
Accelerating a Transport Layer based 5G Multi-Access Proxy on SmartNIC

Rebecka Alfredsson∗, Andreas Kassler∗, Jonathan Vestin∗, Marcus Pieska∗

Markus Amend†
Karlstad University, Karlstad, Sweden∗, Deutsche Telekom, Darmstadt, Germany†

Email: ∗beckaalfredsson@hotmail.com, ∗andreas.kassler@kau.se, ∗jonathan.vestin@kau.se, ∗marcus.pieska@kau.se
†markus.amend@telekom.de

Abstract—Utilizing multiple access technologies such as 5G,
4G, and Wi-Fi within a coherent framework is currently
standardized by 3GPP within 5G ATSSS. Indeed, distributing
packets over multiple networks can lead to increased robustness,
resiliency and capacity. A key part of such a framework is
the multi-access proxy, which transparently distributes packets
over multiple paths. As the proxy needs to serve thousands of
customers, scalability and performance are crucial for operator
deployments. In this paper, we leverage recent advancements
in data plane programming, implement a multi-access proxy
based on the MP-DCCP tunneling approach in P4 and hardware
accelerate it by deploying the pipeline on a smartNIC. This
is challenging due to the complex scheduling and congestion
control operations involved. We present our pipeline and data
structures design for congestion control and packet scheduling
state management. Initial measurements in our testbed show
that packet latency is in the range of 25 µs demonstrating the
feasibility of our approach.

Index Terms—Multipath, MP-DCCP, 5G-ATSSS, networking,
dataplane programming, P4

1. Introduction

New services result in an increasing demand on the
volume of data transmitted over networks and require low
and predictable packet latency. However, when using Wi-Fi,
connections are frequently interrupted because of the mobility
of users, and when the Wi-Fi access point is connected
through e.g. ADSL links, bandwidth is scarce. On the other
hand, 4G or 5G networks may have more capacity but
operator networks risk being congested in dense cities, which
increases the desire to offload traffic from cellular networks
to Wi-Fi whenever possible. Indeed, mobile handsets come
with multiple air interfaces but a coherent architecture to
use all of them in parallel in a flexible way is still missing.
However, there have been recent efforts to standardize built-
in multipath support over multiple wireless technologies,
including non-trusted wireless access like Wi-Fi, in the 5G
architecture itself using the first in Rel. 16 specified Access
Traffic Steering, Switching, and Splitting architecture (ATSSS,
see [1]). The Steering mode aims to find the best path for a
flow according to its requirements, switching mode enhance

seamlessness from one interface to another without causing
interruption in service, while splitting mode transparently
aggregates all available path capacities. The ATSSS service
is provided by an anchor point inside the mobile operator
network (see Figure 1) as part of the User Plane Function
(UPF), which enables the UE to communicate over multiple
access networks, even if the remote server located in the Data
Network (DN) does not support a multipath-capable transport
protocol. For example, TCP flows may be split at the anchor
point (or multipath proxy) and turned into Multipath TCP
(MPTCP) [2] between the anchor and the user. Non-TCP
traffic can be tunneled over a multipath-capable protocol [3],
e.g. Multipath DCCP (MP-DCCP) [4] or Multipath QUIC
(MP-QUIC) [5] with the Datagram extension [6].

AMF SMF PCF

DNUPF

UE

3GPP
Access

Non-3GPP
Access

Figure 1: ATSSS architecture within 5G.

The efficiency of the multipath proxy is important for
end-users as it impacts the latency and throughput for the
UEs. Scalability, energy efficiency and cost is important for
operators in terms of numbers of proxies to deploy and their
total energy consumption. The data plane of such a proxy
must have high performance, process millions of packets for
large numbers of users in parallel, at low latency. With the
current trend towards network softwarization, implementing
such a multipath proxy can be done in either the kernel, user
space or can be hardware accelerated. Several measurements
show that kernel implementations will have the lowest
performance, while user space frameworks (e.g. DPDK [7])
have proven high performance at the expense of high energy
demands, as all cores are fully utilized pulling packets
from the NIC. Accelerating such a proxy in hardware for
optimized performance would require either customized
fixed-function ASICs or FPGA implementations that are
cumbersome and require a high skillset. With recent evolution

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

of data plane programmability, we see a dramatic increase
in flexibility when hardware accelerating packet processing.
Indeed, using programming languages such as P4 allow
to specify the packet processing pipeline [8] in high-level
languages, while compilers are used to create binary files
that are pushed to reprogrammable targets such as switching
ASICS, SmartNICs or FPGAs.

In this paper, we leverage data plane programming
and design such a multipath proxy based on the MP-
DCCP tunneling approach. We implement this design in
P4 and evaluate its performance when accelerating it on a
smartNIC. This is challenging as the proxy requires packet
scheduling over multiple paths to be integrated with transport
layer congestion control decisions, which is typically not
supported by P4 primitives. The proxy requires significant
per UE congestion and scheduling state management. Our
implementation leverages external functions and locks for
updating congestion control states. We evaluate our prototype
in a testbed using packet traces by varying the number of
users and packet sizes. Per packet latency is in the order of
25 µs while achieving line rate for downlink processing.

2. Design and Implementation

In this paper, we design and implement the user plane of
a 5G ATSSS multi-access proxy based on the MP-DCCP [4]
protocol, which extends DCCP [9] with multipath capabilities.
The MP-DCCP framework [10], [11] creates multiple DCCP
(congestion controlled UDP) tunnels between the UE and
the proxy, and transparently distributes traffic from/to the
internet over the multiple paths, each one terminated at the
UE on a different wireless interface. For packet scheduling
and reordering, the MP-DCCP framework offers a pluggable
approach. The sending/encapsulation side (the UE for uplink
traffic or the proxy for downlink traffic) can leverage different
schedulers, including Round Robin (RR), SRTT, Cheapest
Path First (CPF). At the receiving/decapsulation side, mod-
ular re-ordering modules can be activated including static
reordering (e.g. adding constant wait time for outstanding
packets) or adaptive reordering (e.g. dynamically adjusting
the wait time to cope with path latency diversity). While
DCCP has its own (per tunnel) sequence numbers, MP-DCCP
adds an additional end-to-end datagram-based sequence
number (MP_SEQ option).

The design of MP-DCCP framework faces several chal-
lenges when trying to design and implement the proxy
functionality in the P4 language. First, the MP-DCCP proxy
requires a buffer where incoming packets are stored if
the path capacity of all paths are exhausted. Second, the
reordering module requires packet buffering and iteration
over packet buffers as well as timer support. Third, packet
schedulers such as SRTT or CPF require complex per-
packet calculations. However, P4 has many restrictions
on its expressability and functionality that make it hard
to implement all functions that the MP-DCCP framework
requires. There is currently no support in P4 for packet
buffers, timers, floating point calculations, loops or recursion.
Therefore, we resort to a simplified implementation of the

proxy, which is based on Round Robin scheduling but does
not support packet buffering or reordering. Initial simulations,
which are out of scope of this short paper, show that these
simplifications still enable effective congestion monitoring,
while our future work is centered around designing more
advanced packet scheduling based on congestion state of
individual paths that will require extensions to our current P4
implementation. In our design, we also assume that the UE
has three IP addresses: a generic one that identifies the UE,
and one IP address for each physical interface, e.g. Wi-Fi,
5G).

Figure 2: Ingress pipeline processing overview

The first step in the P4 pipeline (see Figure 2) is
the parser, which parses required IP, DCCP and multipath
extension headers and options using a lookahead method.
Parsed headers then identify if the packet is a uplink (UL,
(MP-DCCP header detected) or downlink (DL, no MP-DCCP
header), which trigger different processing paths in the
pipeline. For UL packets a firewall UL table is applied
followed by a table tunnels_UL_exact matching on the
IPv4 source address, which identifies the UE. This table has
been pre-populated by the control plane to contain static
information (e.g. IP and port information required for tun-
neling) but also index values into register arrays per UE and
per tunnel (see Figure 3) that are written to packet metadata
and hold stateful information required for packet scheduling
and congestion control states; e.g. sequence numbers, last
acked packet per path and end-to-end, CWND per path, last
used path for scheduler, last sent time per path, last received
time, etc. If the packet is a DCCP-ACK packet, we store
the DCCP sequence number in a register ack_reg using
the index received from the table tunnels_UL_exact;
the packet is then dropped. If the packet is either a DCCP-
DataACK or DCCP-Data, the proxy needs to acknowledge
the packet. For creating an acknowledgement, the original
packet is cloned, the clone is truncated and recirculated so
that the egress can transform it into a DCCP-ACK packet that
is sent back to the UE after header rewriting. The original
packet is decapsulated by removing the DCCP header and
the outer IPv4 layer, and routed towards the internet using
the ipv4_UL_exact table to set the next Ethernet MAC
address. The port_forwarding_exact table triggers
the port_forwarding action which sets the egress port.

For downlink (DL) packets, a firewall table is applied
first. Then, the proper indices for the registers are identi-
fied which store stateful data similarly to the uplink but
using tunnels_DL_exact and matching on the IPv4
destination address, which identifies the UE in the downlink
direction. The packet is encapsulated by adding a DCCP and
IPv4 header using information from the metadata. The inner
IPv4 header is created by copying the values of the IPv4
header from the original IP packet. The outer IPv4 header
is added by setting the IP destination address to that of the
cellular or Wi-Fi receiver depending on scheduler state, set
the IP source address field to the address of the proxy, and
change the protocol field in the IPv4 header to 33 to identify
an encapsulated DCCP header. The MP-DCCP source port
field is set using meta.srcport. The DCCP type field is set
to 2 (DCCP-Data), the data offset is set to 7 to represent
the DCCP header, padding, and the MP_SEQ multi-path
option. The MP_SEQ fields are populated properly. Before
any path-specific fields can be populated, the Round Robin
(RR) scheduler method is applied as an external function,
which decides which path the packet is sent over towards the
UE. The scheduler function uses the scheduling_port
register, if it is equal to 0 path 1 is chosen. The outer IPv4
destination address is then set to meta.ip_dst_1, the DCCP
sequence number is read from register inner1_seq_reg
on index meta.inner1_seq. The new updated value is now
written into that index. The DCCP destination port is set by
meta.dst_port_1 and the value for choosing the next path is
written into the scheduling_port register. Finally, the
packet is routed using the ipv4_UL_exact table and the
next hop Ethernet MAC destination address is set towards
the UE. The port_forwarding_exact table is applied
and the egress port gets set.

Figure 3: Stateful information layout

In the egress, cloned packets in the uplink are transformed
into DCCP-Ack packets that are sent back to UE. The IP
source address is set as the proxy, DCCP source port is set
using meta.src_port and the data offset is set to 9 in order to
represent the DCCP header, the acknowledgement number,
padding, and the MP_SEQ multi-path option. The DCCP
header field type is set to 3 and the acknowledgement number
is set to the value of the sequence number. The multi-path
sequence number is incremented by one. The packet gets

truncated to remove the inner IPv4 layer and payload. Next,
a scheduler method decides if the DCCP-ACK packet should
be sent using the cellular or Wi-Fi path back to the UE
(see above). The outer IP destination address is set using
either meta.ip_dst1 or meta.ip_dst2. The DCCP sequence
number is either set to the value of inner1_seq_reg
at index meta.inner1_seq or inner2_seq_reg at index
meta.inner2_seq. Lastly the DCCP destination port is set
using meta.dst_port_1 or meta.dst_port_1 and the updated
value for the scheduling_port register is set. Finally,
stateful registers are updated properly.

3. Preliminary Evaluation Results

We compile the code to Netronome Agilo CX 2x40G
SmartNIC (split into 8x10G links) NFP- 4000 SmartNIC
platform [12] mounted inside a server with one Intel(R)
Xeon(R) Silver CPU with Hyperthreading (HT) enabled for
20 threads at 2.2 GHz each. To evaluate the P4 design
with smartNIC offloading, we use another machine of same
specification using TREX traffic generator and having an
Intel X710 NIC with 2 x 10G SFP+ for sending packets
according to static and pre-generated pcap traces to the device
under test. Statefulness is pre-populated in the smartNIC to
match the generated traces, including tunnel encapsulation
metadata and register indices for downlink traffic. We vary
the numbers of active UEs and traffic characteristics for
downlink flows. Packet sizes range from 128B-1400B, and
include mixed traffic of variable sized packets.

In the throughput test, the packet emission rate aims to
reach the target aggregate throughput on the downlink link
(where MP-DCCP headers are included). As can be seen
from Figure 4, achievable throughput increases with packet
size and reaches line rate for packets larger than 1024 bytes.
For evaluating packet processing latency, we reduce offered
rate in second set of experiments where we keep packet size
constant to 512B for 10.000 UEs.

Figure 5 shows minimum, maximum and average packet
latencies. At low rate, per packet latency (measured time
at TREX, which include sending the packets at TREX and
receiving it back from DUT) is in the order of 25µs, which
increases at higher rate to around 85 µs due to queue
buildup. For comparison, we implemented and compared
a simple packet in/out pipeline, which resulted in around
5 µs. Additional per packet complexity of the MP-DCCP
processing for the downlink is around 20 µs.

4. Conclusion and Future Work

In this paper, we designed, implemented and started a first
evaluation campaign for a multiaccess proxy, which is part of
the 5G-ATSSS framework. We used P4 and compiled the data
plane of the proxy to a smartNIC for hardware accelerating
packet processing. The proxy is based on the MP-DCCP
framework, which uses multiple tunnels between the proxy
and UE to distribute traffic for transparently aggregating the
capacity of multiple access networks. Implementation in P4

0

5

10

15

20

128 256 512 1024 1400 imix

Packet Size (Bytes)

T
hr

ou
gh

p
ut

 (
M

bp
s
)

UE Count 1000 10000

Figure 4: Throughput for different UE and packet
size combinations

0

25

50

75

100

1 2 10 25 50 100

Percent of Line Rate (%)

La
te

nc
y

(u
s)

Figure 5: Per packet latency for different offered
load

is challenging due to the integrated packet scheduling and
congestion control decisions, which we simplified to make
a P4 implementation feasible.

Our future work will compare the scheduling performance
of this simplified pipeline to that of the kernel implementation
of MP-DCCP proxy and demonstrate that the scheduling
is effective despite its simplicity. We also aim to evaluate
the feasibility of implementing simplified versions of more
complex schedulers, with the required congestion control
logic, which is still able to schedule packets effectively while
the design is still simple enough to be feasible in P4. Also, we
aim to evaluate Uplink and mixed traffic and implementing
a full fledged control plane so that dynamic interaction with
UEs is possible. Finally, hybrid deployment where parts
of the pipeline is implemented on x86 (e.g. buffering and
reordering) would be interesting to implement and compare
against.

References

[1] 3GPP, “System architecture for the 5G System (5GS),” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 23.501, 03
2021, version 16.0.0.

[2] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch, “Tcp
extensions for multipath operation with multiple addresses,” Internet
Requests for Comments, RFC Editor, RFC 8684, March 2020.

[3] 3GPP, “Study on Access Traffic Steering, Switch and Splitting support
in the 5G system architecture Phase 3,” 3rd Generation Partnership
Project (3GPP), Technical Report (TR) 23.700-53, 04 2022, version
0.2.0.

[4] M. Amend, A. Brunstrom, A. Kassler, V. Rakocevic, and S. Johnson,
“DCCP Extensions for Multipath Operation with Multiple Addresses,”
Internet Engineering Task Force, Internet-Draft draft-ietf-tsvwg-
multipath-dccp-04, 2022, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-ietf-tsvwg-multipath-dccp-04

[5] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz,
“Multipath quic: A deployable multipath transport protocol,” in 2018
IEEE International Conference on Communications (ICC). Kansas
City, MO, USA: IEEE, 2018, pp. 1–7.

[6] T. Pauly, E. Kinnear, and D. Schinazi, “An Unreliable Datagram Exten-
sion to QUIC,” Internet Engineering Task Force, Internet-Draft draft-
ietf-quic-datagram-02, Feb. 2021, work in Progress. [Online]. Avail-
able: https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-02

[7] DPDK, “Home - DPDK,” https://www.dpdk.org [Online; accessed
7-June-2021]. [Online]. Available: https://www.dpdk.org

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[9] E. Kohler, M. Handley, S. Floyd, and J. Padhye, “Datagram congestion
control protocol (dccp),” 2006.

[10] M. Amend, E. Bogenfeld, M. Cvjetkovic, V. Rakocevic, M. Pieska,
A. Kassler, and A. Brunstrom, “A framework for multiaccess support
for unreliable internet traffic using multipath dccp,” in 2019 IEEE
44th Conference on Local Computer Networks (LCN), Oct 2019, pp.
316–323.

[11] M. Amend, E. Bogenfeld, A. Brunstrom, A. Kassler, and V. Rakocevic,
“A multipath framework for UDP traffic over heterogeneous access
networks,” Internet Engineering Task Force, Internet-Draft draft-
amend-tsvwg-multipath-framework-mpdccp-01, Jul. 2019, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-amend-tsvwg-multipath-framework-mpdccp-01

[12] Netronome Systems Inc., “NFP-4000 Theory of Operation,”
Technical Report, 2016, last accessed: 2022-04-30. [On-
line]. Available: https://www.netronome.com/static/app/img/products/
silicon-solutions/WP_NFP4000_TOO.pdf

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-multipath-dccp-04
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-multipath-dccp-04
https://datatracker.ietf.org/doc/html/draft-ietf-quic-datagram-02
https://www.dpdk.org
https://www.dpdk.org
https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-framework-mpdccp-01
https://datatracker.ietf.org/doc/html/draft-amend-tsvwg-multipath-framework-mpdccp-01
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf
https://www.netronome.com/static/app/img/products/silicon-solutions/WP_NFP4000_TOO.pdf

	Introduction
	Design and Implementation
	Preliminary Evaluation Results
	Conclusion and Future Work
	References

