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Zusammenfassung

Ferromagnetische Halbleiter (ferromagnetic semiconductors, FS) versprechen die Inte-
gration magnetischer Datenspeicherung und Datenverarbeitung auf Halbleiterbasis in-
nerhalb eines einzigen Materialsystems. Das Modellsystem für diese Klasse von Mate-
rialien ist der FS (Ga,Mn)As. Als solches ist dieses Modellsystem in den letzten Jahren
in den Mittelpunkt intensiver Forschungsbemühungen gerückt. Die Kopplung seiner
magnetischen und halbleitenden Eigenschaften durch Spin-Bahn Wechselwirkung ist
die Ursache vieler neuartiger Phänomene mit breit gefächertem Anwendungspotential
im Bereich der Spintronik. Seit der ersten ausführlichen Beschreibung des Materi-
alsystems 1998 durch H. Ohno [Ohno 98] ist das Wissen um seine experimentellen
und theoretischen Aspekte rapide gewachsen. Das Ziel dieser Arbeit ist es, eine um-
fassende Einführung in die Eigenschaften dieses Materialsystems und den technolo-
gischen Stand der Molekularstrahlepitaxie (molecular beam epitaxy, MBE), die dazu
dient (Ga,Mn)As Schichten höchster Qualität herzustellen, zu liefern. Der experi-
mentelle Teil dieser Arbeit konzentriert sich auf eine Technik, mit der es möglich ist,
lokale Kontrolle über die magnetische Anisotropie des Materials mittels lithographisch
bedingter Veränderung der Verspannung zu erreichen.

Das (Ga,Mn)As Materialsystem ist eine neue Anwendung der MBE Technologie,
die aus den späten 1960er Jahren stammt. Das erfolgreiche epitaktische Wachstum
von Halbleitern erfordert die präzise Kontrolle mehrerer Wachstumsparameter. Dazu
zählen die Temperatur der Effusionszellen, die Wachstumstemperatur, das Verhält-
nis der Materialflüsse sowie die Wachstumsrate. Wegen seiner niedrigen Löslichkeit
unter thermischen Gleichgewichtsbedingungen muss das Wachstum von (Ga,Mn)As
bei sehr niedrigen Temperaturen (270 ◦C verglichen mit 580 ◦C für GaAs) stat-
tfinden. Zu den wichtigsten Charakterisierungsmethoden des epitaktischen Wachstums
zählen in-situ Elektronenstrahlbeugung (reflection high energy electron diffraction,
RHEED) und ex-situ hochauflösende Röntgenstrahlbeugung (high resolution x-ray
diffraction, HRXRD). Ein weiteres hilfreiches Werkzeug ist die Nomarksi-Mikroskopie
zur Beurteilung der Qualität des Wachstums und einer Reihe von Oberflächendefekten,
die durch den Wachstumsprozess bedingt sind.

(Ga,Mn)As wird typischerweise unter kompressiver Verspannung auf einem GaAs
Substrat gewachsen. In der Vergangenheit lag der Schwerpunkt der Untersuchungen
auf ausgedehnten Schichten mit vergleichsweise einfacher Verspannung. Obwohl schon
seit einiger Zeit bekannt ist, dass die Verspannung des Gitters eine der treibenden
Kräfte ist, die das Verhalten der komplexen magnetischen Anisotropie von (Ga,Mn)As
bestimmen [Diet 01, Abol 01], ist die detaillierte Untersuchung der Bedeutung dieses
Parameters eine neue Entwicklung. Aktuelle Forschung, wie die Technik, die im Mit-
telpunkt dieser Arbeit steht, macht sich anisotrope Verspannungen zunutze, um Ein-
fluss auf die magnetische Anisotropie zu nehmen. Experimentell wird anisotrope
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6 Zusammenfassung

Verspannung entweder durch lithographische Strukturierung (wie in dieser Arbeit
beschrieben), oder durch piezoelektrische Kräfte erzeugt [Over 08]. In jedem Fall
ist es von zentraler Bedeutung, zu verstehen, wie die Verspannung im Inneren des
Materials verteilt ist und wie Strukturierung oder mechanische Kräfte die Verspan-
nung des Kristalls beeinflussen. Um diese Aufgabe zu Lösen, haben wir eine dreidi-
mensionale finite Elemente Simulation entwickelt. Die Software ist in der Lage, die
Elastizitätsgleichungen der klassischen Kontinuumsmechanik auf einem 3D Gitter in
einem beliebig geometrisch definierten Gebilde zu lösen. Mit diesem Werkzeug ist es
möglich, die Verspannung in komplexen Strukturen zu simulieren und diese Struk-
turen im Hinblick auf Parameter wie Ätztiefe, Aspektverhältnisse und Ausrichtung zu
den Kristallachsen zu optimieren. Eine Struktur, die einfach herzustellen ist und dabei
eine besonders große Anisotropie der Gitterverspannung in zwei orthogonalen Kristall-
richtungen aufweist, ist ein schmaler aber sehr langer Streifen. In seiner einfachsten
Form wird die anisotrope Verspannung durch selektive Relaxation des komprimierten
Gitters der(Ga,Mn)As Schicht senkrecht zur Streifenachse erreicht. Ein komplizierter
Schichtaufbau entsteht durch das Einfügen einer hoch verspannten (In,Ga)As Schicht
unter dem (Ga,Mn)As. Mittels dieser Stressorschicht ist es möglich, in der (Ga,Mn)As
Schicht tensile Verspannung senkrecht zur Streifenrichtung zu induzieren. Entlang des
Streifens bleibt der pseudomorphe (kompressiv verspannte) Zustand bestehen.

Die Genauigkeit der Vorhersagen der Verspannungssimulation wurde mit zwei hoch-
auflösenden Röntgenbeugungsmethoden an verschiedenen Streifenfeldern bestätigt. Es
hat sich gezeigt, dass die Streifen eine deutliche Veränderung der magnetischen Kon-
figuration als Reaktion auf die durch die Strukturierung hervorgerufene anisotrope
Verspannung zeigen. Sowohl SQUID als auch Magnetotransport Messungen offen-
baren, dass bei [100] orientierten Streifen die in-plane biaxiale Anisotropie der ur-
sprünglichen Schicht durch eine einzige globale weiche Achse entlang der Streifen-
richtung ersetzt wird. In Streifen, die entlang der [11̄0] Richtung orientiert sind,
beobachten wir, dass die weiche Achse von ihrer ursprünglichen Position in der Mutter-
schicht in Richtung der Streifenachse rotiert. Dieses Verhalten wird durch Ausheizen
der Probe für mehrere Stunden zur Erhöhung der Ladungsträgerdichte weiter ver-
stärkt. Durch Vergleich zwischen verschiedenen Streifen sowie der Berechnung der
zu erwartenden Größenordnung kann Formanisotropie als nennenswerter Beitrag zur
magnetischen Anisotropie von (Ga,Mn)As ausgeschlossen werden. Das beobachtete
Verhalten für beide Streifenrichtungen kann auch theoretisch nachvollzogen werden.
Die magnetische Anisotropie kann berechnet werden indem die in einem k · p For-
malismus berechneten Valenzbänder (unter Berücksichtigung von Spin-Bahn Wech-
selwirkung sowie der Verspannung) im 3D k-Raum bis zur Fermienergie aufgefüllt
werden. Wenn man die resultierende Energielandschaft für einen entlang [100] orien-
tierten Streifen für zunehmende Verspannungszustände aufträgt, zeigt sich, dass die
weiche Achse senkrecht zur Streifenrichtung durch eine harte Achse ersetzt wird. der
Übergang zu einer einzigen unaxialen weichen Achse ist abgeschlossen, wenn etwa 50%
der kompressiven Gitterverspannung relaxiert ist. In allen gezeigten Streifenstrukturen
wird dieser Wert überschritten. Wir präsentieren ebenfalls ein einfaches Modell, das
qualitativ das Anisotropieverhalten beider Streifenrichtungen beschreibt. Es basiert
auf der Berechnung der magnetostatischen Energie [Papp 07b], die modifiziert wird,
um einen zusätzlichen Verspannungsterm zu berücksichtigen.

Der abschließende Teil dieser Arbeit zeigt ein Beispiel für eine Anwendung der
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Anisotropiekontrolle in (Ga,Mn)As in der From eines nichtflüchtigen Speicherelements,
das ausschließlich auf Halbleiterbasis operiert. Zwei orthogonale Streifen werden über
eine Verengung and einer Ecke miteinander verbunden. Vier unterschiedliche Mag-
netisierungszustände können über die Kontrolle der Ausrichtung der Magnetisierung
in den Streifen ‘geschrieben’ werden. Das Auslesen des Speichers erfolgt durch das
Messen des Spannungsabfalls über die Verengung. Höher entwickelte Versionen dieses
Bauteils sind bereits hergestellt und werden untersucht. Wir erwarten, dass die Tech-
nik der lokalen Anisotropiekontrolle mittels lithographisch induzierter Relaxation ein
wertvolles Werkzeug in der Entwicklung zukünftiger Generationen von Halbleiter-
bauteilen sowie der Erforschung der Grundlagen des (Ga,Mn)As Materialsystems dar-
stellen wird.
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Summary

The great promise of ferromagnetic semiconductors (FS) is the integration of magnetic
memory functionality and semiconductor information processing into one material sys-
tem. The model system for this class of materials is the FS (Ga,Mn)As. As such, it
has become the focus of intense research over the past years. The spin-orbit mediated
coupling of magnetic and semiconductor properties in this material gives rise to a large
number of phenomena with a vast scope of possible applications in the field of spin-
tronic devices. Ever since the first thorough description of the material system by H.
Ohno in 1998 [Ohno 98], the understanding of both its experimental and theoretical
aspects has grown rapidly. The objective of this thesis is to give a comprehensive
introduction into the properties of the material system and the current technological
state of molecular beam epitaxy (MBE) by which highest quality (Ga,Mn)As layers
are produced. The experimental part of this work focuses on a technique to attain
local control over the magnetic anisotropy of the material by means of lithographically
induced strain engineering.

The technology of MBE predates its use in the (Ga,Mn)As material system and
originates in the late 1960’s. Successful epitaxial growth of semiconductors requires
precise control and understanding of several critical growth parameters such as the
source cell temperature, the growth temperature, the ratio of the material fluxes,
and the growth rate. Due to its low solubility at thermal equilibrium, the growth of
(Ga,Mn)As has to take place at very low temperatures (270 ◦C compared to 580 ◦C
for GaAs). The characterization methods most closely related to epitaxial growth are
in-situ reflection high energy electron diffraction (RHEED) and ex-situ high resolution
x-ray diffraction (HRXRD). Nomarski microscopy is another helpful tool in identifying
a number of surface defects related to the growth procedure and gauging the quality
of epitaxial layers.

(Ga,Mn)As is typically grown on GaAs wafers, which puts the material under
compressive strain. Traditionally, a lot of research on this material was focused on
extensive layers with a comparatively simple strain distribution. Although it has
been known for some time, that lattice strain is one of the driving forces behind the
complex, anisotropic magnetic behavior of (Ga,Mn)As [Diet 01, Abol 01], a detailed
investigation on its influence is only a recent development. Current research, such as
the technique which is the focus of this thesis, takes advantage of anisotropic strain
to influence the magnetic anisotropy. Experimentally, anisotropic strain is either in-
duced by lithographic pattering (the approach taken in this work) or by piezoelectrical
forces [Over 08]. In either case, it is imperative to understand how the strain in the
material is distributed and how patterning or mechanical forces on the crystal affect
the strain. For this task, we have developed a three-dimensional finite element simula-
tion technique. The simulation software is capable of solving the elasticity equations of
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10 Summary

classical continuum mechanics on a 3D grid in an arbitrarily defined geometry. With
this tool we can predict the strain in complex structures and optimize them with re-
spect to parameters such as etch depth, aspect ratios, and alignment with respect to
crystal axes. One structure which is easy to fabricate and offers a large anisotropy in
lattice strain for two orthogonal crystal directions is a narrow but very long stripe.
In its most simple form, the anisotropic strain is caused by selective relaxation of
the compressive strain of the (Ga,Mn)As layer perpendicular to the stripe axis. A
more sophisticated setup is the inclusion of a highly strained (In,Ga)As layer below
the (Ga,Mn)As. With this stressor layer it becomes possible to induce tensile strain
perpendicular to the stripe direction into the (Ga,Mn)As layer, while still retaining
the pseudomorphic (compressively strained) condition along the stripe.

The strain predictions of the finite element simulations are verified to be accurate
by two HRXRD techniques on various stripe arrays. Magnetically, the stripes show a
very clear response to the patterning induced strain anisotropy. Both SQUID and mag-
netotransport measurements reveal a replacement of the in-plane biaxial anisotropy of
the as-grown layer by a single global uniaxial easy axis along the stripe direction for
[100] oriented stripes. For stripes oriented along the [11̄0] direction, the easy axis is
tilted away from its original position in the parent layer towards the stripe direction.
This behavior is strengthened by annealing the sample for several hours to increase the
carrier concentration. By comparison between different stripes as well as calculating
its expected contribution, we can rule out shape anisotropy as a significant force in
the anisotropy behavior in (Ga,Mn)As. The observations for both stripe directions
can also be explained theoretically. After calculating the band structure in a k · p
formalism (taking into account the spin-orbit coupling and strain), it is possible to
determine the magnetic anisotropy by filling up all available bands in the 3D k-space
up to the Fermi energy. When the resulting energy landscape for a [100] oriented stripe
is plotted for different sets of increasing strain values, we observe that the easy axis
perpendicular to the stripe direction is replaced by a hard axis. A single uniaxial easy
axis appears when around 50% of the compressive lattice strain is relaxed, which is
easily achieved in all the presented stripe structures. We also present a simple model
which qualitatively describes the anisotropy behavior for both stripe alignments. The
model is based on magnetostatic energy calculations [Papp 07b], modified to take an
additional strain term into account.

The final section of this thesis shows an example of an application of engineered
anisotropies in (Ga,Mn)As as a non-volatile all-semiconductor memory storage device.
Two orthogonal nanobars are connected via a narrow constriction. Four different
magnetization states can be ‘written’ in the form of magnetization alignment in the
bars. Readout of the device occurs by measuring the voltage drop over the constriction.
More sophisticated versions of this device are under investigation and we expect that
the technique of lithographically engineered strain relaxation will prove to be a very
valuable tool for future device applications as well as fundamental research in the
(Ga,Mn)As material system.



Chapter 1

Introduction

The event considered to be the birth of spintronics was the discovery of the giant
magnetoresistance (GMR) effect in 1988 [Baib 88], a feat honored by the award of
the Nobel Prize in Physics in 2007. Since then, magnetoelectronic components with
functionalities based on the magnetic properties of the device have come to play an
integral role in contemporary mainstream and commercially relevant electronics, for
example with the introduction of the first GMR based hard drive read head by IBM in
1997 [Thei 03]. A very recent development in spin-electronics is the magnetoresistive
random access memory (MRAM), which realizes non-volatile data storage (data is
not lost when not powered) [Aker 05]. This new technology has the potential to
equal commonly used volatile random access memory (RAM) in speed and capacity,
allowing for computers that could be turned on and off almost instantly, bypassing the
slow start-up and shutdown procedure. However, MRAM storage devices make use of
metallic magnetic elements to store the data, while semiconductor devices are used to
process the information.

The vast potential of bridging this gap and uniting data processing, storage, logic
operations, and information communication within one material technology has been
highlighted in a recent review article [Awsc 07]. Several advantages speak for the de-
velopment of a hybrid spintronic device. Conventional information processing devices
operate by the controlled motion of small pools of charge, where the difference between
‘0’ and ‘1’ is defined by the location of a small quantity of charge. To switch between
the two states, the barrier separating the states must be overcome. Information en-
coded in the electron spin orientation, rather than the position of a pool of charge is
not subject to this switching energy. Only a small magnetic field needs to be applied
to rotate the orientation of the spins, resulting in a reduction of the energy required
in the operation of the device.

Operation speed is another essential concern for next-generation information pro-
cessing devices. In charge based devices, the processing speed is limited by the capac-
itance of the device and the drive current. In a semiconductor spintronic device on
the other hand, the speed limitations are given by the typical precession frequencies
of electron spins in the range form GHz to THz.

A new class of materials, ferromagnetic semiconductors (FS), promises not only to
realize these advantages, but also to open the door to a plethora of novel effects with
possible device applications. The prototypical FS, on which has been the focus of spin-
tronic research over the past years is (Ga,Mn)As. The material is obtained by doping of
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12 1. Introduction

the standard III-V semiconductor GaAs with magnetic Mn acceptors [Ohno 98]. The
strong spin-orbit mediated coupling of magnetic and semiconducting properties in this
material [Diet 00] gives rise to many novel transport-related phenomena. Previously re-
ported device concepts include strong anisotropic magnetoresistance (AMR) [Baxt 02],
planar Hall effect [Tang 03], tunneling AMR (TAMR) [Goul 04, Rüst 05, Papp 06] and
Coulomb blockade AMR [Wund 06].

To date, the low ferromagnetic transition temperature limits the use of FS to
laboratory applications. For (Ga,Mn)As, the highest obtained Curie temperature is
180 K [Olej 08]. Even though the Curie temperature in this material may never reach
room temperature, the insight gained about the aforementioned phenomena is expected
to apply to any FS material with strong spin-orbit coupling. Promising material
research is ongoing worldwide in the search for alternate room temperature FS.

Most previous demonstrations have been based on structures that have the same
magnetic properties, inherited from the unstructured (Ga,Mn)As layer, throughout
the device. Recent improvements in lithographic capabilities have opened the way for
nanoscale structural patterning of (Ga,Mn)As layers. With this achievement, it has
become possible to access locally induced strain relaxation as a means of influencing
the magnetic anisotropy properties of the material. This greatly enhances the scope
of possible device paradigms, as it allows for devices where the functional element
involves transport between regions with different, independently engineered magnetic
anisotropy properties.

The objective of this thesis is twofold. The main focus lies on presenting a compre-
hensive study on the technique of local anisotropy control by strain engineering. Also,
the manufacturing of (Ga,Mn)As samples by molecular beam epitaxy (MBE) will be
described in detail, including a discussion of all factors which need to be considered in
the epitaxial growth of this material system. The outline of this thesis is as follows.

Chapter 2 encompasses a general introduction into the (Ga,Mn)As material system,
beginning with the basic concepts of doping and growth-induced lattice strain. The
occurrence of ferromagnetism and the magnetic anisotropy properties are explained.
Furthermore, an overview of the factors playing a role in k · p band structure calcula-
tions in this material is provided. The chapter closes with a remark on the influence
of annealing on the material system.

Chapter 3 focuses on the epitaxial growth of (Ga,Mn)As, with a detailed examina-
tion of the relevant growth parameters and their influence on the material properties.
The most important in-situ (RHEED) and ex-situ (HRXRD) characterization tech-
niques are addressed.

Chapter 4 supplies the groundwork needed to understand the structural effect of
lithographic nanopatterning of (Ga,Mn)As layers on the crystal. A set of formulas is
derived for a 3D finite element simulation. Using the results of such simulations, we
examine the influence of several geometrical parameters on the strain relaxation of a
stripe structure, either aligned along the [100] or [11̄0] crystal direction.

Chapter 5 contains the characterization of a series of stripe samples, beginning with
the structural characterization by HRXRD and GIXRD. The magnetic properties are
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investigated with SQUID and magnetotransport measurements, revealing the large im-
pact of anisotropic strain on the magnetic properties of the stripes. Finally, we present
a theoretical model based on k·p calculations and magnetostatic energy considerations
to explain the influence of strain on the magnetic anisotropy of (Ga,Mn)As.

Chapter 6 closes the gap between fundamental studies on strain relaxation in simple
stripe structures and device application. Two orthogonal nanobars are electrically cou-
pled via a constriction. The resulting device can act as a nonvolatile memory storage
by making use of the relative magnetization states in the stripes. We investigate the
strain distribution in the constriction region with simulations and discuss its influence
on the constriction properties.
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Chapter 2

The (Ga,Mn)As Material System

The ternary material (Ga,Mn)As belongs to the class of so called dilute magnetic
semiconductors (DMS). This term is derived from the nature of magnetism in these
materials, which will be discussed shortly. Fabrication of this material is done by
molecular beam epitaxy at a temperature significantly lower (between 230 ◦C and
270 ◦C) than conventional GaAs MBE at around 600 ◦C. During this low-temperature
growth, typically 2–6% of Mn atoms are incorporated into the GaAs lattice, retaining
the zinc blende structure of GaAs. This process can happen in two distinct ways.
The majority of Mn atoms is incorporated substitutionally into the GaAs lattice, as
shown in Fig. 2.1, replacing a Ga atom at its lattice site. Since Mn is not isovalent
with Ga, these atoms act as acceptors by contributing one hole to the GaAs valence
band, giving the material its p-type doping character. A smaller fraction of atoms is
incorporated at interstitional lattice sites. In contrast to the substitutional atoms, they
act as double donors which compensate some of the carriers introduced by the majority
p-type doping. A very small number may also incorporate as antisites, replacing an
As atom and forming another double donor. However, these atoms play no significant
role in determining the (Ga,Mn)As properties.

Figure 2.1: Zinc blende GaAs lattice with a substitutional Mn atom at a Ga lattice site.

Adding Manganese to the GaAs crystal increases the lattice constant a of the
resulting material due to the larger atomic radius of Mn compared to Ga. The increase

15



16 2. The (Ga,Mn)As Material System

Figure 2.2: The exitaxial growth of (Ga,Mn)As on GaAs (left side) or (In,Ga)As (right
side) leads to either compressive or tensile strain in the plane of the layer, as the (Ga,Mn)As
grows pseudomorphically on the respective substrate.

in lattice constant due to the admixture of Mn is proportional to the amount of Mn
incorporated [Scho 01]. The difference in lattice constant between two layers is given
by the lattice mismatch f , defined as

f =
alayer − asubstrate

asubstrate

. (2.1)

During epitaxial growth, the first monolayers of any material are lattice-matched (pseu-
domorphic) to the underlying crystal structure. As the thickness of the growing layer
increases, strain energy is accumulated as more and more deposited material is added
to the lattice-matched crystal. At some mismatch-dependent critical layer thickness,
strain relaxation begins with the formation of lattice defects, which leads to degrada-
tion and roughening of the growth front as the lattice constant of subsequent layers
approaches the unstrained value of the bulk material. The most general definition of
strain is the relative change in one dimension of a sample, e = ∆l/l. For the case of
epitaxial layers, we define the strain as the difference in lattice constant of a strained
layer to the bulk lattice constant of the unstrained material:

e =
astrained − arelaxed

arelaxed

. (2.2)

From this equation we can immediately see, that a value of e < 0 indicates compressed
material, while e > 0 results from a material under tensile strain. This growth-induced
strain present in (Ga,Mn)As can significantly influence its magnetic properties and can
act in two different ways, as illustrated in Fig. 2.2:

• Compressive strain in the plane of the layer is the result of growing (Ga,Mn)As on
a substrate with a smaller lattice constant than the bulk value of the (Ga,Mn)As
layer, usually GaAs.

• Tensile strain is caused by growth of (Ga,Mn)As on a substrate with a larger
lattice constant. Examples are InP or thick, relaxed (In,Ga)As buffers.
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A deformation ∆d in one direction of the sample due to strain leads to a corre-
sponding deformation ∆l in the perpendicular direction. The magnitude of this effect
is given by the Poisson ratio ν of the material, which is defined by

ν =
∆d/d

∆l/l
. (2.3)

Here, d and l correspond to the width and length, that an arbitrary volume of material
would assume in the absence of strain. The Poisson ratio for GaAs is ν = 0.31, which
will also be used for all other layers in this thesis containing only small percentages of
incorporated atoms. It is important to keep in mind, that the above definition is only
true for deformations in 〈100〉 directions. A more general definition will be introduced
in Section 5.1.1.

2.1 Ferromagnetism in (Ga,Mn)As

As mentioned earlier, the primary incorporation mechanism for Mn into a GaAs crys-
tal is the substitution of a Ga atom. In this case, the Mn atoms adopt a Mn2+ valence
configuration which leads to localized magnetic moments of spin S = 5/2. Two such
localized moments are coupled via an antiferromagnetic exchange mechanism. How-
ever, it is a rather weak coupling due to the high dilution of the Mn dopants and leads
to little or no magnetic ordering on its own.

More important is the coupling between the localized moments and the holes pro-
vided by the shallow Mn acceptors. This coupling is also antiferromagnetic, but the
valence band holes are not strongly localized on a single impurity and tend to spread
out over many lattice sites. As a consequence, they can interact with a large number of
Mn ions which leads to an alignment of the Mn magnetic moments within the extend
of the hole spin wavefunction. This alignment of the magnetic moments is antipar-
allel with respect to the spin holes and thus parallel to each other, creating regions
of ferromagnetic ordering. The transition between isolated regions of aligned domains
and long range ferromagnetic ordering takes place around a Mn concentration of 0.5%,
when a sufficient number of carriers (holes) is present to mediate the alignment over
large distances.

The result of the above leads to an important implication for the Curie temperature,
below which ferromagnetic ordering is observed. TC is not only dependent on the
absolute concentration of Mn. The method of incorporation also plays a critical role.
In particular, the Curie temperature is given in the Zener model by [Diet 00]:

TC = CNMnp
1/3. (2.4)

C is a material constant, NMn the substitutional Mn concentration and p the hole
carrier concentration. To reach a high value of TC , it is therefore not only necessary to
optimize the amount of substitutional Mn, but also maximize the free hole population.
Interstitial Mn atom double donor states resulting from imperfect growth thus do not
only subtract from the amount of substitutional atoms, but also compensate holes
which are critical for the mediation of the ferromagnetic ordering.
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2.2 Band Structure Calculations in (Ga,Mn)As

The most widely used theoretical approach to describe ferromagnetism in zinc blende
magnetic semiconductors in general and (Ga,Mn)As in particular is the p-d mean
field Zener model description of carrier mediated ferromagnetism. This model was
originally proposed by T. Dietl in 2000 [Diet 00] and subsequently developed more
thoroughly by [Diet 01] and [Abol 01]. A detailed treatise on this subject can also be
found in [Schm 06].

We are mainly interested in the valence band structure around the Γ-point (k = 0),
which is why we will use a k · p technique, which is essentially a theory, that is exact
to the order of k2 near Γ [Lutt 55]. All included effects need to be expressed in the
form of Hamiltonians, which we will discuss individually in the following.

Kohn-Luttinger Hamiltonian

The first contribution is the band structure of pure GaAs, without the inclusion of
Mn atoms into the lattice. Its valence band structure for the first six valence bands
is given by the 6×6 Kohn-Luttinger Hamiltonian HKL, whose full form is provided in
Appendix A.1. It contains the three phenomenological Kohn-Luttinger parameters,
γ1, γ2, and γ3. Their values are accurately known for common semiconductors and in
GaAs are (γ1, γ2, γ3) = (6.85, 2.1, 2.9)[Vurg 01]. HKL takes into account the spin-orbit
interaction Hso for the orbital angular momentum L and the spin S. This interaction
can be expressed as

Hso = λ L · S, (2.5)

where λ is the spin-orbit coupling. The eigenfunctions of Hso are eigenstates of the
total angular momentum J = L + S. For the quantum numbers l = 1 and s = 1

2
,

j can take the values 3
2

and 1
2
. At the zone center, the spin-orbit interaction splits

these two states by a factor ∆so = 3λ
2

, which is determined experimentally. The widely
accepted value for the split-off energy gap in GaAs is ∆so = 0.341 eV[Vurg 01]. This
splitting leaves the fourfold degenerate heavy-hole (hh) plus light-hole (lh) bands of
Γ8 symmetry with j = 3

2
and a doubly degenerate split-off (so) band of Γ7 symmetry

with j = 1
2
. The pure Kohn-Luttinger band structure dispersion along kx for the first

six valence bands of GaAs is shown in Fig. 2.3 (a).

pd Exchange Interaction

With the incorporation of Mn atoms into the lattice, we need to consider the exchange
interaction between the valence band holes and the localized moments of the Mn2+

acceptors. We assume that the effect of the 5d-electrons in the Mn core on the holes
can be approximated by an effective field which is proportional to the magnetization
M and couples to the spin angular momentum S of the valence band holes:

Hpd = 6Bg M · S (2.6)

The coupling constant Bg characterizes the magnitude of the band splitting due to
the pd interaction. It has a positive value for antiferromagnetic coupling, which is the
case in (Ga,Mn)As, and a negative value for ferromagnetic coupling. In this work we
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Figure 2.3: Calculated valence band structures with dispersion along kx. (a) Band structure
of GaAs obtained by diagonalizing HKL. (b) Band structure of unstrained (Ga,Mn)As taking
into account pd exchange interaction (HKL + Hpd). The magnetization points in x-direction.
(c) Biaxially compressively strained (Ga,Mn)As without split-off band (HKL + Hpd + He).
Assumed strain values: exx = eyy = −2.60 · 10−3; ezz = 2.34 · 10−3. The carrier density is
assumed to be 4 · 1020 cm−3.
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use a value of Bg = 15 meV, which gives rise to a total valence band splitting at Γ of
90 meV. The magnetization M is a classical vector in the mean field approximation :

M =

 Mx

My

Mz

 = M

 sin θ cos φ
sin θ sin φ

cos θ

 (2.7)

The angles θ and φ represent the direction of magnetization. For the 6 band model,
Hpd reads

Hpd = Bg



3Mz

√
3M− 0 0

√
6M− 0√

3M+ Mz 2M− 0 −2
√

2Mz

√
2M−

0 2M+ −Mz

√
3M− −

√
2M+ −2

√
2Mz

0 0
√

3M+ −3Mz 0 −
√

6M+√
6M+ −2

√
2Mz −

√
2M− 0 −Mz −M−

0
√

2M+ −2
√

2Mz −
√

6M− −M+ Mz


(2.8)

where
M+ = Mx + iMy M− = Mx − iMy

and Mα is the component of the magnetization unit vector in α-direction.
The effect of the spin orbit coupling is that the states are split by the projection

mj of the total angular momentum J on the magnetization axis. For states 1 and 4
(the original hh states, now labeled in energetic order at Γ), the spin is completely
aligned with the magnetization axis and receives the full strength of Hpd, which is
±3Bg. States 2 and 3 (original lh) show a mixing of spin states and consist of one
third (two thirds) spin-down and two thirds (one third) spin-up, respectively. The
energy of the four states, labeled in decreasing energetical order, is therefore:

E1 = 3Bg (2.9)

E2 =
1

3
(−3Bg) +

2

3
(3Bg) = Bg

E3 =
2

3
(−3Bg) +

1

3
(3Bg) = −Bg

E4 = −3Bg

Fig. 2.3 (b) shows the effect of the combined HKL + Hpd band structure. The original
heavy holes are split by 90 meV at the Γ-point, while the splitting of the light hole
bands is 30 meV, which leads to a crossing of the lh and hh bands around a k-value of
kx = 0.18. The spin-orbit split-off band is also split by 30 meV by the pd interaction.
In the following calculations, we will neglect the split-off band and limit ourselves to
a four band model. We can do this because the spin-orbit splitting (341 meV) is large
enough to raise the split-off band above the Fermi energy of (Ga,Mn)As, which will
leave it unoccupied by holes.

Lattice Strain

The final contribution to the band structure which we need to consider is the influence
of lattice strain, which is an intrinsic property of (Ga,Mn)As due to the epitaxial
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growth on a substrate with different lattice constant. We use the Hamiltonian He, as
described in [Bir 74], to model the strain contribution to the bands. Its full form is
given in Appendix A.2. This representation takes the shear strain into account, which
is usually neglected for pseudomorphic layers, but plays a role in the [11̄0] oriented
stripes as will be shown in Chapter 4.

The valence band structure (without split-off band) of (Ga,Mn)As displayed in
Fig. 2.3 (c) was calculated by diagonalizing the sum of all three Hamiltonians, HKL +
Hpd + He. For this band structure we assume a strain corresponding to a pseudomor-
phic layer with a Mn concentration of 5.4 %. The influence of biaxial strain in the
(Ga,Mn)As layer is obvious when comparing this figure with Fig. 2.3 (b), which corre-
sponds to unstrained (Ga,Mn)As. We note that the light hole band lh1 and the heavy
hole band hh2 switch their character in the region of the anticrossing point around
kx = 0.15. Therefore, the labeling of the bands as hh and lh is no longer valid in this
band structure, as the character of a band is not preserved over the whole Brillouin
zone. Instead, we will use an energetic ordering, starting with the highest energy band
at the zone center.

Another effect of strain is a small energetic shift of the bands, which changes the
amount of splitting due to pd exchange interaction. In Fig. 2.3 (c), at Γ, this shift is

∆E1 = 9.65 meV, ∆E2 = −8.29 meV, ∆E3 = −9.22 meV, ∆E4 = 7.91 meV.

Both original hh bands are shifted to higher energies, while the original lh bands are
shifted to lower energies.

2.3 Magnetic Anisotropy

The anisotropy of the crystal is linked to the magnetic properties of the semiconductor
via spin-orbit coupling. Considering the Td symmetry of the zinc blende host lattice,
the theoretically predicted magnetocrystalline anisotropy of bulk (Ga,Mn)As is either
cubic, with the three symmetrically equivalent 〈100〉 crystal directions as the preferred
axes of magnetization (easy axes), or easy axes along the 〈111〉 directions. Experimen-
tally, easy axes along the 〈111〉 directions have never been observed. However, given
that (Ga,Mn)As is grown epitaxially, in practice, one never deals with the pure bulk
properties. As mentioned earlier, the substrate on which the layer is grown has a
significant influence on its crystal structure via growth strain and therefore has an
impact on its anisotropy.

It is possible to obtain the magnetic anisotropy from the k · p band structure
calculations discussed in the previous section. For this, one needs to calculate the
band structure over the whole 3D k-space and populate the bands with holes (as-
suming a known carrier concentration) from the valence band edge up to the Fermi
energy. Since the bands do not have rotational symmetry around the z-axis in k-space,
some in-plane directions will have lower energy states than others. For compressively
strained (Ga,Mn)As, these are the in-plane 〈100〉 directions, which will therefore be
the preferred directions of magnetization. In the magnetic anisotropy picture, these
directions represent the biaxial easy axes of magnetization.

The case of tensile strained (Ga,Mn)As, achieved by growth on relaxed (In,Ga)As
buffers (with ∼8% In), leads to an out of plane easy axis and has been investigated
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in detail by [Liu 05] and [Xian 05]. Instead of explicitly calculating the magnetic
anisotropy from the band structure, we will pursue a phenomenological description in
the following.

Compressively strained (Ga,Mn)As has a lowered symmetry D2d. For this case,
an easy axis out of the plane has also been observed for low doped layers at very low
temperatures [Sawi 04], with the easy axis shifting into the plane for temperatures
closer to TC . However, for high hole concentration samples used in this work, the
layers usually show a strong out of the plane hard axis [Sawi 04]. For these samples,
the easy axis is found in the plane of the sample, but exhibits a complex, tempera-
ture dependent anisotropy behavior resulting from the interplay of three anisotropy
components [Goul 04, Papp 07]:

• The strongest biaxial component yields easy axes along [100] and [010].

• A uniaxial anisotropy term with easy axes along [110] or [1̄10].

• A much smaller uniaxial contribution with easy axes along [010] or [100].

It has been theoretically predicted by [Call 66] that the biaxial anisotropy scales with
the magnetization as M4 while the uniaxial goes as M2. As a result, the dominant
anisotropy term changes from biaxial to uniaxial as the temperature approaches TC

and M decreases [Wang 05]. As shown by K. Pappert et. al. [Papp 07b], by sum-
ming up the anisotropy terms of different symmetry, the magnetostatic energy E of
a magnetic domain with magnetization orientation ϑ with respect to the [100] crystal
direction in the layer plane can be expressed as:

E =
Kcryst

4
sin2(2ϑ)+Kuni[1̄10] sin

2(ϑ−135◦)+Kuni[010] sin
2(ϑ−90◦)−MH cos(ϑ−ϕ).

(2.10)

The first term describes the biaxial crystalline anisotropy contribution, the second and
third term the uniaxial contributions, and the last term is the Zeeman energy, where
ϕ is the angle between an external magnetic field and the magnetization direction.
The origin of both uniaxial terms is not yet fully understood. While the growth strain
breaks the symmetry between in plane and out of plane, no clear mechanism for the
symmetry breaking of the in plane 〈110〉 and 〈100〉 directions has been found to date. It
is suspected, that surface reconstruction effects on the GaAs buffer surface [Welp 03,
Welp 04] or finite thickness of the layer and a difference in the substrate/layer and
layer/air interface play a role in the appearance of the 〈110〉 anisotropy contribution.

Plotting the total magnetostatic energy (see Fig. 2.4) reveals the energy landscape
in the absence of external fields. For the values of the anisotropy constants, the typical
ratio of Kcryst : Kuni[1̄10] : Kuni[010] = 100 : 10 : 1 has been used [Goul 08]. The valleys
of the energy curve mark the position of the easy axes. Kuni[1̄10] affects the difference
in height of the energy maxima, while Kuni[010] influences the minima of the curve.

From the above, it is obvious that strain plays a critical role in determining the
anisotropy behavior of (Ga,Mn)As. To investigate how strain, and strain relaxation
in particular, affects the anisotropy in (Ga,Mn)As nanostructures is the main focus of
this work and will be discussed extensively in later chapters.
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Figure 2.4: Magnetostatic energy landscape at zero field (thick black line) of epitaxial
(Ga,Mn)As. The three anisotropy components are plotted as thin lines (red - biaxial; blue -
uniaxial along [1̄10]; black - uniaxial along [010]).

An important quantity in this context is the magnetic field needed to force the
magnetization parallel to an external field in the hard axis direction, which is called
the anisotropy field Ha. It is a measure of the anisotropy strength and can be calculated
from Eqn. (2.10) using the definition of the anisotropy field: Ha is the strength of a
field along the hard axis (here 45◦) needed to suppress the local minima along the easy
axes.

Ha =
2Kcryst

M
(2.11)

2.3.1 Transport Measurements and AMR

The method of choice to determine the anisotropy constants in Eqn. (2.10) are mag-
netotransport measurements. To investigate transport properties, we use Hall-bar-like
structures, where the longitudinal and transverse four probe resistance can be recorded
as a function of an applied magnetic field. Thorough analysis of the obtained data is
achieved by the recently developed ‘anisotropy fingerprint’ technique [Papp 07], which
consists of taking magnetotransport measurements for magnetic fields swept in multi-
ple directions.

Ferromagnets in general exhibit anisotropic transport properties. In the following,
we will discuss the special case of the ferromagnetic semiconductor (Ga,Mn)As. This
material system shows a strong anisotropic magnetoresistance (AMR) effect in the
sense, that the resistivity for a current flow perpendicular to the magnetization of the
material is larger than parallel to the magnetization [Baxt 02]. The resistivity ρ is
thus no longer a number, but rather a tensor, and Ohm’s law relating the electric field
E to the current J can be expressed with the electric field broken up in components
parallel and perpendicular to the magnetization M [Jan 57, McGu 75]:

E = ρ‖J‖ + ρ⊥J⊥ (2.12)
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Figure 2.5: (a) Simulation of a magnetoresistance scan along φ = 70◦. The magnetization
(blue arrows) undergoes two switching events Hc1 and Hc2, corresponding to two subsequent
90◦ domain wall propagation events. (b) Conversion of the magnetoresistance scan into a
sector of a polar plot. (c) Simulation of a full 360◦ resistance polar plot composed of multiple
single scans. The red arrow indicates the direction of current flow.

A projection onto the current path gives the longitudinal resistivity ρxx

ρxx = ρ⊥ − (ρ⊥ − ρ‖) cos2(ϑ), (2.13)

where ϑ is the angle between M and J. If the magnetization in a Hall bar sample is
rotated in the sample plane by a strong external magnetic field, a sinusoidal behavior
of the longitudinal resistance Rxx with respect to the field angle is thus expected.

2.3.2 Anisotropy Fingerprints

In the process of compiling an anisotropy fingerprint, a number of four terminal longi-
tudinal resistance measurements are performed (for details on the Hall bar geometry,
see [Goul 08]). For each scan, the magnetic field is swept from −300 to +300 mT
along a given direction with an angle φ to the current direction. This procedure is
then repeated for multiple angles. Fig. 2.5 (a) shows a simulation of such a scan for
the case of φ = 70◦. At high negative fields, the magnetization is forced along the field
direction. As the field decreases, M relaxes through Stoner-Wohlfarth rotation until
it is aligned with the closest easy axis, which is perpendicular to the current direction
in this case. At positive fields, we observe two switching events, labeled Hc1 and Hc2,
which are associated with the two sequential 90◦ domain wall nucleation/propagation
events which account for the magnetization reversal in this material [Welp 03]. In
order to analyze the data, the positive half field of each measurement is converted to a
sector of a polar plot as shown in Fig. 2.5 (b). The two switching events, indicated in
the figure, show up as abrupt color changes. A compilation of all sectors representing
a full 360◦ revolution produces an anisotropy fingerprint resistance polar plot such as
the one simulated in Fig. 2.5 (c).

From this polar plot, it is possible to identify all three anisotropy constants in
Eqn. (2.10). If we consider the case of a purely biaxial anisotropy without uniaxial
contributions, the inner region of the polar plot in Fig. 2.5 (c) would take the form of
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Figure 2.6: Sketches of the shape of the inner region of an anisotropy fingerprint for (a)
a sample with only the biaxial crystalline anisotropy resulting in easy axes along [100] and
[010], (b) a sample with biaxial plus a [1̄10] uniaxial easy axis and (c) a sample with a biaxial
plus a [010] uniaxial easy axis.

a perfect square such as the one simulated in Fig. 2.6. The corners of the square are
along the easy axes and the length of the half diagonal is given by ε, the domain wall
nucleation energy. The inclusion of a uniaxial anisotropy bisecting two of the biaxial
easy axes tilts the resulting easy axis towards the direction of the uniaxial anisotropy
by an angle δ [Goen 05] and elongates the square into a rectangle as simulated in
Fig. 2.6 (b). The strength of the uniaxial anisotropy constant in the [1̄10] direction
Kuni[1̄10] relative to the biaxial anisotropy constant Kcryst can be extracted from the
angle δ by the relationship given by [Papp 07c]:

δ = arcsin

(
Kuni[1̄10]

Kcryst

)
. (2.14)

In practice it is often more convenient to work with the aspect ratio of the width W to
the length L of the rectangle, instead of the angle δ, which is related to the anisotropy
terms as:

Kuni[1̄10]

Kcryst

= cos

(
2 arctan

(
W

L

))
. (2.15)

If a uniaxial anisotropy is instead added parallel to one of the uniaxial easy axes, an
asymmetry arises in the energy required to switch between the two biaxial easy axes.
As shown in Fig. 2.6 (c), the inner pattern is then comprised of parts of an inner
and an outer square. The difference in the length of their half diagonal is a measure
of the [010] anisotropy constant Kuni[010]. Due to mixing of the anisotropy terms, a
deformation of the fingerprint near the corners of the rectangle is commonly observed.
Therefore it is often easier to identify the presence of a [010] uniaxial easy axis by
determining the spacing between the sides of the square (or rectangle in the case that
a [1̄10] uniaxial term is also present), as indicated by the yellow line in Fig. 2.6 (c).
The length of this line is equal to

√
2Kuni[010].

A limitation of the fingerprint technique is, that it cannot be used to reliably extract
exact values for Kcryst. The value Kcryst/M can be estimated to good accuracy from
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the shape of the curve as the magnetization rotates away from the easy axis towards
the external magnetic field at higher fields. A typical value for this parameter for all
examined samples is approximately 100 mT.

2.4 Post Growth Annealing
An important development in the post growth treatment of (Ga,Mn)As was fueled
by the discovery that TC could be significantly increased by thermal annealing of a
sample after fabrication [Haya 01, Pota 01]. As indicated earlier, the main goal when
aiming to increase TC , is to increase the carrier concentration by reducing the amount
of compensating interstitial Mn impurities. By heating the sample for long times
(> 100 h) at temperatures slightly below growth temperature (T = 190 ◦C), one
allows the interstitial Mn atoms to diffuse to the surface of the material, where they
are passivated.

The activation energy of interstitial Mn of 0.7 eV [Edmo 04] is small enough to allow
for segregation even at small thermal energies of kBT ≈ 40 meV at T = 190 ◦C at
sufficiently long times. During this process, the substitutional Mn remains unaffected.
Mn atoms that reach the surface of an uncapped layer by migrating in a random
walk, react with atmospheric oxygen and form MnO. Therefore, they no longer act as
unwanted donors which compensate hole carriers. It has been shown that annealing
increases the thickness of the surface oxide layer and can lead to a fourfold increase in
Mn concentration in the surface region of a (Ga,Mn)As layer [Schm 08].

However, caution must be exercised, as this procedure can have undesired side
effects. Since the transition temperature at which easy axis reorientation takes place
is carrier dependent [Sawi 04], thermal annealing can trigger changes in the magnetic
anisotropy as it increases the hole carrier concentration. For this reason, none of
(Ga,Mn)As layers of samples presented in this work have been subjected to annealing,
and care has been taken to ensure minimal heat load on the samples during processing.



Chapter 3

MBE Growth of Ferromagnetic
(Ga,Mn)As Layers

3.1 The UHV MBE Chamber

All samples presented in this work were grown in an ultra high vacuum (UHV) molec-
ular beam epitaxy (MBE) chamber dedicated to the growth of GaAs-based III–V
semiconductors. The geometry of the chamber and the arrangement of its components
(see Fig. 3.1 for a schematic) was designed in the department and has been custom-
built to fit the requirements of the clean room laboratory. A special feature of this
chamber is its compact design with ca. 1/3 of the pumping volume of a standard
RIBER MBE–32 chamber.

The chamber is equipped with effusion cells in which high purity material is heated
in PBN (pyrolytic boron nitride) crucibles to achieve a homogeneous flux of atomic or
molecular particles directed towards the sample. The flux, which is measured prior to
growth with a Bayard-Alpert pressure gauge mounted on the manipulator, is switched
on or off during growth by mechanic shutters blocking the cell opening. An additional
main shutter shields the sample from the material flow from all cells. The manipulator
can be rotated to face the transfer tube through which sample holders are inserted into
the chamber, to align the sample holder with the cells, or to bring the pressure gauge
into flux measurement position. An in-depth description of the MBE chamber and its
components can be found in [Scho 04].

3.2 Epitaxial Growth of (Ga,Mn)As

A number of factors play a critical role in the epitaxial growth of (Ga,Mn)As. In this
section, we will examine the influence of several crucial growth conditions in detail and
finish with a brief sketch of a typical (Ga,Mn)As growth procedure.

3.2.1 The Mn Cell Temperature

The most obvious influence on the incorporation of Mn into the GaAs lattice is the
temperature TMn of the Mn effusion cell. The vapor pressure p of a material, based

27
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Figure 3.1: Schematic cross section of the UHV MBE chamber. The cells are mounted
on the left side, aligned towards the sample holder sitting on the manipulator (shaded area)
occupying the central cavity.

on thermal activation at a temperature T , is given by

p = b e−E/kT . (3.1)

E is the activation energy, k the Boltzmann factor and b a temperature dependent
material parameter. For the small range of temperatures employed during growth
in an effusion cell, the dependence is approximately exponential. Therefore, assuming
favorable growth conditions, the amount of incorporated Mn (determined by HRXRD,
see Section 3.5.1) also increases exponentially with rising cell temperature, as shown
in Fig. 3.2 for a number of layers grown over a range of suitable Mn cell temperatures.
As indicated by the trendline, an increase of TMn by 20◦C leads to a doubling of the
Mn content.

3.2.2 The Growth Temperature

The solubility of Mn in GaAs at thermal equilibrium is very low. (Ga,Mn)As is a
metastable compound which can only be grown under conditions far from the equilib-
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Figure 3.2: Mn content in % for (Ga,Mn)As layers grown over a large range of Mn cell tem-
peratures. The trendline illustrates the approximately exponential correlation. The growth
rate is typically 1 Å/s.

Figure 3.3: Schematic phase diagram illustrating the connection between the growth pa-
rameters substrate temperature and Mn content and the properties of the grown Ga,Mn)As
layer [Ohno 98].

rium regime. Due to the low temperatures necessary to fabricate this material (below
300 ◦C), the growth is often referred to as low-temperature (LT) MBE growth. For
this reason, the growth (or substrate) temperature Tsub plays a critical role in the
epitaxial fabrication of (Ga,Mn)As layers for a given Mn content. First studies of the
influence of this parameter have been carried out by H. Ohno [Ohno 98]. Fig. 3.3 is
taken from this publication and shows a schematic phase diagram of epitaxially grown
(Ga,Mn)As.

Below a certain substrate temperature, no growth of monocrystalline material takes
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place. The onset of monocrystalline growth is characterized by a rough surface which
smoothes out at around 180 ◦C. Above this temperature, two phases of insulating
and metallic (Ga,Mn)As coexist, depending on the Mn content of the layer. As the
temperature approaches 300 ◦C, the formation of MnAs clusters becomes prevalent.

Care has to be taken when applying the temperature values of Fig. 3.3 to the
growth procedure of a layer, as the uncertainty in temperature measurement and
the influence of other growth parameters such as growth speed or As/Ga ratio also
significantly influence the properties of the material.

Another important consideration is that Tsub not only affects the solubility of Mn
in GaAs but also the quality of the LT growth in general. A lower growth tempera-
ture results in an increase in point defect density compared to a layer grown at high
temperature [Liu 95, Scho 03]. The main influence on the crystal lattice of LT-GaAs
originates from As antisites, Ga vacancies, and to a lesser degree, As interstitials. It
is therefore crucial to strike a balance between Mn incorporation, which increases for
lower temperatures, and retaining high crystal quality, which deteriorates for lower
Tsub. In our experience, for samples in the 1–5 % Mn content range, Tsub = 270 ◦C is
a favorable growth temperature.

3.2.3 V/III Flux Ratio

The ratio of the beam equivalent pressures (BEP) of the main group V (As) and III
(Ga) material fluxes is another critical MBE parameter. Epitaxial high temperature
growth (HT) of GaAs takes place under As overpressure (high As/Ga ratio) to as-
sure smooth surface formation. The evaporation process in the As cell supplies As4

molecules. Depending on the type of effusion cell, these molecules are either directly
fed to the sample, or, in the case of a cracker cell, broken down to As2 in a sepa-
rately heated region before coming in contact with the sample. Studies have shown,
that the use of a cracker cell can improve the structural qualities of a (Ga,Mn)As
layer [Camp 03]. This effect is attributed to a lower concentration of As antisite
(AsGa) defects due to different incorporation kinetics of As4 and As2.

For our samples, we use uncracked As4 molecules. For the HT GaAs growth, the
ratio of As/Ga = 40. For the LT (Ga,Mn)As growth this value is lowered to As/Ga
= 25 for most layers. At low temperatures, a high As/Ga ratio leads to an increased
concentration of As antisite defects which degrades the structural quality and increases
the lattice constant. This can lead to errors in the determination of the Mn content,
which is identified by the lattice constant of the (Ga,Mn)As layer (see Section 3.5.1).
AsGa also acts as a double donor that compensates Mn acceptors, therefore lowering
the overall carrier concentration [Myer 06]. Ideally, the lattice constant of the LT
GaAs should not differ measurably from its HT counterpart. In samples where very
high Mn concentrations are intended, a lower As/Ga ratio is necessary to avoid MnAs
cluster formation.

3.2.4 Growth Rate

The amount of supplied material determines the rate at which new crystal layers are
formed. In the case of GaAs growth, the amount of Ga is the determining factor,
since the growth takes place under As overpressure. While very fast growth rates can
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lead to a decrease in crystal quality, it is important to consider that a low growth rate
for (Ga,Mn)As leads to self annealing during growth, which can significantly alter the
magnetic anisotropy of the layer. The effect of annealing on (Ga,Mn)As is discussed
in detail in Section 2.4.

3.2.5 Typical Growth Procedure

The substrate, a 2" epi-ready GaAs(001) wafer (or pieces thereof), is glued to a Molyb-
denum sample holder with liquid Indium to ensure best possible thermal contact. Dust
is removed from the surface with a Nitrogen jet. After insertion into the UHV system,
the sample holder is placed in a heating station and brought up to 300 ◦C for 15 min
to remove residual water. The sample is then transferred into the growth chamber and
slowly heated to a substrate temperature of 610 ◦C, which is sustained for 5 min, to
remove the surface oxide layer. In RHEED (see Section 3.4, this transition is visible
as the disappearance of the diffuse background, which is replaced by a reflection cor-
responding to the GaAs surface reconstruction. During this step, the sample is kept
under a constant As pressure, starting at Tsub = 400 ◦C.

After the oxide desorption, the temperature is lowered to 580 ◦C. At this temper-
ature, a high quality 200 nm GaAs buffer layer is grown on the substrate to achieve a
smooth surface and bury possible surface contaminations and defects on the wafer.
In the following growth interruption, the substrate temperature is lowered to the
(Ga,Mn)As growth temperature. The As flux is turned off at Tsub = 570 ◦C to
preserve the GaAs (2 × 4) reconstruction.

The majority of the (Ga,Mn)As layers in this work are grown at a substrate tem-
perature of 270 ◦C. Upon reaching this value, the temperature is stable after approx.
15 min. Prior to the growth of (Ga,Mn)As, a thin (1 nm) layer of GaAs is deposited
for an optimal growth start. With completion of the (Ga,Mn)As growth, all fluxes are
shut off simultaneously. The sample is finally removed from the chamber after Tsub

falls below 200 ◦C.

3.3 Crystal Defects
Besides the aforementioned atomic point defects (AsGa, MnI, etc.), a common phe-
nomenon in epitaxial growth is the occurrence of large-scale crystal defects. A conve-
nient way to investigate crystal defects that are visible on the surface of the sample
is Nomarski interference microscopy, which can achieve very high (few nm) vertical
resolution. The most prominent defect structure is the “cross-hatch” pattern shown in
Fig. 3.4 (a), which is usually observed on all MBE-grown samples. This defect type is
visible as a dense net of intersecting ridge-like step edges aligned along the [110] and
[11̄0] crystal directions, covering the entire sample surface. The origin of this defect
type is threading dislocations caused by small precipitates in the substrate which in-
tersect the substrate surface along 〈110〉 lines [Cunn 86]. Due to the low height and
large spacing of the steps, we do not consider this type of defect to be detrimental to
processing or measurement of layers and structures.

Another large scale growth disruption is caused by Gallium spitting from the Ga
effusion cell or its shutter, which leads to circular areas where normal crystal growth
is replaced by a rough, grainy surface, often with a distinct central region. As can
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Figure 3.4: Nomarski interference microscope images of common crystal defects visible on
a (Ga,Mn)As surface. (a) cross-hatches, (b) disrupted crystal growth due to Ga spitting, and
two kinds of oval defects. Type α (c) contains no macroscopic core particulate, in contrast
to type β (d).

be seen in Fig. 3.4 (b), these areas can extend over several hundreds of micrometers.
Especially large areas are visible by the naked eye as milky, circular spots. While this
defect has no influence beyond the affected area, care has to be taken to avoid such
sample pieces for processing or measurement.

A class of much smaller defects are the oval defects, named for their appearance
as oval surface pits, with their long axis aligned along either [110] or [11̄0]. As first
classified by K. Fujiwara et. al. [Fuji 87], there are two major types of oval defects.
The α type lacks a macroscopic core particulate, while the β type contains a visible
core particulate. Fig. 3.4 (c) and (d) show α and β type oval defects observed on our
(Ga,Mn)As samples. The size of both types increases with total grown layer thickness,
which leads to the conclusion that the origin of this defect lies at the substrate/layer
interface, most likely in the form of carbon contaminations. The density of oval defects
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Figure 3.5: (a) Ewald sphere construction for the diffraction of fast electrons in k-space.
The reciprocal lattice of the crystal surface are vertical rods which intersect the Ewald sphere
where the diffraction conditions are fulfilled. The other pictures show the RHEED pattern for
(b) a high quality GaAs layer and (c) the hexagonal lattice of MnAs clusters in a (Ga,Mn)As
layer.

can vary greatly over different areas of the wafer. Type α defects are often found in
larger concentrations in the central region of the wafer, while β defects are either
randomly scattered over the whole wafer or found in dense clusters covering up to a
few hundred micrometers. At low densities, both types of defects are not detrimental to
the properties of the layer, as the affected volume is very small. Possible complications
may arise during nanopatterning, where any kind of crystal deformation needs to be
avoided.

3.4 RHEED

An important in-situ characterization method is reflection high energy electron diffrac-
tion (RHEED). An electron beam with an energy between 10–30 keV is directed on
the sample surface under a glancing incidence angle (1–3◦). The electrons penetrate
only the first monolayers where they are diffracted (scattered) by the surface atoms.
According to the crystal structure, the spacing of the atoms at the sample surface and
the de Broglie wavelength of the incident electrons, the diffracted electrons interfere
constructively at specific angles. The diffraction pattern is observed at a Phosphor
fluorescence screen mounted on the chamber side opposite to the electron gun.

Fig. 3.5 (a) shows the Ewald sphere construction in the reciprocal space for deter-
mination of the constructive interference condition. Since the electron beam interacts
only with the first few layers of the material, the reflection is massively broadened per-
pendicular to the sample surface such that it appears as a vertical line. The reciprocal
lattice of a crystal surface is therefore a series of infinite rods extending perpendicular
to the sample surface. Diffraction conditions are met, when the rods of the reciprocal
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Figure 3.6: Diffraction geometry and Bragg condition for a symmetric reflection on parallel
lattice planes. The path difference 2d sinΘB is marked in red.

lattice intersect the Ewald sphere. Due to the very short wavelength of the high-energy
electrons, the radius of the Ewald sphere is much larger than the spacing between re-
ciprocal lattice rods, which therefore intersect the sphere as an approximate plane.
Additionally, both the rods and the Ewald sphere are broadened, the former due to
defects and thermal vibrations, the latter due to the energy distribution of the elec-
trons and divergence of the beam. This leads to the typical array of lines perpendicular
to the sample surface, extending to both sides of the specular (0th order) spot.

In the context of MBE growth, RHEED serves two major functions. Firstly, it is a
method to qualitatively evaluate the crystal growth in-situ without interfering with the
process. High quality, two-dimensional growth is indicated by a “streaky” diffraction
pattern with pronounced lines, as shown in Fig. 3.5 (b) for a GaAs layer. Roughening
of the growth surface leads to breaking of the lines into a “spotty” diffraction pattern.
During the growth of (Ga,Mn)As, the formation of MnAs clusters is visible as the
appearance of a hexagonal pattern overlaying the usual vertical lines, see Fig. 3.5 (c).
It is sometimes also desirable to determine the surface reconstructions [Bieg 90] of the
material as they can influence the interface properties between layers. The HT GaAs
buffer displays a (2 × 4) reconstruction which changes to (1 × 2) during (Ga,Mn)As
growth.

Secondly, RHEED offers an in-situ way to determine the growth rate of the ma-
terial [Shen 97]. A completely formed monolayer causes maximal reflection of the
incident electrons, while the formation of the following monolayer is characterized by
a drop in intensity due to roughening during its nucleation. Measuring the intensity of
the specular spot over time shows an oscillating curve where adjacent maxima mark
the completion of a monolayer, yielding a growth rate in ML/s.

3.5 X-Ray Diffraction
Among the most important ex-situ characterization methods for our work is high
resolution x-ray diffraction (HRXRD) which yields detailed information about layer
thickness, material composition, strain situation, and crystal quality. Standard char-
acterization was performed using a Philips X’Pert system with a 4-crystal Ge(220)
Bartels monochromator and a 2-crystal analyzer.

The diffraction geometry is sketched in Fig. 3.6. The parallel x-rays enter the
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Figure 3.7: ω-2Θ scan of the (004) reflection of a 175 nm (Ga,Mn)As (6.3% Mn) layer on
GaAs.

sample with an incidence angle ωi relative to the lattice plains of spacing d in the
sample. According to the law of reflection, the exit angle ωe is equal to ωi. The total
angle between the incident beam and the detector is twice the incidence angle, and is
commonly referred to as 2Θ. If the incidence angle equals the Bragg angle ΘB, the
path difference for parallel x-rays diffracted in the sample is an integer multiple n of
the wavelength λ (1.5405929 Å for Cu Kα). For this case, constructive interference
between x-rays diffracted at different lattice planes is observed. This condition for
constructive interference is called the Bragg condition:

2d sin ΘB = nλ. (3.2)

3.5.1 ω-2Θ Scans

In a sample with multiple layers, an ω-2Θ scan (varying both the incident, as well as
the detector angle) over a range encompassing the Bragg angle for every layer, yields
a high intensity peak according to each lattice constant. Fig. 3.7 shows an ω-2Θ scan
of the (004) reflection of a (Ga,Mn)As layer on GaAs.

The (004) lattice planes are aligned parallel to the sample surface. The spacing of
the lattice planes d004 is equal to 1/4 of the lattice constant, according to:

dhkl =
d001√

h2 + k2 + l2
(3.3)

A reflection is called symmetric, when the diffracting lattice plains are parallel to the
sample surface. Symmetric reflections contain only information about the vertical
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Figure 3.8: Calibration curve relating the vertical lattice constant a⊥ of a (Ga,Mn)As layer
with its Mn content.

lattice constant of the sample, which is easily visibly from the fact that only the
l reciprocal direction enters the calculation. The remaining two, h and k, are zero.
Reflections on lattice planes under an angle to the sample surface are called asymmetric
reflections and contain information about two or all three spatial directions, depending
on the specific reflection.

From an ω-2Θ scan as shown in Fig. 3.7, we obtain the ΘB angle of the GaAs
substrate as well as (Ga,Mn)As layer. Using the Bragg condition (Eqn. (3.2)), we
define the angular difference ∆Θ as

∆Θ = ΘGaAs −Θ(Ga,Mn)As = arcsin

[
λ

2dGaAs,(004)

]
− arcsin

[
λ

2d(Ga,Mn)As,(004)

]
. (3.4)

Solving this equation for the spacing of the (Ga,Mn)As lattice planes yields

d(Ga,Mn)As,(004) =
λ

2 sin
[
arcsin

(
λ

2dGaAs,(004)

)] . (3.5)

The lattice constant is finally given by Eqn. (3.3):

d(Ga,Mn)As = 4 · d(Ga,Mn)As,(004). (3.6)

For an unstrained layer, this value is the bulk lattice constant. However, for a strained
layer, it represents only the vertical lattice constant. The relaxed lattice constant has
to be calculated from the elastic properties of the material, using Eqn. (4.17), which
is derived in the following chapter.

The large number of additional small peaks in Fig. 3.7 are thickness oscillation
peaks, also called fringe peaks. The period of these peaks is determined by the thick-
ness of the (Ga,Mn)As layer. Their origin lies in multiple refraction of the x-ray beam
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between the top and bottom interface of the layer. Each peak represents one order n
in the Bragg condition (3.2), in which case d is the layer thickness. Analysis of these
peaks is a way of accurately determining the thickness of an epitaxial layer and also in-
directly the growth rate, when the growth time of the layer is known. The appearance
of fringe peaks is also an indication of high interface and layer quality.

With regards to (Ga,Mn)As, one of the most important applications of HRXRD
is the determination of the Manganese content in a layer. As Schott et. al. have
shown, the lattice constant of (Ga,Mn)As is linearly dependent on the Mn concentra-
tion [Scho 01]. For our analysis, we use a calibration curve (shown in Fig. 3.8) based
on this publication. From this curve, we derive an empirical formula with which we
can determine the Mn content (in %) of a (Ga,Mn)As layer from the measurement of
its vertical lattice constant a⊥ (in nm):

[Mn] =
a⊥,(Ga,Mn)As − 0.5658

4.6667 · 10−4
. (3.7)

This method is only accurate to about 1%, because defects caused by the low temper-
ature growth also influence the lattice constant of the material.

3.5.2 Reciprocal Space Maps

As shown in the previous section, ω-2Θ scans of the (004) reflection can only probe
the vertical lattice constant of a sample. However, it is often important to make use
of a reciprocal space map (RSM) around an asymmetric reflection to investigate the
in-plane lattice constants as well. One application is the determination of the degree
of relaxation of strained layers [Reß 98].

Fig. 3.9 illustrates the positions of peaks in the reciprocal space for different strain
conditions. The crystal lattice of the substrate (or any unstrained cubic crystal) forms
an image in reciprocal space which again has a cubic symmetry. If the lattice constant
is asub, the reciprocal lattice constant is given by 1/asub. By epitaxially growing a
layer with a larger lattice constant onto this substrate, the layer is forced to match
the lateral lattice constant of the substrate. Due to the Poisson effect, this leads to
an extension of the lattice in growth direction. The reciprocal lattice of such a layer
will therefore have the same lateral lattice constant apar, and a smaller vertical lattice
constant avert, since it translates to 1/avert in reciprocal space. When at some point
the layer is fully relaxed (and has reached its bulk lattice constant), the reciprocal
lattice points will have a smaller spacing in both directions than the substrate.

Combining the three lattices in the upper half of Fig. 3.9 shows how the peak
positions are located relative to each other for different reflections. The zoomed section
corresponds to the (044) reflection. The three peaks form a triangle in which the line
connecting the pseudomorphic and the relaxed peak position is the line of relaxation.
Since the transition between the pseudomorphic case and the fully relaxed case is not
abrupt, the peak of a partially relaxed layer can be found at any point on the line
of relaxation between the two cases, depending on the degree of relaxation. Mapping
the reciprocal space containing the relaxation triangle is therefore a powerful tool to
investigate strained layers [Hein 95, Schu 04]. By finding the layer peak on the line of
relaxation, one can calculate the degree of relaxation for biaxially relaxed layers. It is
also possible to determine the lattice constant (and therefore the strain) in one specific
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Figure 3.9: Reciprocal lattice for a cubic substrate (black), a pseudomorphic layer (red)
and a fully relaxed cubic layer (blue). The lower half shows a combination of the above three
cases, the zoomed section corresponds to the (044) reflection with the triangle of relaxation.
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lattice direction by measuring a reflection that is sensitive to only one in-plane lattice
direction, such as for example (206).

A map of the reciprocal space is assembled by a number of line scans along a scan
axis. Each such scan is offset by a small step in a second axis, called the area axis.
Possible choices for these axes are ω, 2Θ, and ω-2Θ. The best choice of axes depends
on the specific reflection and the area which needs to be measured. Usually it is a
pair of axes which most efficiently spans a reciprocal space area containing the whole
region of interest.

Reciprocal Lattice Units

A RSM is usually depicted as a 2D cut plane in reciprocal space. The coordinates in
a RSM have a component perpendicular to the sample surface q⊥ and a component
parallel to the surface q‖. For the scaling of RSMs, we use reciprocal lattice units
(r.l.u.), a dimensionless representation of rational Miller indices (hkl) with respect to
the Miller indices of the substrate. For a layer where both in-plane directions h and k
are equal, the conversion between the reciprocal lattice constant q and the real space
lattice constant a is given by: q‖

q‖
q⊥

 =

h
k
l

 ·


asub

a‖
asub

a‖
asub

a⊥

 (3.8)

With this equation it is immediately possible to relate a reciprocal space peak posi-
tion measured in r.l.u. with a real space in-plane and perpendicular-to-plane lattice
constant for a given reflection. With this relation and the information from Fig. 3.9,
it is also easy to calculate the corners of the relaxation triangle, see table 3.1.

Table 3.1: Reciprocal space coordinates for the corner points of a relaxation triangle of an
epitaxial layer. For a GaAs substrate, asub = 5.6533 Å.

position real space reciprocal space (q‖, q⊥)

substrate a‖ = a⊥ = asub (h, l)
pseudomorphic a‖ = asub, a⊥ = avert (h, l · asub

avert
)

relaxed a‖ = a⊥ = alayer (h · asub

alayer
, l · asub

alayer
)

Example of RSM

To illustrate the application of a RSM, we present the measurement on a GaAs/
(In,Ga)As/(Ga,Mn)As structure. The goal of this sample was to achieve an out of
plane easy axis of the magnetization, as described in Chapter 1, by growing (Ga,Mn)As
under tensile strain. To achieve this strain situation, the (In,Ga)As layer was grown
to a thickness of 1 µm, to allow plastic relaxation of the layer, and thereby forming
a substrate for the (Ga,Mn)As layer with a larger lattice constant than the relaxed
lattice constant of (Ga,Mn)As.
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Figure 3.10: RSM of the (115) reflection of a GaAs/(In,Ga)As/(Ga,Mn)As structure. The
scan axis is 2Θ (331 data points each scan) and area axis is ω (153 scans), with an integration
time per step of 1 s. The relaxation triangle for the (In,Ga)As peak is marked in black.

Since the (In,Ga)As layer is not pseudomorphic to the substrate, ω-2Θ scans are
no longer sufficient to investigate the whole strain situation. Fig. 3.10 shows a RSM
of the (115) reflection of the sample. The map is centered of on the GaAs peak with
h = 1, k = 1, l = 5. In all maps with h = k, we scale the x-axis by a factor of 1/

√
2

because we actually measure the lattice constant along a 〈110〉 direction.
Due to its larger lattice constant, the peak of the (In,Ga)As layer is situated below

the GaAs peak. For the fully pseudomorphic case, the peak would be located at
the bottom tip of the relaxation triangle. The fact that the peak is almost at the
fully relaxed corner of the relaxation line indicates the large degree of relaxation of the
layer. We can calculate the degree of relaxation and the lattice constant for this layer as
follows. From calibration samples, we know that the In contend in the (In,Ga)As layer
is 14%, which corresponds to a bulk lattice constant (Vegard´s law) of 5.71 Å [IOFFE].
The position of the (In,Ga)As peak is located at (q‖, q⊥) = (0.9907, 4.9475). According
to Eqn. (3.8), this translates into the lattice constants a‖ = 5.7063 Å and a⊥ =
5.7132 Å, where a‖ refers to the two in-plane directions [100] and [010].

We define the degree of relaxation γ as the quotient of the difference between the
in-plane lattice constant a‖ and the relaxed lattice constant arel, both relative to the
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substrate lattice constant asub:

γ =

a‖−asub

asub

arel−asub

asub

=
a‖ − asub

arel − asub

. (3.9)

With this equation, we calculate a degree of relaxation for the (In,Ga)As layer of
γ = 0.93, which is very close to full relaxation (γ = 1).

The (Ga,Mn)As layer is expected to grow pseudomorphically on the relaxed (In,Ga)As
buffer, which is verified by the peak position of the (Ga,Mn)As layer in Fig. 3.10. The
peak is located at the same h value as the underlying buffer and therefore shares its lat-
eral lattice constant. Its vertical position of q⊥ = 5.0251 corresponds to a⊥ = 5.6250 Å,
which is smaller than the lattice constant of GaAs. Again, the Poisson effect explains
this behavior, as the in-plane tensile strain leads to a shrinkage of the (Ga,Mn)As
lattice in the vertical direction.

Magnetic characterization of this sample reveals no clear out of plane easy axis.
Rather, only a component of the magnetization was found in [001] direction, which
leads to the conclusion that the magnetization is oriented at some oblique angle to
the sample surface plane. Additionally, we have observed an anisotropic tilting of the
lattice planes as reported by Grundmann et. al. [Grun 89], which has to be taken into
account when interpreting XRD measurements on such samples.
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Chapter 4

Finite Element Simulations of Strain
Relaxation

To study the complex interaction between crystalline and magnetic properties of
(Ga,Mn)As, a fundamental understanding of the mechanisms governing the strain
relaxation behavior in this material is essential. In the following, we present finite ele-
ment calculations which constitute a powerful tool in the investigation of the structures
involved in this work.

Due to the considerable processing time of samples containing large stripe arrays,
it is necessary to develop a method which allows reliable predictions about the re-
laxation in the patterned structures. With such a method, it is possible to optimize
critical parameters before growth and patterning of the actual sample. The principal
focus lies on predicting the extend and shape of strain relaxation, achieving homo-
geneity of strain throughout the structure, and high reproducibility of samples due to
limited dependence of experimental results on small fluctuations in sample growth or
processing.

The simulations are based on the stress/strain equations of elastic continuum me-
chanics, which will be discussed in the following section. For the actual calculations,
we use the finite element simulation software FlexPDE (version 5.0.7). In this program
a three-dimensional grid is defined, with individual material parameters for selected
regions. For the numerical calculation, the grid is filled with a tetrahedral finite ele-
ment mesh of points at which the equations are solved. The result is finally presented
as diagrams. Simulated values on arbitrary cut planes through the 3D volume can be
exported in tabular form.

4.1 Derivation of the Equation System

4.1.1 The Strain Coefficients

Consider the elastic properties of a crystal as a homogeneous continuous medium rather
than as a periodic array of atoms [Kitt 05]. Further, we consider only small strains
such that Hooke’s Law stating that strain is directly proportional to the stress is valid.
Let three orthogonal vectors x̂, ŷ, ẑ of unit length be the basis of our coordinate
system. After a small deformation of the solid, the axes are distorted in orientation

43
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and length. The new axes x′, y′, z′ may be written in terms of the old axes:

x′ = (1 + εxx)x̂ + εxyŷ + εxzẑ
y′ = εyxx̂ + (1 + εyy)ŷ + εyzẑ (4.1)
z′ = εzxx̂ + εzyŷ + (1 + εzz)ẑ

The coefficients εαβ define the deformation; they are dimensionless and have values
� 1 for small strains. The effect of the deformation (4.1) on an atom with the original
position described by r = xx̂ + yŷ + zẑ is such that its position after the deformation
will be r′ = xx′+yy′+zz′. The displacement R of the deformation is therefore defined
by

R ≡ r′ − r = x(x′ − x̂) + y(y′ − ŷ) + z(z′ − ẑ). (4.2)

Or, using (4.1),

R(r) ≡ (xεxx + yεyx + zεzx)x̂ + (xεxy + yεyy + zεzy)ŷ
+(xεxx + yεyz + zεzz)ẑ. (4.3)

This definition may be written in a more general form by introducing the displacements
u, v, w along the (original) coordinate axes such that the displacement is given by

R(r) = u(r)x̂ + v(r)ŷ + w(r)ẑ. (4.4)

The u, v, w are related to the local strains by taking the origin of r close to the region
of interest and comparing (4.3) with (4.4), using Taylor series expansion of R, with
R(0) = 0, and neglecting terms of order ε2. This leads to

xεxx = x
∂u

∂x
; yεyx = y

∂u

∂y
; etc. (4.5)

In the following, we will work with the nonvectorial coefficients eαβ rather than εαβ,
and define the first three strain components by the relations

exx ≡ εxx =
∂u

∂x
; eyy ≡ εyy =

∂v

∂y
; ezz ≡ εzz =

∂w

∂z
. (4.6)

The remaining strain components exy, eyz, ezx are defined in terms of the changes in
angle between the axes. Using (4.1) we define

exy ≡ 1

2
(x′ · y′) ∼=

1

2
(εyx + εxy) =

1

2

(
∂u

∂y
+

∂v

∂x

)
;

eyz ≡ 1

2
(y′ · z′) ∼=

1

2
(εzy + εyz) =

1

2

(
∂v

∂z
+

∂w

∂y

)
; (4.7)

ezx ≡ 1

2
(z′ · x′) ∼=

1

2
(εzx + εxz) =

1

2

(
∂u

∂z
+

∂w

∂x

)
.

The six dimensionless coefficients eαβ(= eβα) completely define the strain.
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4.1.2 Hooke’s Law and Equilibrium Equations

In the previous section we have established the strain coefficients which completely
describe the strain in a system. By using Hooke’s law, we can calculate the stresses
acting on the material for a given set of strain coefficients. Hooke’s law is valid for
elastic deformations caused by small strains. In its most general form it reads

σij = Cijkl (ekl) . (4.8)

There are six independent stress coefficients σαβ(= σβα) which represent forces acting
on a unit area of the solid. Three coefficients (σxx, σyy, σzz) represent a force applied
in one of the cubic directions to a unit area of a plane whose normal lies in the same
direction. The remaining three coefficients (σxy, σyz, σxz), which we will refer to as
τ instead of σ in the following, are called shear stresses and represent forces acting
parallel to a surface area. The quantities Cijkl appearing in (4.8) are the elastic stiffness
constants or moduli of elasticity. The C’s have the dimensions of [force]/[area] and
form a 4th order tensor. It can be shown [Kitt 05] that for a cubic crystal, the number
of independent elastic stiffness constants is reduced to three:

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 (4.9)

The full set of stresses, as calculated from (4.8) and (4.9) is therefore:

σxx = C11exx + C12eyy + C12ezz

σyy = C12exx + C11eyy + C12ezz (4.10)
σzz = C12exx + C12eyy + C11ezz

The shear stresses are:

τxy = 2C44exy

τyz = 2C44eyz (4.11)
τxz = 2C44exz

With the stresses we can formulate the equilibrium equations of 3D elasticity using
the principle of conservation of linear momentum i.e., Newtons’s second law. We will
neglect external body forces for now and write:

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= 0

∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z
= 0 (4.12)

∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z
= 0

The solution of the equilibrium equations fully defines the six independent stress com-
ponents throughout a structure. These equations are the basis for the finite element
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simulation. However, in general, these equations cannot be solved without introducing
additional equations. In the next section we will modify the stress equations (4.10) to
model strain introduced into epitaxial layers by lattice-mismatched growth, which will
also lead to a set of equations which can be solved numerically.

4.1.3 Lattice Mismatch Strain as Isotropic Internal Pressure

Remember, that the structures we want to simulate consist of pseudomorphically
strained layers which are patterned into various shapes that allow unique strain relax-
ation. An epitaxially grown layer, which has a larger intrinsic lattice constant than
the substrate it is grown on, is subject to compressive strain in the layer plane. This
results in an internal force, working to expand the lattice towards its equilibrium state.
This force is equivalent to an internal isotropic pressure or to a higher temperature
which increases the lattice constant via thermal expansion. We will make use of this
analogy to model the lattice-mismatch induced strain as a dimensionless “tempera-
ture” T which will be a unique parameter for each individual layer. Since all layers are
grown on GaAs substrates, we choose its lattice constant as the reference point and
assign it a temperature of T = 0.

Let us assume now, that we have a material with a larger lattice constant than
GaAs. The temperature we assign to this material expands a unit GaAs (the reference)
volume to fit the larger intrinsic lattice constant of the new material. This means that
the temperature acts as an additional isotropic stress bT on the unit volume. Using
(4.10), we can write:

σxx + bT = C11exx + C12eyy + C12ezz (4.13)

Since the pressure is isotropic, we only consider one stress direction, as all three are
equivalent (σxx = σyy = σzz = σ). The same holds true for the strain parameters
(exx = eyy = ezz = e). Note that this internal pressure does not cause shear strain.
If the material is allowed to relax freely, the stress has to vanish in the resulting
equilibrium state when the material reaches its intrinsic lattice constant. For this case
we can rewrite (4.13) as:

0 = C11exx + C12eyy + C12ezz − bT = σxx

⇔ 0 = e(C11 + 2C12)− bT

⇔ e =
b

C11 + 2C12

T (4.14)

From this equation, we can immediately see that the “temperature” T acts as a force on
the material which translates into a strain e as determined by the material parameters
C11 and C12 and the free parameter b. We choose b such that a ∆T = 1 causes a
∆e = 1.0 · 10−4:

1.0 · 10−4 =
b

C11 + 2C12

1 (4.15)

For the elastic moduli of GaAs, this equation leads to b = 2.26 · 108 dyn
cm2 . Instead of

e we can write the lattice mismatch f , and are now able to set any lattice mismatch
between a layer material and GaAs in steps of 1.0 · 10−4 by increasing T by 1.
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4.2 The FlexPDE Software

4.2.1 The Simulation File

This section will give a very brief overview of the composition of a FlexPDE simulation
descriptor file. For detailed information about the capability and command syntax of
this software the reader should refer to the user manual. A complete input file for
a 3D GaAs/(Ga,Mn)As stripe can be found in Appendix B as a working example.
The problem description is given in the form of a readable text file, which consists of
a number of sections identified by headers. The relevant sections for the sample in
Appendix B are as follows.

Title This sections sets a label for the graphic output plots.

Select Contains a list of user specifications of the global behavior of FlexPDE such
as calculation accuracy control or general plot options.

Coordinates Sets the coordinate system, in our case 3-dimensional cartesian coor-
dinates.

Variables Names the dependent variables used in the partial differential equations.

Definitions Defines ancillary parameters, functions and relations. As can be seen in
Appendix B, this includes the physical dimensions of the sample, material parameters
such as elastic moduli and finally definition of the strain coefficients (4.6) and (4.7),
the stresses (4.10), and shear stresses (4.11).

Equations Defines the partial differential equation system in which each equation
is associated with a dependent variable. In our case, the displacements u, v, w are
linked with the equilibrium equations (4.12).

Extrusion Extends 2D domains into tree dimensions.

Boundaries The geometry of a number of 2D regions is defined by walking the
perimeter of a domain, stringing together line or arc segments to bound the figure.
Individual parameters can be set to characterize the material of a region. This sec-
tion also allows for the incorporation of boundary conditions i.e., locked values for
parameters at surfaces or edges.

Plots Contains a list of requested graphic outputs and data exports in the form of
ASCII tables.

The geometry of a sample is defined in the sections Extrusion and Boundaries.
Fig. 4.1 shows the outline grid of a GaAs/(Ga,Mn)As stripe. First, we need to define
the relevant surfaces of the structure along the z-axis, starting with the bottom of the
substrate at z = 0. The first height step would be z = hsub, the surface which contains
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Figure 4.1: Schematic FlexPDE grid of a GaAs/(Ga,Mn)As stripe. Three regions in the
x-y-plane (top) defined in the Boundaries section are extended into the z-direction in the
Extrusion section (bottom).

the bottom of the etch trenches between the stripes. This step equals the total height
of the unstructured material. Its thickness is chosen such, that it is larger than the
extend of strain fields into the substrate to avoid edge effects. The following region
of etched GaAs extends up to the (Ga,Mn)As layer, which begins at z = hsub + ha.
The last step is the (Ga,Mn)As layer itself, terminating at the top of the sample at
z = hsub +ha +hmn. Each of these surfaces is associated with a region which is defined
by its outline in the x-y-plane in the Boundaries section. The space between two
subsequent surfaces is filled with the region pertaining to the lower surface.

4.2.2 Simulation Parameters

This section compiles a list of all relevant parameters which are used in the simulations
throughout this thesis. Unless otherwise noted, all presented simulation data can be
considered to be on the basis of the following values. The elastic moduli Cij for GaAs
are used for all sample materials, since the deviation due to Mn or In admixture to a
GaAs layer is negligible. The parameter b discussed in Section 4.1.3 is fully determined
by the Cij. Table 4.1 lists the values for the Cij as taken from [IOFFE].

Further required parameters are more sample specific. The parameters w and l set
the width and length of a stripe in the x-y-plane. The height steps are hsub (height of
the unstructured GaAs), ha (height of the structured GaAs), and hmn (height of the
(Ga,Mn)As layer).

As mentioned earlier, we assume that all layers have the same elastic properties.
Consequently, different layers are only differentiated by their bulk lattice constants.
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Table 4.1: Some material parameters.

parameter value
[

dyn
cm2

]
C11 11.90 · 1011

C12 5.34 · 1011

C44 5.96 · 1011

b 2.26 · 108

Therefore we assign each layer a “temperature” value Tp as described in Section 4.1.3.
Since GaAs is our reference point for the lattice constant, its temperature is Tp =
TGa = 0. In the example in Appendix B, we simulate a (Ga,Mn)As layer with a
Mn-content of 2.5 %, which is equal to a lattice mismatch of f = 1.5 · 10−3 to the
underlying GaAs layer. This lattice mismatch is represented by Tp = TMn = 15.

4.2.3 Graphical Output

Three forms of graphical output of the simulation data were used in this study, see
Fig. 4.2 for examples. For a qualitative impression of the relaxation and resulting
lattice distortion, the grid command produces a picture of the whole structure, either
in 3D or of a 2D cut plane through the structure (Fig. 4.2 (a) and (b)). Usually it is
necessary to amplify the lattice distortion (here by a factor 100) because of the small
size of the distortion relative to the physical dimensions of the structure. Similar to
this depiction is the vector plot of the displacement vectors (Fig. 4.2 (c)).

Graphical presentation of the strain parameter is achieved via color-coded contour
plots (Fig. 4.2 (d)–(f)). For this kind of plot it is required to define an arbitrary
cut plane through the structure on which the data is plotted. The cut plane can be
restricted to regions as defined in the Boundaries step. In the simulation, the strain
parameter for any layer has its reference point at the bulk lattice constant of GaAs.
However, it is customary to specify the strain parameter of a layer relative to the
bulk lattice constant of the material the layer is composed of. To achieve this, the
calculated strain has to be corrected by an offset equal to the lattice mismatch.

4.3 Simulation Results – Physical Dimensions

To study the influence of lattice strain on the magnetic properties of (Ga,Mn)As, it is
essential to first acquire a detailed understanding of how lithographic patterning in-
duces lattice relaxation in nanostructures. By structuring a layer into a stripe pattern,
we locally remove constricting material to allow uniaxial lattice relaxation perpendic-
ular to the stripes, see Fig. 4.2 (a) and (b). The current section is dedicated to
simulations in which effects of changes of the physical dimensions of stripe structures
on the lattice relaxation are investigated. Our coordinate system (see Fig. 4.3) is cho-
sen such, that the x-axis coincides with the [010] crystal direction and the y-axis with
the [100] direction. The growth direction (z-axis) is [001].
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Figure 4.2: Examples of simulation data plots for a GaAs/(Ga,Mn)As stripe. Representa-
tion of (a) the relaxed structure in 3D and (b) on a x-z-plane through y = 0 (both the dis-
placements are 100× exaggerated). (c) displacement vector plot; (d) strain ex in x-direction
(relative to aGaAs); (f) top view of the strain ex relative to a(Ga,Mn)As on a horizontal cut
plane through the middle of the (Ga,Mn)As layer; (f) shear strain exz.
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Figure 4.3: Crystal directions for a stripe along [100] with the corresponding cartesian
coordinates of the simulation coordinate system. The strain ey is fixed at the pseudomorphic
limit. The relaxation axes are x (ex), and z (ez).

In the following we will consider stripes of (Ga,Mn)As on GaAs or GaAs/(In,Ga)As
aligned along the [100] crystal direction. In the actual processed samples, their length
is 100 µm with a width of 200 nm. However, such a large volume is impractical for
numerical simulations. Therefore we limit ourselves to a length to width ratio of 5
for most cases, which is sufficient to ensure that no effects due to finite stripe length
influence the simulation in the center region of the stripe. Furthermore, we simulate
only a relatively thin (100 nm) region of the unstructured bottom layer, as it does not
significantly influence the strain relaxation in the stripes.

It is important to note that the whole equation system governing the lattice relax-
ation is completely scale invariant. Any structure with given physical dimensions will
produce an identical strain distribution to a structure in which the physical dimensions
have been multiplied by an arbitrary scaling factor. As a consequence, we will often
use the relative width of a simulated layer instead of concrete values when discussing
variations in physical parameters. We define the relative width rw of a layer as the
width w of a stripe divided by the thickness (height) h of the material we are interested
in:

rw =
w

h
(4.16)

Thus, a value of rw = 5 describes the strain in a layer of w = 100 nm and h = 20 nm,
as well as in any other layer where w and h are multiplied by an arbitrary scaling
factor.

The values shown in the following plots are calculated by taking the average value
(or its standard deviation) of a simulation parameter over a cut plane through the
region of interest of a sample. At the commonly used simulation accuracy, such a cut
plane contains 2601 data points.

4.3.1 Relative Width

At first, we will examine how the relative width rw of a (Ga,Mn)As stripe impacts on
the strain distribution within the layer. By varying the parameter rw over a series of
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Figure 4.4: (a)–(c) Strain ex in the cross-section of a (Ga,Mn)As (2.5% Mn, ha = 200 nm)
stripe for three selected values of rw. (d) dependence of average strain on the relative width
in a GaAs/(Ga,Mn)As stripe. The open gray square at rw = 0 represents the extrapolated
strain towards the border case of rw → 0.
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simulations and evaluating the average strain ex and ez in a cross-section of the layer,
we obtain the plot in Fig. 4.4 (d). To illustrate how the strain distribution evolves with
rw, the figure also shows color coded cross-section strain maps of stripes with three
selected values of rw. To understand how the relative width influences the strain, it
is helpful to first consider the two extreme cases:

1. A large value of rw describes a very thin but very wide stripe, which approaches
the case of an epitaxial layer without any structuring.

2. A small value of rw, which corresponds to a very narrow and high stripe.

For the first case, Fig. 4.4 (a) shows that the center region of the layer retains a high
degree of compressive strain. In fact, no strain relaxation can take place there at all for
large enough widths, as the substrate material prevents horizontal strain relaxation.
The largest strain relaxation is visible in the side wall regions, which constitute only
a small fraction of the total volume of the layer. The strain distribution is therefore
dominated by the substrate layer. The average values for all three strains approach
the value of a fully pseudomorphic layer. For the (Ga,Mn)As layer in Fig. 4.4 (d),
these values are ex = ey = −1.5 · 10−3. By applying Hooke’s law (Eqn. (4.8)), we find
that the strain in z-direction is given by:

ez = − 2ν

1− ν

∆l

l
(4.17)

Here, ∆l/l is the relative difference between the relaxed lattice constant of (Ga,Mn)As
and the lattice constant of GaAs as defined in Eqn. (2.2); ν is the Poisson ratio. With
this equation we calculate a value of ez = 1.35 · 10−3.

In the second case, the substrate layer influence declines as the interface region
becomes small compared to the total volume of the stripe material. The interface
region at the bottom of the layer is forced to match the lattice constant of the substrate,
while the majority of the volume is free to relax in x- and z-direction. Apart from
the interface region, the lattice constant will therefore be characterized by the uniaxial
compression of the material along the y-direction. The transverse strain et, acting in
x- and z-direction, is linked to the uniaxial compression by the Poisson ratio:

et = −νey (4.18)

Fig. 4.4 (c) shows such a stripe where the upper two thirds of the structure are com-
pletely unaffected by the underlying GaAs. The strain in the upper region is, according
to Eqn. (4.18), given by ex = ez = 4.65 · 10−4. For the border case of rw → 0, both
strains in Fig. 4.4 (d) converge to this value.

Concerning the three shear strains, the simulation results for exy and eyz are of the
order of 10−5 and are therefore assumed to be zero for any further calculations. The
shear strain exz (see Fig. 4.2 (f)) reflects a bending of the lattice planes and reaches its
maximum value of a magnitude of 10−4 around the side-walls of the GaAs/(Ga,Mn)As
interface region. Due to the symmetry of the stripe, this shear strain has an opposite
sign, depending if x < 0 or x > 0. The average value of exz in a cross-section of the
stripe is therefore zero.

From this simulation series, we learn that the relative width of a (Ga,Mn)As stripe
has the tendency to increase the total strain relaxation (compared to the unstructured
case) perpendicular to the stripes for lower values. A transition from compressive to
tensile in-plane strain takes place at rw ≈ 5.
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Figure 4.5: Strain dependence on etch depth ha (into the substrate) in a 200 nm wide
(Ga,Mn)As stripe (f = 1.5 ·10−3) of (a) 20 nm (rw = 10) and (b) 70 nm thickness (rw = 2.9)
on GaAs. The standard deviation of ex (sdv ex) is a measure for the homogeneity of the
strain in the region.

4.3.2 Etch Depth

Another structural parameter which can be controlled during the fabrication process
is the total height ha + hmn of the stripes. We assume that the (Ga,Mn)As layer is
always completely etched and will only vary the parameter ha, which describes the
etch depth into the substrate below the (Ga,Mn)As layer. In varying the etch depth
ha, as shown for two different layer thicknesses in Fig. 4.5, we see that a certain etch
depth is necessary to achieve maximum relaxation.

For both layers, the strain in x- and z-direction becomes independent of the etch
depth at around 80 nm. Further increase of ha does not increase the strain relax-
ation. We conclude that for lower etch depths, the GaAs pillar on which the relaxing
(Ga,Mn)As layer rests, is itself restricted by the underlying unstructured material and
prevents maximal relaxation of the top layer. It is important to keep this fact in mind
when simulating different structures, as the etch depth at which the strain relaxation
attains its largest possible value for a given geometry may not be the same. It is
also worth noting that, when reproducing a structure that is not yet in the maximum
possible relaxation regime, small deviations in etch depth may result in a change in
relaxation of the top layers.

We observe that the standard deviation of ex is smaller for the 20 nm than for the
70 nm layer. The explanation lies in the fact that for a thicker layer, more relaxation is
possible towards the upper surface, where the separation from the constricting bottom
interface is largest. This leads to a strain gradient, which increases with layer thickness
and therefore results in a larger standard deviation for such layers. For large etch
depths, the standard deviation of both layers approaches a common value because the
vertical strain gradient is replaced by a homogeneous relaxation of the majority of
the stripe, with the remaining strain gradient confined to the side-edge regions of the
stripe (see Fig.4.4 (a), (b) for the strain distribution in layers of different height).
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Figure 4.6: Strain dependance on stripe width in a patterned GaAs/(In,Ga)As/(Ga,Mn)As
sample (7.4% In, fIn = 5.3 · 10−3; 2.5% Mn, fMn = 1.5 · 10−3). (a) strain ex in x-direction,
(b) strain ez in z-direction.

4.4 Simulation Results – (In,Ga)As/(Ga,Mn)As

While the last section investigated the general impact of variations of the physical
dimensions of the sample on the lattice strain, we will now use simulations to under-
stand the strain distribution in a more complex sample design. The motivation for the
following series of samples is to introduce an additional factor to the sample design,
which can act to increase the strain. In the stripes simulated so far, the driving (and
only) source of strain relaxation is the growth strain energy accumulated during MBE
growth of the (Ga,Mn)As layer. By adding an additional, highly strained (In,Ga)As
layer with much higher lattice mismatch than (Ga,Mn)As below the (Ga,Mn)As layer,
we introduce an additional source of strain energy. We expect that by patterning-
induced relaxation, the (In,Ga)As layer will assume a larger lattice constant than the
bulk value for (Ga,Mn)As and therefore act as an additional stressor.

To estimate the effect of this stressor layer, we simulate the following sample design:
A GaAs buffer layer is followed by a highly strained (In,Ga)As layer of 80 nm thickness
and an In-content of 7.4% (fIn = 5.3 · 10−3). The top layer is composed of 20 nm
(Ga,Mn)As with 2.5% Manganese (fMn = 1.5 · 10−3).

In this sample, the layer thickness of the (In,Ga)As layer is not a free parameter.
It is chosen such that the layer is as close as possible to the onset of plastic strain
relaxation before patterning for the given In-content. We will therefore use the stripe
width instead of the relative width as the free simulation parameter, and keep the
layer height fixed at hIn = 80 nm and hMn = 20 nm. The height of the (Ga,Mn)As
layer is chosen to retain comparability with other (Ga,Mn)As layers.

As shown in Fig. 4.6, we simulate stripe widths between 50 nm and 1 µm. For
the (In,Ga)As layer, we observe a result qualitatively very similar to the case of
GaAs/(Ga,Mn)As stripes (Fig. 4.4). For large stripe widths, the strain approaches the
case of an unstructured, pseudomorphic layer, with ex = ey = −5.3 · 10−3. The strain
in z-direction is again given by Eqn. (4.17) and approaches a value of ez = 4.75 · 10−3.
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For very small w, y becomes the only pseudomorphic direction, with resulting lattice
expansion in x- and z-direction. In neither border case is the average value of the
strain of the (In,Ga)As layer altered by the (Ga,Mn)As layer.

For the (Ga,Mn)As layer, the strain dependence on layer width reveals a remarkable
difference to the pure GaAs/(Ga,Mn)As case. First, we note that the behavior for large
widths is not influenced by the stressor layer, which is easy to understand when we
consider that the stressor layer itself is pseudomorphic for these conditions. Therefore
the (Ga,Mn)As will see a substrate with the lateral lattice constant of GaAs, which it
would also see if there was no stressor layer in the first place.

Coming from the high width limit, we observe significantly higher tensile strain in
the (Ga,Mn)As layer with stressor. In a pure 20 nm (Ga,Mn)As layer, we would expect
the transition from compressive to tensile strain to be around w = 100 nm (rw = 5,
see Fig. 4.4). In the stressor layer stripe, a (Ga,Mn)As layer with w = 1000 nm already
exhibits a large degree of tensile strain. The strain in z-direction is increased likewise.

The important feature is the maximum of the strain in the (Ga,Mn)As layer at
around w = 300 nm. To understand this behavior, we examine the low w case. In
this regime, the interface region between (In,Ga)As and (Ga,Mn)As contributes less
influence to the total volume than for a wide, thin layer. The upper regions of the
(Ga,Mn)As layer are consequently less subject to the tensile strain induced by the
(In,Ga)As, resulting in a total decrease of ex and the corresponding increase in ez.

The etch depth is not as critical in this case as for a (Ga,Mn)As stripe without the
stressor, as the (In,Ga)As layer negates the effects of the pillar height on the strain in
the (Ga,Mn)As layer caused by small differences in the total etch depth. In conclusion,
we can deduct, that for the given layer thicknesses and compositions, a stripe width
of around 300 nm is most desirable, as it results in the largest possible strain in the
(Ga,Mn)As layer on top of the (In,Ga)As layer.

4.5 Stripes Along [11̄0]

So far, we have only considered stripes which are aligned along the [100] direction,
which corresponds to one of the intrinsic biaxial easy axes of magnetization in a
(Ga,Mn)As epilayer. This configuration therefore allows us to study the influence
of uniaxial strain relaxation on such an easy axis.

The next challenging question which arises is, how uniaxial strain relaxation im-
pacts on the magnetic anisotropy, when it is applied under 45◦ to the easy axes, i.e.
along a hard axis of magnetization. Simulations of a (Ga,Mn)As stripe along the

[
110
]

direction (see Fig. 4.7) reveals several notable differences to the previously studied ge-
ometry.

Along the long axis of the stripe,
[
110
]
, the lattice constant is pseudomorphic to

the substrate, analogous to the [100] stripe. The free relaxation directions are [001]
and [110]. Contrary to the previous geometry, the strain components ex and ey are
no longer aligned with the stripe axes. Due to the symmetry of the system, they are
equal in sign and magnitude for this case, and both contribute equally to the relaxation
perpendicular to the stripe. Important is the emergence of the shear strain component
exy, which is not observed in the previous stripes.

For a volume conserving deformation of the crystal, the shear strain in a
[
110
]
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Figure 4.7: Crystal directions and simulation coordinate system for a
[
110
]
stipe. Important

strain components are indicated.

stripe would simply be equal to the strain along an in-plane cubic direction of a [100]
stripe [Ibac 03]. However, for our case, we do not have a volume conserving defor-
mation, since we keep the lattice fixed along the [11̄0] direction. Therefore, we have
to compute the strain distribution in the relaxed stripes by one of the following two
methods. The first is to transform the basis of the stress-strain equations (4.10) and
(4.11) into the rotated coordinate system, so that x and y again match the directions
perpendicular and parallel to the stripes. However, since we want to be able to directly
compare the strains for both cases without transforming the axis directions, we make
use of another method.

While retaining the previous coordinate system, we define the stripe area with an
angle of 45◦ to the y-axis. The simulation calculations yield the strain components
with respect to the coordinate axes, which we can write as the strain matrix E:

E =

 ex exy 0
exy ey 0
0 0 ez

 (4.19)

Here, exy = eyx, with all other shear strain components being zero. To quantita-
tively compare the strain relaxation perpendicular to the stripe for both geometries,
we rotate this matrix by -45◦ around the z-axis by applying the rotation matrix R,
which leads to the new strain matrix E ′:

E ′ = R E RT

E ′ =

 1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

 ex exy 0
exy ey 0
0 0 ez

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1



E ′ =

 1
2
(ex + 2exy + ey)

1
2
(−ex + ey) 0

1
2
(−ex + ey)

1
2
(ex − 2exy + ey) 0

0 0 ez

 (4.20)
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Figure 4.8: Simulation of the average strain in a (Ga,Mn)As stripe aligned along the
[
110
]

crystal direction. The solid lines represent the strain in the cubic directions (blue: ex = ey,
red: ez), the shear strain (green: exy), and the calculated relaxation perpendicular to the
stripe axis (black: e[110]). The dotted lines are the simulation results for an identical stripe
aligned along [100], taken from Fig. 4.4.

By comparing Eqn. (4.19) and Eqn. (4.20), we can now identify:

e[110] =
1

2
(ex − 2exy + ey) (4.21)

e[110] =
1

2
(ex + 2exy + ey) (4.22)

For the given material parameters of the stipe, the strain in [11̄0] is equal to
−1.5 · 10−3, as no strain relaxation takes place in this direction. The strain e[110]

can be directly compared to ex for a stripe along [100] to determine the difference in
perpendicular relaxation for both geometries. We note that in the rotated matrix E ′,
the shear strain vanishes, as we would expect for a stripe aligned with the coordinate
axes.

The strain simulation shown in Fig. 4.8 was compiled by varying the relative width
of a (Ga,Mn)As stripe with identical parameters as discussed in Section 4.3.1.

By comparing the relaxation perpendicular to the stripe, e[110], with the the cor-
responding ex (dotted blue line) of the nonrotated stripe, we can immediately see,
that we achieve a lesser degree of relaxation in this geometry for otherwise identical
structures. This fact is also evident in the larger value of ez in the rotated stripe. The
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in-plane strain relaxation is split equally between ex and ey, and therefore significantly
different from the [100] case, where ex represents the full in-plane relaxation and ey

remains at the pseudomorphic value. The shear strain exy is a new factor whose influ-
ence on the magnetic anisotropy will be investigated in Chapter 5. For large values of
rw, the [11̄0] stripes also approach the limit of an unpatterned pseudomorphic layer,
with exy → 0.
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Chapter 5

Local Anisotropy Control by Strain
Engineering

As discussed in the previous chapter, finite element simulations of the strain relax-
ation in stripe-shaped nanostructures predict a significant anisotropy in strain for the
directions parallel and perpendicular to a long stripe axis. Theoretical band structure
calculations and the Zener model indicate that lattice strain plays a significant role in
determination of the magnetic anisotropy of (Ga,Mn)As. To investigate the interplay
between lattice strain and magnetic anisotropy, we have produced a series of samples.
Their main characterizing properties, aside from Mn content and layer thicknesses,
are twofold: the inclusion of a stressor layer and the alignment direction of the stripe
pattern. Therefore the series contains samples

• consisting solely of a (Ga,Mn)As layer on a GaAs substrate.

• containing an additional (In,Ga)As stressor layer between the substrate and the
(Ga,Mn)As layer to increase lattice strain.

• with stripe structures aligned along the [100] crystal direction.

• with stripes aligned along the [11̄0] direction.

In the first section of this chapter, we will describe the fabrication process of the sam-
ples and provide detailed XRD studies which investigate the strain situation in the
parent and structured layers. The second section focuses on the magnetic characteri-
zation by SQUID and transport measurements.

At this point it is important to emphasize the difference between the two mech-
anisms of relaxation which are important in the context of this work. One is the
relieving of accumulated growth strain during fabrication of an epitaxial layer. This
effect takes place after a critical layer thickness is reached during growth of a layer
with a lattice mismatch to its substrate. Stress relief is achieved via plastic relaxation
of the crystal, through formation of lattice defects, which leads to degradation of the
layer quality. During this process, the lattice constant will increase in both in-plane
directions, which is why we will refer to this phenomenon as biaxial relaxation.

The strain relaxation discussed in this chapter is induced by the removal of con-
stricting material in parts of the layer. The initial condition of the layer, which is below
its critical thickness, is still completely pseudomorphic, with a crystal devoid of lattice

61
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Figure 5.1: (a) microscope image of patterned 4 × 4 mm stripe array containing fields of
251 parallel stripes. (b) SEM image of border region between two stripe fields. The width of
the stripes is 200 nm.

defects caused by plastic deformation. In pattering the layer into strips as introduced
in the previous chapter, we allow the stripe material to relieve strain by expanding its
lattice perpendicular to the stripe axis. This deformation is purely elastic and does
not cause the formation of lattice defects. Since the lattice constant along the stripe
direction is unaffected, we refer to this case as uniaxial relaxation.

5.1 Patterning and Structural Characterization

Table 5.1 provides a list of all samples which will be discussed in this chapter. All
samples were grown following the general procedure described in Chapter 3. The
(In,Ga)As stressor layer was grown at a temperature of 500 ◦C. For this layer, it is
critical to avoid crossing the critical layer thickness and therefore the onset of plastic
strain relaxation through lattice defect formation. The critical layer thickness can be
estimated according to [Cohe 94]. Verification that indeed no relaxation takes place
before pattering is achieved by HRXRD measurements.

After growth, electron beam lithography and chemically assisted ion beam etching
are used to pattern the samples into the desired stripe structures. For most samples,
a total area of 4 × 4 mm is covered by arrays of stripes, see Fig. 5.1. Each field in the
array contains 251 parallel stripes, with each individual stripe measuring nominally
200 nm × 100 µm. The separating distance between the stripes is 200 nm. A total
etch depth of about 200 nm was chosen to avoid influence from insufficient GaAs pillar
height (see Section 4.3.2).
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Figure 5.2: HRXRD ω-2Θ-scan (blue line) of the (004) reflection of the unpatterned, as-
grown wafer from which samples B and C were processed. The red line is a simulation of
the scan with the sample parameters given in table 5.1. The substrate peak is located at
ω = 32.086◦.

5.1.1 HRXRD Measurements

Parent Layer ω-2Θ-Scans

The parent layers were investigated with high resolution X-ray diffraction measure-
ments of the (004) reflection to guarantee high layer quality and fully pseudomorphic
layers. Fig. 5.2 shows an ω-2Θ-scan of an unpatterned piece of the parent layer for
samples B and C. The good agreement between the scan and the simulation of a com-
pletely pseudomorphic structure with parameters as given for the samples in Table 5.1
proofs high layer quality and confirms that no significant relaxation has taken place
during growth. Similar measurements have been performed for all samples discussed
in this chapter.

HRXRD RSM, Relaxation Triangles

To quantify the strain relaxation after pattering the layer into the stripe structure, two
different XRD techniques were used. We will first focus on the HRXRD RSM method
as introduced in Section 3.5.2. The crucial difference to the situation discussed in
Section 3.5.2, in which we showed measurements on a biaxially relaxed layer, is that
stripe samples are subject to uniaxial and therefore anisotropic lattice relaxation in
the plane of the sample.

To discuss how we model this uniaxial relaxation, i.e. how we construct the re-
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laxation triangle for full relaxation, we have to distinguish between the two different
stripe alignments. Stripes aligned along the [100] direction are easy to understand in
the sense that we can imagine the relaxation as analogous to biaxial, with the suppres-
sion of relaxation in one in-plane direction, hence uniaxial. Due to this suppression,
more growth strain is relieved by expanding the lattice in the remaining free direc-
tions. The in-plane lattice constant perpendicular to the stripes will therefore be larger
(smaller q‖ in the RSM) than we would observe for a biaxially relaxed layer. The same
is true for the vertical lattice constant, which is also larger (smaller q⊥) than for the
case of biaxial relaxation.

We can calculate the strain limits for the free surfaces of the stripe by using
Eqn. (4.18). Written in a form independent of crystal directions, it reads:

e⊥ = −νe‖ (5.1)

This equation relates the compression of the lattice along the stripe (e‖) with the
resulting transverse strain (e⊥) via the Poisson ratio ν. Using the definition of strains as
the relative lattice constant difference between the strained and the relaxed condition
(see Eqn. (2.2)), we can write:

e⊥ =
auniax − arelaxed

arelaxed

; e‖ =
asubstrate − arelaxed

arelaxed

(5.2)

Here, we use auniax to designate the relaxed lattice constant for the case of uniaxial
relaxation, while arelaxed refers to the relaxed lattice constant of bulk (Ga,Mn)As.
Substituting these two relations into Eqn. (5.1), we can solve for auniax:

auniax = −ν(asubstrate − arelaxed) + arelaxed (5.3)

The crystal structure of the relaxed stripe has a tetragonal symmetry, with auniax in
the perpendicular directions, and asubstrate in the direction parallel to the stripe.

For the case of a stripe aligned along the [11̄0] direction, the situation is slightly
more complicated. The Poisson ratio ν is usually defined for stresses and resulting
strains in 〈100〉 directions, which is the case for biaxially relaxing layers and [100]
stripes. In this case the value for ν is defined by the elastic compliances:

ν = −s12

s11

(5.4)

While this definition has been correct for all situations described so far, we now en-
counter stress along [11̄0], with resulting strains in [110] and [001]. An expression for
ν for arbitrary orientations of the cubic crystal has been described by [Bran 73] for a
longitudinal stress along a direction l which causes a strain in an orthogonal direction
m:

ν = −
s12 + (s11 − s12 − 1

2
s44)(l

2
1m

2
1 + l22m

2
2 + l23m

2
3)

s11 − 2(s11 − s12 − 1
2
s44)(l21l

2
2 + l22l

2
3 + l21l

2
3)

(5.5)

The sij are the three independent elastic compliances. The li and mi are the direction
cosines of l and m with respect to the 〈100〉 cubic axes. With this equation, we
calculate for
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l = [100], m = [010]: ν = 0.312

l = [100], m = [001]: ν = 0.312

l = [11̄0], m = [110]: ν1 = 0.021

l = [11̄0], m = [001]: ν2 = 0.444

Comparing ν and ν1, we can immediately see that the crystal is much less susceptible
to deformations in [110] than in [010] direction, when they are caused by stress in an
orthogonal direction. Contrary to that, the stress in the vertical direction is larger as
compared to the [100] stripes. These results confirm the simulation data, which also
predict reduced lattice relaxation perpendicular to the stripes but an increased value
in the vertical direction, when comparing [11̄0] and [100] stripes. Using Eqn. (5.3), we
obtain for the relaxed lattice constants:

auniax,[110] = −ν1(asubstrate − arelaxed) + arelaxed

auniax,[001] = −ν2(asubstrate − arelaxed) + arelaxed

During relaxation, the base of the unit cell is extended along the [110] diagonal, while
remaining fixed along the other diagonal, thus forming a parallelogram. The resulting
crystal symmetry is therefore monoclinic.

Neither the substrate position nor the pseudomorphic position is different for the
uniaxial relaxation triangles. With these considerations, we are now able to calculate
the entire relaxation triangle for both stripe alignments. The relaxed position coor-
dinates are summarized in Tbl. 5.2. Fig. 5.3 shows the uniaxial and for reference the
biaxial relaxation triangle for both stripe alignments.

Table 5.2: Reciprocal space coordinates for the relaxed position of the relaxation triangle
for a biaxially relaxed layer and two different alignment of uniaxially relaxed stripes.

relaxed position for (q‖, q⊥)

biaxially relaxed layer (h · asub

arelaxed
, l · asub

arelaxed
)

[100] stripe (h · asub

auniax
, l · asub

auniax
)

[11̄0] stripe (h · asub

auniax,[110]
, l · asub

auniax,[001]
)

HRXRD RSM, [100] Stripes

To investigate the strain relaxation in [100] stripes, we measure two reciprocal space
maps of sample B, one of the (026) reflection, with the incident x-ray beam along the
[010] direction, and one map of the (206) reflection, with incident x-rays along the [100]
direction. In the first case, only lattice planes with [010] and [001] components will
contribute to the scattering process, or, in other words, the measured q‖ corresponds
to an a‖ = a[010]. In the second case, the incident x-ray beam is rotated by 90◦ in
the plane of the sample relative to the first case. The lattice constant a‖ measured
in this RSM therefore corresponds to a[100]. The vertical component remains identical
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Figure 5.3: Red lines: relaxation triangles for the uniaxial relaxation of two differently
aligned stripes. The according relaxation triangle for biaxial relaxation is marked in black.
The coordinates for all corner points are given in Tbl. 3.1 and Tbl. 5.2. The displayed
triangles are calculated for the (In,Ga)As layer of samples B and C.

for both maps and measures the vertical lattice constant a[001]. By analyzing the two
RSMs, shown in Fig. 5.4, we can independently determine the lattice constant and
therefore the strain perpendicular and parallel to the patterned stripe axis.

In Fig. 5.4 (a), we observe a shift of the (In,Ga)As peak along the relaxation line,
which is caused by the relaxation of the lattice in [010] direction, perpendicular to the
stripes. The (In,Ga)As peak in Fig. 5.4 (b) on the other hand is shifted along the
surface normal towards larger q⊥. This indicates a smaller lattice constant in [001],
which is explained by the fact that the lattice relaxes perpendicular to the stripe, thus
lowering the lattice parameter in z-direction due to the Poisson effect. The fact that
no shift in q‖ is observed in this map proves, that no relaxation takes place along
the stripe axis. To calculate the degree of relaxation for the (In,Ga)As stressor layer
in Fig. 5.4 (a), with its peak position at (1.9898, 5.9552), we rewrite Eqn. (3.9) by
replacing arel with auniax:

γ =
a‖ − asub

auniax − asub

. (5.6)

With this equation we determine a value of γ = 0.75.
The peak of the (Ga,Mn)As layer is difficult to resolve in these maps. Even in the

pseudomorphic sample (see ω-2Θ scan in Fig. 5.2), the separation between this layer
peak and the substrate peak is small. We expect that the relaxation of the underlying
(In,Ga)As stressor layer during pattering forces a corresponding lattice constant, and
therefore q‖ position, on the (Ga,Mn)As layer. The [010] (Ga,Mn)As lattice constant
is thus increased, which leads to a reduction in the vertical lattice constant of the
stripes. This shifts the peak accordingly to larger values of q⊥ and causes it to be
partially overlapped by the substrate peak. The measurement is further complicated
by the relatively small volume of the stripe structure compared to a complete layer,
which leads to a low intensity of the scattered x-rays. With regard to these effects,
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Figure 5.4: HRXRD measurement of sample B, showing a reciprocal space map of the
(026) and (206) Bragg reflection with incident x-rays (a) perpendicular and (b) parallel to
the stripe axis. The red line indicates the triangle of relaxation for (In,Ga)As for uniaxial
relaxation.

we attribute the bulge marked with orange ovals below the substrate peak in Fig. 5.4
(a) and (b) to the (Ga,Mn)As layer. By estimating its peak position in the RSM in
Fig. 5.4 (a) at (1.992, 5.988), we conclude, that tensile strain in the range of e[010] =
(2.2±1.0)×10−3 has been induced in the (Ga,Mn)As layer by the underlying stressor.
This value is in good agreement with the finite element simulations which predict a
value e[010] = 1.47× 10−3 for this sample.

HRXRD RSM, [11̄0] Stripes

For [11̄0]-aligned stripes, the situation is slightly different than in the previous mea-
surement. Lattice planes of asymmetric reflexes with h = k are now oriented along the
direction parallel and perpendicular to the stripe axis. For this reason we chose the
(113) Bragg reflection for the measurement of sample C shown in Fig. 5.5. Both maps
are qualitatively very similar to the maps measured for [100] stripes. For incident
x-rays perpendicular to the stripes (Fig. 5.5 (a)), we observe a shift of the stressor
layer peak along the relaxation line, caused by lattice expansion in [110] direction. For
x-rays parallel to the stripes, no change in q‖ is visible, which proves that the lattice
of both top layers remains pseudomorphic to the substrate in this direction, as it did
in the corresponding case for the [100] stripes.

As predicted by the finite element simulations, the overall strain relaxation is



5.1. Patterning and Structural Characterization 69

0.99 1.00

2.97

2.98

2.99

3.00

[HH0]

[0
0L

]

0.99 1.00

(a) (b)

GaAs

(GaMn)As

(In,Ga)As

Figure 5.5: HRXRD RSM around the (113) reflection of sample C. The incident x-rays are
oriented (a) perpendicular and (b) parallel to the stripe direction along [11̄0]. The solid red
line represents the relaxation triangle for the (In,Ga)As stressor layer.

smaller for [11̄0] stripes than for [100] stripes. By analyzing the layer peak positions, we
find, that the induced strain in the (Ga,Mn)As layer is e[100] = e[010] = 0.3±1.0×10−3

(Simulation: e[100] = e[010] = −0.42 × 10−3). From the location of the (In,Ga)As
peak at (0.9973, 2.9734), we calculate the degree of relaxation for the stressor layer as
γ = 0.48.

An interesting feature is the modulation of the intensity of the substrate and, to
a lesser degree, the layer peaks in Fig. 5.5 (a). The period of this modulation is
approximately q‖ = 0.0014 r.l.u. In real space units, this corresponds to a period
of ≈ 400 nm, which identifies the modulation as superlattice reflections of the stripe
array.

5.1.2 GIXRD RSM

Sample A has been selected for high-precision XRD measurements at beamline BW2
at the Hamburger Synchrotronstrahlungslabor (HASYLAB) to study the relaxation in
a sample without stressor layer. For this type of sample, the XRD equipment available
at Würzburg is insufficient to achieve quantitative data. With the high intensity of
the synchrotron radiation provided at HASYLAB, it is possible to achieve a very high
resolution. Measurements were performed in the grazing incidence (GI) geometry on
the (333) reflection, with an incidence angle of αi = 0.2◦ and a photon energy of
9.6 keV. The incidence angle is below the critical angle for total reflection in GaAs of
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αc = 0.256◦. This ensures, that scattering from the uppermost regions of the stripes
is dominant and further increases the sensitivity in the region of interest.

Because of the small lattice mismatch between GaAs and (Ga,Mn)As in this sample
of only f = 1.5 × 10−3, the Bragg reflections of both materials lie very close to each
other. If the (Ga,Mn)As stripes were purely pseudomorphically strained, the difference
between the two reflections would be only ∆l = 0.0044 r.l.u., a value which can hardly
be resolved with our experimental setup. However, since the height of the stripes
is only about 70 nm, the (Ga,Mn)As (333) reflection is significantly broadened in l
direction and fringes due to finite thickness are visible. Therefore, by mapping the
reciprocal space on the maximum of one of the finite thickness fringes, which is far
enough from the l position of the GaAs bulk peak, one is mainly sensitive to the
(Ga,Mn)As stripes.

This measurement, a h-k map at l = 2.98, is shown in Fig. 5.6 (a), and a simi-
lar map through the GaAs (333) bulk peak in Fig. 5.6 (b). In the stripes sensitive
measurement, one can clearly observe a shift of the peak towards smaller values in k.
This shift indicates relaxation of the (Ga,Mn)As structure in [010] direction, whereas
no relaxation takes place in [100] direction (no peak shift visible in h direction). The
different widths of the peaks in h and k direction are due to the different lateral
dimensions of the stripes.

In order to quantify the shift, we fit the measured peaks to Voigt profiles. Fig. 5.6
(c) shows the central k-line scan through the peaks of both reciprocal space maps (open
circles in the figure). Each curve is fit with the sum of two Voigt profiles (thick solid
lines), one fixed at h = 3 representing the bulk contribution, the other with a variable
position. All four individual peaks are also shown as thin lines. By this procedure,
we obtain a value for the strain perpendicular to the stripes of e[010] = −0.28× 10−3,
which is very close to full relaxation (e = 0). Again, this result is in good agreement
with simulation data, which predict a value of e[010] = 0.21× 10−3. For reference, the
fully pseudomorphic condition before relaxation is e[010] = −1.50× 10−3.

Summary

The strain situation which we expect based on simulation results are confirmed by
the various XRD measurements for all samples. Before patterning, all samples are
completely pseudomorphic to the substrate and under in-plane biaxial compressive
strain. Patterning the sample into the stripe arrays allows uniaxial lattice relaxation
perpendicular to the long axis of the stripe. The direction along the stripe axis shows
no sign of strain relaxation. The ability of the (In,Ga)As stressor layer to induce
additional strain in the top (Ga,Mn)As layer could also be verified. For the presented
measurements, the inclusion of a stressor layer increases the strain from e[010] = −0.28×
10−3 in sample A to e[010] = 2.20×10−3 in sample B. Regarding the alignment of stripes,
we found that relaxation is less for stripes oriented along the [11̄0] direction than for
stripes along [100]. Finally, it has been shown that the finite element simulations are
in good agreement with real structures.
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Figure 5.7: M(T ) SQUID curve of the parent layer of sample A. The red line indicates the
ferromagnetism to paramagnetism phase transition at TC ≈ 64 K.

5.2 Magnetic Characterization
For investigation of the magnetic properties, especially the magnetic anisotropy, of
the patterned samples and their parent layers, we use two characterization techniques.
The first is a superconducting quantum interference device (SQUID), which allows us
to measure hysteresis loops along selected crystal directions. The second are trans-
port measurements in the presence of an external magnetic field, which make use of
the anisotropic magnetoresistance (AMR) effect in (Ga,Mn)As, as described in Sec-
tion 2.3.1. Both techniques and results will be discussed in detail in this section.

5.2.1 SQUID Measurements

The SQUID provides the possibility of a highly accurate measurement of the magnetic
moment of the sample. It consists of a system of superconducting detection coils which
are connected to the SQUID sensor with superconducting wires. A measurement
is performed by moving a sample through the detection coils, which will cause an
electrical induction current in the coils. Because the detection coils, the connecting
wires and the SQUID input coil form a closed superconducting loop, any change in
magnetic flux in the detection coil produces a proportional change in the persistent
current in the detection circuit. Essentially, the SQUID functions as a highly linear
current-to-voltage converter which transforms variations in the current in the detection
coils to an output voltage which is proportional to the magnetic moment of the sample.
In all data presented in this work, the background signals originating from the substrate
and sample holder have been subtracted.

We use the SQUID for two types of measurements, namely M(T ) and M(H),
which are both very distinct for ferromagnetic materials. Fig. 5.7 shows a typical
M(T ) curve of the parent layer of sample A. The magnetic moment decreases with
increasing temperature up to the Curie temperature TC , at which long range magnetic
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Figure 5.8: SQUID magnetization measurements for (a) the as-grown parent layer of sample
A and (b) sample A with stripes along [100]. All measurements were performed at 4 K.

order is lost and the phase transition to Curie-Weiss paramagnetism takes place. The
value of TC ≈ 64 K, which we obtain for this sample is typical for as-grown, unannealed
(Ga,Mn)As layers.

Fig. 5.8 shows the magnetization M vs. H dependence of sample A as well as its
parent layer. The external magnetic field of up to ±150 mT is applied in all for major
in-plane orientations. In the unpatterned layer (left panel), we observe the typical
hysteresis loops for as-grown (Ga,Mn)As measured at a temperature of 4 K. The
easy axes along [100] and [010] are located on top of each other and are difficult to
distinguish on this scale. The hard axis magnetization value at zero field is roughly a
factor of

√
2 smaller than the corresponding easy axis value. In this case we measure

the projection of the magnetization (which is aligned along [100] or [010]) on the scan
axis.

The behavior observed for the patterned sample, with stripes aligned along [100],
shown in the right panel of Fig. 5.8, is heavily modified compared to the unpatterned
case. The direction parallel to the stripe orientation is still a magnetic easy axis, similar
to that of the host, albeit showing a much larger coercive field of 43 mT compared
to the original 4 mT. In contrast to that, along the [010] direction, the easy axis is
replaced by a pronounced hard axis behavior, marked by the drop of the remanent
magnetization at zero field to ∼ 10% of the parent layer value. We conclude from this
measurement, that the biaxial easy axis in the parent layer has been replaced by a
single uniaxial easy axis along the direction of the stripes after patterning.

The submicron dimensions of the lithographic patterning have also allowed us to
reach the single domain limit in the (Ga,Mn)As stripes at low temperatures. We
derive this conclusion from the observation, that the magnetization reversal along
the remaining [100] easy axis takes place at circa the uniaxial anisotropy field Ha =
45 mT, which we obtain from transport measurements as detailed in the following
section. This indicates a nearly fully coherent Stoner-Wohlfarth rotation behavior of
the magnetization in the stripe as opposed to domain wall nucleation and propagation
in the parent layer.

When comparing the saturation magnetization in Fig. 5.8 (a) and (b), we note a
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reduction of a factor of 7 from the parent layer to the stripe sample. The main reason
for this difference is that both measurements were done on different pieces of the same
wafer which were not of exactly equal size. We estimate that the total (Ga,Mn)As
volume in the patterned sample is approximately by a factor of 5 smaller than in the
as-grown sample piece. This estimate takes into account the difference in sample size,
area between the stripe fields and damage caused by etching. The remaining disparity
in saturation moment can be explained considering the uncertainty in determining the
volume and possible local fluctuations of Mn content (two different pieces of one wafer).
Sidewall damage due to etching is also a possible, albeit probably small, contribution
to this effect.

5.2.2 Transport Measurements

[100] Stripes

For the transport measurements, a field of 251 parallel stripes is contacted from both
ends. The current direction J is therefore parallel to the stripes. At 4 K, a series of
magnetic field sweeps from −300 mT to 300 mT is performed. Between each scan, the
angle φ between the magnetic field B and the current J is increased by an increment
until the whole range from 0◦ (parallel to the stripes) to 90◦ (perpendicular to the
stripes) is covered. A selection of transport measurements is shown in Fig. 5.9 for the
samples A, B and F from Tbl. 5.1.

In all measurements, the initial configuration is the B ‖ J or φ = 0◦ setup. For a
magnetic field sweep along this direction, we observe a low resistance state over the
whole sweep range for all three samples in Fig. 5.9. According to Sec. 2.3.1, a low
resistance is expected in (Ga,Mn)As, when the magnetization M is aligned parallel
to J. With progressively increasing φ, we note an increase in magnetoresistance at
higher fields up to an angle dependent saturation value. This increase in resistance
reaches a maximum for φ = 90◦, which corresponds to an orientation perpendicular
to the stripe direction. Since a high magnetoresistance in (Ga,Mn)As is expected for
M ⊥ J, we explain our observations as follows: In the absence of an external field
B, the magnetization M is oriented along the direction of the stripes. Sweeping the
field in this direction does not change the orientation M (save for the 180◦ reversal
marked by the change in the slope of the curve) and has therefore no influence on the
magnetoresistance. Applying B under an angle to the stripe direction forces M away
from this direction at higher fields. The resulting angle between M and J leads to an
increase in the resistance. The maximum is reached when φ = 90◦, in which case the
magnetization is forced to orient perpendicular to the current. The fact that all curves
share a low resistance state at zero external field proves the existence of a uniaxial
easy axis along the stripe direction.

The opening of the curves is a measure for the strength of the uniaxial anisotropy.
If only a pure uniaxial anisotropy was present, the hard axis magnetoresistance scan
would be parabolic and the magnetic field necessary to force the magnetization perpen-
dicular to the easy axis would be a direct measure for the strength of the anisotropy.
The presence of a small biaxial anisotropy contribution is evident in a slight shift of
the parabola to positive fields. An estimate of the uniaxial anisotropy field Ha (see
Sec. 2.3) is achieved by the following procedure [Huem 07]. We fit a parabola to the
low field part of the φ = 90◦ curve [West 60]. The intersection of this parabola with
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Figure 5.9: Magnetoresistance scans on stripe samples A, B and F at 4 K. The lowest curve
in each plot corresponds to φ = 0◦, the highest curve to φ = 90◦, as indicated in (b). All
curves are hysteretically symmetrical.

the linear extrapolation of the saturation value at high fields gives the value for Ha.
Using this method, we find a value of Ha = 45 mT for sample A and Ha = 80 mT

for sample B. For the higher strained samples (D, F, H) we cannot apply this method
due to technical limitations of the measurement setup. It is only possible to apply
magnetic fields up to ±300 mT, which is insufficient to achieve full saturation in these
samples (see Fig. 5.9 (c)). We will therefore use the width of the parabolic opening
at half height as a figure of merit when comparing the strength between differently
strained samples. For geometrical reasons, the width at half height is roughly

√
2/2

of Ha.
In Fig. 5.10, we compile the results on all transport measurements of [100]-aligned

stripes. We observe an increase of the width of the openings, and therefore the



76 5. Local Anisotropy Control by Strain Engineering

- 1 0 1 2 3 4 5 6

0

2 0 0

4 0 0

6 0 0

 

 

Wi
dth

 at
 Ha

lf H
eig

ht 
(m

T)

S t r a i n  e x  ( 1 0 - 3 )

Figure 5.10: Width of the opening at half height of the parabolic low field part of the
magnetoresistance scans over average strain in x-direction. All samples of Tbl. 5.1 with
[100]-aligned stripes are shown. The red line is a linear interpolation.

anisotropy field, with increasing average strain. There are several factors which explain
the scattering of the data points around the red linear interpolation line. As mentioned
in the previous chapter, all simulations from which the strain value is calculated con-
sider ideal stripes. This means that inhomogeneous etching, which may cause rough
or slanted sidewalls and therefore regions of inhomogeneous strain are not taken into
account. Also, the physical dimensions (stripe width, etch depth) are expected to
differ slightly between simulation and processed stripes, causing another uncertainty
in the strain value. Furthermore we will show in annealing experiments detailed in
the following section, that the carrier density has an impact on the strength of the
anisotropy. Since the Mn content of the stripe samples in Fig. 5.10 varies between
2.5–5.4%, differences in carrier concentration are also accountable for the scattering
of the data points. But, even taking all aforementioned uncertainties into account,
we still observe a very clear dependence of the anisotropy field on the lattice strain,
which identifies it as the driving force in determining the configuration of the magnetic
anisotropy in (Ga,Mn)As nanostructures.

[11̄0] Stripes

The situation for [11̄0] oriented stripes is notably different from what we observe for
the [100] stripes. Fig. 5.11 (a) shows magnetotransport measurements on sample I. As
with the [100] stripes, the external field sweeps are performed in the interval from B ‖
J (φ = 0◦) to B ⊥ J (φ = 90◦). In contrast to the [100] stripe measurements in Fig. 5.9,
the lowest curve at φ = 0◦ is not the flattest curve of the ensemble. The curvature of a
magnetotransport measurement is caused by the rotation of the magnetization to the
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Figure 5.11: Magnetoresistance scans on stripe sample I (a) before and (b) after annealing
for 50 hours. Although the applied magnetic field is insufficient to achieve saturation for high
φ, a reorientation of the easy axis between the two plots is observable.

nearest easy axis. Therefore, we do not observe purely uniaxial behavior parallel to the
stripe direction as in the [100] stripes. The curvature of the lowest curves indicates
that the magnetization rotates away from the stripe direction in the absence of an
external field. The easy axis of sample I is therefore located at some angle between
the original easy axis (45◦ to the stripe axis) and the stripe direction.

To quantify this reorientation, we have to determine the exact angle ϑx of the
easy axis after patterning of the [11̄0] stripes, which can be evaluated directly from
the magnetotransport measurements [Deng 08a]. To do so, we have to subtract the
isotropic component of the magnetoresistance from the 0◦ and 90◦ curve. The isotropic
component is determined by fitting the linear region of the measurement curve with
the smallest slope, as shown in Fig. 5.12. This fit line is matched to the linear region
of the 0◦ and 90◦ curve by parallel translation. The intersection of these three lines
with H = 0 mT defines two resistance values, which we call ∆1 and ∆2.
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Figure 5.12: Determination of the isotropic component by linear fit of the curve with
smallest slope (blue). Parallel translation to 0◦ (black) and 90◦ (red) curve defines ∆1 and
∆2 by intersection with H = 0 mT.

Using these values, we can rewrite the formula for the longitudinal resistivity of
the AMR effect, Eqn. (2.13), as

ρxx = ρ⊥ −∆ρ cos2(ϑ), (5.7)

with
∆ρ = (ρ⊥ − ρ‖) = (∆1 + ∆2). (5.8)

At H = 0 mT, we can write the resistance change ∆2 caused by the angle ϑx between
M and J as

∆2 = ρxx(ϑx)− ρxx(ϑ = 0◦). (5.9)

Combining (5.7) and (5.9) leads to an expression for the angle ϑx:

∆2 = ∆ρ
(
− cos2(ϑx) + 1

)
∆2 = ∆ρ sin2(ϑx)

sin2(ϑx) =
∆2

∆1 + ∆2

ϑx = arcsin

(√
∆2

∆1 + ∆2

)
(5.10)

For the presented data, this procedure suffers from the same limitations as the de-
termination of Ha for the [100] stripes. It is necessary to a apply a magnetic field of
sufficient intensity to saturate the magnetization for all field alignments in order to
perform the linear translation of the fit of the flattest curve. For the data in Fig. 5.11,
this is obviously not possible, since the linear regime of the highest and lowest curve
is not reached. However, this procedure to calculate ϑx still serves well to evaluate
magnetoresistance curves, even if an exact determination of ϑx is not possible.

For sample I, as shown in Fig. 5.11 (a), the flattest curve is the dark yellow one,
corresponding to an angle of φ = 15◦. ∆2 can be determined fairly accurately as
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∼ 0.2 kΩ. We estimate ∆1 to be in the range of 3.1–3.8 kΩ, which results in an angle
ϑx between 13–14◦. While this is not a uniaxial anisotropy as observed for the [100]
stipes, this result clearly documents a large influence of anisotropic strain on the easy
axis orientation for [11̄0] oriented stripes.

In order to further affect the easy axis orientation, we anneal sample I for 50 hours
at 185 ◦C and repeat the magnetoresistance measurements. We expect thermal treat-
ment to affect the easy axis orientation because it is known to increase the carrier
density, which mediates the ferromagnetic coupling according to the Zener model.
The result of the procedure is shown in Fig. 5.11 (b). In contrast to the measurement
before annealing, the flattest curve (purple, φ = 15◦) is now very close to the lowest
curve (dark blue, φ = 0◦), leading to ∆2 ∼ 0.1 kΩ. It is obvious that ∆1 is now much
larger relative to ∆2 than before annealing, which is equivalent to a reduction of the
easy axis orientation angle ϑx. This suggests, that the creation of a uniaxial easy axis
is also possible for [11̄0] stripes by further increasing the strain in the stripe, possibly
assisted by thermal treatment of the sample.

When annealing the sample to increase the uniaxial character of the stripe it is
important to bear in mind that Sawicki et. al. have reported the appearance of a
uniaxial easy axis along an in-plane 〈110〉 direction after annealing in unpatterned
(Ga,Mn)As layers [Sawi 04]. To ascertain that the uniaxial easy axis in our stripes is
indeed caused by patterning-induced stain modification and not purely by annealing,
we conduct all magnetotransport measurements on [11̄0], as well as [110] stipes. So
far, no perfectly uniaxial character could be demonstrated for [11̄0] stripes. Ongoing
measurements on sample G are very promising though and are expected to yield the
first purely uniaxial [11̄0] stripes in the very near future.

5.3 Shape Anisotropy
In early publications on micro-scale structured (Ga,Mn)As, the observed modifica-
tion of the magnetic configuration of the structures has been attributed to shape
anisotropy [Hama 04]. Shape anisotropy describes the phenomenon that a long, fer-
romagnetic bar is preferentially magnetized along its long axis. The external fields
necessary to reverse the magnetization increases for narrower shapes. For metallic fer-
romagnets, such as cobalt or iron, this effect has been widely used [OHan 00]. However
it is important to note that, although this effect is certainly present in nanostructured
(Ga,Mn)As, the strength of this shape anisotropy depends on the magnetization, which
is much smaller for (Ga,Mn)As then for ferromagnetic metals.

When described in terms of the magnetostatic energy equation (2.10), the effect
of shape anisotropy is an additional uniaxial energy term Kuni sin

2(ϑ − ϑuni), where
ϑuni denotes the direction parallel to the long dimension of the ferromagnetic shape.
Based purely on magnetostatics considerations, this Kuni = Kshape is proportional to
the square of the saturation magnetization Ms [OHan 00]:

Kshape = ∆N
µ0M

2
s

2
. (5.11)

Even at 4K, the factor µ0Ms is much lower in (Ga,Mn)As (∼ 0.05 T) than in typical
ferromagnets such as Ni (∼ 0.6 T) or Fe (∼ 2.2 T) [Sawi 04]. ∆N is the differ-
ence in demagnetizing factors, which describes the geometry of the ferromagnet. To
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determine ∆N , we follow the approach of [Ahar 98] for the geometry of a rectangu-
lar ferromagnetic prism. For sample A, with a stripe thickness of 70 nm, width of
200 nm, and a length of 100 µm, we calculate ∆N = 0.28. According to Eqn. (5.11),
this yields Kshape ∼ 280 J/m3. Divided by the volume magnetization (see Sec. 5.2.1)
of 14 emu/cm3, we get Kshape/M ∼ 20 mT.

We have already established earlier, that the biaxial crystalline anisotropy is of
the order of Kcryst/M ∼ 100 mT. Comparing this to the calculated shape anisotropy
field in sample A of Kshape/M ∼ 20 mT, we note that shape anisotropy alone cannot
be sufficient to overcome the intrinsic biaxial anisotropy. Indeed, magnetotransport
measurements (see Fig. 5.10) reveal anisotropy fields in a range from Ha = 45 mT for
sample A up to Ha ∼ 300 mT for samples F and H, which is 2–15 times larger than
the expected shape anisotropy.

Further proof that shape anisotropy is insufficient to explain the observed uniaxial
anisotropy after patterning comes from a comparison of the magnetotransport mea-
surements of sample A and B (Fig. 5.9 (a) and (b)). Both (Ga,Mn)As layers share
identical dimensions as well as containing the same Mn content, which is equivalent
to an identical ∆N and Ms. Both are therefore subject to the same contribution from
shape anisotropy. However, the measured anisotropy field of sample B is significantly
larger that that of sample A (80 mT compared to 45 mT). The only characteristic
differentiating both samples is the lattice strain, which is larger for sample B. Based
on these considerations, we can rule out shape anisotropy as the driving force in the
observed occurrence of uniaxial magnetic anisotropy in our patterned samples.

5.4 A Model for Anisotropy Orientation

As shown in this chapter, the magnetic characterization of a multitude of processed
(Ga,Mn)As stripe samples with different orientations reveals a manifold dependence
of the orientation of the magnetic anisotropy on lattice strain. To understand these
observations on a deeper level, we will discuss a phenomenological model on the basis of
k ·p calculations (Sec. 2.2) and the magnetostatic domain energy landscape (Sec. 2.3).

The results of k·p calculations by M. Schmidt, as outlined in Sec. 2.2, are presented
in Fig. 5.13. The mean energy per valence band hole for a (Ga,Mn)As layer identical
to the one used in samples A–C has been calculated and plotted for directions of M
over a range of 180◦. Starting with the pseudomorphic case, the layer is allowed to
relax in x- and z-direction, while the lattice constant is kept fixed in y-direction. This
corresponds exactly to the strain situation found in a stripe aligned along the [100]
direction (x-axis).

We note, that for the pseudomorphic case (black curve in Fig. 5.13), the calculation
qualitatively reproduces the biaxial anisotropy of the magnetostatic energy landscape
in Fig. 2.4, if only the crystalline anisotropy term from Eqn. (2.10) is taken into
account. With beginning strain relaxation, the energy minimum in [010] becomes less
favorable for the magnetization and disappears entirely around ex = −0.6·10−3. Above
this value only a single energy minimum remains along the stripe direction in [100],
which is characteristic of uniaxial behavior. All discussed stripe structures in Tbl. 5.1
surpass this strain value by a large margin, which matches with the observation of a
strong uniaxial character in all patterned [100] stripes.
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Figure 5.13: Theoretical k · p calculations of the mean energy per valence band hole of a
(Ga,Mn)As layer with 2.5% Mn. The levels of the strain ex range, in equal steps, from the
pseudomorphic case (ex = −1.5 · 10−3, black curve) to the fully relaxed case (ex = 0, red
curve). The strain ey remains fixed at −1.5 · 10−3. The carrier density is assumed to be
4 · 1020 cm−3.
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Figure 5.14: Magnetostatic energy landscape as calculated from Eqn. (2.10) (thick black
line). The influence of stain is represented by an additional uniaxial term Kstrain sin2(ϑ).
The magnitude of this term is increased in steps of 0.25Kcryst for (a) [100] stripes and (b)
[11̄0] stripes. For both plots, ϑ = 0◦ is parallel to the stripe direction.
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In the energy landscape picture (which we have shown to be consistent with k · p
calculations), a uniaxial anisotropy takes the form of a term with a sin2(ϑ) symme-
try. In unpatterned layers, such contributions are already present in the Kuni[1̄10] and
Kuni[010] terms. We introduce an additional term Kstrain to represent the influence of
strain on the energy landscape.

First, we will investigate the influence of strain on [100] stipes. Fig. 5.14 (a) shows
the energy landscape of an unpatterned layer (thick black line), which is dominated
by the biaxial crystalline anisotropy given by Kcryst. The influence of strain is taken
into account by the term Kstrain sin2(ϑ), which is zero for the unpatterned layer. We
expect this term to increase with strain, as induced by patterning of the stripes. In
the plot, this is represented by increasing its magnitude in increments of 0.25Kcryst.
We observe, that the energy minimum at 90◦ diminishes as the uniaxial strain term
becomes more dominant. By the time when Kstrain reaches a value of 75% Kcryst, the
energy minimum has completely disappeared and only a single global easy axis along
the stripe axis remains.

According to this picture, a rather large uniaxial term close to the order of the
biaxial crystalline anisotropy would be needed to cause the appearance of a global
uniaxial easy axis. In practice, this is not the case, as can be seen from the measure-
ments on sample A in Fig. 5.9 (a). Here, we find an anisotropy field of only 45 mT
compared to Kcryst/M ∼ 100 mT. Two reasons for this discrepancy are explained in
the following.

Firstly, the interplay between the anisotropic strain relaxation and the crystalline
anisotropy is not a simple superposition of energy terms as implied in the above dis-
cussion. Both anisotropy terms are coupled to the crystal lattice of the sample. As
such, we have to assume that the biaxial crystalline anisotropy term is also affected by
the induced relaxation. Since the symmetry of the crystal is lowered, we expect the
influence of the biaxial term to be smaller than in the unpatterned case, which would
allow the Kstrain term to dominate the energy landscape even though it is smaller than
the original value of Kcryst.

Secondly, the [1̄10] uniaxial anisotropy, which is always present in (Ga,Mn)As lay-
ers, works in favor of the strain-induced uniaxial character. Without this contribu-
tion, the energy maxima separating the easy axes would be of equal height. The [1̄10]
anisotropy increases the height of one of these hard axes (see Fig. 2.4). A value of
Kuni[1̄10] = 10% Kcryst, which is assumed in Fig. 5.14 (a), is sufficient to eliminate
the remaining shallow local energy minimum at 90◦ for Kstrain = 75% Kcryst. An
even earlier onset of uniaxial behavior can be expected for some samples, as values of
Kuni[1̄10]/Kcryst exceeding 20% have been reported in (Ga,Mn)As layers [Goul 08].

In the case of [11̄0] stripes, the situation is different. Now, the stripes are aligned
along one of the natural hard axes of the material. Stain relaxation and increasing
tensile strain via a stressor layer again strengthens the Kstrain term. However, contrary
to the [100] stripes, it does not directly act on one of the easy axes. Instead it increases
the height of the existing hard axis perpendicular to the stripe alignment, as shown
in Fig. 5.14 (b). Due to the corresponding increase in with of the hard axis, the
original easy axes at 45◦ to the stripe direction are ‘pushed away’ from the hard axis
perpendicular to the stripes. In Fig. 5.14 (b), we observe this effect as a rotation of
the easy axis towards the [11̄0] direction parallel to the stripes. We expect the two
minima to merge at the position of the former [11̄0] hard axis at a value of Kstrain ∼
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100% Kcryst, thus defining a single global easy axis parallel to the stripe direction.
We have observed evidence of this phenomenon in the magnetotransport measure-

ments after patterning, see Fig. 5.11. For the case of sample I, the patterning induced
strain shifts the easy axis from 45◦ to an angle of 13–14◦ to the stripe direction.
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Chapter 6

Device Application

As stated in the beginning, the ultimate goal of this work was to establish a well-
understood foundation for the design of a class of novel devices which make use of
multiple connected regions with individually engineered anisotropy properties. In this
chapter, we present investigations on the first such device as published by K. Pappert
et. al. [Papp 07d].

Figure 6.1: SEM image of the L-shaped structure consisting of two connected (Ga,Mn)As
nanobars. The bright stripes leading to the image edges are Ti/Au current and voltage leads.
The definition for the writing angle ϕ as well as current and voltage are indicated.

The device is shown in Fig. 6.1 and consists of two (Ga,Mn)As nanobars which
are oriented perpendicular to each other and connected at one of the edges via a
constriction. The resistance of an electrical current driven through this constriction
depends on the relative magnetization states of the nanobars and is determined by the
AMR effect.
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6.1 Device Operation
The 20 nm thick (Ga,Mn)As layer used for the fabrication of the device contains 2.5%
Mn and is grown by the standard procedure as detailed in Sec. 3.2.5. The two orthogo-
nal nanobars of which the device consists have a length of 1 µm and a width of 200 nm.
Despite the shorter length compared to the stripes discussed in earlier chapters, we
expect a similar relaxation behavior. Detailed simulation results will be presented in
the following section. Several constrictions in the range of some tens of nm have been
investigated. In this chapter, the characteristics of two structures representing two
different types of behavior depending on constriction width (measured as the length of
the corner-to-corner diagonal) are discussed. In addition to the patterning procedure
of the nanobars by electron beam lithography (EBL) and chemically assisted ion beam
etching, Ti/Au contacts are defined in another EBL step through metal evaporation
and lift-off. Transport measurements have been performed to confirm that both stripes
are completely uniaxial.

To operate the device, transport measurements are carried out at 4 K in a magne-
tocryostat in which a vector field of up to ±300 mT can be applied in any direction.
An initial device state can be ‘written’ by an in-plane magnetic field of 300 mT along
a writing angle ϕ (see Fig. 6.1). The writing field aligns the magnetic moments in
the bars. When the field is reduced back to zero, the magnetization will relax to the
closest easy axis. Due to the easy axis along the nanobar, four possible magnetization
configurations can be achieved, depending in which direction the magnetic moments
are aligned in each bar. We measure the four-terminal resistance of the constriction in
the written remanent state by applying a voltage Vb to the current leads (I+ and I−)
and recording the voltage drop between contacts V+ and V−, as defined in Fig. 6.1.

The polar plot of Fig. 6.2 shows the constriction resistance as a function of the
writing angle ϕ. Two distinct resistance values are visible. The high resistance state
is prepared by writing the device in the first quadrant (−3◦ ≤ ϕ < 98◦), while the low
resistance state occupies the second quadrant (98◦ < ϕ < 167◦). The whole plot is
point symmetric with respect to the origin.

With these properties, the structure can be viewed as the basis of a non-volatile
ferromagnetic semiconductor memory device. Information can be stored in a magnetic
semiconductor by saving it in the relative magnetization orientation of two orthogo-
nally oriented nanobars. No power is required to conserve the information due to the
stability of the orientation of magnetic moments. The information read-out via resis-
tance measurement over the constriction offers a large on/off resistance ratio. Values
up to 280% have already been achieved by tuning the device geometry [Papp 07d].

6.2 The Role of the Constriction
The four possible magnetic states sketched in Fig. 6.2 fall into two groups. The nano-
bars in inset (i) and (iii) are magnetized ‘in series’, i.e. the magnetization vectors meet
in a head-to-tail configuration. In contrast to this, in (ii) and (iv), both magnetization
vectors point towards (head-to-head) or away from (tail-to-tail) the constriction. The
head-to-tail configuration is somewhat preferred due to magnetostatic interactions be-
tween the bars. This effect is caused by a small repulsive field of the order of 2 mT,
resulting from the wrong poles meeting at the connected tips of the bars. The magnetic
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Figure 6.2: Polar plot of the constriction resistance as a function of the writing angle
ϕ. Two resistance states (high/low) are observed and related to the four possible magnetic
configurations of the nanobars, as sketched with corresponding field line patterns in insets
(i)–(iv).
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field line patterns in the sketches in Fig. 6.2 (i)–(iv) are calculated using a simple bar
magnet model. The field lines are close to parallel to the current for the head-to-tail
configuration. In the tail-to-tail and the head-to-head configuration, the field lines are
approximately perpendicular to the current.

The resistance difference between the head-to-tail (M ‖ J) and head-to-head (M
⊥ J) configurations is caused by a special variation of the AMR effect. As discussed
earlier (see transport measurements in Chapter 5), the AMR effect can only account
for a few percent resistance difference between the two states. However, in Fig. 6.2,
not only is the difference between the two states of the order of a few hundred percent,
but the angular dependence is also inverted. We observe the low resistance state for
M ⊥ J, which we would expect for M ‖ J in the typical AMR picture.

For several wide constrictions, a typical AMR effect as described in the earlier
chapters has been observed. For these constrictions we also measure a 100 times
lower constriction resistance. K. Pappert et. al. ascribe the different behavior of
the presented sample with a narrow constriction to the occurrence of depletion in
the constriction which drives the transport in this region from metallic transport into
the hopping regime. One possible reason for the depletion of the constriction region,
namely large, geometry dependent strain fields, will be discussed in the following.

We investigate the strain distribution around the constriction area by a series of 3D
finite element simulations as introduced in Chapter 4. The results for two constriction
widths are shown in Fig. 6.3. The upper row ((a)–(c)) plots the strains ex and ez as
well as the shear strain exy for a 10 nm wide constriction. As a comparison to this
set, the lower row ((d)–(f)) contains identical plots for a 50 nm wide constriction. We
will only discuss ex and omit ey, as they transform into each other when the whole
geometry is rotated by 90◦.

First of all, we note several general trends. The relaxation of the stripe as a whole
is not appreciably influenced by the constriction. The average strain values in a cross
section in the middle of the stripe oriented along y are:

ex = −0.41 · 10−3; ey = −1.49 · 10−3; ez = 0.81 · 10−3.

If we compare these values to sample A in Tbl. 5.1, we note slightly different values
for all three strains, which is mainly caused by the reduced length of the stripes (1 µm
versus 100 µm). This results in a slight relaxation of the strain in y-direction, i. e.
parallel to the stripes, which lessens the pressure in the two perpendicular directions
x and z. Although the strain values are lower than those of all investigated stripe
structures in the previous chapter, they are still well within the region, where the
k · p calculations predict uniaxial behavior (see Sec. 5.4), which we indeed observe by
magnetotransport measurements in one arm of the device.

The edges of the constriction show small, highly compressively strained regions,
where ex reaches values as high as −5.10 · 10−3 (deep blue regions in Fig. 6.3 (a) and
(d)). In this area, the opposing strain fields of both stripes (ex for one bar and ey

for the other) overlap, thus exerting pressure on the material from two directions and
preventing relaxation in either. The situation for ez is similar. The opposing and over-
lapping in-plane strain fields prevent relaxation in x and y-direction and consequently
force the material to further expand in z-direction. This effect causes the yellow to
red regions in (b) and (e), where ez is increased up to 2.00 · 10−3. Finally, we also note
the appearance of shear strain in the constriction region, which is usually negligibly
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Figure 6.3: Simulation of the strain distribution around the region where two nanobars are
connected by a constriction. The displayed region is a cross section (top view) through the
x-y-plane at half height of the (Ga,Mn)As layer. The stripes are 200 nm wide and 1 µm long;
the plots are zoomed on the constriction region. The constriction width is 10 nm for plots
(a)–(c) and 50 nm for (d)–(f). The values in the scale are given in units of 10−3.

small in [100]-oriented bars. However, due to the suppressed in-plane relaxation in
the constriction region, the shear strain exy can reach values up to −2.60 · 10−3 in the
green to dark blue regions in (c) and (f).

When comparing the strains around the constriction area for the 10 nm and 50 nm
wide constriction, we note that the peak values for all three strains is actually not
much different. The main effect of the narrower constriction is that the regions of
maximum strain move closer together. As a consequence to this, the strain in the
region between the peaks also increases in magnitude. The ‘channel’ of comparatively
low strain connecting the two bars in the 50 nm constriction is mostly gone in the
10 nm constriction.

To quantify this effect, we calculate the average strains in a vertical cross section
through the constriction. The results for a series of varying widths are displayed in
Fig. 6.4. The average strain value is relatively unaffected by constriction widths down
to 30–20 nm. Beyond this value, we observe a noticeable increase for all strains.
However, it is important to keep in mind that these values do not contain the regions
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Figure 6.4: Average simulated strain values in a vertical cross section through a constriction
with varying width. Only the strain in the (Ga,Mn)As layer is shown.

of highest strain for ex and exy. For the former, the highest value is found to the left
and right of the constriction. Additionally, an according highly compressive region of
ey exists above and below the constriction. The shear strain forms a structure similar
to a ring around the center of the constriction, with two clubs extending deeper into
the bulk of the stripes.

With the simulation results displayed in Fig. 6.4, we calculate the band structure
of (Ga,Mn)As (see Sec. 2.2) in a 10 nm constriction and compare these values with
the band structure in the center of the stripe, and a pseudomorphically strained layer
without any strain relaxation. Table 6.1 summarizes the energies of the four valence
bands for the three different cases. We note that the energy E1 of the topmost band
is lower in the constriction than in the relaxed stripes, thus slightly increasing the
bandgap energy. However, the shift is only 3 meV, which is certainly too low to
deplete the constriction. The effect of strain on the other bands is also not notably
larger. Performing the same calculations for the regions of highest strains around
the constriction also yields shifts of a magnitude of only a few meV. It therefore seems
unlikely that strain is the main driving mechanism which causes depletion of the whole
constriction region. In reality, side wall damage caused by etching will also play an
important role in degradation of the interface region, as it may penetrate deep enough
(several nm) into the material to affect the whole volume of a very thin constriction.
We therefore expect a combination of several factors to play a role in the depletion of
the constriction.

Of course, the kind of simulations presented in Fig. 6.3 is not limited to the geom-
etry of this particular device. The results discussed in this chapter also remain true
for other types of constrictions. For example, Rüster et. al. report a very similar
very large magnetoresistance effect in a double constriction of a single (Ga,Mn)As
wire [Rüst 03]. Strain simulations for this geometry also display the small charac-
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Table 6.1: Calculation of the energy E of the four top valence bands in meV at Γ in
a 10 nm (Ga,Mn)As constriction. The values are given with respect to the energy of the
degenerate bands without spin-orbit coupling and strain (defined as zero, see Sec. 2.2). The
magnetization in the constriction is assumed to point in [110] direction.

bands in E1 E2 E3 E4

pseudomorphic layer 46.3 10.7 -20.1 -44.6
relaxed stripe 45.9 10.3 -19.7 -44.1
constriction 42.9 12.7 -20.7 -50.6

teristic regions around the corners of the constriction where the strain reaches a peak
value. The strain distribution behavior with increasingly narrow constrictions as shown
in Fig. 6.4 also reproduces qualitatively for this geometry.
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Chapter 7

Conclusion and Outlook

The detailed understanding of the (Ga,Mn)As material system as a model system for
the class of dilute magnetic semiconductors is one of the foundations for the progress of
the field of spintronics in general. Understanding in this case encompasses a wide field
of different subjects, some of which have been touched in this thesis. All experimental
approaches have to begin with understanding the intricacies associated with mastering
the trade of MBE and the wide range of possible characterization methods, outlined in
the second and third chapter of this work. Although the epitaxial growth of (Ga,Mn)As
can look back on several years of experience now, there is still room for improvement.
It is not yet possible to produce (Ga,Mn)As layers, in which the Mn content notably
exceeds the 10% border, which limits the carrier dependent Curie temperature. One
goal for growth is to increase TC beyond the current record of 180 K [Olej 08]. Other
examples of notable topics related to the work at Würzburg are the fabrication of
ultrathin layers (< 3 nm) or the use of (Ga,Mn)As layers as a source of spin-polarized
carriers in a p-i-n diode structure.

More closely related to the subject of this thesis is the ongoing investigation of
the connection between strain and magnetic anisotropy in (Ga,Mn)As. G. Dengel
et. al. have demonstrated the combination of lithographically patterned (Ga,Mn)As
stripes and a neighboring continuous layer in a single sample which yields a complex
magnetic anisotropy response, with possible new device applications [Deng 08b]. An-
other example is the further development of the memory cell prototype introduced in
Chapter 6. By expanding the concept of connected and locally controlled magnetized
regions into larger and more complex structures, it will soon be possible to construct
an all-electrical all-semiconductor non-volatile logic circuit.

An experimental avenue which has yet to be explored is the utilization of litho-
graphic anisotropy control to produce samples with a perpendicular to plane oriented
easy axis. So far, out of plane easy axes have been produced by inducing tensile strain
in a (Ga,Mn)As layer via growth on a relaxed buffer with larger lattice constant such
as (In,Ga)As [Liu 05, Xian 05]. The drawback of this method is the plastic relaxation
of the buffer layer through the formation of lattice defects resulting in poor layer and
surface quality. With the lithographic patterning technique, it is possible to write an
array of nanopillars on a highly strained but pseudomorphic (Ga,Mn)As layer with
underlying stressor, analogous to the stripe samples. The resulting elastic relaxation
circumvents the problems of lattice defect formation while still providing the biaxial
tensile strain needed to achieve the easy axis reorientation.
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In addition to the apparent technological potential of lithographic anisotropy con-
trol, it also allows for novel sample designs to study more fundamental physics, such as
the resistance connected to the geometrical confinement of a domain wall or possibly
the spin transport between sources of orthogonal spin orientation.

Finally, the 3D finite element strain simulations have already proven to be an
invaluable tool for understanding the strain relaxation in a wide variety of (Ga,Mn)As
structures. Being able to accurately predict the strain in complex geometries greatly
facilitates the design of novel samples with respect to the desired functionality. The
most recent generation of simulations is able to take into account effects such as slanted
side walls or rounded structures in addition to the features discussed in Chapter 4.
A possible future simulation application could be the calculation the strain in layers
with a material composition gradient and inhomogeneities for an even more realistic
representation of experimental conditions.



Appendix A

Band Structure Hamiltonians

A.1 Kohn-Luttinger Hamiltonian HKL

The six-band model Kohn-Luttinger Hamiltonian HKL is given by:

HKL =
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(A.1)

The upper left 4×4 section of (A.1) is the four band model Hamiltonian, which neglects
the spin split-off bands. The components of (A.1) are:
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In GaAs, the Kohn-Luttinger parameters are (γ1, γ2, γ3) = (6.85, 2.1, 2.9). The split-off
energy gap is ∆so = 0.341 eV.

A.2 Strain Hamiltonian He

The strain Hamiltonian He for the four band model as described in [Bir 74] is

He =


f h j 0
h∗ g 0 j
j∗ 0 g −h
0 j∗ −h∗ f

 , (A.3)

where
f =

l + m

2
(exx + eyy) + mezz, (A.4)

g =
1

3
{f + 2[m(exx + eyy) + lezz]},

h = − 1√
3

n(iexz + eyz),

j =
1√
3

[
1

2
(l −m)(exx − eyy)− inexy

]
.

In these equations, the constants l, m and n are linked to the deformation potentials
a, b and d by

a =
l + 2m

3
, b =

l −m

3
, d =

n√
3
. (A.5)

The values for the deformation potentials of GaAs are taken from [Vurg 01]:

a = −1.16 eV, b = −2.0 eV, d = −4.8 eV.



Appendix B

Sample FlexPDE Input File

The following section contains a working example of a FlexPDE 5 simulation input
file. The structure in this simulation is a 3D GaAs/(Ga,Mn)As stripe. Comments
marked by curly brackets are ignored by the programm.

TITLE

’3D (100) GaMnAs s t r i p e ’

SELECT

er r l im =0.01 { determines c a l c u l a t i o n accuracy }
nominmax {removes markers from contour p l o t s }
painted { co l o r ed contour p l o t s }

COORDINATES

ca r t e s i a n3

VARIABLES

Up { disp lacement ve c to r s }
Vp
Wp

DEFINITIONS

l = 10 { t o t a l s t r i p e l ength }
w = 1.0 { ha l f width o f s t r i p e }
hmn = 0 .7 { l ay e r th i c kne s s (Ga,Mn)As}
ha = 1 .4 { he ight o f etched GaAs}
hsub = 1 { subs t r a t e th i c kne s s }

Tp { temperature va lue }
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Tga = 0.00 {GaAs temperature }
Tmn = 15 {(Ga,Mn)As temperature }

o f f s e t = −1.5e−3 { normal i z e s s t r a i n to r e l axed l a t t i c e
constant o f (Ga,Mn)As}

C11 = 11 .9 e11 { e l a s t i c moduli o f GaAs in dyn/cm^2}
C12 = 5.34 e11
C44 = 5.96 e11

b = 2.258 e8 { see Sec t i on 4 . 3 . 1 }

ex = dx (Up) { s t r a i n in x−d i r e c t i o n }
ey = dy (Vp)
ez = dz (Wp)
exy = 0 .5∗ ( dy (Up) + dx (Vp) ) { shear s t r a i n s }
exz = 0 .5∗ ( dz (Up) + dx (Wp) )
eyz = 0 .5∗ ( dz (Vp) + dy (Wp) )
Sx = C11∗ex + C12∗ey + C12∗ez− b∗Tp { s t r e s s in x−d i r e c t i o n }
Sy = C12∗ex + C11∗ey + C12∗ez− b∗Tp
Sz = C12∗ex + C12∗ey + C11∗ ez − b∗Tp
Txy = C44∗2∗ exy { shear s t r e s s e s }
Txz = C44∗2∗ exz
Tyz = C44∗2∗ eyz

EQUATIONS

Up: dx (Sx ) + dy (Txy) + dz (Txz) = 0 { disp lacement equat ions }
Vp: dx (Txy) + dy (Sy ) + dz (Tyz) = 0
Wp: dx (Txz) + dy (Tyz) + dz ( Sz ) = 0

CONSTRAINTS

i n t e g r a l (Up) = 0 { prevents r i g i d body motion}
i n t e g r a l (Vp) = 0
i n t e g r a l (Wp) = 0

EXTRUSION

su r f a c e ’ sub s t r a t e bottom ’ z = 0
l ay e r ’ subs t ra te ’
s u r f a c e ’ sub s t r a t e top ’ z = hsub
l ay e r ’GaAs s t r i p e ’
s u r f a c e ’GaAs top ’ z = hsub + ha
l ay e r ’GaMnAs s t r i p e ’
s u r f a c e ’GaMnAs top ’ z = hsub + ha + hmn
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BOUNDARIES

su r f a c e ’ sub s t r a t e bottom ’ value (Up) = 0 value (Vp) = 0 value (
Wp) = 0 { subs t r a t e bottom f i x ed }

l im i t ed r eg i on 1 {GaAs subs t r a t e base }

Tp = Tga
l ay e r ’ subs t ra te ’
s t a r t (−w−1,− l )
va lue (Up) = 0 value (Vp) = 0 l i n e to (−w−1, l ) to (w+1, l ) to (w

+1,− l ) to c l o s e

l im i t ed r eg i on 2 {GaAs s t r i p e base }

Tp = Tga
l ay e r ’GaAs s t r i p e ’
s t a r t (−w,− l )
l i n e to (−w, l ) to (w, l ) to (w,− l ) to c l o s e

l im i t ed r eg i on 3 {(Ga,Mn)As s t r i p e base }

Tp = Tmn
mesh_density = 2
l ay e r ’GaMnAs s t r i p e ’
s t a r t (−w,− l )
l i n e to (−w, l ) to (w, l ) to (w,− l ) to c l o s e

PLOTS

gr id (x , y , z )
g r id (x+100∗Up, y+100∗Vp, z+100∗Wp) as "3D deformation "
g r id (x+100∗Up, z+100∗Wp) as "x−z deformation " on y = 0
vec to r (Up,Wp) as "x−z d isp lacement " on y = 0

contour ( ex ) as " eps i l on−x" on y = 0
contour ( ex + o f f s e t ) as " t rue eps i l on−x" on y = 0 on reg i on 3
export format "#x#b#z#b#1" frame (−w, hsub+ha ,2∗w,hmn) f i l e "

export (100) GaMnAs ex . t b l "
contour ( ex + o f f s e t ) as " t rue eps i l on−x" on z = hsub+ha+(hmn

/2)

contour ( ez ) as " eps i l on−z" on y = 0
contour ( ez + o f f s e t ) as " t rue eps i l on−z" on y = 0 on reg i on 3
export format "#x#b#z#b#1" frame (−w, hsub+ha ,2∗w,hmn) f i l e "

export t rue (100) GaMnAs only ez . t b l "



100 B. Sample FlexPDE Input File

contour ( ey ) as " eps i l on−y" on y = 0
contour ( ey + o f f s e t ) as " t rue eps i l on−y" on y = 0 on reg i on 3
contour ( ey + o f f s e t ) as " t rue eps i l on−y" on z = hsub+ha+(hmn

/2)

contour ( exy ) as " shear s t r a i n exy" on y = 0
contour ( exz ) as " shear s t r a i n exz " on y = 0
contour ( eyz ) as " shear s t r a i n eyz " on y = 0

end
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