Response Times in Time-to-Live Caching
Hierarchies under Random Network Delays

Karim FElsayed
University of Duisburg-Essen
karim.elsayed @uni-due.de

Abstract—Time-to-Live (TTL) caches decouple the occupancy
of objects in cache through object-specific validity timers. State-
of-the-art techniques provide exact methods for the calculation of
object-specific hit probabilities given entire cache hierarchies with
random inter-cache network delays. The system hit probability is
a provider-centric metric as it relates to the origin offload, i.e., the
decrease in the number of requests that are served by the content
origin server. In this paper we consider a user-centric metric, i.e.,
the response time, which is shown to be structurally different
from the system hit probability. Equipped with the state-of-the-
art exact modeling technique using Markov-arrival processes we
derive expressions for the expected object response time and pave
a way for its optimization under network delays.

I. INTRODUCTION AND PROBLEM STATEMENT

We consider Time to live (TTL) cache hierarchies where
at each cache an object request results in a hit (object found
in cache) or a miss (object has to be fetched from parent
cache). When an object is admitted to some cache after a
miss or when an object hit occurs at this cache the validity
timer of the object (its TTL) is (re)started. Upon expiry of
this timer the object is evicted from cache. TTL caches are
appealing as they (i) decouple the object dynamics [1], (ii)
allow deriving closed-form expressions for cache performance
metrics [2]-[6], (iii) provide analytical relations to prominent
cache algorithms such as LRU [5], [6], and (iv) allow per
object optimizations.

We consider cache hierarchies as the example depicted in
Fig. 1. In contrast to the majority of the related work that as-
sumes instantaneous object spawning upon misses, we assume
random network delays between the caches. There are several
metrics to evaluate the performance of a cache hierarchy -
most importantly the hit probability P, the occupancy and the
response time. The system hit probability' is a provider-centric
metric as it relates to the origin offload, i.e., the decrease in the
number of requests that are served by the content origin server.
The response time as a user-centric metric that affects the
application quality of service. The main goal of this paper is to
calculate the expected response time for TTL cache hierarchies
under random network delays.

The authors in [7] derive the exact hit probability and
response time of single TTL cache under non-zero delay.
Going from the exact formulation for a single cache to
approximate formulations for hierarchies, the work in [5]

li.e. the object hit probability for the entire hierarchy.

Amr Rizk
University of Duisburg-Essen
amr.rizk @uni-due.de

Fig. 1: TTL Cache hierarchy with a parent cache and two
children caches: Object requests arrive to the Cy, Cy according
to renewal processes with PH distributed inter-request times
X;. Misses from the children are forwarded to the parent
cache, where further misses are forwarded to the origin server.
Object fetch delays along the different links are given by
random variables A;.

calculates the system hit probability for TTL cache hierarchies
assuming zero network delays. approximation, which essen-
tially assumes that the sum of renewal processes is a renewal
process, may exhibit significant errors when compared to the
exact cache performance [6]. The authors in [6] propose an
exact model for TTL cache hierarchies using Markov arrival
processes (MAPs) under zero network delays. Note that the
classical model for the (TTL) cache hierarchies in [1]-[6],
[8]-[10] assumes an ideal scenario of zero fetching delay.
The work in [11] builds upon the MAPs model in [6] and
provides a recursive MAP construction approach that exactly
models TTL hierarchies under random network delays given
the distributions of the TTL 7', delay A and inter-request time
X. The results in [11] show the impact of the network delays
on the system hit probability and the object occupancy.

In this paper, we focus on TTL cache trees under non-zero
random fetching delays as described in [11]. Such cache trees
arise naturally, e.g., in video streaming infrastructures [12],
[13]. We assume that the inter-request time, the TTL and the
cache to cache (inter-cache) network delays are independent
and identically distributed. The main problem and focus of this
paper, unlike the works in [6], [11] is to derive expressions
on the expected response time for a cache hierarchy. The
difficulty in calculating the hierarchy response time lies in the
fact that the system response time depends on the individual
miss streams of the caches within the hierarchy as well
as the state of the object in each cache. This stands in
contrast to the calculation of the system hit probability which
only depends on the outgoing stream of misses the top of

This document is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
http://creativecommons.org/licenses/by-sa/4.0 This CC license does not apply to third party material (attributed to another source) in this publication.

the hierarchy towards the origin server (see Fig.1.) For the
response time fetching an object from the root cache in a tree
is different from having it located in a leaf cache. In addition,
aggregate requests, i.e requests arriving during the fetching of
the object, see different expected response times depending on
the moment of arrival.

In this paper, we derive expressions for the expected re-
sponse time from the MAP for all the input streams combined,
which is denoted the system expected response time. We also
derive response time expressions for individual input streams.
Finally, we show how to calculate the expected response time
for a request conditioned it being a hit or a miss.

II. RESPONSE TIME CALCULATION FROM MAPS

In this section, we follow [11] and consider a given MAP
that models the object occupancy in a cache hierarchy under
random network delays. We briefly review the model of
cache hierarchies under network delays using MAPs from [11]
before deriving the expected response time.

A. Review of the MAP model of cache hierarchies

A Markov arrival process is governed by two Markov
processes: a background process .J(t) and a counting process
N(t) [14]. The transitions in a MAP are represented using
two Matrices (Do, D7) where Dy is the hidden transition
matrix that partially controls J(¢) while Dy contains the active
transitions that not only control .J(¢) but also exclusively
controls the counting process N (¢). For modelling caching
hierarchies, N (¢) is used as the counting process of the cache
misses and D contains transitions that only contribute to that.

The MAP model representing the TTL cache hierarchy
under network delays as given in [11] is recursively calculated
using the superposition of the MAPs representing the single
caches in the hierarchy. The final MAP derivation depends
on two main operations: level superposition, i.e, the superpo-
sition of sibling cache MAPs and line superposition, i.e, the
superposition of parent-children cache MAPs.

To explain how the MAP is recursively calculated, consider
the example of a 3 cache binary tree as in Fig. 1. Each cache is
represented by a MAP featuring the state of the object within it
given the TTL, delay and inter-request time distribution. Fig. 2
shows an example of a single cache MAP with exponentially
distributed inter-request time X with rate A\, where the delay
and the TTL each follow an Erlang-2 distribution with rates
Ap and Ar respectively. The object in the cache can be in
one of three states: the object in the cache states I;, the
object out of the cache state 0 and the object is being fetched
state §. The object stays in the cache according to the TTL
Erlang-2 distribution. Similarly, the delay is represented by
the two states ;. Here we consider a reset TTL, i.e, the TTL
is renewed upon a hit. According to [11] the total hierarchy
MAP is computed as sibling single MAPs are first superposed
to form the children MAP which is then superposed with the
parent MAP. Note that the model in [11] extends to general
PH distributions while we depict a simple example here only
for clarity of the exposition.

QoD
(o

Fig. 2: Single cache MAP. State O: the object not in the cache,
States I;: the object in the cache and the TTL is counting
down, States J; the object is being fetched. Red arrows: active
transitions, black arrows: hidden transitions.

B. Computing the expected response time

In this section, we calculate the expected response time of
a request in the cache hierarchy due to the random network
delays. In the following, we will differentiate between the
expected response time for all input streams vs. for individual
streams.

Consider first the example of a parent and two child caches
shown in Fig. 1. A request arriving at cache C; will have a
random response time which is majorized when C7 and Cj
do not have the object. An additional challenge to calculating
the response time is the fact that aggregate requests (requests
arriving at a cache in the fetching state) see an expected
response time that varies depending on the time of arrival.
This effect is irrelevant for exponentially distributed delays.
For further clarification consider the MAP given in Fig. 2, a
request arriving at the cache in state d; or Jo will have an
expected response time of 2/Ap or 1/\p respectively. Thus,
the expected response time has to be defined for each state in
the MAP. We denote the vector of the state expected response
time as a with components a; = E[A|S;] where S; € S is
the ith state of the set of the states of the MAP S.

1) System expected response time: The expected system
response time is the expected response time for all the request
streams constituting the input to the hierarchy. We calculate
the response time by iteratively accumulating the inter-cache
expected response time for the output (miss) requests at each
cache. By inter-cache expected response time we denote the
expected time the output requests at a cache requires to obtain
the object from its parent cache.

Theorem 1. The expected object response time in a TTL
treelike cache hierarchy with the ith cache at the root is

_ Y, oa'Dil

R i 1’
ZjELS ”1D1,11

ey
where D' and ' represent the active transition matrix and
the steady state probability row vector of the tree with the
1th cache as a root. The operation © denotes the Hadamard
(element-wise) product of two vectors. D} ; and 7’ are the
active transition matrix and the steady state probability row
vector for the MAP modelling the jth input request stream at
the leaf caches, respectively. L is the set of indices of the leaf
caches.

=15

£ —e— MAP F
° —— Sim

2 1

Q

o

g

“os)

3

3

= 0 | | | |

= 0 2 4 6 8 10

Delay to inter-request time E[A]/E[X]

Fig. 3: Two caches in line, both having the TTL and the delay
exponentially distributed with the same rate. The simulation
validates the accuracy of the response time calculation from
the MAP for different delay to inter-request time values and
for E[T]/E[X] = 2.

The numerator of (1) represents the accumulation of the
inter-cache delays. The miss stream at each cache ¢ depends
on the tree with root i. D¢ is the active transition matrix
representing the tree with root 7. The MAP approach in [11]
has the advantage that it constructs the MAP for the entire
hierarchy recursively. As a result, in terms of computation,
the MAPs of all the subtrees in the system are constructed
independently before the recursive superposition. Hence, D}
is easily computed with the steps of the MAP construction
in [11]. Now, we use 7 to denote the steady state probability
vector for the cache subtree with the ith cache as root. This is
computed from the total MAP steady state probability vector
7" where the superscript n denotes the index of the root of the
entire hierarchy. Here, 7% is the jth element of «*. Similarly,
S™ denotes the state set of the total hierarchy MAP and S* is
the state set for the subtree with the ith cache being its root.
Here too, S}’ denotes the kth element of S™. Now, we obtain
the elements of the steady state probability vector w? for the
MAPs of subtrees with index 7 as

=y .)
k:Sic{sp}

Note that every miss observes a different delay conditional
on the state of the cache, which appears in the Hadamard
product in (1). An example of a is given for the Erlang-2
delay distributions in Fig. 2 as o« = [2/Ap,2/Ap,1/Ap,0,0].
In general, for an Erlang-m distributed network delay we find
7"”7\?'1 for S = d
% for S=0 3)
0

, otherwise ,

Q5 =

where S is a state in the corresponding MAP.

2) Per-input stream expected response time: To differenti-
ate between the response time of input request processes at
different leaf caches, i.e, to calculate the response time along
one path from a leaf cache to the root, we only use the part
of the active transition matrix corresponding to that input.
The active transition matrix D} for any tree with root i is a

Response time ratio R/E[X]
[N}

051 2 3 4

Delay to inter-request time E[A]/E[X]

Fig. 4: Normalized expected response time in a tree hierarchy:
A parent and two child caches from Fig.1 all having Erlang-2
TTL distribution, as well as, Erlang-2 delay distributions and
assuming exponential inter-request times to each child cache
with the homogeneous rates.

function of the request distribution parameters of all the inputs
connected to it either directly or indirectly (to one of caches of
its child trees). We divide Dj into sub matrices that are only
dependent on one input stream j such that D} = Z;V Di(A;).
Here, N is the number of the input streams and A; is a
vector of the parameters representing the jth input request
distribution MAP. As a result, the expected response time for
requests at leaf cache j is given by
>, ©aDi(A)1 W
wgD{ 1

3) Conditional Hit/miss expected response time: Now, we
compute the expected response time conditional on a hit at any
cache in the hierarchy. The expected response time conditional
on a hit is given by
Z#n T oa'Di1 — ZjeLs T"D7(A;)1 Zkem af

i
ZjeLs m;Dy ;1 —7"D71

R -

RY = ,
| 5)
where 7 is the root index of the hierarchy and «j is the mean
response time when cache ¢ is in state 0. The set p; contains
the indices of the caches along the path of input stream j
except for the root cache.

III. EVALUATION RESULTS

In this section, we present analytical and simulation-based
evaluation results for the expected response time given differ-
ent TTL cache hierarchies. Fig. 3 serves as a benchmark where
we depict the expected response time for a hierarchy consisting
on a single child cache and a single parent cache. For sim-
plicity, we use iid delays on the different links. We vary the
ratio of the expected delay E[A] to the expected inter-request
time E[X] as in E[A]/E[X]. We fix the ratio of the expected
TTL to the expected inter-request time as E[T]/E[X] = 2.
The simulation results are shown for validation.

Fig. 4 shows the ratio of the expected system response time
to the expected inter-request time R/E[X] for a two level
binary tree cache hierarchy as in Fig.1. This normalization
is beneficial when comparing different system designs at
different input and delay parameters.

[1]

[2]
[3]

[4]

[5]

[6]
[7]

REFERENCES

H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
modeling, design and experimental results,” IEEE JSAC, vol. 20, no. 7,
pp- 1305-1314, Sep 2002.

N. Choungmo Fofack and S. Alouf, “Modeling modern DNS caches,” in
Performance Evaluation Methodologies and Tools, 2013, pp. 184-193.
V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the
performance analysis of caching systems,” in Proc. of IEEE Conference
on Computer Communications, INFOCOM, April 2014, pp. 2040-2048.
C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate approx-
imation for Iru cache performance,” in Proc. of the Teletraffic Congress
(ITC), 2012, pp. 1-8.

N. Choungmo Fofack, P. Nain, G. Neglia, and D. Towsley, “Perfor-
mance evaluation of hierarchical ttl-based cache networks,” Computer
Networks, vol. 65, pp. 212 — 231, 2014.

D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” Performance Evaluation, vol. 79, pp. 2 — 23, 2014.
M. Dehghan, B. Jiang, A. Dabirmoghaddam, and D. Towsley, “On
the analysis of caches with pending interest tables,” in Proc. of ACM
Conference on Information-Centric Networking, 2015, p. 69-78.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

K. Schomp, O. Bhardwaj, E. Kurdoglu, M. Muhaimen, and R. K.
Sitaraman, “Akamai DNS: Providing Authoritative Answers to the
World’s Queries,” in Proc. of ACM SIGCOMM, 2020, p. 465-478.

E. J. Rosensweig, D. S. Menasche, and J. Kurose, “On the steady-
state of cache networks,” in Proc. of IEEE Conference on Computer
Communications, INFOCOM, 2013, pp. 863-871.

A. Rizk, M. Zink, and R. Sitaraman, “Model-based design and analysis
of cache hierarchies,” in 2017 IFIP Networking Conference (IFIP
Networking) and Workshops, 2017, pp. 1-9.

K. Elsayed and A. Rizk, “On the impact of network delays on time-to-
live caching,” CoRR, vol. abs/2201.11577, 2022.

B. Alt, T. Ballard, R. Steinmetz, H. Koeppl, and A. Rizk, “CBA:
Contextual Quality Adaptation for Adaptive Bitrate Video Streaming,”
in IEEE Conference on Computer Communications, INFOCOM, 2019,
pp. 1000-1008.

C. Koch, J. Pfannmiiller, A. Rizk, D. Hausheer, and R. Steinmetz,
“Category-Aware Hierarchical Caching for Video-on-Demand Content
on Youtube,” in Proceedings of the ACM Multimedia Systems Confer-
ence, MMSys, 2018, p. 89-100.

S. Asmussen, Applied Probability and Queues, ser. Stochastic Modelling
and Applied Probability. Springer New York, 2008.

