Networks. Appl. Sci. 2019, 9, 2646. [CrossRef]

Hajic, J.; Dorfer, M.; Widmer, G.; Pecina, P. Towards Full-Pipeline Handwritten OMR with Musical Symbol Detection by U-Nets.
In Proceedings of the ISMIR, Paris, France, 23-27 September 2018.

d’Andecy, V.; Camillerapp, J.; Leplumey, I. Kalman filtering for segment detection: Application to music scores analysis.
In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9-13 October 1994; Volume 1,
pp. 301-305. [CrossRef]

FuJinaga, I. Optical Music Recognition Using Projections; Faculty of Music McGill Universit: Montreal, QC, Canada, 1988.

Bellini, P,; Bruno, I.; Nesi, P. Optical music sheet segmentation. In Proceedings of the First International Conference on WEB
Delivering of Music. WEDELMUSIC 2001, Florence, Italy, 23-24 November 2001; pp. 183-190. [CrossRef]

Chang, W.Y,; Chiu, C.C.; Yang,].H. Block-based connected-component labeling algorithm using binary decision trees. Sensors
2015, 15, 23763-23787. [CrossRef] [PubMed]

Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.

Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946.
He, K.; Gkioxari, G.; Dollar, P.; Girshick, R.B. Mask R-CNN. arXiv 2017, arXiv:1703.06870.

Lin, T.; Maire, M.; Belongie, S.]J.; Bourdev, L.D.; Girshick, R.B.; Hays, J.; Perona, P; Ramanan, D.; Dollar, P,; Zitnick, C.L. Microsoft
COCO: Common Objects in Context. arXiv 2014, arXiv:1405.0312.

Eipert, T.; Herrman, F.; Wick, C.; Puppe, F;; Haug, A. Editor Support for Digital Editions of Medieval Monophonic Music. In
Proceedings of the 2nd International Workshop on Reading Music Systems, Delft, The Netherlands, 2 November 2019; pp. 4-7.
Deng, J.; Dong, W.; Socher, R.; Li, L.].; Li, K,; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009; pp. 248-255.
Kingma, D.P; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.1145/3397499
http://dx.doi.org/10.3390/app8040606
http://dx.doi.org/10.1145/1143844.1143891
http://dx.doi.org/10.3390/app8050654
http://dx.doi.org/10.3390/app9132646
http://dx.doi.org/10.1109/ICPR.1994.576283
http://dx.doi.org/10.1109/WDM.2001.990175
http://dx.doi.org/10.3390/s150923763
http://www.ncbi.nlm.nih.gov/pubmed/26393597

	Introduction
	Related Work
	Datasets
	Workflow
	Post-Processing Pipeline
	Architecture
	Layout Analysis
	Results
	Metrics
	Preliminary Experiments
	Document-Specific Fine-Tuning
	Mixed Model Training without Fine-Tuning
	Evaluation of the Contribution of the Different Post-Processing Steps
	Error Analysis

	Conclusions
	References

