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Abstract: The mountain pine (Pinus mugo ssp. Mugo Turra) is an important component of the alpine
treeline ecotone and fulfills numerous ecosystem functions. To understand and quantify the impacts
of increasing logging activities and climatic changes in the European Alps, accurate information on the
occurrence and distribution of mountain pine stands is needed. While Earth observation provides up-
to-date information on land cover, space-borne mapping of mountain pines is challenging as different
coniferous species are spectrally similar, and small-structured patches may remain undetected due to
the sensor’s spatial resolution. This study uses multi-temporal optical imagery from PlanetScope
(3 m) and Sentinel-2 (10 m) and combines them with additional features (e.g., textural statistics
(homogeneity, contrast, entropy, spatial mean and spatial variance) from gray level co-occurrence
matrix (GLCM), topographic features (elevation, slope and aspect) and canopy height information)
to overcome the present challenges in mapping mountain pine stands. Specifically, we assessed the
influence of spatial resolution and feature space composition including the GLCM window size for
textural features. The study site is covering the Sarntal Alps, Italy, a region known for large stands
of mountain pine. Our results show that mountain pines can be accurately mapped (PlanetScope
(90.96%) and Sentinel-2 (90.65%)) by combining all features. In general, Sentinel-2 can achieve
comparable results to PlanetScope independent of the feature set composition, despite the lower
spatial resolution. In particular, the inclusion of textural features improved the accuracy by +8%
(PlanetScope) and +3% (Sentinel-2), whereas accuracy improvements of topographic features and
canopy height were low. The derived map of mountain pines in the Sarntal Alps supports local forest
management to monitor and assess recent and ongoing anthropogenic and climatic changes at the
treeline. Furthermore, our study highlights the importance of freely available Sentinel-2 data and
image-derived textural features to accurately map mountain pines in Alpine environments.

Keywords: mountain pines; PlanetScope; Sentinel-2; gray level co-occurrence matrix

1. Introduction

The mountain pine (P. mugo) is a shrublike, multi-stemmed tree species [1] that occurs
on ecologically unfavorable sites in mountainous environments [2]. As an adaption to
harsh climatic conditions, mountain pines have low-lying, elastically branches [3,4] and
normally do not grow higher than 3 m [1]. Due to the low requirements of nutrients and
heat [4–6], mountain pines primarily colonize the treeline ecotone [2] but can also occur in
more complex terrain (e.g., talus or mudflow slopes) [5] or pioneer subalpine open areas
(e.g., former clearings or pastures) [7]. The mountain pine is widespread and native to
the subalpine zone of the eastern and southern European Alps, the Carpathians and the
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Dinaric Alps [1,8–10], while small-scale populations also exist in the Apennine mountains,
Jura mountains and Vosges [3,7,11].

The mountain pine is a key species within the treeline ecotone, providing multiple
ecosystem functions. The extensive root system stabilizes the soil and thus protects it from
erosion [4]. Furthermore, mountain pines can protect lower-altitude forest from rockfalls,
avalanches and intensive surface runoff [5,9,12]. Mountain pines also provide shelter for the
regrowing tree species on former clearing areas [2,4] and thus can contribute to long-term
reforestation [5]. Climatic changes in the alpine environment [13] lead to changes in the
species composition at the treeline ecotone, with warm-adapted species expanding and cold-
adapted species retrieving [11,14]. The mountain pine benefits from the warming trend and
advances into higher altitudes (e.g., the alpine altitudinal zone) [12,15]. However, human
activities are one of the greatest threats to the mountain pine and responsible for widespread
changes [16], e.g., logging for pasture management [7] or extraction of mountain pine
oil [5], which is often used in wellness or cosmetic products due to its curative effect against
respiratory diseases [16,17]. For this, mountain pines are mostly harvested by clear-cutting,
with negative impacts on biodiversity [18] and soil functions [19].

Based on this, up-to-date and accurate maps of mountain pines are needed to monitor
and understand climatically and anthropogenically induced changes. However, such maps
are rare and traditionally require time- and labor-intensive field surveys in alpine ter-
rains [5], which strongly limit their spatial coverage and repeatability [10,20]. Using optical
remote sensing data, alpine vegetation species can be mapped more comprehensively and
cost-effectively. Thereby, only a few studies have assessed how accurate mountain pines
can be classified and were mostly using airborne remote sensing imagery [7,9]. Only a small
number of studies employed spaceborne sensors but focused on the temporal changes in
greenness [12] or the ecological favorability of mountain pine sites [6] rather than on the
accurate mapping of mountain pine stands.

Mountain pines tend to grow in dense patches ranging from several square meters
up to multiple hectares [1,5]. However, the physiognomic resemblance of mountain pines
and other subalpine conifers [3,21] results in a high spectral similarity, which causes
ambiguities in multispectral Earth observation data [10,22–24], especially in areas with
a varying position of the treeline and strong intertwining between mountain pines and
forested areas. Depending on the study area and patch size, increasing the spatial resolution
may have a positive effect on the classification accuracy.

In general, studies focusing on the mapping of subalpine vegetation have shown bene-
fits from a high spatial sensor resolution, ranging from submeter aerial imagery [22,25] to,
most commonly used, spaceborne data, e.g., Sentinel-2 (10–20 m) [8,10,20,23,24,26], SPOT 5
(10 m) [27], RapidEye (5 m) [28] and GeoEye-1 (2 m) [29]. Besides sensor choice, the usage
of additional features results in an increased accuracy of alpine vegetation classes. The
combination of multi- and hyperspectral datasets with features derived from airborne light
detection and ranging (LiDAR) information (e.g., digital terrain model (DTM) and canopy
height model (CHM)) improved the mapping of treeline vegetation [26–29]. Additionally,
image-derived features increased class separability and classification accuracy, such as
textural properties based on a gray level co-occurrence matrix (GLCM) [22,24,25,28,30] or
phenological information derived from spectral indices [6,12,20,23,24] or multi-temporal im-
agery [8,10,20,23,24,28]. In studies classifying alpine vegetation, the usage of additional fea-
tures resulted in an increased accuracy on the classification of mountain pines [10,23–25,28].
However, the mountain pine never was of a main interest in any of the above-mentioned
studies, potentially as their distribution is comparably small to other subalpine tree
species [10,28,29], and research focused on different tree species [22,24,27] or method-
ological approaches [23,25,30].

Considering the lack of knowledge about the distribution of mountain pines in the
European Alps and the missing studies focusing on the classification of mountain pines, our
overall research goal is developing an approach to map mountain pines from spaceborne
optical remote sensing imagery. For this, we chose the Sarntal Alps, Italy, where large areas
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of mountain pine are present and which have been harvested intensively in recent years.
The objectives of our study are:

(i) To create an accurate map of the overall coverage and spatial distribution of mountain
pines in the Sarntal Alps,

(ii) To quantify how the spatial resolutions of open-access Sentinel-2 (10 m) and commer-
cial PlanetScope (3 m) data influence the mapping accuracy of mountain pines,

(iii) To analyze which of the features previously used for alpine vegetation classification
are the most useful for the delineation of mountain pines.

Our study will improve the overall understanding of how mountain pines can be
accurately mapped using satellite observations by assessing the choice of satellite data and
classification features. The derived mountain pine map for our study region is expected to
support local forest management to monitor and assess recent and ongoing anthropogenic
and climatic changes at the treeline.

2. Materials and Methods
2.1. Study Area

The study area is located in South Tyrol, Northern Italy, and includes the subalpine
and alpine altitudinal zones of the Sarntal Alps (Figure 1). It covers an area of 583 km2 and
includes the entire Sarntal Valley with its side valleys (Pens Valley and Durnholz Valley).
The orography of the Sarntal Alps is characterized by mostly gentle, moderately steep
slopes, with elevations ranging from 923 m a.s.l. to 2781 m a.s.l. Due to the location at the
southern edge of the Alps, the climate is characterized by moderate precipitation and a high
number of sunny days [31]. At the valley floor (Sarnthein 970 m a.s.l.), the annual mean
temperature is 8.4 C, while annual mean precipitation sums up to 908.7 mm/year [13]. With
increasing altitude, annual mean temperature decreases to 1.1 C at 2260 m a.s.l. (Rittner
Horn), and annual mean precipitation increases to 1016 mm/year [13].

The study area is dominated by conifers, which grow up to the treeline between 1800
and 2000 m a.s.l., while deciduous woods are rare [5]. While spruce-fire forests occur at the
valley flood, subalpine spruce forests cover most slopes below the treeline. Mountain pines
dominate the treeline, especially on the south-facing slopes of the Durnholz Valley and
around the Rittner Horn, where they form large contiguous patches. Where mountain pines
are less abundant, larch-pine forests characterize the treeline with the sporadic growing of
green alder (Alnus virids). Overall, mountain pines occur in combination with green alder
(Alnus viridis), spruce (Picea abies), larch (Larix decidua), swiss pine (Pinus cembra) and alpine
dwarf shrubs (e.g., alpine rose (Rhododendron ferrugineum)) in our study area [5].

The use of mountain pine stands in the Sarntal Valley has intensified in the last years
to serve the rising demand for wellness products in South Tyrol [32]. As a result, large
contiguous mountain pine areas on the southeast-facing slopes of the Durnholz Valley
have been clear-cut for the oil production by the three distilleries in the Sarntal Valley
(Figure 1c,d).

2.2. Data
2.2.1. PlanetScope Imagery

We selected four cloud-free PlanetScope image datasets acquired in the snow-free
summer months of 2020 (1 June 2020; 5 July 2020; 5 August 2020; 18 September 2020).
PlanetScope is a satellite constellation consisting of over 150 CubeSats (Doves) flying in a
near-polar orbit at 475 km altitude [33], which allows for observing the entire Earth’s land
surface on a daily basis [34]. The constellation has been continuously recording data since
2016 and has been enlarged by additional Dove generations with enhanced sensor systems
(1st generation: PS2, 2nd generation: PS2.SD and 3rd generation: PSB.SD). PlanetScope
imagery is acquired at a spatial resolution of 3.7 m and three (Blue, wavelength λ = 455–
515 nm; Green λ = 500–90 nm; Red λ = 590–70 nm) or four bands (additional near infrared
(NIR) λ = 780–860 nm) depending on the generation [33].
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Figure 1. (a) Study area in Sarntal Valley with reference data points for mountain pines and other
land cover classes. Blue stars indicate the locations of the field photography seen in c,d. Background:
Orthophoto 2020 (Autonomous Province of Bolzano); (b) location of study area in South Tyrol, Italy.
Basemap and Hillshade: OpenStreetMap, SRTM; (c,d) mountain pine fields in Durnholz Valley with
visible clear-cuts. Pictures were taken during a field visit in July 2021 and (e) typical appearance of
young, regrowing mountain pine. Picture was taken near location (d).

For this study, we used the PlanetScope PS2 (Blue, Green, Red and NIR) orthorectified
and atmospherically corrected “Analytic Ortho Scene” surface reflectance product (resam-
pled to 3 m) [33]. Further pre-processing and analysis steps were performed using the
open-source software R [35] and QGIS [36]. First, for each time step the individual scenes
of each date were mosaicked by averaging the spectral information of overlapping areas.
Second, remaining patches of snow and cloud covered areas (present in scenes acquired on
1 June 2020 and 18 September 2020) were masked using PlanetScope’s data product mask
(UDM2) [33] and an additional threshold based on overall brightness [37,38]. We then filled
these data gaps with the information from the closest observations in time.

2.2.2. Sentinel-2 Imagery

Complementary to PlanetScope, we obtained multi-temporal images from the Sentinel-
2 Multispectral Instrument (MSI). The European Space Agency’s (ESA) Sentinel-2 mission
consists of two identical satellites (Sentinel-2A & Sentinel-2B) with a repetition rate of
5 days. The MSI sensor has thirteen spectral bands in the wavelength range between blue
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(λ = 443 nm) and shortwave infrared (SWIR) (λ = 2190 nm) in three different geometric
resolutions (10 m, 20 m, 60 m) [39].

We downloaded four cloud-free Sentinel-2 L2A (surface reflectance) images from the
summer period of 2020 (2 June 2020; 7 July 2020; 26 August 2020; 5 September 2020) that
were close in time to the acquisition dates of PlanetScope. For comparability, we selected
only the bands (Blue, Green, Red and NIR) with a pixel size of 10 m. We cropped the
Sentinel-2 images to the extent of the study area and masked snow and cloud cover using
an overall brightness threshold of these four spectral bands. The resulting data gaps were
then filled with the observations closest in time.

2.2.3. LiDAR Data Derivatives

We obtained a DTM at 2.5 m spatial resolution that was generated from airborne Light
Detection and Ranging (LiDAR) data acquired in 2006 [40]. The DTM was resampled
to the resolution of PlanetScope and Sentinel-2 using a bilinear resampling technique.
Additionally, we used a canopy height model (CHM) (2.5 m) derived from the same LiDAR
data, which we resampled to the two satellite sensor pixel sizes (3 m and 10 m).

2.2.4. Reference Dataset

Reference data in mountain environments are often limited and outdated since field
surveys in these regions are expensive, time consuming and demanding [20]. For our
study, reference data on mountain pines were derived by the photointerpretation of recent
aerial images by local experts (foresters working in the Sarntal Valley) and provided by
the Forest Service of the Autonomous Province of Bolzano. Overall, reference vector
data included 31 polygons indicating mountain pine stands (23.19 ha) and 13 polygons
indicating other vegetation classes at the treeline ecotone (e.g., Pinus cembra, Alnus viridis,
Rhododendron ferrugineum) (7.06 ha). From these polygons, 562 points were randomly
extracted with a minimum distance of 30 m, resulting in 310 points for mountain pine class
(class 1) and 252 points for other land cover classes (class 0). To ensure that bare areas in
between mountain pine patches were not sampled for the mountain pine class, we applied a
threshold based on the Normalized Difference Vegetation Index (NDVI) of the PlanetScope
scene from 5 August 2020 and selected only sample points with NDVI values >0.4. Sample
points in forest boundary regions were visually verified using an RGB airborne orthophoto
(20 cm) from summer 2020 [41]. To also include other land cover classes present in the
study area (e.g., grassland, bare soil, rocks and coniferous forest) and to account for the
spatial restriction of the foresters’ reference data to the northern part of the Sarntal Valley,
additional reference data (1654 points: 556 points (class 1) and 1098 points (class 0)) were
randomly set and manually labeled over the entire study area with respect to the minimum
distance (30 m) using the 2020 orthophoto as a visual interpretation reference. Additionally,
an orthophoto from 2006 was used to ensure that no reference points in recently cleared
mountain pine areas were included in the reference data set, which could cause confusion
due to the outdated CHM. In combination with the randomly extracted reference points,
this resulted in a reference dataset with 2216 points (Figure 1): 866 points (class 1) and 1350
points (class 0). The reference dataset was then split into training and validation datasets
with a ratio of 70:30.

2.3. Methods

Mountain pine stands have similar morphological and anatomical needle character-
istics to other subalpine coniferous trees (e.g., Scots pine (Pinus sylvestris) and Swiss pine
(Pinus cembra)) [3,21] which lead to similar spectral characteristics (Figure 2). As a result, the
satellite-based mapping of mountain pines is challenging [6,23,28,29] as they cannot be dif-
ferentiated from other coniferous tree species based on their spectral properties only [23,28].
Moreover, the spectral confusion between mountain pine areas and alpine grasslands or
dwarf shrub species can also reduce the classification accuracy [8,20]. To increase the class
separability of mountain pines, we first derived complementary features from satellite and
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LiDAR data (Section 2.3.1), which we combined in different feature spaces (Section 2.3.2)
for the subsequent classification (Section 2.3.3).
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Figure 2. (a) Study area (in yellow) and settlement areas (in red) in the Sarntal Alps with a black
rectangle showing the extent of the example imagery in (b–d). Background: Orthophoto 2020;
(b) Orthophoto 2020 (20 cm) (Autonomous Province of Bolzano); (c) PlanetScope (5 July 2020) (3 m);
(d) Sentinel-2 (7 July 2020) (10 m) and (e) Spectral signatures of grassland, mountain pines and
coniferous forest. Spectral signatures are mean reflectance values from reference polygons within the
extent of b–d based on PlanetScope bands (5 July 2020).
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2.3.1. Feature Extraction

We extracted multiple features to quantify and understand their added value for
mapping mountain pines.

Vegetation indices such as the NDVI provide reliable information on the photosyn-
thetic activity and health of plants [42], and additional NDVI layers can improve the tree
species mapping in mountain environments [6,10,23,24]. Therefore, we calculated the
NDVI for each PlanetScope and Sentinel-2 image.

Topographic features allow for identifying the species-specific distribution within an
alpine environment [23,24] and can increase the discrimination of alpine species [6,9,28].
The direct linkage of alpine vegetation with the relief offers a unique opportunity for the
mapping of mountain pine areas. Mountain pines are mainly distributed at the treeline,
colonize slopes, which are too steep for upright growing tree species, and are influenced by
the exposition [1,6]; e.g., north-facing slopes in the Sarntal Alps are scarcely populated by
the pine species [5]. For this reason, we calculated the slope and aspect based on the DTM.

Mountain pines grow in dense patches and show a characteristic growth structure
that is more homogenous compared to other subalpine conifers [2,20,24]. By including this
textural information, the class separability between mountain pines and other coniferous
tree species can be improved [10,25,28,43]. We calculated a gray level co-occurrence matrix
(GLCM) by Haralick et al. [44] for every PlanetScope and Sentinel-2 image. The GLCM is a
popular approach to derive textural features and was successfully applied to map alpine
vegetation types [22,24,25,28]. The GLCM describes the relationship of the gray values
of two or more neighboring pixels and combines this into a frequency matrix [43,45] that
can be used to calculate secondary textural statistics [46]. We chose the respective NIR
band to calculate the GLCM due to its sensitivity to vegetation type, density and general
plant health, following recent studies [28,29,46]. For computational reasons and statistical
validity, quantization levels were reduced to 5-bit [43]. The distance between pixels during
the calculation of GLCM was kept constant at one. We used the average of the four main
interpixel angles (0◦, 45◦, 90◦ and 135◦) based on our assumption that mountain pine areas
do not have a preferred texture orientation. The selection of the secondary statistical features
has a significant impact on the classification [43,46]. The homogeneity is particularly useful
to capture the characteristic dense and intertwined growing form of mountain pines [28].
Additionally, secondary statistical features detecting edges can be useful to delineate single
mountain pine patches [46]. Five secondary statistics—homogeneity, contrast, entropy,
spatial mean and spatial variance (for a detailed description see [45,46])—were derived
from GLCM for every PlanetScope resp. Sentinel-2 image.

The GLCM window size plays a crucial role, as the secondary statistics are calculated
depending on it [46,47]. To exploit the complete capabilities of textural analysis, the
selection of GLCM window size should be performed with respect to the target size and
sensor spatial resolution [43]. Too-small windows cannot recognize the patterns as a whole,
and too-large windows can mix the patterns of several classes [43,46]. For this reason, we
calculated the five secondary statistics with iteratively increasing GLCM window sizes
(3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 23 × 23, 29 × 29, 35 × 35,
43 × 43 and 51 × 51 pixels) for both PlanetScope and Sentinel-2 data. Starting from the
minimum window size of 3 × 3 pixels, we increased the windows by the minimum
step size of 2 pixels until reaching a window size of 17 × 17 pixels. After this size, we
chose larger increasing steps to calculate the GLCM window sizes in order to minimize
spatial autocorrelation and computation time. We stopped the calculation after a window
size of 51 × 51 pixels since no further increase in overall accuracy was visible for either
PlanetScope or Sentinel-2 data.

2.3.2. Feature Spaces and Classification Schemes

To assess the influence of the generated features and the spatial resolutions of Plan-
etScope and Sentinel-2, multiple feature spaces were created (Table 1) and tested in our
classification workflow (Figure 3). The first feature space is a multi-temporal image stack
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of the four 4-band PlanetScope resp. Sentinel-2 images and the NDVI layer of each im-
age (20 layers in total). The feature spaces were named PS and S2, respectively (Table 1).
We used multi-temporal satellite imagery stacks because intra-annual changes in vegeta-
tion greenness can improve the classification of alpine vegetation [48] and especially of
mountain pines [6,28]. Our third feature space (Topo) consisted of the LiDAR derived topo-
graphical features (elevation, slope and aspect) (Table 1). A valuable source for identifying
alpine vegetation cover and species distribution is the CHM [27,49]. The characteristic
growing height (<3 m) of mountain pines [1,2] can be used to differentiate the mountain
pine from other conifers or dwarf shrubs at the treeline ecotone. Therefore, one feature
space only includes the CHM. The four feature spaces (PS, S2, Topo and CHM) comprised
classification scheme 1 and were classified individually.

Table 1. Classification schemes and feature space description.

Classification
Schemes Feature Spaces Features Number

of Layers
Spatial

Resolution

Scheme 1

PS Multi-temporal PlanetScope + NDVI 20 3 m
S2 Multi-temporal Sentinel-2 + NDVI 20 10 m

Topo Elevation + slope + aspect 3 3 m
CHM Canopy height model 1 3 m

Scheme 2
PS + GLCMMAX PS + GLCM statistics for optimal window size 40 3 m
S2 + GLCMMAX S2 + GLCM statistics for optimal window size 40 10 m

Scheme 3
PS + GLCMMAX + Topo PS + GLCM statistics for optimal window size + Topo 43 3 m
S2 + GLCMMAX + Topo S2 + GLCM statistics for optimal window size + Topo 43 10 m

Scheme 4
PS + GLCMMAX + Topo + CHM PS + GLCM statistics for optimal window size + Topo + CHM 44 3 m
S2 + GLCMMAX + Topo + CHM S2 + GLCM statistics for optimal window size + Topo + CHM 44 10 m

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 25 
 

 

 

Figure 3. Methodology workflow for mountain pine mapping in the Sarntal Alps. A detailed de-

scription of the different feature spaces is given in Table 1. Each individual feature space of the 

respective classification schemes is classified using a Random Forest model. A subsequent majority 

filter generates the respective final output for the different feature spaces for the four classification 

schemes. For identifying the optimal GLCM window size (WS) for PS and S2 feature space, each 

GLCM WS feature space is classified and validated. The GLCM WS feature space with the highest 

overall accuracy is chosen as GLCMMAX for PlanetScope and Sentinel-2, respectively. 

Classification scheme 2 included the feature spaces PS + GLCMMAX and S2 + 

GLCMMAX. These feature spaces contain the multi-temporal imagery and NDVI stacks 

from classification scheme 1 combined with the five textural statistics for each image of 

the optimal GLCM window size. The optimal GLCM window size (GLCMMAX) was deter-

mined by iteratively classifying and validating each feature space and subsequently se-

lecting the one with the highest overall accuracy (Figure 3). 

Classification scheme 3 combines the feature spaces of scheme 2 (PS + GLCMMAX, S2 

+ GLCMMAX) with the Topo feature space. Classification scheme 4 joins the feature spaces 

from scheme 3 (PS + GLCMMAX + Topo, S2 + GLCMMAX + Topo) with the CHM feature 

space. 

2.3.3. Random Forest Classification and Validation 

We selected a Random Forest model [50] to map the mountain pine stands in the 

Sarntal Alps. Random Forest is a non-parametric machine learning algorithm that can 

handle high-dimensional datasets and was shown to be highly capable of accurately clas-

sifying alpine tree species [10,23–25,29]. For the individual feature spaces of each classifi-

cation scheme (Table 1), we trained a Random Forest model with identical training data 

(Figure 3) using the R package “caret” [51]. The number of trees was kept constant at 500, 

as suggested in previous studies [23,24], and confirmed by our initial classification tests, 

which did not show a notable influence of the number of trees on the model output accu-

racies. To find the optimal number of features at each decision node for each feature space, 

we tuned the respective parameter using a 10-fold cross-validation approach. A majority 

filter (3 × 3) was then applied to each model output to reduce classification noise. 

Figure 3. Methodology workflow for mountain pine mapping in the Sarntal Alps. A detailed
description of the different feature spaces is given in Table 1. Each individual feature space of the
respective classification schemes is classified using a Random Forest model. A subsequent majority
filter generates the respective final output for the different feature spaces for the four classification
schemes. For identifying the optimal GLCM window size (WS) for PS and S2 feature space, each
GLCM WS feature space is classified and validated. The GLCM WS feature space with the highest
overall accuracy is chosen as GLCMMAX for PlanetScope and Sentinel-2, respectively.



Remote Sens. 2022, 14, 3190 9 of 24

Classification scheme 2 included the feature spaces PS + GLCMMAX and S2 + GLCMMAX.
These feature spaces contain the multi-temporal imagery and NDVI stacks from classifi-
cation scheme 1 combined with the five textural statistics for each image of the optimal
GLCM window size. The optimal GLCM window size (GLCMMAX) was determined by
iteratively classifying and validating each feature space and subsequently selecting the one
with the highest overall accuracy (Figure 3).

Classification scheme 3 combines the feature spaces of scheme 2 (PS + GLCMMAX,
S2 + GLCMMAX) with the Topo feature space. Classification scheme 4 joins the feature
spaces from scheme 3 (PS + GLCMMAX + Topo, S2 + GLCMMAX + Topo) with the CHM
feature space.

2.3.3. Random Forest Classification and Validation

We selected a Random Forest model [50] to map the mountain pine stands in the
Sarntal Alps. Random Forest is a non-parametric machine learning algorithm that can
handle high-dimensional datasets and was shown to be highly capable of accurately
classifying alpine tree species [10,23–25,29]. For the individual feature spaces of each
classification scheme (Table 1), we trained a Random Forest model with identical training
data (Figure 3) using the R package “caret” [51]. The number of trees was kept constant
at 500, as suggested in previous studies [23,24], and confirmed by our initial classification
tests, which did not show a notable influence of the number of trees on the model output
accuracies. To find the optimal number of features at each decision node for each feature
space, we tuned the respective parameter using a 10-fold cross-validation approach. A
majority filter (3 × 3) was then applied to each model output to reduce classification noise.

To assess the accuracy of the different mountain pine classifications, we compared
the classification maps visually and derived the confusion matrix for each classification
result using the validation dataset (Section 2.2.4). We calculated the overall accuracy (OA)
(Equation (1)), Kappa coefficient, user’s accuracy (UA) (Equation (2)), and producer’s
accuracy (PA) (Equation (3)) (Tables A1–A10):

Overall accuracy (OA) =
N00+N11

N
(1)

User′s accuracy (UA) =
N11

N10+N11
(2)

Producer′s Accuracy (PA) =
N11

N01+N11
(3)

with N equivalent to the total number of reference points and N00 and N11 the number of
correctly classified reference points for the other land cover class (class 0) and mountain
pine class (class 1). The formulae of UA and PA are displayed for class 1 with N10 equivalent
to the number of reference points falsely not classified as mountain pine (false negative)
and N01 the number of reference points falsely classified as mountain pine (false positive).

Additionally, receiver operating characteristic (ROC) curves and the respective area
under the curve (AUC) [52] were calculated for each classification result. ROC visualizes
the tradeoff between true positive and false positive rates, which helps to assess the actual
predictive power of a model [52]. AUC is a measure for the area between a model’s ROC
curve and the diagonal representing a random classification result. High AUC values
indicate a high class separability of the model [52].

We selected the classification with the highest OA to map and analyze the spatial
pattern of mountain pines in the Sarntal Alps. To reduce the effects of the topographic
relief in mountainous regions [53], we calculated the real surface area using the software
SAGA GIS Version 8 [54] using the function “Real Surface Area” and the slope derived
from the DTM. Additionally, we derived spatial statistics considering elevation, slope,
aspect and patch size to better understand the distribution of mountain pines in our final
classification result.
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3. Results
3.1. GLCM Window Size Optimization

The GLCM window size showed a noteable effect on the overall accuracy of the PS
and S2 feature spaces (Figure 4). In general, overall accuracy increased at small GLCM
window sizes for both satellite feature spaces. The effect of larger GLCM window sizes
showed a stronger impact on overall accuracies of PS (0.82–0.89) than S2 (0.86–0.90) feature
spaces. Thereby, S2 approaches the maximum OA at a GLCM window size of 9 pixels
(90 m) and saturates afterwards. In comparison, the OA of PS rises until a GLCM window
size of 29 pixels (87 m) and decreases then with increasing window sizes. Within this range,
the GLCM secondary statistics can best describe the mountain pine stands in the study area
and determine the optimal GLCM window sizes (GLCMMAX) for PS (29 × 29 pixels) and
S2 (9 × 9 pixels).
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Figure 4. Overall accuracies of mountain pine classifications based on PS and S2 (Table 1) feature
spaces combined with different GLCM window sizes (in meter). GLCM window sizes were calculated
from 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, 17 × 17, 23 × 23, 29 × 29, 35 × 35, 43 × 43
and 51 × 51 pixels for both PlanetScope and Sentinel-2 data (Section 2.3.1.).

3.2. Classification Results

Classification accuracies of scheme 1 varied strongly among the different feature spaces
and showed the overall lowest accuracy among all schemes (Figure 5, Tables A1–A10).
LiDAR derived feature spaces resulted in overall accuracies of 65.0% (Topo) and 64.2 %
(CHM), while the multi-temporal satellite feature spaces performed significantly better.
Thereby, the overall accuracy of PS (81.2%) was lower than S2 (87.2%). For PS also, the
PA (74.5%) and UA (76.6%) were considerably lower compared to the PA (80.9%) and UA
(85.3%) of the S2 feature space. Particularly visible are false positive pixels (commission
error) in the forest areas on the south-facing slopes of Durnholz Valley (Figure 6a), which are
also visible in the results of the S2 feature space (Figure 6b). For PS, additional false negative
pixels (omission error) occurred in some large, contiguous patches, where mountain pine
was incorrectly not detected (Figure 6a). Mountain pine classifications of scheme 2 showed
overall higher OAs than scheme 1 and a slightly higher accuracy for S2 + GLCMMAX
(90.0%) than for PS + GLCMMAX (89.5%). The inclusion of GLCM textural features led to
an increase in the PA and UA of PS + GLCMMAX (80.3% and 91.6%) and S2 + GLCMMAX
(81.7% and 91.7%), which is also visible in the decrease of false positive pixels (Figure 6c,d).
The addition of GLCMMAX also resulted in a reduction of the omitted mountain pine
pixels in the PS + GLCMMAX feature space, while some boundary areas still experienced
some confusion (Figure 6c). The OAs of mountain pine classifications did not change
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significantly when topographical features were added to the feature space scheme 3).
However, our visual assessment showed that false positive pixels in the valley were almost
completely eliminated (Figure 6e,f). The inclusion of CHM (scheme 4) slightly improved
both classification results and led to the best results for PS + GLCMMAX + Topo + CHM
(91.0%) and S2 + GLCMMAX + Topo + CHM (90.6%).

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 25 
 

 

predictive power of both models, and AUC increased to 0.96 for both PS + GLCMMAX and 

S2 + GLCMMAX. For scheme 3, class separability for PS + GLCMMAX + Topo (0.96) and S2 + 

GLCMMAX + Topo remained constant (0.96). The ROC curves of classification scheme 4 

showed a slightly better performance of PS + GLCMMAX + Topo + CHM compared to S2 + 

GLCMMAX + Topo + CHM, due to the lower number of false positive and the higher number 

of true positive pixels. Additionally, AUC indicated a minor improvement in class sepa-

rability for both feature spaces (PS + GLCMMAX + Topo + CHM, AUC: 0.98; S2 + GLCMMAX 

+ Topo + CHM, AUC: 0.97). 

 

Figure 5. Overall accuracies of classification results for each feature space in: (a) classification 

scheme 1; (b) classification scheme 2; (c) classification scheme 3; (d) classification scheme 4 and (e) 

overall accuracy of PlanetScope and Sentinel-2 feature spaces in classification schemes 1–4. 

Figure 5. Overall accuracies of classification results for each feature space in: (a) classification scheme
1; (b) classification scheme 2; (c) classification scheme 3; (d) classification scheme 4 and (e) overall
accuracy of PlanetScope and Sentinel-2 feature spaces in classification schemes 1–4.



Remote Sens. 2022, 14, 3190 12 of 24
Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 25 
 

 

 

Figure 6. Mountain pine stands in the Durnholz Valley, classified by different feature space combi-

nations. (a,c,e,g) Classification results based on PlanetScope feature spaces. Mountain pine areas 

derived from PlanetScope feature spaces are colored in red. (b,d,f,h) Classification results based on 

Sentinel-2 feature spaces. Mountain pine areas derived from Sentinel-2 feature spaces are colored in 

blue. Commission errors occur where pixels of other land cover classes are classified as mountain 

pines (false positive). Omission errors occur where mountain pine pixels are incorrectly not detected 

(false negative). Background: Orthophoto 2020 (Autonomous Province of Bolzano). 

Figure 6. Mountain pine stands in the Durnholz Valley, classified by different feature space combi-
nations. (a,c,e,g) Classification results based on PlanetScope feature spaces. Mountain pine areas
derived from PlanetScope feature spaces are colored in red. (b,d,f,h) Classification results based on
Sentinel-2 feature spaces. Mountain pine areas derived from Sentinel-2 feature spaces are colored in
blue. Commission errors occur where pixels of other land cover classes are classified as mountain
pines (false positive). Omission errors occur where mountain pine pixels are incorrectly not detected
(false negative). Background: Orthophoto 2020 (Autonomous Province of Bolzano).
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ROC and AUC values confirmed the accuracy assessments and our visual evaluation of
the different mountain pine classifications (Figures 5 and 6). For scheme 1, the performance
of the S2 classification model based on ROC curves indicated a higher true positive rate
compared to PS (Figure 7). However, PS performed much better in predicting true positive
pixels than Topo or CHM. Likewise, the AUC of S2 (0.94) indicated that the class separability
performance is significantly higher compared to the PS classification model (0.90). ROC
curves and AUC values of classification scheme 2 confirmed a similar predictive power of
both models, and AUC increased to 0.96 for both PS + GLCMMAX and S2 + GLCMMAX. For
scheme 3, class separability for PS + GLCMMAX + Topo (0.96) and S2 + GLCMMAX + Topo
remained constant (0.96). The ROC curves of classification scheme 4 showed a slightly
better performance of PS + GLCMMAX + Topo + CHM compared to S2 + GLCMMAX + Topo
+ CHM, due to the lower number of false positive and the higher number of true positive
pixels. Additionally, AUC indicated a minor improvement in class separability for both
feature spaces (PS + GLCMMAX + Topo + CHM, AUC: 0.98; S2 + GLCMMAX + Topo + CHM,
AUC: 0.97).
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Figure 8 shows the spatial pattern of mountain pines in the entire study area classified
by the PS + GLCMMAX + Topo + CHM feature space (OA 91%). Large areas of extensive and
homogenous mountain pine patches were classified in the northern Sarntal Alps (Durnholz
Valley) (Figure 8b,c). In general, mountain pine stands could be accurately delineated from
the forest boundary (Figure 8b). However, smaller single patches of mountain pines at
the border of large mountain pine stands were sometimes omitted (Figure 8b,c) while few
mountain pines stands were wrongfully detected within the forest areas close to the timber
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line (Figure 8d). Around the Rittner Horn, mountain pines are more sparsely distributed
but occur in large patches (Figure 8d). Our map suggests that mountain pines do not grow
in the western mountain range of Sarntal Alps, except small parts in the northwestern part
of the Pens Valley.
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Figure 8. (a) Classified mountain pine stands in the Sarntal Alps, South Tyrol. Displayed classification
based on PS + GLCMMAX + Topo + CHM feature space (OA 91%). Background: Orthophoto 2020
(Autonomous Province of Bolzano); (b–d) Zoom-in examples of classification result with indication
of omission and commission errors.

Based on our map, mountain pines cover 21.49 km2 of the Sarntal Alps (Figure 9),
which accounts for 3.3% of the entire study area (Figure 9b). The largest mountain pine
stands are found at altitudes between 2000–2100 m a.s.l. (Figure 9a), summing up to 24%
(837 ha) of the total surface area at this elevation (Figure 9b). Overall, 90% (1929 ha) of
all mountain pines in the Sarntal Alps grow at altitudes between 1900 and 2200 m a.s.l.
(Figure 9a) and primarily occur on west- (29%) and south-facing (28%) slopes (Figure 9c).
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This pattern aligns with the large mountain pine areas on the west- and southeast-facing
slopes in Durnholz Valley (Figure 8). At north- and east-facing slopes, mountain pine
stands are less common, covering 20% and 23% of the total mountain pine surface area. The
mountain pine in the Sarntal Alps tends to grow in large, contiguous patches (Figure 9d).
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Figure 9. Landscape metrics for mountain pine stands in the Sarntal Alps, South Tyrol, based on
final classification result (PS + GLCMMAX + Topo + CHM). (a) Surface area covered by mountain
pines at different altitudes; (b) relative land cover of mountain pines at different altitudes; (c) surface
area covered by mountain pines by cardinal direction; (d) surface area by mountain pine patches at
different patch sizes.

Although small patches are much more frequent, they cover only a small area. The
10,851 patches with a size smaller than 10 PlanetScope pixels (90 m2) only account for
2% (41 ha) of the mountain pine surface area. In comparison, the single largest patch
(176,784 pixels; 159 ha) covers 8%, while the ten largest patches account for 37 % (726 ha) of
the mountain pine area.

4. Discussion

The classification of mountain pines in an alpine environment was tested using optical
satellite imagery with different spatial resolutions—PlanetScope (3 m) and Sentinel-2
(10 m)—and additional textural (GLCM), topographical (elevation, slope and aspect) and
canopy height (CHM) features.



Remote Sens. 2022, 14, 3190 16 of 24

4.1. Influence of Spatial Resolution

In recent years, the usage of high-resolution satellite data for treeline ecotone mapping
applications increased [55]. Especially in mountain regions with a complex treeline eco-
tone, a high spatial sensor resolution is needed to accurately map the different vegetation
species [56,57]. We assumed that due to the higher resolution of PlanetScope, the mountain
pine stands could be better delineated from conifers, especially in areas with strong inter-
twining between mountain pines and forested areas. However, our results indicate that
Sentinel-2 behaves similarly to PlanetScope and even outperforms it by solely using the
multitemporal image stacks (scheme 1). With the successive inclusion of textural and topo-
graphical features (schemes 2–4), the classification accuracy of PlanetScope and Sentinel-2
converges with only minimal differences in OA and AUC values. The best classification
was achieved by the PlanetScope feature space (scheme 4) having the highest OA and AUC
values. Yet, despite the marginally worse validation statistics, S2 + GLCMMAX + Topo +
CHM still achieves excellent results in the delineation of mountain pine areas. A possible
explanation for the similar behavior of PlanetScope and Sentinel-2 is the size distribution
of the mountain pine fields. In the Sarntal Alps, mountain pine grows over large areas in
contiguous patches. These can be accurately detected even with the lower resolution of
Sentinel-2. Therefore, the good performance of Sentinel-2 also depends on the local specific
growing forms of the mountain pines in the Sarntal Alps and may lead to worse results
if the size distribution of the mountain pines changes (e.g., smaller, scattered patches).
However, a good performance of Sentinel-2 was previously reported in other studies that
classified mountain pine stands (e.g., PA 91.98%, UA 97.39% [10]; PA 85.3%, UA 93.9% [23]).
The addition of the SWIR bands could further improve the classification results [26,48]. In
contrast to other studies [56,57], it can be concluded that the higher spatial resolution does
not necessarily lead to an improved classification of treeline species such as mountain pines.
Further mapping approaches could therefore make use of the freely available Sentinel-2
imagery, which thus allows investigating larger study areas.

4.2. Feature Selection and Importance

The satisfactory results from feature spaces PS and S2 (scheme 1) are most likely due to
their composition as multitemporal stacks, confirming several studies showing such effects
(e.g., [10,23,48]). However, obtaining multiple useful optical acquisitions over a regional-
scale mountainous area such as the Sarntal Alps (583 km2) is challenging due to short
seasons, long snow cover presence and high cloud cover. Especially the high repetition rate
of PlanetScope (majority of acquired images with revisit time <36 h) [34], allows to generate
multitemporal image stacks in alpine environments. Temporal differences between the
August (21 days) and September (13 days) scenes of PlanetScope and Sentinel-2 may capture
differences in the phenological cycle of different species. Compared to other species (e.g.,
Larix decidua), the mountain pine remains constant in color and does not lose its needles.
Therefore, the results of both feature spaces (PS and S2) should still be comparable.

The addition of the GLCM statistics (scheme 2), led to the greatest improvement of
the OA for both PlanetSope (8.29%) and Sentinel-2 (2.87%). Texture features circumvent
the challenging spectral discrimination between mountain pines and other subalpine
conifers [23,28] by including the characteristic physiognomy of the mountain pine. While
previous studies used GLCM features to map alpine vegetation species with a predefined
window size without prior testing [22,24,25], our results suggest that an optimization
process to identify the best GLCM window size (GLCMMAX) can improve the classification
result significantly and should be implemented in future mapping approaches to account
for study site characteristics and observed classes. In this study, mountain pine stands in
the Sarntal Valley can be best captured with a window size ranging from 87 to 90 m–29 × 29
(PlanetScope) (7569 m2) and 9 × 9 (Sentinel-2) pixels (8100 m2).

Topographical features (scheme 3) eliminated misclassifications on the slopes of the
Sarntal Valley (Figure 6), but changes in the OA are indistinct. Our results indicate that
LiDAR-derived high-resolution topographic data (2.5 m) could be likely substituted by
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freely available lower resolution DEMs (e.g., Copernicus DEM (30 m) or SRTM DEM (30 m))
since the DEM does not lead to a more accurate detection of small-scale patches but, rather,
incorporates large-scale elevation differences into the classification.

The CHM is a valuable feature for identifying mountain pines due to the distinct
height difference to other coniferous trees [1,26,49] but only in combination with other
information. When using just CHM as the input, confusion with objects of a similar height
leads to a low OA (64.21%). The added value of CHM as an additional dataset is visible in
classification scheme 4, where the best OA for both PlanetScope (90.96%) and Sentinel-2
(90.65%) was achieved. The temporal mismatch between the CHM and reference data might
have had an influence on all classification results, including the CHM feature. However, we
ensured that no reference points are located in areas affected by clearings between 2006 and
2020 by visually comparing orthophotos of these years. Our results indicate that with an
adequate reference sampling technique and classification scheme, even an outdated CHM
is useful for classifying mountain pines. Nevertheless, the findings indicate that using
solely multitemporal spectral and textural information from four-band (blue, green, red,
NIR) optical imagery already produces satisfactory results for mapping mountain pines in
the study area—without considering auxiliary data sources (e.g., DTM or CHM). It should
be noted that airborne LiDAR acquisitions are expensive and not available for large areas,
which limits the transferability of an approach relying on the CHM. While we used LiDAR
metrics only as an additional optional feature to test its added value, future research could
also assess LiDAR metrics features of globally available missions (e.g., NASA´s Global
Ecosystem Dynamics Investigation (GEDI) [58]) without computing textural features.

4.3. Classification Evaluation

The final classification accurately mapped mountain pine stands in the complex
treeline ecotone. However, few misclassifications were apparent. Our classification un-
derpredicted mountain pines slightly with a higher user´s accuracy (UA: 90.28%) than
producer´s accuracy (PA: 86.1%), which aligns with the results of other studies [8,10,23,26].
Additionally, single conifers within mountain pine stands could not be detected due to
the spatial resolution of the satellite imagery (Figure 8c). In some areas, confusion also
occurred in areas where the regrowth of mountain pines was visible (Figure 8d). This
was probably due to the low textural and spectral contrast between the small regrowing
mountain pines and surrounding grasslands. Additionally, omitted mountain pine stands
can be found in some edge areas around larger mountain pine patches (Figure 8b,c). One
possible explanation could be that, due to the relatively large GLCMMAX window sizes, the
textural signal of the smaller and more heterogeneous edge mountain pine stands were
obliterated during the GLCM statistic calculation [43,46]. A smaller GLCM window size
could reduce this error to some degree but would introduce misclassifications in other
regions of the study area (e.g., at forest boundaries). To account for misclassifications at
the boundary areas of mountain pine patches, an object-based approach implementing a
region growing algorithm might produce beneficial results [26].

Besides, the further differentiation of subclasses within the “other land cover” class
might increase the classification accuracy. However, high-quality, expert-based reference
data were only available for the mountain pine class, and detailed knowledge about the
land cover in the study area was not available. Hence, a binary classification model was
chosen, which also reduces the amount of work required to sample reference data.

Current mapping methods used by local foresters have consisted of intensive field
campaigns and time-consuming orthophoto interpretation so far. Therefore, our automated
mapping process reduces the required resources for mapping mountain pines tremendously
and fosters a continued monitoring of the mountain pine areas. In the future, our approach
will be used to map mountain pine stands in the Sarntal Alps over time to support the
local forest authorities in assuring their sustainable use. Recent logging activities, for
instance, could be detected by comparing maps in time and PlanetScope or Sentinel-2
date back to 2016 and 2015. For the mapping of mountain pine stands of the more distant
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past, other comparable optical satellite imagery (e.g., RapidEye [28], Landsat 5–8 [6])
or multispectral orthophotos [22,25] could be used. Additionally, long-term monitoring
could also inform of the climate-induced expansion of mountain pines towards the alpine
altitudinal zone [7,12,15]. Furthermore, this methodology could possibly be transferred to
other alpine regions if sufficient reference data are available.

5. Conclusions

This study used multitemporal PlanetScope (3 m) and Sentinel-2 (10 m) imagery in
combination with NDVI to map mountain pine (P. mugo) stands in the Sarntal Alps, South
Tyrol. By successively adding additional features (textural features (GLCM), topographic
features (elevation, slope and aspect) and canopy height model (CHM)), the overall clas-
sification accuracy of mountain pines improved. Thereby, the largest accuracy increase
was obtained by including textural information based on an optimal GLCM window size
for PlanetScope (29 × 29 pixels (87 × 87 m)) and Sentinel-2 (9 × 9 pixels (90 × 90 m)).
The inclusion of LiDAR-derived high-resolution auxiliary datasets, such as topographical
data and canopy height, only marginally improved the classification result. Since textural
features directly derived from the satellite imagery already produce sufficient mapping
results, there is no pressing need for the implementation of costly auxiliary datasets (e.g.,
Lidar derived DTM or CHM). This results in the easy transferability of our methodology
to other study regions if sufficient reference data are available. The best classification was
obtained when combining PlanetScope with the GLCM statistics, topographical features
and canopy height model. However, comparable results were achieved with Sentinel-2 data
instead of PlanetScope, indicating that the spatial resolution has no major influence on the
mapping accuracy of mountain pines in our study area. Because of the free availability of
Sentinel-2 data, this classification approach is particularly well-suited for further mapping
of mountain pine stands in other alpine regions.

The final mountain pine map will support local forest management by reducing the
required resources to map P. mugo stands. This allows for more comprehensive monitoring
and provides the basis for understanding changes due to the mountain pine usage and
climatic changes at the treeline ecotone. Therefore, further research should implement
the presented classification approach to map the annual extent of mountain pines in
future years.
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Appendix A. Confusion Matrices and Accuracy Statistics for Classification Schemes

Table A1. PS classification (“scheme 1”).

Reference

Classification

Class 0 Class 1 Total

Class 0 346 66 412

Class 1 59 193 252

Total 405 259 664

Overall Accuracy and Kappa coefficient

OA Kappa

0.8117 0.6024

Class Statistics

PA UA

Class 0 0.8543 0.8398

Class 1 0.7452 0.7659
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer’s accuracy; UA = user’s accuracy; Kappa = Kappa coefficient.

Table A2. S2 classification (“scheme 1”).

Reference

Classification

Class 0 Class 1 Total

Class 0 370 49 419

Class 1 36 208 244

Total 406 257 663

Overall Accuracy and Kappa coefficient

OA Kappa

0.8718 0.7274

Class Statistics

PA UA

Class 0 0.9113 0.8831

Class 1 0.8093 0.8525
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.

Table A3. Topo classification (“scheme 1”).

Reference

Classification

Class 0 Class 1 Total

Class 0 302 140 442

Class 1 93 130 223

Total 395 270 665

Overall Accuracy and Kappa coefficient

OA Kappa

0.6496 0.253

Class Statistics

PA UA

Class 0 0.7646 0.6833

Class 1 0.4815 0.5830
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.
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Table A4. CHM classification (“scheme 1”).

Reference

Classification

Class 0 Class 1 Total

Class 0 280 123 403

Class 1 115 147 262

Total 395 270 665

Overall Accuracy and Kappa coefficient

OA OA Kappa

0.6421 0.6421 0,2545

Class Statistics

PA UA

Class 0 0.7089 0.6948

Class 1 0.5444 0.5611
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.

Table A5. PS + GLCMMAX (window size 29×29 pixels (87×87 m)) classification (“scheme 2”).

Reference

Classification

Class 0 Class 1 Total

Class 0 386 51 437

Class 1 19 208 227

Total 405 259 664

Overall Accuracy and Kappa coefficient

OA Kappa

0.8946 0.7734

Class Statistics

PA UA

Class 0 0.9531 0.8833

Class 1 0.8031 0.9163
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.

Table A6. S2 + GLCMMAX (window size 9 × 9 pixels (90 × 90 m)) classification (“scheme 2”).

Reference

Classification

Class 0 Class 1 Total

Class 0 387 47 434

Class 1 19 210 229

Total 406 257 663

Overall Accuracy and Kappa coefficient

OA Kappa

0.9005 0.786

Class Statistics

PA UA

Class 0 0.9532 0.8917

Class 1 0.8171 0.9170
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.
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Table A7. PS + GLCMMAX + Topo classification (“scheme 3”).

Reference

Classification

Class 0 Class 1 Total

Class 0 395 59 454

Class 1 10 200 210

Total 405 259 664

Overall Accuracy and Kappa coefficient

OA Kappa

0.8961 0.7739

Class Statistics

PA UA

Class 0 0.9753 0.8700

Class 1 0.7722 0.9524
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.

Table A8. S2 + GLCMMAX + Topo classification (“scheme 3”).

Reference

Classification

Class 0 Class 1 Total

Class 0 385 51 436

Class 1 21 206 227

Total 406 257 663

Overall Accuracy and Kappa coefficient

OA Kappa

0.8914 0.7662

Class Statistics

PA UA

Class 0 0.9483 0.8830

Class 1 0.8016 0.9075
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.

Table A9. PS + GLCMMAX + Topo + CHM classification (“scheme 4”).

Reference

Classification

Class 0 Class 1 Total

Class 0 381 36 417

Class 1 24 223 247

Total 405 259 664

Overall Accuracy and Kappa coefficient

OA Kappa

0.9096 0.8085

Class Statistics

PA UA

Class 0 0.9407 0.9137

Class 1 0.8610 0.9028
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.
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Table A10. S2 + GLCMMAX + Topo + CHM classification (“scheme 4”).

Reference

Classification

Class 0 Class 1 Total

Class 0 382 38 420

Class 1 24 219 243

Total 406 257 663

Overall Accuracy and Kappa coefficient

OA Kappa

0.9065 0.801

Class Statistics

PA UA

Class 0 0.9409 0.9095

Class 1 0.8521 0.9012
Class 1 represents mountain pines. Class 0 represents other land cover types. OA = overall accuracy; PA = pro-
ducer´s accuracy; UA = user´s accuracy; Kappa = Kappa coefficient.
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14. Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Benito Alonso, J.L.; Coldea, G.; Dick, J.; Erschbamer, B.;
Fernández Calzado, M.R.; et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2012, 2,
111–115. [CrossRef]

15. Dirnböck, T.; Dullinger, S.; Grabherr, G. A regional impact assessment of climate and land-use change on alpine vegetation. J.
Biogeogr. 2003, 30, 401–417. [CrossRef]

16. Ballian, D.; Ravazzi, C.; de Rigo, D.; Caudullo, G. Pinus mugo in Europe: Distribution, habitat, usage and threats. In European
Atlas of Forest Tree Species, 2016th ed.; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Durrant, T.H., Mauri, A., Eds.; Publication
Office of the European Union: Luxembourg, 2016; pp. 124–125; ISBN 9789279367403.

http://doi.org/10.2307/3673062
http://doi.org/10.1080/14772000.2015.1058300
https://www.provincia.bz.it/land-forstwirtschaft/wald-holz-almen/interaktive-karte.asp?publ_action=300&publ_image_id=197931
https://www.provincia.bz.it/land-forstwirtschaft/wald-holz-almen/interaktive-karte.asp?publ_action=300&publ_image_id=197931
http://doi.org/10.3390/su11133678
http://doi.org/10.1659/MRD-JOURNAL-D-14-00104.1
http://doi.org/10.1080/22797254.2017.1365570
http://doi.org/10.1659/MRD-JOURNAL-D-09-00032.1
http://doi.org/10.3390/rs12172845
http://doi.org/10.3390/d10030070
http://doi.org/10.3390/rs13091788
http://doi.org/10.5194/essd-13-2801-2021
http://doi.org/10.1038/nclimate1329
http://doi.org/10.1046/j.1365-2699.2003.00839.x


Remote Sens. 2022, 14, 3190 23 of 24

17. Petelka, J.; Plagg, B.; Säumel, I.; Zerbe, S. Traditional medicinal plants in South Tyrol (northern Italy, southern Alps): Biodiversity
and use. J. Ethnobiol. Ethnomed. 2020, 16, 74. [CrossRef] [PubMed]

18. Rosenvald, R.; Lõhmus, A. For what, when, and where is green-tree retention better than clear-cutting? A review of the biodiversity
aspects. For. Ecol. Manag. 2008, 255, 1–15. [CrossRef]

19. Bowd, E.J.; Banks, S.C.; Strong, C.L.; Lindenmayer, D.B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci.
2019, 12, 113–118. [CrossRef]
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