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Mucosa and microbiota – the
role of intrinsic parameters on
intestinal wound healing
Matthias Kelm* and Friedrich Anger

Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital of
Wuerzburg, Wuerzburg, Germany

Mucosal healing in the gut is an essential process when it comes to chronic
inflammatory disorders such as inflammatory bowel diseases (IBD) but also
to the creation of intestinal anastomosis. Despite an improvement of surgical
techniques, the rates of anastomotic leakage remain substantial and
represent a significant health-care and socio-economic burden. Recent
research has focused on intrinsic factors such as mucosal linings and
differences in the intestinal microbiota and identified specific endoluminal
bacteria and epithelial proteins which influence intestinal wound healing and
re-establishment of mucosal homeostasis. Despite the lack of large clinical
studies, previous data indicate that the identified bacteria such as
aerotolerant lactobacilli or wound-associated Akkermansia muciniphila as
well as epithelial-expressed sialyl Lewis glycans or CD47 might be critical for
wound and anastomotic healing in the gut, thus, providing a potential novel
approach for future treatment strategies in colorectal surgery and IBD
therapy. Since microbiota and mucosa are interacting closely, we outline the
current discoveries about both subsets in this review together to
demonstrate the significant interplay
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Introduction

Impaired intestinal mucosal healing is a hallmark of inflammatory bowel diseases

(IBD) and anastomotic leakage. Current IBD treatment mainly focuses on the

immune system but the numbers of patients who still require surgery or suffer from

side effects remain high (1). Since the incidence of IBD is increasing worldwide and

numbers of anastomotic leakage remain significant (2, 3), insufficient mucosal healing

represents a major socioeconomic burden making the development of novel

therapeutic approaches urgently necessary to improve patient care. While endoscopic

assessment of mucosal healing represents an established parameter to evaluate disease

development (4, 5), specific treatment strategies to enhance wound healing are

lacking. Therefore, an improved understanding of interactions between various gut-

specific factors on wound healing and reconstitution of mucosal homeostasis is crucial.

The selectively and dynamically permeable barrier between luminal components and

the basolateral membrane is established and maintained by the epithelium consisting of

enterocytes and goblet cells. Intercellular connections between the epithelial cells are
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389&sol;fsurg.2022.905049&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fsurg.2022.905049
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2022.905049/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.905049/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.905049/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2022.905049
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Kelm and Anger 10.3389/fsurg.2022.905049
formed by intercellular junctions, namely the tight junctions,

adherence junctions, desmosomes and gap junctions (6, 7).

The goblet cells cover the intestinal epithelium with a mucus

layer, which varies in terms of thickness, organization and

composition. The small intestine is coated with a single thin,

loose and penetrable layer, probably due to the rather sparse

colonization and the antimicrobial peptides secreted from

Paneth cells (8, 9). In the colon, the mucus consists of two

layers, a loose outer layer and a dense inner layer attached to

the epithelium (10). The inner layer serves as a physical

barrier, while the outer layer provides a habitat and food

source for certain commensal microbe populations. Due to

this complexity, adequate reconstitution of the intestinal

mucosa is crucial to maintain homeostasis of epithelial linings.

The increasing relevance of intestinal wound healing given

and the significance of its dysregulation on patients (11),

future therapeutic strategies will broaden the focus on aspects

to improve mucosal repair. While this approach offers great

potential, further research is necessary to enhance our

knowledge about interactions between mucosal and luminal

factors. In this review, we address the current roles of

epithelial cells and microbiota in intestinal wound healing and

discuss potential therapeutic strategies.
Mucosal healing in the gut

Dysfunctional healing of the intestinal mucosa affects a

large spectrum of patients resulting in a significant clinical

relevance (12). Importantly, mucosal healing remains to be a

double-edged sword since it has to be taken into account that

persistent inflammation can result in uncontrolled

overstimulation of proliferative pathways leading to the

formation of neoplastic lesion and subsequent carcinogenesis.

While reasons for the initial mucosal damage can be

inflammation- or mechanical-related, mechanisms of wound

repair are largely independent of the cause and consist of a

multi-step process with various factors and cell types being

involved (13). The complex process of mucosal healing, which

needs to be clearly distinguished from the daily perpetual

epithelial renewal driven by progenitor and stem cells, is well-

regulated but dysregulation at any stage might result in

insufficient wound closure with compromised gastrointestinal

function or leakage. Importantly, maintaining adequate

mucosal homeostasis consists of more than just closure of the

epithelial lining since the intestinal mucosa is responsible to

preserve barrier function but also to transport nutrients (14,

15). While factors such as environmental aspects or vascular

insufficiency due to atherosclerosis, diabetes, aging or

smoking are also relevant for wound healing in the gut, they

are characterized by a different pathobiology and need to be

addressed systemically. In contrast, factors which can be

addressed locally and contribute to mucosal homeostasis and
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wound repair are epithelial cells and microbiota. Both sites

are interacting closely and demonstrate a significant impact

on the multi-step process of mucosal healing but despite that

fact, they have no role in current treatment concepts. While

clinicians and scientists mainly focused on interactions

between microbiota and the local immune system in the past,

recent studies have addressed the role of mucosa-associated

microbiota with the relationship between epithelial cells and

luminal bacteria being crucial for health and disease (16, 17).
The role of epithelial cells and
junctional proteins on intestinal
wound healing

The coordination of the multi-step process of intestinal

wound repair depends on the complex interplay between

epithelial cells, immune cells and microbiota (18, 19). It

consists of several overlapping stages which result in the re-

establishment of the epithelial barrier through successful

wound closure. After initial homeostasis, the inflammatory

stage is driven by mucosal injury and mainly defined by the

infiltration of neutrophils followed by macrophages and

monocytes (20). In parallel and partially triggered by

inflammation, epithelial cells remodel their cytoskeleton and

start migrating and proliferating to achieve epithelial

restitution. Finally, the restoration of mucosal homeostasis is

completed by the differentiation of wound-associated

epithelial cells (18).

Epithelial cells have an important role in segregating the

intestinal microbiota from mucosal and submucosal linings

but they are also participating in different pathways resulting

in adequate mucosal healing. Various chemokines and growth

factors are involved in the complex process of intestinal

wound repair. For instance, small GTPases of the Rho family

such as Rho and Rac contribute to the remodeling of the

cytoskeleton with epidermal growth factor (EGF) and

hepatocyte growth factor (HGF) and their signaling pathways

leading to mucosal restitution and cell proliferation (21, 22).

While the role of those factors and proteins is well

established, recent studies have focused on the role of

epithelial cells and their junctional proteins in regard to

intestinal wound repair. In line with the relevance of GTPases

mentioned before, Flemming et al. showed that loss of

Desmocollin-2 (Dsc-2), a desmosomal cadherin, significantly

delays epithelial cell migration in the gut due to the altered

activity of GTPase Rap1 (23). While it remains to be

confirmed that Dsc-2 controls Rap1 via Pkp3, the authors

also demonstrated a functional interplay between Dsc-2 and

integrin β1 and β4, thus, arguing for Dsc-2 as a key

contributor in intestinal mucosal healing. In contrast,

Desmoglein-2, another desmosomal cadherin which interacts

closely with Dsc-2, is required for intestinal barrier integrity
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(24), but no effect on mucosal healing has been demonstrated to

date, thus, underlining the complex interplays and functions of

junctional proteins.

In line with the important role of epithelial cells and

its junctions for intestinal wound repair, Reed et al.

demonstrated that epithelial-expressed CD47 significantly

effects mucosal healing in vitro and in vivo (25). While

selective intestinal knockout of CD47 resulted in decreased

mucosal healing following DSS colitis and biopsy wounding, it

was shown that CD47 regulates mucosal repair again through

a β1 integrin-dependent FAK-Src-p130Cas pathway. Similarly,

other studies provide additional evidence for a direct effect of

CD47 expression through that signaling pathway on intestinal

wound closure. CD47 might be linked to FAK via TSP-1 and

TGF-β1 but the mechanistic connection of CD47 to TSP-1

and TGF-β1 is currently missing and needs to be proven

in the future (26, 27). Interestingly, while CD47 is a

glycoprotein, the functional role of glycans located at the

intestinal epithelium in general and its effect on wound repair

in particular receives increasing attention in recent years. We

could show that targeting of sialyl Lewis glycans located on

Cd44v6 on the apical site of intestinal epithelial cells

positively effect intestinal wound healing in vitro and in vivo

(28). While sialyl Lewis glycans are highly upregulated during

chronic inflammatory bowel diseases such as Crohn’s Disease

and Ulcerative Colitis, antibody-mediated ligation of epithelial

expressed sialyl Lewis glycans significantly enhances epithelial

cell proliferation and migration by activating a signaling

pathway downstream of CD44v6 including Src-FAK (28). In

line with that, there is an increasing focus on glycolisation of

cells such as intestinal epithelial cells and its functional aspect

while the relevance of glycans in wound repair has been

addressed in other studies as well (29–31).

Based on the evidence presented above, the role of junctional

proteins connecting epithelial cells in the gut might have been

understated in the past. Future studies will demonstrate if

other proteins related to tight and adhesion junctions are not

only contributing to epithelial barrier stabilization but also to

signaling pathways resulting in adequate mucosal healing.

Following that, it might not be surprising that wound repair

and barrier function are closely related and should be

addressed collectively. However and regardless of future

studies, intestinal epithelial cells and its junctional proteins can

already be seen as major players in mucosal healing in the gut.
The role of microbiota on intestinal
wound healing

Born sterile, the neonatal intestinal tract is soon colonized

with commensal enteric bacteria. Although the temporal

patterns of colonization and the formation of a complex and

dynamic ecosystem are unique to each infant, the composition
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and functional capabilities of the microbiota resemble those of

an adult at the age of around 2.5 years (32–34). The total

number of commensal bacteria vary greatly between the

different sections of the gastrointestinal tract and reach their

peak in the ascending colon. About 2,100 species classified

into 12 different phyla were identified in humans, but 90% of

the species belong to one of the four following phyla:

Proteobacterio, Actinobacteria, Firmicutes and Bacteroidetes

(35). The symbiosis between microbiota and host is part of an

ongoing evolutionary process that established a barrier

function with a separation the colonized microbes from the

systemic tissues on the one hand, but providing a gateway for

a physiologically relevant cross-talk on the other hand.

In case of an intestinal wound due to physical trauma,

infection or inflammatory conditions, the intestinal barrier is

dysfunctional, changing the interplay of microbiota and

systemic tissue. Depending on the composition of the

microbiota prior or even immediately after wounding, healing

might be promoted or disturbed. Commensal bacteria seem to

promote the initial stage of epithelial restitution as studies in

germ-free mice showed impaired rates of epithelial cell

migration (36, 37). Cell migration is critically dependent upon

the formation of focal adhesions (38), a link between the

extracellular matrix and the cytoplasmic cytoskeleton of the

migrating cell which is controlled by an enzyme called focal

adhesion kinase. Several studies were able to show that enteric

microbiota activate focal adhesion kinase, thereby enhance

epithelial restitution and promote repair of mucosal wounds

in a redox-dependent manner (39–42). The commensal

microbiota also influences the development and training of

the innate and adaptive immune system (43). This process is

modulated by pattern recognition receptor (PPR) expressed

on intestinal epithelial cells (44). They include Toll-like

receptors (TLR) amongst others and recognize microbe-

associated molecular patterns (MAMPs) from commensal

microbiota (45). The TLR signaling regulates the production

of antimicrobial peptides, which in turn are required to

prevent microbial encroachments towards the intestinal

mucosa and thereby preserve gut homeostasis (46). However,

TLR was found to be expressed on intestinal stem cells as

well, inhibiting cellular proliferation in the intestinal crypts

by microbial ligand-mediated activation (47). Moreover,

enterocyte-specific TLR4 activation via LPS resulted in an

increase of intestinal stem cell apoptosis, following the

pathogenic pathway of necrotizing enterocolitis. On the other

hand, there are studies providing evidence, that the cytosolic

bacterial sensor Nod2 stimulates stem cell survival of

intestinal organoids upon activation by peptidoglycan motifs

(48). These muramyl dipeptides (MDP) is common on all

bacteria, but crypt resident bacteria have been identified (49)

and the released MDP may have a protective effect on

intestinal stem cells (48). The close crosstalk between

microbiota and intestinal epithelial cells seems to affect
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proliferation of enterocytes and consecutively the repair of

intestinal wound healing. However, the course for regenerative

capacity of the intestinal epithelial might be set early in life

and dependent on the microbial colonization. Germ-free born

mice co-housed with specific-pathogen free mice during

weaning, showed endured changes in gene expression,

especially erythroid differentiation regulator-1 (Erdr1). It

localizes to intestinal stem and transit amplifying cells, which

differentiate into all epithelial lineages including Paneth cells,

tuft cells, enteroendocrine cells, goblet cells, and enterocytes

along crypt-villus axis. As a consequence, mice would show

increased intestinal epithelial proliferation and regeneration in

response to mucosal damage (50).

Infiltrating immune cells, such as macrophages, are

important components of the intestinal wound healing.

Microbial metabolites or cell wall components affect the

polarization of macrophaghes to a M2 state in a mouse model

of colitis, augmenting intestinal wound healing (51). In case

of inflammation or wounding of the gut, transmigrating

neutrophils accumulate in the injured mucosa, altering the

physiological parameters of the local microenvironment,

which is mostly due to a decrease in oxygen levels resulting

from the formation of reactive oxygen species (52). In

addition, the amount of mucins, as a relevant food supply to

the microbiota, is shortened in mucosal wounds (53), thus,

affecting local microbial composition and maybe to some

extent individual wound healing. On the contrary, Wrzosek

et al. reported an increase in goblet cell differentiation and

mucus production when Bacteroides thetaiotaomicron and

Faecalibacterium prausnitzii, two short-chain fatty acids-

producing bacteria, were introduced to germ-free mice and

colonized their guts (54). Microbial metabolites seem to have

various effects on the architecture and functions of the

intestinal barrier. Short-chain fatty acids were shown to

enhance epithelial proliferation and differentiation and

support the restauration of the epithelial barrier upon tissue

damage (55, 56). In mice, Bacteroides ovatus alleviated

lipopolysaccharide-induced inflammation (57). Furthermore,

Bacteroides ovatus produces indole-3-acetic acid that most

likely promotes IL-22 production by immune cells, yielding

beneficial effects in a mice colitis model (58). In a mouse

endoscope-wounding model, creating uniform lesion in the

colonic mucosa of wild type mice, the abundance of anaerobic

bacteria (Akkermansia spp.) increased substantially in early

regenerative mucosa. In this study Akkermansia muciniphilia

was applied intrarectally and mice showed superior wound

closure and increased proliferation of enterocytes compared to

mice that received inert control. However, this effect was

dependent on the presence of the Fpr1 gene, which encodes

for a necessary protein for respiratory burst in neutrophils (52).

However, despite the great potential of the microbiota and

mucosal healing, another important aspect of microbiota-

associated wound healing is the potential association between
Frontiers in Surgery 04
microbial composition and inflammation-associated

carcinogenesis. Due to the great effects on cell proliferation and

barrier integration, specific microbial species have also been

demonstrated to facilitate the formation of pre-neoplastic

lesions with one study showing a different microbial diversity in

patients with IBD-related colorectal cancer. The importance is

further underlined by different incidences between IBD-related

colon and small bowel cancers which might be related to

differences in microbial compositions. Therefore, further

research is necessary to address this issue to evaluate the impact

of the microbial diversity on the overall IBD-cancer prognosis

as well as to identify the potential of probiotics to limit the

overgrowth of pathogenic microbial species.

In a nutshell, there is consistently increasing evidence that

intestinal wound healing is orchestrated by the microbial-

epithelial interface (Figure 1). However, due to the inter-

individual differences in the composition of the enteric

microbiota, potential dysbiosis in commensal and pathogenic

microbes and the circumstances under which the mucosal

wounding occurs will challenge the results of this

fundamental research in a bench-to-bedside translation. In

addition, the enteric microbiota generates a vast variety of

metabolites of largely unknown functions in the modulation

of host cellular events.
Future aspects

While the medical history teaches the pathophysiological

misleading thesis of monomicrobial infections (59), the results

on the fundamental research of the microbial-epithelial

interface make it hard to believe that a single pathogenic

microbe is causative for the underlying disease. While the

mere presence of a pathogen will not cause the disease, it is a

multifactorial disorder that leads to dysbiosis and ultimately

the abundance of the microbe which meanwhile gained or

activated virulence genes turning into a harmful aggressor for

the host. In surgically created intestinal wounds, the use of

antimicrobial or immunosuppressive drugs, extent and length

of surgery, and early recovery pathways including nutritional

aspects will have a relevant impact on the changes in enteric

microbiota and thus on the healing of intestinal wounds. In

endogenously developed intestinal wounds, e.g. due to

inflammatory bowel disease, changes in microbiota might be a

consequence of previous intestinal barrier breakdown as a

function of dysfunctional intercellular adhesions or misguided

inflammation. While there is data suggesting that Collagenase-

producing and antibiotic-resistant organisms are more

prevalent in anastomotic leak infections, precise adjustments

in clinical management to prevent the local dysbiosis remain

to be found (60). A promising approach seems to be a dietary

change prior to surgery showing a preventive effect in

developing anastomotic leakage after colostomy in mice (61).
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FIGURE 1

Interaction between epithelial cells, junctional proteins and microbiota on intestinal wound healing to restore mucosal homeostasis. Following
epithelial injury, proteins such as CD44v6 or CD47 are upregulated at epithelial cells adjacent to the wound. In addition, luminal microbes are in
close contact with intact epithelial cells. As a result, cell proliferation and migration is controlled and supported by the presented pathways to
restore epithelial linings.
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In addition, the transfer of living microorganisms, mostly

Lactobacillus phyla, has exerted benefical effects on mucosal

healing in murine models of DSS-colitis and gastric ulcera (62).

Besides addressing the microbiota, targeting proteins on

intestinal epithelial cells such as desmosomes, CD47 or sialyl

Lewis glycans relevant for epithelial migration and

proliferation with novel medication has great potential as well

and offers another target to improve intestinal mucosal

healing (23–25, 28). To date, current research demonstrates

great effects on wound healing but the promising results are

limited to in vivo experiments, thus, translation to clinical

studies is necessary to evaluate the disease-specific relevance

in detail. Based on the postulated results, the innovative

approach of targeting mucosal healing for therapy of IBD or

to support anastomotic healing looks to be particularly

promising. However, relevant questions such as how to obtain

adequate local levels of the applicated substance by either oral

or intravenous administration remain to be answered. In case
Frontiers in Surgery 05
of anastomotic healing, local application or injection could be

an interesting approach which needs to be evaluated as well.

Moreover, while for sialyl Lewis glycans antibody-targeting by

GM35 to block shedding of the v6 domain from CD44v6 is

necessary to support wound healing (28), for desmosomes

and CD47 upregulation is aspired (23–25). Promising

mechanisms for protein upregulation in humans are lacking,

thus, more research is necessary to develop a realistic strategy

for the latter proteins. In line with that, targeting and

enhancing the involved pathways such as the β1 integrin-

dependent FAK-Src-p130Cas pathway is an alternative which

can be translated to clinical aspects more easily. Importantly,

striving for a limited local effect of the administered agent is

particularly relevant for CD47 since it is an ubiquitously

expressed protein and a systemic impact of medical targeting

of CD47 cannot be completely estimated upfront.

Finally, and most importantly, further development of

treatment strategies does not mean to leave established aspects
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and concepts such as anti-inflammatory and

immunosuppressive medication behind but to complement

the current therapeutic regimen. Therefore, optimal disease-

specific therapy should consider all aspect of the

pathophysiology including epithelial cells, immune cells and

microbiota in the future and will combine different targets to

address mucosal healing better and to improve patient outcome.
Conclusion

Recent research has demonstrated a major role of intestinal

epithelial cells as well as microbiota on adequate mucosal

healing in the gut with a close interaction between both sites.

All targets involve the key intrinsic parameters of intestinal

wound healing: The systemic condition of the patient, the

mucosal cells, resident and transmigrating immune cells, and

the enteric microbiota, both commensal and pathogenic

(Figure 1). However, mucosal healing remains a double-edged

sword since overstimulation of proliferative pathways can

results in neoplastic lesions. Based on the postulated results, a

repetitive re-evaluation of established principles for adequate

wound repair in the gut is necessary to improve patient

outcomes and disease control in the short- and long-term. To

date, therapies of IBD and anastomotic healing mainly focus

on immunosuppression and surgical aspects. However, the

complex interplay not only of immune cells but also of

junctional proteins and microbiota needs to be addressed in

future studies and novel therapeutic protocols. Therefore,
Frontiers in Surgery 06
future investigators will need to consider all parameters in

trying to piece this complex puzzle together. For clinicians,

protection or restoration of the intestinal homeostasis should

be the ultimate goal in the treatment of intestinal wounds.
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