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1. Introduction

In 1923 Schur [43] requested a description of all polynomials f € Z[X] that induce a bijection
on Z/pZ for infinitely many primes p. He proved that if f is of prime degree, then it is — up to
linear changes over the algebraic closure of Q — either a cyclic polynomial X? or a Chebychev
polynomial 7 (X) (defined implicitly by T,(X +1/X) = X7+ ;). He conjectured that in
the general case f is a composition of such polynomials. This was proved by Fried [13] in
1970.

Schur’s original question has been generalized in several ways: Turnwald [48] discusses
the problem over integral domains, Guralnick, Miiller, and Saxl [19] characterize rational
functions r over number fields K so that r induces a bijection on the residue field K, for
infinitely many places p € P(K).

There is a different generalization of interest to us: we assume the base field to be of positive
characteristic and search for exceptional polynomials, i.e. polynomials that fulfill the following

Definition (Exceptionality) Assume k is a finite field. Let f € k[X] be a polynomial with
coefficients in k. If K is an extension field of k, then f is called a permutation polynomial
over K if f induces a bijection on K.

f € k[X] is called exceptional over k if it is a permutation polynomial over infinitely many
finite extensions of k.

The classification of permutation polynomials has a long tradition and goes back to Her-
mite [24] who noticed that any function & — k with k£ a finite field can be represented
by a polynomial. A broad survey of permutation polynomials can be found in Lidl and
Niederreiter [35].

An important step forward concerning the theory of exceptional polynomials was the refor-
mulation of the original definition in terms of Galois theory and covering theory in positive
characteristic. A first consequence was the proof of the following

Exceptionality Lemma (cf. [14]) Let k be a finite field of characteristic p and t a tran-
scendental over k. Let f € k[X] be a polynomial. Denote the set of zeros of f(X)—1 by Z.
Fiz a zero x € Z. Then:

(1) Suppose f is not a p-th power in k[X]. Then f is exceptional over k if and only if the
x-stabilizer of the arithmetic monodromy group of f fizes no orbit of the x-stabilizer of
the geometric monodromy group of f on Z \ {x}. (A definition of monodromy groups

is given on page|[7)

(2) Suppose f is a composition f = f1 o fo with f1, fo € k[X]. Then f is exceptional over
k if and only if both fi and fo are exceptional over k.

In 1993 Fried, Guralnick, and Saxl [14] realized that this result reduces the classification
of exceptional polynomials essentially to a question about primitive groups. They used the



1. Introduction

Theorem of O’Nan-Scott and the classification of finite simple groups to obtain

Theorem Let k be a finite field of characteristic p. Assume f € k[X] is an indecomposable
and exceptional polynomial of degree n. Denote the geometric monodromy group of f by G.
Then one of the following holds:

(1) n is an odd prime different from the characteristic p. The group G is cyclic or dihedral
of degree n.

(2) n=p" and G =T, x H is an affine group with H < GL(r,p) acting naturally on F},.

(3) p € {2,3}, there exists an odd integer a > 3 with PSL(2,p*) < G < PTL(2,p%), and
1 a(.a
n=s3p (p - 1)-

This classification solved in particular Carlitz’s conjecture (1966): if p is an odd prime, then
the degree of f is odd.

The three cases of the above theorem are understood with different degrees of completeness:

Case (1) is classical; up to linear changes only cyclic or Chebychev polynomials of degree
n arise here, cf. [38, Appendix|. This is the equivalent to Schur’s original conjecture.

The first examples in case (3) were given by Miiller [39] for p = 2 and a = 3. Cohen
and Matthews [10] generalized these to an infinite series in even characteristic. Lenstra and
Zieve [34] found a similar series for p = 3. Recently, Guralnick, Zieve, and Rosenberg [22, 20]
gave a complete discussion of case (3). The polynomials occurring fulfill either G = PSL(2, p*)
or G = PGL(2,p%).

Case (2) is still open. The main problem is the difficulty to find restrictions for the group
H; even the smallest possible case deg f = p requires some work, cf. [14] §5]. For some time
the only examples of this case were additive polynomials and certain twists of them. In 1997
Guralnick and Miiller [I7] found a completely new series. Guralnick and Zieve [22] conjecture
that there are no more polynomials belonging to this case. Up to the present every example
fulfills the following

Observation. The fixed field E of the affine kernel of the geometric monodromy group of
f is rational.

This observation motivates a classification of exceptional polynomials with primitive affine
arithmetic monodromy group in terms of the genus g of E. This is done in chapter [ up to
g = 2. As a result, F is rational if and only if f belongs to a family of known polynomials.
Moreover there are no exceptional polynomials with primitive affine arithmetic monodromy
group for g € {1,2}. However, Theorem shows that in case ¢ = 2 the affine group
AGL(2,3) can be realized as the geometric monodromy group of a polynomial.

Chapter [5 generalizes this AGL(2, 3)-polynomial; Theorem eventually shows that every
affine group AGL(r, p®) can be realized as the geometric monodromy group of a polynomial
of degree p"®. Unfortunately, these groups are 2-transitive on the r-dimensional [Fpe-vector
space; hence, this chapter does not offer exceptional polynomials at all.

The last three chapters continue the classification of [14], §5]. In chapter |§| polynomials of
degree p? with primitive and affine arithmetic monodromy group are discussed. Theorem
shows that such a polynomial either belongs to a class of known affine polynomials or has
a “big” geometric monodromy group. Chapter [7] classifies exceptional polynomials of degree



p? with primitive arithmetic monodromy group. Again only known exceptional polynomials
are obtained. In chapter [§] we study exceptional polynomials of degree p” where r is an odd
prime. We assume additionally that the arithmetic monodromy group of f is 2-transitive.
Theorem shows that this chapter does not offer new classes of exceptional polynomials.

Notation and terminology
Mostly we use standard notation. In the following we give terminology about which an
explanation may be needed.

For an integer m € N we denote by C,,, resp. D, a cyclic group of order m resp. a dihedral
group of order 2m.

Assume that E' is a function field. Then g(FE) is the genus of E. The set of places of E is
denoted by P(E).

Page [23] gives a survey of frequently used definitions.
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2. Monodromy groups and affine polynomials

In this chapter we give the basic ideas how Galois theory and ramification theory can be
used to translate properties of polynomials into properties of certain field extensions. Most
of the following results are classical.

2.1. Polynomials and monodromy groups

Monodromy groups

Let k denote a finite field of characteristic p, and let f € k[X] \ k[X?] be a polynomial of
degree n which is not a p-th power in k[X]. Suppose ¢ is transcendental over k. Denote by
K an algebraic closure of k.

Set ¢ the splitting field of f(X) —t|k(t). As f(X)—t € k(t)[X] is separable, the extension
(|k(t) is Galois. Its Galois group A := Gal(¢|k(t)) is called the arithmetic monodromy group
of f.

Let k¥ C K denote an algebraic extension of k; obviously ¢ is also transcendental over
K. The splitting field of f(X) — ¢|k’(t) coincides with the compositum k’¢. Set M :=
Gal(k'(|K'(1)).

The restriction of any Galois automorphism o € M to ¢ yields a Galois automorphism
olg € A. Since the mapping M — A, o — ol is injective, we obtain an embedding of M into
A; hence, we can consider M to be a subgroup of A.

Denote the exact field of constants of ¢ by k. As k(t) C £ Nk'(t) C ¥ (t), Liiroth shows
that £ N k'(t) = (kN k)(t). Since the extension (kN E')(t)|k(t) is Galois with Galois group
Gal((/% NE)(0)|k(t)) = Gal(k N ¥'|k), it follows in particular that M is a normal subgroup of
A with A/M being cyclic of order [(k N k') : k].

All in all, we have proved the following fact: For every choice of k' the group M contains
the group G := Gal(€|l;:(t)) as a normal subgroup with M /G being cyclic. G is called the
geometric monodromy group of f.

Note that M is isomorphic to G in particular if ¥ = K. As we work later on mostly
with function fields whose fields of constants are algebraically closed, this easy consequence
becomes important.

Since f(X)—t is absolutely irreducible, the groups G, M, and A act transitively on the zeros
of f(X)—t.

Functional decomposability
Definition 2.1 With the above notation we call f functionally decomposable over &k’ if there
exist nonlinear polynomials g, h € K'[X] with f = g o h.

If f is not functionally decomposable over k', we call f functionally indecomposable over
K.
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Let « € £ be a zero of f(X) —t. We state some consequences of the functional indecompos-
ability of f over k'.

Lemma 2.2 The following statements are equivalent:
(1) f is functionally indecomposable over k'.
(2) The monodromy group M acts primitively on the zeros of f(X) —t.
(3) There is no proper intermediate field between k' (t) and k'(z).

Proof. We show first that (2) and (3) are equivalent: By Galois duality the field ¥(z) is
the fixed field of the stabilizer M, of x. Both the primitivity of M and the non-existence of
proper intermediate fields between k'(¢) and k'(x) translate into the maximality of M, in M.

Now, suppose f = go h to be decomposed over k’. Let Z := M denote the set of zeros of
f(X)—t. Set Y := h(Z) and define A, := h™1(y) C Z for y € Y. It is easy to verify that
{Ay |y € Y} is a system of imprimitivity for M.

Next, assume there is a proper intermediate field between k(t) and k'(x). As this field
is rational by Liiroth, there exists y € k'(z) with k'(t) C k'(y) C k’(x). Since x resp. y
is algebraic over k'(y) resp. k'(t), we can find nonlinear polynomials g, h € k'[X] such that
h(z) =y and g(y) = t. Thus, z is a zero of (goh)(X)—t. Consider f(X)—t and (goh)(X)—t
as polynomials in ¢. Then both are irreducible and have the same leading coefficient. This
gives the equality f = go h. [ |

2.2. Affine groups and affine polynomials

Definition 2.3 Let G be a permutation group on a finite nonempty set Q. We call G an
affine group if G contains a normal subgroup N that fulfills the following two conditions:

o N is elementary abelian.

o N is regular on Q, i.e. for every (w;,w;) € 02 there exists exactly one n € N with

n _— .
wi —(A)].

Remark 2.4 The elementary abelian regular normal subgroup in the above definition
is not unique in general. For instance, in the affine group AGL(2,3) there exists an affine
subgroup of order 27 containing three regular elementary abelian normal subgroups. *

We state some basic facts about affine groups:

Lemma 2.5 Let G be an affine group with N < G being elementary abelian and regular.
Then:

(1) A point stabilizer H of G is a complement of N, G =N x H.

(2) There exist a prime p and an integer v such that N is isomorphic to the r-dimensional
Fp-vector space F),.
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(8) For g € G write g =nghg withng € N and hy € H. Then the action of G on Q and of
G on N defined by
nd = h;lnnghg
are equivalent. In particular, G can be embedded into AGL(r,p), the group of all affine
transformations of ¥,. H acts on N as a subgroup of GL(r,p).

Proof. (1) is a direct consequence of the transitivity of N, cf. [32) 3.1.4]. (2) is merely
another formulation of N being elementary abelian. (3) follows from Huppert [25] IT 2.2]. m

The next definition connects affine groups with polynomials. It is central for our further
considerations:

Definition 2.6 With the above notation we call f € k[X]\ k[XP] an affine polynomial if its
geometric monodromy group is an affine group.

A consequence of Dixon and Mortimer [12, Sec. 4.7] and Huppert [25, IT 3.2] is

Definition/Lemma 2.7 With the above notation G is primitive if and only if H acts irre-
ducibly on N. If G is primitive, then N is the unique minimal normal subgroup of G. In
this case we call N the affine kernel of G.

Huppert [25] IT 3.2] also gives the important

Proposition 2.8 (Galois) Suppose G is a primitive affine group whose affine kernel has
order p". Then a point stabilizer H of G does not contain a nontrivial normal p-subgroup.

As a first application we classify all affine polynomials having a regular geometric monodromy
group.

Proposition 2.9 Let K be an algebraic closure of the field F),. Denote byt a transcendental
element over K.

(1) Assume f is a semi-additive polynomial of degree n = p", i.e.

f(X)=a+ Z a; X" with a,a; € K and apa, # 0. (2.1)
i=0

Then the geometric monodromy group G of f is elementary abelian and regular. In
particular, f is affine.

(2) Suppose f is affine and the geometric monodromy group G of f is a p-group. Then f
is semi-additive of the form (12.1]).

Proof.

(1) Set g := f —a the linearization of f. Denote the set of zeros of g by Z := {z1,...,2,} C
K and fix a zero x of f(X) —t. Since g(z; + 2;) = g(2:) + g(2;) =0, Z is an Fp-vector
space.

The set of zeros of f(X) —t is given by x + Z; in particular, K (x) is the splitting field
of f(X)—tand |G| =[K(z): K(t)] =degf=|Z|.
It follows together with the transitivity of G that for every z € Z there exists a unique

g. € G with 29 = & + z. The map g, — z gives an isomorphism between G and Z.
This is the claim.
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(2) Let = denote a zero of f(X) — ¢ and set H := G, the stabilizer of z. As G is a p-
group, there exist subgroups G; with H = Go <G, <--- 4G, = G and Gi41/G; = C),.
By Lemma f is a composition of degree-p polynomials f; with monodromy group
Gy = 0.
As Gy, is abelian of order p, it is regular. Turnwald [49, Theorem 2.10] proves that
there exist elements a, b, c € K such that f; = aX? +bX + c.

A simple induction shows that f being a composition of semi-additive polynomials is
semi-additive, too.

Remark 2.10 Part (2) of the above proposition can also be proved by using Corollary

We see that only the infinite place of K (¢) ramifies in the extension K (z)|K(t); its ram-
ification index equals [K(x) : K(t)]. The fixed field of G; is rational by Liiroth; thus,
Fix(G;) = K(y;) where y; can be chosen such that the infinite place of K(y;) lies over the
infinite place of K (t).

Hence, the extensions K (y;)|K (yi+1) are of degree p and without finite ramification. This
shows that y; fulfills an equation of the form ay? + by; + ¢ = y;+1 with a,b,c € K. Therefore
the polynomials f; are semi-additive of degree p. *

2.3. Generic polynomials

In this section we give an alternative approach to affine polynomials. Our main idea is to
find a primitive element z for the extension k(z)|k(t) that has a simple minimal polynomial.
Our main tool will be the following result of Kemper and Mattig [31]:

Proposition 2.11 Let k be an algebraic extension of F,. Suppose t1,...,t,41 are alge-
braically independent transcendentals over k. Then

gty trgr; X) = XV Y 4X7 Tt € Kt ) [X] (2.2)
i=1
is generic for AGL(r,p) over k, i.e. g fulfills the following two conditions:
(1) The Galois group of g (as a polynomial in X ) is AGL(r,p).

(2) If K is an infinite field containing k and L|K is a Galois field extension with Galois
group H < AGL(r,p), then there exist \1,...,\py1 € K such that L is the splitting
field of g( A1, ..., A\rg1; X) over K.

The next lemma describes how the Galois group of g acts on the zeros of g.

Lemma 2.12 Let g be defined as in . Denote by L the splitting field and by G =
AGL(r,p) the Galois group of g. Fix a zero z of g. Then the set Z of zeros of g is given by
Z = z+V where V C L is an Fy-vector space. Elements of the stabilizer G, of z act on V
as automorphisms of V.. Elements of the affine kernel N of G stabilize V' pointwise and act
on Z by translation.

10



2.3. Generic polynomials

Proof. V is given as the set of zeros of the linearization of g, i.e. as the set of zeros of
g(t1,...,t,0; X). As this polynomial is additive, it follows at once that V is an Fp-vector
space.

We prove that G acts on V. Let 0 € G. As 27 € Z, there exists v/ € V with 27 = 2z + /.
This gives for any v € V

240 =240 407 €Z = V 4+ eV <= v V.
( )
Since we have
(Av1)? =] and  (v1 +v2)? = v + 09 for all A € F, and vy, v €V,

G acts on V as a subgroup of GL(V) = GL(r, p).

Set ¢ : G — GL(V) the homomorphism that maps o to the V-automorphism induced
by o. Then kerp NG, = 1. Since G, = GL(r,p), the mapping ¢ is an epimorphism with
| ker p| = p". As AGL(r,p) is primitive and, hence, N is the unique normal subgroup of order
p", N = Gy is the pointwise stabilizer of V. The remaining assertions follow. [ |

Remark 2.13 Let ¢ be a transcendental over k. Consider the polynomial
B(X) = glar, .., ars1; X) € K(£)[X]. (2.3)

h results from g by specializing elements a; € k(t) for the transcendentals ¢;. Suppose h is
separable. Then the Galois group of h is a subgroup of the Galois group of g, cf. [33, VII
§2]. Hence, our results from the above lemma can be transferred to describe the action of
the Galois group of h. *

Remark 2.14 Note that the Galois group of a polynomial of the form (2.3) is merely a
subgroup of AGL(r,p); it need not be an affine group.
For instance, consider the polynomial

FX) = X3+ 1X2 +tX + 12 € Fo(t)[X].

Huppert [25 p. 161] proves that AGL(3,2) contains a transitive complement C' of its affine
kernel. We show that the Galois group G := Gal(f|F2(t)) of f is conjugate to C.

The action of G on the zeros x1,...,xs of f gives a natural embedding of G into Sg, the
symmetric group on the set 2 := {1,...,8}. Specialization of elements of Fg for the parameter
t and factorization of the resulting polynomial over Fg show that GG contains permutations
of type [1,1,3,3], [1,7], and [4,4]. A survey of the subgroups of AGL(3,2) proves that this
condition enforces either G = AGL(3,2) or G = CY for some g € AGL(3,2).

Define Q4 := {M C Q| |M| = 4} to be the set of all subsets of ) of cardinality 4. The
definition M9 := {m9 | m € M} for ¢ € G and m € M gives an action of G on 4. If
G = AGL(3,2), then €y splits into two G-orbits; in the other case 4 splits into three
G-orbits.

The MAPLE-function ‘galois/rsetpol‘ allows us to compute the polynomial

)= 1] (X -1 x) e Fy(t)[X]
MeQy €M

whose zeros are the products of four pairwise different zeros of f. As f4 has three irreducible
factors over Fa(t), the claim follows. *

11



2. Monodromy groups and affine polynomials

Lemma 2.15 Let p be a prime and r € N be an integer. Let Ei,FEo < Spr be elementary
abelian reqular subgroups of Syr. Then there exists an element g € Syr such that EY = Es.
In particular, all subgroups of Syr that are isomorphic to AGL(r,p) are conjugate.

Proof. The action of E; resp. F» is equivalent to the natural action of F; on the coset
space F1 /1 resp. of E5 on the coset space Eo/1. As F1/1 = E5/1, these actions are equivalent,
too. Hence, F7 acts equivalently to E». This shows that F4 and Es are conjugate.

Let A, A" < Spr with A = A" = AGL(r,p). Denote the affine kernel of A with N and
the affine kernel of A" with N’. Then A = Ng ,(N) and A" = Ng . (N’). As N and N’ are
conjugate, the same holds for A and A'. [ |

Now we prove the main result of this section.

Proposition 2.16 Let k be an algebraic extension of IF,,, denote by t a transcendental over
k, and let g be defined as in . Suppose f € k[X] \ k[XP] is an affine polynomial of
degree n = p". Fix a zero x of f(X) —t. Then there exists an element z € k(x) such that
k(t,z) = k(x) and the minimal polynomial v of z over k(t) is separable with

w(X)=g(ai,...,ar11; X) and  a; € k[t]. (2.4)

Proof. Identify the zeros of f(X)—t with integers 1,...,n and set G < S,, the permutation
representation of Gal(f(X)—t|k(t)) on the zeros of f(X)—t. Let N < G denote an elementary
abelian regular normal subgroup of G. Then A := Ng, (N) = AGL(r,p), the affine kernel of
A coincides with N, and for every integer i € {1,...,n} the stabilizer G; of 7 fulfills

G, =A;,NG.

The previous lemma shows that there exists an identification of the zeros of g with the
integers 1,...,n such that the action of the Galois group of g on the zeros of ¢ is given by
A. Due to Proposition and the proof of Kemper [30, Theorem 1] we can find elements
a; € k(t) such that the polynomial h(X) := g(aq,...,a,+1; X) is separable, the splitting field
of h over k(t) coincides with the splitting field of f(X) —t over k(t), and the action of the
Galois group of h on the zeros of h is equivalent to the action of G. Hence, we can find a
zero 2’ € k(x) of h with k(x) = k(t, 2').

Set d the least common multiple of the denominators of the a;. Define z := dz’. Then
k(t,2") = k(t, 2) and a simple calculation shows that the minimal polynomial of dz over k()
is of the form (2.4)). [

Example 2.17 Use the notation from the above proof.
Suppose f is a sublinearized polynomial of the form (4.2)), cf. page Then we can write
. i71
FX)=X-g™X) with gX)= > g, X = €k[X].
mlpt—1 "
p'ln

Some calculation shows that we can set 2z’ := (g(x))_l.
Suppose f fulfills the conclusion of Guralnick/Miiller [I7, Theorem 1.4]. Then we can set

2= % This follows from [I7, §3]. *

12



3. Calculation of differents and the genus-0
condition

In this chapter we present several techniques to calculate the different exponent of an exten-
sion of a place. For the convenience of the reader we first state some classical results that
will help us with the following computations.

3.1. The general case

The first theorem describes how the different exponent d(B|p) of an extension Pp is related
to its ramification groups. Since these groups are only defined in Galois extensions, we have
to assume the field extension E|F to be Galois. A proof of the theorem can be found in
Stichtenoth [47], T11.8.8].

Theorem 3.1 (Hilbert’s Different Formula) Let L|E be a finite Galois extension of func-
tion fields, p € P(E), and B € P(L) lying over p. Let I,(i) denote the i-th ramification group
of B|p. Then the different exponent d(Plp) is given by

o0

d(Plp) =D (IL(5)] - 1).

1=0

Next, we state a “transitivity formula” for different exponents, cf. [47, I11.4.11].

Lemma 3.2 Let E C F C L be a tower of separable extensions of function fields. Suppose
p” resp. p’ resp. p is a place of L resp. F resp. E with p"|p’" and p'|p. If e(p”|p’) denotes the
ramification index of p”|p’, then

d(p”[p) = e(p”[p") - d(p’|p) + d(p"|p").

The following theorem gives a lower bound for the different exponent; moreover, tame ex-
tensions are characterized. Again, a proof can be found in Stichtenoth [47].

Theorem 3.3 (Dedekind’s Different Theorem) Let L|E be a separable extension of func-
tion fields, p € P(E), and B € P(L) lying over p. Let e(*B|p) denote the ramification index

of Blp. Then d(Blp) = e(Plp) — 1 and
d(Blp) = e(Plp) — 1 <= Plp is tame.

We are still missing a comfortable tool to compute the degree of the different in non-Galois
extensions. It seems that the following proposition is widely known and often used, but the
author does not know any reference for it. Hence, we will prove

13



3. Calculation of differents and the genus-0 condition

Proposition 3.4 Let L|E be a Galois extension of function fields with Galois group G. Let
H < G be a subgroup of G and set F := Fix(H) the fized field of H. Define n := [G : H].
Consider G as a permutation group on n points via the natural action of G on the left-coset
space G/H. Denote by o(S) the number of orbits of a subgroup S < G.

Let p € P(E) be a place of E. Fix an arbitrary place m € P(L) lying over p, denote by I(i)
the i-th ramification group of the extension w|p, and define

oo

0 e n— O(I(i))
Then
ind(p) = > d(alp)deg(q) € No

alp, a€P(F)

equals the degree of the different in the extension F|E coming from the ramification of p. In
particular, ZpeP(E) ind(p) equals the degree of the different of the extension F|E.

Proof.  For a place q € P(F) denote by ngq the number of places of L lying over q. If
B € P(L) is a place of L, denote by P := PN F the well-defined restriction of P to F and
by Iy, (7) the i-th ramification group of the extension B[P r.

If q resp. P appears as an index of summation, then the sum extends over all places of F
resp. L.

We use the notation from Stichtenoth [47]. We get

S dGalpydeg@) £ S ——dPrlp) des(Pr)
alp Be
(2) Z e(‘B|33F|g|(‘B|‘J3F) d(Pplp) deg(Br)
Bp
_ d7§r>ze<mrmF>d<mF|p>
PBlp
O S (dple) — ORI
PBlp
@ deg ZZU — [ Lyop-(9)])
PBlp i>0
< deg zz 20~ gy (8)])
>0 Plp
de . G
) E}')Z(I H = > oy (i >
i>0 Blp

Here are some hints for the above equations:
(a): Exactly nyg, places of L induce the same summand d(*Br|p) deg(Pr).
(b): Since L|F' is Galois, we have |H| = ng . e(B|Br)f(B|Br).

(c): cf. Lemma [3.2]

14



3.1. The general case

(d): cf. Hilbert’s Different Formula
(e): Both sums are finite.

f): The number of places of L above p is @, cf. Stichtenoth [47] 111.8.2].
[I(=1)]

Next we transform the expression » oy, [l (¢)]- Let T be a left-transversal for H in G.

We have
. (A) 1
Z|fq3mp(’t)! - mz‘jﬂ’ﬂ(ﬂg)l,(l)
geG

Plp
< ’H’ 57 2| it
wt|(m F

tET

© ’H| Z|I NtHt ™|
teT

(D) !H! N

= ’I(_l)‘|l(z)| o(I(i)).

Here again some hints, that explain the transformations in detail:

(A): G acts transitively on the set of places of L lying above p. By definition the decomposition
group I(—1) equals the stabilizer of 7. Thus, there exist exactly |I(—1)| elements in G that
map 7 to a fixed place P lying over p.

(B): Let h € H be an element of H. As h fixes F' pointwise, the deﬁnitions immediately give

() p = ((’/Tt)F)h = (7')p. Since L|F is Galois, the equality |Lien|(zen), (i)] = |Lnt|(nt), (7))
holds.

(C): Because of Ity (i) = Injp(4)" = I(i)" and Ipej(rt), (1) = Lnep (i) N H it follows
| Lnt |ty ()| = | Lnrjp () N H| = |1(0)' N H| = |1(3) N tHt™"|.
(D): Let g € I(7). g fixes the coset tH if and only if
(tH)Y =g %tH =tH <= t'¢g7tc H «— g 'ctHt ! < gectHt
Thus, the stabilizer of ¢H in I(i) coincides with I(i)NtHt™' and Y, 7 |1(i)NtHt ! | equals the
sum of the number of fixed points of all elements of I(i). Therefore the orbit-counting theorem
yields
> 16 NtHE | = [1(3)] - o(I(i)).
teT

Putting all together we obtain

S dtalp)deatp) = “HT S (17011 LT )

qlp >0

. \Gr T Z.
|f<z>|,f(_1>‘ g 70101

>0
- deg(p);”[; OE@.(;])) ind (p)
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3. Calculation of differents and the genus-0 condition

The remaining assertions follow from the general definitions, cf. [47, 111.4.3]. [

The next lemma gives a lower bound for the function “ind”. An obvious idea is to discard
all summands with ¢ > 0; this method yields ind(p) > n — o(I). However, the following
estimation is stronger.

Lemma 3.5 With the notation from Proposition[3.4) set p the characteristic of E and define
o (I) the number of orbits of the inertia group I := I(0) with length not divisible by p. Then

ind(p) >n — o' (I).

Proof. Denote by ¢(t) := |(tH)!| the length of the I-orbit through tH. [47, 111.1.6] and
the identity Fix(¢t "' Ht) = F' show

)
[INtHt 1| e(m|m

(1) 7= e(m -1 1p).

pt=1
Dedekind’s Different Theorem yields
() = d(mp-1[p) + 0t

where d; is an integer with §; <1 and d; = 1 if and only if p{ e(7,-1[p). Set

6/(t) = 0 lfp ‘ e(.ﬂptfllp%
1 otherwise.
Then

ind(p) = diijgr)ze(‘pmﬂd(%ﬂp)
Plp

deg(m) - || 5~ d(Brlp
|H| 2 (Brl

Blp

e

(oW

@

09

~—~

N—

=
g

o

U

—~

—

N

<
S— | ~— S— | —
==

=3

~—

@ degr) I1] 5~ d(wmp;
)

teT e((r*

\%

(oW

@
09
—~
=3
~—

Vv
(oW
D

09

—~

=)

N—
S

|
R
N—

—~
=

Again some hints for the above equations:
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3.1. The general case

(a): cf. hint (A)

(8): cf. hint (B)

(v): Hint (C) shows that e(n*|(7*)r) = [I NtHt ™| = e(n|r NFix(tHt™')) = e(n|m -1 ); thus,
e(m'lp) _ _ e(nlp)
(7t p)  e(m|mpe
The equality d((7%)r|p) = d(m -1 |p) is due to Lemma 3.2 and Hilbert’s Different Formula.

(0): 6; vanishes if and only if p divides the length of the I-orbit through ¢tH. Therefore ), ;. d; and
0'(I) are equal by definition.

e((")rlp) = of ] =e(mp-1lp).

Now we state two important theorems that allow us to give severe restrictions for the decrease
in the orders of the higher ramification groups.

We continue to assume L|E to be Galois and suppose the constant field of E to be alge-
braically closed. p € P(E) is a place of E and 8 € P(L) lies over p. For an integer i set I(i)
the i-th ramification group of B|p. For a real number u € R define

;I ifu<—
U I([u]) ifu > -1

Let oqyp RS — R be the function defined by

“oodt
)= [ ey

Since its derivative is always positive, gy, is injective.
The Theorem of Hasse-Arf [44], IV §3] now reads as follows

Theorem 3.6 (Hasse-Arf) If I(0) is an abelian group and i € Ny is an integer with I(i) >
I(i+1), then ogq,(i) € Z.

Suppose N is a normal subgroup of Gal(L|E). Set F := Fix(N) and p’ := P N F. Denote
the ramification groups of B|p’ with J(i) resp. J, and the ramification groups of p’|p with
F(i) resp. F,.

It is easy to express J,, in terms of I,;; the definitions directly give
Ju=I,NN.
The computation of F), is more difficult; however, [44] IV §3] shows

Theorem 3.7 (Herbrand) With the above notation it follows

Fpp = LN/N = 1,/

Remark 3.8 Although Serre [44] proves the above results only in case of local function
fields, they are correct in the global case, too. This is seen as follows: Completion at the
place B gives an Galois extension L'|E’ with Galois group I(0). The normal subgroup N
of Gal(L|E) corresponds to the group J(0) = I(0) N N. In particular, the function ¢ is
invariant under completion as it only depends on subgroups of I(0) resp. J(0). Since,
moreover, completion at P does not change the ramification behavior of B|p, the assertions
of the Theorems of Hasse-Arf and Herbrand can be transferred unmodified to the case of
global function fields. *
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3. Calculation of differents and the genus-0 condition

3.2. Applications to the case of affine Galois groups

In this section p € P is a prime, k£ an algebraic extension of F,, ¢ a transcendental over k,
and f € k[X] an affine polynomial of degree n = p” that is functionally indecomposable over
k. Set ¢ the splitting field of f(X) — t|k(t). Denote by K an algebraic closure of k and set
L := K{¢. Then L|K(t) is a Galois extension with affine Galois group G = N x H; here N
denotes the affine kernel of Gal(¢|k(t)) and H is the stabilizer of a root z of f(X) —t.

As the fixed field Fix(H) of H coincides with K (¢,x) = K(z) and the action of G on the
roots of f(X) — t is equivalent to the natural action of G on the left-coset space G/H,
Proposition and the Riemann-Hurwitz genus formula imply the important

Corollary 3.9 (Genus-0 Condition) With the notation from Proposition the equality
>_pind(p) = 2n — 2 holds.

For a place p € P(K (t)) of K(t) the integer ind(p) only depends on the series of higher
ramification groups of p and the way how these groups act on the set of zeros of f(X) — t.
In the following sections we present methods that give estimations for these information.

3.2.1. Consequences of Hasse-Arf and Herbrand
Set E := Fix(N), fix a place P € P(L), and define p’ := PN E.
Let I, resp. J, resp. F, denote the ramification groups of PB|p resp. P|p’ resp. p’|p. Define
I:=1y, J:=Jy, and F' := Fy. For an integer ¢ € Ny set
1= Py (-

Important facts concerning the elements u; are given by the following

Lemma 3.10 u; is an integer. For a real number x € R with u; < x < u;y1 the equalities
Ja; = J(ui+1) and Ix = I(ui_H)

hold. Furthermore
/]
| (i)
Proof. Let m € Ny be an integer and v € R a real number with m < v < m + 1. Since
¢y 18 continuous and piecewise linear by definition, it follows

_[J(m+1)] = | T (k)
) = T =+ 32

Uil — Ui =

Thus, assuming m < u; < m + 1 yields

|J(m +1)] [ J(k)
%\p(“z):Z:T Ui — 2,7
k=1
which is equivalent to
i) = [J(m+ D) (w; —m) + Y [T (k).
k=1

18



3.2. Applications to the case of affine Galois groups

Since |J(m + 1)| divides |J (k)| for all k € {0,1,...,m + 1}, u; —m is an integer and, hence,
u; € Np.
The ramification groups of B|p’ are subgroups of J < N and, thus, abelian. As i <
e () < i+ 1 and gy (z) = i + 1 if and only if © = u;11, Hasse-Arf gives
Jz = J(uH_l).
The definition of u; gives Fi, | (z) = F([pgqp (z)]) = F(i + 1). Herbrand states

IofJw = 1o/ J(uit1) = Fy @) = F(i+1);

this shows |I;| = |I(u;+1)| for all possible x. Hence, I, = I(ujt+1).

As gpﬁmp, (x) = |‘](1|‘3|“)|, the definitions of u; and x give
| (wig)|
o (2) = i+ ),
The remaining assertions follow easily. [ |

Corollary 3.11 The equality

ind(p) = i ]F|)| (n - O(I(uz)))

i=0
holds.
Proof. By Lemma|3.10|the w;11 — u; = % groups
I(u; + 1), I(u; +2), ..oy I(uiv1)

are equal. J being a p-group gives J = J(0) = J(1), ug = 0, and u; = 1. Therefore

mio) = 32 G

[I: I(up)] P
ne () | &g N )] 1
et 2 0D
Herbrand shows that I/J = F and I(u;)/J(u;) = F(z). Thus,
. _on—=(I(w)) W E@
ind(p) = 7 [(uo)] —i—;(n O(I(uz))> 7]
N EG)
_ Zo 7 (n—o(r(w)))
This is the claim. [ |
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3. Calculation of differents and the genus-0 condition

3.2.2. Bounds for the number of fixed points for elements of G

We have seen in the previous paragraphs that we need information about the number of
orbits o(I(#)) of a series of ramification groups I() in order to calculate degrees of differents
in the extension K (x)|K(t). As the orbit-counting theorem relates the number of orbits of
a group with the number of fixed points of each group element, we have to develop good
bounds for this latter number. For an arbitrarily given permutation group this is a difficult
problem.

In our case G is an affine group; we have geometric interpretations of the action of G. This
allows us to give severe restrictions for the number of fixed points of an element of G.

Every element g € G can uniquely expressed in the form ¢ = nh with n € N and h € H.
Define the H-projection mapping £ : G — H (the letter “L” stands for “linearization”) via

(nh)* = h.
L is an epimorphism with kernel N. We state an important observation.

Lemma 3.12 Let g € G be an element of G. Then either g fizes no element or g and g*
have the same number of fized points.

Proof. Suppose f € N is fixed by g. As N is a transitive subgroup of GG, every element
fixed by g can be written in the form fm with m € N. Thus, let m € N be an arbitrary
element of N and write g = nh with n € N and h € H. Then fm is fixed by nh if and only
if
fm=(fm)"™ = (fm-n)"=(fn-m)* = . mh = .- mh —= m=m"
—

eEN

It follows that ¢ has as many fixed points as g% = h. [ |

Since an element h € H acts as an automorphism A;, € GL(N) of the vector space N, the
set of fixed points of h equals the eigenspace of Ay for the eigenvalue 1. As eigenspaces are
vector spaces, we get

Corollary 3.13 Suppose g € G has at least one fixed point. Then the number of fized points
of g is a power of p; in particular, 1 # g implies | Fix(g)| | -

Next we state a criterion that guarantees the existence of fixed points.

Corollary 3.14 Let g € G be a p-regular element. Then g has a fixed point.

Proof. The group U := (N, g) can be written as U = N x C with a cyclic group C < H
of order |g|. As N is solvable, Schur-Zassenhaus shows that g is conjugate to a generator of
C'. This element, however, fixes 0 € N. [ |

3.2.3. Bounds for ind(co)

Let oo € P(K(t)) be the infinite place of K(t) and denote with B € P(L) a place of L lying
over 0o. Set I (7) the i-th ramification group of oo and define I, := I,(0).
The next lemma is the basis for all estimations of ind(co).
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3.2. Applications to the case of affine Galois groups

Lemma 3.15 Both I, and I (1) are transitive.

Proof. As oo ramifies totally in the extension K (x)|K(t), van der Waerden [51] gives the
transitivity of .

I (1) equals the normal p-Sylow subgroup of I,. Denote by €, ..., Q, the orbits of I (1).
As I(1) is normal in I, all orbits §; have the same cardinality w. Since |[N| = >"7_, |€]
is a power of p, both w and r are powers of p. I, acts transitively on the set of orbits €2;.
Hence, r divides [l : Is(1)]; as this index is prime to p, we obtain r = 1 and, thus, the
transitivity of Ioo(1). ]

Easy consequences are

Corollary 3.16 Suppose |I| = p"s with pts. Then ind(co) > (n — 1)(1 + s71); equality
holds if and only if Io(2) = 1.

In particular, ind(co) > n and, provided that I > 1 is a p-group, oo is the unique place
ramifying in L|K(t).

Corollary 3.17 If Io(i) > 1, then o(Ix (7)) |

Use the notation from Corollary and
suppose Ioo(ug) > Ing(Uqy1) = 1. Then

n
e

- [Foo (1] ny N [ Foo (1))
1nd(oo)2(n—l)(1—|— P )—|—(n—p)§ Fa)

Proof. Every ramification group I (i) is a normal subgroup of I, cf. Maus [37]. Thus,
the orbits of I, (i) all have the same length. The claim is due to n being a prime power.

The previous results and our definition E := Fix(V) give

Lemma 3.18 oo ramifies in E|K(t) if and only if [E : K(t)] > 1.

Proof.  Suppose co does not ramify in the extension E|K(t). Then I, < N. Since oo
ramifies totally in the extension K (z)| K (t), the group I, coincides with N. By Corollary[3.16|
there is no finite ramification in L|K(t). Therefore E|K(t) is unramified. Stichtenoth [47,
I11.5.8] shows E = K(t). ]

3.2.4. Bounds for ind(p) with p a finite place

Let p € P(K(t)) be a finite place of K(t) and P € P(L) lying over p. The symbols p’, Iy,
Jp, and F}, are defined as in section
Lemma [3.5] allows us to prove an important

Corollary 3.19 J, = 1. I,(i) = Fy(i) and o(Iy(i)) < o(Ip(i)*) for alli.

Proof.  Suppose J; is nontrivial. Then p | |J,| and every Jy-orbit has length a multiple of
p. As Jp is a subgroup of I, every Ip-orbit is the disjoint unit of some of the Jy-orbits. In
particular, every Iy-orbit has length divisible by p. Lemma shows

ind(p) > n.

This contradicts the genus-0 condition as also ind(co) > n.
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3. Calculation of differents and the genus-0 condition

Thus, Jy, =1 and @y is the identity. Herbrand gives
Fp(2) = Ip(2) / Jp(i) = Ip(9).
The remaining assertion follows from the orbit-counting theorem. [ |

We see that the knowledge of the ramification of p in the extension E|K(t) determines the
ramification of p in L|K(t) completely. Furthermore the estimation

ind(p Zn—olpz )

>0 L : Zp(d)
holds.
A consequence of the orbit-counting theorem is

Lemma 3.20 Set f := max{|Fix(g)| | g € Ip(i)} and suppose 1 < r < |I,(i)|. Then

ol1y(0) < 75 (n+ (0 = 1) < i (14 (501 = D) < 3 (0= %),

A simple but useful consequence of the previous estimations is the following lemma that
gives a limit for the number of finite branch points for affine polynomials. This result is also
proved in Guralnick/Miiller [I7, Lem. 2.1].

Lemma 3.21 Suppose f is an affine polynomial of degree p". If f has > 2 finite branch

points, then f has exactly 2 finite branch points, p is odd, and the finite branch points are
tamely ramified with corresponding inertia groups of order 2.
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Part II.

Application to specific problems

Notation used in this part

We continue the notation from the previous sections: k is a finite field of characteristic p.
f € k[X] denotes an affine polynomial of degree n = p” that is functionally indecomposable
over k. K is a fixed algebraic closure of k. ¢ is a transcendental over K, x denotes a fixed
zero of f(X) —t. The splitting field of f(X) — ¢ over k(t) resp. K(t) is denoted by ¢ resp.
L = K/. The arithmetic monodromy group Gal (E |l<:(t)) of f is denoted by A, the geometric
monodromy group Gal(L|K(t)) by G. N is the affine kernel of A. Set U := A, and H := G,.
The fixed field of N in the extension L|K(t) is denoted by E.

oo always stands for the infinite place of K (t); the symbols p and g denote different finite
places of K (t).

Unless redefined, I (7) is the i-th ramification group of a fixed place of L over oo, J (i) :=
I(i) N N, and F (i) denotes the i-th ramification group of the induced extension of oo in
E|K(t). Set Ino := I55(0), Joo := Jo(0), and Fiy, := Fo(0).

The groups Iy, I, etc. are defined analogously.
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4. Affine polynomials with ¢ <2

In this chapter we restrict the genus g := g(FE) of E to certain values and classify all affine
polynomials in question.
A first observation is

Lemma 4.1 Suppose the extension E|K(t) is tame. Then g = 0 and the possibilities for f
are given in Theorem [{.2

Proof. The assertion is clear for £ = K(t).

Otherwise oo ramifies in F|K(t) with index ey, := |F| > 1 by Lemma Additionally
at most two finite places p and q ramify; set ey := |Fp| and eq := |Fy|.
Suppose eq = 1. Then by Riemann-Hurwitz

2g—2= 2B : K@)+ =L B k0] + P L. (B K@®)] <0

€00 ep

<2[E:K(t)]

hence g = 0.
Suppose ey, eq > 1. Then e, = e¢q = 2 by Lemma and Riemann-Hurwitz shows

€so — 1

2 —2=—2[E: K(t)] + (B K@M +2-=-[E: K@) <0.

DN | =

€oo

Thus, the claim follows in in this case, too. [ |

41. ¢g=0
In this section we assume the field E to be of genus 0. Our main result will be

Theorem 4.2 With the notation from page suppose g = 0. Then there exist linear
polynomials g1, g2 € K[X] such that F := gy o f o g2 € k[X] belongs to one of the following
classes:

(1) H =1 and F is an additive polynomial, i.e. F =", a; XP'. F is exceptional if and
only if F' has no nonzero root in k.

(2) Case (A) of Theorem [4.5 holds and F is sublinearized of the form (4.2)), cf. page |28

F is exceptional if and only if the polynomial '} %F(X) has no zero in k.

(3) Case (D) of Theorem[4.5 holds. In [18] F will be studied in detail.
(4) Case (E) of Theorem[4.3 holds. F fulfills the conclusion of [17, Theorem 1.4].

25



4. Aftine polynomials with g < 2

We start by describing the Galois theoretic structure of the extension E|K(t). This is not
difficult since the possible Galois groups and the corresponding ramification data of E|K(t)
are well known.

Theorem 4.3 FE is a rational function field. The following table gives all possible isomor-
phisms types for H with E|K (t) having the associated ramification behavior.

’ Case H H= ‘ Ramification data ‘ Conditions ‘
(A) | Cm (m,m) (p,m) =1
(B) || Cpx---xCyp (|H])
(C) | (Cpx---xXCp) % Cp | (m,qm) [H|=gqm, m|q—1 q#1
(D) Dy, (27m> p=2, (27m) =1
(E) Dy, (2,2,777,) P # 2, (p,m) =
(F) || 45 (5,6) p=
(G) | PSL(2,q) (D, o) p#2, q=p"
(H) || PGL(2,q) (¢lg=1),¢+1) [p#2,q=p"
(I) || PGL(2,q) (glg—1),q+1) [p=2g=p"

Proof. As K is algebraically closed, the rationality of E is a direct consequence of
Stichtenoth [47, 1.6.3]. Thus, E|K (t) is a Galois extension of rational function fields.

The ramification behavior and the Galois groups of such extensions were classified by
Valentini and Madan in [50].

Some cases of the original classification cannot occur: on the one hand, K(¢) does not
contain any place of degree > 1, on the other hand, an affine polynomial fulfills the conclusion
of Lemma 3.2l This leads to the above cases. [ |

The case H = 1 is completely discussed by Proposition The criterion for an additive
polynomial to be exceptional is given for instance in Lidl/Niederreiter [35, Theorem 7.9].
Therefore we will assume H > 1 from now on.

4.1.1. Case (A): H = C,, is cyclic

As oo ramifies totally in the extension K (x)|K(t), mn is a divisor of |I|. Since G has order
mn, the equality I, = G holds.

We show that no nontrivial element of H fixes an element of N*. Assume the contrary.
Then there exist an element ¢ € N and a nontrivial subgroup S < H such that a is fixed
by every element of S. As H is cyclic, S is characteristic in H and, thus, normal in U. Set
M := (a) the irreducible S-submodule of N generated by a. Then every element of M is
fixed by S. Clifford allows us to decompose the S-module N in the form

N = éM“Z
i=1

where u; € U are appropriate elements of U. It follows that S stabilizes every element of
M"i. Hence, S is a subgroup of the kernel of the operation of H on N in contradiction to
the faithfulness of this operation.

Corollary shows

ind(p):n—%(n—i-(m—l)-l) :(n—1)(1—i>.

m
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41. g=0

The above shows that a conjugate of I, either is a subgroup of H or intersects H trivially.
Thus, places of K (z) lying over p either ramify with index m or index 1. Suppose there are
a resp. b places of K(z) lying over p with index m resp. index 1. By solving the equations
am + b =n and a(m — 1) = ind(p) we obtain that p decomposes in K(zx) in the form
p="P PP with pairwise different places B, ; € P(K(:p)) (4.1)

m

The genus-0 condition enforces

ind(oco) =2n —2 —ind(p) = (n — 1) (1 + 7) =n—o(leo) + m;
this gives [(2) = 1.

Now we are able to compute the genus g(L) of L. Our previous considerations prove that
the ramification in the extension L|K (x) comes from the infinite place of K(z) and ; both
places ramify totally. Hence, by Riemann-Hurwitz g(L) = 0 and L is a rational function
field.

Construction of f
By a linear substitution of both ¢t and = we may assume p resp. P to be the zero place of

K(t) resp. K(z). The decomposition (4.1)) of p gives
f(X)=X-g"(X)

with a separable polynomial g € K[X] of degree ”7_1 and ¢g(0) # 0. The derivative of f reads
as

f1(X) = g™(X) +mXg"H(X) - ¢'(X) = g™ HX) - (9(X) +mX - ¢(X)).
Since p is the only finite place ramifying in K (z)|K(t), every zero & of f' is also a zero of g.
Assume g(&) + m&g'(€§) = 0. Then m&g’'(§) = 0. Since m& # 0, we get ¢'(£) = 0. But this
is impossible as g does not have multiple roots. Hence, g(X) + mX¢'(X) € K* is a nonzero
element of K. o

Write g(X) = 3.7 ¢;:X* with g; € K and go - gn-1 # 0. We obtain the equivalence
n—1

g X)+mX - ¢ (X) =Y gi(1+mi)X' e K¥ «— g;(14mi)=0 fori>1.

hgt

Il
=)

7

This shows that for ¢ > 1 a nonzero coefficient g; # 0 is possible only if 1 +mi = 0, i.e.
1+ mi = ap with some « € N. Hence,

ap—1\M
JX) =X(0+ Y g X))
m|ap—1 "
S

As L is a rational function field, it is possible to choose z € L such that L = K(z) and the
infinite resp. zero place of K(z) lies over the infinite resp. zero place of K(z). Hence, we
may assume 2" = x. Then z is annihilated by

=F(X)
Joxm—t=(gX+ 3 gmxap>m—tzxmoF(X)—t.

mlap—1
1<ep=l ~n—1
- m - m
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4. Aftine polynomials with g < 2

Set 7 := F(z). As 7™ = t, the field K(7) contains K (¢). Since deg F' = n, the extension
K (z)|K (1) has degree [K(z) : K(7)] = n. N is the unique subgroup of G of order n; thus,
the equality Fix(N) = K(7) holds.

As the infinite place of K (7) ramifies totally in the extension K (z)|K(7) with the infinite
place of K(z) lying above, Proposition shows that F' is an additive polynomial. Thus,
the indices «a are powers of p. We obtain

ap—1\ M i_1\m
X =X(0+ Y gen X ) =X( Y g x5)T @12
mlap—1 mlpi—1 m

ap—1 n—1 .
1I<=—=<"= p’In

This are exactly Cohen’s sublinearized polynomials, cf. [9]. We state Cohen’s criteria for f
to be exceptional in Theorem

4.1.2. Case (B): H is an elementary abelian p-group

H is a normal p-subgroup of U. Proposition [2.8 gives H = 1 which was previously excluded.

4.1.3. Case (C): H = (C, x --- x Cp) x Cy, is a semidirect product

H contains a unique p-Sylow subgroup. Thus, the p-Sylow subgroup of H is normal in U.
Hence, H is a p’-group in contradiction to Theorem

4.1.4. Case (D): H is dihedral in even characteristic

This case will be extensively studied in [I8]. It will be proved that there exist exceptional
polynomials realizing this case.

4.1.5. Case (E): H is dihedral in odd characteristic

As G/N is a p/-group and f has two finite branch points, Guralnick/Miiller [I7, Theorem 2.2]
completely discusses the ramification of L|K(t). It will be shown in [I8] that this case leads
to the class of polynomials described in [I7, Theorem 1.4].

4.1.6. Case (F): H = A; in characteristic 3

We show that this case does not occur.

Suppose first that p ramifies tamely. Then by Corollary ind(c0) > 3(n— 1) and

. 1 n
ind(p) >n — g(n+4- 5)

This violates the genus-0 condition.

Now suppose that p ramifies wildly. Then I, = N x C5 and I, = S3; the higher ramifi-
cation groups of co are subgroups of N and, thus, act semiregularly on N. It follows from

section [3.2.1]

ind(oc0) = Z

=0

|1€((é))|| (n— olToe(wa)) ) = g(” “0+g (1o |Io<jui)|)'

1=2
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41. g=0

Therefore

ind(c0) = g(n -1) or ind(c0) > —n —

[JSTN
ol o

depending on whether I(2) =1 or I(2) > C5 > 1.
Since elements of the same order are conjugate in I, ind(p) is given by

) 1 n—1in+2
ind(p) =n — 6(n+3f2 +2f3)+s- 3(2]%)
where fo resp. f3 denotes the number of fixed points of an element of I, of order 2 resp. 3
and s is the well-defined integer with I(s) > I(s + 1) = 1. As both fy and f3 are < %, the
genus-0 condition immediately gives ind(co) = g(n —1),s=1,and fo = f3 = 5. It follows
36 —n

ind(o0) +ind(p) —2n+2 = TR

hence, the genus-0 condition cannot be fulfilled.

4.1.7. Case (G): H = PSL(2,q) with p # 2
We prove that this case does not occur.

H is irreducible on N

We show first that we can construct a new affine polynomial g € K[X] from our given
polynomial f such that ¢ is indecomposable over K and the geometric point stabilizer of g
is isomorphic to PSL(2, q).

Lemma 4.4 Suppose H is a non-abelian group such that every normal subgroup of H is
characteristic in H.

Then there exists an affine polynomial g € K[X] that is indecomposable over K and whose
geometric point stabilizer is isomorphic to a factor group of H. Moreover, the fized field of
the affine kernel of the geometric monodromy group of g is a rational function field.

Proof. If f is functionally indecomposable over K, then we can set f = g.
Otherwise H is reducible on NV and we can find a proper H-submodule M < N. Since H
is normal in U, N is a semisimple H-module and can be written in the form

S
N = @M"’ with up =1 and u; € U™
=1

H is faithful on M because the kernel of the action of H on M is characteristic in H and,
thus, a subgroup of the kernel of the action of H on N. As H is non-abelian, this shows in
particular that M cannot be one-dimensional.

Set N’ := €D, ,; M"i; N' is an H-module with H < N’ x H < N x H. By Galois duality
Fix(N'x H) = K(y) is a proper intermediate field between K (z) and K (¢). This field induces
a decomposition f = go h over K with h(z) =y and ¢(y) = ¢, cf. Lemma

Set Z the Galois hull of K (y)|K (t) and J := Gal(L|Z); by definition J = (), (N' x H).
N’ is invariant under the action of H; hence, N’ < .J < N’ x H. This shows that J = N’ x Q
with () a normal and, thus, characteristic subgroup of H.

The extension Z|K(t) is Galois by construction; the Galois group of Z|K(t) is given by

N x H

Gal(Z|K(t) = G/J = N %0

>~ N/N' x H/Q=M x H/Q.
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4. Aftine polynomials with g < 2

The isomorphism ijfé ~ N/N' x H/Q comes from the fact that every element nhN'Q €

ﬁfjfé can be written in the form nN’ - h@ since hN' = N'h.

Since there are no proper intermediate fields between K (y) and K (t), g is indecomposable
over K and H/Q acts irreducibly on M.

Gal(Z|K (t)) is an affine group: the regularity of N on the set of zeros of f(X) —t gives the
regularity of N/N’ on the set of zeros of g(X) —t. The fixed field of the geometric point
stabilizer of g equals the fixed field of N x ) and, thus, is a subfield of the rational function
field E. Liroth [47, II1.5.9] shows that this field is rational, too.

The following diagram visualizes the above situation

/\\ /‘\

\/ww \/ e

K(x

N xH
\ AN
K(t) NxH

For ¢ > 3 the group PSL(2,q) is simple. Thus, the geometric monodromy group of g is
MxH/Q with H/Q € {1,PSL(2,q)}. The case H/Q = 1 is impossible because the irreducible
H/Q-module M would be one-dimensional in contradiction to Lemma

Suppose ¢ = p = 3. Then H = PSL(2,3) = A, and every normal subgroup of H is also
characteristic in H. We obtain H/Q € {1,Cs, H}; this again yields H/Q = H.

Hence, in all cases we can construct a functionally indecomposable polynomial g from f that
also belongs to case (G). Therefore we will assume from now on that the given polynomial
f itself is functionally indecomposable. By showing that such an f does not exist we prove
the impossibility of case (G).

Bounds for the number of fixed points for elements of H
The following concept allows us to obtain approximate upper bounds for the number of fixed
points of elements of H.

Definition 4.5 Let H be a group and h € H. We say that h is k-generating in H if H can
be generated by k conjugates of h, i.e. if there exist elements g1,...,gx € H such that

H = (h9, ... h9).
This definition yields in case of the group PSL(2, q)

Lemma 4.6 Let 1 # = € PSL(2,q) with ¢ any prime power (in particular, the case ¢ = 2™
is allowed). Then x is

e 2-generating if ¢ > 2, |x| > 2, and (|z|,q) # (3,9),
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41. g=0

e 3-generating if (|2}, q) = (3,9),
e 3-generating if |x| =2 and q # 3.

Proof. The case (|z],q) = (3,9) follows directly from Guralnick/Saxl [21, Lem. 3.1].
Now suppose |z| = 2 and g # 3. [21] gives the assertion for ¢ > 4. For ¢ = 2 the claim
follows by direct computation.

At last suppose ¢ > 2, || > 2, and (|z|,q) # (3,9).

If || is not a power of 2, then the assertion follows for ¢ > 4 again from [2I] and for ¢ = 3
by direct computation.

Thus, assume |x| = 2! with 4 > 2. It is sufficient to show that an element f € PSL(2,q) of
order 4 is 2-generating.

An inspection of the list [25 1T 8.27] of all subgroups of PSL(2,¢) shows that for ¢ ¢
{7,9} the group PSL(2,q) contains a maximal subgroup D isomorphic to a dihedral group
of order 2 - (2?;7_11). The well-known fact that PSL(2, ¢) contains exactly one conjugacy class
of involutions allows to find elements g, h € PSL(2, ¢) such that D = {(f?)9, (f*)"). Suppose
(f9, f" # PSL(2,q). Then (f9, f*) < D, and both f9 and f" are elements of the normal
cyclic subgroup of D of order 3|D|. This implies (f9)* = (f")? in contradiction to D being
dihedral.

For q € {7,9} the assertion follows by direct calculation. ]

The next lemma gives an upper bound for the number of fixed points of a k-generating
element.

Lemma 4.7 Let h € H be an element of H. If h is k-generating in H, then

-1
dim Fix(h) < k - dim N and | Fix(h)| < Vnk—1.

Proof. Let h € H be k-generating in H. Then there exist conjugates hi,...,h; of h
that generate H. Set F; := Fix(h;), f := dim Fy, and d := dim N; obviously the equality
f =dim F; holds for all 4 € {1,...,k}. Consider the homomorphism

¢: N> N/Fi&---®&N/F,, nw~— (nFi,...,nky)

with kernel kerp = (\*_, F;. As H is irreducible on N, the intersection (\*_, F; = {0} is
trivial and ¢ is injective. Since dim N/F; = d — f, we obtain

A<k -(d—f) < fg%d.

The remaining assertions follow easily. [ |

N is a “big” module: n > ¢*

For this section we assume n > ¢*.
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4. Aftine polynomials with g < 2

Suppose ¢ # 9 and h € H. Lemmas [4.6 and [4.7] give the estimations

n for h =1,

| Fix(h)| < W:%<% for |h| =2 and q # 3,

f_fg% for |h| > 2.

First we discuss the case where p ramifies tamely with index q+1 . Then I = P x Cq-1 with
2
a transitive p-group P. Corollary [3.16] shows

ind(c0) > (n—1)(1+ ——);

this contradicts the genus-0 condition if ¢ = 3. I}, is cyclic and, thus, contains at most one

involution. Hence,
2 q+1
ind zn—i(n+—+ — =2 )
(p) q + 1 q ( 2 )q2

It follows
*(q+1)(g—3)+n(-3+q(6+q))

ind(o0) +ind(p) —2n +2 > TR > 0;
q —q
so the genus-0 condition is violated for all ¢ in question.
Next we consider the case where p ramifies wildly with index 2 (q DN Here, Ioo 2 N x Cgz1
2
2
and, thus, ind(co) > (n —1)(1+ m).

The following lemma allows us to estimate the number of involutions in Ij.

Lemma 4.8 Suppose G = Ax B with 2t |A| and B cyclic. Let i be the number of involutions
and f the number of elements of order 4 in B. Then the number of involutions resp. elements
of order 4 in G is less or equal than i - |A| resp. f-|A].

Proof. Teta e Aand b € B. As A is a normal 2'-subgroup of G, it follows by some
standard arguments that ab € G having order 2 resp. 4 implies b to be an involution resp.
to be of order 4. The claim follows as a direct consequence of this fact. [ |

As I, is isomorphic to a product P x C¢—1 with a p-group P of order ¢, the above lemma
2

shows that I, contains at most ¢ involutions. Since I, is a 2’-group for ¢ = 3, we obtain in
all cases

. 2 n q(g—1) n 2 1 n
nd(p) > n— = (n g+ (P —1-a) 5 )+ (- k- 5).

These estimations succeed in disproving the genus-0 condition.

Now suppose ¢ = 9.

If p ramifies tamely, the same bounds as above hold and, hence, the same contradiction
follows.

Otherwise I, contains exactly 9 involutions and 8 elements of order 3; this shows

1 n n 1 n
o(Ip) < %(n+ 175 + 188—1) and o(Iy(1)) < §(n+ 85),

Again a contradiction to the genus-0 condition results.
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41. g=0

N is a “small” module: n < ¢*

Unfortunately, in this case the bounds from Lemma {4.7] are too weak to induce contradic-
tions to the genus-0 condition. By classifying all irreducible representations of H on N we get
much sharper estimations for the number of fixed points of elements of H, cf. Lemma [3.12
This method will eventually lead to the impossibility of this case.

The following presentation of p-modular representation theory of the groups PSL(2,q) and
PGL(2, q) is based on Brauer and Nesbitt [0, §30].

Let k be any field of characteristic p and u, v algebraically independent transcendentals over
k. Denote by V,, the vector space of homogeneous polynomials in u and v of degree n over

k. Obviously B, := (u™,u" tv,...,v") is a basis for V,.
For an element A = (%) € GL(2, k) define
u? = au + bv and v = cu+ dv.
Some calculation shows that for a second element A’ € GL(2, ) the relations (u?)4" = uA4’

and (v")A" = v44" hold.
This action of GL(2, k) can be extended to an endomorphism ¢4 of V;, by defining

n n
(w24 = (uM) (01" and, thus, (g /ﬂiulvn_’) - g ki (u) (v
i=0 i=0

The mapping A — ¢4 is a homomorphism GL(2,x) — Aut(V},). Set &,,(A) the representa-
tion matrix of ¢4 with respect to the basis B; we consider &,,(A) always acting on the row
vector space k™. Then

GL(2,k) - GL(n+1,k), A~ G&,(A)
is a group homomorphism. The next lemma allows us to explicitly calculate &, (A).

Lemma 4.9 Let A= (2Y) € GL(2,k). Denote the entries of &,(A) by si; with 1 < i,j <
n+ 1. Then

min(n+1—i,n+1—3)

B n+1—i i—1 Apntl—ieA ntl—j—A Aditj—n—2
we o2 < \ )(n+1—j—x>“b o |
A=max(0,n+2—i—j)

Proof. For the sake of shortness set n’ := n + 1. The image of the i-th basis vector
w1 =%~ of B under the mapping ¢4 is

(" )P = (a4 bu)" T (cu + dv) !

ML N i1
— — ;o . o
§ :2 :( >< >arbn i=T 8 ] 1 sur—i-svn r—s
T S
r=0

s=0

n min(u,n'—1) rs 1
S § :( § : <’I’L \ Z) (Z )\) a)\bn’i/\c,u/\dilJr)\,u) wtpn—H
=
pu=0

A=max(0,u+1—1%)

—
=

In (%) we set 4t = r+s and A = r. The conditions for A come from the fact that 0 < r < n+1—i
and 0 < s <4 — 1. This shows the assertion. [ |
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4. Aftine polynomials with g < 2

Definition 4.10 (Kronecker Product) Let A = (a;;) € k"%, B € k**. The Kronecker
product A ® B of A with B is the matrix

AQB:=|................. € grtxsu,

Now we are able to specify all irreducible p-modular representations of PSL(2, ¢) and PGL(2, q)
over Fy:

Theorem 4.11 (Brauer-Nesbitt) Let p € P be a prime and q := p™ a power of p. Let ¢;
denote the i-th power of the Frobenius-automorphism of Fy, i.e.

pi: Fg—=Fy, x+— .
For a matriz A = (a;;) with a;; € Fy set A9 := ((a;;)?").

(1) Assume p > 3. For A € SL(2,q) denote by A the image of A in PSL(2,q). Then, up to
conjugation, the irreducible p-modular representations of PSL(2,q) over Fy correspond
to mappings 0 with

m—1 m—
0: PSL(2,q) — GL(J] (ri + 1),0). ® (A%
=0 =0

here 0 < r; < p for alli and 2| > 7", Yri. 0 is faithful if and only if there exists at least
one index i with r; # 0.

(2) For A € GL(2,q) denote by A the image of A in PGL(2,q). Then, up to conjugation,
the irreducible p-modular representations of PGL(2,q) over F, correspond to mappings

0 with
m—1 m—1
0: PGL(2,q) —» GL(J[ (i +1),q9), A det(A)* X) &,,(4%);
=0 =0

here 0 <r; <p foralli,0<s<qg—1,andqg—1|(2s+> ", np)
F, is a splitting field for both PSL(2,q) and PGL(2, q).

We proceed with our classification of irreducible H-modules N with n < ¢*:

We interpret N as a F)-vector space; then H acts as a subgroup of GL(r, p). Isaacs [29], 9.21]
and Theorem show that N¥¢ := N ® F, is completely reducible, i.e.

Ny=vie---aV;

with absolutely irreducible and pairwise non-similar H-modules V; over IF,. We further obtain
from [I1), 70.15] that the V; form an orbit under the operation of the Galois group

X = Gal(F,|F,) = ({: Fy = Fy, z— 2P).

Set X the stabilizer of V7. Since f = [V{X| = %, we see that X; = (¢7).
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41. g=0

Theorem |4.11] shows that V] is similar to a representation uniquely parametrized by an
m-~tuple of integers r; with 0 < r; < p; by abuse of notation set

V1 = (?”0, ey rm—l)-
It follows from the definitions that
Vlé = (Tm—la TO) st 77'm—2);

thus, the operation of £ on V; induces a cyclic right shift in the parametrization of V;. If
we consider the indices of the parameters r; modulo m, the property of ¢/ stabilizing V3
translates into r; = ;47 for all i; setting ¢ := ged(f, m) this condition is equivalent to

ri=r; if i=j modg.
So there exist elements Ry, ..., Ry—1 with 0 < R; < p such that

m—1 g—1 . g—1
dimg, Vi = [[ (i + 1) = [[(Ri + D)5 = (H(Ri + 1)>

1=0 =0

=:J
and
m—1 m g—1

Since dimp, N = dimp, N Fo = fJ %, the condition n < ¢* gives

f

<p'M o= IV <dm — LJT <4
g g

<f3

n=mp

Set @ := £ and b := ™. then we have to solve aJ? < 4b. In particular J > 1 for otherwise
Vi would be trivial and H would not be faithful on N. Since a > 1, we get b < 4. Therefore
only the following cases need to be discussed:

b= 3: We have to solve aJ? < 12; this is only possible for (a,J) = (1,2). But then

24> ri=bY Ri=b-1=3,

This shows that the case does not occur.
b = 2: We have to solve a.J? < 8; this is only possible for (a,.J) = (1,2). It follows f = g and

gJb _ 42 2m 2

b
n=p" =p pte =p?m = ¢

Since J = 2, there exists an index 4, 0 < ¢ < % = g, with r; = 7,44 =1 and r; = 0 for
all other indices j. Thus, V7 is similar to the irreducible 4-dimensional representation

Y : PSL(2,q) — GL(4,F,), A &1(A%)® &1(A¥ito).

Lemma shows that for any A € PSL(2,q) the equality &1(A) = A holds; therefore

P(A) = A% @ A¥ite,
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4. Aftine polynomials with g < 2

36

In the following we calculate for a given element A the dimension of the space of fixed
points of ¥(A). Huppert [25, IT 8.1] shows that the centralizer Cpsi(2,q) () of any
element A of order p is elementary abelian of order q. Hence, if A # 1, then either A
has order p or is p-regular.

First let [A| = p. We may assume |A| = p. Then A is conjugate to (§1) in GL(2,q).
Thus, the dimension of the fixed point space of ¥)(A) equals the dimension of the fixed
point space of (1) ® (3 1) which is 2.

Now let A be p-regular. Then A € SL(2,q) is also p-regular and can be diagonalized
over a suitable extension field of F,. Denote by A\, A™! the eigenvalues of A. Due to
Ortega [41, 6.3.1] eigenvalues of ¥(A) are exactly given by the product of eigenvalues
of A% with eigenvalues of A%i+9; thus,

()\soi A\Pitg ) +1

and ((A—l)@iA@H-g)il

are the eigenvalues of ¥(A). We get

(APiAPite) = 1 = (WP =1 = WH =1 s |4 | p?+1

and
AN =1 = W) =1 = W l=1 < |4 |p! -1
Since g = %, we obtain
4 |Al=1,
dim, Fix(4(1)) = 1 7 ’j‘;f AT 1 or AVEH 1
0 otherwise.

As V; and V) are Galois conjugate, in both modules the dimension of the space of fixed
points of A is identical. Because N4 is the direct sum of all V;, h € H fixes exactly
one element of N unless

h=1; then h fixes ¢> = n points,
|h| = p; then h fixes ¢ = \/n points,
h # 1 and |h| | @ or |h| | @; then h fixes ¢ = y/n points.

These improved estimations succeed in disproving the genus-0 condition:

1 +1 1 -1
) = sed(F V) = 1,

Suppose p ramifies tamely. As ged(
2 1

. S22 (21T 1))

ind(p) > ¢ p (q + ( 1) 1)

Together with the estimation for ind(cc) from Corollary a violation of the genus-0
condition follows.
If p ramifies wildly, then the equation
. 2 q(g—1)
ind Zq2—7<q2+ =1 q)+
®) q(g—1) ( 2 )

holds. We obtain again a contradiction to the genus-0 condition.

qil(q2 — 2(q2 +(q- 1)61))
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b =1: We have to solve aJ < 4; this is only possible for (a,J) € {(1,2),(1,3)}.
The case (a,J) = (1,2) cannot occur because 2 { Z;ﬁgl ri = be;Ol R, =1.

In the other case r; = 2 for exactly one index 4; all other r; vanish. We get m = g = f

and

b
n:pr :p3m2q3_

V1 is similar to the irreducible 3-dimensional representation

b a>  2ab b2\ 7
:|'—>62(A<pi): ac ad+bc bd

4 PSL(2,q) > GL(3,q), A= {Z ’
2 2cd d?

The dimension of the space of fixed points of ¥(A) can be determined as shown in the
case b = 2. We get

3 A=1,

_ (4.3)
1 otherwise.

dimp, Fix(¢(4)) = {

Thus, any h € H* fixes exactly /n = ¢ points.

These estimations are sufficient in disproving the genus-0 condition.

4.1.8. Case (H): H = PGL(2,q) with p # 2
This case does not occur, either. We use the same methods as in the previous case.

H is irreducible on N
We use the notation of the corresponding section of case (G).

If ¢ > 3, then H contains a unique proper and nontrivial normal subgroup. This group has
index 2 in H, is characteristic and isomorphic to PSL(2,q). We obtain

Gal(Z|K(t)) = M x F

with F' € {1,C5, PGL(2,¢)}. The cases F' = Cy and F' = 1 are impossible; thus, F = H.

If ¢ = 3, then H is isomorphic to S4. Every normal subgroup of H is also characteristic
in H. Quotient groups of H are isomorphic to 1, Sy, Cs, or S3. Except for Sy, all of these
groups enforce M to be of dimension one. Thus, Gal(Z|K(t)) = M x PGL(2,3).

Bounds for the number of fixed points for elements of H
An analogue to Lemma [4.7] is

Lemma 4.12 Suppose 1 # h € H. Then
(1) dimFix(h) < $dim N if ¢ > 2, |h| # {2,4}, and (|h],q) # (3,9),
(2) dimFix(h) < 2dim N if (|h],q) = (3,9),
(3) dimFix(h) < 2dim N if |h| = 4,

(4) dimFix(h) < 2dim N if |h| =2 and q & {3,5}.
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4. Aftine polynomials with g < 2

Proof. The commutator subgroup H' of H is a characteristic subgroup of H with H/H' =
Cy and H' = PSL(2,q). Thus, N considered as a H'-module is semisimple. Let M denote
an irreducible H’-submodule of N. Then either

N=M or N =M & M" with an appropriate u € H.

H' acts faithfully on M because the kernel of this operation is normal and, hence, character-
istic in H' and would be a subgroup of the kernel of the action of H on N.

Lemma, shows that the bounds for fixed point spaces of H' are linear in the dimension
of the module M; thus, these bounds also hold for the module N. Since h € H fixes less
elements of N than h? € H', we can use the bounds for h? as bounds for h.

The assumption in case (1) gives |h%| > 2. Therefore Lemmayields dim Fix(h) < 1 dim N.
Case (2) can be proved analogously.

Case (4) is a direct consequence from [2I]. Case (3) follows from case (4) and some explicit
calculations for g € {3,5}. ]

N is a “big” H-module: n > ¢*

Suppose ¢ € {3,5,9}. Then we get from Lemmam

n h=1,
|Fix(h)| << "1 <7 |hl €{2,4},
q3 q

q% otherwise.

First we discuss the case where p ramifies tamely with index g + 1. Then
ind(c0) > (n—1)(1+ L)
> —1
I, is a cyclic group and contains therefore a unique involution and at most two elements of
order 4. We get

1 n n
ind(p) >n— ——(n+3— +(¢g—3)—=).

This gives

g+ 1)(qg—2) +n(¢® —3¢7 +4q+3¢3 —3)
(> - 1) ’

ind(co) + ind(p) —2n +2 >

as ¢° — 3q% + 4q + 3q% — 3 is positive for all possible ¢, the genus-0 condition is violated.

Now suppose p ramifies wildly. Then Io, = N x Cyy1. By Lemma[4.8) I, contains at most ¢
involutions and 2q elements of order four. Using the same techniques as above gives again a
contradiction.

The cases ¢ € {3,5} can be disproved analogously; the number of fixed points of elements

that is not dealt with in Lemma can be estimated with % = %.
For ¢ = 9 the same methods induce a contradiction to the genus-0 condition.
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41. g=0

N is a “small” module: n < ¢*
We use Theorem to classify all possible H-modules N with n < ¢*. In this section the

same notation is used as in the corresponding section of case (G).

V1 can be parametrized by
Vi=(8;10, s m—1)-
The action of £ on Vj gives
V1§ = (SP; T'm—1,70y- - 7Tm—2)-
As &7 stabilizes V3, the parameters must fulfill
sp/ =5 mod (¢ —1) and ri=r; if i=j modg.

Thus, there exist elements Ry, ..., R;—1 with 0 < R; < p such that

dimg, Vi =J% and > mi= %ZRi.

V1 being a faithful H-module gives J > 1; the equation

dimg, N dimg, N¥ :pr? < q4 s aJb < 4b

p =P

enforces again b < 4. So, we have to discuss the following cases:

b =3: We obtain the unique solution (a,J) = (1,2). This gives an index 0 < i < g with
ri = Titg = Tiy2g = 1; all other r; vanish. As p is odd, the sum E;lal rip* is also
odd. But the even number ¢ — 1 cannot divide 2s + Z?jol r;p'. This contradiction to
Theorem shows that this case is impossible.

b = 2: We obtain the unique solution (a,J) = (1,2). We further get f = g and 29 = m. The
condition for s translates to

P —1|sp? —s=5(p? —1) <= p'+1]s;
so, s = £-(p?+1). We further get the existence of an index 0 <i < g with r; = rj;4 =1
and r; = 0 for all other indices. The restriction from Theorem shows
P =120 + 1) +p 49T = (07 + )2+ ') = p -1 ]2+
This is impossible since p9 — 1 is even while 2¢ + p’ is not.
b =1: In this case we have a =1, m = f = g, and J € {2,3}.
J = 2 is impossible for Y r;p’ is odd.

So the remaining case is J = 3. We obtain n = ¢>; the action of PGL(2,¢) on V; is
given by
¥ PGL(2,q) — GL(3,q), A+ (det A)*Gy(A%). (4.4)

s has to fulfill

qg—1

. —-1 . .
qg—1]2s+2p" «— qT\s—i-pZ — s=—p modT7
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4. Aftine polynomials with g < 2

as 0 < s < g — 1, this congruence gives two different solutions for s.

Note that the restriction of ¢ to PSL(2,q) < PGL(2,q) coincides with the irreducible
representation of the corresponding section of case (G). We use this fact to transfer
results from equation (4.3)) on page [37] to this case.

An element of order p has a one-dimensional fixed point space because its image is
similar to ¥ ([§1])-

Let A € PGL(2,q) be a p-regular element of order # 2. Then 1 # A% e PSL(2, q);
equation (4.3)) shows that the fixed point space of 1)(A) is at most one-dimensional.

At last suppose A € PGL(2,q) is an involution. As 1 is faithful, ¢(A) is at most
two-dimensional.

These bounds again induce contradictions to the genus-0 condition in all cases.

4.1.9. Case (I): H = PGL(2,2™)

Suppose ¢ = 2. Then H = D3 and the ramification data is (2,3). This situation has already
been described in case (D).

Hence, we will assume ¢ # 2 from now on. Then H is simple with H = SL(2,2™). By
Lemma [£4] N is an irreducible H-module.

The “big” cases can be disproved essentially the same way as in case (G) and (H). The
“small” cases are more complicated. V; is an irreducible PGL(2,2™)-module induced by

10 PGL(2,2™) — GL(2,2™), A+ (det A)® - A¥
here n = ¢?; or
o 1 PGL(2,2™) — GL(4,2™), A+~ (det A)®- (A‘Pi ® A‘p”%),
here n = ¢? and m is even with 0 < i < Z; or
Y31 PGL(2,2™) — GL(8,2™), A+ (det A)* - (A¥ @ A¥+% @ A2 %)

here n = q% and 3 | m with 0 <4 < . In all cases s is uniquely determined; we have

det(¢);(A)) =1 for all A € PGL(2,2™).
With the same methods as before it is possible to determine the dimension of the space of
fixed points of the image of A € PGL(2,2™) under ;. We obtain

2 Y1(4) =1,
dim Fix(¢1(A)) = ¢ 1 41(A) is an involution,

0 otherwise;

4 (4 =1,
dim Fix(¢2(A)) = 2 [¢2(A)| = 2 or [¢2(A)| | /g + 1 or [¢2(A)] | /71
0 otherwise;
§ y3(d) =1,
dim Fix(¢5(A)) < ¢4 13(A) is an involution,
2 otherwise.

These bounds imply a contradiction to the genus-0 condition in all cases.

40



4.2. g=1

42. g=1

In this section we suppose E to be a genus-one function field. As the field of constants of E
is algebraically closed, it is the function field of an elliptic curve. We will prove

Theorem 4.13 With the notation from page there is no affine polynomial f such that
g(E) =1.

4.2.1. Ramification in E|K(t)

Before we describe the structure of Aut g (E) we remind the reader that the set of places P(E)
of E can be canonically interpreted as an abelian group; we will denote its zero element by
0. Hasse [23] shows that every K-automorphism of E acts on P(E) and, conversely, if
any operation on P(FE) induces an automorphism of F, then this automorphism is uniquely
determined. In particular, the translation mappings

Ta: P(E) — P(E), p—p+a

induce translation automorphisms in Auti(E). We denote the set of translation automor-
phisms by ¥; this set is closed under composition and forms a normal subgroup in Autx (E).

Denote by J the stabilizer of 0 in Autg(E). Then J is a finite group of homomorphisms
P(E) — P(E) and the set of K-automorphisms of E can be written as

Autg(E) =% x 7. (4.5)
A first consequence is

Lemma 4.14 Suppose 0 = 74§ with 74 € ¥ and £ € T fizes a place P € P(E). Then:
(1) o € (Autg(E)\T) UL

(2) For any Q € P(E) and r € N we have Q° = Q% + Y1, as'. In particular, o has
order |¢]|.

Proof. o fixes 8. No nontrivial translation automorphism has this property. This is (1).

The equation for Q7" follows by induction and the fact that elements of J are homomorphisms
of the group P(FE).

olél maps P to P + Z‘f:ll at’. As every power of o stabilizes 3, it follows Zlill at’ = o.
Thus, olél = 1 and |¢[ is the smallest positive integer with this property. [

~

The isomorphism types for J are determined in Husemdller [27, Chapter 3|; the following
cases occur:

J= ‘ Conditions ‘
Co

04 b g {2’ 3}

Cﬁ b g {2’ 3}

C3 x Cy | p=3, J non-abelian
SL(2,3) | p=2
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4. Aftine polynomials with g < 2

This allows us to work out how places can ramify in the extension E|K(t).

Lemma 4.15 Letp € P(K(t)) be any place of K(t). Suppose B € P(E) lies over p. Denote

the inertia group of the extension PB|p with Fy, and the degree of the different coming from

the ramification of p with dy. Set s resp. s the number of groups in the series (Fp(i))i>1 of
|£5 (1) -

order # 1 resp. order p,"ci,l. Suppose |Fp| > 1. Then:
’ J= ‘ F, = ‘ op = ‘ Conditions ‘
o Cy 214 p#2
2 Cy %|H|-(1—|—5) p=2

Cs 2]

Cs s e1pz]
Cy %|H|

Cs Cs £|H|
Ce 2|H|
Cs 2 A
Cy 2|H|

C3xCy | C %|H|’(2+28)
Cs ZH[- (5+2s)
C3 x Cy | 15|H| - (11 + 25)
Co %|H| (1+5s)
Cs s[H]|
Cy T H| - (3+ 351 + s2) s1>1,89>1

SL(2,3 1

23 o A (5 y)

Qs %|H|'(7+781—|—382+83) s1>1,80+s3>1
SL(2,3) | 55| H|- (23 +Ts1 +3s2+s3) | s1 > 1, so+s3>1

Proof. The decomposition (4.5) of Auty(E) proves the existence of a group F < J such
that TF, = TF. By Lemma F,N'T = 1; thus,

F,2%F,/T=%F/T=F.
Hence, F, embeds into J. [ |
We obtain an analogue to Theorem

Theorem 4.16 The following table gives the possible ramification behavior in the extension
E|K(t):

’ Case ‘ J= ‘ Ramification Data ‘ Conditions
(A1) (2,6) s5=2
(A2) | G387 Cal )19 5 =2
(B1) (2,6) s =1 for both places
(B2) (3,6) s=3
(B3) (3,24) s1=1,80=0, s3=2
(B/) SL(2,3) (6,6) s =1 for both places
(B5) (6) s=7
(36) (24} 25 = 7s1 + 3s9 + s3
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4.2. g=1

Proof. The proof is rather combinatorial; we use the genus formula of Riemann-Hurwitz
together with the ramification data from Lemma to ensure the correct genus of F.

Some combinations, however, cannot occur although they formally satisfy the different-
condition. This is the case if too many places ramify (Lemma , or more than one place
ramifies and all ramification groups are p-groups (Corollary , or only oo ramifies, I is
a p-group, and the second ramification group of oo in the extension E|K (t) does not vanish
(Corollary . These criteria exclude in particular all cases where J is a cyclic group.

As an example we discuss the case J = Cy. If p # 2 is odd, then the extension E|K(t)
is tame and the degree of the different of each branch point equals %|H |. Riemann-Hurwitz
states

1
29 -2=0=—2\H|+a-|H|

with a being the number of branch points of F|K(t). Hence, a = 4; but this contradicts

Lemma [3.27]

Suppose p = 2. Lemma shows that co ramifies in the extension E|K (t); Corollary
gives Fo(0) = Foo(1l) = Co > F5(2) = 1 and the nonexistence of any finite branch point.
By Riemann-Hurwitz

1
29 -2=0==2[H|+ J|H|- 1 +1) = ~|H| < [H|=0;

but this is impossible. [ |

4.2.2. Cases in odd characteristic p > 2

We only disprove case (A2); the same methods also work for case (Al).

Suppose p ramifies with index 12. Then ind(cc) > 2(n — 1) and

(n—%(n+2og)) :gn.

1 n
ind(p) > n 12(n+113)+2

e e

But now ind(oo) + ind(p) > 2n — 2.

Thus, I, = Cy. Section [3.2.1] gives

(n—l)—l—i(n—ﬁ).

i >
ind(c0) > 3

=~ ot

Furthermore

ind(p) = n— 01+ fo +2/)

where f; denotes the number of fixed points of an element of order i in I,. As ind(p) € N,
the impossibility of fo = § follows. Hence, f> < § and, thus, f4 < fo < 7.
These bounds induce a contradiction to the genus-0 condition.

4.2.3. Cases in even characteristic p = 2
Supersingularity

As Aut(P(E)) = SL(2,3), by Silverman [46, V §3] E is the function field of a supersingular
elliptic curve. [46L V 3.1] gives some properties of such curves; for us most important is
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4. Aftine polynomials with g < 2

Lemma 4.17 There does not exist p € P(E) withp # 0 and 2-p = o.

For the following we identify H with the Galois group of E|K(t). Then, a first consequence
of the above lemma is

Lemma 4.18 Suppose h € H is an involution. Then h fixes either no place or exactly one
place of E.

Proof. h can be written as a product h = 7§ with 7 € ¥ and £ € J.

If £ =1, then the assertion follows immediately.

Thus, by Lemma § # 1 is the unique involution in J = SL(2,3). £ acts on P(F) by
inversion, i.e. every place p of E is mapped to —p. Suppose h fixes the places p,q € P(E).
Then

pop=o=q"-q = p -p=a"-qg = 2 (p-q) =0
and we get p = q by Lemma [£.17] [ ]

Now we are able to state the main observation of this section

Proposition 4.19 Let i € H be an involution that fizes the place g € P(E). Then there
exists a bijection between the set il of H-conjugates of i and the set B of places over
p:=PNK(®).

In particular, the normalizer Ny ((i)) of (i) in H equals the inertia group Fy of Bp.

Proof. As F}, embeds into J = SL(2,3), 7 is the unique involution in F}. Therefore (i) is
normal in Fy; hence, F, < Ng((7)).

Let Q € B be another place lying over p. Then the inertia group of Q|p is conjugate to
F, and, thus, contains exactly one involution from the set ifl. Since every involution in i
fixes exactly one place of F, the equality |i| = |37 | holds.

The equation

‘Z'H‘ — |H| _ ‘H’
INa (@) [Fyl
shows [Ng ((i))| = |Fy. n

= "]

Corollary 4.20 In cases (B3) and (B6) a 2-Sylow subgroup of H is isomorphic to a quater-
nion group of order 8. In the remaining cases a 2-Sylow subgroup of H is isomorphic to

Cs.

Proof. We start with cases (B3) and (B6). Let F' < H be an inertia group of order 24, S <
F the unique 2-Sylow subgroup of F', and Z := Z(F') < S the center of F'. Proposition m
shows

F < Ny(S) < Nu(2) = F;

as 2 1 [Ng(S) : S], S is a 2-Sylow subgroup of H. Since F is isomorphic to SL(2,3), the
isomorphism type of S follows for instance from [32] 8.6.10].
The remaining cases can be proved similarly. [ |
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4.2. g=1

Cases (B1) and (B4)

In both cases a 2-Sylow subgroup of H has order 2; thus, the set of involutions of H forms a
conjugacy class of H. By Theorem two different places of K (t) ramify with even index;
therefore an involution of H fixes more than one place of . This contradicts Lemma |4.18

Case (B2)
This case can be disproved by using the estimations for ind(oo) and ind(p).

Case (B3)

This case does not occur.

The estimations for ind(oco) and ind(p) show the impossibility of I, = SL(2, 3). Hence,
4 2 n
ind(co) > —(n—1) +2- 7( - 7)
in (oo)_S(n )+ 5\ 5

and ind(p) = n — §(n + 2f3) with f3 being the number of fixed points of a generator of the
cyclic group I,. The genus-0 condition and ind(p) being an integer give f3 = %.

A more detailed description of H is given by

Lemma 4.21 H contains a characteristic and abelian subgroup J such that H = J x F and
JNF,=1. Let Q < F denote a 2-Sylow subgroup of H. Then F := Q" he H)y=JxQ
is a Frobenius group with Frobenius kernel J and complement Q; [H : F| = 3. F is also
characteristic in H.

Proof. Let J denote a maximal normal subgroup of H of odd order. As (Q is isomorphic
to a quaternion group of order 8, a theorem of Brauer/Suzuki ([25, V 22.9] or [4]) states that
the center of H/J is cyclic of order two. Therefore H contains another normal subgroup J

with [J : J] = 2.

Remember our identification of H with the Galois group of E|K(¢) and set Y := Fix(J),
Z := Fix(J).

Suppose the extension F|Y is ramified. Then g(Y) =0 and Y is a rational function field.
Since J has odd order, the inertia group of a place of Y lying over oo contains a quaternion
group of order 8 in contradiction to the classification [50] of Autx (Y|K(t)).

Hence, E|Y is unramified with g(Y’) = 1; this shows in particular that J N F, = 1. Fur-
thermore by [46] III §4] we may assume J to be the set of automorphisms of £ coming from
the kernel of an isogeny E — Y; thus, J is abelian. As 8 { [H : J], the extension Y|Z is
ramified; every branch point of Z ramifies totally with index 2 and adds 4 to the degree of
the different of Y'|Z. Hence, exactly one place ramifies in Y'|Z. As this place lies over oo, the
classification [50] of Autg (Z|K(t)) yields Gal(Z|K(t)) = As. We obtain that oo ramifies
totally in the extension Y|K(t) with Gal(Y|K(t)) = SL(2,3) & F. By Herbrand Fy is a
complement of J in H.

Proposition shows that J is regular on the set of H-conjugates of ) (by conjugation);
hence, F' < J x Q. Since F' is transitive on its 2-Sylow subgroups, the equality F' = J x Q
holds. As J > 1 by Proposition the remaining assertions follow as @ is selfnormalizing
in F. ]
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4. Aftine polynomials with g < 2

Next we classify all absolutely irreducible Fo-modules of F. Our main tool for this is the
representation theory of Frobenius groups. The following proposition states the results for
the convenience of the reader. A short and elegant proof can be found in Guralnick [16].

Proposition 4.22 Let F = J x Q be a Frobenius group with Frobenius kernel J and com-
plement Q. Suppose K to be an algebraically closed field.

(1) Q acts semiregularly on the set of isomorphism classes of nontrivial irreducible K[J]-
modules.

(2) If V is an irreducible K [F]-module, then either Cy (J) =V or there exists an absolutely
irreducible nontrivial K[J]-module W such that V =2 W is isomorphic to the induced
K[F]-module WT.

We use this proposition to get

Proposition 4.23 Let V be an irreducible H-submodule of N := N ® K. Then V is
8-dimensional. If t € Fy, has order 3, then the space of fized points of t on V is at most
4-dimensional.

Proof. Let @, F, and J be defined as in Lemma

Since F<H, the F-module V is semisimple and can be written as a direct sum V = @;_, V;
of irreducible F-modules 1 # V; < V. We use Proposition [£.22] to clarify the structure of
Vi: As J is normal in U, the case Cy, (J) =V} is impossible. Hence, V; is isomorphic to an
absolutely irreducible and nontrivial J-module W induced to F. The commutativity of J
gives dimyx W = 1; since [F' : J] = 8, it follows dimg V; = 8.

Because (F,t) = H, the group F, is transitive on the Vj; therefore either V' = V} is an
irreducible F-module or V = V; & V] & Vf2. We show that the second case is impossible. V;
intersects the space Fix(t) of fixed points of ¢ trivially for otherwise V4 NV} # 0. But then
the dimension formula for vector spaces gives

dimg Fix(¢) + dimg Vi = dimg (Fix(¢) + V1) + dimg (Fix(t) N V4);
—_———

=r—2 <r =0

hence, the contradiction dimg V; < 2 follows. This gives dimg V = 8.

By Lemma [4.21] ¢ can be written as a product ¢t = jw with j € J and w € F4 being of
order 3. As the abelian group J is normal in H, the J-module V is a direct sum of eight
one-dimensional J-submodules M, ..., Mg that are permuted transitively by F,. Hence,
@ < F, acts regularly on the modules M;.

Suppose n € N? generates M;. By proper identification of the integers 1,...,8 with
the modules M; the action of w on the set {Mj,..., Mg} is described by the permutation
w:=(1)(2)(3,4,5)(6,7,8). Set ¢; the well-defined element of @ that maps M; to the module
belonging to the integer i. Then

8
V= @(n‘”} and (nI)Y = (n).
i=1

It follows that there exist elements ¢; € K* with (n‘h)jw = ¢;-n%*. Suppose v := Z?:l Andioe

V. Then
8 8
vl = I = E Aicindi = E Awo1C—1ni.
i=1 i=1
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4.3. g=2

Hence, v is fixed by ¢ if and only if \; = A ,-1¢;,-1 for all 1 <4 < 8. Solving these equations
shows that Fix(t) is at most 4-dimensional. ]

The above proposition gives r = 8s with s € N and dim Fix(¢) < §; thus, dim Fix(t) = r — 2
is impossible.

Case (B5)

By Corollary the order of H is 2u with 2 t u. Therefore H contains a normal subgroup
J of index 2. In the extension E|Fix(J) exactly one place ramifies tamely with index 3. But
this gives a contradiction to the Riemann-Hurwitz genus formula.

Case (B6)

This case is impossible, too.

The idea of Lemma[£.2T] can be used to obtain a contradiction in this case. With the notation
of this lemma we get eventually that Z|K (¢) is an Galois extension of rational function fields
with the unique branch point co. The classification of Valentini and Madan [50] shows that
the ramification index of co in Z|K(t) has to be a power of 2. This, however, is impossible
as F|Y is unramified.

Remark 4.24 This case can also be disproved without using the theorem of Brauer-Suzuki:
A discussion of the ramification behavior of F|Fix(Fy) shows that in this extension exactly
one place ramifies. Hence, the intersection of F, with any different conjugate is trivial. Since
F is selfnormalizing in H, the group H is a Frobenius group with Frobenius complement
F. Now, the same considerations as above lead to a contradiction. *

43. g=2

In this section we assume E to be a function field of genus two. Schmid [42] shows that
Autg (F) is a finite group. Let F' denote the fixed field of all K-automorphisms of E. Then
E|F is Galois with Gal(E|F) = Autg (E).

Stichtenoth [47, VI.2] shows that E is the function field of a hyperelliptic curve. Thus, E|F
contains a unique intermediate rational field R with [E : R] = 2. The uniqueness of R shows
that the extension R|F' is Galois. The central involution ¢+ € Autg (FE) that corresponds to R
by Galois duality is called the hyperelliptic involution of E.

We will prove

Theorem 4.25 With the notation from page suppose g = 2. Then p = 3 and A =
G = AGL(2,3). f is not exceptional. Examples of f are given by the AGL-polynomials of
chapter [

4.3.1. Cases in odd characteristic p > 2

The K-automorphisms for genus-two hyperelliptic function fields are well-known. Due to
Geyer [15], Igusa [28], or Shaska/Vélklein [45] only the following isomorphism types can
occur:
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| Autg(E) = | Conditions
Co
Cho pP#>H
Do
Dy
Dg
C3 x Dy p & {3,5}, Autx(F) non-abelian
GL(2,3) |p#5

25 p = 5

Here 25[1_-] denotes a non-split extension of Cy by S; where the transpositions of S5 lift to
involutions, cf. [45]. X5 is unique up to isomorphism.

Lemma and our main assumption p # 2 show that Autx(E) cannot be isomorphic to
02, 010, DQ, D4, or Cg X D4.

As a subgroup of Dg either is a 3’-group or contains a characteristic subgroup isomorphic
to C3, Proposition gives the impossibility of Autx (F) = Dg.

Case Autg(FE) =2 GL(2,3)

Assume Autx (E) = GL(2,3); then p = 3.
Lemma Proposition and Proposition force H to be isomorphic to SL(2,3) or
GL(2,3). A survey of the subgroups of these groups gives

Lemma 4.26 Letp € P(K(t)) be any place of K(t). Suppose P € P(E) lies over p. Denote
the inertia group of the extension B|p with F, and the degree of the different coming from the
ramification of p with dy. Denote by s the well-defined integer with Fy(s) > Fy(s +1) = 1.
Suppose |Fp| > 1. Then:

|H= | K= | 3 |

Cy S H|
Cy HED

SL(2,3) &, HH[ 2+ 29)
Cs %\H\ - (5+ 2s)
Cy 5 H|
Cy 2[H]

GL(2,3) Cg %‘H‘
Cs %\H\ (24 2¢)
Cs or D3 %\H\-(5—|—25)

We use this lemma to solve the Riemann-Hurwitz equation
2=—2[H|+» d
p

where p runs through all places of K (t) ramifying in F|K(t). We obtain the following

Theorem 4.27 The following table gives the possible ramification behavior in the extension
E|K(t):

'MAGMA [3] knows this group as “SmallGroup(240,90)”
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4.3. g=2

’ Case ‘ H = ‘ Ramification Data ‘ Conditions ‘
[(A) TSL@3) [ (43) [5=1 |
) [GLe3) | (5.0) o1

Case (A) can be easily disproved in the same manner as in the previous chapters. Case (B),
however, is more interesting:

First it is easy to see that p must ramify with index 6.

An inspection of the subgroups of H of order 8 shows that F,, contains the hyperelliptic
involution 2. Thus, 2 € F}, because otherwise % + % = 6 + 8 = 14 places would ramify with
index 2 in the extension F|Fix((z)), contrary to our assumption g = 2.

As all subgroups of H of order 6 not containing » are isomorphic to S3, we get I, = S3.
Theorem shows that I,(2) = 1; thus,

ind(p) =n — é(n+ 3f2+2f3) + %(n ~ %(m 2f3)) = w

where fo resp. f3 is the number of fixed points of an element of order 2 resp. 3 of Ij.
Since ind(oc0) > %(n — 1), a simple calculation shows that the genus-0 condition is violated

if fo # % # f3. It follows fo = f3 = % and ind(p) = gn_
Since Ioo(l) < N, section gives

ind _9. 4 Loooom 9. 1 U
ind(o0) 8(” )+;8(n ’Ioo(uz)|) 8(n )+8n;( ’Iw(um)

The genus-0 condition forces I (u3) = 1. Therefore

79 1 1 63 | Ioo (u2)|
*n‘i'*n—l +*n1—7 :2n—2<:>n:—
gt g =D+ gn(l=— ) 5= 2 Lo ()

Thus, Io(uz2) =1, n =9, and ind(p) =32 -2 =7.

The above situation is realized for instance by f(X) = X+ X8+ X% € F3[X], cf. chapter
As G = AGL(2,3) is 2-transitive on IV, this case never gives an exceptional polynomial.
Case Autg(F) = 35

An inspection of the subgroups and the conjugacy classes of 35 shows that in case of tame
ramification inertia groups are isomorphic to

Cy, C3, Cy, Cg, or Cy,
in case of wild ramification to
05, Cl(), C5 X 04, or C5 X Cg.

Since H may not contain a characteristic 5-Sylow subgroup by Proposition [2.8| it follows
that H is isomorphic to either SL(2,5) or Xs.

As Y5 contains only one central involution, this involution coincides with the hyperelliptic
involution 2. Note that ¢ is the only involution in case H = SL(2,5).

It follows
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4. Aftine polynomials with g < 2

Lemma 4.28 Letp € P(K(t)) be any place of K(t). Suppose B € P(E) lies over p. Denote
the inertia group of the extension P|p with Iy, and the degree of the different coming from the
ramification of p with dy. Denote by s the well-defined integer with Fy(s) > Fy(s +1) = 1.
Suppose |Fp| > 1. Then:

’ F, = ‘ can occur for H = ‘ Op = ‘

Co all cases S|H|

Cs all cases Z|H|

Cy all cases S|H|

Cs all cases |H|

Cs s <|H|

Cs all cases S|H|- (4 +4s)
Cio all cases H| (9 + 4s)
C5 x Cy | all cases o H| - (19 + 4s)
C5 X Cs 25 %|H| . (39 + 48)

We use this lemma to solve the Riemann-Hurwitz equation
2=—2(H|+Y 3§
p

where p runs through all places of K (¢) ramifying in E|K(t). We obtain

Theorem 4.29 The following table gives the possible ramification behavior in the extension
E|K(t):

’ Case ‘ H= ‘ Ramification Data ‘ Conditions ‘
| (A) [ SL(2,5) | (5.20) | s=2 \
| (B) [%s | (6,40) | s=2 \

In case (A) p cannot ramify with index 20; thus, we have I, = C3 and

1
ind(p) =n — g(n +2f)
with f the number of fixed points of an element of order 3 in I,. ind(p) being an integer

enforces f < J-. Therefore ind(p) > 32n. As

ind(c0) > =(n—1)+ —(n— <),

| ot

the genus-0 condition is violated.

In case (B) p cannot ramify with index 40. Thus, we have I, = Cs and

9 5) n
ind >-(n—-1)+—(n—=).
in (oo)_8(n )+40(n 5)
Let o € I, be a generator for I, and denote by A € GL(r,5) the automorphism of N that is
induced by the action of o € H on the Fs-vector space N; both ¢ and A have order 6. As
Fas is a splitting field for the separable polynomial X% — 1 € F5[X], A is diagonalizable as
an automorphism of N’ := N ® Fas.
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4.3. g=2

First suppose that a primitive sixth root of unity is an eigenvalue of A. Then every Galois
conjugate of this root of unity is also an eigenvalue of A; hence, A has two sixth roots of
unity in its spectrum. Thus, every power A® of A with A® # 1 fixes at most 5 points. We

obtain . A
n
ind(p) >n— - —) =-n.
ind(p) >n 6(n+525) "

This violates the genus-0 condition with the above estimation for ind(oo).

Next suppose that no primitive sixth root of unity is an eigenvalue of A. Then A has both
a primitive third root of unity and —1 € F5 in its spectrum. Again the inverse of the third
root of unity is also an eigenvalue of A. This shows that A and A% have at most 195 A?
and A* at most 35, and A3 at most ¢ fixed points. We get

1 n n n 98
ind(p) >n——(n+2—— 420 4y - 2
ind(p) 2~ (n+ 2952 + 255 +5) = 5z 1

This is impossible, too.

4.3.2. Cases in even characteristic p = 2

Geyer [15] classifies all possible K-automorphism groups of genus-2 function fields; a nice list
is also given in [§]. We obtain that Auty (E) is isomorphic to

Cy, Cy x Ca, D¢, G32, or Gieo

where G; is some group of order i. We will describe the groups G; later when we need infor-
mation about their internal structure.

I

Proposition [2.9] (2) reduces considerably the work in this section: only the cases Autx (E)
Dg or Autg (E) = G169 may occur.

Case Autg(F) = Dg

By Lemma and Proposition it follows H = D3 as Z(Dg) = Cy. Riemann-Hurwitz
and Corollary imply the impossibility of this case.

Case AutK(E) = Gieo

First we have to get some information about the group Gigp. Due to [8, Sections 2.1, 3.1]
G160 sits in the middle of the non-split exact sequence

1—>(z)—>G160—>C’24>4C'5—>1

where Cj acts non-trivially on C3.
Up to isomorphism G16CE| is uniquely determined by this sequence; we get

G160 = Eay 4 Cs

where Es, denotes the extraspecial group of order 32 being a central product of a quaternion
group of order 8 and two copies of the dihedral group of order 8 (cf. [25, III 13.8]) and Cj

2MAGMA [3] knows this group as “SmallGroup(160,199)”
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4. Aftine polynomials with g < 2

acts nontrivially on Fs,.
An inspection of the subgroups of G169 and Proposition prove that either H = Cqg or

H = (G160. Hence, in every case H contains a characteristic nontrivial 2-subgroup. This
contradicts Proposition
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5. AGL as a monodromy group

In this chapter f denotes a polynomial of the form

f(X):=XP + ZaiXpT_pi with s < r and agas # 0. (5.1)
=0

We are interested in the calculation of the geometric monodromy group of f. Abhyankar [1]
already dealt with the case s = 0; he proved that f is affine with G = AGL(1, p"). Thus, for
the rest of this chapter we will always assume s # 0; this implies in particular r > 2. We use
the notation from page

Lemma 5.1 (1) f(X) —t is separable.
(2) f is functionally indecomposable over K.

(3) G < AGL(r,p). (We do not prove here that G is an affine group.)
Proof.

(1) The derivative of f is given by f(X) = —agX? ~2 # 0. Therefore f(X) —t does not
have multiple roots.

(2) Suppose there exist nonlinear polynomials g, h € K[X] such that f = g o h. We may
assume h(0) = 0. Since f(0) = 0, this yields g(0) = 0, too. It follows from (1) that
F1(X) =g (MX)) - I (X) = —agX?" 2.

Suppose ¢'(0) # 0. Then X { ¢’ o h and we get XP" ~2|h’. Hence, degh > p" — 1. But
then p” = deg f = degg - degh > 2(p" — 1) which is impossible.

Thus, ¢'(0) = 0. As 0 € K is the only zero of f/, h(¢) # 0 for all £ € K*. We obtain
h(X) = hoX®. But then every summand of f has degree divisible by «. Since p" and
p" — 1 are relatively prime, this enforces o = 1 contrary to our assumption.

(3) Let x1,...,7, € L be the roots of f(X)—t. Set Z:= X! and z; := x; !; this is well-
defined as all z; are different from zero. An easy calculation shows that the equation
f(X) —t =0 can be rewritten in the form

| ;1
Zpr - Z ZQZ'ZPZ = E (52)
i=0

Since the zeros of this equation are precisely the elements z; € L, the splitting field

of (5.2)) is L. Section gives the claim.

The following concept severely restricts the possibilities for G; we will prove for instance that
G is 2-transitive.
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5. AGL as a monodromy group

Definition 5.2 (Jordan group) Let G be a group acting transitively on the finite set Q.
A subset I' C Q is said to be a Jordan set if |[['| > 1 and the pointwise stabilizer Go\r) is
transitive on T'. The set A := Q\ T is called a Jordan complement.

If G is k-transitive on (), every subset A of size < k is a Jordan complement; in such a
case we call ' and A improper, otherwise we call them proper. If I' = Q, we call I' and A
trivial.

G is called a Jordan group if it has at least one proper Jordan complement.

In our situation this definition yields

Proposition 5.3 G is a 2-transitive group and contains a nontrivial Jordan complement A
of size |A| = p°.
Ifp#£2o0orp=2and s> 1, then A is proper and G is a Jordan group.

Proof. We consider the ramification of the place 0 : ¢ +— 0 in the extension K (x)|K(t).
Since

S
t=FX0) = X7 (X0 4 X7 )
=0

with XP° + Yoo aiXps_pi being a separable polynomial, 0 decomposes over K(z) in the
following way:

0= ‘Bgtps Py Ppe with pairwise different places ; € P(K(z)). (5.3)

Hence, by van der Waerden [51] I, fixes a set A of p® elements pointwise and permutes the
remaining p” — p°® elements transitively. Denote this orbit by I'. Then the pointwise stabilizer
G(a) of A in G contains Ip; thus, G(a) is a fortiori transitive on T'.

I" is a nontrivial Jordan subset of G. The indecomposability of f implies the primitivity
of G; hence, Neumann [40, Theorem J1] gives the 2-transitivity of G.

Suppose p > 2. Lemma and the classification in [32], 4.2.5] show that G is 2-transitive
but not 3-transitive. Hence, A being proper comes down to |A| > 2; but this condition is
always fulfilled.

Suppose p = 2. [32, 4.2.5] shows that G is at most 4-transitive. The claim follows now
easily. [ |

Remark 5.4 The 2-transitivity of G can be obtained in a different way, too. Unfortunately,
the following proof does not show the important fact that G is a Jordan group in almost all
cases.

Let X and Y be algebraically independent transcendentals over K. Set ¢(X,Y) := f(X)—
f(Y) € K[X,Y]. We prove that % is absolutely irreducible.

Suppose

o(X,Y) = (Ak(X, Y)+ A1 (X,Y) +. ..)(Bm(X, Y)+ Bn-1(X,Y) + .. )
with A;, B; € K[X,Y] being homogeneous polynomials of degree i. Then
ApBp = XV —YP = (X —Y)P;
this gives Ay = (X —Y)* and B,, = (X —Y)™. Hence,

ag(XP” ™ = YP' ") = Ay Bp1 + Ag1Bp = (X = Y) By + (X = Y) ™ Aj1.
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As the left hand side of this equation is separable, it follows k =1 or m = 1.
The 2-transitivity of G follows for instance from [14, Exceptionality Lemma]. *

For the following we need some information about the p-structure of GL(r,p).

Lemma 5.5 GL(r,p) does not contain an element of order p". GL(r,p) contains an element
of order p"~t if and only if r € {1,2} or (p,r) = (2, 3).

Proof. Let P < GL(r,p) be a p-Sylow subgroup of GL(r, p). Denote by Js a Jordan block
of dimension s for the eigenvalue 1. The minimal polynomial of Js is given by us(X) :=
(X —1)%. Every A € P is similar to a direct sum of Jordan blocks J,, i.e. we find an element
T € GL(r,p) with

a a
= @ Js; and Z Si=r.
i=1 i=1
Let s := max{s; | 1 <i < a} denote the maximum of the s;. Then the minimal polynomial
of A is given by ps. The order A is given by p* where i is the smallest integer such that
ps | (X — 1)10Z
This proves that J, has the highest possible p-order in GL(r, p). We have

|J.| = p' with Pl < <ph

As the equation p"~! < r is not solvable, GL(r,p) never contains an element of order p".
It follows by induction that the equation p"~2 < r holds exactly for r € {1,2} or (p,7) =
(2,3). ]

Corollary 5.6 G is an affine group. Moreover, there exists a divisor e of r such that either
ASL(e,pc) < G < AT'L(e, pe) or N x A7 =2 G < AGL(4,2).
In the latter case Ay — GL(4,2) acts 2-transitively on the nonzero elements of F3.

Proof. Let S := soc(G) be the socle of G. As G is 2-transitive, S is either elementary
abelian and regular or isomorphic to a non-abelian simple group.

We start with the latter case. Suppose S is non-abelian and simple.

We show first that S can only be isomorphic to a projective special linear group.
Assume G is a Jordan group. The primitivity of G and Neumann [40, Classification
Theorem| immediately show that S = PSL(d,q) acts 2-transitively on the projective plane

PG(d — 1,q) with | PG(d — 1,¢)| = 25 = p".

If G is not a Jordan group, then by Proposition [5.3| (p,s) = (2,1) and — with the no-
tation from this proposition — the two-point stablhzer G(a) is transitive on I'. Hence G is
even 3-transitive. The classification of 2-transitive groups (a nice list is given in Cameron [6])

shows that soc(G) is isomorphic to PSL(2, ¢) acting on PG(1, ¢) with | PG(1,¢)| = ¢+1 = 2".
Suppose S = PSL(d, q). We prove that this implies (p",d, q) = (8,2,7).

S is a subgroup of the affine group AGL(r,p). Denote the affine kernel of AGL(r,p) with
N. The simplicity of S gives SN N = 1. Hence, a point stabilizer of the group N x §' is

95



5. AGL as a monodromy group

isomorphic to S. Thus, S can be considered a subgroup of GL(r,p). The integers p", d, and
q fulfill the equation

P = . (5.4)

First assume that ¢¢ — 1 has a primitive prime factor. In our case as a consequence of
Zsigmondy [52] this is true if d > 2, or d = 2 and ¢ is even. By ([5.4)) this prime factor
g1

is uniquely given by p; in particular, = and (¢ — 1) are relatively prime. Let x be a

Singer-element of PGL(d, ¢). Then x has order q:_—_ll, cf. Huppert [25] IT 7.3]. As PSL(d, q) <
PGL(d, q) with PGL(d, q)/ PSL(d,q) < Cy—1 cyclic, 97! is an element of PSL(d,q) with
|z| = |29t = p". We obtain that GL(r,p) contains an element of order p". This contradicts
Lemma [5.5

Now assume d = 2 with odd ¢. Then p = 2 is even. The same idea as above shows z? €
PSL(2,q). Hence, GL(r,2) contains an element of order 2"~!. Lemma and Huppert [25,
IT 6.14] show that this is only possible for » = 3. Thus, we obtain (p",d,q) = (8,2, 7).

But this is impossible: As S is selfnormalizing in AGL(3,2), we obtain S = G. An explicit
calculation shows that the Jordan complements of S have order 1 or 7 contrary to Proposi-
tion

Thus, we end up in the affine case. If G is a Jordan group, Neumann [40] gives the assumption.
Otherwise G is a 3-transitive affine group in even characteristic. Our claim follows directly
from Cameron/Kantor [7, Sec. 8]. ]

Now we are able to state our main theorem:

Theorem 5.7 Define e the greatest common divisor of r and all 0 < i < s with a; # 0,
e:=ged(r,i|a; #0). Then G = AGL(Z, p°).

Proof. We use the notation from Lemma [5.1] and Lemma 2.12]

Let v € V¥ be a nonzero element of V. Then the equation

S 1 )
T__ T __
P E Eaivp L=y
i=0

holds; in fact, the set of zeros of this equation coincides with V*. Using the identity Z = X !
we obtain

S S
T__ 1 1 T
VAL 1—2?2-2? L= «— ZaiX” Pt =0.
=0 1=0
Since the latter polynomial is irreducible, we see that the elements 1,v,v2,...,v" ~2 are

linearly independent over K. Thus, any representation of vP" =1 by smaller powers of v is
uniquely given by >°7_; ta;0P" L.
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Let ¢ be an element of K*. Then the following holds:

S S
cweVlh — P Ly'-l= ; %aicpi_lvpi_l =Pl 12:% %awpi_l
— g = aicpi forall0<i<s
— &= for all 0 <14 < s with a; # 0
a<0:>#) P =cné =c¢ for all 1 <i < s with a; #0
= c€Fpn ()| Fu=Fe<K

a;7#0,1#0

Thus, we can consider V' to be an Fpe-vector space and H < I'L(%,p®) is a subgroup of
I'L(Z,p%). But H acts as a proper linear group since (cv)" = vl for all h € H and
c € Fpe < K. Hence, H < GL(Z,p°).

In the following we prove that the equality H = GL(Z,p®) holds.

By Lemma N equals the kernel of the operation of G on V. Therefore we have
E = K(V); but we can also think of E as the splitting field of the irreducible polynomial
F(X) =7 _gaiXP P —t.

Let v € E be any root of F'. Denote by Fy, the inertia group of a fixed place of F lying over
oo. The structure of F' shows that co ramifies totally in the extension K (v)|K(t). Hence, by
van der Waerden [51] F, is transitive on V.

Let P be the normal p-Sylow subgroup of Fi,. As the p-group P fixes at least one element
of V¥, P fixes every element of V¥ because all P-orbits on V¥ have the same length. We
obtain P = 1; Fi, is a cyclic and transitive p/-group of linear transformations of V' of order
a multiple of deg F' = p” — 1. It follows from Huppert [25] IT 3.10 and 7.3] that F, is a full
Singer cycle in GL(Z, p©).

Using the classification from Corollary we see that N x A7 & G < AGL(4,2) is im-
possible as this group does not contain a cyclic subgroup of order 15. Hence, SL(Z,p°) is a
subgroup of H. By Huppert [25, I 7.3 (b)]

r r r r r
H/SL(, 1) 2 SL(E, 1) Fao/ SL(, 1) = Cpey = GL(E, )/ SL(C 5,

o
as H < GL(Z,p°), it follows H = GL(Z, p°). ]
Higher ramification in L|K ()
Proposition 5.8 The normal p-Sylow subgroup of I, equals N. Moreover
ind(co) =n and Io(2)=1.
Io is isomorphic to P x Cyr—s_y with |P| = p®. Moreover
ind(0) =n —2 and  1p(2) = 1.

Proof. Theorem gives I, = N x C),_1; therefore we have

ind(c0) > (n — 1)(1—!— ! 1) =n and ind(oo)=n <= [-(2)=1.

n —

o7



5. AGL as a monodromy group

We use the notation from the proof of Proposition Let B be a place of L lying over
PBo. Denote by I the inertia group of the extension PB|0. We know that I is isomorphic to a
semidirect product P x C with a p-group P and a cyclic p’-group C.

By van der Waerden [51] we obtain o(/) = s + 1. Denote by I' the I-orbit consisting of
p" —p® elements. As I(1) is normal in I, I" splits into a different I(1)-orbits ~;, each of length
b. Since C' acts transitively on the ~;, it follows

allC] and  b||P)|. (5.5)

s

Because ab = |I'| = p*(p"~® — 1), we get at once a = p"~* — 1, b = p®, and 0([(1)) =
pS+ps — 1.

Next we show that |I| = p" — p®. Suppose |I| > p" — p°. Then there exists an element
1# h € INH. Since the inertia group of any place of L over 0 is G-conjugate to I, the
decomposition of 0 in K (x) shows h® C H. But then the contradiction h € Nyec HY =
1 follows.

Hence, |P| =p®, |C|=p"~% — 1, and

1
ind(0) >n —o(I) + H(n — O(I(l))) =n-—2.
The remaining assertions follow directly from the genus-0 condition. [ |

Now we show that an affine polynomial of degree p? is an AGL-polynomial of the form (5.1
if it fulfills the conclusion of Proposition [5.8

Proposition 5.9 Let f € K[X] be a monic affine polynomial of degree p*. Let x be a zero of
f(X) —t and denote by 0 resp. Po the zero place of K(t) resp. K(x). Suppose O decomposes
in K(z) in the form

0= ‘Bngp “PBi-- Py with pairwise different places P; € P(K(m))

Moreover assume that ind(0) = p?>—2 holds. Then f = XP* +aXP L4 cXP' P with a,ce K!
and both arithmetic and geometric monodromy group of f are equal to AGL(2,p).

Proof. Corollary gives ind(co) > p?. The genus-0 condition shows immediately that
no other finite place of K(t) ramifies. We obtain

f(X) = XP P g9(X) with a polynomial g € K[X] of degree p, g(0) # 0.
Since 0 is the unique finite place ramifying in K (x)|K (t), the polynomial f(X)—c is separable
for all ¢ € K*. This shows that 0 € K is the only root of f’.
The derivative of f is given by f/(X) = X?°P¢/(X). Thus, ¢ is a monomial. We obtain
g(X)=XP+aX’+¢  with0<b<pand ac#0.

As 93;]0 is unramified for i € {1,...,p}, the degree of the different d(*3;|0) vanishes; by our
assumption d(Po|0) = p? — 2. Stichtenoth [47, I11.5.10(a)] gives

p* =2 = d(%0|0) < vg, (f(x)) = vy, (aba? PH) = p? —p+b—1;

hence, b = p — 1. The claim follows. [ |
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The results of this chapter allow us to give some properties of the fixed field E:

Remark 5.10 The genus g(F) is not bounded.

Denote by K, an algebraic closure of ), and set f,(X) := XP* + XP*~1 4 XP*~P ¢ Then
Gal(fy|Kp(t)) = AGL(2,p); Riemann-Hurwitz shows g(E) = 5 (p® — 3p? +4). This proves
g(E) — oo for p — .

Let r > 2 be an integer and set g,(X) := X?" + XP'~1 4 XP"~P. Then Gal(gp|K,(t)) =
AGL(r,p). Again, by Riemann-Hurwitz g(F) — oo for r — oc. *

Remark 5.11 Even if G is solvable, F need not be a rational function field.

Let K denote an algebraic closure of F3 and define f(X) := X% 4+ X% + X% —¢. Then
Gal(f|K(t)) = AGL(2,3) is solvable with g(FE) = 2. *
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6. Affine polynomials of degree p?

In this chapter we classify all affine polynomials of degree p? with primitive arithmetic mon-
odromy group. Our result will be

Theorem 6.1 With the notation from page |29 suppose deg f = p*. Then either E|K(t) is
tame and f fulfills the conclusion of Theorem[{.d or one of the following cases holds:

o H=GL(2,p), Io =2 N x Cp_1 with Is(2) =1 and ind(c0) = n, I = C, x Cp_1 with
I,(2) =1, ind(p) =n — 2, and o(Iy) = p+ 1. This case is realized for example by the
AGL-polynomial XP* 4 aXP 1 4 bXPQ_p, cf. chapter @

e SL(2,p) < H and F} is a cyclic p'-group.
If E|K(t) is wild, then f is not exceptional.

We know from Lemma[4.1|that E|K (t) being a tame extension implies g = 0. Hence, this case
only gives polynomials satisfying the conclusion of Theorem Therefore we will suppose
E|K(t) to be wild from now on.

We state a first observation

Lemma 6.2 Suppose f has degree p" with r being a prime. Assume further that f is func-
tionally indecomposable over k but decomposable over K. Then pt[E : K(t)]. In particular,
the extension E|K(t) is tame.

Proof. As U is irreducible on N, the H-module N is semisimple by Clifford. As H acts
reducibly, we can write N = @;_, N; where the N; are irreducible H-submodules of N of
order p. Since the automorphism group of N; is abelian, the commutator subgroup H' of H
lies in the kernel of the action of H on N;. Thus, H' is a subgroup of the kernel of H on N;
hence, H' =1 and H is abelian.

Let P be a p-Sylow subgroup of H. Then P is characteristic in H and, thus, normal in U.
Proposition [2.8| gives P = 1; hence, p{ [E : K(t)]. ]

The above lemma allows us to reduce our classification to polynomials that are indecom-
posable over K, or, equivalently, groups H < GL(2,p) acting irreducibly. These groups
fulfill

Proposition 6.3 Suppose H is an irreducible subgroup of GL(2,p). If p divides |H|, then
SL(2,p) < H.

Proof. Let P = (), denote a p-Sylow subgroup of GL(2,p). As p | |H|, we may assume
P < H. Proposition [2.8 shows that P is not normal in H. Hence, there exists h € H with
P # P". [32] 8.6.7] gives (P, P") = SL(2,p) < H. |

The next lemma states some well-known properties of GL(2, p):
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6. Affine polynomials of degree p?

Lemma 6.4 (1) Let P denote a p-Sylow subgroup of GL(2,p). Then the order of a p-
regular element in Ngp 2, (P) divides p — 1.

(2) Let g € SL(2,p) < H be p-regular. Then g fizes only 0 € N.

6.1. Cases in odd characteristic p # 2

By Proposition we may assume H = SL(2,p) x C where C is a cyclic group of order
rlp — 1. Set Z := Fix(N x SL(2,p)). Then Z|K(t) is a tame Galois extension of degree 7.
For the following s and t denote integers relatively prime to p.

Two finite places ramify

Suppose p and ¢ ramify. By Lemma we get F, = Fy = (5. Since an involution in
GL(2,p) fixes either exactly one point or exactly p points, ind(p) and ind(q) can only have
the values

1 p?—1 1 p(p—1)
2 2 2 2
_Z 1) = r _Z =& -/
p 2(p ) 9 0 p 2(p p) 9

As F|K(t) is wild, oo ramifies in this extension with index ps. Lemma shows s | p — 1;
thus,
1
md(oo) > (p2 — 1) (1 + ]i) = p(p + 1)
We obtain a violation of the genus-0 condition.

Only one finite place ramifies

By Riemann-Hurwitz Z is a rational function field. The classification of Valentini and
Madan [50] shows that Z|K (t) has exactly two branch points, both ramifying totally. Thus,
r divides |Fix| and |Fy|.

Suppose p ramifies wildly. We have F}, = C), x Cyy with 7t | p— 1. Set S := F, N SL(2,p).
Then S has order pt and by Lemma I, contains (pt — p) elements that fix at most one
point. Thus,

. 1 1 1
ind(p) > p? — %(pz + (p— Vp+pt — p+(prt — pt)p) + E(ﬁ - I;(pQ +(p— 1)p))-

induced by S

If oo ramifies wildly in the extension E|K(t), then ind(co) > p(p + 1). This induces a
contradiction to the genus-0 condition.
Hence, Fi = Cys with ind(co) > (p? — 1)(1 + ). We obtain

(p—l)(t+pt+s(p+t—3—rt))

ind ind(p) — 2p* +2 >
ind(co) +ind(p) — 2p” +2 = -

Since rt | p—1, the genus-0 condition is violated for ¢t # 1. Thus, suppose ¢t = 1. The genus-0
condition forces = p — 1 and s = p+ 1. This gives H = GL(2,p), I;(2) = I(2) =1, and
| Fix(g)| = p for all g € Ig. It follows ind(co) = p?, ind(p) = p? — 2, and o(Ip) = p + 1.

There exist polynomials f that realize this case, cf. chapter |5l As H is transitive on N¥,
such an f cannot be exceptional.
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6.2. Cases in even characteristic p = 2

If p ramifies tamely, then our estimations for the degree of the different of K (z)|K(t) are too
weak to induce contradictions to the genus-0 condition. Hence, we only obtain SL(2,p) < H
with F}, being a cyclic p/-group.

No finite ramification

A discussion of the extension Z|K (t) shows r = 1. Hence, H = SL(2, p) and oo ramifies with
Foo = CpxCg where s | p—1. Set a € N the well-defined integer with Fio(a) > Fxo(a+1) = 1.
Riemann-Hurwitz states

2g(E)—2:—2\HH—i’(ps—l—i—a-(p—l)).

As g(E) > 0, we obtain a > %. Section [3.2.1| shows

ind(o0) > (p* — 1)(1 + %) + %(a ~ 1D - p);

this gives a contradiction to the genus-0 condition.

6.2. Cases in even characteristic p = 2

Proposition[6.3|gives H = GL(2,2) = SL(2,2) = S5. Denote by C the normal cyclic subgroup
of H of order 3. Set Z := Fix(N x C). Then E|Z resp. Z|K(t) is Galois of degree 3 resp.
2. As all subgroups of H of order 2 are selfnormalizing, ramification groups in the extension
E|K (t) are either isomorphic to C3 or to Ch.

Only one finite place ramifies
By Corollary Fs = C3 and I, = Cy. Van der Waerden [51] shows that p decomposes in
K (z) in the form

p="P2-P;-Py with pairwise different places of K (z).

Proposition proves that the extension L|K (t) comes from a polynomial belonging to the
class of AGL-polynomials described in chapter

No finite ramification
As E|K(t) is wild, we get Fi, = C. By Section F(2) = 1; but this gives a contradiction
to the Riemann-Hurwitz genus formula.
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7. Exceptional polynomials of degree p’

In this chapter we classify all exceptional polynomials of degree p? with primitive arithmetic
monodromy group. Our result will be

Theorem 7.1 With the notation from page suppose deg f = p>. If f is exceptional, then
the extension E|K(t) is tame.
In particular, g = 0 and Theorem [{.4 lists all possibilities for f.

We will suppose the extension E|K(t) to be wild from now on. Lemma gives the irre-
ducibility of H on N. We start with the discussion of the case p > 3.

7.1. The cases in characteristic p > 3
Suppose p > 3. We first classify all irreducible subgroups H < GL(3,p) in question.

Lemma 7.2 Suppose H < GL(3,p) with p | |H|. Define S := H N SL(3,p) and Z =
Z(SL(3,p)). Set S:= SZ/Z < PSL(3,p) the image of S in PSL(3,p). Then:

(1) H acts irreducibly on N <= S acts irreducibly on N.
(2) If S is irreducible on N, then S = PSL(3,p), S = PSL(2,p), or S = PGL(2,p).
(8) If H is irreducible on N but not transitive on N¥, then
H) < H < Hy x Z(GL(3,p))
where Hy is isomorphic to PGL(2,p) and acts irreducibly on N. Hy is conjugate to the
image of PGL(2,p) under the mapping on page [39
Proof.

(1) S is a subgroup of H; if S is irreducible, then H is a fortiori irreducible.

Suppose H is irreducible and S acts reducibly. Let 1 = P < H be a p-Sylow subgroup
of H. As H/S < Cp_1, the group P < S is also a p-Sylow subgroup of S. Thus, we
obtain the same contradiction as in the proof of Lemma [6.2

(2) We use Bloom’s [2] classification of the subgroups of PSL(3, p).
First assume that S does not have any nontrivial elementary abelian normal subgroup.
Then [2, Thm. 1.1] and the condition p | |S| give S = PSL(3,p), S = PSL(2,p), or
S = PGL(3,p). We show in part (3) of this proof that these cases really induce an
irreducible group S.

Now assume S has a nontrivial normal elementary abelian subgroup; this case is dealt
with in [2, Theorem 7.1]. The cases (1), (2), (4), and (5) of this theorem cannot occur
for S would be a p’-group. In the remaining case (3) the group S contains a normal
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7. Exceptional polynomials of degree p3

elementary abelian p-subgroup P. By Proposition P = 1. Bloom [2] shows that S —

up to conjugacy and/or the inverse-transpose isomorphism — embeds into the subgroup

20 2) This shows that S does not act
*

k >k
* >k

of GL(3, p) consisting of elements of the form (
irreducibly.

(3) S = PSL(3,p) enforces S = SL(3,p). But then S would be 2-transitive, a contradiction
to our assumption.

In the remaining cases S contains a normal subgroup isomorphic to PSL(2, p). Bloom [2|
Lemma 6.3] shows that the commutator subgroup S of S is conjugate to the image of
PSL(2,p) under the mapping v on page In particular we obtain the irreducibility
of S.

As S’ is characteristic in H, we see that H is a subgroup of Ngr,3,)(S"). Bloom proves
that Ngp(3p)(S") = Ho x Z where Hy = PGL(2, p) is irreducible with Hjy = S’. This
shows that Hj is conjugate to the image of PGL(2,p) under the mapping on
page Certainly Hy x Z(GL(3,p)) < Nars,p) (Hp). Some calculation shows that
Carip(H)) = Z(GL(3,p)). As Aut(Hj)) = Aut(PSL(2,p)) = PGL(2,p), the N/C
theorem gives

Ho x Z(GL(3,p)) = Naw,p) (H)-

Remark 7.3 The assumption p | |H| in statement (1) of the previous lemma is necessary.
Consider for instance the group

= ((§49)) <o)

H is isomorphic to Cy and acts irreducibly. But S := H N SL(3,7) = Z(SL(3,7)) = Cj5 is
reducible. *

As we are interested in exceptional polynomials f, H is primitive on N but may not be
transitive on N*. Hence, all possibilities for H are given by Lemma (3). As a consequence
we get

Lemma 7.4 (1) The fized field Z := Fix(N x H') is rational. Either H/H' is isomorphic to
the Klein four-group; then exactly three places of K(t) ramify in the extension Z|K(t),
each one with index r = 2. Or H/H' is cyclic of order r | p—1; then exactly two places
of K(t) ramify in the extension Z|K(t), each one with index r.

(2) Let h € H be of order > 2. Then h has at most p fized points.
(3) Let I be a subgroup of H being isomorphic to Cp x Cs. If ged(s,p) =1, then s | p — 1.
Proof.

(1) Lemma [7.2 shows that H/H' is a p/-group. Thus, the extension Z|K(t) is tame with
9(Z) = 0. As K is algebraically closed, it follows that Z is a rational function field.

The ramification data and the group structure of H/H’ can be obtained directly from
the classification of Valentini and Madan [50].

H/H' embeds into Co x Cp—1; thus, every cyclic subgroup of Co x C),_1 has order a
divisor of p — 1. This shows r | p — 1.
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7.1. The cases in characteristic p > 3

(2) With the notation from Lemma write h = gz with g € Ho and z € Z(GL(3,p)).
Then h? = ¢%22 # 1 and ¢% € H). It g> = 1, then h? and, hence, h do not have
any nontrivial fixed point. Thus, suppose g> # 1. Then either ¢? has order p; here
the assertion follows from equation on page Or g2 is p-regular; but then the
representation 1 on page shows that ¢g? has three pairwise different eigenvalues.
Hence, the assertion is valid in this case, too.

(3) We use the notation from Lemma Suppose H = Hj X Z(GL(3,p)). Let P be a p-
Sylow subgroup of H. Then P < Hy and Ny (P) = Np,(P)xZ(GL(3,p)). Huppert [25,
I1 7.1] shows N, (P) = CpxCp_q. Asalso Z(GL(3,p)) = Cp—1, every p-regular element
of Ny (P) has order a divisor of p — 1. This is the claim.

For the following s and ¢ denote integers relatively prime to p.

Two finite places ramify
Both p and q ramify tamely with index 2. Therefore we obtain

1
ind(p) + ind(q) > 2 - (p3 — 5(193 +p2)> =p’ —p.

Lemmal[7.4|gives ind(co) > (p—1) (1+]ﬁ). These estimations violate the genus-0 condition.

No finite ramification
Lemma yields H = H' = PSL(2,p). Suppose |Fs| = ps. Let a € N be the well-defined
integer with Fuo(a) > Fxo(a+ 1) = 1. Riemann-Hurwitz states

H
29(E) —2 = —-2|H| + ’ps|(ps —1+a(p-1)).
As g(E) > 0, we obtain
PP —1+s(p’—p—1)

(p+1)p—1)°

Section [3.2.1] shows

. 1 1

ind(00) = (5 = 1) (1+ ) + ~(a = 1)(p* — p)
this gives a contradiction to the genus-0 condition.

Exactly one finite place ramifies
As at most two places ramify in Z|K (t), Lemmal|7.4]shows that Gal(Z|K(t)) is cyclic of order
r | p— 1 and both co and p ramify totally in this extension.

Suppose first that p ramifies wildly. Then F}, = Cp, x Cyy with rt | p— 1. Lemma shows
that I, contains at most p involutions. Thus,

1 1 1
ind(p) > p* — — (p* +p- >+ (prt —p— 1p) + — (0" = - (* + (0= 1)p) )
ind(p) > p pﬁ(p +p-p’+ (prt—p—1)p) + —(r p(p +(—1)p)
The p/-part of the ramification index of co is given by rs. We have ind(co) > (p*—1) (1 + %)
This yields

t(p® —1) +s(p—1)(p(p —2) — 1t - 2)

ind ind(p) — 2p° +2 > .
ind(co) +ind(p) — 2p” +2 > -
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7. Exceptional polynomials of degree p3

Asp(p—2) —rt —2 > p(p—3) — 1 > 0, this case is impossible.

Now suppose that p ramifies tamely. Then Fy, = Cp¢ and Fo = Cp ¥ Cpg with 7s | p — 1.
Let a denote the well-defined integer with Foo(a) > Fio(a+ 1) = 1. For the following we use
additionally the notation from section [3.2.1

We show first that Ino(uq) = C)p is impossible. Suppose Ioo(u,) = C,. Maus [37] gives
Ino(uq) < Iso(1); thus,

le(l)(foo(u(l))/clw(l) (Ioo(ua)) — Aut (Ioo(ua)) = Cp_l.

As Aut(I(uq)) is a p’-group, it follows

Io(1) = Ni 1y (Tso(ua)) = Cro 1) (oo (ua)).-

The total ramification of co in K (z)|K(t) shows p? | |Io|. As a p-Sylow subgroup of H is
cyclic of order p, it follows p? | |Joo(1)|. As Io(ug) £ N, there exist n € N and h € H such
that Io(ug) = (nh). Moreover h cannot be an involution; hence, h fixes at most p points.
But for all m € J(1)

nh-m =m-nh <= nhm=mnh =nmh < hm=mh <= m=m".
But this is impossible.
Hence, |Ioo(uq)| > p? and 0(Is(uq)) < Z%(p?’ + (»* —1)p) =2p — 1%. Since 2p — ;1) < p?
Corollary gives 0(Ioo(uq)) < p.
Due to our classification in chapter [] we may assume the genus of E to be > 3. The
above estimations together with the estimation for a coming from the Riemann-Hurwitz
genus formula succeed in disproving the genus-0 condition.

7.2. The cases in characteristic p € {2,3}

In this section we use the computational algebra system MAGMA [3] to classify all pairs (A, G)
being exceptional with A a primitive group of degree 8 or 27.

We obtain only one pair in characteristic 3 with H being elementary abelian of order 4.
Hence, even in this case the extension E|K (t) is tame.
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8. Exceptional polynomials of degree p’, r an
odd prime, with 2-transitive group A

In this chapter we classify all exceptional polynomials of degree p”, » an odd prime, such
that the arithmetic monodromy group of f is 2-transitive. Our result will be

Theorem 8.1 With the notation from page suppose deg f = p". Assume the arithmetic
monodromy group of f is 2-transitive. If f is exceptional, then the extension E|K(t) is tame.
In particular, g = 0 and Theorem[{. lists all possibilities for f.

The 2-transitivity of A on N gives the transitivity of U on N*. The following lemma is based
on Hering’s classification of transitive subgroups of GL(r, p). A complete treatment of these
groups can be found in Liebeck [36, Appendix 1].

Lemma 8.2 N can be considered a one-dimensional F,r vector space. U acts on N as a
subgroup of TL(1,p").

Proof. r being an odd prime enforces either U < T'L(1,p") or SL(r,p) < U. Suppose
the latter case holds. Huppert [25, IT 6.10] shows the perfectness of SL(r,p); thus, we
have SL(r,p) < H. However, the transitivity of SL(r,p) on N* is a contradiction to the
exceptionality of f. [ |

We assume the extension E|K(t) to be wild from now on. As the order of I'L(1,p") is
ITL(1,p")| = (p"—1)-r, this immediately yields p = r. The next lemma gives some estimations
for the number of fixed points of elements of A.

Lemma 8.3 (1) Let1 # g € A < ATL(1,pP). Then g fizes at most p elements. If g is
p-regular, then it fives exactly one point.

(2) Let P be a p-Sylow subgroup of T'L(1,pP). Then the normalizer Npy, pp)(P) is cyclic
of order p(p — 1).

Proof.

(1) As we are interested in the maximal number of fixed points of an element 1 # g € A,
Lemma allows us to assume g € U. Lemma gives the identification N = Fpp.
Thus, the action of g on N is given by a tuple (a,b) with 0 < a < p and b € F;p such
that

a

nd=nP b for all n € N.

Suppose n € Nt is fixed by ¢g. Then n fulfills n?*~! = b=1. If m € N is also fixed by g,
then we have m = d - n with d € N* and d”"~! = 1. Thus, d € F} and Fix(g) = n-F,.

Suppose g is p-regular. A simple induction shows that the action of gP is given by
(1,8) with 8 # 1. It follows that the unique fixed point of ¢” and, thus, of g is the zero
element of N. The assertion is due to Corollary
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8. Exceptional polynomials of degree p”, r an odd prime, with 2-transitive group A

(2) Since P is cyclic of order p, we may assume P to be generated by an element g €
I'L(1,p?) whose action is given by (1,1). A simple calculation shows that Npr,( ;) (P)
is generated by g and the (0, 3)-element h where 3 denotes a primitive element of .
As g and h commute, we get

NFL(I,pT’)(P) =(g:h) = Cp x Cp1 = Cpp—1)-
|
Now we discuss the ramification behavior of the extension E|K (t) in detail. As in the previous
two chapters s and ¢t denote integers relatively prime to p.

Two finite places ramify
Lemma shows that both p and q ramify tamely with index 2. By Lemma [8.3] we have

1
ind(p) + ind(q) > 2<n —5(n+ 1)) —n—1.
Since ind(oc) > n, this is a contradiction to the genus-0 condition.

One finite place ramifies

Suppose p ramifies wildly. Then I, embeds into the normalizer of a p-Sylow subgroup of
I'L(1,pP); hence, I, = Cp, x Cy with t | p— 1. If g € I, does not have order 1 or p, the p-th
power of g is p-regular. Thus, by Lemma [8.3| only elements of order 1 or p can have more
than one fixed point. This shows

ind(p) 2 - (n+ (= Do+ (ot =) + 7 (n = (0+ (0= 1)),

Together with ind(co) > n we get

n(p—2) +p(t+3—2p)
pt ’

ind(o0) +ind(p) — 2n + 2 >
as p > 2 and n = pP > 2p?, this case cannot occur.

Suppose p ramifies tamely with index ¢. Then ind(p) > (n — 1)% The group Fa is cyclic
of order ps. Let a € N denote the well-defined integer with Fio(a) > Fso(a + 1) = 1. Then
Riemann-Hurwitz gives

H H
29(FE) — 2= —2|H| + |t|(t —-1)+ |ps(ps —1+a(p—1)).
Due to the classification in chapter [l we may assume g > 3. This gives
dpst + |H|(ps + t)
— HJip-1)
Together with the estimation of section for ind(o0) a a violation of the genus-0 condition
results.

Only oo ramifies
We use the same idea as above. We obtain

o> Pa(H| +4) +|H]
H](p=1)

This again induces a contradiction to the genus-0 condition.
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