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Abstract: Personalized oncology is a rapidly evolving area and offers cancer patients therapy options
that are more specific than ever. However, there is still a lack of understanding regarding tran-
scriptomic similarities or differences of metastases and corresponding primary sites. Applying two
unsupervised dimension reduction methods (t-Distributed Stochastic Neighbor Embedding (t-SNE)
and Uniform Manifold Approximation and Projection (UMAP)) on three datasets of metastases
(n = 682 samples) with three different data transformations (unprocessed, log10 as well as log10 + 1
transformed values), we visualized potential underlying clusters. Additionally, we analyzed two
datasets (n = 616 samples) containing metastases and primary tumors of one entity, to point out
potential familiarities. Using these methods, no tight link between the site of resection and cluster
formation outcome could be demonstrated, or for datasets consisting of solely metastasis or mixed
datasets. Instead, dimension reduction methods and data transformation significantly impacted
visual clustering results. Our findings strongly suggest data transformation to be considered as
another key element in the interpretation of visual clustering approaches along with initialization and
different parameters. Furthermore, the results highlight the need for a more thorough examination of
parameters used in the analysis of clusters.

Keywords: visual clustering; t-SNE; UMAP; transcriptomic analysis; cancer; metastasis

1. Introduction

From a clinical perspective, characteristic metastatic patterns frequently occur for
specific cancer entities [1]. Thus, the site of metastasis has a considerable effect on patients’
prognosis. For example, liver metastases derived from pancreatic adenocarcinoma are
prognostically worse than lymph node or lung metastases [2,3]. Still, it is unclear whether
there is a biological or genetic determination for tumors to develop regional metastases or
even distant metastasis with preferred target regions [4–6].
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From a biological point of view, tumor cells develop through clonal evolution, favoring
tumor heterogeneity reflected by different driver mutations or genomic alterations. To be
specific, these alterations need to take place in genes tightly related to cellular traits known
as the hallmarks of cancer, for example, the ability to attract endothelial cells (angiogenesis)
or the sufficient evasion from immune control [7,8]. Due to the accumulation of different
alterations, metastases can occur. However, the circumstances of local or distant metastases
still need to be investigated as it has already been shown that distant metastasis can develop
without previous local metastasis [9]. Additionally, transcriptomic differences of the
linear [10] and the parallel progression [11] models of metastasis are still not fully clarified.

Due to the advances in personalized oncology, the comprehensive elucidation of
primary tumors and metastases is an ongoing process. Still, the determination of possible
transcriptomic differences or similarities between metastases—especially from several
different resection sites—and primary tumors is an unmet need. Previous approaches
frequently analyzed the differences between two specific groups, e.g., bone and brain
metastasis [12], or the mutational evolution, while showing a high concordance of primary
and metastatic tumors [13–15]. As a result, a comprehensive study of the transcriptomic
characteristics of metastases and corresponding primary tumors is lacking.

Visual clustering, based on data dimension reduction methods, is one potential ap-
proach to determine the transcriptomic differences and proximities of different metas-
tasis sites. The mainly used visualization methods for this purpose are t-Distributed
Stochastic Neighbor Embedding (t-SNE) [16] and Uniform Manifold Approximation and
Projection (UMAP) [17]. They have already been widely applied in the field of single
cell sequencing [18–20] and also bulk RNA sequencing [21–24] to visually separate tran-
scriptionally similar cell populations from diverging populations in a two-dimensional
space. Furthermore, recent studies have shown the critical impact of initialization [25] and
parameters [26] on data dimension reduction methods.

To search for transcriptomic dependencies caused by the site of metastasis, t-SNE and
UMAP were used to analyze three metastasis datasets, prostate cancer (PCa), neuroen-
docrine PCa, and skin cutaneous melanoma, totaling 682 samples. For a comprehensive
analysis, unprocessed Fragments Per Kilobase Million (FPKM) values, obtained after nor-
malization of the mapped sequencing reads, as well as log10 and log10 + 1 transformed
data were analyzed, as logarithmic transformations are commonly used when analyzing
gene expressions.

2. Materials and Methods
2.1. Data Acquisition

RNA sequencing data from three different metastasis datasets were analyzed. The first
dataset contained n = 266 samples from metastatic prostate carcinoma (PRAD-SU2C-Dream
Team [27]), the second consisted of n = 49 samples from metastatic neuroendocrine prostate
carcinoma (NEPC WCM [28]), and the third dataset consisted of n = 367 metastatic skin
cutaneous melanomas (TCGA-SKCM-Metastatic [29]). All datasets indicate the site of
resection, which served as the basis for further analyses.

For evaluation purposes, we used an additional dataset known to form distinct clusters
based on histopathological subgroups. The TCGA-KIPAN dataset, consisting of three renal
cell carcinoma (RCC) subgroups, TCGA-KIRC (clear cell RCC, n = 538), TCGA-KIRP
(papillary RCC, n = 288), and TCGA-KICH (chromophobe RCC, n = 65).

For further testing similarities and differences between primary and metastatic tu-
mors, we used the complete TCGA-SKCM dataset, adding n = 103 primary tumor sam-
ples for a total of n = 470 samples, and a metastatic breast cancer dataset (MBCproject;
cBioPortal [30,31] data version February 2020 [32]) consisting of n = 120 primary tumor
and n = 26 metastatic samples.
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2.2. Bioinformatic Analysis

To obtain a more comprehensive view, t-SNE plots and UMAPs were applied for the
analyses, as t-SNE or UMAP have become standard not only for bulk RNA sequencing but
also for single cell analysis [33–35], combined with three data transformation approaches.
First, we used the unprocessed FPKM values—obtained by normalizing the mapped se-
quencing reads—log10 transformed values, and log10 + 1 transformed values. The so-called
log10 transformed values are the log10 values of the unprocessed FPKM values, where val-
ues equal to 0 are set to 0. The so-called log10 + 1 transformed values are the log10 values,
which are obtained after the unprocessed FPKM value plus 1 has been calculated.

Subsequently, results of t-SNE and UMAP dimension reduction were compared.
All t-SNE plots were created equally based on a principal component analysis with
50 components, a learning rate of 300, and a perplexity of 27. For the NEPC WCM dataset,
25 components were used. Further details on the procedure are given elsewhere [23].
UMAP plots were generated based on an adapted UMAP approach as previously de-
scribed [22]. In brief, the squared pairwise Euclidean distance was used to calculate the
distance between samples with a subsequent binary search for the optimal rho based on
a fixed number of 15 nearest neighbors. The symmetry calculation was simplified, by di-
viding the sum of probabilities by 2. Furthermore, mind_dist = 0.25 was used, as well as
cross-entropy as cost function with normalized Q parameter. Last, gradient descent learn-
ing was used with 2 dimensions and 50 neighbors were applicable (NEP-WCM dataset used
25 neighbors). After generating the unbiased low-dimensional representations of the high-
dimensional input (RNA sequencing), data manual cluster interpretation was performed.

To further address the question of possible clusters and the associated distinction
between primary tumor and metastasis in the SKCM dataset, we additionally performed
k-means (for k = 2, 3, 4 based on elbow method) and Leiden [36] (with n_neighbors = 15,
50, 100 and resolution = 0.05—additional use of default parameters n_neighbors = 15 and
resolution = 1) clustering for the different UMAP results (unprocessed, log10, log10 + 1). For
k-means clustering, the KMeans method of the sklearn cluster module [37] was used. Leiden
clustering was implemented using scanpy (version 1.7.2) [38], based on the previously
calculated UMAPs.

To further assess the potentially introduced differences based on data transformation
between the individual maps, we additionally used the scale-dependent similarity measure
proposed by Taskesen et al. [39], utilizing the python module flameplot (v1.0.3) [40] with
default parameters.

3. Results
3.1. Analysis of the PRAD-SU2C (Dream Team) Dataset

The first dataset in our analysis represented metastatic prostate carcinoma. Within
t-SNE plots, up to three clusters were observable, according to applied data transformation.
Unprocessed FPKM values resulted in one visible cluster in addition to the big main cluster
(Figure 1a), whereas log10 (Figure 1b) and log10 + 1 (Figure 1c) approaches showed two
additional smaller clusters. These clusters mainly contained bone or liver samples and
were named accordingly.

The UMAP approach showed similar results, with unprocessed FPKM values (Figure 1d)
not providing any clustering information, whereas log10 (Figure 1e) and log10 + 1 (Figure 1f)
transformations showed three visible and distinct clusters. Again, one of these clusters
consisted completely of bone samples, another mainly consisted of liver samples, and the
last and largest cluster consisted of all remaining samples. These results indicate that the
resection site was not the main cause for clustering; instead, visualization techniques (t-SNE
vs. UMAP) and data transformation (unprocessed vs. log10 vs. log10 + 1 transformed data)
heavily affected clustering results.
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Figure 1. Visual clustering of the Dream Team dataset consisting of metastatic prostate cancer (with 
respective resection sites) by applying different data dimension reduction methods. t-SNE plot 
approach for (a) unprocessed, (b) log10 transformed, and (c) log10 + 1 transformed FPKM values 
and UMAP approach using (d) unprocessed, (e) log10 transformed, and (f) log10 + 1 transformed 
FPKM values. FPKM: Fragments Per Kilobase Million; U: unit, T: transformation, M: data dimension 
reduction method, C: clustering method, NA: not applicable.  

Figure 1. Visual clustering of the Dream Team dataset consisting of metastatic prostate cancer (with
respective resection sites) by applying different data dimension reduction methods. t-SNE plot
approach for (a) unprocessed, (b) log10 transformed, and (c) log10 + 1 transformed FPKM values
and UMAP approach using (d) unprocessed, (e) log10 transformed, and (f) log10 + 1 transformed
FPKM values. FPKM: Fragments Per Kilobase Million; U: unit, T: transformation, M: data dimension
reduction method, C: clustering method, NA: not applicable.

3.2. Analysis of the NEPC WCM (Neuroendocrine Prostate Cancer) Dataset

The second dataset represented neuroendocrine prostate cancer. No clusters were
detectable using the t-SNE approach (Figure 2a–c). However, the UMAP approach consis-
tently revealed three distinct clusters (Figure 2d–f). Notably, the resulting clusters were
very similar throughout all data transformations—thereby not displaying any resection
site specificities.
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Figure 2. Visual clustering of the NEPC WCM dataset consisting of neuroendocrine metastatic 
prostate cancer (with respective resection sites) by applying different data dimension reduction 
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transformed FPKM values and UMAP approach using (d) unprocessed, (e) log10 transformed, and 

Figure 2. Visual clustering of the NEPC WCM dataset consisting of neuroendocrine metastatic
prostate cancer (with respective resection sites) by applying different data dimension reduction meth-
ods. t-SNE plot approach for (a) unprocessed, (b) log10 transformed, and (c) log10 + 1 transformed
FPKM values and UMAP approach using (d) unprocessed, (e) log10 transformed, and (f) log10 + 1
transformed FPKM values. FPKM: Fragments Per Kilobase Million; U: unit, T: transformation, M: data
dimension reduction method, C: clustering method, NA: not applicable.

3.3. Analysis of the Metastatic Samples of TCGA-SKCM Dataset

The SKCM-TCGA dataset representing metastatic melanoma served as the third
dataset. Again, no clusters were detected using t-SNE plots with the different data trans-
formations (Figure 3a–c). Considering the UMAP approaches, unprocessed FPKM values
did not provide any useful clustering information (Figure 3d). The log10 transformed
values formed one large cluster containing nearly all samples with only a few outliers
(Figure 3e). Only log10 + 1 transformed values formed distinct clusters without site-specific
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agglomeration (Figure 3f), again showing the critical impact of data transformation on
cluster formation.

Genes 2022, 13, 1335 7 of 20 
 

 

 
Figure 3. Visual clustering of the metastatic TCGA-SKCM dataset consisting of melanoma 
metastases (with respective resection sites) by applying different data dimension reduction 
methods. t-SNE plot approach for (a) unprocessed, (b) log10 transformed, and (c) log10 + 1 
transformed FPKM values and UMAP approach using (d) unprocessed, (e) log10 transformed, and 
(f) log10 + 1 transformed FPKM values. FPKM: Fragments Per Kilobase Million; U: unit, T: 
transformation, M: data dimension reduction method, C: clustering method, NA: not applicable. 

Figure 3. Visual clustering of the metastatic TCGA-SKCM dataset consisting of melanoma metastases
(with respective resection sites) by applying different data dimension reduction methods. t-SNE plot
approach for (a) unprocessed, (b) log10 transformed, and (c) log10 + 1 transformed FPKM values
and UMAP approach using (d) unprocessed, (e) log10 transformed, and (f) log10 + 1 transformed
FPKM values. FPKM: Fragments Per Kilobase Million; U: unit, T: transformation, M: data dimension
reduction method, C: clustering method, NA: not applicable.

In summary, in none of the three datasets could a continuous dependence of the
resection site be seen. Instead, a strong dependence of the visual cluster formation on the
applied method and data transformation was observed. Only one small bone cluster in the
Dream Team dataset was detectable independent of data transformation and dimension
reduction approaches. To validate the obtained results and to test previous observations of
subgroup-dependent clustering, the KIPAN dataset—consisting of three known biologically
distinct subgroups of renal cell carcinoma (RCC)—was additionally considered.
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3.4. Further Evaluation of Cluster Formation Based on Data Dimension Reduction Methods and
Data Transformations

To investigate the influence of data transformation and data dimension reduction
methods on the formation of visually distinct clusters, the TCGA datasets of the three
largest RCC subgroups, clear cell (KIRC), papillary (KIRP), and chromophobe (KICH),
were combined to one dataset (KIPAN). Due to the nature of the histopathologic origin
of the samples in this dataset, a specific clustering could be expected. t-SNE (Figure 4b,c)
and UMAP (Figure 4e,f) approaches based on log10 or the log10 + 1 transformed data
yielded a separation of samples matching the histopathologic expectation. Furthermore,
the importance and clinical relevance of subgroups identified by t-SNE (Figure 4a) using
unprocessed data for the TCGA-KIPAN dataset have already been shown [23]. However,
the unprocessed FPKM values yielded no useful information regarding the resection site-
specific agglomeration of samples in the UMAP approach (Figure 4d).
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Figure 4. Visual clustering of the TCGA-KIPAN dataset consisting of the three major histopathologic
subgroups of renal cell carcinoma (RCC)—clear cell RCC (KIRC), papillary RCC (KIRP), and chromo-
phobe RCC (KICH)—by applying different data dimension reduction methods. t-SNE plot approach
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for (a) unprocessed, (b) log10 transformed, and (c) log10 + 1 transformed FPKM values and UMAP
approach using (d) unprocessed, (e) log10 transformed, and (f) log10 + 1 transformed FPKM values.
FPKM: Fragments Per Kilobase Million; U: unit, T: transformation, M: data dimension reduction
method, C: clustering method, NA: not applicable.

Although both data transformations showed a separation based on the histopathologi-
cal subgroups for both data dimension reduction methods, clusters were not exclusively
subgroup-specific and displayed certain outliers.

3.5. Combined Analysis of Primary and Metastatic Samples of the Same Entity

Based on the results of the KIPAN cohort, further analyses were performed for the
complete TCGA-SKCM dataset as well—to analyse the transcriptomic relation of the
primary and metastatic melanoma samples. Interestingly, no distinct separation between
the metastatic and primary melanoma samples was observable (Figure 5).

Moreover, only the UMAP log10 + 1 transformed approach displayed two distinct
clusters, each containing primary and metastatic samples (Figure 5f). For both clusters,
no complete subgroup-specific (primary tumor vs. metastasis) clustering resulted, yet a
certain gradient was observable, indicating transcriptomic differences between the primary
and metastatic tumors, but without previous knowledge of the subgroup, no assumptions
could be made in separating both groups. Moreover, some metastatic tumors seem to still
harbour primary tumor transcriptomic features, whereas there are also primary tumors
already harbouring metastatic features.

This conclusion can also be drawn from the application of two common clustering
methods, namely Leiden [41] and k-means clustering [42]. Again, the dependence of the
obtained results on the used parameter set can be seen, whereby the number of calculated
clusters can differ strongly when applying Leiden clustering. When using k-means cluster-
ing with a cluster number determined by the elbow method, similarities with the results of
Leiden clustering can be seen (Figures S1–S4). To further validate these results, we finally
analysed the metastatic breast cancer project (MBC Project) dataset, consisting of both pri-
mary and metastatic tumors of different resection sites. Using the t-SNE approach on this
dataset did not lead to cluster formation for any of the data transformations (Figure 6a–c).
Again, unprocessed FPKM values in combination with the UMAP did not provide any
useful information about the dataset (Figure 6d). Additionally, logarithmic transforma-
tions within UMAP approaches did not form any distinct clusters (Figure 6e,f),thereby
confirming the findings from the TCGA-SKCM dataset.

Further assessment of the maps in terms of local and global structure between the used
transformations revealed that the local distances or neighborhoods between data points
were not well preserved (Figures S5–S10).
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Figure 5. Visual clustering of the complete TCGA-SKCM dataset consisting of primary tumors (red)
and metastases (green) by applying different data dimension reduction methods. t-SNE plot approach
for (a) unprocessed, (b) log10 transformed, and (c) log10 + 1 transformed FPKM values and UMAP
approach using (d) unprocessed, (e) log10 transformed, and (f) log10 + 1 transformed FPKM values.
FPKM: Fragments Per Kilobase Million; U: unit, T: transformation, M: data dimension reduction
method, C: clustering method, NA: not applicable.
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Figure 6. Visual clustering of the MBC Project dataset consisting of primary and metastatic breast
cancer (with respective resection sites) by applying different data dimension reduction methods.
t-SNE plot approach for (a) unprocessed, (b) log10 transformed, and (c) log10 + 1 transformed
FPKM values and UMAP approach using (d) unprocessed, (e) log10 transformed, and (f) log10 + 1
transformed FPKM values. FPKM: Fragments Per Kilobase Million; U: unit, T: transformation, M: data
dimension reduction method, C: clustering method, NA: not applicable.
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4. Discussion

t-SNE plotting and UMAP are crucial methods to identify relevant subsets in tran-
scriptomic data consisting of bulk RNA or single cell approaches. Frequently, these subsets
or clusters display distinct cellular functionalities and share commonly altered signaling
pathways. For druggable pathways, translational researchers have therefore identified
therapeutic implications in various cancers, e.g., RCC [23] and prostate cancer [43]. No-
tably, clustering approaches for the methylomic data of pediatric brain tumors already
play a prominent role in the clinical routine by allowing further subtyping of cancer
specimens [44]. Moreover, methylome profiles of metastatic melanoma were shown to
define distinct clusters linked with the response towards immune checkpoint blockade [45].

4.1. The Impact of Data Transformation on Cluster Formation within Data Dimension Reduction

In this work, we were looking for transcriptomic similarities and differences of metas-
tasis representing different resection sites. It has already been shown in several studies
that there is no clustering of samples depending on the underlying resection site of the
metastasis [46]. Nevertheless, within these studies, clustering was frequently observed [47].
These clusters were often attributed to biologically distinct subgroups in one entity—also
stating preferred metastasis sites for different subgroups [1]. Additionally, there are studies
showing transcriptional differences between two different resection sites [12]. Due to this,
we compared the clustering results of three different datasets. Since previous analyses
did not specifically investigate the transcriptomic dependency of the resection site, our
approach considered not only different unbiased data dimension reduction methods—
subsequently used for visual clustering—but also different data transformations. It was
observed that log10 + 1 transformed data especially, frequently resulted in a clearer and
more distinct cluster formation when analysed with UMAP. In line with this observation,
UMAP analysis of the TCGA-KIPAN dataset showed a cluster dependency mainly based
on underlying RCC histopathology. However, histopathological clustering was evident in
the UMAP log10 + 1 and in the UMAP log10 data transformations as well as in the results
of the corresponding t-SNE approaches.

As already shown in a previous publication, obtained clusters by using unprocessed
FPKM values in a t-SNE approach yielded prognostically relevant clusters with biologically
distinct characteristics for RCC [23]. These findings were also in line with the previous
literature [48]. Additionally, using UMAP data dimension reduction with logarithmically
transformed data of the TCGA-ACC (adrenocortical carcinoma) dataset revealed two
clusters closely matching the already known ACC subgroups [22]. This suggests that
histopathological and cancer subgroup-specific differences can be represented with a
UMAP log10 + 1 approach, even though clusters seen within TCGA-KIPAN analysis were
not completely subgroup-specific, also observed in the t-SNE plot using unprocessed
data. Since t-SNE and UMAP show biologically meaningful clustering results, known
histopathological or cancer entity subgroups, based on different data transformations, both
data dimension reduction methods are useable and valid, depending on the underlying
biological question.

Another remarkable element is the bone cluster identified within the Dream Team
dataset. This cluster appears, with minor changes and depending on the area considered,
in each of our analyses, regardless of the data transformation and the data dimension
reduction method. Considering previous results, we conclude that all present methods
have their justification and can be used depending on the research question. For example,
the UMAP log10 + 1 approach is suitable for bulk RNA sequencing to identify subgroups
within specific entities. However, clusters based on different histopathological tissues, for
example, and thus generally showing a quite different transcriptome, can also be seen in the
unprocessed data, where t-SNE plot seems to be more suitable for bulk RNA sequencing
than UMAP, which in turn does not seem to be suitable for the unprocessed data of bulk
RNA sequencing in general.
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When looking at the number of clusters previously identified for the analysed datasets
within this work, it becomes apparent that the log10 + 1 approaches were mostly in line with
the previously shown results. For the TCGA-SKCM dataset, three clusters were identified
in the first publication of this dataset [29]. The initial description of the NEP-WCM dataset
showed three (based on the main branches of the dendrogram) different main clusters
based on unsupervised clustering, overlapping with our UMAP results. Additionally,
a smaller neuroendocrine subgroup inside the Dream Team dataset was described, which
might be one of the shown clusters in our approach. This further proves the clusters
found by unsupervised clustering in the Dream Team original publication, stating the
independence of the metastasis site [27] and confirming the different molecular phenotypes
of neuroendocrine prostate cancers [49]. Regarding breast cancer metastases, our results
confirm previous findings showing the cluster dependency on biological subgroups rather
than on the resection site [46].

Looking more closely at the differences in the resulting clusters between the different
data transformations of the individual data dimension reduction methods, changes are simi-
lar to those caused by parameters such as the number of neighbors. Considering very recent
research, we believe that the data transformation used is just an equally important factor to
consider in the initialization of the data [25], as respective kernel transformations [26].

In order to quantify the visible differences between the different methods, and espe-
cially between data transformations, Taskesen et al. proposed a solution. This method
considers the differences between the nearest neighbors of the data points in order to make
a statement about the preservation of the local and global structure between different maps.
In the datasets used by us, it was noticeable that the local structures, i.e., a small number
of nearest neighbors, were remarkably different between the individual maps and data
transformations. This shows that the data transformation used has an influence on the
local characteristics of the clusters. The global structure based on many nearest neighbors,
however, seems to remain the same between data transformations.

This circumstance is most apparent when looking at the TCGA-KIPAN datasets,
as t-SNE and UMAP, with and without data transformation, provide visibly different
results, but, nevertheless, a clustering based on the histopathological subgroups. Neverthe-
less, quantitative analysis of the nearest neighbors showed that the local structures of the
clusters differ between the data transformations and the individual methods. This problem
becomes even more relevant as t-SNE and UMAP are also used for the analysis of single
cell sequencing, in which the smallest transcriptional differences can have major effects
on the representation and subsequent interpretation or further analysis. In addition to the
method, the data transformation used represents one further important parameter in the
representation of clusters and local distances [50].

Consequently, our results suggest that a more in-depth investigation of data trans-
formations and visualization methods are necessary to further assess the nature of the
obtained clusters.

4.2. Primary Tumors and Metastases of the Same Entity Share Common Transcriptomic Features

Our findings that primary and metastatic tumors share common transcriptomic fea-
tures and are inseparable when analysed with data dimension reduction methods appear
to match with previous research. In metastatic pancreatic adenocarcinoma, a distinction
between primary tumor and metastatic tumor cells was not possible using single cell RNA
sequencing [51,52]. This could also be seen in breast cancer single cell RNA sequencing
comparing lymph node metastasis with primary tumors [53], which is in line with our
findings regarding the MBC project dataset, not forming visual clusters in any considered
approach. The presented results support the linear progression model to some extent,
at least for the transcriptomic differences between metastasis and primary tumors, indi-
cating the need for further research to combine genomic alterations with transcriptomic
features to clarify the (clonal) evolution of metastasis. In conclusion, our results suggest
that there is no general transcriptomic dependency on the resection site for metastasis of
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the same primary tumor and that obtained clusters can be mostly attributed to existing
subgroups. The genetic diversity, using bulk sequencing and analytical deconvolution, is a
major hallmark of cancer in general. Premetastatic and pre-treatment diversity can help to
predict the clinical and evolutionary outcome of the disease. Nonetheless, the regulatory
wiring that underpins the metastatic process is likely to dynamically change across the
transcriptional landscape.

One limitation of our work is the fact that our conclusions refer to a recurrent observa-
tion based on limited datasets. To show a quantifiable statement regarding the performance
of t-SNE and UMAP with respect to data transformations, a comprehensive analysis has to
be performed in future studies.

4.3. Addressing Pitfalls in Visual Clustering

To address these challenges, we propose an additional standard legend for visual
clustering approaches based on data dimension reduction methods and machine learning,
as represented by the UTMC legend in all figures of this work. The information required
by this additional information includes the unit (U) (such as FPKM, TPM, RPKM, or read
counts), data transformations (T), represented visualization or data dimension reduction
method (M), and, if applicable, the applied cluster identification algorithm (C). This enables
the reproducibility of figures and analyses and makes visual clustering approaches much
more transparent.

Taken together, our work further extends the knowledge of tumor heterogeneity in
different biological contexts [54], by providing sufficient evidence for the linear progression
model of metastasis, since no dependency of clusters based on resection site was observable
in any of the three considered datasets. The applied transformation tended to have the
biggest impact on clustering results, and thus needs more in-depth analysis. Nevertheless,
our results cannot identify a favourite approach, as all of them appear to properly address
different questions. Transformed data, independent of the data dimension reduction
method, tend to visualize subgroups very specifically, whereas using unprocessed data in
t-SNE seems to be closer to the biological nature of samples, demonstrating the need for
further research in this area.

5. Conclusions

Using two different data dimension reduction methods, we showed that there was no
visual association between the resection site and the transcriptome for three considered
metastatic datasets. Instead, there was a significant dependence of clustering according
to data transformation and the data dimension reduction method applied. Additionally,
the analysis of primary and metastatic samples of specific entities did not show distinct
clusters or visible differences. Combining recent works and the results of our study, visual
clustering seems highly vulnerable towards data and parameter alterations. To avoid
pitfalls in analyzing visual clustering and to enhance reproducibility, we recommend
extending the standardized nomenclature, e.g., by adding the UTMC legend introduced in
this manuscript.

Supplementary Materials: The following supporting information can be downloaded at: https://
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