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Preface

Computed tomography now approaches its 50th anniversary, and an overwhelmingly large body of
literature has been created throughout the past decades. The countless variants of tomographic
imaging devices in a growing number of application fields have given rise to uncountable contributions
on many aspects of tomographic reconstruction beyond the mathematical foundations typically
covered by textbooks. The fragmentation of literature over many areas of application on the one
hand, and overlaps with other fields of computational imaging, computer science, mathematics,
physics and engineering on the other hand, have made it increasingly complex for new researchers
entering the field to identify the present state of the art or best practice with respect to any given
problem. A central concern of the present dissertation therefore is, besides obviously adding a further
piece of literature, to reduce the apparent complexity by providing brief reviews, practical formulas
and explicit algorithms especially also for the fundamental tasks in tomographic reconstruction.

I am indebted to Prof. Dr. Randolf Hanke for giving me the opportunity to explore the field
autodidactively, and to Dr. habil. Simon Zabler for proposing and supporting the topic of dark-field
tensor tomography and his essential initiatives towards actual experiments. I am especially grateful
for the inspiring experimental environment created by the fellow PhD students and colleagues at the
chair of X-ray microscopy, which motivated the involvement with image reconstruction problems.
The variety of projects, problems and tasks also at the associated groups of the Fraunhofer IIS that
I have meanwhile become part of has always been an unlimited source of interesting and richly
diverse challenges, and I therefore also appreciate the due patience and respect shown while focusing
to finalize this dissertation and related publications. Special thanks further go in particular to the
many researchers I had the chance to meet at conferences and various other occasions, who have
been an essential source of motivation and feedback.

Finally, I deeply thank my wife Teresa for her invaluable patience and support throughout the
sometimes demanding times while writing this dissertation.



Zusammenfassung

Die Rontgen-Dunkelfeld-Bildgung vermag den Widerspruch zwischen dem Bedarf nach grofien
Sichtfeldern im Zentimeterbereich und der nétigen Bildauflésung zur Charakterisierung von Fa-
sermaterialien mit Strukturgréffen im Mikrometerbereich aufzulosen. Sie bedient sich dafiir der
Eigenschaft von Rontgen-Talbot-Interferometern, Ultrakleinwinkelstreueigenschaften einer Probe
vollflichig abzubilden, womit eine Liicke von mehreren Groflenordnung zwischen der Bildauflosung
und der konstrastgebenden Strukturgréfie iiberbriickt werden kann. Der Zusammenhang zwischen
Strukturanisotropie und gerichteter Streuung erméglicht dabei Riickschliisse auf die Orientierung
der Mikrostruktur einer Probe unterhalb der Bildauflésung. Erste Demonstrationen haben, basiered
auf verschiedenen heuristischen Signalmodellen und Rekonstruktrionsansétzen, die grundsétzliche
Erweiterbarkeit auf die Volumen-Bildgebung gezeigt. In der vorliegenden Arbeit wird, aufbauend
auf einer umfassenden Analyse der Dunkelfeld-Bildgebung und tomographischer Rekonstruktionsme-
thoden, sowohl ein verifiziertes Modell der Signalanisotropie als auch eine Rekonstruktionstechnik
entwickelt, die fir grofle tensorwertige Volumina und allgemeine Abbildungsgeometrien praktikabel
ist.

In diesem Sinne wird ein weites interdisziplindres Feld von Bildgebungs- und Rekonstruktions-
methoden aufgearbeitet. Zundchst werden anhand einer neuen Einfiihrung in die mathematische
Beschreibung perspektivischer Projektionen essenzielle Einsichten in die Zusammenhénge zwischen
der greifbaren Realraum-Darstellung der Kegelstrahl-Geometrie und ihrer technisch relevanten Be-
schreibung mittels homogener Koordinaten und Projektionsmatrizen gegeben. Aufbauend auf diesen
Grundlagen wird eine neue Methode zur Auto-Kalibration entwickelt, die die praktische Bestimmung
von perspektivischen Abbildungsgeometrien unter minimalen Anforderungen an die experimentelle
Ausfithrung ermoglicht. Passend dazu wird eine verallgemeinerte Formulierung des weit verbreiteten
Feldkamp-Algorithmus gegeben, um eine schnelle und flexible Volumenrekonstruktion aus beliebigen
tomographischen Bildgebungsgeometrien zu erméglichen. Iterative Rekonstruktionsverfahren werden
ebenfalls fiir allgemeine Aufnahmegeometrien eingefithrt, wobei ein Schwerpunkt auf der effizienten
Berechnung des mit der tomographischen Bildgebung assoziierten Vorwértsproblems liegt. Zu
diesem Zweck wird eine hochperformante 3D-Erweiterung des klassischen, linear interpolierenden
Linienintegrationsalgorithmus von Joseph entwickelt und mit typischen Alternativen verglichen. In
Bezug auf die anisotrope Bildmodalitét, die die Grundlage der Tensortomographie bildet, wird der
Rontgen-Dunkelfeld-Kontrast umfassend besprochen. Die vorhandende Literatur wird dazu in einen
gemeinsamen Kontext und eine gemeinsame Nomenklatur gebracht und mit neuen Uberlegungen zu
einer konsistenten Darstellung der Theorie zur Dunkelfeldsignalentstehung vervollstiandigt. Zentrale
Ergebnisse werden dabei explizit anhand experimenteller Daten verifiziert, wobei besonders die
Tomographie und die Eigenschaften anisotroper, faseriger Streuer im Vordergrund stehen. Um
die ausgeprigte Empfindlichkeit interferometrischer Bilder auf feinste mechanische Instabilitdten
zu kompensieren, wird ein effizientes Optimierungsverfahren zur Auswertung der Rohdaten aus
Talbot-Interferometern entwickelt. Schliefilich wird die Anwendbarkeit von linearen Tensor-Modellen
in Bezug auf die hergeleiteten Anisotropie-Eigenschaften des Dunkelfeld-Kontrastes diskutiert, und
ein iteratives Verfahren fiir die Rekonstruktion tensorwertiger Volumen aus Projektionsbildern
vorgeschlagen. Die entwickelten Methoden werden effizient implementiert und auf Proben aus faser-
verstiarktem Kunstoff angewandt, die dafir an der Bildgebungs-Strahllinie ID19 des Européischen
Synchrotrons ESRF abgebildet wurden. Die Ergebnisse stellen eine bisher einmalige Demonstration
von Rontgen-Dunkelfeld-Tensor-Tomographie mit einem Sichtfeld von 3-4cm dar, wobei lokale
Faserorientierung sowohl fiir komplex geformte als auch kontrastarme Objekte mit einer rdumlichen
Auflésung von 0.1mm in 3D dargestellt werden kann. Ein unabhingiger Vergleich mit Mikro-CT
basierter Faser-Analyse bestétigt die Ergebnisse.
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Abstract

X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields
of view and the spatial resolution required for the characterization of fibrous materials structured
on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field
images of a sample’s ultra small angle scattering properties, bridging a gap of multiple orders of
magnitude between the imaging resolution and the contrasted structure scale. The correspondence
between shape anisotropy and oriented scattering thereby allows to infer orientations within a
sample’s microstructure below the imaging resolution. First demonstrations have shown the general
feasibility of doing so in a tomographic fashion, based on various heuristic signal models and
reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction
technique practicable for general imaging geometries and large tensor valued volumes is developed
based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques.

To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is
revisited. To begin with, a novel introduction to the mathematical description of perspective
projections provides essential insights into the relations between the tangible real space properties
of cone beam imaging geometries and their technically relevant description in terms of homogeneous
coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach
is developed, facilitating the practical determination of perspective imaging geometries with minimal
experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp
algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic
imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection
geometries, with a particular focus on the efficient evaluation of the forward problem associated
with tomographic imaging. A highly performant 3D generalization of Joseph’s classic linearly
interpolating ray casting algorithm is developed to this end and compared to typical alternatives.
With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field
contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature
and supplemented by original work completing a consistent picture of the theory of dark-field
origination. Key results are explicitly validated by experimental data with a special focus on
tomography as well as the properties of anisotropic fibrous scatterers. In order to address the
pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient
optimization based evaluation strategy for the raw data provided by Talbot interferometers is
developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy
properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of
tensor valued volumes from projection images is proposed. The derived methods are efficiently
implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of
the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations
of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations
of both complex shaped and low-contrast samples at a spatial resolution of 0.lmm in 3D. The
results are confirmed by an independent micro CT based fiber analysis.
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Introduction

Tensor tomography describes the volume reconstruction of tensor fields from a large number of
projections thereof. Its practical realization for X-rays draws on an extensive set of techniques
from the field of volume reconstruction, plus a number of specific ones. Computed tomography
has become an established, yet evolving instrument in both life and material sciences throughout
the past 50 years, and a mathematician might be inclined to loose interest once learning that it
can be, at its core, reduced to Fourier transformation. When turning from the blackboard to the
experimental bench though, multiple practical challenges arise that eventually define the actual
problem set beyond the fundamental question of solvability: foremost, it is the sheer amount of
data that needs to be processed. With gigabytes commonly being the smallest unit, and hundreds
of gigabytes not being untypical for advanced applications, a significant amount of time needs to be
devoted to the design of efficient algorithms and processing strategies. The respective constraints
thereby constantly evolve together with computing hardware. A further class of problems arises from
the practical implementation of mathematical assumptions and the unavoidable deviations thereof,
typically in the form of imperfect acquisition geometries and signal nonlinearities. The last class
of problems is finally spanned by the specifics of tensor tomography and the required anisotropic
contrast modality. Adding to this are, last but not least, the practical needs for hardware-optimized
software engineering and development, experimental realization, and visual processing.

The central ingredient to X-ray tensor tomography beyond the algorithmic preliminaries is
provided by the dark-field contrast obtained with Talbot or Talbot-Lau interferometers, which
have seen considerable research interest over the past decade for their sensitivity to ultra small
angle scattering originating from structures on the 107%m to 107*m scale at fields of view in
the order of magnitude of 10! m. Due to its origin in scattering, X-ray dark-field contrast is in
particular sensitive to variations in structure size, reflecting shape anisotropies and thus providing
the anisotropic contrast modality required for tensor tomography. The processing of interferometric
data and the properties and physical interpretation of the resulting image contrast thereby represent
research topics in their own right that need to be addressed as well.

The present dissertation aims to provide concise yet thorough presentations of all aspects of
tomographic reconstruction, dark-field imaging and experimental design developed and required
towards the final objective of creating and interpreting tensor valued volume reconstructions of a
sample’s anisotropic ultra small angle scattering properties. Particular focus is thereby put on the
identification of best practices based on in-depth literature reviews and validating experiments in
order to provide a sound basis for the final applications that ultimately form the recognizable tip
of a large iceberg of involved methodologies. Many aspects have also been motivated by related
reconstruction problems in X-ray nano tomography, which has been a parallel focus throughout this
work. A number of original solutions and insights have emerged in the course of this research, both
with respect to the wider field of computed tomography and the emerging field of X-ray dark-field
tensor tomography. The following text intends to provide a convenient handbook motivating,
documenting and validating all central methods to the necessary level of detail as required for
practical realizations of (tensor-) tomographic reconstructions, excluding only the technical topic of
actual programming for and on dedicated graphics processors.






Chapter 1

Fundamentals of Volume
Reconstruction in Cone Beam
Computed Tomography

1.1 Perspective projections and their parametrization

Tomographic imaging has historically been discussed in terms of the Radon transform describing
coplanar line integrals parametrized by a distance from the origin r and an orientation angle w.
Although this mathematically motivated formulation of (X-ray) projections is essential with regard
to the derivation of image reconstruction formulas, it is however subsequently desirable to generalize
the mathematical representation to typical imaging systems rather than to actually build systems
according to a constrained mathematical model. It will turn out in the following Chapters that this
is indeed both reasonable and beneficial in a wide range of scenarios and use cases.

Technically relevant X-ray imaging systems acquire line integrals along divergent paths (fan-
and cone-beam geometries) intersecting at a common focal point (the X-ray source). A most
general description of such perspective imaging geometries can be achieved by means of vectors
characterizing the positions and orientation of focal point and projection plane (X-ray detector)
relative to the considered field of view. Such a description can equivalently be formulated in terms
of projection matrices mapping between homogeneous coordinates of projective spaces, which has a
long history in the fields of computer graphics and computer vision, and has been partially adopted
in cone beam tomography for the related calibration techniques known in the field of computer
vision.

The following subsections will derive fundamental relations between vector geometry, perspective
projections, and projection matrices. These relations will provide the basis for a very general
formulation of tomographic reconstruction algorithms for arbitrary imaging geometries (Section 1.2
and later Chapters) as well as for the auto-calibration of respective geometries from projection
images (Chapter 3). In contrast to the established discussion of projection matrices in terms of
affine transformations from object space to a canonical camera space (cf. the textbook by Hartley
and Zisserman [63]), they will here be derived from an explicit vectorial description of the camera
within object space, providing important relations between both representations particularly with
regard to motion estimation and geometry calibration. Parts of the following subsections are
published together with Chapter 3 as [45].

1.1.1 Vector algebra representation

Let 3, J; H , V be vectors in a three dimensional euclidean space describing the positions of X-ray

=

source (3) and detector (d) as well as the orientations and pitches of the detector’s columns (V)
and rows (H). The latter are not strictly required to be orthogonal, although they typically are in
practice. The integration paths between focal point § and detector pixels (h,v) describing X-ray

image formation (cf. Figure 1.1) can then be represented in the following way:
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position of pixel (h,v)
in 3D space

——N—
p(h,v,w) :§+w<(d+hH+v‘7)—§’) ) (1.1)

line orientation

straight forwardly allowing to sample values of a given volume image at locations p(h, v, w) and
integrate them with respect to the path coordinate w, yielding a two dimensional projection image
indexed by h and v (cf. Chapter 2).

The backprojection operation within any tomographic reconstruction algorithm (cf. Section 1.2)
requires the inverse relation, which is mapping a given point 7 (the location of a voxel) to coordinates
(h,v) on the projection plane based on known vectors §, d_; ﬁ, 1% (i.e., p'is projected onto the image
plane). By choice of a more convenient representation of Eq. 1.1 introducing the auxiliary variables
I’/ and v’, the inversion becomes apparent:

A Al
F=5+whH+woV+w(d-3 (1.2)
h/
po5=|H|V|d-7] 5;
b 5
% :[ﬁ v J’—g’} [*—g} (1.3)
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By application of Cramer’s rule, the explicit relations

hﬁwalay@—@ Uﬁfﬁx@layw—a
AV -9 o [ExV] -9

(1.5)

are obtained, with the bracketed terms being constants of the imaging configuration (i.e. independent
of p), and (p'— §) characterizing the orientation of the path through source § and a given point p.

point on
. Projection line

Figure 1.1: Sketch of the cone beam projection geometry. The locations of focal point and detection plane are
given by § and d. The row and column vectors F and V' describe both the orientation of the detection plane and
its 2D coordinate system (h,v). The orthogonal line between source and projection plane intersects at (ho,vo).
Depending on the task, either p(h, v, w) or h(p),v(p) is to be calculated given a set of vectors s, d. H,V. For
tomography applications, the projection system will be further rotated about a rotation axis, that will typically
be aligned (approximately) parallel to V.
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1.1.2 Projection matrices and homogeneous coordinates

The solution to the mapping p'— (h, v) just given in Egs. 1.3-1.5 can be further reformulated to
reproduce the projection matrix formalism commonly used in the field of computer graphics:

2D+1 homoge- 3D+1
neous coordinate homogeneous
3x4 projection matrix P coordinate
’ iy
[ T -1 Sl =] - -1 7
AR N TN F T
w
P3xs Py

where the remaining constant (8) of the projection geometry has been included within the fourth
column (Py) of the projection matrix P. By means of the corresponding fourth component added
to the to-be-projected point p, the projection matrix formalism exactly reproduces Eq. 1.3 while
absorbing all constants of the projection geometry within P.

Eq. 1.6 is understood, in the fields of computer graphics and projective geometry, as a linear
mapping between projective spaces, formalizing the necessity to divide A’ and v’ by the last
component w (which here emerged from the particular relation defined by Egs. 1.1 and 1.2)
to the general concept of “homogeneous coordinates” holding an additional scaling component.
Corresponding euclidean coordinates are, by definition, obtained from the remaining components
divided by the scaling component. Obviously, the constructed vector (p,1) can be understood
in these terms. Homogeneous coordinates are thus invariant with respect to arbitrary non-zero
scalings, i.e., (p1,p2,ps,1) and (ap1, aps, aps,a) describe (for a # 0) identical points yielding
identical projections (h,v). Analogously, the projection results are invariant with respect to the
absolute scale of P.

By applying Cramer’s rule to Eq. 1.6, an explicit expression of P in terms of the vectors §, J:
Vv, H can be given:

!

(Vx(@d-3)T | ~(V
P=a| —(Hx(d-3)T (H
(HxV | —(H

—~

I

<SRy
S—
w wy ®y

(1.7)
with a=det ([ £|7]d-5])" = (@ x7)-@d-9) .

where the determinant « can, due to the invariance of projections with respect to the absolute
scale of P, be dropped for all practical purposes. It is here explicitly included for completeness and
consistency with Eq. 1.6. The above representation, when applied to (9, 1), will reproduce Eq. 1.5.
Most obviously, Eq. 1.7 reveals that the third row of P provides direct information on the detector
normal and the distance of the focal point from the origin. The inverse relation P — s, ai H , V will
be derived in Section 1.1.6.

1.1.3 Relation to the classic understanding of projection matrices

Usually, the projection matrix is represented in completely different terms, which shall be briefly
outlined here due to their wide adoption. The classic derivation employed in the field of computer
graphics (cf. the book by Hartley and Zissermann [63]) begins, instead of a system of equations,
with a canonical camera coordinate system with the focal point at the origin, the optical axis along
z and an orthonormal projection plane (z,y,z = 1) at z = 1. Based on the intercept theorem, the
perspective projection of any point (ps,py,p.) onto this plane is then directly given by (p—z, %Z) As
previously, the point can as well be generalized as homogeneous vector (wp,, wp,, wps, wﬁ, resulting
in identical projections (2=, ZZ L) = (=, Z—Z). In order to define an independent planar coordinate
system on the detection screen as well as to change the relative scale, orientation and position of
the projected objects, an upper triangular 3 x 3 camera calibration matrix C, a unitary 3D rotation

matrix R and the 3D translation vector ¢ are introduced, such that

P=|[CR|Ct]. (1.8)

~
P3x3 Pa
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By application of P to a homogeneous vector (wpy, wpy, wp,,w), an euclidean point (ps, py, ps) is
first rotated by R about the origin (which coincides with the focal point), then translated by t'to its
relative position with respect to the focal point, and then scaled and sheared by C' prior to actual
projection by means of the intercept theorem (i.e, by means of division by the last component). C
further effects a final translation on the projection screen, corresponding to the freedom of choice
of the origin of its 2D coordinate system.

IL.e., projection matrices are generally understood in terms of operations transforming points of
the field of view into a canonical camera coordinate system as opposed to vectors describing the
camera relative to the field of view.

R and # are referred to as “extrinsic” parameters defining the camera position relative to the
coordinate system of an object, while C' characterizes the “intrinsic” camera parameters: focal
distance, origin and shear of the projection grid.

A formal decomposition of P will show the relations among both parametrizations. To this
end, QR decomposition is commonly applied to P3x3 = CR, which by definition decomposes
quadratic matrices into the product of a triangular and a unitary matrix. Once C' and R have been
determined, the remaining parameter ¢ is given by t = C ' Py, as a direct consequence of Eq. 1.8.

The parameters C and  are then, considering Eq. 1.6, given by

C =Py R = {Rﬁ‘RV”R(J—E‘) ]_1

(1.9)
t=C"'Py, =-Rs.
C generally is of the upper triangular form
no s ho
C=a| 0 f. w (1.10)
0 0 1

with some arbitrary absolute scale a. The individual components can be interpreted (cf. [63]) as
focal lengths (distance between focal point and projection screen) fi, and f, in units of pixel width
and height, shear s and the intersection of the orthogonal line between source and detector with
the detector coordinate system at (h = hg,v = vg). s is non-zero only for non-orthogonal detector
grids (i.e., when H-V #0), and the focal lengths f;, and f, are analogously of equal magnitude in
the case of square pixels.

Given the vectorial geometry description introduced previously, the rotation matrix R may be
explicitly constructed based on the known properties of the canonical camera system, i.e., that the
canonical projection screen’s normal is oriented along z, and its rows along x. With the normal
orientation being given by H x V and the row’s direction by H, the rotation matrix can be straight
forwardly constructed:

- T
L. . .. R,
— H V - H g R R —
Rz = %% R == Ra= %% R= RQT . (1.11)
HxV i HRg ¥ R, Zr
3

The remaining row R, is constructed orthogonal to R, and .R_:g in order to obtain a valid rotation
matrix (i.e., a unitary matrix).

For the common case of rectangular or square pixels (i.e., H -V =0 and thus s = 0), the above
results will then reduce to:

(f x V) - (0~ 5)

Hx - for H-V =0 (1.12)
! I\Xf?||)!'|vugg) v =~V (d=3)/|7|*.
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1.1.4 Example: Ideal cone-beam geometry in classic parametrization

In order to illustrate the relation of the general results given by Eqgs. 1.5—1.7 to typical explicit
formulas in terms of focal distance and projection angle found in literature, an ideal cone-beam
geometry shall be explicitly constructed from a rotation angle w, the focus—object distance FOD,
the focus—detector distance FDD and the detector pixel size Ap:

—sin(w) . — sin(w) B cos(w) B 0
§=-FOD | cos(w)|, d=(FDD—-FOD) | cos(w)|, H=Ap|sin(w)|, V=Ap|0
0 0 0 1

The projection coordinates (h,v) of a point 7= (z,y, 2) on the detection plane in units of detector
pixels are then found, by means of Eqgs. 1.5-1.6, to be:

h FDD cos(w) FDD sin(w) 0 0 v
o | =—Ap 0 0 ApFDD 0 Y
w —Ap sin(w) Ap cos(w) 0 ApFOD i
=P
b= h' _ FDD z cos(w) + ysin(w)
~w  Ap FOD — zsin(w) + ycos(w)
,_ v _FDD 2
~w  Ap FOD — zsin(w) + ycos(w) ’

corresponding to the typical expressions found e.g. in the textbook by Buzug [15].

1.1.5 Special cases: parallel beam and fan beam projection geometries

For completeness, also the cases of parallel and stacked fan beam projections as depicted in
Figure 1.2 shall be briefly discussed. Parallel beam geometries typically occur at synchrotron
imaging beamlines exhibiting extremely large focal distances, while stacked fanbeam geometries
typically arise in line scanning configurations. They are, in different contexts, also referred to as
orthographic projection and pushbroom geometry respectively. In contrast to regular perspective
projections, these geometries do not exhibit a single focal point. The projection paths p(h, v, w) are
rather characterized by a source point moving along with one or both of the detector rows and
columns:

focal points position of detector-
¢ . (fan beam) pixel (h,v) in 3D space W
an beam: ’_ﬁ —~ - ~ . L e .
P (h,v,w) = §+ 0V —|—w((d—|—vV—|—hH)—(§—|—vV) ):§—|—UV—|—whH—|—w(d—§')

line orientation
parallel beam:

Pob(hyv,w) = §+ 0V + hH +w@f+vl7+hﬁ)—(§‘+vl7+hﬁ)) =5+oV+ hH+wd-3).
—_———

"focal points"
(parallel beam)

Analog to Egs. 1.1-1.4, the inverses are found to be

fan beam: parallel beam:

h ; h ;

. :Ph] . :Ph]’ (1.13)
h 14

=]

with P according to Eqgs. 1.6 and 1.7. They differ from the cone beam solution only in perspective
scaling w on h and v, which expectedly is completely absent in the parallel beam case and only
applies to the detector rows in the fan beam case. The absence of scaling with respect to one or both
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Figure 1.2: lllustrations of parallel beam (left) and stacked fan beam (right) projection geometries. While the
former commonly arises as a limiting case of cone beam geometries with large focal lengths, the latter typically
arises in the context of successive tomographic scans using a line detector.

detector dimensions implies that the homogeneous coordinate formalism isn’t directly applicable.
For the same reason, scaling invariance is broken for the projection matrix, as well as the vectors
on the left and right hand side of the equation.

While the fan beam case indeed generally needs to be considered a special case with regard to the
projection matrix formalism, a modified projection matrix can be formulated for the parallel beam
case, embedding it into the homogeneous coordinate formalism again and restoring scaling invariance.
As the w component in Eq. 1.13 (parallel case) is, in contrast to perspective projections, not used
for the computation of (k,v), it may as well be exchanged with the determinant (H x V) - (d — )
(cf. Eq. 1.7) by means of the following modified projection matrix:

Pyb3xs
(V x(d=a)T | (Fxd)-d-5]]P
Pop= | —(Hx(d-35)7 | ~(Hxd) (d-3) ;‘;y , (1.14)
0 0 O (HxV)-(d—3) 1
such that

!
pb =
v | =P ] ]
Wph

Eaakd
Upb Wy, | Upb |
The correct scaling of (h,v) is now, as for perspective projections, achieved by division of the
projected vector by its last component, which is here, in contrast to perspective projections, invariant
with respect to the projected point p.

Other properties of perspective projection matrices are broken though for Pp,. Most obviously,
Ppb3X3 is undefined. As the actual focal point for the orthographic projection lies at infinity, the
“source point” § rather serves the purpose of defining the projection direction d—3 (cf. Fig. 1.2).
This has been consequently transferred into the explicit representation of Py}, by means of the
vector algebra identity (@ x b) - b = 0.
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1.1.6 Conversion of projection matrices to real space geometries

Both with respect to calculating volume projection images based on the forward problem defined in
Eq. 1.1 (cf. Chapter 2), as well as with respect to real space interpretations of the geometry encoded
within a projection matrix (cf. Chapter 3 on projection geometry calibration), the conversion of
projection matrices to real space vectors is of interest and shall therefore be derived here.

Based on the representations given in Eqgs. 1.6 and 1.8, the relations

§=—-P3;.,P, (=-R") (1.15)

can be directly inferred, with § being the focal point of the projection. As can be easily verified,
Eq. 1.15 is invariant with respect to the absolute scale of P (equivalently, it is invariant with respect
to the absolute scale of C within P, cf. Eq. 1.8).

The remaining vectors H , Vand d are, in contrast, related to the absolute scale of P. The
ambiguity corresponds to the fact that projections in the coordinate system of the detection screen
are invariant under a proportional change of scale and distance of that screen, as well as under
reflection through the focal point. In order to recover the screen’s actual scale from an arbitrarily
normalized matrix P, prior knowledge such as the true pixel pitch Hﬁ H or HVH and the screen’s
orientation with respect to § needs to be incorporated. Nevertheless, a valid preliminary set of
equivalent vectors H’ ) V' and d’ reproducing a given projection matrix P can generally be obtained
irrespective of the original system dimensions based on Eqgs. 1.6 and 1.15:

|:]:'I/ ‘_/’/

d -3 ] = P3l, (1.16)

Based on the assumption typical to X-ray imaging that ((f— §)-§ <0, i.e., that the focal point
never lies between the projected field of view and the projection screen, and further assuming the
pixel pitches HHH and ||VH to be known, Equations 1.15 and 1.16 may be completed to Alg. 1.1:

Algorithm 1.1 Deduction of real space geometry descriptions from projection matrices. The factor
sign((d’ — §) - §) resolves the point symmetry of perspective projections, while knowledge of the
true pixel pitches ||I;T || and HVH allows to resolve the arbitrary scale of P. The geometric mean
over both pixel pitches is meaningful in the presence of noise on H’ and V’, as will be the case
when P is actually determined from experimental data instead of being explicitly constructed (cf.
Chapter 3).

§=—P5,P,

(| v |d-5]= Py,

[ﬁ 1% J—E’}:—sign((cﬁ—?)@') % d_7—s_’}
d=(d-5+5,

With respect to applications in auto-calibration (Chapter 3), it will be insightful to explicitly state
the inverse P35 using Cramer’s rule:

H H' = o ' (P, Paa, Pa3) x (P31, Psa, P33)
V /' = —a~' (P11, Pra, Pis) x (Psy, Psy, Ps3)
(-5 x (d—38= a ' (Piu,Pua,Pi3)x (Pa, Py, Pa3) (1.17)

a = det P3y3 = [(P11, P12, Pi3) X (Pa1, Paa, Pa3)] - (Ps1, P32, Ps3)
ol =det P3ly = (H x V')-(d —5) (cf. also Eq. 1.7)
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1.1.7 Homographies

Homography transformations are invertible transformations between projective spaces. Two kinds
are of particular practical relevance here: 4 x 4 homography matrices transforming between two
projective 3D spaces, and 3 x 3 homographies transforming between projective 2D planes. Given
that, for the present purposes, 3D space generally refers to the object space before projection and
2D space to the image space after projection, 4 x 4 homographies are commonly required for object
or camera manipulation (e.g. for the purpose of rotating a given projection geometry about a
rotational axis in order to reproduce tomographic acquisition trajectories), and 3 x 3 homographies
are required for image transformations, i.e., to retrospectively manipulate position and orientation
of the projection screen (in some cases also referred to as “rectification”, cf. Section 1.1.7.1).

With x and y denoting points in object space and screen space respectively, and P and H
denoting projections and homographies respectively, the following typical situations can be identified:

)

——

Y3 = Pyxa Hyxsy (1.18)

————

P!

3x4
Péle wﬁ;
—
Ys = Paxa Hy yHaxazy (1.19)
—_————
=1
x3

——
Y3 = Hsxg P3xaxy (1.20)
—_———

— ’
_P3><4

x4
Ys = P3xa Dyxsxs . (1.21)
N———

=Hj3x3

For clarity, the dimensions of all vectors and matrices are explicitly indicated. According to the
homogeneous coordinate formalism (cf. Section 1.1.2), points in 3D object space comprise 3 + 1
components (right hand side), and their 2D projections 2 + 1 (left hand side). Eq. 1.18 describes
the case of modifying (e.g. translating, scaling, rotating, or even shearing or warping) either the
camera or the object using a 4 x 4 homography, depending on whether it is applied to P34 or x4.
Eq. 1.19 in contrast describes the case of simultaneous transformation of both camera and object
while leaving the actual projections unchanged (cf. projective ambiguities, Chapter 3, Section 3.4).
Eq. 1.20 describes a transformation after projection, which may be interpreted in multiple ways
that will be discussed in the following Sections 1.1.7.1-1.1.7.2. Generally, it corresponds to a
transformation of the projection plane, a case that is further explicitly considered in Eq. 1.21,
with a matrix D43 describing a plane in 3D space, and the product D43 x3 describing the 3D
coordinates of 2D points x3 on that plane. By regrouping of the matrices, the transformation
between both planes can be directly expressed by a 3 x 3 homography transforming between two
projective 2D spaces. This case will be discussed in more detail in the following Section 1.1.7.1.

10
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Figure 1.3: Rectification of projection images by means of projecting a synthetic sampling plane onto the
original one (left). An image on the synthetic grid is obtained by interpolated sampling from the original grid at
the projected coordinates. The concept may be extended to non-planar grids (right), although the corresponding
coordinate transformations become non-linear, complicating in particular the inverse mapping (which is otherwise
given by the inverse of the respective homography matrix)

1.1.7.1 Transformation of the detection plane (Rectification)

Rectification refers to the transformation of projection images to a different image plane that is
more adequate in a given context. The image transformation involves both a homography mapping
between two projective planes as well as resampling of discrete image data onto the desired synthetic
grid. Given a known projection matrix P as well as a set of vectors H T VT, & characterizing the
rows, columns and origin of the rectified image plane in euclidean space, the homography transform
is found by formal projection of the synthetic grid (indexed by h*,v") onto the original one (indexed
by h,v) encoded in P (cf. Figure 1.3):

grid points on the
synthetic image plane

oy Vi dy

h/(hr,’l)r) P11 P12 P13 P14 Hr V&t h*
V(A5 0Y) | = | Pa P2 Paz Py HQT VQT d? vr (1.22)
w(h*,v") P31 Pss Psz Psy 03 6’ 13 1
H* indices on the
X synthetic grid
1.e. — — -
e [ H V&
H._P[O 0 1] (1.23)
and
(R, v") hE
» 1 ’
o' (hf0") | = HY | 0" with [ Z } =— { :}L, } . (1.24)
w(h*,v") 1 w

Using the relations P = [ P3| — Psy3 3] and Psys o< [H|V|d — §]7! (cf. Eq. 1.6), Eq. 1.23 can
also be formulated as

= [A|V|d-s] [ ] v

$—§}7 (1.25)

more explicitly revealing the exchange of projection planes.

In the context of cone beam computed tomography, one typical use case for image rectification
is the resampling of projection data to a standard acquisition geometry expected by a given
reconstruction algorithm. In particular non-iterative methods are often based on highly symmetric
geometries describable by a minimal number of parameters. Similarly, motion compensation is a
typical application.

11
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1.1.7.2 Object motion estimation

In contrast to explicit construction, homography matrices may also be determined by comparison
of pairs of different projection images of the same object. Multiple interpretations on the origin of
the respective transformations can then be given. While, in analogy to the previous Section 1.1.7.1,
a change of intrinsic camera properties may be assumed to be the cause of differences between
two images, a change of extrinsic position parameters equivalently gives rise to observable image
transformations. This relation thus allows to extract quantitative information on general object or
camera displacements from image comparisons, allowing for a generalization of common motion
correction algorithms applied in micro tomography from a transformation of the image plane to
actual corrections of the camera pose.

Here, the restricted case of 3D translatory motions shall be considered. When further approximat-
ing the imaged object as planar and parallel to the projection screen, the expected transformations
are restricted to translations ¢y, ¢, and isotropic scaling a. The corresponding homography matrix
is then given by

1 0 ty
H=|0 1 t |. (1.26)
0 0 «
Given a homogeneous vector x = [ ‘719 ] and a projection matrix P = [P3y3|P4] with
hy,
’U; :P$:P3X35+ _P4:7 (127)
Wp

the transformation HPx can be explicitly stated:

10 ][ h, b, th
HPx=|0 1 ¢t, v, | = v, | twp ty . (1.28)
0 0 « wy, wy, a—1

It can be, considering Eq. 1.27, brought into the form

L A= th
HPz = Pi =P { p +1Ap ] with Aj=P3egw, |t | . (1.29)
a—1
L.e., the observed image transformation H can be reduced to a translation Ap of the object plane
at p'relative to the camera.

The translation vector Ap as stated in Eq. 1.29 can be, using Eqs. 1.6, 1.7 and 1.27, specified to

i i . th
i (P — Q] -

Ap= HXV)- B Q[H % d—§’] t (1.30)
7> V)-(d—9) o1

using the vectors §, J; ﬁ, 1% describing the position of the focal spot, the origin of the projection
plane and the orientation and pitches of its rows and columns. The relation between Ap and the
corresponding homography transform is dependent on the original position p’ of the moved plane.
This dependence relates to the position dependent geometric magnification of both the object and
its motions. A reasonable choice for 7 is the center of mass of the considered object, which may,
in the absence of more precise data, be approximated by the center of the field of view, which is
typically characterized by p = (0,0,0). Such motion information is typically relevant to realize
object or camera motion corrections within reconstruction algorithms based either on a set of
reference images or as part of iterative reconstruction techniques.

12
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1.2 Volume Reconstruction

Reconstruction of volume images from projections thereof represents the core aspect and achieve-
ment of tomographic imaging. The general feasibility is provided by the relation between the Radon
transform (the formalized definition of projection imaging as line integrals over a multidimensional
space, continuously parametrized by orientation and distance from a center point) and the Fourier
transform. These mathematical foundations of tomography, as well as the derived basic reconstruc-
tion formulas, are widely covered in literature. The most widely adopted methods, i.e., the FDK
(“Feldkamp”) formula as well as the iterative algebraic techniques ART and SART will be briefly
recapitulated and presented in a clear algorithmic form facilitating straight forward implementation.
The Feldkamp approach will be generalized to generic geometry parametrizations based on the
concepts introduced in Section 1.1, allowing to directly handle a wide variety also of non-circular
acquisition geometries at arbitrary orientations relative to the sample coordinate system.

1.2.1 Analytic reconstruction: Filtered Backprojection and FDK

Filtered Backprojection derives from the Fourier slice theorem, which provides a straight forward
relation between the Radon transform and the Fourier transform of a tomographic slice. It applies
to parallel beam geometries and can be straight forwardly extended to fanbeam geometries based
on coordinate transformation (cf. [84, 180, 15], and Fig. 1.2 for an illustration of parallel beam and
fan beam geometries).

projections (sinogram)  SART, 1 projection SART, 2 projections SART, 5 pro;ectlons SART, 50 proj., 3iter.  SART, 803 p., 3 iter.

filtered sinogram FBP/FDK, 1 projection FBP/FDK, 2 projections FBP/FDK, 5 projections ~ FBP/FDK, 50 proj. FBP/FDK, 803 proj.
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Figure 1.4: lllustration of reconstruction processes using the Shepp-Logan head phantom, whose projections
can be analytically calculated.

The top row demonstrates iterative SART reconstruction (cf. Section 1.2.3) of a tomographic slice from
fanbeam projection data (shown on the left). The iterative process starts by backprojecting the first projection
into the empty reconstruction space (along the known projection paths). In the subsequent steps, individual
projections of that image are simulated based on a discrete imaging model, and just the difference to the
respective acquired projections is backprojected and added. On the right, SART reconstructions with three
iterations over 50 and 803 (~ 512 7/2) projections respectively are shown.

The bottom row shows the corresponding reconstruction steps using (non-iterative) filtered backprojection
(or FDK, cf. Section 1.2.1). The projection data is first weighted and filtered. Filtered projection lines of the
sinogram are then backprojected, weighted and accumulated. On the right, reconstructions from 50 and 803
projections are shown.

While iterative reconstruction techniques ensure the validity of a solution by repeated re-projection and
comparison with the available data, filtered backprojection approaches rely on prior mathematical analysis of the
problem. Although the latter are typically faster, the former are more flexible, as no explicit assumptions on the
imaging geometry are made. When reconstructing from too few projections, tangential lines along high contrast
edges remain visible, which are further enhanced by the filtering process in the case of FBP reconstruction. In
terms of algebraic reconstruction, they lie within the null space of an underdetermined system of equations,
and may be suppressed by adequate regularization. In terms of filtered backprojection, they correspond to an
insufficient angular sampling of the continuous radon transform.

13
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detector detector \
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FCD
FPD
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1
1
1
1
1
source (focus) . source

Figure 1.5: Sketches of ideal (left) and slanted (center and right) fan-beam acquisition geometries with a
flat detector. The slanted detector geometry (center) is equivalent to a geometry with source and detector
shifted horizontally in opposing directions (right). COR: center of rotation (and coordinate origin of the field
of view), FCD: focus center distance, FDD: focus detector distance, a: linear detector coordinate, p: point in
the reconstruction field of view, «: angle between p and the detector normal with respect to the focus point,
FPD: focus point distance parallel to the detector normal. Different projection views of the circular field of view
are generated by rotating source and detector equally about the COR by a rotation angle w € [0, 27 (in the
depicted case, w = 0 and therefore not shown). Note that the FPD for a given point p'is w-dependent (as is its
projection on the detector).

Cone beam geometries (cf. e.g. Fig. 1.1 or Fig. 1.3) take a special role, as the divergence of line
integrals also with respect to the central plane violates, for typical planar acquisition trajectories, the
mathematical prerequisites of tomographic reconstruction. The technical advantages of this geometry
and the fact that the resulting reconstruction artifacts are, with respect to many applications,
tolerable, make it highly relevant in practice nevertheless. Feldkamp, Davies and Kress [38]
proposed a widely adopted algorithm (referred to as FDK or Feldkamp algorithm) for circular
cone-beam geometries, which heuristically extends the exact Filtered Backprojection (FBP) method
for circular fan-beam geometries to the third dimension. Wang et al. [186] further showed that the
FDK algorithm is also applicable to symmetric non-circular (e.g., polygonal or elliptical) scanning
trajectories. With the aim of further extending the Wang-FDK algorithm to a general geometry
parametrization using vectors or (equivalently) projection matrices, first the classic formulations of
fan- and cone-beam reconstruction formulas as found in literature shall be briefly revisited.

Commonly, a perfect fan- or cone-beam geometry is assumed with the center of rotation (COR)
lying on the perpendicular connecting line between source and detector as shown Fig. 1.5 (left).
The fan-beam reconstruction algorithm can be partitioned into three steps: cosine weighting of the
projection images, convolution filtering of the weighted projections (equivalent to parallel-beam
reconstruction), and distance-weighted backprojection of the weighted and filtered projections
into the reconstruction field of view along their respective projection paths. The central results,
including the cone beam extensions by Feldkamp et al. and the generalization by Wang et al. (cf.
also [38, 186, 84, 180, 15]), are:

cos(7) projection
images
i FDD ——
2D Cosszt. G(w,v,h) = (w) o) (L.31)
weighting \/FDDQ(W)+a121(h)+a3(U)
convolution » B +oo
1D filtering over h g(wv,h) = /_oo u(t) g(w,v,h—7)dr (1.32)
T 2
weighted L TECD@) N
3D backprojection f(p) = 2 Jo FPD(p, w) G (w,v(p,w), h(p,w)) dw (1.33)

projection of p' onto the detector
distance weight

where g(w, v, h) is the projection (line integral) data at projection angle w and detector coordinate
(v, h), u denotes the convolution filter to be detailed later (cf. Eq. 1.34, typically effecting a linear
frequency weighting) and f is the reconstructed three dimensional image. ~ is the angle of an
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1.2. VOLUME RECONSTRUCTION

individual ray from source to detector with respect to the optical axis, and p' is a point within
the reconstruction field of view. FDD, FCD and FPD(p,w) are distances (along the optical axis)
between the focal spot and the detector, the center of rotation and the point p respectively, as
sketched in Fig. 1.5. The optical axis is defined by the focal point and detector normal, and further
assumed to both intersect and be orthogonal to the axis of rotation. The parametrized coordinates
(h(p,w),v(p,w)) describe the projection of p onto the planar detector matrix at projection angle w.

The distances FDD(w), FCD(w) and FPD(p,w) as well as the intersections with the detector
h(p,w) and v(p,w) are commonly expressed directly in terms of basic parameters of an ideal fan-
or cone-beam geometry, i.e. in terms of scalar distances, pixel sizes and the rotation angle w (cf.
the example given in Section 1.1.4). an(h) and ay(v) denote the horizontal and vertical distances of
a detector pixel (h,v) from the optical axis, and are classically assumed to be directly proportional
to h and v respectively.

With regard to quantitative reconstructions of f (p), it is important to note that distances on the
detection plane are, in the context of the derivation of the convolution filter, generally understood
with respect to a virtual detector at the location of the rotational axis. While Egs. 1.31 and 1.33 are
invariant with respect to similarity transforms of the detection plane (i.e., simultaneous scaling of
its pixel spacing and focal distance), correct w-dependent normalization of the convolution filter is
based on the projected pixel spacing at the location of the rotational axis. This becomes especially
important in the context of non-circular trajectories with varying distances FCD(w) and/or FDD(w)
(cf. [186]), which imply varying pixel spacings with respect to the canonical detection plane at the
rotational axis.

1.2.2 Generalized formulation of the Wang-FDK algorithm

While a minimal sufficient parametrization is essential with respect to mathematical discussions of
the volume reconstruction problem, a more flexible parametrization is generally desired with regard
to practical algorithmic implementations. While resampling of experimental data (cf. Section 1.1.7.1)
is one common way to comply with some given parametrization, the respective transformations
may rather be directly incorporated into the design of the reconstruction algorithm.

To this end, all distances, weights and intersections shall be expressed in terms of the general
vectorial description of the projection geometry introduced in Section 1.1. Arbltrarlly orlented
detector planes can be characterized by a position d and row and column pitches 1% and H which
in combination with grid indices (h,v) characterize the actual spatial locations d+ hH + oV
of the detector pixels addressed by h and v. Likewise, the position of the focal spot (or X-ray
source) § shall be defined within 3D space. Using basic principles of vector geometry, the following
relations can be defined (for each projection angle w, which is not explicitly stated here for improved
readability):

FDD = |ii - (5 - d)| FCD = |ii - (5 — )] FPD = |ii - (5 — p)]
. HxV |7t (5 d)|
M= cos(y) = —= =

|HxV| |5 — (d+hH +oV)||

with 77 being the detector normal and ¢ characterizing a point on the axis of rotation, which
typically coincides with the center of the field of view and which in turn may just be the origin
of the coordinate system, such that & = (0,0,0). In the case of an ideal cone-beam geometry, i.e.
source and detector moving on a circular trajectory about the center of rotation and the detector
normal being parallel to the connecting line between source and axis of rotation, these definitions
are exactly equivalent to the usual fan-beam or FDK formulas. In addition though, this formulation
flexibly allows to account for deviations from the ideal geometry even for individual projection views.
Apart from imprecise rotary motions, relevant examples are a slanted or offset detector as sketched
in Figure 1.5 as well as non-circular trajectories (as were considered e.g. by Wang et al. [186]).
The generality of this parametrization further allows to freely chose the reconstruction coordinate
system, i.e., allows to directly integrate rigid volume transformations into the reconstruction process
and thus to register multiple tomographic scan trajectories within a shared reconstruction grid.
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CHAPTER 1. FUNDAMENTALS

Algorithm 1.2 Generalized formulation of the Wang-Feldkamp-Davies-Kress algorithm
(Egs. 1.31-1.33) for tomographic reconstruction from cone beam geometries. The employed geometry
model allows to process reconstructions from arbitrary acquisition geometries loosely compliant
with the concept of a common axis of rotation parallel to the detector columns and projection
orientations w covering a full circle. Arbitrary rotations of the coordinate system, variable angular
sampling densities and variable geometric magnification factors are explicitly covered. Typical
deviations such as imperfectly aligned detectors or imperfect rotary motions are tolerated (when
described by the provided geometry information) with minimal low-frequency artifacts arising from
gradual inconsistencies with the prerequisites of the convolution filter and associated weightings.
General deficiencies of cone beam tomography in the off-center planes (“Feldkamp artifacts”) apply
likewise.

common reference point o

. . 0
on the rotational axis
cone beam

projection data g(w,v,h): line integrals at angle w and detector pixel (h,v)

detector - H, %V,
normal ©w H 7 % _’WH
canonical , & 1 FCD(w) = 0 Tl - (8w — dt,)
pixel size Aa(w) = ||| FDD(w) 171l |7 (Go—0
31 ﬁw : (gw - dw)‘
cosime . g(w,v,h) = = = — g(w, v, h)
weighting |5 — (dw + RHy +0V,)||
convolution ~ A — ’
ﬁltering (Cf Eq 134) g (Wa v, h) - Aah((")) ; g(w7 v, h — n) U’(na Aa’h(c‘)))
rid projection 0(Fw) = [, x (d, — 5] (5= 5.) /1A x V.- (5 5.)
onto detector (Eq. 1.5) h(Pw) = [V, x (dy —35.)]- (P —5.) /[Hy x V] - (F— 5.)
N
weighted _1 Tiw - (8o —0)\ ", . .
backprajection F@) =5 2 Awlw) (5= ) 7 (@ Fe). b))

Algorithm 1.2 summarizes the generalized formulation of the Wang-FDK algorithm for discretely
sampled projections, further using Eq. 1.5 (Section 1.1) for the point projections v(p,w), h(7,w).
Y., therein denotes the sum over all discrete projection angles w (assumed to cover 360°) and
Aw(w) characterizes the respective angular increment in radians. For standard scanning trajectories
with equidistant angular sampling over a full circle, Aw reduces to Aw = 27/N, with N denoting
the total number of projections. The set of angles w is assumed to cover the domain [0, 27[ with
sufficient density in relation to the detector resolution and anticipated resolution of the discrete
volume grid f(p). The projections v(p,w), h(p,w) of grid points p’ onto the detection plane required
for (interpolated) sampling from §’'(w,v, h) may alternatively be formulated in terms of projection
matrices (cf. Section 1.1.2). An example reconstruction procedure is shown in Figure 1.4 .

The convolution filter u effects a linear weighting of the frequency components to compensate for
the inherent overrepresentation of low frequencies in the projection data §(w, v, h). Technically, it
emerges from coordinate transformations in the derivation of filtered backprojection algorithms (cf.
Buzug [15]). It may be combined with additional spectral windowing functions or other frequency
filters to be applied to the reconstructed image f, e.g., for noise suppression or integration of
differential signals. While the reader shall be referred to literature for more information and
detailed derivations, the three most relevant filters in context of the present work shall be explicitly
stated here in their discrete form for completeness. Namely, these are the linear ramp (in Fourier
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space) filter, also referred to as the “Ram-Lak” filter (after Ramachandran and Lakshminarayanan
[146]), the sinc-windowed ramp filter proposed by Shepp and Logan, and the Hilbert filter, which
transforms between gradient- and ramp-filtered images. The latter is relevant in the context of
differential phase contrast imaging, which inherently produces gradient images. Their explicit
discrete bandlimited real space form as required for the processing of projection data from pixelated
detectors is (cf. e.g. [15, 122]), with n € N describing a distance in units of detector pixels:

1 i n=>0
URam—Lak (1, Aay,) = W — (Wi)z nodd
0 neven

1 2 1 (1.34)

Iy
uShepp—Logan(n, Aa‘h) - _AG,/Q ﬁ4n2 1
h

1 —— nodd
A m2n
Unilbert (1, Aay,) =
e Aay | 0 neven

1.2.3 Iterative Volume Reconstruction

While filtered backprojection and related approaches derive from the continuous radon transform
model of tomographic imaging, iterative algebraic reconstruction techniques result from a discrete
model of the imaging process. Such models take the form of equation systems that are to be solved
using algebraic methods. Typically, this will be a linear system of equations of the form

> Aifi=gi,
J
that may be formulated as a matrix—vector product
Af=g. (1.35)

The vector f holds discrete information (enumerated by j) about the field of view, the system model
A describes the intersections of each volume element j with different integration paths enumerated
by 4, and g describes the resulting projections. In tomographic imaging, g is the observable quantity,
f is to be reconstructed, and A is modeled based on knowledge of the imaging geometry and the
chosen discretization scheme or basis. Most commonly, a Cartesian grid of voxels (volume elements)
is used, although a large variety is found in the particular definitions of voxel basis functions and
their intersections with the integration paths (see also Chapter 2).

The unique advantage of iterative reconstruction based on definitions of the forward problem
(as opposed to explicit expressions for the solution of that problem) lies in the flexibility to easily
extend the forward model beyond classic X-ray imaging. This will lay the foundation for the
reconstruction of tensor fields addressed in Sections 5.2-5.3.

The central challenge lies in the size of A: with typical discretization grid sizes of 500 to 20002,
the dimension of f ranges on the order of magnitude of 10® to 10'° components, with A being
about that size squared. Already when considering only small, two dimensional slices of 10° voxels,
storage of the full system matrix requires tens of gigabytes of memory. Even when accounting
for the fact that the matrix is generally very sparse — as each ray (enumerated by the row index)
will actually intersect only a very small fraction of voxels (enumerated by the column index) —
explicit storage of A is rarely feasible in practice, let alone explicit algebraic inversion. However,
components of A and thus projections A;f can be computed on the fly (cf. Chapter 2), based on
the relative positions of source, detector pixels and volume elements, allowing to handle the system
of equations as an inverse problem.

1.2.3.1 Algebraic and Simultaneous Algebraic Reconstruction Techniques

One of the earliest approaches to tomographic reconstruction was the “Algebraic Reconstruction
Technique” ART [44, 71], that has later been identified as a solution strategy otherwise known as
“Kaczmarz method” in linear algebra (cf. e.g. [84]). The latter iteratively enforces consistency of f
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with individual components g; of g and the corresponding rows A; of the imaging model by means
of the following assignment:

forward projection

—
Ay Gitr) — Aigey £
[Aiwl (A

backprojection

f(k+1) _ f(k) + A

where k is an iteration index, i(k) represents the particular row addressed at iteration k, and
Ak €]0,1] is a relaxation or damping parameter. The original ART approaches assumed binary A;;

for computational simplicity, with HAi(k) H2 then corresponding to the number of voxels intersected

by ray i. The iteration typically starts with f;o) =0V j. It can be easily confirmed that if all rows
of A were mutually orthogonal, and A = 1, the scheme would immediately converge after each
row has been considered once. Yet in general, subsequent updates to f reintroduce inconsistencies
with previously considered rows. These inconsistencies are progressively minimized by iterating
over all rows multiple times, and in order to damp the (potentially oscillatory) effects of individual
updates, A\ may be chosen smaller than 1. Eventually, the difference g — A f (k), and thus also the
backprojected values, will converge to 0 or a small residual. Although the row wise ART is now
seldomly used for X-ray CT in practice for several reasons, it is instructive for its simplicity and
has been the origin for many other iterative approaches.

Based on the observation that non-intersecting rays may be handled in parallel, the “Simultaneous
ART” (SART) has been proposed [2, 84], which groups the rows of A into blocks of non-intersecting
rays belonging to individual, one or two dimensional projection images. As adjacent rays will
nevertheless, due to the discrete nature of the imaging model, partially intersect common voxels,
SART features a modified backprojection weight accounting for such overlaps by means of weighted
averages:

A 9i — Azf(k) L
FERD g0 4y j vV j with Y Az #0, (1.36)
Y T V¥ 2
1EP

where Py, is the set of rays (or rows of A) belonging to a projection image that is to be considered in
iteration k. Although the weighting scheme has originally been motivated as an heuristic adaption
of ART, a quite intuitive interpretation can be given: The row norm ||A,-||1 represents the total
intersection of ray i with the reconstruction volume, and the normalized weights A;;/ >, P, Ajj
effect an interpolation of backprojection values among all rays intersecting a particular voxel j.
Following the idea of ART, the backprojection approximates a pseudo-inverse with respect to the

considered subset of rows, such that

Agj i .
A; 273 g- ~g VieP

and thus

Aij  gi *Aif(k) .
A; f(k)Jr J =~ g; Vie Py .
P S Tl

1€ Py

The scheme converges as f(k) becomes consistent with A and g.! Convergence — in a practical
sense — is typically reached within less than 10 iterations over all projection images.

L Along with the proposition of the SART update scheme, the authors also suggested to apply a hamming-like
weighting along the backprojection paths (i.e., a spatially variant Ag(j)) in order to account for the fact that
most image content is typically expected in the central region. This idea may also be interpreted as a heuristic
approximation to modern approaches in the field of compressed sensing, which aim to precisely identify the support
of image data within the voxel grid f as part of a regularized reconstruction scheme.

18



1.2. VOLUME RECONSTRUCTION

1.2.3.2 Practical formulation of SART

As explicit calculations on A, as has been pointed out earlier, are generally cumbersome, a
technically more practical way to reproduce the outlined idea of SART backprojection consists in
voxel driven backprojection. Instead of explicitly iterating over rows of A (i.e., over rays between
source and detector pixels) in order to identify and weight those that intersect a given voxel, new
rays are rather cast from the focal point through each voxel’s center in order to determine the
respective intersections on the detector plane (e.g. by means of Egs. 1.5 or 1.6, cf. Section 1.1).
The contributions of individual detector pixels to a particular voxel (that is, the equivalent to
Aij/ Y iep, Aij within Eq. 1.36) can then be determined based on the distance between those
intersections and the adjacent detector pixels, i.e., by classic interpolated sampling. This is also
the general backprojection approach within analytic reconstruction techniques, which inherently
do not define a discrete transformation A (cf. Section 1.2.2). The required normalization factors
HAi H 1= > y A;; are easily computed within the forward projection procedure (required to determine

the residuals g; — A; f(k))7 during which the contributing, non-zero components A;; are computed
anyway. Algorithm 1.3 summarizes the outlined approach. An example SART reconstruction
procedure is shown Figure 1.4.

1.2.3.3 Other approaches and general considerations

Although there exists a multitude of alternative iterative reconstruction schemes, the general concept
remains unchanged. Differences can be found in the particular ways updates to f (based on the
residuals g— A f (k)) are backprojected, weighted and grouped. Without going into further detail, the
reader shall be made aware of the concepts of “multiplicative ART” (MART), maximum likelihood
expectation maximization (ML-EM, sometimes also “statistical iterative reconstruction”), the
“simultaneous iterative reconstruction technique” SIRT and the projection grouping concepts used in
“block iterative” or “ordered subset” approaches. The main drivers motivating different algorithms
or discretization schemes are image quality with respect to some specific field of application and its
particular requirements on the one hand, and computational efficiency with respect to some given
problem size and hardware on the other hand. All iterative techniques however share the necessity
to define a discrete imaging model, for which a large variety of ray—volume intersection models
has been proposed as discussed in Chapter 2. In the present work, SART based on parallelized
ray-casting on general purpose graphics processors (cf. Section 2.2) and voxel driven backprojection
will be the method of choice.

A unique advantage of iterative reconstruction techniques is the general possibility to consider
more complex and even non-linear forward models. However, as linearity is an important property
with respect to the stability of the iterative process as well as with respect to the uniqueness
of the solution, practical applications are restricted to moderate nonlinearities. Physical beam
hardening models are one typical example, and further applications include explicit incorporation of
source- or detector point spread functions or scattering models as considered e.g. in [34]. Iterative
reconstruction techniques incorporating advanced physical modeling within the forward problem
are also termed “Model Based Iterative Reconstruction”. A review was given by Nuyts et al. [131].

Another important application of iterative techniques is the reconstruction from few projections,
i.e., from an underdetermined system of equations. Regularization techniques such as total variation
minimization are applied to suppress erroneous signal oscillations in the null space of the respective
system matrix A. The theory of Compressed Sensing, being closely related to concepts of data
compression in general, thereby ensures that the resulting reconstruction is, with high probability,
a correct representation of the true signal, provided that the signal can be sparsely represented in
some basis (here: spatial representation) that is sufficiently different to the measurement basis (here:
X-ray projections or Fourier space), and the amount of available data (X-ray projections) stands in
a reasonable relation to the signal’s support in its sparse basis (as opposed to the — generally much
larger — number of feasible grid points in that basis). Compressed Sensing based CT reconstruction
has been considered in the preceding Master’s thesis [28].
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Algorithm 1.3 Practical formulation of the simultaneous algebraic reconstruction technique
(SART, originally defined by Eq. 1.36) with implicit evaluations of the system matrix A both in the
forward projection steps (using ray casting as detailed in Chapter 2) and in the backprojection steps
(using “voxel driven backprojection” analog to Section 1.2.2; Alg. 1.2 based on the relations between
image space and projection space derived in Section 1.1). p; characterizes the spatial location
of the volume element f;. The sets P of row indices specify blocks of A describing individual
2D projection images. They should be chosen such that all 2D projection views are considered
adequately often throughout the iterative process. In order to improve convergence, the order of
projection angles wy should be non-sequential (random order is a common choice, yet a number of
deterministic ordering schemes have been discussed in [2, 67, 54, 125, 89]). The combination of first
order interpolation among nearest neighbors both in the forward projection and backprojection
step implicitly requires the volume grid sampling density to be sufficiently similar to the density of
rays (integration paths) traversing the volume from the focal point to each detector pixel.

cone beam

projection data g(w,v,h): line integrals at angle w and detector pixel (h,v)

projection geometries R
. H
deﬁnlngA Swadwa anw
indices of the discrete i : enumerates line integrals / detector pixels for all w
imaging model g; = Y j Aij fj J : enumerates discrete volume elements

sets of row indices 7 to

be considered in iteration k Py : each set comprises a 2D image at projection angle wy

initial volume f;o) =0

relaxation factor(s) weighting
individual update steps

for £k = 0..Njter — 1 do :

Ak €1]0,1]; typically Ay, = A < 0.5

forward projection (k) _ 4 (k) :
using Algorithm 2.1 9. = Aif vie by
corresponding ray lengths .

P & ray & l(wk,vi,hi): HAZH1 Vie Py

at wp, =w; Vi € Py
2D residual
projection image AgF (W, vis hi) = glwk, v, hy) — gg’“) Vi€ Py
at wp =w; Vi € Py

grid projection v(pj,w) = —[He x (du — 8)] - () — 8) / [Ho x Vo] - (5= 5)
onto detector (Eq.1.5) hpj,w) = [V, x (dy — 8)] - (F; — 8u) [ [Ho x V)] - (F— 5.)

backprojection of residuals (k) . .
into image space with (k+1) (k) Ag (wk, v(Pj, wk), h(Dj, wk))
f =f" 4+

interpolated sampling J J l( . W5, )
from Ag*) and ! Wiy V(P55 k), PP, )

end for.
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Chapter 2

Perspective Volume Projection

The simulation of X-ray images by numeric projection of gridded volume images represents, in
the context of computed tomography, the calculation of the forward problem within iterative
solutions of the inverse problem, i.e., the reconstruction problem. It is thus also referred to as
“forward projection” (as opposed to the “backprojection” step) and is both one of the most essential
and time consuming aspects of iterative reconstruction techniques (cf. Section 1.2.3). Forward or
volume projection therefore takes a central role with respect to both efficiency and quality of these
algorithms, wherefore the topic shall be addressed quite detailed.

Foremost, simulated X-ray projection involves casting rays through volumes (cf. Fig. 2.1, left)
based on given projection geometries (cf. Section 1.1) and integration of image data along these ray
paths. Irrespective of additional features (such as tensor valued voxels as used for tensor tomography,
or non-linear transformations simulating e.g. beam-hardening), the fundamental component of
any X-ray imaging model therefore is an adequate sampling and accumulation strategy for the
evaluation and integration of values from three dimensional voxel grids. As many samples —
between 10% and 10'° for typical volume sizes of 5003 to 2000 voxels — are required to compute
2D X-ray projections, and thousands of such projections are required within iterative tomographic
reconstruction, efficiency of the sampling and integration process is of outmost importance. The
sampling strategy further affects the outcome of iterative reconstruction algorithms, which are
fundamentally based on optimizing the similarity between simulated and actual X-ray projections.
Both aspects — efficiency and physical modeling — have given rise to a large number of publications
in various fields including tomographic reconstruction, radiation therapy planning and computer
graphics. As the constraints and capabilities of computing hardware are constantly evolving, the
quest for most efficient solutions (with respect to some definition) remains a timeless task.

In the following, a 3D generalization of Joseph’s classic interpolating projection method optimized
for general purpose graphics processing units is given and discussed. It is shown to feature excellent
memory access efficiency without explicitly restricting the projection geometry nor making use of
sophisticated memory layout schemes or read-only texture memory. The contribution is twofold: On
the one hand, a concise algorithm is derived, benchmarked and provided in an easily implementable
form, ensuring its practical availability. Likewise importantly, its qualitative eligibility with respect
to volume projection and iterative tomographic reconstruction as compared to more complex
approaches is assessed in order to establish it as not only extremely fast, but also competitive
despite its intriguing simplicity. As no unique benchmark exists in this respect, a survey of
previous literature is given on the one hand, and selected experiments demonstrating and comparing
discretization artifacts of multiple algorithms are shown on the other hand. First results have been
published in [30].
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2.1 Literature Review

Two general classes of volume projection approaches may be distinguished upfront: those following
integration paths and performing some kind of sampling on the volume image grid, and those
iterating over volume elements (voxels) and accumulating renderings of each voxel’s projection onto
the detection screen. The first approaches are referred to as “ray driven”, “ray casting” or “ray
tracing” methods, while the latter methods are usually termed “voxel driven” or “splatting”. The
methods first of all differ in their memory access pattern: while ray driven methods iterate over
camera pixels and typically require less efficient random read access to the volume image data,
splatting methods can sequentially iterate over the volume elements, yet instead require a large
amount of non-sequential read and write accesses to the projection image. Intermediate approaches
are resampling strategies (e.g., the shear-warp approach [91]) and the more recent “distance driven’
method [24, 98]. The former transform the volume image such that the subsequent projection
reduces to a summation over one coordinate axis and are most similar to ray driven methods. The
latter approach aims to combine the sequential memory access pattern of voxel driven methods
with sequential write accesses to the projection image.

Ray driven projection has two important advantages, wherefore it will be the method of choice
here: first, it is trivially parallelizable, as by design no concurrent write accesses to the projection
screen need to be managed. Secondly, the correct normalization of ray integrals with respect to
the associated run lengths through the volume is considerably simpler as compared to splatting
approaches. Simplicitly is a key to efficiency, and it will be shown that highly efficient memory
access patterns are indeed possible also with ray driven approaches. Tracing of linear paths through
grids has been studied since the advent of raster graphics, and the following review shall provide a
reasonable overview of the essential ideas that have come up in the past, with a particular focus on
the tomography context.

A central concept in the majority of fast ray casting algorithms on regular grids is the notion
of a “driving axis” [79, 100, 41, 35, 99] as already introduced in the 1960s by Bresenham in the
context of rasterized line drawing. Instead of just arbitrarily defining a number of sampling points
along the linear coordinate of an integration path, the path will rather be traversed in unit steps
of the designated driving axis of the algorithm. The driving axis is chosen to be the dimension
along which the considered path progresses fastest, such that the resulting non-integer step sizes
along the remaining coordinate axes are always guaranteed to not exceed the grid spacing, thereby
ensuring that no intersected pixels or voxels will be skipped in the tracing procedure. Figure 2.1
gives an illustration.

This concept of grid-aligned sampling is explicitly or implicitly used e.g. by Josephs’ algorithm
[79] (one of the early methods proposed for 2D iterative tomographic reconstruction), by shear-warp
resampling techniques [16, 91] (proposed for volume visualization) or ray-driven formulations of
splatting algorithms [111, 124, 12] as well as by the recent “Distance Driven Method” [24, 98]. It
emerges naturally from practical sampling considerations, as interpolation can thereby be avoided
along the driving axis. Prominent alternative techniques are the much-cited algorithm by Siddon
[169] and variants thereof [1, 73, 215, 23, 200] (known as digital differential analyzer or DDA
algorithm in the field of computer graphics), which trace lines in irregular steps from intersection to
intersection with any of the raster planes perpendicular to the coordinate axes. The final objective
of calculating exact ray-box intersections though can as well be achieved with driving-axis based
algorithms [100, 42], although the complexity increases in the 3D case.

In addition to basic algorithmic concepts, the assumed underlying system model is a central
aspect. Particularly prevalent is the assumption that imaged objects can be exactly modeled
by cubic voxels of homogeneous density, and incident radiation by rectangular beam profiles
of finite extent (as opposed to the also common assumption of pencil beams, cf. Siddon [169]).
Much effort has been put into the development of exact projection algorithms in this respect
[100, 42, 207, 101, 199, 128, 214, 57, 58, 155], using both ray driven and splatting approaches.
When arguing that there is no outstanding reason to assume homogeneous cubic voxels, the
complexity for an “exact” volume projector can be reduced by using algorithmically more convenient
voxel basis functions as compared to the box profile. Modeling of both voxel and beam profiles can
then be merged into diffused, overlapping interpolation kernels or projection footprints parametrized
by ray-voxel distances [124, 61, 93, 217, 119]. Other methods replace the latter distance by even

)
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more efficient approximations [79, 24, 178]. The modeled beam width is directly related to the
extent of the employed interpolation or sampling kernel, and an approximate modeling of the beam
width (neglecting e.g. divergence) has been found to be sufficient in practice [68]. Joseph’s 2D
projector in particular straight forwardly performs linear interpolation among the nearest neighbors
of each sampling point, which may as well be interpreted as an approximation to normalized
radial basis function interpolation within a tightly limited radius. The modeled beam width thus
approximately corresponds to the voxel raster spacing. It has been extended to 3D in the past
by several authors to e.g. trace X-rays through parallel stacks of textured planes [201, 202] or
for list mode reconstructions in positron emission tomography [163], and is also found in recent
reconstruction toolkits [151, 181]. More elaborate calculations of line integrals over multilinearily
interpolated grids [90] have not been found to provide practical benefits [180], and neither has the
distance driven method [59]. In their reviews on iterative tomographic reconstruction, Pan et al.
and Nuyts et al. similarly conclude that sophisticated sampling methods are usually secondary as
compared to an adequate resolution of the voxel grid with respect to the features it is supposed to
represent [136, 131]. Le., an increasing support for the general eligibility and sufficiency of basic
interpolation approaches can be identified.

Considering computational efficiency again, it is preferable to keep both the interpolation kernel
size and the grid resolution to a necessary minimum. Various strategies have been used to push that
optimum beyond localized kernels by using grids with adaptive resolution [72, 182] and non-cartesian
layout [170, 162] or even unstructured point clouds [49]. With regard to cache efficiency of the given
hardware, the layout of the volume image data in memory may be better arranged with regard to
expected access patterns using e.g. techniques such as Z-ordering or blocking [11]. Similarly, the
algorithm design may be explicitly taylored or restricted with respect to a given memory layout
[24, 179]. A central drawback of these more elaborate approaches to the reduction and optimization
of memory accesses is the increased algorithmic complexity, limiting the net performance gain. In
the present work, efficiency shall rather be drawn from algorithmic simplicity and efficient parallel
memory accesses. In the case of very small grids (typically less than 10° voxels) and particularly
when high degrees of symmetry can be exploited, precalculation and explicit storage of the sparse
system matrix describing the projection process can be an option as well, as addressed e.g. by
[162]. Finally, when simultaneously calculating large amounts of X-ray projections of the same
volume, divide and conquer approaches allow to systematically reduce the amount of total memory
accesses by exploiting spatial overlaps of rays from close by viewing angles [13]. For parallel beam
geometries, this can also be achieved by evaluating projections in Fourier space [110], based on the
Fourier slice theorem. In the present context of efficient calculation of individual projections within
read-and-write memory (as required for block-iterative reconstruction techniques), these strategies
are however not applicable.

Starting with SGI graphics workstations in the 1990s, researchers have further been utilizing the
processing power of dedicated graphics processors (GPUs) in order to speed up CT reconstruction.
Reviews on the previous usage of GPUs in tomography have been given e.g. by Mueller, Pratx,
Després and co-authors [123, 144, 27]. The aim of the following work is to demonstrate a ray driven
projection algorithm to be applied on read-and-write memory, whose memory efficiency is implicit in
its coherent sampling pattern among parallel threads (as opposed to relying on specialized read-only
texture memory), and which is further formulated in a computationally lean way. It thereby allows
to perfectly utilize the specific capabilities of modern general purpose GPUs, eventually resolving
the common conflict between sampling quality and processing speed.
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2.2 Branchless generalized Joseph projector

2.2.1 Driving axis aligned grid traversal

The basic sampling concept is illustrated in Figures 2.1 and 2.3. A ray emanating from a source at
§ traverses a voxel volume and hits a detector pixel at d. Along its intersection with the volume, the
latter will be sampled in steps of 7, which will be concretized in the following. While the resulting
scheme is equivalent to general driving axis based methods, the present vector representation allows
for a unified treatment of all cases, such that the “driving axis”, which normally distinguishes
different code branches, now only implicitly determines the orientation of sampling planes within a
branchless sampling loop.

Given the positions of source s and detector pixel d relative to the volume origin, the integration
path is characterized by the set of points p’

541

iz
with

-

d—35

,F‘

and [ € R being the free parameter. The driving axis m is then identified by the largest component
of
m = argmax(|r;]) .
i

The increment vector 7 between successive sampling points will be chosen such that the resulting
sampling points remain aligned with the driving axis, which holds for

. 7

F=—
T'm
Assuming that grid coordinates correspond here to non-negative memory indices, the first possible
sampling point is defined by the intersection of the ray with a plane through the origin and
perpendicular to the driving axis m, i.e.,

[54 oF]m )

= 0= —5n

where o is the distance between source and first sampling plane in units of the sampling increment
Hf H o will thus be termed “sampling offset”. The volume can now be sampled at points 7" along
the defined path in unit steps of axis m by evaluating

PO = (F+oF) +iF

for integer ¢ € [0, imax], Where imax is defined by the extent of the voxel grid along axis m.

2.2.2 Interpolated sampling

When sampling from (GPU) main memory, the 4-neighborhood {741 #(52) #(0:3) (DY of integer
valued grid coordinates around each sampling point 7 needs to be explicitly enumerated. The
driving axis component p§f3 is, by construction of the sampling increment 7 and offset o, guaranteed
to be integer for all integer i. The remaining non-integer components necessarily lie between two
integer ones along their respective coordinate axes. For each sampling point 7, the set of four
neighboring voxels can thus be determined by regarding all combinations of floor and ceiling values

of these non-integer components (with H and H being the floor and ceiling operators respectively):

70 = [p7]. [p"). (5]

a2 = [p7], [p"], [5] 2.1)
79 = [p"], 165 ], [p6"] |
5 = O], 7], 4.
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\/ interpolated axis =

Figure 2.1: Ray casting through a volume along a line defined by two points § and d. On the right, driving-axis
aligned sampling is illustrated on the grid scale. Integer steps along the driving axis imply increments of 7 = 7/7,
along the actual path, with 1 < Hf” < /3. Due to the alignment with one designated axis, interpolation is
required only within 4-voxel blocks — marked in varying colors — extending along the remaining axes. Above, the
respective sampling points (¥ are illustrated within their sampling planes described by the respective nearest
neighbour locations 7414,

09
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Figure 2.2: One dimensional examples of linear and spline interpolation kernels as defined by Equations 2.4
and 2.5. Each marker represents a data point on the grid. The respective interpolation weights as a function
of fractional position between grid points (i.e., the interpolation kernels) are shown in matching color. The
resulting two dimensional image interpolation is demonstrated in Figure 2.3 (right).

bilinear spline

Figure 2.3: lllustration of rays piercing 4-voxel planes perpendicular to different driving axes. On the right hand
side, the interpolation within each plane is detailed, with |_J designating the floor operation, and m1 and mz the
indices of the two non-driving axes. On the upper right, bilinear interpolation is compared to spline interpolation.
Both interpolation kernels are explicitly shown in Figure 2.2.
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exploiting that ‘ . ‘
] = [p5)] = pl)

Independent of m € {1,2,3}, the vectors 71 =% define a group of four voxels in a plane perpendicular
to the driving axis. Illustrations of the planes spanned by these nearest neighbor voxels around
sampling points (¥ are given in Figures 2.1 and 2.3. Special cases arise when either of the non-m
components of p(Y) happen to be also integer, which leads to redundant vectors among (14,
Given the final objective of interpolation, these cases will be accounted for by adequate choice of
the respective weights.

Interpolation will be based on scalar distance weights

w(d); de][0,1]
with w(l—d)=1-—w(d)

with respect to the component wise distances of the contributing grid points next to a sampling
point:

T T I RS )

where the superscripts (fl) and (cl) indicate distances to the integer grid indices below and above

the components p,(;) of 7. The definition of d,(:l) as complement to d,(cﬂ) guarantees correct

interpolation weights also in the special case of integer components p,(j), where floor and ceiling

values coincide. When explicitly defining

wa g = w(d,(cﬂ)) for k £m
Weiy =1—way fork#m (2.2)
WAH,m = Wel,m = 1

the interpolation weights w(1=% for the respective voxels #»!=%) can be conveniently represented
as:

1) @) @) (8)
w®) = Wy Wy~ Wy 3
2) _ @) (8 (@)
w?) Wy - Wepo " Wepg
(4,3) (@) (@ .0 (2:3)
4,3) __ A 7 7
w Weyp " Wh " Weg
i4) _ (8 (@) (@)
w® Wepp " W2 W3
without requiring further explicit consideration of the particular driving axis m.
Two specific weighting functions shall be considered:
win(d) =1—d (2.4)

wepi(d) = 1 — 3d? + 2d°,

with wi, reproducing classic multilinear interpolation and wsp being a smooth spline function in
the style of a smooth cosine window that ensures differentiability also at grid points, i.e., when
d = 0 or d = 1. The resulting interpolation kernels are depicted in Figure 2.2, and Figure 2.3
illustrates two-dimensional interpolation. The practical consequences of the different interpolations
schemes are later addressed in Sections 2.3.1-2.3.2 and Figures 2.4-2.5 therein.

Algorithm 2.1 combines the above considerations on volume traversal, implicit identification of
sampling planes, and interpolation among the respective nearest neighbors into a single sampling
loop. Explicit consideration of the driving axis only occurs in line 16. As can be verified by explicitly
assuming different driving axes, the weighted sampling performed in lines 17-20 always correspond
to a 2D-interpolation among the nearest neighbors of the respective sampling point within a plane
perpendicular to the axis m.
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Algorithm 2.1 Branchless ray casting through a voxel volume with axis aligned sampling and
first order interpolation among four nearest neighbors. For a linear interpolation kernel, the
scheme corresponds to a 3D generalization of Joseph’s 2D projector [79] for iterative tomographic
reconstructions. The particular formulation of the algorithm handles all possible driving axes in
a single code branch. Scaling by ||7’ || accounts for the varying sampling distances depending on
the orientation of the ray r. 2D X-ray projection images of a volume are obtained by parallel
evaluation for multiple rays defined by multiple detector pixel locations and one ore more (in the
case of stacked fanbeam or parallel beam projections) source locations. See Section 1.1 for details

on projection geometry parametrization.

1:

2 P d+hH+oV -3

3: m < argmax, (|r;|)

4 T T/Tm

5: 04 —Sm

6: imax < volumeDimensions|m)|

7. a+ 0

8: for i =0..7max do

90 P« S+ (o+4)-F
10: if p'is in volume then
11: pa <+ floor(p)
12: Par < ceil(p)
13: assert: Pa.m = Pel,m = Pm =1
14: W w(p' — Pa)
15: Wer + 1 — 10a
16: Wel,m = Wa,m 1
17: a < a+ volume[pa,1, pa,2, pas] - |7 -
18: a < a+ volume[pa 1, Pel,2, per,a] - ||7|| -
19: a < a + volume[pci,1, pa,2, Pe1,3] - ||7]] -
20: a < a + volume[ pei,1, Pal,2, Pa,3] - |7 -
21: end if
22: end for.

WA, 1
we,1 -
Wel,1
Wel,1

assuming : 3, ci; ﬁ, V defined in units of voxel grid indices

> (h,v): detector pixel (cf. Fig. 1.1)

> m: major (driving) axis

> 7: sampling increment vector

> o: sampling offset, 5: ray source point

> imax: Maximal sampling points

> a: accumulator variable

> iterate over sampling points

> p: current sampling point

> alternatively: precise choices for o and imax
> find lower voxel grid indices

> find upper voxel grid indices

> by design of o and 7, pn, =1

> elementwise mapping of distances to inter-
polation weights (cf. Egs. 2.4, 2.5, Fig. 2.2)
> complementary interpolation weights

> special case: driving axis

swh,2 - WA,3 > (cf. Egs. 2.1-2.3)
Wel,2 * Wcl,3
cWA,2 - Wel,3
“Wel,2 - WA,3
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Figure 2.4: Approximation errors of different projection algorithms for a 10° conebeam geometry. Numeric
projections of the rasterized Shepp Logan phantom (on a 5123 grid) onto a 5122 detector are compared to
corresponding reference projections obtained by analytic integration of the ellipsoids defining the phantom. The
top row shows example difference images for a frontal view. Below, the ¢; norm of these residuals, normalized
to the £; norm of the analytic reference projection, is plotted for all projection angles. On the bottom left, an
illustration of the Shepp Logan phantom and the applied projection geometry is given.

2.3 Benchmarks

2.3.1 Quality of projection images

The performance with respect to adequate modeling of of ray-volume intersections is demonstrated
on cone beam projections of the classic three dimensional Shepp Logan phantom based on the
definition reproduced in [159]. The phantom is described by a sum of ellipsoids, which can on the
one hand be easily rasterized at any desired resolution and on the other hand allows the direct
calculation of projection images by analytical evaluation of line integrals over the defining ellipsoids.
A ground truth is thus available for comparison with respective numeric projections calculated
from the rasterized version. In order to also adequately account for the extent and integrating
nature of detector pixels, the reference projections are evaluated as an average over 64 line integrals
between the focal spot and regular arrays of 8 x 8 points within each detector pixel. Analogously,
oversampling is applied also in the rasterization process of the phantom: It is rasterized on a regular
grid of 5123 voxels, whereat each voxel value is determined as an average over 5 x 5 x 5 regularly
distributed samples of the function defining the phantom.

Following typical experimental conditions, a cone angle of 10° is modeled (i.e., the focal distance
is about 5.7 times the detector width), projecting the volume onto a square detector of 5122 pixels.
In total, 803 (~ $512) projection images from different orientations covering a full circle are
computed, whereat the chosen number of projections corresponds to a common recommendation
with regard to analytic tomographic reconstruction (cf. [15]).

Figure 2.4 shows residual projection errors observed for various numeric projection approaches.
Although the general occurrence of such residuals is generally expected due to the inherently
approximative nature of discrete volume represenations, the adequacy of a projection model may
reasonably be measured by its ability to keep such residuals minimal. Siddon’s pencil beam
projection model, realized using the DDA algorithm, exhibits most artifacts, particularly in cases
where rays run roughly parallel to grid axes. In these situations the model of pencil beams
intersecting box-shaped voxels is equivalent to nearest neighbor sampling. When oversampling
the DDA by a factor of two in each dimension in order to approximate a finite beam extent, i.e.
tracing and averaging over four rays per detector pixel, the resulting projection residuals become
comparable to those of the non-oversampled GJPgp, algorithm using spline interpolation, although
the latter further shows a considerable reduction of high frequency artifacts. The best results are,
despite the kinked interpolation kernel, achieved by the liner interpolating GJP);, algorithm.
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Figure 2.5: Axial and sagittal central slices of iterative SART reconstructions (10 iterations, A = 0.5, cf.
Algorithm 1.3) on a discrete voxel grid from analytic projections of the modified Shepp Logan phantom using
different numeric projection methods within the iterative process. The chosen grayscale window shows a range of
[0.16,0.32] out of the maximal range of [0,1]. Limitations of the discrete forward models (cf. Fig. 2.4) manifest
themselves in the final reconstruction result.

2.3.2 Quality of iterative tomographic reconstructions

As iterative reconstruction techniques such as SART (cf. Section 1.2.3; Algorithm 1.3) subsequently
enforce consistency of the reconstructed volume with each experimentally observed projection image
based on a given forward model, inaccuracies of the respective discrete forward projectors will
directly translate to artifacts in the reconstruction result. In contrast to typical artifacts arising
when reconstructing from an under-determined system of equations, e.g., when reconstructing
from too few projections (cf. the example given in Figure 1.4), deficiencies of the projection model
defining the system matrix A (cf. Section 1.2.3, Eq. 1.35) inherently do not lie in its null space, and
can therefore not, without loss of resolution, be compensated by typical regularization approaches
that are otherwise used to suppress artifacts emerging in the null space of A, i.e., in image domains
that are not affected by A and its defining projection model.

In order to illustrate the practical consequences, multiple SART reconstructions are compared
using different projection algorithms. In general, such experiments typically suffer either from
unrelated artifacts when working with actual experimental data, or from the “inverse crime” that is
often committed when synthesizing experimental data based on the same algorithms that are also
used in the subsequent reconstruction procedure. Both issues can however be avoided in the case of
the Shepp-Logan phantom due to the possibility to analytically calculate its projections without
prior rasterization, as has been done already for the previous benchmark.

Figure 2.5 shows central axial and sagittal slices of respective SART reconstructions on a
5123 voxel grid of the Shepp-Logan phantom from analytically calculated projections as described
previously. As volume rasterization is here only introduced with the discrete imaging model
fundamental to iterative reconstruction techniques, the observed reconstruction artifacts can be
largely attributed to the employed discrete projection method. While other parameters such as
iteration count or the interpolation scheme of the voxel based backprojector can also be argued to
affect the reconstruction outcome, it should nevertheless be without doubt that these, in contrast
to the forward model, do not actually explicitly define the properties of the solution.

In accordance with the previously found projection errors shown in Fig. 2.4, the reconstruction
quality is found to be worst for the non-oversampling DDA, comparable for 2-fold oversampled
DDA and GJPgp, and best for GJPy,. Although it is out of the scope of the present work to
explicitly demonstrate the effect of each SART parameter, the reader shall however be assured that
variations in iteration count, relaxation factor and backprojection interpolation scheme have been
confirmed to not fundamentally change the relative performance of different forward models. This
is in accordance with the preceding reasoning attributing the differing artifact patterns to differing
discretization errors among the various methods.
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DDA DDA 2x GJPiin GJIPuwiin
GTX970  GTX1080 GTX970  GTX1080 GTX970  GTX1080 GTX970  GTX1080
5 4.59 ms 3.46 ms 15.2ms 6.74 ms 4.97 ms 2.40 ms 3.28 ms 2.23 ms
= 118 GB/s 157GB/s 143GB/s 323GB/s 334GB/s 686GB/s 502GB/s T740GB/s
= 4.39ms 5.20 ms 15.7ms 7.65 ms 5.69 ms 2.70 ms — —
é 123GB/s 104GB/s 139GB/s 285GB/s 292GB/s 609GB/s — —

Table 2.1: Average projection speed in milliseconds and memory access rates in gigabytes per second for 2D
projections of a cylindrical volume within a 512% bounding box onto a 5122 detector in a 10° conebeam setup
measured on both an Nvidia GTX 970 GPU and a more recent GTX 1080 model. The voxel data is stored
in 32bit floating point format in either main GPU memory (“RAM") or in read-only texture memory (“Tex.").
Timings are measured for the Digital Differential Analyzer (DDA, reproducing Siddon's pencil-beam model),
2-fold oversampled DDA (i.e. tracing and averaging 2 x 2 rays per detector pixel to simulate finite beam widths)
and the proposed Generalized Joseph Projector using linear interpolation (GJPiiy,).

2.3.3 Projection speed

Run time performance is evaluated for projections of a cylindric volume within a cubic bounding
box of 5123 voxels onto a 5122 pixel detector. The performance of Algorithm 2.1 is benchmarked
against the branchless DDA formulation given by [200]. The volume is stored in 32bit floating point
format in either main- or texture memory of the graphics processing unit. For the case of texture
memory, also hardware provided interpolation is tested. As typical for computed tomography
setups, projections are performed for a multitude of source and detector orientations over the full
angular range of 360° on a circular trajectory around the volume center. The rotational axis is
aligned parallel to the fastest index of the memory layout (i.e., the first dimension in the case of
Fortran-style memory order, or the last dimension in the case of C-style memory order). For each
individual configuration of source and detector, the run time is optimized over a wide range of
possible thread block or work group size parameters (CUDA and OpenCL terminology respectively).
This eliminates the potential influence of technicalities introduced by the parallelization schemes
of graphics processors. Measured execution times further exhibit a variance of up to 10% when
running the same code multiple times due to dynamic performance adaptions related to temperature
management. Reported are the fastest measured times for each algorithm.

Table 2.1 lists the so evaluated run times as averages over 360 equidistant projection angles
for two GPU models. As a measure for GPU occupancy it further lists average memory access
rates based on the total runtime and the amount of accessed voxels by each raytracing algorithm
respectively. Although the latter is not strictly known in the case of GJPyyiin due to unknown
implementation details within the GPU, it is reasonably assumed to be the same as for GJPy;,.

A number of interesting conclusions can be drawn from the observed timings: First of all,
the DDA algorithm can only benefit from newer hardware (GTX 1080) in the oversampled case.
Oversampling increases the number of duplicate accesses to the same voxels by parallel threads
handling neighboring rays, wherefore it can be reasonably assumed that the oversampled DDA better
profits from memory caches. The additional computational overhead associated with oversampling
appears to be a limiting factor on older hardware in contrast, where the overall runtime increases
almost linear with the amount of traced rays. This assessment is consistent with the observation
that the DDA algorithm does not profit from optimized accesses to read only texture memory.
The GJP algorithm in contrast is able to outperform even the regular DDA algorithm by a factor
of up to 2, despite accessing about twice as much memory on average. The driving axis aligned
sampling scheme of the GJP ensures that neighboring threads partially access the same voxels
in the course of interpolated sampling, thereby apparently exploiting memory caches even better
than the oversampled DDA. The additional speedup observed when simplifying the GJP algorithm
even further (by using the intrinsic interpolation capabilities of texture memory) indicates that
it operates close to the limits both of the computational resources and the available memory
bandwidth (including caching benefits).
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2.4 Discussion and Conclusion

The calculation of projections from discrete volumes is a core aspect of iterative reconstruction
techniques, both with respect to reconstruction speed and quality. Although a remarkable variety
of approaches to the advanced modeling of ray-volume intersections has been presented in previous
literature, the demand for maximal parallelizability and computational efficiency on modern graphics
processors immediately collapses the wide palette of choices to ray driven methods with strongly
confined sampling kernels. “Ray driven” thereby implies a sampling loop iteratively traversing the
voxel grid along defined paths (rays) between focal point and detector pixels, and “strongly confined”
implies the evaluation of only the immediate neighborhood around each sampling point. For the
traversal of regular grids, two methods can be named: the digital differential analyzer (DDA)
algorithm [1], traversing the grid in unevenly spaced steps from intersection to intersection with
any of the orthogonal grid planes, and methods traversing the grid in equidistant steps aligned with
a designated driving axis. The former technique allows to precisely determine line-box intersection
lengths and corresponds to the much cited pencil-beam X-ray imaging model given by Siddon [169],
while the latter technique is typically combined with interpolated sampling and then corresponds
to the competing model proposed in the context of tomographic reconstruction by Joseph [79].

A branchless formulation of a Joseph type interpolating volume projection algorithm has been
derived here, with the particular benefit of being extremely simple, which is a general prerequisite
for maximal computational efficiency. Driving axis aligned sampling ensures an optimal amount of
sampling points along each path in the sense that voxels are neither skipped nor oversampled. The
resulting synchronous progression of parallel rays through the voxel grid thereby ensures high cache
hit rates without explicitly constraining the exact imaging geometry (as opposed to e.g. the cache
optimized Siddon’s algorithm proposed by [179], or the symmetry exploiting projection model given
by [162]). Interpolated sampling among the remaining dimensions has been argued, besides being a
practical necessity, to be consistent with ideas on exact modeling of X-ray projections based on
normalized radial basis functions or projection footprints. Approximate matching of the voxel grid
spacing to the average density of rays between focal point and detector array thereby ensures an
adequate modeling of beam width, implicitly reproducing the integrating nature of detector pixels
of finite extent without requiring far ranging interpolation kernels or oversampled ray casting. In
accordance with assessments given in previous literature, higher order effects such as cone beam
related variations in beam extent can be safely neglected in the modeling. (cf. e.g. [131, 68])

The performed benchmarks compared a number of self-suggesting variants of both ray casting
algorithms with respect to artifacts and computational efficiency, addressing the recurring questions
of adequate beam shape modeling and the role of the chosen interpolation kernel. The results indicate
that no tradeoff needs to be made between computational efficiency and fitness for the purpose:
the proposed simple and efficient branchless 3D Joseph projector employing linear interpolation is
found to clearly perform best both with regard to approximation of the ground truth and with
regard to efficiency, operating in the range of the theoretic maximum capabilities of the employed
hardware.

A recurring concern with regard to local interpolation exists in situations where a sufficient
matching of the voxel grid resolution to the detector resolution is seemingly impossible. Such
situations can e.g. arise when attempting to combine isotropic volume sampling with highly
asymmetric detector pixels. It is in such cases obviously generally possible to cast an adequate
amount of rays per detector bin ensuring sufficient coverage of the voxel grid, i.e., to adequately
oversample the detector image. Similarly, the voxel shape may be chosen non-square (in terms of
spatial units) to adequately match the detector properties, which in units of grid indices does not
alter the discussed algorithms. Finally, although only one particular example sample was considered
for the sake of analytic integrability, it is noteworthy that the observed artifacts arise at extended
material boundaries of moderate curvature, i.e., a situation that is typical to many CT applications.

The proposed formulation of a linearly interpolating Joseph-type projection algorithm may
eventually be considered a favorable choice in many regards (simplicity of implementation, com-
putational efficiency, and fitness for the purpose) for typical CT reconstruction applications, in
particular as compared to the competing DDA algorithm, and further considering that oversampling
(i.e., increasing the density of traced rays) generally remains an option.
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Chapter 3

Auto-Calibration of Cone Beam
Projection Geometries

Knowledge of the precise projection geometry is an essential prerequisite to tomographic reconstruc-
tion. Although the geometry is, in principle, ought to be determined by the mechanical design of a
system, there are numerous reasons why it nevertheless is commonly not specified to the required
precision. Typical examples are systems that lack sufficient mechanical rigidity (e.g., due to heavy
weight components), as well as highly flexible systems allowing for varying projection geometries
and extreme magnification factors. The latter type is common in the field of micro-CT, which is
the focus of the present work. Consequently, practical calibration procedures are required in order
to determine the respective projection geometry.

The problem of cone beam CT calibration is closely related to the problem of optical camera
calibration, which has been extensively studied in the field of computer vision in terms of intrinsic
and extrinsic camera parameters (cf. Section 1.1.3). While optical camera calibration is largely
based on planar reference objects, X-ray imaging systems can easily make use of three dimensional
calibration structures. And whereas classic calibration generally presumes the reference object to
be known, auto-calibration addresses the self-consistent reconstruction of both the reference object
and the projection geometry by means of exploiting known relations between multiple images of
the same object.

Particularly in the context of micro tomography with sub-millimeter fields of view and sub-
micrometer resolutions, well defined reference objects are hardly manufacturable. However, such
systems offer high precision mechanical actuators, facilitating precisely defined motion trajectories.
And indeed, the characteristic magnification effects in projective imaging will be shown to allow
extensive inferences on the projection geometry solely based on the assumption of circular motion
of otherwise undefined markers about a common rotational axis.

The following sections will give a concise introduction to the problem and previous literature, and
deduce based on the foundations derived in Chapter 1 a practical algorithm to gain the necessary
information on source and detector placement required for a consistent tomographic reconstruction

of cone beam (micro) computed tomography datasets. The present chapter has been published in
[45]

3.1 Classification of approaches based on fiducial markers

Two general classes of approaches can be identified: those based on precisely defined or known
marker assemblies [154, 152, 26, 126, 173, 20, 177, 206, 69, 108, 78, 153, 112, 96, 40, 204, 213],
which allow calibration on a per-view basis, and those working with fiducials of unknown placement
yet requiring precise circular motion of these markers throughout a tomographic scan [55, 95, 130,
172, 206, 187, 198, 52, 157, 203, 94] (with some of these assuming the distances between markers
known [130, 206, 187, 198, 203]). While the former methods are typically used for macroscopic
systems with fields of view in the range of 10 cm and larger, the latter are required for microscopic
systems for which the manufacturing of well-defined calibration phantoms is hard to impossible.

33



CHAPTER 3. AUTO-CALIBRATION

[9] assumes both known markers and perfect rotation, and [25] provides a method to account for
deviations from expected precise motions, enabling per-view calibration also for methods originally
assuming stable circular motions.

An additional distinction can be made from the technical point of view of system parametrization:
methods aiming to determine the projective mapping from 3D to 2D space in terms of a projection
matrix that is consistent with the available observations irrespective of the question how the
particular mapping arises physically [154, 126, 173, 177, 69, 96], and methods aiming to relate
projections or properties thereof to real space geometry parameters (relative distances and orientation
angles of source and detector) [55, 95, 154, 152, 130, 9, 172, 20, 206, 108, 78, 153, 112, 40, 198,
52, 157, 203, 204, 94]. Differences also exist in the evaluation of the projection data used for
calibration: methods directly working on extracted projection samples (2D points) without further
data reduction or interpretation [55, 95, 154, 26, 126, 9, 173, 69, 108, 157, 213, 94], as well as methods
reducing the observed projections by means of matching them to an expected model (such as e.g.
elliptic trajectories) or otherwise exploiting specific geometric features of the utilized calibration
structure [152, 130, 172, 20, 177, 206, 78, 153, 112, 40, 198, 52, 203, 204]. Calibration methods may
further be characterized based on their core calibration approaches: [154, 126, 173, 177, 69, 96|
reduce the calibration problem to the solution of a linear system of equations in a least squares
sense e.g. by means of singular value decomposition (requiring the imaged object to be known).
[130, 172, 20, 206, 112, 203, 204] derive direct relations between parameters of the observed
marker patterns and the underlying projection geometry. [55, 95, 154, 9, 187, 213] use local
optimization techniques requiring sufficiently good initial estimates and [108, 52, 157, 94] rely
on global optimization techniques for the solution of the inverse problem (also requiring initial
estimates). Combinations are used e.g. in [152, 26, 78, 153], and a comparison of a matrix inversion
and an optimization based approach is given by [154]. Finally, the cited methods differ in the
amount of degrees of freedom that are addressed. While methods based on fully known reference
objects are generally able to determine all system parameters with reasonable precision, the situation
is more complex when no or only few assumptions can be made on the calibration structure.

3.2 Review of previous auto-calibration techniques

The early methods addressing the problem of calibration from unknown markers with straight
forward least squares minimization approaches considered only the focal distance and the most
relevant translations of the detector and the rotational axis [55, 95] due to the instability of the full
optimization problem. Noo et al. [130] showed that generic optimization can be largely avoided by
systematic analysis of the problem. By constraining the detector columns parallel to the rotational
axis, they were able to derive relations between the remaining geometric parameters and the ellipse
parameters of the observable projections of two opaque markers moving along circular trajectories
around the rotational axis. Potential detector in-plane rotations are considered in an independent
preprocessing step. They assumed the distance between the markers known in order to determine
also the absolute scale. The method was further simplified by Yang et al. [206] for the case of also
negligible detector slant about the rotational axis. Johnston et al. [78] use the latter approximate
approach for the initialization of a generic local optimization procedure that is then able to recover
all parameters using a phantom of ten collinear bearing balls with defined distances. A further
adaption of the Noo method was presented by [198]. Bequé et al. [9, 10] and Wang and Tsui [187]
fully revert to local optimization again yet analyze the uniqueness of general solutions based on
one, two and three rotating markers and conclude that one known distance between two markers
is sufficient in the presence of detector slant about the rotational axis, and two known distances
(which they relate to distances between three markers) are required for a generally unique solution
for all system parameters, which was also conjectured previously by Noo et al. [130] and is also
stated by Xu and Tsui [203]. In the related methods addressing all system parameters based on
two known parallel rings (of equal radius) of bearing balls by Cho et al. [20] and Robert et al.
[153], this condition is fulfilled by knowledge of both the vertical distance of those circles and their
(common) radius. Xu and Tsui [203] propose another calibration procedure based on relations
between elliptical projections of rotating markers, known marker distances and the system geometry,
yet in contrast to [130, 206, 153] identify geometrically meaningful intersection points on the ellipses
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in the style of the approaches by Cho et al. [20] and Strubel et al. [177] (who worked with fully
known structures) in order to then obtain simpler relations between those points in the projection
image and the geometry parameters. A general methodology for the assessment of uniqueness and
stability of calibration problems by means of analyzing the propagation of random errors through
the respective forward model has been discussed by Ma et al. [104].

Smekal et al. [172] were, to the author’s knowledge, the first to explicitly address the case
of complete auto-calibration (up to an unknown object scale, yet including detector tilt) of cone
beam tomography systems based on multiple rotating markers at unknown positions and distances.
The latter were either required or assumed known in the methods discussed so far. They choose
a different parametrization for the analysis of the projected circles more directly related to the
forward model than the otherwise often used ellipse equation and are able to find relations of those
observable parameters to all geometric parameters. In contrast to the previous literature, Smekal
et al. conclude that one marker is, in principle, sufficient for all parameters but tilt (and absolute
scale). In accordance with previous literature they find that at least two projected trajectories (yet
without knowledge of the marker’s distance) are required to infer tilt provided that the detector is
also slanted about the rotational axis. They do not further investigate the case of zero slant. In
their experiments, they use between eight and twelve markers and average the obtained geometry
parameters.

The more recent publications by Gross et al. [52], Sawall et al. [157] and Li et al. [94] also
consider the problem of complete auto-calibration (up to an unknown scale) without reverting to
known sample properties, although all, in contrast to Smekal, require global optimization techniques.

Gross et al. [52] formulate the problem in terms of a homography transform parametrized by
the sought-for system properties relating the observable ellipses to a canonical representation of
circular trajectories. They were thereby able to eliminate the trajectory parameters from the
optimization problem, reducing it to 6 degrees of freedom describing the projection geometry
(in comparison, Robert et al. [153] previously reported a reduction of the optimization problem
relating ellipse parameters and geometry parameters to 3 dimensions for the case of known
trajectory parameters). As has been the case also with previous techniques based on ellipse analysis
[130, 20, 177, 206, 153, 198, 203], the evaluated ellipses are expected to be non-degenerate in order
to successfully reconstruct the projection geometry. In their experiments, they use between three
and twelve markers and generally recommend the use of more than four non-degenerate ellipses for
their method.

Sawall et al. [157] apply a genetic optimization algorithm to a straight-forward objective function
penalizing the least squares errors between forward model and observations. Rather than using
multiple rotating markers within one tomographic scan, they use a single marker scanned at multiple
different geometric configurations of the employed tomography setup. As discussed earlier [9, 187],
this provides enough information to simultaneously determine each scan geometry. Sawall et al. were
the only ones to actually work with the absolute minimum of one marker, although simultaneous
calibration of multiple systems or multiple configurations of the same system has been addressed
before [9, 187, 78].

Li et al. [94] likewise use global optimization to relate the forward model to observed marker
projections, yet specifically design the cost function to exploit known consistency constraints of
two-view geometries. Namely, the lines between focal spot, marker and the marker’s projection on
the detector for two views of the same marker must obviously intersect, and do so at the location of
the marker. The complete elimination of degrees of freedom to be optimized, as previously shown
by Gross et al. [52], could thereby not be achieved.

In the following, an analytically motivated approach to reference-free calibration will be presented
that, in contrast to the ones by Gross et al. [52], Sawall et al. [157] and Li et al. [94], does not
require the use of generic non-convex optimization techniques, and thus in particular does not
require initial estimates for any of the parameters. It is in this respect most similar to the method
described by Smekal et al. [172]. Other than in [172] and other previous approaches, the problem
will be parametrized by projection matrix elements, which has previously only been done in the
context of known calibration structures (cf. [154, 126, 173, 177, 69, 96]). This will on the one hand
allow a very simple representation of the core calibration problem and on the other hand expose
the link between methods solely based on constraints on the detector geometry ([172, 52, 157, 94])
and those based on (partial) prior knowledge on the sample (e.g. [9, 10, 177, 20, 187, 78, 153, 203]).
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3.3 Formalization of the calibration task

As has been pointed out previously in Section 1.1.2, perspective projections onto planar detectors
can generally be expressed in terms of homogeneous coordinates and projection matrices. The 2D
cone beam projection (h(¢),v(¢)) of a circular trajectory (r cos(¢ — ¢o), rsin(é — ¢o), z) about the
z-axis then takes the following form:

W (6) Py Py Py P " cos( — o)
V(@) | =| Pa P P Pu || G790 )
w'(9) P31 Py Psg Py w
h(¢) = h'(¢)/w'(¢) (3.2)
v(¢) ='(¢)/w'(¢) (3.3)
with
r=r"/w
z2=72|w.

w and w’ are the scaling components of the vector on the right-hand side and its projection on the
left-hand side respectively. Although the component w on the right-hand side would, if projections
of known points were to be calculated, commonly be defined to equal 1, it will be beneficial for the
purposes of the following derivations to actually leave it as an open parameter. P,,, represent the
components of a 3 x 4 projection matrix P encoding the projection geometry, i.e. the placement of
source and detector in 3D space as well as the detector pixel pitches. The detailed relation between
geometry and projection matrix is given in Section 1.1.6.

vV =

[ T X S o.o o.. -.o -.o -.- o.o .80

e 0o 0 0 0 0 0 o
eo o ® oo
o® O,

)

—e— h'(¢)
—— h(g) =h@W'(9) —— VA$)
—— V(g) = V(W) —— w($)
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Figure 3.1: Upper left: Fiducial markers moving along circular trajectories about the rotational axis (center)
of a cone beam computed tomography setup, projected by a point source (right) onto a planar detector (left).
Upper right: Superposition of respective projection images on the detector.  Lower left: Horizontal and vertical
components of a projected trajectory in dependence of the projection angle ¢ (cf. Egs. 3.6, 3.7).  Lower right:
Decomposition of the projection components into independent sinusoids describing the orthographic horizontal
and vertical projections h'(¢) and v'(¢) as well as the perspective scaling component w’(¢) (cf. Eq. 3.4).
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——_,origin (0,0, 0)

. source §

Figure 3.2: Depiction of the real space geometry description used here. The world coordinate origin is centered
in the field of view and the positions of source (§) and detector coordinate origin ((f) are defined relative to
that. The row and column vectors H and V characterize the detector orientation and pixel pitches. Hand V
are neither constrained to be orthogonal nor of equal length. The corresponding 3D world coordinates of 2D
projection coordinates (h,v) in the projection coordinate system on the detector plane are given by d+hH +oV.
The relation to projection matrices is described in Section 1.1.2, Eq. 1.7.

Evaluating the above matrix-vector product and applying trigonometric identities yields

h(¢) 7'(P11 cos(¢ — ¢o) + Prasin(¢ — ¢o)) + Praz’ + Praw
V(@) | = | 1'(Po1cos(@ — ¢o) + Pazsin(¢ — ¢o)) + Pasz’ + Pagw (3.4)
w'(¢) | 7' (P31cos(¢ — ¢o) + Ps2sin(é — ¢o)) + Pszz’ + Pagw
7' Prasin(¢ — ¢o — ¢n) + Pi3z’ + Praw
= 7' Py Sil’l((b — ¢ — qbv) + P32 + Poyw (35)
| 7' Pasin(¢ — ¢o — ¢w) + P332’ + Psgw

with

Pra = \/P%1+P312

¢n = arctan2(—Pyq, Pi2)
¢y = arctan2(— Py, Pa2)
by = arctan2(— Py, Psg)

<~

Pml - _Pla Sln(¢m)
Pm2 = Pla COS(¢m) )

where m equally enumerates both the rows (1, 2 and 3) of P as well the associated subscript labels
h, v and w, which have been chosen to clearly indicate the relation of the rows or their respective
parameters to the three components of the left-hand side homogeneous vector.

The h and v projection coordinates on the detection plane are thus finally given by:

' Py, si — — P32 + P
h(g) = ?"/ 1 S-ln(ﬁb_ ®o = én) + 132/+ 1AW (3.6)
7/ P3a sin(¢ — ¢o — ¢w) + P332’ + Pyqw
7' Paasin(¢ — ¢o — ¢y) + Pazz’ + Payw
v(d) = op o ( — ) 7 (3.7)
30 SI0() — Po — Pw) + P32’ + Pagw

The numerators in these expressions correspond to the orthographic (“parallel beam”) projection,
while the common denominator describes the distance dependent perspective scaling. See Figure 3.1
for an example.

As in the context of self consistent calibration neither P,,, nor r’, 2, ¢ and w are known, the
above equations may as well be expressed in terms of the independent sinusoid parameters a;,

37



CHAPTER 3. AUTO-CALIBRATION

Qivy Qiwy Piohs Piovs Piow, Oin and o, representing amplitudes, phases and offsets respectively and
including an additional index i for the enumeration of multiple projected trajectories:

a;n sin(p — gion) + oin
Qiw SIN(G — Piow) + 1
iy sin(¢ — dioy) + 0iy
Qi SIN( — Piow) + 1

hi(@) = (3.8)

vi(¢) =

(3.9)

The determination of these 8 sinusoid parameters from projection data (h;(¢),v;(¢)) for each
projected trajectory i is detailed in Section 3.7.2 (Egs. 3.28-3.38 and Alg. 3.2). In the following,
the parameters a;n, Giv, Giw, @ioh, Piovs Piow, 0in and o4, can thus be considered known.

The calibration problem, i.e. the simultaneous reconstruction of both the unknown projection
matrix P and the unknown fiducial marker orbits from given projections (h;(¢),v;(¢)), can now be
identified as the solution of the following linear system of equations relating the observable sinusoid
parameters of the projected trajectories to the unknown projection matrix and orbit parameters for
all imaged trajectories i:

7 Pra = am (3.10)

i Poy = Gy (3.11)

TQPSa = Q4w (312)

Pi3z; + Pryw; = o (3.13)
Po3z; + Poyw; = 04y (3.14)
Ps3z; + Pagw; = 04y = 1 (3.15)
¢n =0 (3.16)

Oy = diov — Pion (3.17)

bw = Piow — dion (3.18)

where ¢y, is defined to be 0, exploiting the freedom of choice of the projection angle for a rotationally
symmetric imaging configuration (or equivalently the freedom of choice of the initial phase of a
periodic trajectory). Further, the fixed parameter o;, = 1 has been introduced in order to maintain
a uniform representation of the equations. For the same reason, the subscripts “h”, “v” and “w” will
in the following as well be represented by the projection matrix’ row index m, i.e. h=1,v=2,w=3.
A practical method for the solution of the above calibration equations is described in Section 3.7.1.

3.4 Projective ambiguities

The given equations further reveal that the first two and last two columns of P are independent,
i.e. there are no equations interrelating these parts of the projection matrix (Egs. 3.10-3.12 are
independent from Eqgs. 3.13-3.15). Similarly, the relation between z, and w; and consequently the
third and fourth column of P is not unique (cf. Egs. 3.13-3.15). Together with the ambiguities
expected by design, i.e., arbitrary choice of length units, object scale and related source—object
distance, definition of the ¢ = 0° orientation within the z-y plane and the choice of origin on the
z-axis, these ambiguities are a special case of general projective ambiguities of the form

P7=PH 'Hi=(PH ')(HZ) = P7, (3.19)
with the homography H being composed of the following transformations in the present case:
H =R,(w)T.(Az)S(sq,8,) D(,7)
H™' =D7(5,7)S(s5", 5, ) T2 (—A2) R.(—w)

(o)

(3.20)
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Figure 3.3: Examples of projective ambiguity: the same projections (h(¢),v(¢)) may originate from different
combinations of imaging configuration and marker locations. The top row illustrates the effect of D(§ = 1,y # 0),
while the bottom row shows examples of S with the effects of the parameters s, (bottom left) and sq (bottom
right) respectively (cf. Eqgs. 3.19-3.23). The latter case corresponds to the general scaling degree of freedom of
homogeneous projection matrices.

with
cos(w) —sin(w) 0 0 100 0
R.(u)= | W) o) 00 r.an=|0 0 2 (3.21)
0 0 0 1 00 0 1
1 0 0 O
S(8d,80) = Sd 8 (1) (1) 8 (3.22)
0 0 0 s,
10 0 O 10 0 O
DED= 10 o 15 0 D=y g 5 o O
00 ~ 1 00 -6y 1

Rotation R,(w), z-translation T,(Az) and gobal scale sq correspond to a choice of reference frame
and length unit that can be made at the users convenience. The object scale s, affects both
the object size and the relation between source—axis and detector—axis distance accordingly and
can only be determined based on prior knowledge on the sample and will therefore be arbitrarily
fixed to s, = 1 here. D(J,v) describes the initially mentioned independence of Egs. 3.10-3.12
and Egs. 3.13-3.15 and affects the object and detector geometry respectively and is therefore
of particular interest here. Examples of the ambiguities described by D and S are depicted in
Figure 3.3.

In contrast to the other transformations, D(d,~) can be constrained by drawing upon further
knowledge on the imaging system, whose pixel aspect ratio as well as the angle between detector rows
and columns is commonly known. Anticipating the following subsections, it can be summarized that
with v = 0, § may be chosen according to Equation 3.24. Otherwise, v and § can be simultaneously
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determined by optimization of an objective function as defined by Equation 3.25. In the case of
zero detector slant about the rotational axis, Equation 3.25 has no unique minimum and therefore
many solutions for v and §.

Equivalently, knowledge on the sample such as relative distances between markers could be used
as well in order to determine the two parameters defining D. This however shall not be further
considered here given the specific focus on calibration based on unknown marker locations.

3.4.1 Detector pixel aspect ratio

When considering the relations r; Ppa = aim (Egs. 3.10-3.12) and assuming some consistent solutions
for 7 and P,,, have already been found, it is easy to see that these solutions may be scaled by an
arbitrary factor a # 0:

« 1 o~
T Pra = réaPma = (ar;)(aPma) =7 Prna = Qim

The same is true for z; and P,,3 (Egs. 3.13-3.15):

Zyl;PmS = Z;ng?) = (/BZ;)(%P'HLP)) = 2£Pm3 = Oim
with an independent scaling parameter 5 # 0. While the freedom to choose an arbitrary overall
scale corresponds to the unknown absolute size of the imaged phantom, the freedom to choose
independent scales for the z-y and the z dimensions or equivalently for 7} and z} or P, and Pp,3
corresponds to the disregarded pixel pitches of the detector, i.e. the calibration equations can equally
be satisfied by a detector with asymmetric pixels and a correspondingly squeezed or stretched
object.

Conversely, this ambiguity corresponding to the homography parameter 6 (cf. Eq. 3.23) can be
resolved by choosing the relative scale a/8 = . such that the detector encoded in P actually features
the correct pixel aspect ratio (denoted by ¢) for the given hardware. As derived in Section 1.1.6, the
vector pI‘OdU.CtS (P117 P12, P13) X (P31, P32, P33) and (P21, ng, P23) X (P31, ng, P33) are pI‘OpOI‘tiOHal
to the detector row and column vectors H and V (Fig. 3.2, Eq. 1.17). Given a known pixel aspect

ratio & = HﬁH/HVH, 0. may therefore be defined as the solution to

el V) = |16 )]
3 ||(P117P12755P13) X (P31,P32,55P33)|| = ||(P21,P22,55P23) X (P31,P32755P33)H ,

i.e.

(Py1 P32 — PyaP31)? — €2(P11 P32 — P1oP31)?
e2(Pio P33 — Py3Ps3)? + (P13 P3y — Py1 Ps3)?
— (P22 P33 — Po3Ps2)? — (Pos Py — Pa1 Py3)? (3.24)

\/ H?2 —2V?
e(VE+Vy) —(H+ H)

where the H,, Hy, H, and V;,V,, V, components refer here to those prior to the correction by the
derived scaling factor d.. The above derivations assumed that the remaining homography parameter
v is zero.
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3.4.2 Detector tilt and shear

Also the relations P37 + Ppaw; = 0, (Egs. 3.13-3.15) may similarly be satisfied by transformed
P,.3, Zi and w;, now including also :

1 - -
P32, 4+ Praw; = 6(Pp, VPm4)(5 2) + Poa(wi +v2}) = PpaZi + Ppatl; = 0im

By relating w; and P,,3, v will affect the detector tilt and shear as will be explained in the following.

Equation 3.15 (Ps3z] + Pssw; = 0y = 1) concerning the mean o, = 1 of the projection
equations’ denominators (cf. Egs. 3.8 and 3.9) reveals that for w; = const., P33 must equal 0. Vice
versa, w; varying among several imaged trajectories ¢ (i.e. being z/-dependent) implies P33 # 0.
Given w; = w; + vz} and Py5 = Py5 — v P34, it can therefore be concluded that both the relevance
of the homogeneous coordinates’ scaling components w; and the role of the homography parameter
v are directly related to the P33 component of the projection matrix. Eq 1.7 (Section 1.1.2) shows
that the vector (Ps1, P32, Ps3) in the last row of P corresponds to the cross product H x V of
the detector row and column orientations and is therefore normal to the detector plane. The z
component Ps3 is thus directly related to the detector tilt towards the rotational axis, which was
defined to coincide with the z-axis. In consequence, v controls the detector tilt encoded in P.
As changes to P,,3 have more general implications on the cross products of (cf - 3), Hand V
encoded in the first three columns of P, v will also influence the angle between H and V. As this
is commonly a known property of the detector (typically, H-V= 0), it can be used to constrain
7 and consequently to determine the detector tilt towards the z-axis. As ~ will as well affect the
norms of H and V i.e. the pixel aspect ratio, v usually needs to be determined simultaneously
with § using a suiting objective function constraining both the pixel aspect ratio and orthogonality:

2

(] s\ aus-vo

- — == - - (3.25)
o \\Pea]da.a)) e [ve.o
with € denoting the pixel aspect ratio and assuming that the detector rows and columns are expected
to be orthogonal. In case of actually non-orthogonal detectors such as hexagonal pixel arrangements,
the objective function may be adjusted accordingly to favor the respective expected shear angle.
The detector tilt has been identified by many authors to have the smallest influence on the
observable projections and therefore can, in the presence of noise, only be determined with very
little precision. In particular in the context of calibration based on unknown phantoms, the detector
is therefore often fixed to be parallel to the rotational axis. Within the present approach, this
is equivalent to fixing w; to 1 and consequently P33 to 0, as has been done within the present
solution strategy for the reconstruction of P (cf. Algorithm 3.1, Section 3.7.1). Actual detector
tilts will then manifest themselves in a slight amount of artificial shear (slightly non-orthogonal
detector rows and columns) in the determined projection geometry. As this corresponds to a valid
projective homography, resulting tomographic reconstructions using so constrained geometries
will be transformed by the corresponding inverse homography. In contrast to the case of both
constrained tilt and pixel geometry, actual artifacts due to geometric inconsistencies are avoided.
In accordance with the findings by Smekal et al. [172], the tilt cannot be uniquely determined
when the detector is not slanted about the rotational axis. This remaining ambiguity manifests
itself in a non-unique minimum of the objective function in Eq. 3.25 in the case of zero detector
slant.

41



CHAPTER 3. AUTO-CALIBRATION

3.5 Simulation Study

The calibration procedure has been tested on simulations of a large set of randomly generated
imaging configurations and fiducial marker positions in order to obtain information on the average
precision independent of the particular projection geometry or calibration phantom. The random
samples are generated from both a mean imaging configuration and mean phantom shape with
broad variances on the actual positions and orientations. In units of detector pixels, detectors with
roughly 1500 to 3000 pixels width and 1000 to 2000 pixels height at a source-detector distance of
10000 times the detector pixel size are modeled, yielding cone angles in the range of about (12 £ 5)°.
With the rotational axis virtually placed at the location of the detector, also the sample units can
be meaningfully measured in units of detector pixels. Fiducial markers are, on average, distributed
equidistantly along the z-direction between —650 and +650 pixels at a mean distance of 800 pixels
from the z-axis (i.e., the rotational axis). Apart from the source-detector distance, all parameters
including detector shifts and tilts are varied randomly. The marker vertical positions and lateral
distances (i.e., radii) are varied based on a a normal distribution of 150 and 250 pixels standard
deviation respectively. The projection parameters are varied with uniform distributions. The
considered ranges are +250 and +500 pixels for the horizontal and vertical offsets of the detector
center from the optical axis respectively and +5° for detector tilt, slant and rotation. In order
to avoid the unresolvable projective ambiguity in the case of zero slant of the detector about the
rotational axis, the interval of [—0.2°,40.2°] has been excluded here. For each configuration, 120
projections in 3° increments about the rotational axis have been calculated and Gaussian noise with
a variance of half a pixel was added to the marker projections to account for imprecisions usually
occurring when evaluating actual projection data of opaque markers. Figure 3.4 shows examples of
respective simulated projection data.

Calibration was performed based on the solution strategy for Eqs. 3.12-3.18 derived in Section 3.7.
More specifically, each projected trajectory is first reduced to its sinusoid parameters by means of
Algorithm 3.2. Based on these observables, a self consistent solution for markers and projection
matrix is found by means of Algorithm 3.1. The projective ambiguities are resolved by means
of Eq. 3.19, 3.23 and 3.25 constraining the detector rows and columns to be orthogonal and the
pixel aspect ratio to be 1. The resulting projection matrix is transformed into real space geometry
vectors describing relative source and detector position as well as row and column orientation by
means of Algorithm 1.1 and the known detector pixel pitch. In order to compare this result to the
original (randomly generated) imaging geometry, the reconstructed geometry is finally rotated and
shifted about and along the z axis respectively such that the source comes to line on the y axis.

Figure 3.5 shows the distribution of errors found for 106 random realizations of the just described
experiment. Table 3.1 summarizes the error ranges corresponding to a 98% confidence interval,
i.e. in 98% of the cases, the true values will lie within the listed intervals about the reconstructed
values.
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Figure 3.4: Examples of simulated projections of rotating fiducial markers as used to quantify the auto calibration
precision. Both the projection geometry and the marker placement are randomly generated. Positions are given
in units of detector pixels, with the origin defined in the detector’s center. Auto calibration is performed both
from all shown trajectories (4 markers) as well as from only the top and bottom ones (2 markers). Cf. Fig. 3.5.
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SDD errors [%] h-shift errors [px] v-shift errors [px]
4 2 markers 10° 81 0.6 4
4 markers 1072 102 107
34 6 10
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21 41
0.2
11 24
0 - T T T 0= T T T 0.0 T T T
-2 -1 0 1 2 -1.0 -0.5 0.0 0.5 1.0 -10 -5 0 5 10
eta (rot) errors [°] phi (slant) errors [°] theta (tilt) errors [°]
N 25 e
75 A 61 1076
-0.1 00 01 -1 0 1 1.54 -25 0 25
50 1 41 1.0 1
251 27 0.5 1
0 T u T T 0 T T 0.0 -
-0.04 -0.02 0.00 0.02 0.04 -0.4 -0.2 0.0 0.2 0.4 -2 0 2

Figure 3.5: Normalized histograms (probability densities) showing calibration variances in terms of classic
geometry parameters found for projection geometries reconstructed from noisy projections of circular trajectories.
(examples given in Fig. 3.4). Actual projection geometries and trajectories are generated randomly. The
reconstructions have been performed using either four (purple) or only two (blue) of the projected trajectories.
The inset graphs visualize the tails of the respective distributions using a logarithmic scale. Table 3.1 summarizes
the error ranges for a 98% confidence interval. The respective reprojection errors between the reconstructed
projections and the input data are found to reproduce the modeled noise of 0.5px standard deviation within a
standard error of 0.05px, which appears consistent with the number of simulated projections.

source—detector horizontal vertical detector detector detector

distance detector shift detector shift slant (¢) rotation (n)  tilt ()

4 markers +0.3% +0.13px +1.7px +0.14° +0.01° +1.6°
2 markers +0.5% +0.22px +3.6px +0.27° +0.02° +2.3°

Table 3.1: Geometry reconstruction errors within a 98% confidence interval for reconstructions based on two
and four projected marker trajectories respectively. The differing orders of magnitude of uncertainty associated
with different geometry parameters reflect their differing impact on actual projection errors. Rotation 7 and
horizontal shift h (cf. Fig. 3.6) have the most direct relation to projections and are therefore recovered most
precisely.

detector
slant (phi)

detector tilt

(theta) C

detector
rotation
(eta)

Figure 3.6: Sketches depicting the employed geometry parametrization. The source—detector distance SDD is
measured parallel to the source position vector S, horizontal (h) and vectical (v) detector shifts are measured in
units of the row and column vectors H and V. The detector orientation is characterized by the angles ¢ and 6
describing the orientation of its normal with respect to the source orientation 5 as well as the angle 7 describing
the in-plane rotation of the detector about its normal.
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Particularly the distribution of errors on the detector tilt towards the rotational axis exhibits
long tails including rare (as seldom as one in a million) yet extreme deviations (up to 25°) from
the true value. As the detector tilt is part of the projective ambiguity in the solution of Equations
3.10-3.18 as detailed in Section 3.4, it has to be inferred by enforcing a known detector pixel
geometry. As the latter is implicitly assumed to be unaffected by noise, any actual noise will
translate onto the remaining parameters of the imaging geometry, causing large uncertainties on
the inferred tilt. Further, as the determined homography inversely applies to the reconstructed
sample, errors on the detector tilt will come along with errors on the z scale and consequently on
the aspect ratio of the reconstructed samples.

3.6 Discussion

An auto-calibration method for cone beam tomography systems has been derived from the projection
matrix formulation of the perspective projection of rotating fiducial markers. The representation in
cylinder coordinates directly reveals both a fractions-of-sinusoids model describing the observable
projections as well as linear relations of this model’s parameters to both the unknown projection
matrix and the parameters of the circular marker trajectories. (In the case of known trajectory
parameters, the system of equations could at this point be directly solved for the unknown projection
matrix analog to other projection matrix calibration methods based on known objects [154, 173, 96].)
An iterative scheme is proposed that alternatingly solves the linear system of equations with respect
to the projection matrix and the trajectories until a self consistent solution is obtained, starting
with initial approximations for the trajectory parameters. A simple weighting heuristic accounts for
the adequate consideration of redundant equations. The ambiguities in the self consistent solution
are formalized to a sparse homography matrix, which is then constrained based on knowledge of
the detector pixel geometry. Finally, a transformation of projection matrices into real space vectors
describing source and detector position as well as detector row and column orientations is given.
Other geometry descriptions can be derived from either the projection matrices or the real space
vectors using common techniques that have not been further detailed here.

The forward model reveals that the projected circular trajectories are completely described by a
total of 8 parameters (which can be identified with those that were previously also used by Smekal
et al. [172]). In contrast to the ellipse description of projected circles (generally using 5 parameters)
that has been used by many authors [130, 20, 177, 206, 78, 153, 198, 52, 203], not only the shape,
but also the projection angle (¢) dependence is captured in this description. This assumably
is the underlying reason why degeneracy of ellipses, which is a major issue for the respective
methods based on ellipse parameters, is not a particularly special case in this representation — all 8
parameters are still defined also in the case of an edge-on projection within the plane of rotation of
a circular orbit. The forward model itself almost directly exposes the solution to the calibration
problem in form of the system of equations relating the sinusoid parameters to the contained
system parameters. The employed forward model is further clearly separated into orthographic
projections (numerators) and perspective scaling (denominator), allowing for direct interpretations
of the parameters. The denominator or perspective scaling component is associated with the third
row of the projection matrix (cf. Eqs. 3.4-3.7), which in turn describes, as is explicitly shown in
Eq. 1.7, the detector normal and focal distance. This clearly highlights that the ability to determine
the orientation of the detector normal (i.e., to determine detector slant and tilt) without knowledge
of the sample dimensions is ultimately founded in the specific perspective scaling effects associated
with the detector orientation. Conversely, this ability becomes restricted in the case of ambiguous
scaling effects: in the case of zero detector slant (i.e., the rotational axis intersects the orthogonal
connecting line between detector and source), scaling effects due to a potentially tilted detector
become indiscernible from an actually distorted sample, and, as has been reported previously by
several authors [152, 9, 187, 157], additional knowledge or assumptions will thus be required (usually,
the assumption of zero detector tilt will be adequate given its typically small effect [130, 172, 206]).
In the present method, this ambiguity manifests itself in a degenerate minimum of the objective
function used to determine the homography parameters as discussed in Section 3.4.

Regarding the positioning or selection of fiducial markers within the field of view, although no
explicit analyses have been shown, several general arguments can be made. First of all, markers
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obviously must not be located on the rotational axis, i.e., the radius of its circular trajectory must
not be zero. The larger the radius relative to the detector grid, the smaller the relative errors in
the determination of the projected positions. Larger radii further imply larger covered cone angles
and thus more pronounced perspective scaling effects, which have been identified to be essential
to auto-calibration from unknown samples. Analogously, although edge-on projections are not a
fundamental issue here, trajectories further away from the cone center plane will exhibit stronger
perspective effects and are therefore expected to be favorable. This is also consistent with the
observations by Bequé et al. [10] in context of their least squares optimization approach. Also,
placement of markers only within one half of the cone does not constitute a special case, in contrast
to ellipse based methods as introduced by Noo et al. [130]. In order to account for the original
assumption of the present work that markers are apriori unknown, the presented simulation study
intentionally addresses a wide range of imaginable marker placements and projection geometries,
without explicitly investigating potentially favorable configurations.

One reason for the simplicity of the present calibration approach lies in the additional degree
of freedom of oblique detector grids that is implicit in the projection matrix formalism. The
relation between detector tilt and detector grid geometry through the homography parameters ~
and 0 (cf. Section 3.4) on the one hand allows to shift the determination of tilt into a downstream
postprocessing procedure, and on the other hand provides another view on the previously reported
imprecision immanent to the determination of detector tilt [172, 52], which could also be observed
in the present results. The imprecision in the determination of tilt is in fact an imprecision in the
determination of the correct homography transformation (affecting both the projection matrix and
the object coordinate system) based on constraints on the detector geometry instead of constraints
on the sample geometry. As even considerable tilts in the range of degrees translate to rather
moderate amounts of detector non-orthogonality, the noise susceptibility for the converse inference
of tilt by means of constraining detector shear is very high. In particular the long tails of the
error distribution found in the present simulations (cf. Fig. 3.5 and Table 3.1) evidence a very
high uncertainty in the determination of tilt that often ranges within the order of magnitude of its
actual value. The plain assumption of zero tilt is thus, as has been concluded by others previously
[172, 52], often well within the error margin. In contrast to previous work though, which by design
also constrained the detector geometry, consistency won’t be affected here, as actual effects due to
tilt will still be accounted for by means of an artificially oblique detector geometry.

The remaining homography parameters regarding the choice of origin and scale of the coordinate
system have not been explicitly treated. They are straight-forwardly chosen based on the real space
geometry description extracted from the reconstructed projection matrix (cf. Section 1.1.2) in order
to e.g. align the source position or the detector normal with the z-z or y-z plane and scale and shift
source and detector within the available degrees of freedom such that a user defined tomographic
reconstruction field of view optimally fits the projection cone.
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3.7 Appendix: Implementation

3.7.1 Iterative projection matrix reconstruction

Now that the calibration problem has been formalized to the solution of a small system of linear
equations, an iterative scheme technique shall be proposed for its self consistent solution. The
calibration equations (Eqs. 3.10-3.18) may to this end be rearranged for each parameter to be
determined, assuming the respective parameters on the right-hand side known (beginning with
initial estimates). As there will be multiple analog equations for each parameter relating it to either
different rows of the projection matrix or to multiple of the observed projected trajectories, weighted
averages will be used to adequately incorporate all available information for each parameter. In
order to avoid potential oscillations due to inconsistencies, the iterative updates may be damped by
a relaxation factor A € [0;1] scaling between no update (A = 0) and no damping (A = 1).
Without specifying the averaging weights yet, the described scheme results in:

w; 1= 1
PO (1 - )™ 4 < Sim >
(k)
im P
A0 = (1= 4y <O'p<k>’"4 >
m3 m

(k1) _ (1 _ \)p*) Qim
Pma _(1 /\)Pma+/\<rl(]€)>'
%

%

Py o e ), e 2
pllrn = (1—-X) P + A I%ig;m,l’;i (Prsz + Pry— oim)
¢n:=0
v = (Piov — Gion);
bw = (Diow — Pion);

where k is the iteration index, (-). and (-) denote (to be further defined) weighted averages
over the marker index ¢ and the projection matrix row index m respectively. For uniformity of the
representation, the row related “h”, “v” and “w” indices of the observable sinusoid parameters are
equally enumerated by m in the above averages, i.e. h=1,v=2,w=23. Based on the discussion
given in Section 3.4.2, w; has been chosen w; = 1 without loss of generality. The parameters
Pp.3, P are determined by means of linear regression. The phases ¢y, and ¢, can be evaluated
independently as a weighted average over the available observations, whereas ¢y, is, without loss of
generality, defined 0.

Now that the iterative update scheme has been established, actual averaging weights need to be
defined. These weights shall respect the varying certainty or error bar associated with the different
available equations for each parameter. It will be argued that the denominators occurring in the
right-hand-side expressions are reasonable indicators in this respect and may be used as weighting
factors, which in addition avoids potential divisions by zero. This can be easily seen on the example
of ri: the observable amplitudes a;,, on the right hand side correspond to actual horizontal and
vertical ranges covered by the projections observed on a rasterized detector. Given some absolute
precision in the determination of the projection’s coordinates, the relative uncertainty of some a;;,
will be lower the larger its absolute value. As a;y,, are, given the relation a;p, = 7} Ppa, proportional
to the parameters P,,,, the latter may as well be used for the respective importance weighting.
This reasoning can analogously be transferred to the remaining parameters as well, finally leading
to the explicit alternating update scheme stated in Algorithm 3.1, with the weights being formed as
the square of the denominators to ensure positivity. The averages over the differences ¢;0v — ¢ion
and @;0w — ¢ion are performed (cf. Alg. 3.1) over their complex amplitude representation (with ¢
denoting the imaginary unit). The weighting factors a?,, a?, and aZ, for the phases ¢;on, Gioy and
¢;on thereby follow the same heuristic as outlined previously.
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3.7. APPENDIX: IMPLEMENTATION

Algorithm 3.1 Self-consistent reconstruction of projection matrix and marker coordinates from

projections of circular marker trajectories (solving Egs. 3.10-3.18).

The homogeneous scaling

components w; are, without loss of generality, constrained to 1 (thereby constraining the detector

tilt angle towards the rotational axis to 6 = 0).

Differing values of tilt and scaling of the

marker trajectories can be recovered subsequently based on projective homographies as outlined in

Section 3.4.
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> resolve projective ambiguities with additional contraints,

cf. Section 3.4 and especially Eqgs. 3.23, 3.24, 3.25
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3.7.2 Extraction of the trajectories’ sinusoid parameters

As explained previously in Section 3.3, arbitrary cone beam projections of circular trajectories can
be represented in the following way:

ay sin(¢ — ¢ug) + ou
Gy SIN(P — dwo) + 1

u(¢) =

9

with u(¢) on the left-hand side representing either of the projections’ h(¢) and v(¢) coordinates
on the detection plane and ay, aw, ®uo, Pwo, 0u being the parameters encoding both the location
of the projected marker and properties of the projection geometry. While Section 3.3 covered the
reconstruction of both the actual trajectories and the projection matrix from these parameters,
their extraction from the measured projections (h(¢), v(¢)) shall be detailed here using an approach
inspired by the Fourier decomposition of h and v used by Smekal et al 2004 [172].

The above equation may be rearranged by multiplying with the denominator:

’LL(QS) (aw Sin(¢ - ¢WO) + 1) = Qy Sin(¢ - ¢u0) + oy
and expanding the sine functions a, sin(¢ — ¢yo) into s, sin(¢) + ¢, cos(¢) such that

w(®) (swsin(¢) + ey cos(p) + 1) = sy sin(¢) + ¢y cos(¢) + oy (3.26)

with

ay = /8242
¢uo = arctan? (sin(dyo ), cos(duo))
= arctan2(—cy, Sy) -

Now the above ¢ dependent equation (3.26) relating u(¢) to the five parameters sy, ¢y, and
Sus Cu, Oy can be expanded into five ¢ independent equations by considering different integrals of
both sides exploiting the orthogonality relations of the sine and cosine functions on the interval
@ € [0,27). When considering the right-hand side it is easy to see that integrating with respect to
¢ over multiples of a period will effectively single out o,, and similarly multiplying the equation
by sin(¢) or cos(¢) prior to integration will “select” parameters s, or ¢, respectively, while at the
same time obviously eliminating the ¢ dependence of the equation. Further equations required to
determine also s, and ¢, are obtained by considering integrals over sin(2¢) and cos(2¢) respectively,
which is equivalent to regarding higher frequency components of the equations. Applying the
aforesaid integrals yields:

w o, 4o u(6) sin(@) + e o Ao u(9) cos(¢) + J Ao u(9) = 2o,

Sw f02 do u(¢) sin?(¢) +Cyw fo dpu(e)sin(@) cos(¢)  + [; dpu(¢)sin(g¢) = msy
o dpu(g)sin(p) cos(p)  +cw fo dou(¢) cos®(¢) + Jo dou(d)cos(p) = mwey

Sw fo dou(¢)sin(2¢)sin(¢) +cy f% dou(g) sin(2¢) cos(¢) —ﬁ—fo;dqﬁu(qﬁ) sin(2¢) = 0
Sw fo dou(¢) cos(2¢) sin(¢) + cy fo dpu(g) cos(2¢) cos(¢) —&-foﬂd(buw) cos(2¢) = 0

When dividing by 27 and denoting the different integrals over u(¢) by &, s, tc, Usclss, Usyc, €6C. With
indices indicating the accompanying sine and cosine terms (i.e. ug,c = 5 027Td¢> u(¢) sin(2¢) cos(¢),

gl

= 5= OQquS u(®)), the system of equations simplifies to

Swills + Cwlc + U = 0y

Swlss + Cwlsc + Us = 8711
Swlsc + Cwlce + Ue = %1 (327)

Swllsys + CwlUsyc + Ug, = 0

Swlscy + CywUccy + Ue, = 0 P
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with sy, ¢y, 04 and sy, ¢y being the sought unknowns. The latter two can be obtained by inverting
the last two equations, while the former can then be directly computed using the first three

equations:
Usys  Usye Sw o | _ | Usg
U’SCQ UCC2 L CW | UCQ
- . -1
SW — uSQS USQC uSQ
L CW | USCQ uCCQ uCz
Sw ( -1 Uccy, —Usye Us,
= (UsycUscy — UgysUce )
| cw | 2 2 2 2 —Uge, Us,s Ue,
ie.

Sw(u) _ Uccy Usy — UsyclUe, (328)

UsycUscy — UsysUccy

UsysUc, — Uscy Us,

Co(u) = 3.29
USQCUSCQ - uSQSuCCQ
Oy = Swls + Cylc +U 3.30
Su = 2(Swilss + Cwlise + Us) 3.31
cu = 2(

ay = /82 + 2
Ay = /82 + 2,

Pwo = arctan2(—cy,,

w)

(—cCw, s
¢uo = arctan2(—cy, Sy)

Although all five parameters can be determined independently for both horizontal and vertical
projection components h(¢) and v(¢) respectively (represented by u(¢) here), sy and ¢y — or
equivalently ay, and ¢y — are shared parameters that are expected to be identical for both h(¢)
and v(¢). It is therefore advisable to use a weighted average of the respective sy(,) and cy ()
parameters obtained from the horizontal (v = h) and vertical (v = v) projection components for
the computation of the remaining parameters. A sensible choice for the relative importance weights
are the respective determinants of both available systems of equations for s,, and c¢,, i.e.:

5 — (hszchscz - hszshccz)(hccz h52 - hszchcz) + (USQCUSCQ - Uszsvccz)(vccQU52 - Uszcvcz) (3 37)
v (h520h502 - hSQShCCQ)Q + (vSQCvSCQ - USQSUCCQ)z
(h520h502 - hSQShCCQ)(hSQShCQ - h/scz th) + (Uszcvscz - USQSUCCQ)(USQSUCQ - 1}5021)52)

— 2 _ 2
(hs Chbcz h525hccz) (vmcvwz UBzS’UCCQ)

Cy =

(3.38)

The weighting accounts for the generally considerably differing amplitudes of h(¢) and v(¢) and
the therefore differing relative error within the derived quantities; and in particular also for the
singular case of one of the determinants becoming zero. This occurs in the case of a projection
view parallel to the circular trajectory when either h(¢) or v(¢) become constant (¢ independent),
which commonly is the case for v(¢) in a perfectly aligned system.

Algorithm 3.2 compiles the above derivations into an explicit procedure for the deduction of
the sinusoid parameters a;n, Giv, Giw, Pions Piov, Piow, 0in and o0;, fully describing the perspective
projections of rotating points (cf. Egs. 3.8-3.9). The inner products with respect to various
trigonometric functions are expressed as explicit sums over equidistantly sampled rotation angles
¢;. The nature of trigonometric functions and the periodic form of the considered problem thereby
ensures that no discretization errors are introduced, analog to classic Fourier analysis (cf. e.g.
the Handbook of Mathematics [14]). Indeed, these sums can, by application of trigonometric

identities, also be formulated in terms of standard Fourier coefficients us, = % Z;y;()l U sin(n%’r J)

and ue, = & Z;V;Ol uj cos(n3Tj), such that e.g. uge, = +(us, + ug,), with u € {h,v}.

The latter representation reveals that Fourier components of u(¢) up to the third harmonic
are implicitly used in the above derivations implying that N > 6 (despite the fact that only 5
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parameters are actually to be determined), which is e.g. also consistent with the publication by
Noo et al. [130] in context of a completely different method for the actual retrieval of the projection
parameters. Fourier coefficients up to the third harmonic of the projected trajectories were also
used by Smekal et al. [172] as input to their calibration procedure.

50



3.7. APPENDIX: IMPLEMENTATION

Algorithm 3.2 Extraction of circular trajectories’ sinusoid parameters a;n, @iv, Giw, Piohs Piovs
diow, oin and o;, (cf. Egs. 3.8-3.9) as required for Algorithm 3.1 from perspective projections
(hi(9),vi(4)), assuming an equidistant sampling of the rotation phase ¢ € [0, 27[. The trajectory
index 7 has been omitted for better readability. A detailed derivation is given in Section 3.7.2.
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Chapter 4

Talbot-Lau Imaging

The anisotropic diffractive dark-field contrast obtained by means of Talbot or Talbot-Lau imaging
provides the central ingredient for X-ray tensor tomography. Talbot interferometry as a means
of multi modal X-ray imaging has been initially developed at coherent synchrotron light sources
in the first decade of this century and successively transferred to and optimized at laboratory
systems throughout the past decade. Due to its central role with regard to X-ray tensor tomography,
both the technical aspects regarding data analysis (Sections 4.2—4.3) and the physical aspects of
quantitative signal interpretation in radiography, tomography and anisotropic dark-field imaging
(Sections 4.4-4.6) will be investigated at greatest detail in the following. Previous literature is to
this end brought into a joint context and complemented with original derivations, analyses and
methods with regard to quantitative applications, resulting in a comprehensive and consistent
picture of isotropic and anisotropic X-ray dark-field imaging. Large parts of the present chapter
have been published in [29] (robust signal extraction) and [47] (quantitative signal interpretation).

4.1 Grating Interferometer

A Talbot(-Lau) grating interferometer is a specific realization of a shearing interferometer based
on the Talbot-effect. It can be implemented for the X-ray spectrum and, in addition to classic
attenuation contrast, further gives access to diffraction contrasts in the form of differential phase shift
information and ultra small angle X-ray scattering contrast (cf. [21, 22, 120, 191, 139]). The latter
is commonly referred to as “dark-field contrast” in analogy to the respective scattering contrasts
in other fields of imaging, and will be the focus of the following chapters due to its sensitivity to
the unresolved substructure of the sample. The unique advantages of the grating interferometer
with respect to other diffractive X-ray imaging techniques, such as the crystal analyzer based
“diffraction enhanced imaging” or “multiple image radiography” methods (cf. [216, 133, 135, 196]),
are its ability to directly capture planar images (in contrast to pixel or line scanning methods),
its sensitivity to micrometer scaled diffractive effects within centimeter sized fields of view, and
finally its tolerance to non-monochromatic X-rays and its practical feasibility also in laboratory
environments (as opposed to synchrotron facilities). Other related approaches that will not be
further discussed here are single grating approaches based on larger grating periods (Wen et. al
[195, 194]) or microscopic detectors (Balles et. al [3]), edge illumination approaches (Olivo et. al
[132], Endrizzi et al. [36, 37]), phase grating Moiré approaches (Miao et al. [114]), and speckle-based
imaging techniques applicable in microscopic X-ray imaging (cf. e.g. the recent review by Zdora
[212]).

Generally, an X-ray Talbot-Lau interferometer consists of three micrometer-pitched gratings, of
which the first is placed close to the X-ray source, shaping it into multiple small slit sources in order
to increase coherence of the emitted radiation. It can be omitted for sufficiently coherent sources
such as synchrotron radiation or microfocus X-ray tubes (Talbot interferometer, cf. Fig. 4.1). The
second grating imposes a periodic phase or amplitude modulation. Although the coherent wavefront
is subject to interference while propagating, its periodic intensity modulation is restored at specific
distances characteristic to the grating pitch and X-ray energy (Talbot effect). At these distances, it
can be analyzed by means of a third grating with matching periodicity in combination with an
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Figure 4.1: Sketch of a Talbot-interferometer (left). Coherent X-rays are modulated by a periodic, phase-shifting
or absorbing grating Gi. Coherent diffraction within the Fresnel-regime leads to a periodic reproduction (in
intervals of the Talbot distance) of the periodic amplitude modulation induced by the G; grating (Talbot-effect).
The original wavefront is reproduced in multiples of the Talbot-distance. The patterned beam can be analyzed
by means of a period-matched absorption grating G in front of an integrating detector. The detector pixel size
is typically at least one order of magnitude larger than the grating period. By moving the analyzer grating Gz in
front of the detector about one period in multiple steps, a phase stepping curve can be acquired (cf. right panel.
Stepping of Gi will have an equivalent effect). Wavefront changes due to a sample will result in attenuation,
deflection or blurring of the Gi-induced beam modulation and result in corresponding changes of the phase
stepping curve that finally constitute the contrast modalities of a grating interferometer. Samples may be placed
between G; and Gy or in front of G;. Experimental realizations often use an additional absorption grating Go
upstream of Gj, structuring common laboratory X-ray sources into multiple narrow slit sources of sufficient
coherence (Talbot-Lau interferometer).

X-ray detector placed behind it (having a pixel size considerably larger than the grating period).
When the structured beam is perturbed by a sample, three effects can be observed: As for classic
X-ray imaging, the intensity may be diminished due to absorption. Moreover, the periodic pattern
may be reduced in contrast (visibility) due to scattering, and shifted in phase due to refraction.
The effects of a sample can be analyzed by comparison of the phase stepping curves (Fig. 4.1, right)
for the perturbed (by the sample) and unperturbed beam.

The additional contrast modalities have enabled new applications. In particular the dark-field
contrast promises to provide new complementary information both in non-destructive testing and
life sciences due to its sensitivity to sub-resolution structures such as micro cracks and porous or
fibrous matter. The initial interest arose from early synchrotron experiments on mammography
with monochromatic radiation [77] and crystal analyzers [19]. With the introduction of Talbot-Lau
imaging to the laboratory by Pfeiffer et al. [139, 138], many more examples have been shown.
Applications of X-ray dark-field imaging besides the characterization of micro-calcifications in
mammography [115, 48] include imaging of lungs [208, 184, 51, 102], characterization of bone and
dentin [141, 121, 81, 80, 70] as well as the analysis of general porous and fibrous materials or
microscopic defects in the field of non destructive testing [148, 76, 50]. Other applications that have
been shown include water transport in cement [142, 205] or the monitoring of germinating seeds
[129]. Due to its origin in the ultra small angle scattering properties of a given sample, dark-field
contrast also reflects anisotropies in scattering and thereby allows to detect local orientations within
fibrous materials (cf. [74, 75, 141, 6, 150, 160, 60]). Grating interferometric dark-field imaging
has further been realized analogously for neutrons [176, 53, 175, 147, 166, 156, 86], with unique
applications e.g. in imaging of magnetic fields [92, 62, 127].

With respect to quantitative interpretations of the obtained images, a solid understanding of the
underlying contrast mechanisms is of great importance, particularly in the light of long processing
chains beginning with phase stepping analysis (cf. Section 4.2) and ending in tensor valued volume
reconstructions of anisotropically scattering materials (cf. Chapter 5). The aim of the present
Chapter is to provide a unified view on the numerous explanations on dark-field signal origination
that have been given in previous literature, and to provide experimental support for the central
results. The existing theories will further be extended to cone beam geometries using the Fresnel
scaling relation. Moreover, in preparation of Chapter 5, a model for the description of generally
oriented anisotropic scatterers will be derived based on the concepts presented by Yashiro et al.
[211] and Lynch et al. [103]. Experimental support will be given likewise.

o4



4.2. IMAGE EXTRACTION FROM PHASE STEPPING SERIES

4.2 Image Extraction from Phase Stepping Series

By continuously shifting the analyzer grating with respect to the structured beam (commonly
referred to as “phase stepping”), local convolutions of beam and grating profile are acquired at
each detector pixel. The pixels themselves act, by means of their large extent with respect to the
grating pitch, as integrator. The convolution of two period-matched functions is again periodic,
and provided that one of them is constant (the analyzer grating profile), all changes in mean, phase
and amplitude of the convolution can be directly attributed to respective properties of the sought
signal (i.e., sample-induced alterations of the structured beam profile).

These detectable changes constitute the three contrast modalities (attenuation, refraction, ultra
small angle scattering) of a Talbot-Lau interferometer, and their reliable extraction from phase
stepping series is thus a key aspect of Talbot imaging. Several approaches may be used to this end.
The most straight forward techniques are Fourier analysis [22, 120, 139] or direct matrix inversion
(used e.g. in [183, 165] as part of a more complex method). Other approaches derive from Taylor
expansion (as opposed to Fourier analysis) [137] or perform explicit deconvolution (Lucy-Richardson)
of phase stepping curves [118]. All mentioned techniques require that the stepping process can be
assumed perfectly stable and precise.

The assumption of perfect mechanical stability of the instrumentation turns out to be a common
cause of image artifacts in practice though, wherefore optimization techniques have been proposed
for the evaluation of stepping series accounting also for imperfect stepping motions. The approaches
vary both in their respective objective function to be optimized as well as the particular optimization
algorithm used: The objective function may either be derived from a signal and noise model (cf. e.g.
[183, 165, 29]), or rather penalize artifact models (cf. e.g. [82, 65]). The optimization strategies may
be either generic ones (compromising on efficiency and possibly stability) or specifically designed
to the given purpose (compromising on flexibility). Further approaches combine non-iterative
signal analysis with artifact reducing post-processing strategies [83, 109, 56]. Most recently, a
new optimization approach based on mathematical modeling of the artifact patterns generated by
variations both in phase stepping and illumination has been proposed by [64]. By compromising
on spatial resolution, the challenges of mechanical phase stepping can alternatively be avoided by
means of Moiré imaging: the respective variation in phase otherwise generated in the time domain
by sequential stepping is thereby realized in the spatial domain by slightly mismatched grating
periods [195, 8, 164]. Further techniques avoiding stepping of gratings are based on moving the
source spot [113] or the sample [88] in order to realize alternative phase stepping approaches.

Each approach to the processing of phase stepping series (or Moiré images) represents a certain
trade-off between algorithm complexity, stability, resulting image quality, computational effort and
the assumptions required with respect to the input data. Here, the focus is put on maximizing the
final signal quality while maintaining robust convergence in constant time at minimal computational
overhead and complexity. After the introduction of the basic linear techniques in the following
subsection, an efficient optimization scheme accounting also for variances in the phase steps will be
given.

4.2.1 Sinusoid Fitting and Fourier Analysis

The periodic phase stepping curve (PSC) found for each detector pixel as the convolution between
the Talbot self-image of the modulating grating and the profile of the analyzer grating may generally
be characterized by a sinusoid of matching frequency reproducing its mean, amplitude and phase (cf.
Fig. 4.1). As various experimental factors tend to suppress higher frequency features, the sinusoid
is usually not only approximation, but indeed a reasonable description.

With ¢ denoting the experimentally controlled phase of the shifted grating, i.e., its lateral
position in terms of radians with respect to its period, a sinusoid phase stepping curve PSC(¢) can
be defined as

PSC(¢) = 0 + asin(¢ — o) ,

with o, a and ¢y denoting the mean intensity, amplitude and phase shift respectively.
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CHAPTER 4. TALBOT-LAU IMAGING

By means of the auxiliary amplitudes as and a.

as = cos(¢o)
a. = —sin(¢g)

a=ata,
this definition can further be transcribed in a linear fashion:

PSC(¢) = 0+ assin ¢ + ac cos ¢

1 0
= | sin(¢) as |,
cos(¢) e

i.e., as a Fourier series.
In a discrete form with PSC(¢;) = §; at defined phases ¢;, the following linear system of
equation emerges:

f 1 sin(¢1)  cos(¢1) 0
= : : as
In 1 sin(¢n) cos(¢n) | L % 1
y B z
y = Bz,

with generally non-square B, i.e., N > 3. The above system can be identified as a generalized
linear least squares problem, which can be solved in a least squares sense by first multiplying by
BT (cf. e.g. [145)):

BTy =B"Bx

@ = [BTB}_1 BTy,

with BT B being a square matrix. In their most general form (not shown), least squares solutions
can also account for varying noise variances for different components ¢ by means of a covariance
matrix (cf. e.g. [189]). In the context of phase stepping curve analysis with moderate a/o ratios,
i.e., moderate intensity variations, the noise variance is approximated to be the same for all 1.

For the case of ¢, = i2r/N (and homogeneous noise variance), classic Fourier analysis is
reproduced:

o1t % 0 0 oI
[B B} -0 2 o for ¢; =i,
0o 0 2

such that
0o = %Z Yi
2 : .
s = Z yi sin(e;) (4.1)
) i
Ac = N zl:yz cos(¢;) -

The linear least squares problem y = Bx may also be solved iteratively by means of the
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Figure 4.2: Example experimental data from a Talbot-Lau interferometer with notably mismatched gratings,
causing a pronounced Moiré pattern. The top row shows a phase stepping image series acquired with a sample
(a plastic hose of about 2cm diameter) in the beam. The collection of 2x3 images on the lower left show the
results after pixelwise evaluation of the phase stepping curves (PSC), depicting the transmission, amplitude
visibility and phase of the respective scans with and without sample. The group of 2x2 images on the lower right
shows the final, normalized visibility and differential phase contrast images (omitting transmission images). The
Moiré pattern visibly translates to the final results in the presence of unaccounted stepping motion imprecisions
when using static Fourier analysis as shown on the bottom right (cf. Egs. 4.1, 4.3). Above, respective results
obtained using Algorithm 4.1 are shown, which simultaneously also reconstructs the actual grating motions. A
more detailed analysis of this example has been published in [29].

following gradient descent scheme minimizing the square error Hy - Ba:||2

0 al® (0 =0,0,0
gjgk) =0 4+ agk) sin(¢;) + agk) cos(e;)

1
CENPONES 0
o o + N - (yl yl )

2
(k41 — ) 4 2 3y, — 58 sin(g,
as — a/s + N - (yl y’L ) Sln(¢l)
2 _(k
al! V) =al + 53 (i~ 1) cos(9n).

%

with (¢;,y;) denoting the data samples to be fitted, N the amount of samples, k the iteration

index and y; — gl(k) the residuals at iteration k. The scheme reduces to classic Fourier analysis
for ¢; = i2n/N as well. As the iterative updates to the sinusoid parameters ok), agk) and a((;k)
are proportional to the respective gradients of the square error _.(y; — ¢;)?, the fixpoint of the
iterative scheme will be the least squares fit also in all other cases. In practice, 10 to 20 iterations
are usually found to be sufficient (cf. Dittmann et al. 2018 [29]). A practical advantage of the
iterative approach lies in its algorithmic simplicity, which is a favorable property for massively
parallel computations on graphics processing units.
The original sinusoid parameters o, a and ¢q are retrieved by

0=0

a=+/aZ+ a2 (4.3)

¢o = arctan2(—ac, as)
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CHAPTER 4. TALBOT-LAU IMAGING

4.2.2 Phase stepping analysis in the presence of motion imprecisions

The just presented linear least squares techniques (iterative, non-iterative or Fourier analysis)
formally solve the optimization problem

Oj, aj, qj)o’j = argmin Z (Oj + aj sin(@ — ¢0,j) — yij)2 (44)

0j,a5,¢0,5 "
for each detector pixel j and require the sampling phases ¢; to be known (y;; denotes the detector
readings at pixel j and phase step ). As outlined previously, any unaccounted variances on ¢; (due
to mechanical imprecisions on the sub-micrometer scale within the phase stepping procedure) will
translate to non-negligible errors on the derived quantities o, a; and ¢g ;, typically causing Moiré
artifacts in the final 2D dark-field and differential phase images (see Fig. 4.2 (lower right) and the
derivations in [66]). These characteristic artifacts correspond to crosstalk among ¢y ;, 0; and a; in
the presence of noise or systematic errors on ¢;.

Mechanical variations in the stepping motion of a grating do however affect all detector pixels
simultaneously, with the number of pixels (i.e., the number of individual phase stepping curves)
usually outnumbering the degrees of freedom of the individual optimization problems by several
orders of magnitude. Due to this correlation among many PSCs, the shared stepping phases may
thus be treated as optimization variables as well (assuming local optimization about their intended
values):

. . . . 2
0j,a4,%0,5,9:(j) = argmin Z (0j + a; sin(¢;(j) — ¢o05) — vij)" - (4.5)
0j,a;,00,5,%i(j) i,j

©i(j) generally are slowly varying polynomials over the two dimensional imaging plane (as detailed
by the author in [29]), here formally parametrized by the sequential pixel index j, although the
assumption of constant (w.r.t. j) stepping phases is usually found to be sufficient.

In contrast to the initial problem of sinusoid fitting based on known ¢;, this problem is not linear
anymore. The nonlinear aspect, i.e., the local optimization of ¢;(j), may however be separated into
an isolated optimization problem to be solved alternatingly with the remaining linear problem in
an iterative manner:

2
o§k), a;k), qb(()]f} = argmin Z <0j +aj sin(@(—k) (4) — ¢0,5) — yij)

0j,a5,%0,5

2
A¢() = argmin 3~ (o) + ) sin(@(" () + A6i) = o) ~is) .+ (40)
i\J 7

k—1
with 6" (j) = ¢: + > At (j)
k’=0

and ¢; being the originally intended (i.e., known) stepping phases. The large parameter space of
Eq. 4.6, defined by the number of phase steps multiplied by the number of polynomial coefficients in
Ag;(j), still makes the use of general purpose non-linear optimizers such as the widely used BFGS

algorithm unattractive. Instead, the deviations A(bl(-k)( j) may rather be determined by means of the
following surrogate linear least squares optimization problem based on noisy, pixel wise estimations
A¢§;€) for Agbz(-k) (j) to be detailed afterwards:

(k) _ . -2 N )
Ag; () = ai%f?;)n;%j (A¢2(J) Ad;; ) )
with A¢;(h(5),v(§)) = Adi + Vugi b+ Vydi v + Vit hv + V2 ¢; h?
h(j),v(j): 2D coordinates on the detector plane
perpendicular (h) and parallel (v) to the grating bars

Adi, Vnoi, Vodi, Viwdi, Vizd;:  polynomial coefficients .

A term quadratic in v has no physical correspondence in the considered problem and is thus omitted.

The inverse variances 0'1]2 describe the expected certainty of the respective estimates. The following
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definitions have been derived by the author in [29] by means of locally linear approximations of the
objective function 4.6:

¢><’“’—hmw(cos<¢<’“> o6 (a8 = o) = asin(}) — 0(1)))

1 )2 k k
505 2eost (6 — afl))

o a7 eost (o) o)

ij
limit(Adm > 0) = 1 m=0
imit(Ag,m 2 0) = m tanh (%) else

The limit(-,-) function (and the weights Uif) ensure (and weight) compliance with the validity
ranges of the involved approximations. The absolute scale of Uij is thereby irrelevant to the
optimization.

Finally, the following iterative algorithm based on an alternation of linear least squares problems
can be stated, which for practical examples (Fig 4.2) has been demonstrated to converge within as
few as one to five iterations:

Algorithm 4.1 Iterative reconstruction of phase stepping curves’ parameters and the actual phase
steps, with ¢; and y;; being the input data and Agbz(-k)(j) a polynomial model of the physically
expected sampling phase deviations as detailed by the author in [29]. All argmin operations are in
the form of efficiently solvable linear least squares problems.

8\ = ¢;
2
) ] ,%j = argmin Z (oj +aj sm(qb” — o) — yij>

05,a;5,%0,j i
A¢5;>zlimit(cos<¢5;>—¢g'f;><<><yff> o) — a2 sin(ol}) — ¢(1)))
L (k)2
54;  cos (qS %J)
30117 = sggmin 3 (oo ) - o) (305) -84
N——

Agi(j

weighting factor U;jZ 2D polynomial
up to 2°¢ order
(k+1) k k), .
o = o)) + 20" (j)

o+ (k+1)7 ¢0k+1

2
k
; = argmin (OJ +a; Sln((bgj) — o) — yij)

05,0 , 00 N

Conclusion With respect to the direct, non-linear optimization of Eq. 4.5 or Eq. 4.6, two
considerable simplifications have been achieved: Foremost, the optimization of the deviations

gb(k)( i) has been separated into individually solvable problems for each step i. Moreover, the
individual problems for each phase step have been reduced to a common 2D polynomial regression
problem, allowing to easily account for non-constant A¢;(j). The approach is therefore well
applicable to use cases with a large number of phase steps and can easily handle as many as 102
optimization variables within the unknown deviations A¢;(j). Due to the very large number of
phase stepping curves (detector pixels), typically in the order of magnitude of 105, considerable
noise levels on the estimations A¢;; are tolerated, in particular if only the dominating constant
term of A¢;(j) is to be determined.
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4.3 Noise properties of grating interferometric images

With regard to derived applications of Talbot-Lau imaging such as dark-field computed tomography
(cf. Sections 4.5 and 5), the noise properties of the respective contrast modalities are of particular
interest. As will be shown in the following, the signal to noise ratio of dark-field contrast is generally
substantially lower than that of absorption contrast, and diminishes even faster in the limit of thick
samples (cf. Figure 4.3). Respective quantitative insights do provide important guidance for the
planning and evaluation of experiments.

Noise on the recorded intensity values y; at each phase step 7 (the detector pixel index j is
omitted here for brevity) emerges both from statistical photon noise and additional detector readout
noise. The resulting noise characteristics of the derived contrast modalities shall be analyzed in
the following by means of linear error propagation, which approximates the relation between the
variances 051 of the measured intensities y; and the variance JJ% of a derived quantity f(y1,y2,...)
by means of its local partial derivatives:

0
0]20(917 s Yiy o) A Z <8y1f(yi1ayi27 )

i

2
in) ’ (4'7)
Yi

assuming uncorrelated zero-mean Gaussian random noise on the input variables y;. While particular
focus will be put on the dark-field signal, first the propagation of Ui onto the sinusoid parameters
of the phase stepping analysis needs to be considered.

4.3.1 Noise variance of the stepping curve’s sinusoid parameters

In the ideal case of a sinusoid phase stepping curve sampled at equidistantly distributed phase
steps ¢; over multiples of 27 (such that mean, sine and cosine form an orthogonal basis), further
assuming a homogeneous noise variance o = o2, the following relations for the variances o2, o3
and 035 of the sinusoid parameters a (amplitude), o (mean) and ¢o (phase) result from Equations

4.1 and0 4.7:
1 2 2 o2 o? o?
2 2 2 2 2 2 20_2 2 Yy a 2 ;

Ozﬁay g,=0, =0 =

g a as ac — No-y -

© %% " Na = a2 a?’
with N denoting the total number of phase steps, i.e., the total number of input data values y;. Due
to the orthogonality of the Fourier basis and the assumption of uncorrelated zero-mean random
noise, the random errors on o, a and ¢ (or o, as and a.) remain statistically independent. Eq. 4.1
therefore remains applicable to quantities derived from these parameters. For completeness, it shall
be pointed out that Uiﬂ is, due to the periodic nature of the sinusoid, bounded at 7/+/3 in the limit
of Uz — 00, corresponding to a uniform distribution on the circle (cf. [189]).

The above relations hold, for a sinusoid signal, also under consideration of the following
i-dependent Poisson noise model:

b = 00 T ay; (4.8)

Oy; =

with oo characterizing the constant signal read out noise and ay; the intensity-proportional variance.
After substitution of 051_ = 02 + ay; into Egs. 4.1 and 4.7, the initially assumed mean variance 05
can be explicitly identified as the average of aii:

1
2 _ 2 _ 2
ay—00+a0—N g Oy, s
i

corresponding to the expected variance at the mean intensity y; = o.
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4.3.2 Noise variance of the dark-field image

The dark-field contrast upr is obtained from the negative logarithm of the visibility ratio of
perturbed beam (by the sample) and empty beam:

(Usmp) — In asmp/Osmp
Uref aref/oref

= ln(aref) — ln(asmp) + ln(osnlp) - ln(oref) ;

upr = —In

with the subscripts “smp” and “ref” indicating the sinusoid parameters o (mean) and a (amplitude)
for the phase stepping curves acquired with and without sample respectively. By application of
Eq. 4.7, the variance is given by

2 2 2 2

g g g g
Osm T Asm T
O_]QJF 25 P 02ef 25 P C;ef , (4.9)
Osmp Oref a’smp aref

with the first terms corresponding to the variance O'/2L of the absorption contrast

== ln(osmp/oref) = ln(oref) - ln(osmp) .

Given a homogeneous sample of some scattering material, the observed dark-field signal will be
proportional to the sample thickness and therefore also to its absorption u. The phase stepping
curve’s mean o and visibility v = a/o may thus, for the purpose of noise analysis, be modeled using
the following relations:

Osmp = Oref€ H
e (4.10)

—C
Usmp = Uref€ ",

with ¢ denoting the proportionality factor between p and ppg. Analyzing the dark-field contrast in
terms of the accompanying attenuation signal will provide an intuitive understanding of its noise
characteristics in relation to classic X-ray imaging, and will in particular directly exhibit its limits
in terms of resolution and sample size as compared to common attenuation imaging.

Substitution of Eq. 4.10 into Eq. 4.9 yields:

2 2 2 2
Gsm g 2 Ooun 20
U]2DF — 0_2 4 P 4 Oref __ 0.2 4 P Oref
g2 a? B2 02 v2,. 02
smp ref smp “smp ref “ref
1
=0)+25— [eQCP‘““agm +o5, (4.11)
v 0 smp re
ref “ref
1
2 _ 2 2 2
op = o [l + k] (4.12)
ref

By further substituting a Poisson noise model 02 = 53 + ao (analog to Eq. 4.8) and the resulting
relation o5 = a5 +e H(05,  —03) = 05(1—e #)+ o) e into Egs. 4.11 and 4.12, the variances
o3 and Uz can be expressed in terms of the reference noise and intensity values (o,,., and oyef)

and the absorption and dark-field signals p and cp:

1 n (o
oby = o+ 2 [t (e ~ ) 4 o) 05, ] (1.13)
1
O—Z - OT [eH (63(6“ B ]‘) + Ugref) + Ugref] ’ (414)
ref

where o is the constant noise component of the mean intensity o as opposed to the respective

constant component og of individual data points y; as used in Eq. 4.8. Typically, 69 = ¢/ V'N.
Figure 4.3 gives some practical examples of the above results. In order to provide more qualitative

insights, the asymptotic behaviour of Eqgs. 4.11 and 4.13 shall be considered in the following.
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Figure 4.3: Example material thickness dependent signal-to-noise ratio for attenuation and dark-field contrast
based on Egs. 4.13-4.14 using a set of experimental parameters (orer = 5000, vrer = 0.4, 6o = 9, 0o, = 15)
observed in the synchrotron experiments shown in Section 5.4. The model proportionality factor ¢ between
attenuation p and dark-field upr has been chosen ¢ =1 (as a mean order of magnitude, cf. Fig. 5.7). On the
left hand side, the considerable difference in SNR for 11 and upr becomes apparent. In addition, the asymptotic
approximation to the dark-field SNR based on Eq. 4.15 is shown. On the right hand side, the effects of noise
reduction by means of pixel binning (reducing ¢ and oo, ) and by elimination of readout noise (i.e., 5o = 0)
are demonstrated. Gray markers indicate when the SNR drops below 5, which can be considered a required
minimum.

4.3.3 Asymptotic properties of dark-field noise variance

The dark-field noise variance O’DF as described by Eq. 4.11 can be, both in the limit of ¢t — 0 and
in the limit of e?#+2g2 o o2, expressed in terms of Ji:

Oref?
2 e2cr
2 . 2 RIS 2
OHp A2 U,J(l + e ) & 2—02 Ty
ref ref

which has further been simplified using the approximation —— > 1 based on the fact that v.er €]0;1]

usually ranges below 0.5 for most systems (in particular for polychromatlc laboratory setups). Le.:

C
ODF & \@ﬁ(jp = ﬁoﬂ for e — 0 and cpp — oo . (4.15)
Uref VUsmp
See Fig. 4.3 for an example. Eq. 4.15 directly reveals that the signal to noise ratio of the dark-field
signal is generally considerably lower than that of the absorption contrast and in particular degrades
much faster as the sample thickness increases due to the additional exponential factor e°* = e#PF
with respect to o,,.
In the thick sample limit, O' . becomes negligible, such that Eqs. 4.13-4.14 reduce to:

2p
. et _ 1 _
lgn (O’i) = — 0(2) == 0(2)

H—ro0 Oref Osmp

21 ,2cp
et e 1

. 2 o —2 ~2
hjgo(UDF) =25 —5—0p 2 .2 J0>
® ref Uret Osmpvsmp

and the detector readout noise variance o3 becomes the limiting factor. The impact of 7y is also
demonstrated in Fig. 4.3. For the case of 02 = g3 = 0, as in the case of photon counting detectors,
the following limits for Eqs. 4.13-4.14 result in contrast:

. et 1

lim (02) = TO'(Q) =02

—>00 I 19) ¢ ref Orefosmp ref

a'g—>0 re

Hop2cp 1
e e

. 2 _ 2 _ 2
lim (o0pp) =2—5——5—0, = 2 Toper *
p,;)oo ref Urcf OYEfosmPUSmp
o5—0
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4.3.4 Systematic errors in phase stepping analysis

Bias errors in interferometric imaging have been discussed e.g. by Chabior et al. [18] and Kaeppler et
al. [82], based on previous literature on the analysis of quadrature signals. Bias refers to systematic
erroneous offsets often smaller than the random errors, yet persistent after reducing the statistical
variance of noisy signals by temporal or spatial averaging. Given the outlined noise characteristics
of the dark-field signal, averaging (pixel binning) is regularly required, making the discussion
of bias obligatory. While [18, 82] specifically focused on the visibility contrast (as opposed to
its negative logarithm or the entire phase stepping curve) and respective technical details, the
following discussion shall give a more general understanding of bias applicable also to other contrast
modalities.

Bias effects can generally emerge after signal transformations despite the original signal noise
being zero-mean, i.e., unbiased. This can be easily seen for general magnitudes (e.g., amplitude or
contrast visibility of the phase stepping curve), which are by definition always positive irrespective
of the underlying quantity and respective noise. This is particularly important to realize as such
induced bias effects are obviously specific to the particular transformation (e.g., absolute magnitude)
as opposed to the original signal. When recalling the estimation of error propagation based on
local series expansions (cf. Eq. 4.7), bias errors can be attributed to even-ordered (and thus axial
symmetric) polynomial expansion terms of the particular transformation considered. This further
implies that corrections for bias cannot be generally applied as an intermediate step within a longer
processing chain, but should typically be applied last based on the integral higher-order error
propagation properties of the entire processing chain. Given the previous discussions by Chabior
et al. [18] and Kaeppler et al. [82] regarding bias within the visibility signal v = exp(—upr), and
given further that the present work focuses on the analysis of dark-field signals —In(v) = upr, it
shall be explicitly pointed out here that bias corrections with respect to v as stated in [18, 82]
are only advisable when actually working or performing averages (e.g., detector binning) in the
visibility domain. The amplification of bias errors as compared to random noise can — as done
in the present work — otherwise be avoided by averaging (binning) in the original image domain
(or any odd function thereof) exhibiting zero-mean noise, prior to the evaluation of visibility and
dark-field signals (i.e., prior to the application of nonlinear transforms).
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4.4 Dark-field Contrast Interpretation

The origination of X-ray dark-field contrast has been discussed from different points of view and
varying levels of mathematical rigor in previous literature. As the underlying physical relations
are essential with respect to quantitative interpretations of X-ray dark-field images, the following
Sections will review common approaches to the interpretation of dark-field contrast and demonstrate
their interrelations. Respective approaches range from heuristic characterizations of point spread
over analogies to classic small angle scattering up to ab-initio derivations based on wave optics.
It will be shown that all presented ideas can be understood as approximations of the latter. The
link to wave optics further allows to introduce Fresnel scaling to explain the changed propagation
distance dependence of dark-field contrast in cone beam laboratory setups as compared to parallel
beam configurations at synchrotron beamlines. Experimental evidence for the presented relations
will be shown in Sections 4.4.5, 4.5.1, 4.5.2 and 4.6.4.

4.4.1 Visibility reduction by Gaussian point spread

Analog to the characterization of the modulation transfer properties of an optical system, visibility
or contrast reduction of the structured beam (i.e., the reduction of the first harmonic Fourier
component normalized to the zeroth as e.g. defined by [138]) can generally be modeled as Gaussian
blurring of the reference sinusoid profile. The underlying conception is a convolution of the incident
intensity distribution with an effective point spread function or scattering profile of a sample.
Normalizing the Gaussian to the ratio of transmitted intensity ¢ € [0,1] (i.e., also accounting for
attenuation or general reduction of intensity), the following convolution kernel can be stated:
t  -3sf

0.2
®
V2o

€ )
with o4 being its standard deviation in units of radians and A¢ the phase with respect to the
periodic irradiation profile (not to be confused with a scattering angle). The width o, will later
be expressed in terms of geometric parameters based on absolute scales of the instrument. Yet to
begin with, the present formulation will be convenient.
By explicitly solving the convolution integral over a generic sinusoid reference profile oyof +
Ayef COS(0)):

t +oo _% AUQ;Q ai
V2moy Lm dAG (Oret + aref cOS(Ad —d)) e~ "¢ = Loret + L aret €2 cOS(9)

=Osmp =0Qsmp

and identifying the changed mean intensity and amplitude parameters osmp and asmp on the right
Gsmp /Osmp

hand side, the sample-induced visibility reduction v, defined as v = vsmp/Vrer = s

directly identified:

, can be

(4.16)

Due to the orthogonality of the Fourier basis, this result also applies to non-sinusoidal phase stepping
curves and generally describes the contrast visibility of a particular harmonic of the periodic pattern
implicitly selected by the respective definition of ¢ with respect to spatial dimensions, which will
be concretized in the following Section.

Although visibility is, by virtue of describing a normalized amplitude, an inherently positive
quantity, it can in the context of grating based phase contrast imaging (which will not be further
considered in the present work) be meaningful to explicitly define negative visibilities as well. Due
to the ambiguity acos(¢) = —acos(¢ + ), the sign of a sinusoid’s amplitude may generally be
flipped when simultaneously accounting for a phase shift of 180°. Whenever the phase shift is
explicitly constrained by suiting prior knowledge, negative amplitudes and visibilities can therefore
result, as is e.g. the case in [210]. A physical interpretation of this mathematical peculiarity can be
found in the relation between the complex amplitude and the observable intensity of light waves.
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4.4.2 Linear diffusion interpretation

Given the period Tgo of the Talbot interferometer’s analyzer grating, the sample induced blurring
width oy of the first harmonic can be expressed in spatial units (indicated by the subscript z):

o — Loz
r 2 ’

When further arguing that the specific width o, at the location of the analyzer grating arises
due to a beam divergence caused by the sample at distance d, the respective divergence may as
well be characterized by an angular standard deviation oy. Using the small-angle approximation
Af ~ tan A = % for d > Az, we find:

% _ Te20¢

=0T A o
Teo
— 292 oTn(o). 41
2/ I() (417)

Within the model of angular beam diffusion and geometric propagation onto the analyzer grating,
0p represents an invariant property of the sample (at a given X-ray energy), while v, o4 and o,
include properties of the instrument.

This geometric interpretation has e.g. been given by Wang et al. (2009 [188]) to describe the
origination of dark-field contrast, and Bech and Griinzweig et al. (2010/2013 [7, 53]) introduced
this concept as “linear diffusion coefficient”

op _ 1 Tg
Az 27242

In(v), (4.18)

6 =

Az
further normalizing 03 to the sample thickness Az in order to obtain a thickness independent
material constant analog to the classic “linear absorption coefficient” u, such that:

~Infoeg)) x [deelo2).

with 2z denoting the optical axis and x,y being the planar projection image coordinates.
Anticipating the following Sections, it shall be noted here that the linear diffusion interpretation
only holds in a parallel beam geometry and in the limit of sufficiently large and smooth scattering
structures. The critical length scale depends on the interferometer parameters, as will be explained
in the following (cf. Sections 4.4.3 and 4.4.4). Additional geometric scaling effects beyond the
trigonometric relation o, ~ doy need to be explicitly accounted for in the case of a Talbot
interferometer in cone beam geometry, i.e., in the typical laboratory use case (cf. Secion 4.4.5).

4.4.3 Ab initio derivation of visibility reduction

Yashiro et al. and Lynch et al. (2010-2011 [211, 103]) derive the origination of dark-field contrast (or
visibility reduction) starting from a first principles approach, explicitly modeling spatially varying
refractive indices of grating and sample. By coherent propagation of the complex wavefront to the
location of the analyzer grating within the optical Fresnel regime and subsequent Fourier analysis
(analog to the effect of the analyzer grating), a complete model of the Talbot imaging process in a
parallel beam geometry is obtained. While Yashiro et al. considered the sample to be placed in
front of the Talbot interferometer, Lynch et al. considered the case of the sample placed between
the modulator and analyzer grating. Both arrive at the same conclusions employing a statistic
model of the sample’s refractive properties on the scale below the system’s spatial resolution. More
specifically, the sample is characterized by its total phase shift ® along the optical axis (its absorbing
properties are treated separately), which varies in the perpendicular z,y plane (the imaging plane),
i.e., ® = ®(z,y). Decomposing ®(z,y) into low- and high-frequency (smooth and fine) components
Oy (x,y) and P¢(x,y), the dark-field contrast can be attributed to the high frequency component
®¢. High frequency variations in absorption are neglected. The lower cutoff frequency of @ is
determined by the spatial resolution of the imaging system, i.e., by its effective point spread width.
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The final result given by both Yashiro and Lynch (although using different notations) relates
the visibility v to the autocorrelation of the high frequency part ®¢ of the sample’s phase shifting
properties &:

v = e—aif(l—v(i)), (4.19)

with (&) being the normalized autocorrelation function (i.e., ¥(0) = 1), 03, the variance of ®;
and & the correlation distance. vy(£) and crfI>f are to be understood as respective mean properties
of ®¢ on the spatial scale of the imaging system’s point spread width at a given location (z,y).
The explicit x,y dependence has been omitted here for improved readability. aéf has, within an
analogy to general scattering theory by Strobl and Prade et al. [174, 143], been identified with a
scattering cross section (cf. Section 4.4.6). The one dimensional autocorrelation parametrized by &
is performed along the interferometer’s sensitivity direction, i.e., perpendicular to the interferometer
grating bars. This for most setups is the horizontal or x direction.

The correlation distance £ is determined by the X-ray wavelength A, the analyzer grating period

T2 and the distance d between sample and analyzer grating [211, 103]:

_ A
Teo

3 (4.20)

This relation has been consistently given also in the context of other derivations, e.g. [195, 174].
The correlation distance can thus be easily tuned by varying d, i.e., by moving the sample closer
to or further from the analyzer grating. The system constants A and Tgs (and the maximum
possible distance d) determine the accessible order of magnitude of £, which typically ranges at the
micrometer level for most X-ray Talbot interferometers.

Although Yashiro and Lynch did not explicitly consider the case of d being larger than the
G1—-Gs distance (i.e., the sample was assumed to be either directly in front of Gi, or between G,
and Gg), experiments indicate that this situation is not fundamentally different (cf. Fig. 4.4.5)

The distinction between effective cross section U?Df and autocorrelation y(§) can also be inter-
preted as a representation of orthogonal sample properties. While (&) is characteristic to the
structure perpendicular to the optical axis, a%f characterizes the sample along the optical axis. In
particular, Uéf will scale with sample thickness, while v(£) depends on the sample’s characteristic

structure.

4.4.4 Relation to the linear diffusion interpretation

The geometric beam diffusion interpretation given by Wang, Bech and Griinzweig et al. (20092013
[188, 7, 53]) can be found as a special case of the more general result v = exp(—o3, (1 —~(£)) given
by Yashiro and Lynch when considering the limit of smooth convex (spheroid) scattering structures

of diameter D > £. The autocorrelation function v can then be approximated by exp(—%%)
(cf. [143] and references therein):

B2 (4.21)

for D> ¢,

() (L) (B ) e

2
4

such that

=0

In this limit, the linear distance dependence of the blurring width o4 on the sample distance d as
assumed in the angular diffusion interpretation is reproduced. By substitution of Eq. 4.22 into
Eq. 4.18, the following identity results:

1 A (o 2
~— | — . 4.2
‘T Az <27r D/3) (4.23)
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Figure 4.4: Comparison of experimental data acquired in cone beam geometry by M. Chabior [17] with the
Yashiro-Lynch model (Eq. 4.19) under consideration of Fresnel scaling (cf. Eq. 4.26) and a generic exponential
autocorrelation model (cf. Eq. 4.27).

The linear diffusion model becomes inaccurate as soon as y deviates from a parabolic approximation,
which either is the case for too large values of £/D (i.e., for too small diameters D), or when
actually is not parabolic even for small £/D. The former case applies for too small scattering
particles, while the latter case applies for non-smooth shaped structures.

While the geometric beam diffusion interpretation was originally proposed independent of the
particular imaging geometry (parallel beam versus cone beam), it’s relation to the more rigorous
Yashiro-Lynch theory suggests that additional geometric scaling effects as predicted by coherent
optics need to be taken into account when considering laboratory instruments operating in cone
beam geometry.

4.4.5 Magnification and Fresnel scaling in cone beam geometry

The derivations by Yashiro and Lynch, as well as the numeric simulations by Malecki et al. [107]
confirming their results, were explicitly performed in a planar illumination context, which in
experimental terms is commonly given only at synchrotron facilities. Laboratory setups operate at
moderate distances from an X-ray point source as compared to the extent of the illuminated field of
view and therefore exhibit non-negligible changes in geometric magnification for different positions
along the optical axis. However, by means of the Fresnel scaling theorem, all results obtained for
plane wave illumination within the Fresnel approximation can be directly transferred to a cone
beam or point source illumination scenario by geometric scaling of all dimensions, i.e. [134]:

d
7(sOD) — 2y Y@ 4.24
(x7y’d) (M7M’M) ( )
SDD SDD (4.25)

~SOD SDD-4d’

with M being the geometric magnification factor defined by the ratio of source-detector distance
SDD (assumed to be equivalent to the source-Gs distance) and source-object distance SOD. The
optical axis is oriented along the z-axis, x and y are the orthogonal image plane coordinates. 1(SOP)
is the intensity distribution at the detector (placed directly behind the analyzer grating Go at
distance d from the sample) in the case of a source placed at distance SOD. I(>) is the intensity
pattern for the case of an infinitely distant source (i.e., the case of plane wave illumination). The
Fresnel scaling theorem essentially states that classic geometric magnification based on the intercept
theorem applies also to coherent wave propagation within the Fresnel regime, affecting both the
plane perpendicular to the optical axis as well as propagation distances along the optical axis.
While this scaling relation is taken into account in the design of laboratory type Talbot-Lau
interferometers by scaling the position and period of the modulating G grating appropriately with
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respect to the analyzer grating Go [191, 190, 33], it has, to the author’s knowledge, not yet been
regarded in models of the distance dependence of the visibility or dark-field contrast.

When consequently applying the above scaling relation to the correlation distance & (cf. Eq. 4.20),
the effective correlation distance in terms of the actual sample dimensions becomes, for a cone
beam (CB) geometry,

A d
fep =§/M = Tde(l - ﬁ) . (4.26)

N——
13 =1/M(d)

This result can be either interpreted as a consequence of scaled sampling from the sample’s phase
®(z,y) according to the Fresnel scaling theorem, or, more intuitively, as the consequence of the
geometric magnification of the sample at the location of the analyzer grating, which serves as the
reference scale for all other (downscaled) planes along the optical axis (cf. the definition of M,
Eq. 4.25). Consequences of the specific form of {cp are its symmetry about d = SDD/2 and its
maximum at d = SDD/2:

A SDD
Tao 4
Within the Fresnel approximation, the spatial order of optical elements along the optical axis is
related to their respective propagation distances. As Eqgs. 4.19-4.20, which have been derived
from a wave optical approach, are independent of the position of Gi, so is the scaled version
4.26. In contrast to the geometric optics reasoning given by Donath et al. [33] in the context of
differential phase contrast imaging, which was transferred by several authors to dark-field imaging,
the symmetry of Eq. 4.26 emerges from the specific relation between physical distance, geometric
magnification and resulting effective propagation distance of the sample with respect to the detector
(cf. Eq. 4.26), and is thus in particular expected to be independent of the position of Gj.

This also has implications on the angular beam diffusion model (cf. Sections 4.4.2 and 4.4.4) for
the origination of dark-field contrast. By its conception of diffused incident beams, geometric scaling
was assumed to arise, independent of the actual system geometry, only due to the trigonometric
relation between diffusion angle oy and sample-detector distance d. When considering the beam
diffusion model as an approximation of the Yashiro-Lynch theory in the case of large sample
structures in relation to £, as was discussed in Section 4.4.4, the following modified relation is found

£CB,max =

though:
oo (388) () () ()
2 (D/3)? 2\ D/3 Tas M(d)
:g’i
ie., g9 x ﬁ rather than o d.

Experimental evidence can be found e.g. in the Thesis of M. Chabior [17] (cf. data reproduced in
Fig. 4.4), who indeed finds, for a paper sample in a cone beam setup, a deviation from the quadratic
distance dependence of In(v) as expected by the classic linear diffusion model (cf. Section 4.4.2).
The severe deviations found in the same work for aluminum and graphite samples can on the other
hand be explained by an additional violation of the implicit D < & assumption (cf. Section 4.4.4).
Eq. 4.26 further reproduces the symmetry in the distance dependence about the midpoint between
source and G that was experimentally shown e.g. by Chabior [17] and Prade et al. [143]. This
symmetry has previously been associated with the geometric optics argument given by Donath et
al. [33] (expecting the maximal propagation distance to be explicitly related to the position of Gy),
which was transferred e.g. by Strobl [174] to the context of dark-field imaging.

Figure 4.4 reproduces the data published by Chabior [17] (using an interferometer designed to
45keV with an analyzer grating period Tgo of 4pm, i.e., A\/Tga ~ 6.89 x 107°%) and compares it
to the Yashiro-Lynch model under consideration of Fresnel scaling (cf. Eq. 4.26) and the generic
autocorrelation model

Y(cp) = e~ (Een /D™ (4.27)

also used in [211], with L being a characteristic correlation length and the Hurst exponent H
characterizing the shape of the autocorrelation function and in particular allowing for both sharp
and smooth autocorrelation profiles. The results shown in Fig. 4.4 are perfectly consistent with the
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expectations of Eq. 4.26, although the particular experiment does not allow to explicitly confirm
the independence of the observed symmetry from the actual placement of Gj.

Besides the correlation distance £, also the effective integration area of a detector pixel with
respect to the sample dimensions is subject to geometric scaling. As the autocorrelation function
~v(£cp) represents the mean statistical properties of the sample’s phase shifting properties below the
imaging resolution (cf. Section 4.4.3), v itself will be subject to change whenever the the imaging
resolution (i.e., the pixel integration area) crosses characteristic lengths scales of the sample’s
structure. This effect was experimentally observed by Koenig et al. [87], who further consistently
find a dependence also on the X-ray focal spot size, which likewise affects the imaging resolution.

4.4.6 Relation to Small Angle Scattering

Small angle scattering (SAS) techniques, or more specifically, small angle X-ray scattering (SAXS),
sense a sample’s differential scattering cross section (its scattering angle distribution) usually by
means of illuminating it with a collimated X-ray pencil beam. A planar detector array placed
behind the sample at a sufficient distance captures the scattered radiation. By application of
fundamental principles from optics and Fourier analysis, the observable two-dimensional diffraction
pattern is commonly shown to correspond to the Fourier transform of the auto correlation function
of the sample’s scattering length density (cf. e.g. the textbook by da Sivia [171]). As the latter
is, on a larger scale, related to the sample’s mass density, the observed pattern can be, more
qualitatively, understood as the Fourier transform of the autocorrelation function of a sample’s
micro- or mesoscopic structure. The resolution and range of sampled correlation distances depends
on the sensed angular range, with smaller scattering angles corresponding to larger correlation
distances, i.e., to larger structure scales.

While SAXS commonly addresses length scales in the 10" to 102 nanometer range, the signal
captured by X-ray Talbot interferometers corresponds to ultra small angle X-ray scattering (USAXS)
typically related to lengths scales on the micrometer scale (cf. Egs. 4.19 and 4.20). An important
practical difference between SAXS and USAXS with respect to data analysis and interpretation
emerges from the relation to the incident radiation: while the larger scattering angles in SAXS
generate signals well separated from the incident radiation, USAXS analyses require explicit
consideration of contributions of the original beam.

Following the convolution concept of dark-field contrast origination, Modregger et al. infer the
effective point spread function (PSF) of a sample by means of actual deconvolution of the phase
stepping curves (PSC) acquired with and without sample [118]. The result is directly interpreted,
in analogy to classic SAXS, as differential scattering cross section and Fourier transform of the
sample’s autocorrelation function [117, 116]. Implicit to this reasoning is the assumption that the
incident radiation entirely participates in the scattering process described by the inferred PSF.

Another analogy between small angle scattering theory and dark-field imaging was drawn
by Strobl [174] and Prade et al. [143], who model an incoherent superposition of scattered and
unscattered fractions of the incident radiation in order to arrive at an expression equivalent to
the wave optical results by Yashiro and Lynch (cf. Eq. 4.19) in parallel beam geometry. The
factor o3 (cf. Eq. 4.19) is thereby identified as the scattering cross section defining the ratio of
scattered radiation. An experimental comparison of the latter model (and consequently also of the
Yashiro-Lynch model) to SAXS is given by Gkoumas et al. [43], who investigate contributions of
the structure factor to the autocorrelation function — as expected in classic scattering experiments
— for dense sphere suspensions in a parallel beam synchrotron setting.

The PSF deconvolution approach is, in terms of Fourier analysis, equivalent to the evaluation
of higher order Fourier components of the PSCs, of which commonly only the zeroth (mean
attenuation) and the first (mean attenuation and visibility reduction) are evaluated. IL.e., when
directly interpreting the point spread function (or convolution kernel) as a SAXS pattern, the
respective Fourier coefficients ¢, of the phase stepping curves with and without sample are expected
to be related by an autocorrelation function +/(mg):

PSCsample erence
g™ o o () gl S|

with m enumerating the harmonics. The prime explicitly distinguishes it from the autocorrelation
function 7 as defined by Yashiro and Lynch (and Strobl and Prade), although v and ' are expected
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to be closely related. When directly comparing +" with the Yashiro-Lynch theory for a thin sample
and m = 1, we find (assuming 1> o3 (1 —y(m§)) > 0):

_0-2 —
Y ()2 e 7T 1 02 (1-4(€))
Roz &)+ (1—03,),

i.e., the Yashiro-Lynch theory is qualitatively consistent with the expectations from classic scattering
theory, yet differs in detail. First, SAXS theory is inherently founded on a single scattering
assumption, i.e., a thin sample assumption. This gives rise to the linear vs. exponential relation
with the autocorrelation function. The constant offset (1 — o(%f) corresponds, within the model
employed by Strobl and Prade et al. [174, 143], to the unscattered fraction of the incident radiation,
which was not explicitly modeled in the SAXS analogy by Modregger et al. [118, 117, 116].

4.4.7 Superposition of dark-field signals

With respect to tomographic imaging, linearity of the given contrast modality is a necessary
prerequisite. L.e., the signal generated by a stack of samples must equal the sum of their isolated
signals. Analogously, the signal response is required to be proportional to the thickness of a
homogeneous sample. In classic X-ray computed tomography, this is provided by the well known
Lambert-Beer law of intensity attenuation.

An equivalent relation is also found for the dark-field contrast modality: most directly, it
can be inferred from the Gaussian convolution model given previously in Section 4.4. Under the
assumption that multiple samples (sections of a larger sample), characterized by their effective
point spread widths o, ;, don’t interact, their combined effect will be a series of convolutions (as
direct consequence of their individual effects). As convolutions of Gaussian kernels correspond to a
summation over their variances, the combined signal is then, with Eq. 4.16, given by the product of
their individual visibilities:

v=e 3% = H e a%i = Hvi . (4.28)

This argument has been employed e.g. by Wang et al. [188] (in analogy to Khelashvili et al. [85])
and Bech et al. [7] to derive the feasibility of dark-field tomography. The relation can further be
generalized to non-Gaussian convolution kernels by means of the convolution theorem, as has been
done by Modregger et al. [117, 116]:

9(A¢) = g1(Ad) ® g2(Ag) ® - - -
v'(q) = F(9(Ag)) = H}—(gi(A@)

= exp (Z In f(%))

with ® denoting the convolution operation and F the Fourier transformation. ¢ is the conjugate
variable to A¢ after transformation. g(A¢) is the effective point spread kernel found for a sample,
with g;(A¢) being individual contributions. The prime on v'(q) indicates the missing normalization
to v’(0). The Gaussian convolution model is in fact a special case of this more general formulation.
The frequency (¢) dependence of v is usually not explicitly addressed in the majority of articles on
the subject, as v is commonly explicitly defined as the visibility of the first harmonic of the grating
period, i.e., v = v'(q1)/v'(qo) (cf. Pfeiffer et al. (2008) [138]).

The linear superposition of exponential arguments is, independent of the above considerations,
also found by Yashiro et al. [211] and Lynch et al. [103] within their wave optical derivations of
dark-field contrast origination (cf. Section 4.4.3).

With respect to tomographic applications, for which the Lambert-Beer relation is generally
exploited, it shall be already noted here that the positional dependence of the dark-field contrast
needs to be considered as well, as will be done in the following Section 4.6.
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4.5 Dark-field tomography

4.5.1 Experimental verification of distance and structure size effects

While the dependence of the system’s correlation length £ on the distance d between sample and
analyzer grating G is beneficial with respect to quantitative material characterization analog
to other scattering techniques, the resulting distance dependence of the dark-field signal is an
undesired perturbation in the context of tomographic dark-field imaging. For centimeter scaled
samples, the sample extent is typically not negligible anymore with respect to its mean distance
do from the analyzer grating, wherefore the distance dependence has been explicitly examined
using a rotating circular arrangement of differently sized spherules and compared to the theoretical
expectations discussed in Sections 4.4.2—4.4.4. Figure 4.5 shows a sketch of the experimental setup
and a summary of the respective results.

The distance and sphere diameter dependent signals (Fig. 4.5 left) extracted from projections of
the rotating sample cylinder shall be in particular compared to the explicit expressions for ppr and
the autocorrelation function yp (&) for spherical particles of diameter D given by Lynch et al. [103]
and Yashiro et al. [209] respectively:

[, & 1¢&
1—y/1- > (142>
D2( 2D2) for D> ¢

ppr(D, &) = Az¥f|AX|2D N (ﬁ B lﬁ) ln(1+ V1 —52/D2> (4.29)
A D2 4 D4 1—/1-¢2/D?

1 for D < ¢

1&gy [ ¢ &£ e §/D

&= Ld (cf. Eq. 4.20).
Tao
Constants of the material and experiment will be specified later. Beforehand, the specific method-
ology of the present data analysis shall be further outlined: By Eq. 4.22, the dark-field signal is
expected to be approximately quadratic in d. The data is thus, after subtraction of the background
dark-field signal caused by the sample container (cf. Fig. 4.5, upper left), considered in the square
root domain, i.e. transformed to oy = 2pupr = /—21In(v). It is then fitted to the first order
Taylor expansion

0y(D,d) = 04(D,dp) (1 + ap rsin(w — wp)) (4.31)
Ad(w)

of the unknown actual function o4(D, d) about the mean sample-Go-distance dy, with

L9 D) . (4.32)

ap = —F——~ 750
P 5y(D,do) 0d"° i

The parameters r and w — wy denote the distance and rotation phase of the considered sample
capillary with respect to the rotational axis, and dy + Ad(w) describes the resulting orientation
dependent sample-Go-distance d. Deviations from ap = 1/dy correspond to deviations from the
assumptions of the linear diffusion model (Eqs. 4.17, 4.18 and 4.22), as can be easily verified by
comparison of Eq. 4.31 with the Taylor expansion of the respective model o4(D,d) < dog(D).
While the mean dark-field signal upr(D,dy) = %U¢(D7do)2 contained in Eq. 4.31 can now
be directly compared to Eq. 4.29 given an estimate of the involved material constants (which
will be provided later), further transformations are required for a comparison of ap with the
d(w)-dependent autocorrelation function vp(£(d)) (Eq. 4.30). By substituting the relations

06 = \2upr = /203, (D) (1 - (£(d)))

0 0 o6 0 13
and %V(ﬁ(d)) = 5)757(5)% = 6*57(5)&
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Figure 4.5: Experimental data (left) on the dependence of dark-field contrast both on the distance d between
sample and analyzer grating G2 and on the structure size. Sinusoidal distance variations for multiple samples
were realized by rotating a cylindrical container of radius r &~ 1 cm comprising nine capillary tubes arranged
equidistantly along the perimeter, eight of which are filled with spherules of diameters D ranging between
0.25pm to 80 pm (cf. sketch on the upper right). The ninth empty one serves as reference for the background
signal generated by the sample container, which is approximated using a cos® function due to the expected
180° symmetry. Dark-field signals are evaluated for all viewing angles which allow for unobstructed views on
individual capillaries (hence the uneven sampling pattern), and the background signal is subtracted prior to
further processing. An example projection image is shown on the right. As the distance dependence is expected
to be linearly approximable for 04 = v/2upr (cf. Eqs. 4.16 and 4.22), the signals are evaluated accordingly and
approximated by a sinusoid corresponding to the variation in sample-G> distance. Quantitative comparisons
of both the spherule size dependence and the distance dependence of the dark-field signal with the respective
models given in Egs. 4.29, 4.33 (with Eq. 4.30) and 4.35 are shown on the lower right. Deviations of upr (D, do)
from the expected model (in particular at D = 10 pm) can be related to unaccounted variations in the volume
fraction of spheres, cf. Figures 4.6—-4.7. The d-dependence in cases of D < £ (particularly pronounced for
D = 0.25pum) can be attributed to the non-vanishing autocorrelation function of the sphere arrangement rather
than the spheres themselves.
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into Eq. 4.32, the following correspondence results at d = dy:

1{70 %7(5) |5=fo

ap = — 4.33
P77 2dy 1-(&) (4.33)
T2

which can be compared to the observed values of ap determined using Eq. 4.31. The above
expression may either be evaluated using Eq. 4.30, or may further be approximated using the
Gaussian autocorrelation model given in Egs. 4.21-4.22. Eq. 4.33 then simplifies to

-1
2 2
ap ~ 11 & (&(D/O:s)2 — 1> . (4.35)

2do (D/3)?

In the limit of large spheres, i.e., D — oo, the following limit as expected by the linear diffusion
model is approached both for Eq. 4.33 with Eq. 4.30 as well as its approximation in Eq. 4.35:

. 1
Dlgnooozp = (4.36)
A comparison of the experimental data (Fig. 4.5 left) with Eqs. 4.29, 4.33 (using Eq. 4.30) and
4.35 is shown on the bottom right of Fig. 4.5. In contrast to Eq. 4.29, Eqs. 4.33-4.35 do have only
one single free parameter, dy. A least squares fit yields

dp ~ 10.7cm (4.37)
and thus & ~ 1.5 pm (4.38)

which is in excellent agreement with the actual experimental configuration of dy = (0.1 £0.01) m.

Note that the autocorrelation of a given finite shape (as the spheres) inherently becomes zero for
correlation distances larger than the extent (diameter) of that shape, wherefore the submicrometer
sized glass spherules are not described by Eqs. 4.30 and 4.33. That they nevertheless exhibit a
distance dependence (cf. Fig. 4.5) can rather be attributed to the fact that the dense packing of
spheres of 0.25 to 1.2 pm diameter implies that the autocorrelation of the sphere arrangement, i.e.,
the structure factor (see also Section 4.4.6 and reference [43]), becomes non-negligible at the given
mean correlation distance &y of 1.5 pm

Finally, with respect to the quantitative comparison of the actual dark-field signals pupr(D) at
doy to the theoretic prediction as given by Eq. 4.29, the following constants are used:

A=3554x10"2m f~0.74
Tgo = 2.4m Az~10"%m
d= do ~ 10_1 m TePe,PMMA ~ 1015 m_2
)\2 2
AX R ——Tepe such that AZSLf|Ax|2 ~0.7pm !,
2 A2

with A\ being the X-ray wavelength (corresponding to 35keV), To the analyzer grating period, d
the sample-Go distance, f the volume fill factor (assuming dense sphere packing), Az the average
sample thickness and 7.p. pmma the scattering length density for PMMA.! Ay is the refractive
index, whose imaginary part is, in the present case, negligible with respect to its absolute magnitude.
Note the difference in notation with respect to [103] regarding upr which here for consistency refers
to the actual dark-field signal as opposed to a thickness normalized dark-field coefficient. Thickness
is here explicitly accounted for by Az.

Lestimated for C5HgO2 with density of 1.2g/crn3 from information provided by NIST for Cu and Mo K lines at
https://www.ncnr.nist.gov/resources/activation/
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4.5.2 Quantitative dark-field tomography despite distance dependence

Tomographic reconstruction, i.e., the transformation of projections of an object to a volume repre-
sentation of that object, generally presumes that all projections correspond to linear combinations
of a static set of scalar volume elements (voxels), which are to be reconstructed. For samples
rotating about an axis parallel to the interferometer’s gratings, as required for tomographic imaging,
the distance dependence of the dark-field contrast inevitably also leads to an apparent orientation
dependence of the signal originating from isotropic scatteres away from the rotational axis. As
has been shown previously, this distance dependence is not generally negligible and further not
independent of the actual sample properties, which are inherently unknown prior to reconstruction.
Explicit modeling of this dependence in the context of general iterative tomographic reconstruction
methods would therefore be a non-trivial option. The effects of distance dependence can however
be eliminated to a large degree by symmetric acquisition of projections from opposing directions,
by means of performing full 360° scans:

Due to the linearity — and thus additivity — of the dark-field contrast, individual volume elements
(voxels) may be analyzed isolated without loss of generality. When considering an individual voxel
at a distance Ad from the rotational axis (at distance dp) with respect to the optical path, the
respective signals from opposing object orientations are expected to exhibit the following relations
(to first order in o4(d)):

ppp(dw ) = = [os(do) (1 + aAdy)]* = ppr(do) (14 20Ad, + a?Ad?)

N[ —

ppr(d(w + 7)) = = [o4(do) (1 — a Ady)]* = ppr(do) (1 — 2aAd,, + a?Ad?)

1
2
with a characterizing the distance dependence as discussed in the previous Section. The mean
signal from opposing orientations is thuscu

% (upr(d(w)) + por(d(w + 7)) = por(do) (1 + *Ad)
——
<ad/dg

with a?Ad? representing the relative error with respect to upr(do). Given that a < dy Uis expected
(cf. Eq. 4.36 and Fig. 4.5, lower right), that error is not larger than Ad? /d3, which can be realistically
kept below 5% even for sample diameters (and thus values of Ad) of almost up to do/2.

Figure 4.6 shows tomographic reconstructions of the data previously presented in Figure 4.5.
The effects of dark-field distance dependence on tomographic reconstructions are illustrated by
means of reconstructions from two complementary sets of projections covering an angular range of
only 180° each.

A quantitative analysis of the respective gray values is given in Figure 4.7. By considering the
absorption normalized dark-field signal ppr/pu, effects of varying packing density are eliminated, so
that variations in dark-field contrast can be expected to solely arise from differences in material
(Glass vs. PMMA) and structure size (spherule diameter). The data for PMMA is compared to
Eq. 4.29 (normalized by the absorption coefficient for PMMA at 35keV) at the correlation distance
& ~ 1.5bpm corresponding to the mean sample—Go distance dy =~ 10.7cm as found previously
(Eq. 4.37), i.e., the distance between the axis of rotation and the analyzer grating Go:

o) o] S8 (14 18y (8 L8y, (L VI_E/D
ug&lﬁ\;} t D2 2 D2 D2 4 D4 1—/1-¢&/D2 fg/D2 )
(4.39)

where the proportionality constant fitting the experimental data is found to be

Ccat ~ 23 pm_1 .

The theoretical expectation (cf. Egs. 4.29 and 4.39) evaluates to

Az

(35keV)
PMMA

3
%Mxl2 = Ctheo ~ 30m ™!
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absorption contrast, 360° darkfield contrast, 360°

pr/cm [em™1]

ppr/cm [em™1]
ppr/cm [em™1]

Figure 4.6: Tomographic reconstructions of a cylindrical sample container comprising nine capillaries filled with
spherules of varying diameter between 0.25pm and 80um (cf. Fig. 4.5) from absorption and dark-field projections
acquired in parallel beam geometry. The reconstruction voxel size is 61.6pm, i.e., spherules are not resolved
individually. The respective spherule diameters are indicated along the outer perimeter, the mean gray values are
indicated along the inner perimeter. Spherules smaller than 5pm are made of glass, while the larger ones consist
of PMMA. Variations in absorption (upper left) within each material class indicate variations in packing density.
The dark-field signal (upper right and lower row) is further dependent on the size of the spherules. The sample
container itself exhibits dark-field contrast only at edges. The distance dependence of the dark-field signal is
mostly canceled when reconstructing from the full set of projections (upper right). It has a significant effect
though when reconstructing from 180° subsets (bottom row). Dashed lines indicate the boundary between over-
and underestimations of the dark-field signal in these cases.

®  PMMA, 360° scan
40 1 Lynch model fit to PMMA
o Glass, 360° scan
3 %07 PMMA, 180° (1)
w o
£ 204 PMMA, 180° (2)
10 1
0-

0 20 40 60 80
sphere diameter D [um]

Figure 4.7: Evaluation of the dark-field contrast after tomographic reconstruction (Fig. 4.6). In order to
eliminate the volume fractions f, the ratio upr/p (dark-field over absorption) is considered. For a given material,
variations in upr/p are now expected to arise solely due to variations in the sphere diameter D. The respective
model according to Lynch (cf. Eqgs. 4.29, 4.39) is compared to the data, assuming do = 10.7cm as found
previously (Eq. 4.37). The absolute scale is fitted to the data. The good agreement of theory and experiment
support the validity of the Yashiro-Lynch model of dark-field contrast origination with respect to the predicted
structure size dependence. Further, the quantitative effects of dark-field distance dependence on short-scan
tomographies are shown as well (see also Fig. 4.6).
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35keV
based on the constants provided in the previous section and % = 0.31cm™!, as found in the
NIST Xcom database assuming a mass density of 1.2_2; for PMMA.
I.e., in addition to the distance dependence discussed previously, also the size dependence is
perfectly consistent with the models given by Yashiro and Lynch, and can further be verified within
tomographic reconstructions. The absolute quantitative scale found in the experiment agrees with

the theoretic model within a margin of 25%.
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4.6 Anisotropic Dark-field Contrast

The dark-field contrast is an oriented effect. As has been described in the previous sections, it arises
from refractive effects below the spatial resolution of the imaging system and can be understood
in terms of the scattering cross section and autocorrelation function of the sample’s substructure.
So far, the actual direction of autocorrelation was not explicitly discussed and rather implicitly
determined by the orientation of the interferometer gratings. In fact, the scalar visibility contrast
found in a particular experiment is to be understood as a projection of a higher dimensional
property, which may or may not be isotropic. Here, a well motivated model of this anisotropy shall
be derived as required for the validation of tensor tomography in Chapter 5.

4.6.1 Literature review

Dark-field anisotropy has been experimentally demonstrated e.g. by Wen et al. [193], Jensen et
al. [74, 75], Revol et al. [149], Potdevin et al. [141] and Schaff et al. [160], who considered planar
samples exhibiting highly ordered fibrous structures perpendicular to the optical axis, such as
carbon fibers, wood fibers, dentinal tubules or trabecular bone. Technically, these cases all address
distinctive variations of the autocorrelation width of long fibers with respect to their orientation.
Yashiro et al. [209] considered the case of moderately anisotropic structures within an extended
sample and investigated the individual effects of autocorrelation width, scattering cross section and
autocorrelation shape (by both rotating the sample and sampling multiple correlation lengths, cf.
Sections 4.4.3 and 4.4.6). A systematic observation of dark-field signal variation in dependence of
the 3D orientation — i.e., also considering inclinations with respect to the optical axis — of highly
oriented fibers was presented by Bayer et al. [6].

The theoretic modeling of these anisotropy effects has been treated phenomenologically using
sinusoids reproducing the periodicity, phase and an assessment of the degree of anisotropy of
the signal in dependence of a single orientation angle. This representation straight forwardly
enables planar vector radiographs, augmenting 2D X-ray images with directional information on
the unresolved substructure in the detection plane. Mathematically, it is equivalent to a linear
approximation of the directional dependencies (as has also been pointed out by Jensen et al. [75]).
Malecki et al. [105] further investigated the sinusoid approximation in numerical simulations of
fibrous structures parallel to the detection plane. Current approaches extending the concept of
directional imaging to tomography on volumetric samples (cf. Chapter 5) derive from these planar
signal models and thus implicitly presume that the autocorrelation width perpendicular to the
optical axis is the principal origin of orientation dependency of the dark-field signal. A first heuristic
model of dark-field anisotropy extending beyond autocorrelation effects and also accounting for
variations in scattering cross section has recently been presented parallel to the present work by
Felsner et al. [39].

In the following, a model of general dark-field anisotropy for arbitrarily oriented scatterers shall
be derived based on the wave optical considerations given by Yashiro and Lynch, thereby implicitly
accounting both for autocorrelation and scattering cross section dependencies.

4.6.2 Gaussian ellipsoid model of anisotropic scatterers

In preparation of the following Chapter 5 on tensor tomography, the anisotropy properties with
respect to general sample orientations shall be reviewed based on dark-field signal origination
discussed previously in Section 4.4.3.

The anisotropy of arbitrary elongated structures shall be modeled by means of an anisotropic
Gaussian mass (or electron) density distribution

p(F) = poe™ 277 (4.40)

with 7 denoting a point in three dimensional space and

To Ty Tas o2 0 0
T=|Ty Tyy Tys |=R| 0 o032 0 |R" (4.41)
sz Tyz Tzz 0 0 0'3_2
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Y
projected density
p4
N
projected density, small pixel

projected density, small pixel

optical axis optical axis optical axis

Figure 4.8: lllustration of the projection of a Gaussian mass density distribution along the optical axis (left).
The standard deviation of the projection will typically be larger than the distribution’s standard deviation parallel
to the projection plane (both marked in orange for comparison, cf. Eqs. 4.42-4.43). When considering the case
of pixels smaller than an elongated object (with regions outside that pixel shaded in gray), the projected volume
contributing to an individual pixel will be confined by the pixel itself (center and right). Variations in the total
projection (hatched) affecting the scattering cross section captured by that pixel are then dominated by the
extent of the mass distribution along the optical axis (indicated in green). Cf. Eq. 4.48.

being a symmetric, positive definite tensor characterized by positive eigenvalues (o; 2 oy 2 o3 2
representing the inverse variances of p(7)) and a unitary rotation matrix R (with the supscript
T denoting the transpose operation). R defines the orientation of the Gaussian ellipsoid object
characterized by three orthogonal standard deviations o1, o9 and 3. The Gaussian mass density p(7)
may be interpreted as description of a stochastic ensemble of smaller structures, or, more abstractly,
as a generating structure to approximate the phase shifting properties along the optical axis
(Egs. 4.42-4.43) and resulting autocorrelation function (Eq. 4.49) of convex anisotropic structures
irrespective of the precise microscopic material distribution (e.g., a cylindrical fiber). It may in this
respect also be interpreted as a generalization of the Gaussian approximation of the autocorrelation
properties of spherical objects (cf. Section 4.4.4).

4.6.2.1 Scattering cross section

The scattering cross section, as has been discussed in Section 4.4.3, is governed by the variance
of phase front fluctuations cr?bf below the scale of the imaging system’s spatial resolution. The
total phase shift ®(z,y) along the optical axis (here: z) caused by the presumed Gaussian density
distribution is given by:

D(x,y) = <I>0/ e 277,

2 —1p 7
=d 7 "Te (4.42)
with i
sz szTyz
Tow — 72 Ty — 7, 0
= T, Ty, vz .

To T — B2l Ty -2 0 (4.43)

0 0 0

and ®( being a constant factor resulting from the Gaussian density distribution’s maximum value
po and the material’s refractive index for the considered wavelength. The difference between Ty
and Ty — 5’? is illustrated in Figure 4.8 (left).

When dezfzining the local mean variance used by Yashiro and Lynch et al. [211, 103] within the
discussion of dark-field origination (cf. Section 4.4.3)

03, = (@r(z,y) — (2, y)) (4.44)

by means of a Gaussian weighting kernel accounting for the imaging point spread function’s width
opsr and assuming this point spread to be larger than the considered structure sizes o;, i.e.,
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opsr/o; > 1, we find:

1 o0 _% 12+y2 1 oo _% 12+y2 2
afbf A 272/ e ~ Tesr | D(x,y) — 72/ e ~ 7psfr O(z,y)dedy | dedy (4.45)
TOpSF J—oo 2m0psE J oo
1 oo 7% 122+y2 1 0o 2
N — 7 o - i) drdy | dzd
2oy /—ooe . ( (@) 2modsp /—oo (o) de y) S

Q

o2 1 B 2
opspy/det(T) \ opsevV 1 odgpy/det(T)

<IJ(2J7T 1

~ , (4.46)
U%SF\/ det(T) V TZZ
and can thus finally state:
orientation independent
9 1 O . . .
g, N —— 5 for objects smaller than the pixel size. (4.47)
nTn \ opgpy/det(T)

2V Tzzf1 was identified here as the standard deviation along the optical axis and is therefore in more

general terms described by v/ ﬁTﬁil for arbitrary orientations 7 of the optical axis (HﬁH =1). The
determinant det(T') = (o10203) 2 is invariant under rotations R and therefore, as ®¢, an invariant
factor with respect to the orientation dependence of Jéf (provided the density distribution fits into
the considered integration range defined by opgr).

The following conclusions can be drawn from these results on J%f. It is proportional to the

-1 -1
extent vVATn  of the considered structure along the optical axis, and with \/det(T) =~ = g10203

further proportional to its volume. In the eigenbasis of T, the relation cr,%f x +/det(T) ﬁTﬁ_1
simplifies to aéf o (0102)03: the variance aéf is directly proportional to the variance o3 of the
underlying density distribution along the optical axis and scales with its cross sectional area, which
is proportional to oi05.

In the limit of objects extending way beyond the size of a detector pixel (e.g., long fibers),
the cross sectional area of the object’s projection onto a pixel becomes almost independent of its
orientation, as the considered area is rather confined by the detection area of the pixel itself, which
is proportional to JI%SF (cf. Figure 4.8). In these cases, the orientation dependence of the scattering
cross section affecting that pixel is thus, given the previous observations, dominated by the variance
of the density distribution along the optical axis, while the cross sectional area is bounded by o&qp,
as opposed to the extent of the material distribution:

orientation independent

5 1<<I>(2)7T

03, X T ) for objects larger than the pixel size. (4.48)

U%’SFUI%SF
4.6.2.2 Autocorrelation function

The normalized planar autocorrelation ysop (E) corresponding to ®(x,y) is, based on the additivity
of variances for convolutions of Gaussians, given by

72D(5) = e~ 3TaE ;

assuming £ to lie in the z-y plane perpendicular to the optical axis (z). When assuming that
all relative rotations of interferometer and object are accounted for in R and thus in T and T'g,
the autocorrelation direction may without loss of generality be defined parallel to the z axis, i.e.,

—

£ =(£,0,0), such that

2

1 Txy
(€)= e T T ED (4.49)
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As the mass density distribution characterized by T by design already represents all structures
within the optical path relevant to the considered detector pixel, no further averaging of auto-
correlation properties over the pixel area is required. The autocorrelation width moreover is an
immanent property of the mass density distribution, and thus in contrast to the scattering cross
section not limited by the pixel extent opgr.

For isotropic density distributions (o; = o), the off-diagonals of T' and T'¢ will be zero. The
autocorrelation then reduces to y(§) = exp(—ig—z), corresponding directly to the 3D autocorrelation
function of an isotropic Gaussian density distribution without explicit averaging over the optical
axis. In order to provide further intuition to the modeled Gaussian density distribution, this
result may be compared to the approximate autocorrelation function for spheres of diameter D
(v(&) =~ exp(—%%), cf. Eq. 4.21)). Le., an isotropic Gaussian mass density distribution with
standard deviation o can be interpreted as modeling a sphere of diameter D = 40.

4.6.3 Model of dark-field contrast anisotropy

Substituting the above results (Eqs. 4.47-4.49) on scattering cross section and autocorrelation into
Eq. 4.19, the fringe contrast visibility is given by:

orientation independent

1 3 o E
vp A exp| — o7 (1 - e_%gT‘ﬁ) (4.50)
nTh \ odgpy/det(T)

which for scatterers, such as long fibers, larger than the typical integration width (e.g., pixel size)
characterized by opgr, modifies to

orientation independent

2
1 o5 1P F
o A _ 1— —25T<I’f) 4.51
Usp exp( nTn <U4PSF> ( € ( )

with T characterizing the inverse variances of the considered scatterers’ density distribution
(Eq. 4.41), 7 the unit vector along the optical path, 5 the oriented autocorrelation distance and
Ts (Eq. 4.43) describing the inverse variances of the scatterers’ total phase shift along the optical
axis (Eq. 4.42), based on their density distribution characterized by T'. The subscripts “sp” and
“Ip” indicate the “small pixel” and “large pixel” cases as compared to the extent of the considered
scatterers characterized by T'.

When defining, without loss of generality, 7 parallel to the z-axis and E parallel to the x-axis
(assuming all rotations to be considered within T, cf. Eq. 4.41), and further using the first order
approximation 1 — exp(—u) & u for small u, then the following simplified proportionality relations
for the expected orientation dependence of the dark-field contrast pupr = —In(v) for the large pixel
(Ip) and small pixel (sp) cases respectively:

1 T2
—1 X (T — X2 4.52
nlo1p) % —=(Tho = 72) (4.52)

1 T2

— o _ xz
In(vgp) X T (Txx Tzz) . (4.53)

For the special case of objects oriented perpendicular to the optical axis (here: z), i.e., for Ty, =0
and T,, = const., both models reproduce the classic sinusoid signal variations as a function of
orientation that have been consistently reported in previous literature. This can be easily seen in
the explicit expressions given in Eqs. 4.55-4.56 when considering the case w = 0.
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Figure 4.9: Two dark-field image series of a pack of three carbon fiber reinforced rods (of ca. 1lcm length)
rotating about the vertical image axis over a range of 180° (0°, 45°, 90°, 135°, 180° from left to right). A sketch
is depicted in Fig. 4.10. The rods are inclined about 65° (top row) and 36° (bottom row) with respect to the
rotational axis. The grating sensitivity is parallel to the horizontal image axis. The color scale ranges from 0
(black) to 0.7 (white). White arrows indicate examples of dark-field signals originating from the sample support
structure, which has been masked outside of the sample silhouette. The center column and the outermost
columns show the isolated effects of varying scattering cross section (center) and varying autocorrelation width
(left and right) respectively. Quantitative results are shown in Figure 4.10.

4.6.4 Experimental confirmation

In order to verify the expected orientation dependence of the dark-field contrast, a sample consisting
of long carbon fibers has been imaged at various orientations in analogy to the experiment performed
by Bayer et al. [6]. In contrast to the latter experiment, the sample is explicitly chosen smaller
than the field of view. The carbon fibers are contained in three plastic rods of about lcm length
and 2mm diameter, and extend over the full length of the rods. The fiber sample is attached to a
polyhedral sample cage (made of UV resin, see also Figure 5.5) by means of an acrylic stand and
hot glue. The cage allows to easily vary the inclination of the carbon fibers with respect to the
rotational axis of a tomography setup, while the acrylic stand centers the sample in the polyhedral
cage. Although the support structures are made of non-scattering materials, a small contribution
to the dark-field contrast is generated by their edges. Figure 4.9 shows selected examples. In order
to keep their impact on the following analyses minimal, the signal of the sample support structures
has been masked where possible (i.e., outside of the sample’s silhouette).

The acquired images can be analyzed in two ways: most obviously, the average dark-field signal
per detector pixel over the area of the sample silhouette may be considered, yielding a signal
corresponding to fibers much longer than the pixel size. In order to reproduce the case of fibers
fully contained within a single integrating pixel, the phase stepping curves’ complex amplitudes as
well as their mean transmission are averaged over the full detector area prior to the evaluation of
visibility and its negative logarithm (the dark-field signal). The result is then equivalent to that of
a larger integrating detector.

For the comparison of the rotation series acquired at varying fiber inclinations to the anisotropy
model derived in Section 4.6.3, a Gaussian mass distribution model of the rotating fibers is used
according to Eqgs. 4.40-4.41:

p(r) = poe 27T
o> 0 0
T(w,0)=R(w,0) | 0 o> 0 |R"(w,0)
0 0 op (4.54)
cosw 0 sinw cosf) —sinf 0
R(w,0) = 0 1 0 sin 0 cosf 0
—sinw 0 cosw 0 0 1

with op and o, denoting standard deviations characterizing an effective diameter and length of the
fiber bundle and w and @ describing its orientation in terms of rotation and inclination as sketched
in Figure 4.10.
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For the first case considering small detector pixels (indicated by the subscript “sp”), the following
is expected from the previous theoretic derivations (cf. Eq. 4.53):

1 T2 cos? 6 + ;'72” sin? §
—In(vep) X (T — =2) x a; (4.55)
To To (cos? w + (cos? 0 + Z# sin? ) sin® w)?
L
For the case of a single large detector (“lp”) integrating over the full extent of all fibers,
1 T2 1 cos? 6 + ZTQD sin? @
- ln(vlp) ONC (Txx - ﬂ) xX — 2L (456)
1o To 9D (cos?w + (cos? 0 + 2B sin? 6) sin® w)3/2
L

is expected in contrast (cf. Eq. 4.52).

Figure 4.10 shows a respective comparison of experimental data and theoretic model. While the
individual carbon fibers contained in the considered sample are expected to have an aspect ratio of
about 10% (ca. 1072m length at ca. 10~°m diameter), the observed signal is best reproduced (in
a least squares sense) with aspect ratios o, /op of 3.5 and 1.7 in the small and large pixel case
respectively. The general discrepancy between the extreme aspect ratio of individual fibers and the
deduced aspect ratios of the fiber ensemble is expected to arise from a finite distribution width
of fiber orientations. Such variations in orientation are generated whenever fibers are bent or not
perfectly aligned parallel, which is especially expected among the three separate rods constituting
the sample. Similarly, the reduced aspect ratio found for the case of the integrating detector (as
compared to the small pixel case) might be attributed to the larger ensemble of fibers considered
simultaneously in that case.

While the present data doesn’t allow further microscopic analyses of the observed aspect ratios,
the observed orientation dependence with respect to rotations and inclinations is in good agreement
with the theoretic expectation despite the considerable number of first order approximations that
have been made towards the derivation of Eqgs. 4.55-4.56. First of all, both the dependence on
changes in scattering cross section and in autocorrelation width are reproduced, although the
integrating pixel case appears to be more susceptible to imperfections of the sample. The scattering
cross section dependence is found to be — as expected by Eq. 4.55 — considerably more pronounced
in the case of objects exceeding the pixels’ integration area. Moreover, the narrowly peaked rotation
angle dependence for strongly inclined fibers is reproduced, which can be attributed to the influence
of the off-diagonal term T2, /T, originating from inclinations of the anisotropic mass distribution
with respect to the optical axis (cf. Figure 4.8 left).

Figure 4.11 further displays the #-dependence in the case of sinw = 0, i.e., for fibers within
the plane perpendicular to the optical axis. In this case, Eqs. 4.55-4.56 reproduce the typical
sinusoidal signal variation that has been consistently documented in previous literature, whereat
the respective model parameters are identical with those describing the w-dependence in Fig. 4.10.
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Figure 4.10: Dark-field signals (negative logarithm of visibility) for different fiber orientations in the large pixel
and small pixel cases. In the former case, the fibers are always fully contained within the integration area. Four
inclination angles of the fibers with respect to the rotational axis are considered (cf. legend), and a full rotation
over 360° is performed at each inclination. Experimental data and theoretical model are shown in the left and
right column respectively. Diameter/length aspect ratios op:or of 1:3.5 and 1:1.7 have been determined for
the model data (cf. Egs. 4.54—4.56) shown on the right hand side for the small and large pixel case respectively
in order to approximate the experimental observations on the left hand side.
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Figure 4.11: Comparison of model and data for the classic case of fibers perpendicular to the optical axis, which
is here given for w € {0°,180°}. Colors and model parameters correspond to Fig. 4.10. Data points have been
mapped to the range 6 € [0°,180°] for better visualization.
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Chapter 5

X-Ray Dark-Field Tensor
Tomography

Tensor tomography is the final objective of the present dissertation. It refers to the volume
reconstruction of non-scalar quantities arising from anisotropic physical effects in the context of a
given tomographic imaging modality. The name derives from the use of tensors for the modeling of
the particular anisotropic effect (A prominent example is the reconstruction of diffusion tensors in
the field of magnetic resonance tomography). In the context of X-ray tomography, anisotropic, i.e.,
direction-dependent signals, are found in the ultra-small angle scattering signal (dark-field contrast)
obtained with Talbot-Lau grating interferometry (cf. Section 4.4).

As the scattering properties of a given structure are related to its shape, dark-field imaging
provides a way to characterize structural anisotropy below the actual imaging resolution. Tensor
tomography aims at extending directional dark-field imaging techniques for planar samples to
both volumetric samples and arbitrary orientations of the substructure within such samples. An
important use case are fibrous materials, for which the local fiber orientation can thus be determined
without the necessity of actually directly resolving the individual fibers in the imaging process.
This ability allows to considerably increase the accessible field of view, i.e., the accessible sample
size, by about one to two orders of magnitude.

The contribution of the following work is threefold: A reconstruction methodology is motivated,
based on the foundations developed in Chapters 1 and 2, from mathematical-technical aspects
of tomography and explicitly discussed and evaluated with respect to the physical insights on
dark-field anisotropy obtained in Section 4.6. Likewise, the particular experimental design is
explicitly motivated from the preceding conclusions of Sections 4.5-4.6. Finally, the proposed
methodologies are applied to experimental data acquired to this end at the ID19 imaging beamline
of the European Synchrotron Radiation Facility, yielding tensor valued volume reconstructions
with a field of view of 3 to 4 cm at a spatial resolution of 0.1lmm. The results are quantitatively
compared to classic micro-CT based fiber orientation analysis.

5.1 Literature reviewr

The first examples of X-ray scattering tensor tomography based on the dark-field contrast modality
— following the suggestion by Jensen at al. [75] in 2010 — have been demonstrated by Malecki et al.
[106] in 2014, using an auxiliary non-orthogonal vector basis for the description of voxel anisotropy
within the actual reconstruction process before fitting an ellipsoid model — parametrized by a tensor
— to each voxel. Vogel et al. [185] presented an alternative iterative reconstruction technique as
compared to the one employed by Malecki in order to compensate for reported instabilities in the
tensor fitting process. Bayer et al. [5] proposed a sinusoid model for the description of anisotropy
solely within a predefined plane determined by the tomographic scan trajectory. Wieczorek et
al. [197] introduced the use of spherical harmonics as a more general orthogonal basis for the
description of scattering functions in the context of anisotropic dark-field tomography with the
prospect of distinguishing more complex superpositions of scatterers. Spherical harmonics were also
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employed by Liebi et al. [97] in the context of anisotropic scanning SAXS tomography. The present
work will be based on the reconstruction approach first presented by the author in [31], which
discusses the nested nature of the tensor recovery problem within the volume tomography problem
and proposes a straight forward reconstruction approach for generic linear anisotropy models such
as the scattering tensor (or expansion bases such as spherical harmonics). Further work by Schaff et
al. [161] and Sharma et al. [168, 167] considered alternative projection acquisition schemes. Sayyedi
et al. [158] reported on total variation regularization within tensor tomographic reconstruction.
Despite the differences in detail, all current approaches to anisotropic X-ray dark-field tomography
implicitly or explicitly share the central assumption that the anisotropic dark-field signal can be
understood in terms of a scalar function defined on the unit sphere. The sphere itself is identified with
the set of orientations of the sensitivity axis of the grating interferometer with respect to the sample,
in analogy to the initial works on planar anisotropic dark-field imaging (cf. Section 4.6.1). Immanent
to this model is the assumption that the signal anisotropy solely arises from the anisotropy of the
sample’s autocorrelation function, implying the scattering cross section to be generally isotropic.
Given the results of Section 4.6, this assumption remains to be justified. Due to the dependencies
between signal model and tomographic reconstruction, the latter shall be introduced first in the
following section prior to continuing the discussion on a suited signal model in Section 5.3.

5.2 Nested iterative tomographic reconstruction

The concept of nested tomography as proposed by the author in Dittmann et al. 2017 [31] arises from
the observation that the reconstruction of an individual non-scalar volume element (e.g., a tensor
voxel) from multiple observations can be considered a small tomography problem in its own right.
The tomographic reconstruction of non-scalar-valued volumes may thus be addressed by nesting
iterative reconstruction schemes for volume and voxel respectively. By defining, complementary
to a given anisotropic signal model mapping higher dimensional voxels to scalar observables, a
suiting backprojection operation mapping updates to these observables back onto the underlying
parameters characterizing individual voxels, classic iterative forward-backprojection schemes for
volume reconstruction (cf. Section 1.2.3) can be formally extended to arbitrary voxel and signal
models by chaining respective forward- and backprojection operations (putting aside for now the
questions of uniqueness or required input data). An illustration is given in Figure 5.1. After
formalizing the idea in the following, basic constraints on respective signal models become apparent.
Using, following Section 1.2.3, the notation

Af=g

> Aijfi =g
J

for the discretized tomography problem, with the system matrix A describing line integrals through a
set of voxels f, and g holding the respective projection sums, an additional embedded transformation
ti+ f; — fij allows for a straight forward extension to non-scalar voxels:

scalar projection
—
Y Aiti( ;) =g
J v
nonscalar voxel

Bold symbols indicate non-scalar quantities, while ¢ and j index observations and voxels
respectively. The transformation ¢;( _fj) maps non-scalar voxels f; to scalar observables f;; depending
on i. Whenever ¢;(-) is invariant with respect to i, the quantity described by J; is actually isotropic
with respect to the relative orientations of system and sample covered by the set of measurements
acquired within a given experiment modeled by A and ¢.

Iterative volume reconstruction algorithms for scalar voxels f; commonly adhere to the following

general scheme:
k k k
50 = 9 e X B = S At
1€Sk 7’
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with Bj; characterizing the backprojection operation. In the case of SART (cf. Section 1.2.3) as
used here, it will be evaluated on the fly and represents blockwise approximate pseudo-inverses to
the forward model A;; such that

ZAij Z Bjixz; ~z; Vie Sg,x; €R.
J 1€Sk

The superscript index k denotes iterations, and Sy is the set of row indices ¢ considered within
the respective iteration k. A;r € [0,1] is a relaxation factor commonly introduced to stabilize
convergence by means of damping it, particularly in the presence of inconsistencies between the
imaging model A and the observed data g. It is often chosen constant, i.e., Ajjx = A, and typically
ranges within 0.1 to 0.5.

By analogously defining a pseudo-inverse t; : fi; — f; to the voxel transformation ¢;(-) with

ti(t (fi) = fij »

the iterative volume reconstruction scheme can be directly extended to non-scalar voxels f;:

data forward model
(k+1) (k) (k)
;5 =t (ti(fj )+ Aijk Y Bji|: g = Aitilf )D : (5.1)
1E€Sk 7’

backproj. of scalar

into nonscalar voxel scalar backprojection

Analog to the reasoning of classic tomographic reconstruction, the sum of projections of sub
volumes is expected to be equivalent to the projection of the entire volume, i.e.

2o At =t (Z Am—f;’”> ,
! J

which implies that the transformation ¢;(-) is expected to be linear. The required commutability of
t;(-) and A,;; also implies that whenever the transform ¢;(-) is actually constant with respect to ¢,
the problems of volume reconstruction and the reconstruction of the non-scalar voxels f; become
independent, i.e., may be solved sequentially. This will become more obvious once concrete choices
for ¢;(-) and f; are made, which will be the subject of the following section. Algorithm 5.1 provides
a more explicit formulation of Eq. 5.1 using the tensor voxel model presented in the following.

5.3 Tensor as linear anisotropy model

Following up on the previous introduction of nesting voxel-level anisotropy reconstruction into
classic volume reconstruction schemes, an anisotropic dark-field model suited in this context remains
to be defined. While the model of dark-field anisotropy derived in Section 4.6 is well motivated, it is
however not linear in its underlying mass distribution tensor. In order to ensure stable convergence
of the iterative nested tomographic reconstruction scheme, surrogate linear tensor models shall thus
be defined and validated in the following.

A natural choice for a minimal linear anisotropic model is a symmetric 3x3 tensor in analogy
to many other fields of physics, with diffusion tensor tomography probably being the most related
example. Using the indices m,n € {1,2,3}, a normalized sensing orientation ; € R? with H’&,H =1
and the tensor elements fj,y, the following transformations shall be defined:

.fj = fjmn = fjnm
ti(.fj) = ﬁifjﬁi = Zaimfjmnain

m,n

tj'(s € R) = SﬁzmﬁML

with  £i(t7(5)) = thim (i s @in ) lin = s

m,n
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Figure 5.1: lllustration of nesting additional projection (from tensor to scalar) and backprojection (from scalar

to tensor) operations at the voxel level. This allows for a transparent extension of iterative reconstruction
techniques for scalar tomography to tensor tomography (see Alg. 5.1).

Algorithm 5.1 Tensor-SART for the iterative reconstruction of tensor valued volumes from scalar
projections. Following the “nested tomography” conception outlined in Section 5.2 and Fig. 5.1, the
simulatenous algebraic reconstruction technique SART (cf. Algorithm 1.3) has been augmented with
additional forward- and backprojection operations transforming between tensor voxels and their
scalar observables based on sensing orientations .. w enumerates projection views characterized
by 3, d;, ﬁw, V., (cf. Secion 1.1) and sensing orientation 4, (cf. Section 5.3).

cone beam

projection data g(w,v,h): line integrals at orientation w and detector pixel (h,v)

rojection geometries W o= o=
geﬁjning Ag Sw du.n Hw7 wa Uy,

sets of row indices 7 of A to

be considered in iteration k Py : each set characterizes a 2D image at wy

initial (tensor valued) volume

fjmn
relaxation factor(s) weighting
individual update steps
for £k =0..Njter — 1 do :

forward projection using
Algorithm 2.1 and f}z(k) = Uy, Aif(k)ﬁwk Vi€ Py

reduction of tensor voxels

Ak €]0,1]; typically Ay = A < 0.5

corresponding
ray lengths
2D residual
projection image Ag(’“)(wk,vi, h;) = g(wg, vi, hy) — gf") Vie Py
at wp = w; Vi € Py

Hwi, v, hy) = HA H1 Vie P

grid projection v(pj,w) = —[H, x (dy, — 5.,)] - (P — 5u)/ [H, x V] (7—5.)

onto detector (Eq.1.5) h(Pj,w) = [V, x (dy —38.)] - (B — 8w) / [Ho x Vo] - (5 — 5.)

backp'rojecti.on ) Ag(k) (wk,v( ]7wk)7h(p]7wk))

of residuals into f]mn fjmn + Ak U, mUis,m

tensor volume space m l(‘*}kv (pjvwk)ah(pjawk))
backproj.

end for. within voxel scalar backprojection of
residuals to voxel j at pj
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The sensing orientation @; may vary with the particular view ¢ considered. ¢;( fj) can be understood

as probing the value of the tensor for a specific direction ;, while ¢; (s) will conversely generate
a second order tensor of rank one mapping a scalar value s to the sensing orientation ;. The
transformation ¢;(-) is obviously invariant with respect to the sign of 4; in accordance with the 180°
symmetry of dark-field anisotropy. The symmetric 3 x 3 tensors f; are fully characterized by three
eigenvalues and respective eigenvectors, which directly provide an intuitive geometric interpretation.

Two meaningful options for the concretization of @; can be named in the context of dark-field
tomography: The sensitivity orientation é of the Talbot grating interferometer, and the optical path
n (i.e., the direction of integration) perpendicular to &. The former choice is consistent with previous
approaches to anisotropic dark-field modeling both in planar and tomographic (cf. [106, 5, 197])
scenarios and is able to represent variations in autocorrelation width when rotating a sample about
the optical axis. The latter choice (72) has not been regarded previously and is in contrast able
to represent variations in scattering cross section when rotating the sample about the sensitivity
axis of the interferometer — a situation that has no relevance in the context of projection imaging
of planar samples yet occurs in the case of anisotropic tomographic imaging (see Figures 4.9 and
4.10 in Section 4.6). Either choice will leave the respective other effect unconsidered. I.e., when
modeling anisotropy based on the direction of grating sensitivity, variations in the scattering cross
section will be averaged. Conversely, when modeling anisotropy with respect to the optical path,
variations in auto correlation width occurring when rotating the sample (or grating) about the
optical path will be averaged.

Both approaches represent considerable approximations with regard to the actual orientation
dependence shown in Sections 4.6.3—4.6.4 and shall therefore be first explicitly discussed for the
basic scenario of individual volume elements. To this end, the models AT{(,)n and €T(c)e will be
fitted (by means of iterative forward-backprojection as discussed previously) to both actual and
simulated anisotropic dark-field signals, providing both an exhaustive coverage of feasible situations
as well as selective experimental examples.

Figures 5.2 and 5.3 visualize actual dark-field signals of the fiber object discussed in Section 4.6
with respect to the directions 7i; or €; of the acquisition geometry along with corresponding second
order tensor approximations. The effect of averaging over one of two orientation dependencies is
here well observable along the z-axis. Conversely, a lack of redundant observations (redundant
with respect to one of n; or &;) to be averaged over can cause crosstalk between the effects
of autocorrelation width and scattering cross section. This has, for the tensors shown in Figs.
5.2-5.3, been avoided by exploiting the rotational symmetry of the given experiment about the fiber
orientation, assuming that the same data has likewise been acquired along equivalent trajectories
rotated by 90° about the fiber axis. The eigensystems of the reconstructed tensors T(e) and
T(rn) are found to be well aligned with the known fiber orientation. For T{.), modeling the
anisotropic autocorrelation length of the sample, the fiber orientation is indicated by the eigenvector
corresponding to the smallest eigenvalue, as the dark-field signal scales inversely with structure size
(cf. Fig. 5.3). For T(y), modeling the anisotropic scattering cross section of the sample, the fiber
orientation is in contrast expected to correlate with the largest eigenvalue, as dark-field contrast
scales with the amount of scattering material along the optical axis. This is reproduced in Fig. 5.2.

Figure 5.4 provides, in addition to the illustrative experimental examples, systematic evaluations
of the proposed models’ relations to the signal generating mass distribution tensor based on the
dark-field signal model derived in Section 4.6.3. With synthesized anisotropic dark-field signals of
120000 different Gaussian mass distributions using the acquisition scheme outlined in Section 5.4
and Figure 5.5, direct correspondences between the respective eigenvalues and eigenvectors of the
physical and linearized tensor models can be drawn. Despite the expectedly large root mean square
errors between the simplified reconstruction models and the simulated anisotropic dark-field signals,
the intrinsic imprecision in the recovery of the dominant orientation ranges, with 0.33° and 1°
respectively, well below expected noise levels in the case of actual experimental data. Given that the
eigenvalues of both reconstruction models are found to be approximately linear in the (normalized)
inverse variances of the mass distribution (Fig. 5.4, bottom row), it may be conjectured that
the variations in auto-correlation width (perpendicular to the optical axis n) are the dominating
orientation dependence. This is consistent with the observation that reconstructions based on
the eT(cyé model (as opposed to nT(y,)N) yield slightly reduced root mean square errors and an
improved recovery of principal orientations (see Fig. 5.4, top row).
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Figure 5.2: Spatial representation of the anisotropic dark-field signal of a fiber object (top row) and a respective
tensor model fit (bottom row). The experimental data (cf. Section 4.6.4, Fig. 4.10, large pixel case) is here
represented on a unit sphere defined by the optical paths or grating normals 7;. Signal intensity is represented
by the distance from the origin. The respective grating sensitivity orientations &; are, due to the particular
experimental configuration, always tangential to the circular scanning trajectories. The bottom row shows the
corresponding approximation by the model RT(,yn. Black lines represent the model values within the y-z, x-y
and x-z planes respectively. They are shown in both rows for comparison. Signal variations along the x-axis
caused by varying & at constant 72 cannot be captured by the model (cf. x-y and x-z projections). Blue arrows
(bottom left) represent the eigenvectors and -values of T(y).

y—-z X—y X—2

Figure 5.3: Spatial representation of the anisotropic dark-field signal of a fiber object (top row) and a respective
tensor model fit (bottom row) analog to Fig. 5.2. The data is here represented on a unit sphere defined by the
grating sensitivity orientations é;, with signal intensity being represented by the distance from the origin. The
optical paths or grating normals 7; are always perpendicular to &;. The bottom row shows the corresponding
approximation by the model éT(.yé. Black lines represent the model values within the y-z, x-y and x-z planes
respectively and are shown in both rows for comparison. Signal variations along the x-axis caused by varying 7
at constant é cannot be captured by the model (cf. x-y and x-z projections). Blue arrows (bottom left) represent
the eigenvectors and -values of T{.).
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Figure 5.4: Systematic comparison of approximative dark-field models nT(,y" and éT(.)é to the physical
model ppr(T, 7, ) (Eq. 4.52) and its Gaussian mass distribution tensor T' (Eq. 4.41) in analogy to the selective
experiments shown in Figs. 5.2-5.3, using the acquisition scheme shown in Fig. 5.5. Different histograms show
the normalized root mean square errors of the simplified signal models (upper left), angular deviations of their
smallest or largest eigenvectors (upper right) and the relations of their eigenvalues (bottom row). The simulations
cover the full range of feasible eigenvalues (i.e., anisotropies) of T' as well as a large set of random orientations.
The angular deviations are compared to (unnormalized) Gaussian distributions of inclination angles integrated
over the azimuthal degree of freedom (Eq. 5.4). The (normalized) eigenvalues of both linear tensor models are
found to be approximately linear in those of T'. A more detailed description is published in [46].

Figure 5.5: lllustration of a 13-faced polyhedral sample cage for anisotropic X-ray dark-field tensor tomography
with an example cubic sample (left) and the resulting feasible scanning trajectories about the sample (right).
Each face normal of the cage constitutes a possible axis of rotation. All coordinate axes and their diagonals
are considered. Redundant, opposing faces are omitted. The cage is realized as a frame structure both to
minimize the amount of material within the field of view and to provide a simple means of fixating the cage on
a base plate with matching structures accommodating both the quadratic and triangular faces. The effective
scanning trajectories with respect to the sample coordinate system, shown on the right, are visually grouped into
orthogonal trajectories about the coordinate axes (blue), space diagonals corresponding to triangular faces on the
sample cage (green) and the remaining diagonals corresponding to oblique quadratic faces adjacent to triangular
ones (red). Given that the orientation of the interferometer gratings is fixed with respect to the rotational axis, &
is always tangential to the scanning trajectories. Trajectory intersections represent points of constant projection
direction 7 at varying grating orientation é (cf. Section 5.3).
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5.4 Experiment

Given the insights into the properties of dark-field contrast discussed so far, a practical data
acquisition protocol remains to be defined with respect to the final objective of performing tensor
valued volume tomography based on anisotropic dark-field signals. A number of constraints can be
summarized:

e First, in order to compensate for the dependence of dark-field signals from individual volume
elements from their particular distance to the interferometer’s analyzer grating, symmetric
projections from opposing orientations are generally advisable with respect to tomographic
imaging of extended samples (cf. Section 4.5).

o Secondly, the dependence of dark-field anisotropy on two orientations demands a much more
comprehensive sampling of combinations of viewing angles and grating orientations as would be
expected for a tensor model as defined for the purpose of reconstruction in Section 5.3.

o Finally, existing instrumentation generally provides circular scanning trajectories by means of a
rotating sample stage, with the grating orientation typically being fixed.

As a direct consequence of the first requirement, 360° scans are generally necessary with the direction
of interferometer sensitivity being oriented either perpendicular or parallel to the rotational axis in
order to ensure 180° symmetry. A fixed relation between rotational axis and interferometer further
implies that the trajectories at oblique angles (as shown e.g. in Figure 5.2) must be realized by
repositioning the sample (as opposed to inclining the entire rotation stage the sample is mounted on,
e.g. using an euler cradle). Most importantly, the instrumentation used to implement the required
orientational degrees of freedom must never block the optical path.

All of the above constraints are here satisfied by means of a polyhedral sample cage that allows
positioning the sample on a rotary stage at defined orientations while keeping the relation between
rotational axis and grating interferometer unchanged. By choice of a low absorbing material
with negligible dark-field contrast, such a positioning device ensures minimal interference with
any projection view of the sample. The feasible trajectories are determined by the number and
orientation of faces of the polyhedral cage. An illustration is given in Figure 5.5.

Although the relative positions of each scanning trajectory are, in principle, defined by the
polyhedral cage and its corresponding support on the rotational stage, practical limitations in
mechanical precision typically demand a retrospective registration of all scan trajectories in a
common coordinate system. This can be realized by first reconstructing volume images from each
circular trajectory individually based on the isotropic absorption contrast. This results in thirteen
volume images of the sample at different orientations in the coordinate system of the rotary stage.
Volume image registration then allows to find the relative coordinate transformations between all
scans. The respective transformations can now be inversely applied to the original scan trajectories
(which are defined relative to the rotary stage) in order to finally define them within the sample
coordinate system (cf. Figure 5.6). Once all trajectories have been defined within the sample
coordinate system, the process of iterative tensor tomographic reconstruction can be started (cf.
Sections 5.2-5.3 and 1.2.3), incorporating the complete set of anisotropic dark-field projections.

The described methodology has been implemented at the ID19 X-ray imaging beamline of the
European Synchrotron Radiation Facility (ESRF, Grenoble, France), using the grating interferometer
setup described in [192] (operating at 35keV and a correlation distance of £ ~ 1.5pm in the present
configuration as discussed in Section 4.5.1, Eq. 4.38) and an additively manufactured sample
cage (based on UV resin) as depicted in 5.5. The acquisition and processing chain is outlined in
Figure 5.6. Along each of the 13 circular scan trajectories determined by the sample cage, 149
projection views have been acquired. Reference images for transmission, differential phase and
visibility have been acquired every 20 projection angles by temporarily moving the sample out of the
beam. Gliding averages of respective reference images have been used for the normalization of the
sample projections. Each projection image triplet is computed from seven phase stepping images
(cf. Section 4.2), and vertical stitching was required in order to compensate for the asymmetric
beam geometry at the synchrotron beamline. Le., a total of about 4 x 10* raw images are processed
to 2 x 1937 X-ray and dark-field projections (cf. Fig. 5.7 for examples). The original detector
sampling of 30.8 pm has been binned to a resolution of 92.4 ym in order to increase the SNR, (cf.
Figure 4.3). The reduced spatial resolution will be compensated for by the tensor valued statistical
representation of the unresolved substructure that will finally be reconstructed. Registration of the
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Figure 5.6: Diagrammatic representation of the acquisition and processing workflow for the generation of
tensor valued volume reconstructions of anisotropic dark-field signals. Key aspect is the acquisition of multiple
tomographic scans at different sample orientations, and their registration based on the isotropic absorption
contrast. Due to the large number of scans, each individual scan only comprises a reduced set of 149 projection
angles. Once all scan trajectories are registered into the sample’s coordinate system based on preliminary
reconstructions of the isotropic absorption signal, final reconstructions from all projections can be performed,
for each contrast modality respectively. Binning improves the dark-field contrast’s signal to noise ratio (cf.
Section 4.3 and Fig. 4.3). The corresponding reduction of spatial resolution is generally desired, as the sample’s
fine structure is captured in the dark-field signal. Here, 13 x 149 projections (each comprising three phase
stepping series of seven images) have been acquired with a final pixel size (after binning) of 0.1mm and a field of
view of about 4cm. Stitching is required to obtain a symmetric field of view from the given X-ray beam profile.

nested volume & tensor
_ >

reconstruction

scan trajectories within the sample coordinate system is realized by minimizing the sum of absolute
differences among volume reconstructions of the absorption contrast modality, whereat rotational
and translational degrees of freedom are considered. A tensor valued volume reconstruction of the
anisotropic dark-field contrast is finally obtained by five iterations of Algorithm 5.1 using a small
relaxation factor A = 0.1 in order to damp negative effects of the known inconsistencies of the
tensor model with respect to the actual dark-field anisotropy properties (cf. Section 5.3).

5.5 Discussion of Results

Two samples with non-trivial shape and a size fully exploiting the interferometer’s field of view have
been chosen for the experiments (illustrations are given in Figure 5.8). The contained fibers feature
diameters on the 1 to 10 pm scale, which is well detectable (cf. Fig. 4.7) by the given interferometer
setup. After reconstruction, eigenvectors and eigenvalues are computed for each voxel. As the
rich information contained within tensor tomographic volumes does not have a unique graphic
representation, it generally demands for task-specific illustration approaches, which have here been
realized by combinations of customized processing and subsequent visualization using ParaView.

The planar structure of the plastic clips (Fig. 5.8, right) makes them well suited for 2D
visualization. Figures 5.9-5.10 show, for a selected slice of the tomographic volume, the actually
reconstructed tensor components, the deduced fiber orientation and density, as well as a micro CT
image for comparison.

The second sample (Fig. 5.8, left) is in contrast markedly three dimensional, and thus represents
a prime use case for X-ray tensor tomography as opposed to planar anisotropic dark-field imaging.
The reconstruction results are discussed and compared to a micro CT reference in Figures 5.11-5.14.
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0 visibility v=exp(-LpF) 1

Figure 5.7: Example projection images for each orientation of the rotational axis for both considered samples
(cf. Fig. 5.8). For practical purposes of visualization, the visibility contrast v = e™#PF¥ is shown. The ratio
¢ = upr/p between dark-field contrast upr and attenuation p as used to discuss the signal to noise ratio (cf.
Section 4.3) is here found to range, on average, around 2 for the glass fiber reinforced sample (top) and 1/2
for the cellulose fiber reinforce sample (bottom). Thin lines overlaying the images originate from edges of the
sample cage (cf. Fig. 5.5).
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Figure 5.8: Injection molded fiber reinforced plastic samples considered here for X-ray dark-field tensor
tomography. On the left, a short glass fiber reinforced part cut from a typical industrially produced housing
component is shown. On the right, a stack of four clips made of cellulose fiber reinforced plastic (Fraunhofer
WKI, Braunschweig) is shown. The samples have been chosen for their complex shape (left) and their small and

low contrast fibers (right).

Figure 5.9: Depiction of the reconstructed dark-field tensor components for a single slice (using model éT(.)é,
cf. Fig. 5.3, i.e., signals are expected perpendicular to the fiber orientation). As the tensor is symmetric, only
the upper triangle is shown. Due to the alignment of the sample in the reconstruction coordinate system, most
contributions are found on the diagonal. Arrows indicate the spatial orientation associated with each tensor

component. See Figure 5.10 for derived results.

8.5mm .

tensor tomography, 0.1 mm resolution microtomography, 4 um resolution

Figure 5.10: Tensor tomography of an injection molded cellulose fiber reinforced sample. On the left, dominant
fiber orientations (line glyphs) and fiber densities (brightness) for a representative center slice through one of the
four plastic clips (Fig. 5.8, right) are illustrated. The paths of material flow can be visually recognized and are
indicated with arrows. On the right, a high resolution micro CT scan of the subsection indicated in red is shown.
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Figure 5.9 gives a plain depiction of the reconstructed tensor components. Some qualitative
aspects can be readily deduced from this raw representation: The first diagonal component (upper
left) encoding signals perpendicular to the image plane shows little variation, corresponding to
little variation in the signal-generating fibers along this axis. This in consequence implies that they
are mostly oriented parallel to the image plane. In contrast, notable and complementary signal
variations within the remaining diagonal components indicate varying in-plane orientations of the
fibers. The off-diagonal elements relate to the details of orientation and anisotropy, yet are less
intuitive and shall thus not be further elaborated on here.

Figure 5.10 (left) instead provides a visualization of the orientation vector field obtained after
eigenanalysis of the tensors. Assuming a single type of scatterer producing some typical amount
of total signal per instance, the absolute signal intensity (i.e., the mean eigenvalue or normalized
tensor trace) observed at each voxel is interpreted as an indicator of local fiber density. It is here
graphically represented as brightness modulation of the visualized vector field. Whenever the
projected length of the depicted vectors within the image plane reduces markedly, they actually
point in the perpendicular direction as can be observed at the upper left end of the shown sample
slice. Analog to the salient in-plane alignments of fibers, this change in orientation plausibly relates
to the production process of the sample, with the flow of molten (fiber reinforced) plastic hitting
a wall of the injection mold and aligning to it. The prominent “fibers” framing the sample can
in contrast be attributed to strong dark-field signals caused by the material-air interfaces at the
sample boundaries, as is also visible in the raw tensor data (Fig. 5.9).

Figure 5.10 (right) shows, to give an intuition for the structures contrasted by means of dark-field
imaging, a micro CT image of a subsection for comparison. The high resolution required to directly
resolve the thin cellulose fibers strongly limits the accessible field of view.

Figure 5.11 illustrates the properties of the second sample using a different visualization approach
and further comparing two different reconstructions based on alternative forward models as discussed
in Section 5.3. Instead of a planar slice, rather an inner surface of the complex shaped sample is
shown. The orientation vector fields are colored to highlight planar vs. vertical orientation, while a
graphic representation of the signal strength is given separately. A visual comparison of the vector
fields obtained from two alternative reconstruction approaches (Fig. 5.11, left column) confirms a
good degree of consistency, giving a further indication for the fitness of the employed signal models
discussed previously.

An additional representation of the tensors’ degree of anisotropy indicates where the deduced
orientation vector field is expected to be well or ill defined respectively, using the definition of
“fractional anisotropy” proposed for positive symmetric 3 x 3 tensors in the context of diffusion

tensor imaging [4, 218]:
1 trace(T")? )
FAT)=4/z|3— ———- | - 5.2
) \/2 < trace(T?) (5:2)

FA ranges from 0 for the case of three identical eigenvalues to 1 for the case of a single non-zero
eigenvalue. While low degrees of anisotropy (FA — 0) correspond to randomly oriented fiber
ensembles, high degrees (FA — 1) indicate unique fiber orientations. For Ty (cf. Figs. 5.3 and
5.11 top), FA is expected to not notably exceed 0.7 (as opposed to 1 for T(y)), as it yields two
dominant eigenvalues (as opposed to one) in the case of perfectly oriented scatterers. This is indeed
confirmed by the experimental findings shown in Fig. 5.11.

Strong orientation can e.g. be observed in the extended vertical sample regions allowing unper-
turbed material flow during the molding process, while confined and complex shaped or terminal
regions typically associated with non-laminar flow tend to feature a wider distribution of fiber
orientations, yielding smaller anisotropy values.

With regard to further quantitative comparisons, a high resolution micro CT reference scan of a
subsection of the sample has been acquired, allowing for direct analysis of local orientation tensors
using classic image based fiber analysis [140]. The scan is precisely aligned relative to the dark-field
tensor tomography, and the fiber orientation information from the high resolution scan is reduced
to orientation tensors characterizing the statistic orientation distribution within regions spanning,
for technical reasons, exactly 2 x 2 x 2 voxels of the tensor tomography. The nCT fiber analysis was
kindly provided by Dr. P. Pinter. Direct voxelwise comparisons of the respective tensors obtained
with different methodologies are now feasible.
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Figure 5.11: lllustrations of dominant fiber orientation, tensor anisotropy and mean eigenvalue for two different
tensor tomographic reconstructions of a short glass fiber reinforced sample. In order to show the bulk properties
within the sample, a layer of about 0.5 mm thickness has been artificially removed from all surfaces for visualization.
In the top row, the reconstruction is based on signal variations perpendicular to the optical axis (related to the
structure’s autocorrelation width), while in the bottom row it is based on signal variations along the optical
axis (related to the structure’s scattering cross section). See Section 5.3 and Figs. 5.2-5.3 for more detailed
information. Both methods yield largely consistent reconstructions of the predominant fiber orientation (given
by the eigenvectors corresponding to the smallest or largest eigenvalue respectively), yet visibly differ in the
degree of tensor anisotropy (Eq. 5.2) and mean eigenvalue. Tensor anisotropy is indeed expected to differ due
to the differing relations between the reconstructed dark-field tensor and the underlying mass distribution (see
Section 5.3, Figs. 5.2-5.3). Unidirectional fiber orientation corresponds to limits of 0.7 (top row) and 1 (bottom).
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Figure 5.12: Results from classic fiber orientation tensor analysis based on micro CT images resolving the actual
fibers (uCT tensor analysis kindly performed by Dr. P. Pinter). The accessible field of view is restricted to a
subsection of the sample. Dominant fiber orientation and tensor anisotropy are depicted analog to Fig. 5.11.
Anisotropy values of 1 correspond to unidirectional fiber orientation, 0 to isotropic fiber distributions. On the
right, the (mostly minor) differences between dominant orientation vectors obtained from micro CT analysis and
X-ray tensor tomography respectively (data from Fig. 5.11, top row) are depicted. Quantitative comparisons are
given in Figs. 5.13-5.14.
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Figure 5.13: Angular deviations between tensor tomography w.r.t. optical axis (T(), Fig. 5.11 bottom) and
micro CT reference (cf. Fig. 5.12). On the left, respective statistical distributions over the available reference
volume are shown for varying degrees of orientation tensor anisotropy (Fig. 5.12, center). Under the approximative
assumption of normally distributed angles (as introduced in Fig. 5.4 and Eq. 5.4), the distributions’ maxima
correspond to standard deviations and are summarized as a function of anisotropy on the right.
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Figure 5.14: Angular deviations between tensor tomography w.r.t. grating sensitivity orientation (T, Fig. 5.11
top) and micro CT reference analog to Fig. 5.13. The typical angular accuracy (right, blue) is compared to the
preceding findings (right, gray). Note that the statistical variance of the reference analysis, likewise contributing
to the relative deviations, is unknown.

Figure 5.12 gives an illustration of the resulting orientation vector field and tensor anisotropy
analog to the previous tensor tomography results. A depiction of the differences between the
respective vector fields provides a first visual impression of the relation between both datasets.

Quantitative analyses are given in Figures 5.13-5.14 showing statistical distributions of relative
inclination angles

A = arccos(| et - 0|) (5.3)

between normalized orientation vectors of the micro CT reference and either of the two dark-
field tensor tomography reconstructions respectively. The data is partitioned into different sets
according to the respective degree of orientation tensor anisotropy. The expected correlation
between tensor anisotropy and precision of the deduced orientation is clearly visible. The respective
error distributions found for the dark-field tensor reconstruction with respect to the optical axis
(signal model nT(,yn) are, in accordance with the respective simulation results results (Fig. 5.4),
found to be slightly wider as compared to dark-field tensor reconstruction with respect to the
grating sensitivity axis (signal model eT()é).

With regard to a more compact quantification of the observed statistics, the distributions are,
analog to Fig. 5.4, compared to a Gaussian distribution of relative inclination angles A8, which,
when integrated over the azimuthal degree of freedom, becomes

_1.A62

2 1
PDF(Af, opg) o sin(Af)e 2720 ~ Abe  "ao | (5.4)

exhibiting its maximum right at its standard deviation oag.
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In the limit of maximally orientated regions (i.e., high anisotropy), the typical statistical
deviation from the reference data is here found to range at 7° or 8° respectively (Figs 5.13-5.14),
and surpasses 15° and 20° for anisotropy values below 0.5. Already for values of anisotropy below
0.7, the distributions become markedly wider-tailed, whereat deviations ranging up to 90° can be
understood in terms of close eigenvalues (related to orthogonal eigenvectors respectively), whose
order and the associated identification of dominant orientation is easily affected by noise.

A comparison of statistical deviations from the micro CT based fiber analysis for both tensor
tomography reconstructions given in Fig. 5.14 (right) shows, in accordance with Fig. 5.4, a systematic
advantage of model eT(.)é over "I ()N, although both models nevertheless reproduce orientations
correctly on average. Due to the unknown noise statistics of the reference orientation tensors, no
absolute conclusions on precision can be given though. The apparent — and unexpected, given
Fig. 5.4 — convergence of the statistical deviations of both dark-field tensor reconstructions in
the limit of high anisotropies however gives reason to hypothesize that the remaining statistical
uncertainty on the order of magnitude of 5° is also inherently contained in the reference data set.
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Conclusion

X-Ray Dark-Field Tensor Tomography is, with regard to its actual realization, a multi-faceted
problem at the intersection of applied mathematics, physics and computer science. The final
reconstruction and visualization of tensor valued volumes from experimental data thereby represents
only the smallest aspect of the problem, which is rather characterized by a multitude of individual
methodological aspects at all levels of the required processing chain, which are typically excluded
in mathematical considerations of tensor tomography. Three general dimensions of the problem can
be identified: quantitative understanding of the available contrast mechanism (dark-field) and its
relation to the requirements of tensor tomography, development of flexible and robust image and
volume reconstruction algorithms allowing for ubiquitous deviations from ideal acquisition schemes,
and finally, actual implementations of these techniques able to handle large amounts of data up to
the 100 gigabyte scale.

Chapters 1, 2 and 3 developed modern formulations of iterative and non-iterative tomographic
volume reconstruction algorithms for arbitrary X-ray imaging geometries starting from a general
vectorial description of perspective projections, including a well motivated and highly efficient
discrete X-ray imaging model and a likewise well supported approach to the precise determination of
the actual imaging geometry. These essential basics, targeting implementations on recent massively
parallel general purpose graphics processors, form the sound basis for the subsequent extension of
iterative tomographic reconstruction techniques to tensor-valued volumes. Chapter 4 introduced,
developed and validated all methods and relations required towards the efficient computation and
quantitative interpretation of (anisotropic) dark-field images from phase stepping series acquired with
Talbot or Talbot-Lau interferometers, also addressing practical aspects of experimental imprecisions,
noise, and position dependence. Chapter 5 finally derives, building on these fundamentals, both a
suited image acquisition scheme and an efficient reconstruction technique for tensor valued volumes,
also validating the required approximations in dark-field anisotropy modeling.

The entire processing chain is finally successfully applied to actual experimental data of fiber
reinforced samples explicitly acquired for this purpose. The observed results and especially the
qualitative differences among the different signal models considered are found to be consistent
with the preceding theoretical analyses. An explicit comparison to an established fiber orientation
analysis approach based on processing high resolution micro CT images provides further empirical
validation of the deduced vector fields and confirms that local orientations can be practically
reconstructed, within larger tomographic volumes on the scale of 3003 to 5002 tensor voxels, to a
typical precision of 5° to 10° for reasonably anisotropic fiber ensembles also in notably non-uniform
and large samples (note that this includes also the statistical noise inherent to small ensembles),
i.e., in use cases which truly benefit from fully three dimensional information and can not be easily
addressed with alternative planar imaging approaches.
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