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Abstract: Background: Oro-antral communication (OAC) is a common complication following the
extraction of upper molar teeth. The Archer and the Root Sinus (RS) systems can be used to classify
impacted teeth in panoramic radiographs. The Archer classes B-D and the Root Sinus classes III,
IV have been associated with an increased risk of OAC following tooth extraction in the upper
molar region. In our previous study, we found that panoramic radiographs are not reliable for
predicting OAC. This study aimed to (1) determine the feasibility of automating the classification
(Archer/RS classes) of impacted teeth from panoramic radiographs, (2) determine the distribution of
OAC stratified by classification system classes for the purposes of decision tree construction, and
(3) determine the feasibility of automating the prediction of OAC utilizing the mentioned classification
systems. Methods: We utilized multiple supervised pre-trained machine learning models (VGG16,
ResNet50, Inceptionv3, EfficientNet, MobileNetV2), one custom-made convolutional neural network
(CNN) model, and a Bag of Visual Words (BoVW) technique to evaluate the performance to predict
the clinical classification systems RS and Archer from panoramic radiographs (Aim 1). We then
used Chi-square Automatic Interaction Detectors (CHAID) to determine the distribution of OAC
stratified by the Archer/RS classes to introduce a decision tree for simple use in clinics (Aim 2). Lastly,
we tested the ability of a multilayer perceptron artificial neural network (MLP) and a radial basis
function neural network (RBNN) to predict OAC based on the high-risk classes RS III, IV, and Archer
B-D (Aim 3). Results: We achieved accuracies of up to 0.771 for EfficientNet and MobileNetV2 when
examining the Archer classification. For the AUC, we obtained values of up to 0.902 for our custom-
made CNN. In comparison, the detection of the RS classification achieved accuracies of up to 0.792 for
the BoVW and an AUC of up to 0.716 for our custom-made CNN. Overall, the Archer classification
was detected more reliably than the RS classification when considering all algorithms. CHAID
predicted 77.4% correctness for the Archer classification and 81.4% for the RS classification. MLP
(AUC: 0.590) and RBNN (AUC: 0.590) for the Archer classification as well as MLP 0.638) and RBNN
(0.630) for the RS classification did not show sufficient predictive capability for OAC. Conclusions:
The results reveal that impacted teeth can be classified using panoramic radiographs (best AUC:
0.902), and the classification systems can be stratified according to their relationship to OAC (81.4%
correct for RS classification). However, the Archer and RS classes did not achieve satisfactory AUCs
for predicting OAC (best AUC: 0.638). Additional research is needed to validate the results externally
and to develop a reliable risk stratification tool based on the present findings.
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1. Introduction

Extraction of the third molars is the most common procedure performed by oral and
maxillofacial surgeons [1]. In addition to traditional surgical complications such as bleeding,
postoperative pain, infection, and nerve damage, oro-antral communication (OAC) may
occur following the extraction of a maxillary molar. In OAC, the soft tissue and the bony
barrier between the maxillary sinus and the oral cavity, which is partly only 0.5 mm thick,
are perforated, leading to a communication between the oral cavity and the maxillary
sinus [2]. Consequently, the fistula may undergo connective tissue epithelialization, which
may lead to chronic sinusitis [3]. Research indicates that the surgical removal of the upper
third molar in the maxilla may result in the opening of the maxillary sinus in as many as 13%
of cases, whereas completely displaced teeth could increase the likelihood of sinus opening
by up to 25% [4]. The incidence of OAC is estimated to be between 10% to 23% on average,
depending on the surgical procedure and the extent of the impaction [4]. In particular, the
prevalence of displaced third molars approaches 24%, which implies a substantial risk of
OAC in clinics [5].

On average, it takes 48 to 72 h for epithelial tissue to migrate into OAC. A fistula may
become chronic if surgical intervention is not performed within this time [6]. Typically,
patients complain of fluid leakage from the nose, altered phonation, reduced suction
build-up through the mouth when drinking, unpleasant taste sensations, and pain in
the OAC region [7–9]. A common complication is maxillary sinusitis. The occurrence
is associated with a polymicrobial infection that includes both aerobic and anaerobic
bacteria. A combination of antibiotics and surgical intervention may be required to treat
this condition [10].

Several methods can be used to diagnose OAC. In order to plan for extraction of the
third molar in the maxilla, most commonly, a 2D panoramic slice image is obtained (referred
to as panoramic radiography or orthopantomogram) [11]. Along with its high availability, it
stands out for its good resolution, low radiation, and low cost, especially when compared to
other 3D imaging technologies. Intraoral assessment may provide insight into the presence
of a large OAC. In addition, other possibilities include the presence of a visible polyp
in the excretory duct of the OAC; the Valsalva test, in which the patient exerts pressure
on the maxillary sinus through exhalation, which then results in air leakage through the
OAC; the use of imaging techniques (panoramic radiography and CT) to assess any bony
defects; and finally probing or insertion of radiopaque materials [3,12]. There are concerns
regarding the spread of germs and the potential for iatrogenic extension of an OAC in the
latter approach [13]. Low sensitivity and specificity are associated with the low invasive
option, while germ spread and potential iatrogenic complications are associated with the
invasive option. Therefore, it is important to carefully consider which procedure is the
most appropriate.

With advanced artificial intelligence (AI)-based approaches, decision making and
problem solving can be automated [14]. The clinical decision process is generated by
algorithms using the patterns found in the input data points. The incorporation of artificial
intelligence into everyday clinical practice is becoming increasingly important in many
medical specialties, as well as dentistry and oral and maxillofacial surgery [15]. A review
by Khanagar et al. revealed an increasing interest in AI research in dentistry and oral
and maxillofacial surgery [15]. Most of the papers listed in the review focused on the
diagnosis of dental caries and other oral pathologies. Alveolar bone loss, the proximity of
the third lower molar to the alveolar nerve, or the prediction of orthodontic extractions
could be investigated for similar questions as in the present work [15]. The predictive
assessment of OAC based on preoperative panoramic radiography has been investigated
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in our previous study [16]. Here, we found only limited comparability of AI-based results
compared to experienced surgeons. Even between different AI algorithms, the results were
not consistent. Relying on the prediction of an AI-based algorithm alone can thus not be
conclusively recommended based on available evidence. Further studies with larger case
numbers, other algorithms, and multicenter center studies might be necessary [16]. Several
risk factors can be employed to predict the development of OAC. Besides factors such as
age or gender, techniques such as the selected surgical procedure and the practitioner’s
experience as well as anatomical conditions can influence the occurrence of OAC. For
professionals and automated algorithms, standardized classification systems such as the
Archer Classification [17] and the Root Sinus Classification (RS) [18] can be useful due to
their reproducibility [19]. The Archer classification is based on the positional relationship
of the third molar to the adjacent tooth and its relationship to the maxillary sinus, whereas
the RS classification is dependent on the root tips as well as the direct relationship to the
maxillary sinus floor (Figure 1) [19].
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Archer classification: Type A: the upper third molar is situated on the same or below the occlusal
plane of its neighboring second molar. Type B: the upper third molar is located between the occlusal
and cervical lines of the adjacent second molar. Type C: the upper third molar is located between the
cervical line and the upper root third of the neighboring second molar. Type D: The third upper molar
is located at the level of or above the apical third of the adjacent second molar. RS Classification:
Class I: the maxillary sinus is located strictly above the root apex of the maxillary third molar. Class
II: the line of the maxillary sinus floor is sharply curved and partially overlapped by the root apex of
the maxillary third molar. Class III: the line of the maxillary sinus floor slopes sharply between the
maxillary teeth and overlaps most of the roots. Class IV: the line of the maxillary sinus floor meets
the root tips and slopes only between the root seats. Class V: the line of the maxillary sinus floor in
relation to the root tips of the maxillary third molars cannot be reliably delineated.

Iwata et al. were able to reveal a significant association between OAC and the Archer
classes B–D and/or the RS classes III/IV [19]. However, according to the CT examination,
only the Archer classification D and the RS classification III, IV were associated with
OAC [19]. Analyzing these classifications in panoramic radiographs with the help of an
AI-based algorithm could help automate the prediction of OAC in panoramic radiography
imaging. In a previous study of our workgroup, the prediction based solely on panoramic
radiographs was found unreliable [16]. To the best of our knowledge, no study has utilized
an AI-based algorithm to evaluate the predictive value of these classification systems
for automated panoramic radiography analysis. Overall, the present study sought to
(1) evaluate the feasibility of automatized classification of impacted teeth from panoramic
radiographs, (2) determine the distribution of OAC stratified by classification system classes,
and (3) evaluate the feasibility of automatized prediction of OAC utilizing established
classification systems.

2. Materials and Methods
2.1. Study Design

The present study was conducted in accordance with the Declaration of Helsinki
and the Professional Code of Conduct for Physicians of the Bavarian Medical Association
in their current versions. As part of this study, all consecutive patients who underwent
tooth extractions in the posterior region of their upper jaw at the University Hospital
Würzburg between 2010 and 2022 were included. The following criteria were excluded
from consideration: malignant diseases around the surgical site, fractures at the surgical site,
syndromal anatomical variants, inflammations on the root tip, and chronic/pre-existing
OACs. In addition, only images of comparable quality were included. Careful attention was
paid to obtaining good positioning of the facial planes and symmetrical alignment of the
head while avoiding projection-related enlargements or reductions. Only one type of X-ray
machine was used during this period. Externally scanned images were also excluded due
to the lack of comparability. A total of 357 patients with extracted teeth and the associated
imaging were consecutively included. This study was approved by the Ethics Committee
of the University of Würzburg before the start of the study and was authorized under
authentication number 2022011702.

Following approval by the ethics committee, data were extracted from the data man-
agement system of the University Hospital of Würzburg. The screening was conducted on
patients who had tooth extractions in the maxillary posterior region between 2010 and 2022.
Patient identification was based on ICD codes. A detailed review of the operation reports
for the group of patients who had an OAC following tooth extraction was conducted. The
preoperative panoramic radiography was extracted if OAC could be determined clinically
through various examinations. Images were anonymized before being processed. As for
the control group, all patients who had a posterior extraction were screened and allocated
to the control group after reviewing the surgical report in which OAC was not diagnosed
or excluded. We extracted the radiographs in the same manner as described above. The
included patients had 2nd and 3rd molars in undisturbed occlusion with regard to their
dentition. This was necessary in order to be able to give a reliable assignment to the classifi-
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cations used, Archer and RS. Since the extraction of 3 molars is one of the most common
procedures in dentistry and oral and maxillofacial surgery, we have a homogeneous dis-
tribution with regard to gender. One study has already shown that there is no significant
difference in the probability of OAC occurrence in relation to gender [4]. Furthermore,
with a median age of 28 years, this procedure is mainly found in young patients. We were
able to confirm this age distribution in our study. As we anonymized the images directly
after extraction and focused on the exclusive detection of the probability of postoperative
OAC using the classifications, no subgroup analysis of the data was performed. In total,
157 cases were collected in the OAC group and 200 consecutive cases in the control group
for analysis. Thereafter, the region of interest for the classification system (upper quadrants)
was selected, and images that were not suitable for classification (e.g., lacking the third
molar) were excluded. Two experts in oral and maxillofacial surgery subsequently set the
ground truth of the RS and Archer clinical classification systems. Disagreements regarding
the classifications were resolved by discussion with a third reviewer. The regions of interest
were identified and cropped from original panoramic radiographs. The definition of the
ROI was performed manually by two annotators in this work. Care was taken to standard-
ize the ROI-defining process and to not allow too much variability due to potential artefacts
(e.g., metal artefacts). The final number of classes was as follows: Archer A (n = 126); RS I,
II, V (n = 130); Archer B-D (n = 365); RS III, IV (n = 361).

2.2. Machine Learning and Deep Learning Algorithms

Multiple panoramic imaging devices were used to create the original images. The
images were randomly distributed into a train, test, and validation set (60%, 20%, 20%).
Next, we resized (224 × 224) all dataset images and applied data augmentation techniques
to the train dataset images (rotation of ±30 degrees, horizontal flipping, 20–80% bright-
ness). Image augmentation was used to reduce overfitting and improve generalization.
A surgeon manually defined the region of interest by delineating the maxilla and the
sinuses. Multiple supervised pre-trained machine learning algorithms (VGG16, ResNet50,
Inceptionv3, EfficientNet, MobileNetV2), as well as a customized CNN model, were used
to evaluate the algorithms’ ability to predict the clinical classification systems RS and
Archer. The pre-trained models were used for transfer learning. In transfer learning, all
relevant information is gathered, and this knowledge is subsequently transferred to enable
solutions to other problems. This way, the panoramic radiography dataset can be used
as a basis for a deep learning model with pretrained weights. The models were frozen in
a way that we used the basic models and made changes to the final layer only, as these
models were designed to handle multiple classes, whereas we needed to solve a binary
classification problem. For this, we made the layer non-trainable and built a last fully
connected layer. Overall, we flattened our base model’s output to 1 dimension, added a
fully connected layer with hidden units and ReLU activation, used a dropout rate, and
added a final Fully Connected Sigmoid Layer. The specific characteristics of the models,
including each layer, are shown in the code available in the data availability section. We
used the RMSProp Optimiser (custom made CNN), Adam optimizer (VGG16, InceptionV2,
EfficientNet, MobileNetV2), or SGD optimizer (ResNet50) with binary cross-entropy for
loss evaluation. We applied learning rate decay with a minimum learning rate of 1 × 10−4,
a factor of 0.5, while monitoring validation accuracy and early stopping (5 epochs). Steps
per epoch were calculated as the sample size for the training set divided (using the integer
division operator) by the batch size, where the batch size was 10. Models were trained
for 10 epochs. We did not use a grid search, random search, or Bayesian optimization
for hyperparameter tuning, but we used a manual search to adjust the parameters until
the best metrics were obtained. Grid search and manual search are the most widely used
strategies for hyperparameter optimization [20]. Hyperparameter tuning using fine-tuning
algorithms was intended to be applied to improve models more precisely in the case where
an AUC over 0.75 could be reached for any model. In case no evidence was found that
models were suitable to reach higher accuracies, we decided not to perform further hyper-



Appl. Sci. 2022, 12, 6740 6 of 19

parameter tunings in a resource-oriented way, as these fine-tuning techniques are more
intended to build precise models to classification tasks rather than exploring the feasibil-
ity/exploratory approach of whether a reliable classification is possible or not. The other
presented algorithms (custom-made CNN, BoVW approach, MLP, RBNN) were trained
exclusively on our dataset without pre-trained weights. The algorithms’ structure and the
code are available in the data availability section.

AUC and accuracy were calculated to evaluate each model’s performance. AUC
represents the area under the receiver operating characteristic curve (ROC). Accuracy is a
metric used in classification problems to determine the percentage of correct predictions.
Statistical analyses were conducted in Python and SPSS v26 (IBM, Armonk, NY, USA).
Algorithms were built and evaluated in Python using the OpenCV, NumPy, Pillow, Seaborn,
Matplotlib, TensorFlow, Keras, and scikit-learn libraries. Specifications for the hardware
and software environments were as follows:

• CPU: AMD Ryzen 9 5950X 16-Core Processor;
• RAM: 64 GB;
• GPU: NVIDIA Geforce RTX 3090;
• Python version: 3.10.4 (64-bit);
• OS: Windows 10.

As part of the Bags of Visual Words (BoVW) technique, feature extractions from the
input images were saved as BoVWs to prepare for training a model. As a general rule, a
keypoint is a particular structure that contains several attributes, such as its coordinates
(x, y), the meaningful neighborhood’s size, the angle that specifies its orientation, and the
response that defines the strength of the keypoints, etc. Scale Invariant Feature Transform
(SIFT) was used to extract the keypoints and descriptors. To create visual vocabularies for
the BoVW, all extracted descriptors were clustered using K-Means clustering. The BoVWs
were then fed into a support vector machine (SVM) model to predict the Archer and RS
classes (Figures 2 and 3).
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a particular structure that has many attributes such as its (x, y) coordinates, size of the meaningful
neighborhood, the angle that specifies its orientation, response that specifies the strength of keypoints,
etc. Keypoints and descriptors are then extracted by Scale Invariant Feature Transform (SIFT). All
extracted descriptors are then clustered using K-Means to obtain visual vocabularies for the BoVW.
Finally, we fed these BoVW into a support vector machine (SVM) model to make the prediction of the
Archer and RS classes and to evaluate the model based on the true labels (ground truth).
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Figure 3. Example images illustrating some of the image features. (A) Patient has metallic artefacts
affecting the keypoint detection and subsequent classification. In addition, other structures such as
endodontic fillings, crowns, composite fillings, etc., might affect the classification. (B) A situation with
fewer artifacts. The keypoints are more evenly distributed with a focus on the third molar region.

2.3. Association of Archer and RS Classification with Oroantral Communications

Further, we evaluated the association between Archer and RS classification and
oroantral communication by utilizing the CHAID algorithm (Chi-square Automatic Inter-
action Detectors). Finally, we used a multilayer perceptron model (MLP) and radial basis
function neural networks (RBNN) to predict OAC from RS and Archer classification.

3. Results
3.1. Machine Learning Performance

The machine learning results for the Archer classification (validation dataset) resulted
in an accuracy of 0.250 for ResNEt50, 0.500 for Custom CNN, 0.750 for VGG16, and Incep-
tion V3, 0.771 for MobileNetV2 and EfficientNet, and finally 0.729 for BoVW. The AUCs
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were 0.328 for ResNet50, 0.613 for InceptionV3, 0.807 for VGG6, 0.813 for MobileNetV2 and
EfficientNet, with the highest value of 0.902 for Custom CNN (Table 1 and Figure 4).

Table 1. Model performance of the machine learning algorithms for the Archer classification. Transfer
learning algorithms, custom CNN and a Bag of Visual Words technique were investigated. AUC: area
under the curve; Accuracy: (TP + TN)/(TP + TN + FP + FN); val: validation dataset; test: test dataset.

Algorithm Accuracy AUC

VGG16
val 0.750 0.807
test 0.765 0.687

MobileNetV2
val 0.771 0.813
test 0.628 0.734

InceptionV3
val 0.750 0.613
test 0.745 0.667

ResNet50
val 0.250 0.328
test 0.255 0.496

EfficientNet
val 0.771 0.813
test 0.628 0.734

Custom CNN
val 0.500 0.902
test 0.451 0.903

BoVW
val 0.729 0.625
test 0.731 0.667
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The machine learning results for RS classification (validation dataset) showed an
accuracy of 0.625 for MobileNetV2 and EfficientNet, 0.708 for Custom CNN, 0.750 for
VGG16, InceptionV3, ResNet50, and finally the highest value of 0.792 for BoVW. The AUCs
were 0.500 for ResNet50, 0.579 for EfficientNet and MobileNetV2, 0.588 for InceptionV3,
0.656 for VGG16, 0.694 for BoVW and finally the highest value of 0.716 for Custom CNN
(Table 2 and Figure 5).
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Table 2. Model performance of the machine learning algorithms for the RS classification. Transfer
learning algorithms, custom CNN and a Bag of Visual Words technique were investigated. AUC: area
under the curve; Accuracy: (TP + TN)/(TP + TN + FP + FN); val: validation dataset; test: test dataset.

Algorithm Accuracy AUC

VGG16
val 0.750 0.656
test 0.745 0.815

MobileNetV2
val 0.625 0.579
test 0.608 0.541

InceptionV3
val 0.750 0.588
test 0.745 0.603

ResNet50
val 0.750 0.500
test 0.745 0.500

EfficientNet
val 0.625 0.579
test 0.608 0.541
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Table 2. Cont.

Algorithm Accuracy AUC

Custom CNN
val 0.708 0.716
test 0.745 0.853

BoVW
val 0.792 0.694
test 0.726 0.715

3.2. Association of Archer and RS Classification with Oroantral Communications

As already described by other authors, we were able to find a significant association
between OAC for the Archer groups B–D (Figure 6) as well as for the RS classes III/IV
(Figure 7). We found these results for both the test and the validation set.
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Using multilayer perceptron models (MLP) and radial basis function neural networks
(RBNN), the AUC was 0.59 (Figure 8) for the Archer classification and 0.638 (Figure 9)
for the RS classification. Using the RBNN, we achieved an AUC of 0.599 for the Archer
classification (Figure 10) and an AUC of 0.63 for the RS classification (Figure 11).
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in the hidden layer was determined by the testing data criterion: the best number of hidden units is
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incorrect predictions on the validation set: 25.5%; percent incorrect predictions on the test set (hold
out): 17.9%. AUC: 0.590.
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Figure 9. Prediction of OAC using the RS classification and MLP. The ROC curves show the predictive
capability of the RS class III, IV in predicting OAC. Input layer: RS classification (2 units). Hidden
layer: 2 units, activation function: hyperbolic tangent. Output layer: dependent variable OAC
(2 units), activation function: softmax; error function cross-entropy. Number of units in the hidden
layer was determined by the testing data criterion: the best number of hidden units is the one that
yields the smallest error in the testing dataset. Train/test/val split: 80/10/10. Percent incorrect
predictions on the validation set: 32.7%; percent incorrect predictions on the test set (hold out): 25.8%.
AUC: 0.638.
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Figure 10. Prediction of OAC using the Archer classification and RBNN. The ROC curves show the
predictive capability of the Archer class B-D in predicting OAC. Input layer: Archer classification
(2 units). Hidden layer: 3 units; activation function: softmax. Output layer: dependent variable
OAC (2 units); activation function: identity; error function: sum of squares. Number of units in the
hidden layer was determined by the testing data criterion: the best number of hidden units is the one
that yields the smallest error in the testing dataset. Train/test/val split: 80/10/10. Percent incorrect
predictions on the validation set: 29.5%; percent incorrect predictions on the test set (hold out): 27.5%.
AUC: 0.599.
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Figure 11. Prediction of OAC using the RS classification and RBNN. The ROC curves show the
predictive capability of the RS class III, IV in predicting OAC. Input layer: RS classification (2 units).
Hidden layer: 2 units, activation function: softmax. Output layer: dependent variable OAC (2 units);
activation function: identity; error function: sum of squares. Number of units in the hidden layer was
determined by the testing data criterion: the best number of hidden units is the one that yields the
smallest error in the testing dataset. Train/test/val split: 80/10/10. Percent incorrect predictions on
the validation set: 25.5%; percent incorrect predictions on the test set (hold out): 30.2%. AUC: 0.630.
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4. Discussion

The present study examined the automated classification of impacted teeth using two
classification systems and various artificial intelligence-based algorithms (i.e., machine
learning and deep learning techniques). Further, we evaluated the association between the
included classification systems and OAC and attempted to predict OAC based on high-risk
classes in these classification systems. An assessment of the likelihood of an OAC can
optimize operational planning. Therefore, it may be possible to prevent the potentially
serious complications that may arise from OACs. A modern precision medicine approach
would utilize reliable medical risk stratification algorithms to identify patients at risk in
order to plan the closure of an OAC through a suitable incision before the operation takes
place. In addition, when anticipating an OAC based on new prediction models, a closer
follow-up of those patients might be beneficial to tackle a future problem. This approach
would require investigating the data patterns that are currently available. Panoramic
radiographs are widely available and well suited for this task. The hidden data patterns
within panoramic radiographs are currently being investigated for various diagnostic
purposes. Nevertheless, there was a lack of evidence examining its usefulness in OAC
diagnosis.

There are two requirements for optimal healing after upper molar teeth extraction,
namely the presence of an uninfected maxillary sinus and a wound closure that is free from
tension, well vascularized, and has a sufficient area of apposition. A small opening in the
OAC that is not infected at the time of surgery may heal spontaneously by depositing a
blood clot [6,7,21]. Spontaneous healing may not be possible in the case of openings larger
than 3–4 mm on average and a probing depth exceeding 5 mm [22,23]. A surgical approach,
which involves immediate closure of an OAC, has been associated with success rates of up
to 95 percent, whereas secondary occlusions have been associated with success rates as low
as 67 percent [7,23,24]. There is a great deal of innovative research interest in the surgical
field with regard to closing an OAC. In addition to buccal advancement flap, rotation
flaps with buccal cheek fat, local flap plastics with gingival tissue or substitute materials,
and various different local rotation flaps, new techniques such as plated rich fibrin, which
induces increased wound healing, are increasingly being discussed in the literature [9,25,26].
As we have found in a prior study, we were unable to obtain satisfactory results when
using panoramic radiographs to predict OAC [16]. The object of this study was to identify
classification systems that were significantly associated with an increased probability of
occurrence of OAC. As Iwata et al. (2020) described, the Archer classification types B,
C, D, and RS III/IV are significantly more frequently associated with OAC than Archer
type A and RS classification types I, II, and V [19]. Other authors have confirmed these
findings [18,27]. We were able to confirm the previously mentioned significant associations
between OAC and Archer as well as RS classification in our study, and we presented a
clinical decision tree using the CHAID algorithm.

Furthermore, we have used a number of pre-trained machine learning models (VGG16,
ResNet50, Inceptionv3, EfficientNet, MobileNetV2), a custom CNN, and the Bag of Visual
Words technique to solve a binary classification task. In examining the Archer classifica-
tion, we were able to achieve accuracies of up to 0.771 for EfficientNet and MobileNetV2,
respectively. In terms of AUC, our custom-made CNN achieved values up to 0.902. Com-
paratively, the detection of the RS classification had an accuracy of up to 0.792 for the
BoVW and an AUC of up to 0.716 for our custom-made CNN. Considering all algorithms,
the Archer classification was detected more reliably than the RS classification. Tobel et al.
(2017) developed AI-based algorithms to predict patient age by analyzing the develop-
mental status of third lower molars. Despite achieving only a 0.51 accuracy, they were
able to demonstrate that misclassifications were most likely to occur between adjacent
developmental stages [28]. The results indicated that only slight differences in tooth mor-
phology could be difficult to distinguish when using small datasets. According to the
BoVW approach, we found that other foreign materials in the panoramic radiography,
such as endodontic fillings, implants, etc., can impair diagnostic accuracy. Tobel et al. also
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demonstrated that practitioners with 5 to 10 years of experience were capable of achieving
results similar to the AI algorithms [28]. Our previous study on the prediction of OAC in
OPGs was able to confirm this observation [16]. Kim et al. developed similar protocols to
predict the existence of inflamed maxillary sinuses. In this study, they achieved an AUC
of 0.93 and 0.88 for the two datasets, as well as 0.83 and 0.89 for the practitioners, with a
Cohen’s kappa coefficient of 0.82 compared to practitioners [29].

Using multilayer perception models (MLP) and radial basis function neural networks
(RBNN), we were able to obtain comparable results in predicting OAC. The Archer clas-
sification yielded an AUC of 0.59, whereas the RS classification and the use of RBNN led
to a slightly higher AUC of 0.63. However, both values indicate no satisfactory predictive
ability. A study published recently found an average accuracy of less than 90% for the
use of artificial intelligence in dentistry-related tasks. This may result from the fact that
panoramic radiographs contain a great deal of information and may be variable compared
to chest X-rays (i.e., various numbers of teeth, fillings, foreign metallic objects) [30]. An
example of the popular usage of a large number of open-source database images would
be the detection of COVID-19 or pneumonia patterns in 2D chest X-rays. Various studies
have demonstrated an accuracy range of 0.829 to 0.990 in solving the binary classification
task [31].

There are strengths and limitations associated with this study. Overall, these are the
following innovations that we could provide with this work: (1) To the best of our knowl-
edge, this is the first study to determine the diagnostic metrics of the included classification
systems utilizing artificial intelligence-based approaches to panoramic radiography. (2) We
have included several suitable methods compared to other studies working on different
topics in dentistry, allowing others to assess differences in metrics for panoramic radio-
graphy classification tasks. Methods can be easily adapted for other classification tasks
(e.g., assessing the relationship between lower molars and the alveolar nerve). Our dataset
and algorithms can be utilized as a fundament for other AI-based algorithms, statistical
models, or other evaluations. (3) It is our follow-up study that evaluates a highly relevant
clinical topic: the preoperative prediction of OAC from panoramic radiography. Our work
group is the first to investigate this task from panoramic radiography with advanced
AI-based methods, to the best of our knowledge. Considering the high number of upper
teeth extractions in dentistry and the high prevalence of OAC, our work could have great
clinical value. OAC can lead to serious complications for patients. In case more authors are
working on this topic and build on the fundament we provided with this work, it might
be possible to improve the provided models in the future and introduce a preoperative
risk stratification algorithm before tooth extraction. This would be a great step toward
precision medicine/dentistry. There are, however, some limitations due to the retrospective
nature of the data. The small openings of the maxillary sinuses are not likely to require any
intervention under healthy conditions, such that the data may be biased as an unreported
case [7]. We carefully reviewed the operative reports in the data collection process to see if
an OAC could be clinically confirmed. Conversely, it must be considered that the control
group included cases in which no OAC was documented. If an OAC was erroneously not
documented, a potential misclassification could have taken place. A more accurate data
review would be possible in the context of a prospective study in which a standardized
clinical review for an OAC is established. In addition, it might be possible to include CT
imaging to assess small OACs in a standardized way in future studies and compare the
results with 2D imaging. However, it might be complicated to obtain sufficient sample
sizes, as CT imaging is not regularly performed for upper molar tooth extraction. Another
potential future improvement could be automatic ROI detection by algorithms. This re-
quires large datasets and separate algorithms detecting the ROIs before further processing.
We are currently annotating a large dataset for the automatized detection of the sinus area
with a subsequent automatized assessment of the marginal bone loss (unpublished data).
The combination of these algorithms could further advance the efforts toward AI-based
diagnostic approaches in oral and maxillofacial surgery. Furthermore, we have strictly
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divided the data into a train, test, and validation dataset, resulting in a smaller number of
data for the learning process of the algorithms [32,33]. A limitation of the current study is
the small number of data collected and low occurrence of OACs given the large number of
data required with the variability of panoramic radiographs [34]. In addition, the manual
preparation of the images requires the identification of a region of interest, resulting in
variations among studies [28]. Additionally, the process of labeling the region of interest by
the algorithm is another potential source of error that requires training with large datasets
before such algorithms can be used in clinics [30,35,36]. Despite achieving the goal of
defining a section, there might be additional disadvantages depending on the quality of the
obtained panoramic radiographs, considering their two-dimensional nature [37–39]. There
are still many incomprehensible aspects of deep learning theory that have to be addressed.
Normally, it is difficult to improve deep learning models in a focused manner due to their
interpretation challenges. Therefore, researchers must consider both generalization and
optimization. Even deep CNNs using large training data still struggle with the “overfitting”
problem, which limits their ability to generalize their results from the training set to un-
known test data. As a result, a larger model is typically more accurate [40], but users must
choose between accuracy and reasoning speed in practice. In panoramic radiography, noise
can both affect how expressive elements are extracted and how implicit knowledge is mined.
The difficulties described above make it difficult to apply it successfully in some unique
situations, such as medical diagnosis jobs [41], where there are few training data [42]. As of
today, a variety of approaches have been developed to overcome the “overfitting” problem
with deep CNNs. In order to reduce the complexity of a network, regularization methods
can be utilized. A few such methods are Hierarchical Guidance and Regularization (HGR)
learning [43] and L2-regularization [44]. Another approach is the extension of the sample
dataset by means of data augmentation techniques such as translation [45] and horizontal
flipping [46], as well as noise disruption [47]. Furthermore, Dropout [48], DropConnect [49],
and GoogleLeNet [50] utilize ensembles of classification nodes in order to reduce reliance
on a single network. Other approaches are a few distinctive training techniques, such as
carefully planned initiation [51], early stopping [52], and learning rate decay [53].

Zheng et al. have recently proposed a whole-stage data augmentation method that
increases the accuracy of deep convolutional neural networks [54]. This method can also
be used to generate an implicit ensemble of models without incurring additional training
costs. Due to the fact that this framework is widely applicable to all network architectures
and techniques for the augmentation of data, it can be used for a wide range of deep
learning-based activities.

Jin et al. explored the possibility of diagnosing diseases from uncontrolled 2D facial
photographs using deep learning algorithms [55]. As in our study, these researchers in-
corporated transfer learning into their process. By initializing the weight, they replaced
the last fully connected layer of the pre-trained CNN. When optimizing their CNN, the
authors used forward propagation to derive activation value from the convolutional layer.
In place of manual grid search, they used code-based hyperparameter tuning (random grid
search) as a regularization technique. Both have numerous applications in the medical
industry [20]. Another technique to optimize the outcome in prediction and classification
tasks in the medical field is the combination of several data inputs (e.g., imaging, clinical
data, genetic data, etc.) in the form of multi-input mixed data hybrid models [56]. Overall,
in the present work, we sought to apply a wide range of regularization (e.g., data aug-
mentation, EarlyStopping, learning rate decay) and optimization (hyperparameter tuning,
manual layer engineering) techniques for model development. In our pre-studies, we also
applied different ROIs to examine the effect of ROI determination on metrics and chose the
ROI with the most representative region in panoramic radiography for upper molar region
classification tasks.

A general limitation is the artefacts that may be present in X-ray images, such as
osteosynthesis plates, metal restorations, and other affecting factors such as patient posi-
tioning that can be a potential source of interference. We have considered these points in the
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data analysis [57]. Kim et al. demonstrated that the topographical position of root apexes
determined by panoramic radiography was significantly different than that determined
by a CT image [38]. Bouquet et al. describe similar results for the projection of the root
tip into the maxillary sinus [37]. This might be a consequence of the representation of 3D
structures on 2D images. In light of these factors, as well as others, several authors recom-
mend the use of 3D imaging to provide additional information regarding the prediction
of OAC, although they cannot be recommended generally due to radiation exposure and
costs [11,37,58,59]. As a whole, the applicability of the introduced algorithms should be
investigated in more detail with a larger number of cases [30]. In the present study, we
found superior predictability by considering classification systems rather than solely exam-
ining OPGs to predict OAC. Nevertheless, the diagnostic measures are still not suitable for
clinical use. By including the classification system in future algorithms, it may be possible
to reduce the number of images necessary to train a reliable OAC prediction algorithm.
Finally, external validation from large-scale prospective studies is warranted to validate
the provided results. In a previous study, we sought to compare experienced practitioners
and AI-based approaches in predicting OAC from panoramic radiographs [16]. Our results
revealed that the agreement among the practitioners varied greatly. The metrics of the
seven different AI algorithms investigated showed substantial differences. However, in
direct comparison, similar results were achieved for the AI and the practitioner predictions
of OAC from panoramic radiographs. In conclusion, we were not able to predict OAC
reliably, neither by the practitioners nor by an AI-based approach utilizing features from
panoramic radiographs.

5. Conclusions

The present study examined the automated classification of impacted teeth using
two classification systems and various artificial intelligence-based algorithms. The results
reveal that impacted teeth can be classified using panoramic radiographs (best AUC: 0.902),
and the classification systems can be stratified according to their relationship to OAC
(81.4% correct for RS classification). However, the Archer and RS classes did not achieve
satisfactory AUCs for predicting OAC (best AUC: 0.638). Additional research is needed to
validate the results externally and to develop a reliable risk stratification tool based on the
present findings.
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