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Abstract: Reversible protein phosphorylation is a posttranslational modification of regulatory pro-
teins involved in cardiac signaling pathways. Here, we focus on the role of protein phosphatase 2A
(PP2A) for cardiac gene expression and stress response using a transgenic mouse model with cardiac
myocyte-specific overexpression of the catalytic subunit of PP2A (PP2A-TG). Gene and protein
expression were assessed under basal conditions by gene chip analysis and Western blotting. Some
cardiac genes related to the cell metabolism and to protein phosphorylation such as kinases and
phosphatases were altered in PP2A-TG compared to wild type mice (WT). As cardiac stressors, a
lipopolysaccharide (LPS)-induced sepsis in vivo and a global cardiac ischemia in vitro (stop-flow
isolated perfused heart model) were examined. Whereas the basal cardiac function was reduced in
PP2A-TG as studied by echocardiography or as studied in the isolated work-performing heart, the
acute LPS- or ischemia-induced cardiac dysfunction deteriorated less in PP2A-TG compared to WT.
From the data, we conclude that increased PP2A activity may influence the acute stress tolerance of
cardiac myocytes.
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1. Introduction

Reversible phosphorylation of proteins belongs to the essential mechanisms by which
the function of the mammalian heart is regulated. The serine/threonine protein phos-
phatases type 1 (PP1) and type 2A (PP2A) are responsible for more than 90% of the cardiac
serine/threonine phosphatase activity in the human heart. They control the dephosphory-
lation of multiple regulatory proteins involved in cardiac contractility, electrophysiology,
gene expression, cell metabolism, and receptor signaling (reviewed in, e.g., [1,2]). The
multiple functions of PP2A, at least in part, might be due to the highly variable structure of
the PP2A holoenzyme. The trimeric PP2A holoenzyme is usually composed of a catalytic
C-subunit, a structural A-subunit, and a regulatory B-subunit [3]. Whereas only two genes
code for both the C- or A-subunits, at least 15 genes with additional splice variants for the
B-subunit are known. Moreover, at least seven genes are coding for endogenous proteins
that may act as PP2A inhibitors [3]. This variable composition of the PP2A-holoenzyme
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may form the basis of the substrate specificity and may contribute to the precise fine tun-
ing of signaling pathways in the cell, though many aspects need more research. PP2A is
generally thought to play an important role not only under physiological but also under
pathophysiological conditions [1,4].

The heart belongs to the most frequently affected organs in patients suffering from sep-
sis. Sepsis-induced cardiomyopathy is accompanied by ventricular dysfunction, metabolic
dysfunction, and elevated biomarkers [5–7]. Sepsis is caused most frequently by bacterial
infections. Bacteria contain many molecules on their outer cell membrane and intracellular
molecules that are released after bacterial lysis and that are recognized by specific receptors
in the heart of the patient leading to an inflammatory cardiac response. One important
bacterial surface molecule is the endotoxin lipopolysaccharide (LPS) that acts in the heart
via the toll-like receptor 4 (TLR4) signaling cascade leading to activation of the nuclear
factor kappa B (NF-κB) (review [8,9]). Finally, proinflammatory cytokines such as tumor
necrosis factor alpha (TNFα) and interleukin 1 (IL-1) as well as high amounts of nitric oxide
(NO) are released contributing to the organ dysfunctions in sepsis [8,9]. This pathway will
be examined here also because it was shown that PP2A is involved in the regulation of the
TLR4-mediated signaling [10].

Moreover, the role of PP2A-dependent protein phosphorylation in the heart was
demonstrated using genetically modified mouse models. Cardiac overexpression as well
as knock out of the catalytic subunit of PP2A led to cardiac hypertrophy and cardiac
dysfunction [11,12].

As another clinically relevant stressor, we studied in the present work also the ischemia-
reperfusion injury. As a consequence of myocardial infarction, the ischemia-reperfusion
injury greatly contributes to morbidity as well as to mortality of the patients [13]. It might
appear to be a paradox that the reperfusion of an ischemic heart leads to its damage. A
main reason for this negative effect was identified as the generation of reactive oxygen
species (ROS) [14,15]. By this way, the oxidation of nearly all cellular molecules such as
lipids, proteins, and nucleic acids by free radicals changes the structure and function of
these molecules and can lead to cell damage and cell death [13,15]. In this respect, it was
particularly important for us that in nearly all signaling pathways that are affected by
ischemia and reperfusion, protein phosphorylation is involved. These signaling pathways
include, for example, the transcriptional control of gene expression, the inflammatory
response, and the regulation of oxidative stress. Importantly, PP2A appears to be involved
in all of these pathways [16].

Thus, we hypothesized that PP2A is involved in the response of the heart to sep-
sis or ischemia. We started with a comparison of the cardiac gene expression profiles
in wild type (WT) and PP2A-transgenic (PP2A-TG) mice under physiological (control)
conditions. Thereafter, we analyzed the cardiac response of WT and PP2A-TG mice in
lipopolysaccharide-induced sepsis and in a separate experimental setup, we analyzed the
response to a global ischemia in vitro.

2. Results
2.1. Differential Gene Expression under Basal Conditions in PP2A-TG Hearts

In previous work, we had never the opportunity to analyze the differential gene
expression profile in PP2A-TG hearts. Such knowledge might be helpful in understanding
the strength of our model better. To that end, total cardiac RNA was prepared from quickly
frozen WT and PP2A-TG hearts under basal conditions, that is, untreated conditions.
Thereafter, a mouse genome chip was used to get a complete overview of expressed genes.
For further analyses, only genes with 1.5-fold up- or downregulation were taken into
consideration (supplementary Table S1 and S2). Under these restrictions, 170 genes were
established to be upregulated in PP2A-TG (supplementary Table S1) and 365 genes were
downregulated in PP2A-TG (supplementary Table S2). In addition, the analysis of genes
expressed in both WT and PP2A-TG and adjusted by a variance filter is shown in the
supplementary Table S3. Further graphical presentations of the microarray data including
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principal component analyses, corresponding analyses, and t-Test results are shown in the
supplementary Figures S1 to S4.

Currently, the differentially expressed genes give no hint to a signaling pathway
possibly disturbed in PP2A-TG hearts that could be an explanation for the functional
cardiac restrictions found in these mice. We hypothesized that some genes related to
the energy/cell metabolism and to protein phosphorylation (kinases, phosphatases) were
altered in PP2A-TG hearts compared to WT (Figure 1). Therefore, we decided to test the
protein expression of several genes, that were changed in the gene chip analysis and some
genes accepted to be particularly relevant for the cardiac function in our mouse model but
that were, surprisingly, not changed in the gene chip analyses on the mRNA level (Figure 1).
The overexpression of the catalytic subunit of PP2A could be confirmed by both, gene
chip analysis and Western blotting in PP2A-TG, as expected and a control of the system
(Figures 1 and 2). Furthermore, by Western blotting, we detected an upregulation of heat
shock protein 25 (HSP25) and a downregulation of endonuclease G (Endog), nucleoporin
62 (Nup62), and protein phosphatase 5 (PP5) on protein level (Figure 2). Interestingly,
HSP25 was downregulated in the gene chip. Likewise, other genes that were altered in
the gene chip, e.g., protein phosphatase 1c alpha (PP1cα) or calcium calmodulin kinase
II beta (CamKIIβ) were unchanged in Western blotting (compare Figures 1 and 2). These
findings cast doubt on the predictive power of a gene chip, at least under our experimental
conditions. Similar discrepancies have been reported before (review: [17]). Original Western
blots are presented in supplementary .
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Figure 1. Differential mRNA expression. The basal cardiac gene expression profile of PP2A overex-
pressing (PP2A-TG) and littermate wild type (WT) mouse hearts was analyzed by a mouse genome
gene chip. Data are presented as ratio of the mean PP2A-TG signal divided by the mean WT
signal ± SD. More detailed data can be found in the supplementary Tables S1–S3 and supplementary
Figures S1–S4. (A) Several subunits of different protein phosphatases are summarized. (B) A selection
of genes with various functions is shown. The abbreviations are: aldehyde dehydrogenase 2 (Aldh2),
Ca2+ calmodulin kinase II (CamKII), cardiac calsequestrin (CSQ2), endonuclease G (Endog), glycerin
aldehyde phosphate dehydrogenase (GAPDH), heat shock protein 25 (HSP25), nitric oxide synthase
3 (NOS3), nucleoporin 62kDa (Nup62), proliferating cell nuclear antigen (PCNA), superoxide dismu-
tase 2 (SOD2). Three RNA samples from each genotype (n = 3) were studied. * p < 0.05 vs. WT (by
comparison of individual data sets).
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Figure 2. Basal cardiac protein expression. Basal cardiac protein expression of a selection of genes
with various functions analyzed by Western blotting of wild type (WT) and PP2A overexpressing
(PP2A-TG) mouse hearts. Original Western blots are shown in the supplementary Figures S5 and S6.
Quantification data of Western blots are presented as ratio of the mean PP2A-TG signal divided by
the mean WT signal ± SD. The abbreviations are: aldehyde dehydrogenase 2 (Aldh2), cardiac calse-
questrin (CSQ2), Ca2+ calmodulin kinase II (CamKII), endonuclease G (Endog), glycerin aldehyde
phosphate dehydrogenase (GAPDH), heat shock proteins 25 and 90 (HSP25, HSP90), nucleoporin
62kDa (Nup62), catalytic alpha subunit of protein phosphatase 1 (PP1c), structural A-subunit and
catalytic C-subunit of protein phosphatase 2A (PP2A-A, PP2A-C), protein phosphatase 5 (PP5),
superoxide dismutase 2 (SOD2). * p < 0.05 vs. WT.

2.2. Role of PP2A in Sepsis

Protein phosphorylation is important for the regulation of inflammatory signaling [18,19].
We did not detect marked differences in inflammatory cytokine expression in our microarray.
Nevertheless, because PP2A is a well-established regulator of inflammatory signaling in
non-cardiac cell types [20,21], we hypothesized that the expression of pro-inflammatory
genes may be altered in hearts of PP2A-TG mice.

2.2.1. LPS and Echocardiography

First, WT and PP2A-TG mice were divided further into four groups with subsequent
LPS-injection or with NaCl-(solvent control)-injection (Figure 3). The basal cardiac func-
tion of each individual mouse was assessed by echocardiography. Thereafter, a single
intraperitoneal injection of LPS (25 mg/kg in 0.9% NaCl) or isotonic 0.9 % NaCl solution
in water (as solvent control) was administered. The development of a possible cardiac
dysfunction was monitored three hours and seven hours after LPS-or NaCl-injection in
each single mouse (Figure 3). This was done because sepsis is known to develop over
time. We used two time points of measurement because this was expected to facilitate our
understanding of putative underlying mechanisms of the sepsis. The heart rate was not
different between WT and PP2A-TG under basal conditions, but was increased by LPS in
WT seven hours after LPS-injection, whereas in PP2A-TG mice no significant increase was
noted (Figure 3A). However, the contractility of the PP2A-TG hearts was impaired already
under control (basal) conditions as demonstrated by a reduced left ventricular ejection
fraction and increased ventricular diameters (Figure 3B–D). Furthermore, the application
of LPS led to a significant reduction in the systolic cardiac function, demonstrated by a
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time-dependent fall of the left ventricular ejection fraction in both WT and PP2A-TG mice
(Figure 3B). After seven hours, the narcotized mice were euthanized and the hearts were
removed to perform an analysis of the mRNA expression.
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Figure 3. Echocardiography after LPS. Measurement of echocardiographic parameters of wild type
(WT) and PP2A overexpressing mice before (Ctr) and 3 and 7 h after intraperitoneal application of
LPS (25 mg/kg) or NaCl solution as solvent control. (A) Heart rate, (B) ejection fraction, (C) maximal
systolic cardiac diameter of the left ventricle, (D) maximal diastolic cardiac diameter of the left
ventricle of the heart. First bars always indicate basal conditions (before application of LPS), second
bars indicate three hours after application of LPS or solvent control (NaCl). Third bars indicate seven
hours after application of LPS or solvent control (NaCl). Numbers in brackets indicate the number of
experiments. F p < 0.05 vs. WT; # p < 0.05 vs. NaCl.

2.2.2. LPS and Working Heart

In a complementary experimental setup, we analyzed the cardiac function in vitro
three days after LPS- or NaCl-injection using the isolated work-performing heart prepara-
tion to measure the cardiac contractility independent of any neuronal or humoral influences
that are operational in living mice. Under control conditions, heart rate and maximum left
ventricular pressure were, at first glance, not different between WT and PP2A-TG hearts
in vitro (Figure 4A,B). However, when looking at the maxima of the derivative of pres-
sure with respect to time (dP/dt), as a measure of left ventricular performance, the basal
contractility of PP2A-TG hearts was reduced compared to WT (Figure 4C,D) which is in
line with our echocardiographic data (Figure 3B). Under septic conditions, three days after
LPS application, the contractility of WT hearts was impaired compared to control without
any changes in heart rate (Figure 4). Interestingly, the opposite was found for PP2A-TG
hearts: after LPS-injection, we measured in PP2A-TG hearts an increased heart rate but
preserved cardiac contractility compared to control (Figure 4). This may be different from
the situation in the living mouse, where, for instance, the sympathetic nerve system would
control to a high extent the heart rate. One can easily reconcile the altered heart rate,
reduced function in vitro, and preserved function in the living animal. The mouse ventricle
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displays a positive “treppe” phenomenon. In other words, in the isolated mouse heart (as
in the human heart: [22]) an increase in the heart rate alone is sufficient to raise force of
contraction [23]. We suggest this to have happened here. At the end of the experiments,
the hearts were freeze-clamped and homogenized to analyze the mRNA expression of
selected genes (4.2.3.). In addition, the activity of NADPH oxidase was estimated in these
cardiac homogenates in order to assess oxidative stress (Figure 4E). In the LPS groups,
the NADPH oxidase activity was increased 2-fold compared to the control hearts. There
was no difference in this regard between WT and PP2A-TG hearts neither under control
conditions nor after LPS (Figure 4E).
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Figure 4. Isolated perfused hearts after LPS. Working heart preparations of wild type (WT) and PP2A
overexpressing mouse hearts 3 days after intraperitoneal application of LPS (25 mg/kg) or NaCl
solution as control. (A) Heart rate, (B) maximum left ventricular pressure (LVP), (C) maximum rate
of left ventricular pressure development (+dP/dt), (D) maximum rate of left ventricular pressure
decline (−dP/dt), (E) activity of NADPH oxidase in cardiac tissue from WT or PP2A-TG. Numbers
in brackets indicate the number of experiments F p < 0.05 vs. WT; # p < 0.05 vs. control (Ctr).
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2.2.3. LPS and Gene Expression

After functional measurements (Figure 4), the expression of cardiac genes involved in
the LPS-activated inflammatory pathway was analyzed by real time RT-PCR. After seven
hours of LPS treatment (experimental setup in 4.2.1), some key genes of the TLR4 signaling
pathway were analyzed. The mRNAs encoding for the cytokines IL-1β, IL-6, and TNFα
were increased seven hours after LPS in WT as well as in PP2A-TG (Figure 5A). Additionally,
the mRNA for CD14 that is part of the LPS receptor complex was increased by LPS but
the mRNA of TLR4, the LPS receptor itself, remained unchanged in all groups (Figure 5B).
Interestingly, the expression the mRNA for ANP, a marker for cardiac hypertrophy, that
was noted to be elevated in PP2A-TG controls, as expected in a mouse model with cardiac
hypertrophy [11], decreased to WT levels after LPS (Figure 5B). Three days after LPS-
treatment, the mRNA for IL-6 was still augmented in WT as well as in PP2A-TG. However,
the mRNA for TNFα was slightly raised only in WT and completely reduced to the control
level in PP2A-TG (Figure 5C).
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Figure 5. LPS-mediated gene expression. Cardiac gene expression analyzed by qPCR of wild type
(WT) and PP2A overexpressing (PP2A-TG) mouse hearts after intraperitoneal application of LPS or
NaCl solution as control (Ctr) after 7 h. Ordinates display relative mRNA expression in percentage of
control, that is, WT hearts from mice treated with isotonic sodium chloride solutions alone (solvent
control). (A) displays the mRNA for interleukin 1 beta (IL-1β), for interleukin 6 (IL-6) and for tumor
necrosis factor alpha (TNFα). (B) displays the mRNA for atrial natriuretic peptide (ANP), for toll like
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receptor 4 (TLR4) and for cluster of differentiation 14 protein (CD14). Three days after LPS injection in
(C) mRNA for interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) as depicted in the ordinate.
Note that after three days, expression of cytokine mRNAs nearly reached basal values. Data were
normalized to GAPDH (A,B) or 18S RNA (C) mRNA expression and WT by the 2−∆∆CT method.
F p < 0.05 vs. Ctr, # p < 0.05 vs. WT.

2.3. Role of PP2A in Ischemia/Reperfusion
2.3.1. Cardiac Function In Vitro

In a previous study, where we investigated myocardial infarction (by occluding in vivo
the left coronary artery) in PP2A-TG, we observed a protective role of PP2A [24]. This
motivated us to find out whether PP2A affects cardiac performance in a model of ischemia
and reperfusion where any influence of the blood and the nervous system does not con-
found the interpretation of the experimental results. Thus, we employed the working heart
set-up. In this model, we induced a global cardiac ischemia by ceasing the perfusion of the
isolated heart for 120 min, a time period that was found in pilot studies (data not shown)
to result in an irreversible functional impairment of the WT and PP2A-TG myocardium
(Figure 6). The main findings were that cardiac contractility and heart rate were reduced af-
ter ischemia. Indeed, the reductions were similar in WT and PP2A-TG hearts. Interestingly,
the maximum and minimum rates of left ventricular pressure development (dP/dtmax
and dP/dtmin) were smaller under basal conditions in PP2A-TG. Therefore, the relative
decline in maximum and minimum rate of left ventricular pressure development under
ischemia was less in PP2A-TG compared to WT (Figure 6). This observation is consistent
with the data recorded by the working heart set-up three days after LPS-treatment where
the pressure development in PP2A-TG was decreased even under basal conditions but no
further under septic conditions (Figure 4).

2.3.2. NADPH Oxidase and Nitric Oxide Synthases

As reported above for LPS samples, the activity of NADPH oxidase was measured as
a source of reactive oxygen species (ROS) and was found to be increased after 120 min of
ischemia in PP2A-TG hearts compared to WT (Figure 7). As NO is suggested to be involved
in oxidative processes in cardiac ischemia [25], the expression of the main nitric oxide
synthase (NOS) isoforms was analyzed by Western blotting (Figure 7 and supplementary
Figure S7) and then by immunohistochemistry (Figure 8). The NOS3, also known as
endothelial or eNOS, was readily detectable in both WT and PP2A-TG hearts and was not
different between genotypes (Figures 7 and 8). The expression of NOS1, also known as
neuronal or nNOS, was noted in both WT and PP2A-TG but was interestingly higher in
PP2A-TG than in WT (Figures 7 and 8). The so-called inducible isoform NOS2 or iNOS was
not detectable by Western blotting in the examined set of samples, neither in WT nor in
PP2A-TG (Figure 7). However, conceivably because the reaction of the antibody with the
antigenic epitope of iNOS is better under these conditions, in immunohistochemistry, a
slight expression of iNOS was noted, but confined to small regions of mouse ventricular
slices and thus of doubtful relevance in our context (Figure 8).
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Figure 6. Ischemic cardiac function in isolated perfused hearts from wild type hearts (WT) and heart
with cardiac specific overexpression of the catalytic subunit of protein phosphatase 2A (PP2A-TG).
Contraction parameters were assessed under basal conditions and 120 min after ischemia. Heart
rate is depicted as beats per minute (BPM) under (A), maximum left ventricular pressure as milli
meter mercury column (mm Hg) (B) as LVPs, maximum first derivative of pressure in left ventricle in
millimeter mercury column per second (mmHg/s) in the ordinate of (C), minimum first derivative
of pressure in left ventricle in millimeter mercury column per second (mmHg/s) in the ordinate
of (D), open bars indicated basal perfusion conditions and filled bars indicate values at the end of
the ischemia. Numbers in bars depict the numbers of experiments in hearts from WT or PP2A-TG.
F p < 0.05 vs. WT, # p < 0.05 vs. basal conditions.
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Figure 7. The cardiac activity of NADPH oxidase is plotted in (A). Western blot data for the expression
of neuronal (B) and endothelial (C) nitric oxidase synthase (nNOS and eNOS) in the hearts from WT
and PP2A-TG are plotted. The open bars indicate basal perfusion conditions and filled bars indicate
values at the end of the ischemia. Original nitrocellulose membranes are shown in (D) for expression
of nNOS (upper tracing) or eNOS (lower tracing), before ischemia (basal, left-hand side) and after
120 min of ischemia (right-hand side). The inducible NOS (iNOS) was not detectable by Western
blotting (middle tracing). In the supplementary Figure S7, the corresponding fast green stained
membranes are shown to demonstrate equal protein loading. The data for nNOS and eNOS are
summarized as means and SD for 4–5 hearts and are presented in bar diagrams in (B,C). F p < 0.05
vs. WT, # p < 0.05 vs. basal conditions.
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green. Nuclei are counterstained in blue with DAPI (4′,6-diamidino-2-phenylindole). Red blood 
cells appear yellow colored due to autofluorescence. Note the differences in NOS expression be-
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Figure 8. Immunohistochemical detection of NOS1 (nNOS), NOS2 (iNOS), and NOS3 (eNOS) in
ventricular tissue sections from wild type (WT) and PP2A transgenic mice (TG). Controls (Ctr) are
samples with omission of the first antibody. Bars in the lower right angle of the photographs indicate
the length markers in micrometers (µm). Nitric oxide synthase (NOS) isoforms are stained in green.
Nuclei are counterstained in blue with DAPI (4′,6-diamidino-2-phenylindole). Red blood cells appear
yellow colored due to autofluorescence. Note the differences in NOS expression between WT and TG.
This set of hearts is representative of two other experiments.

3. Discussion

The main new findings of the present work are evidence that PP2A can be protective
against cardiac sepsis and cardiac global ischemia.

Protein phosphorylation is an essential regulatory mechanism in nearly all aspects
of cardiovascular function. In diseased human hearts, for example, an elevated protein
phosphatase activity was found [26]. A role of PP2A in cardiac pathophysiology was
demonstrated in a mouse model with PP2A overexpression [11,27]. Moreover, Mishra et al.
(2020) highlighted the importance of protein phosphorylation for the cellular protein quality
control and listed examples for the relation between cardiac diseases and inadequate protein
quality control mechanisms [28]. Nevertheless, it remains unclear under what conditions
a booster in cardiac protein phosphatase activity, in general, is detrimental for inotropy.
PP2A overexpression in mouse cardiomyocytes led to cardiac hypertrophy and cardiac
dysfunction [11] and by co-overexpression of PP5, the detrimental effects were further
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worsened [27]. Moreover, overexpression of PP2A was found to be protective in the case
of myocardial infarction [24] or β-adrenergically induced cardiac hypertrophy [29]. To
get further insight into this issue, we studied two additional cardiac stressors in these
transgenic mice: either LPS-induced sepsis or ischemia in the isolated spontaneously
beating heart.

The broad range of functions altered by PP2A, at least in cell culture or in isolated
proteins, motivated us to analyze the gene expression profile in PP2A-TG hearts compared
to WT hearts. Especially, we had recently demonstrated by a proteomic approach that the
overall protein expression profile is different between WT and PP2A-TG [30]: we noted
a differential protein profile but could not identify the differentially expressed cardiac
proteins between WT and PP2A-TG, because of the limitation of that method. Therefore,
we performed the gene chip experiments where all mRNAs are probably measurable.
Several differentially expressed genes were noted, but the variability was high and no clear
hint to a special signaling pathway altered in our model could be derived from the data.
Moreover, the verification by Western blotting revealed paradoxical findings for some genes.
This may be explained at least in part by the age and gender of the experimental mice.
For gene expression analysis, five-month-old male mice were used whereas for Western
blotting, the mice were about six months of age and both sexes were used. Even if we did
not find any differences in the protein expression between male and female PP2A-TG at
least for the studied proteins so far, this is a limitation of the study.

Nevertheless, based on previous studies [24,29], we expected a protective influence of
PP2A also in relation to cardiac stressors which we had not tried before in this model. Our
choice of stressors was driven by their clinical relevance: beyond any reasonable doubt, a
clinically important stressor is the infection-related cardiac dysfunction in sepsis because
it confers a high risk to lead to a sepsis-induced cardiomyopathy associated with a high
incidence of death [31]. In animal experimental models, the bacterial endotoxin LPS is
widely used as inductor of a sepsis. Additionally, we ourselves have used LPS before with
success and had developed the necessary treatment protocols in mouse hearts [18,32]. In
the heart, LPS binds to the receptor protein TLR4 that is involved in heart dysfunction [33].
In this context, the transcription factor NF-κB plays an important role in inflammation by
translating the LPS-TLR4 signaling to the transcription of pro-inflammatory genes [34].
Moreover, PP2A expression and activity were reduced in a mouse model with LPS-induced
sepsis, leading to an elevated phosphorylation state of the inhibitory subunit of troponin
and reduced contractility of isolated cardiomyocytes [35]. Moreover, PP2A is involved in
the regulation of the NF-κB pathway [36]. The binding of LPS to TLR4 initiates a signaling
cascade eventually leading to NF-κB and c-Jun activation and subsequently resulting in an
increased expression of some related pro-inflammatory genes such as IL-1β or TNFα [10].
This signaling cascade is mainly maintained by phosphorylation and PP2A was found
to act as important regulator at various points of the signal chain. For example, PP2A
is targeted to the IκBα kinase (IKK) complex as well as to phospho-IκBα (α inhibitor of
NF-κB), dephosphorylates and inactivates both IKKα/β and IκBα, and thereby prevents
sustained activation of NF-κB [10]. By this mechanism, PP2A may offer protection against
LPS-induced inflammation. This assumption is supported, for example, by a study on
endotoxin tolerance using human monocytes: in LPS-treated cells, the authors established a
higher phosphatase activity and an enhanced PP2A expression controlling TLR4 signaling
and thereby endotoxin tolerance [37]. Here, we noted a possible endotoxin tolerance in the
mechanical function of PP2A-TG mice but not on the level of cytokine expression. Possibly,
the overexpressed catalytic subunits of PP2A (“superfluous PP2Ac”) could not bind to
the related phospho-proteins because of missing regulatory subunits responsible for the
targeting of the holoenzyme. This is plausible because the gene expression analysis of the
PP2A-TG hearts (but also previous Western blots: [11]) indicated unchanged expression of
PP2A A- and B-subunits including the B56γ-subunit that is suggested to act as a targeting
subunit to the NF-κB pathway together with the scaffolding A-subunits [19].
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We have long-standing experience in using global ischemia in isolated perfused mouse
hearts to assess the role of overexpressed genes in transgenic mouse hearts. For instance,
using this model, we noted cardiac protection against ischemia in the heart of transgenic
mice that overexpressed the H2-histamine receptor, the 5-HT4-serotonin receptor, and the
A2A–adenosine receptor [32,38–41]. These receptors are pertinent in the present context
because their activation decreases protein phosphatases activity [18]. As concerns en-
hanced activity of cardiac phosphatases, it is noteworthy that the present model of ischemia
and reperfusion can differentiate between important and probably unimportant cardiac
phosphatases for ischemia and reperfusion: for instance, using this set up we did not
observe alterations in cardiac function between WT and mice that overexpressed cardiac
PP2C [42]. In contrast, we noted cardioprotective effects in this set up for mice with car-
diac overexpression of PP5 (PP5-TG) alone or in combination (PP2A-TG crossbred with
PP5-TG) [18,27]. Ischemia and reperfusion injuries have been studied for decades. In our
view, all these studies basically agree on a crucial role of cytosolic calcium (review: [43]).
Hence, we hypothesize here that PP2A alters the phosphorylation state and thence the
function of proteins that regulate the calcium homeostasis. In previous work, we have
shown repeatedly that cardiac regulatory proteins such as phospholamban are substrates
for protein phosphatases namely PP2A (review: [44]). More specifically, reduced phospho-
rylation of phospholamban has been reported by us in PP2A overexpressing mice [11]. Our
group was not the first to look for a role of PP2A in cardiac ischemia. Using fostriecin,
a drug developed as a cancer therapy because it inhibited topoisomerase II, colleagues
could present evidence in isolated perfused rabbit hearts that PP2A exerts detrimental
cardiac effects in ischemia and reperfusion [45]. Specifically, they could show that fostriecin
given 15 min before no flow ischemia or 30 min into reperfusion protects the cardiac tissue
against ischemic damage [45]. These data convincingly show that fostriecin can protect
the heart [45]. However, these results were obtained in acute application of fostriecin
(with the perfusion buffer) with genetically unaltered animals (“wild type rabbits”). In
our model, PP2A has led to numerous alterations in gene expression (see gene chip data)
and in addition, PP2A already had dephosphorylated, for instance, phospholamban, a
protein involved in calcium homeostasis [11] before the start of the experiment. Hence, the
apparent contradictory findings between Weinbrenner et al. ([45]: detrimental role of PP2A)
and our data might be due to the duration of altered PP2A activity in both model (minutes
versus months). This is in line with our previous study where PP2A had a detrimental role
under basal conditions in PP2A-TG, in a similar way as represented here, but improved
survival after myocardial infarction [24]. Alternatively, fostriecin might not be so specific
for PP2A as initially thought: we now know that fostriecin also potently inhibits (in the
nanomolar range) the activity of a protein phosphatase called PP4 [46] (our lab is now
overexpressing PP4 in the heart for that reason) and, of course, species differences (mouse
versus rabbit) could well play a role. On a positive note, our findings and theirs concur
on a role of PP2A in ischemia and reperfusion and more work is expected to resolve this
interesting contradiction in the literature.

Finally, we felt it important to clarify how free radical formation including NO pro-
duction might play a role in our functional findings in sepsis and ischemia in PP2A-TG.
In rodent models of cardiac pressure overload or myocardial infarction, the three NOS
isoforms (NOS1, NOS2, and NOS3) may play neutral, protective, or even detrimental roles
in myocardial remodeling, depending on the NOS activity, the cellular and even subcel-
lular location of each NOS and their regulators [25,47]. NOS can be protective in human
ischemia/reperfusion: an increase in NOS can be associated with augmented calcium levels
activating the activity of NOS and may result in increased S-nitrosylation of the L-type
calcium channel, less calcium entry, and therefore reduced potentially damaging calcium
levels in the cytosol during ischemia [48].

In a complementary experiment, after myocardial infarction, in mice with genetic
deletion of NOS1 (which is increased in PP2A-TG, Figure 7) pronounced cardiomyocyte hy-
pertrophy and left ventricular dilation was noted: this suggested to the authors a protective
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role of NOS1 [49]. Taken together, the findings suggest that upregulation of myocardial
NOS1 in infarcted hearts may be an important adaptive mechanism [49]. Fittingly, PP2A-
TG expressed much more NOS1 protein than WT. In agreement with this, we noticed a
higher NADPH oxidase activity in PP2A-TG than in WT. One can speculate that this higher
basal activity of NOS and elevated production of free radicals might contribute to better
protection of the hearts from PP2A-TG compared to WT with respect to both ischemia
and sepsis. Moreover, one might conclude that increased expression of NOS1 in PP2A-TG
might, in part, explain the lower initial mechanical performance of isolated perfused hearts
from PP2A-TG compared to WT. Indeed, high levels of NO produced in the heart can
reduce cardiac inotropy [50], in part by inhibiting the Ca2+ release through the ryanodine
receptor in the sarcoplasmic reticulum [51].

In summary, we have extended our previous studies on cardiac roles of protein
phosphatases [44,52] and specifically of PP2A. Here, we present experimental data that
PP2A may be able to weaken the decrease in cardiac function during cardiac sepsis and
cardiac ischemia. However, the detailed biochemical pathways involved still need to be
meticulously studied in detail. At this stage, we nevertheless speculate that PP2A might be
a druggable target for cardiac therapy of sepsis and ischemia.

4. Materials and Methods
4.1. Transgenic Mice

Here, transgenic mice with cardiomyocyte-specific overexpression of the catalytic
subunit of PP2A were used [11]. Transgene-positive mice (CD1 background) were routinely
identified by PCR assay of tail genomic DNA. Hearts from PP2A-TG mice showed a 2.5-
fold overexpression of the catalytic subunit of PP2A on protein level. The phenotype
of this mouse model has been described repeatedly [11,24,53,54]. Briefly, life span and
fertility of these mice were unchanged compared to WT. However, age-dependently, PP2A-
TG mice develop a cardiac hypertrophy, decreased cardiac function, and diminished
response to β-adrenergic stimulation. On the other hand, PP2A-TG mice showed improved
survival after myocardial infarction compared to WT mice [24]. For microarray experiments,
5-month-old male littermates were used. For all other experiments, 6–8-month-old mice
of each gender were used. The investigation conforms to the Guide for the Care and Use
of Laboratory Animals published by the National Research Council (US) 2011 [55]. The
animal experiments were approved by the local ethics committee of the state Sachsen-
Anhalt (Permit Number: 42502-02-691 MLU). For euthanasia of mice, intraperitoneal
injection of 80 mg pentobarbital per kg body weight was used. All efforts were made to
minimize suffering.

4.2. RNA Extraction and cDNA Synthesis

For analysis of cardiac mRNAs, the total RNA was isolated from the whole hearts
with the TRIzol™ reagent (Invitrogen, by Fisher Scientific, Schwerte, Germany) according
to the manufacturer’s protocol. For reverse transcription, the Maxima First Strand cDNA
Synthesis Kit combined with a DNase I digestion to get rid of contaminating DNA was
used as described by the manufacturer (Fisher Scientific, Schwerte, Germany). Briefly,
about 5 µg total RNA and a mixture of oligo(dT)18 and random hexamer primers were
used for reverse transcription. Finally, the cDNA was diluted with nuclease free water to
a volume corresponding to 0.1 µg of originally added RNA per µL. A NRT (no reverse
transcription) control was prepared for all RNA samples by omission of the enzyme.

4.3. Gene Chip Analysis

The gene expression analysis was performed with slight modifications as described
elsewhere [56]. Total RNA was extracted from 50–100 mg of heart tissue as described above.
The RNA concentration was assayed photometrically at 260 nm (BioPhotometer, Eppendorf,
Hamburg, Germany) and the quality of the RNA samples was assessed by the integrity of
the ribosomal 18S and 28S RNAs using a denaturing agarose gel. All further steps including
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hybridization and gene chip scanning were performed in the Core Unit DNA Technologies
at the Medical Faculty of the University of Leipzig. The GeneChip Mouse Genome 430
2.0 Array (Affymetrix, Santa Clara, CA, USA) was used and the data were processed
with the corresponding microarray analysis software (Affymetrix, Santa Clara, CA, USA)
according to the manufacturer’s manual. After data processing, the subsequent analysis
was performed only with genes expressed in both WT and PP2A-TG. Data analysis was
performed with the stand-alone client of the TM4 application MeV (https://mev.tm4.org
(last accessed on 7 April 2022) [57].

4.4. Real Time PCR

The cDNA samples were analyzed by real time PCR using a BioRad CFX Connect™
system using together with the iTaq SYBR Green kit (Bio-Rad Laboratories, Munich, Ger-
many). As controls, the NRT samples and for all primer pairs no template controls (NTCs)
were amplified. At the end of each PCR protocol, a melting curve of the PCR products was
performed. Finally, the signal of the 18S or GAPDH amplification was used to normalize
the PCR data and to calculate the relative expression of the genes of interest according to
the 2−∆∆CT method [58]. The following primer sequences were used:

18S RNA:
Sense: 5′-GTTGGTGGAGCGATTTGTCTGG-3′

Antisense: 5′-AGGGCAGGGACTTAATCAACGC-3′

Atrial natriuretic peptide (ANP):
Sense: 5′-GTGCGGTGCCAACACAGAT-3′

Antisense: 5′-GCTTCCTCAGTCTGCTCACTCA-3′

CD14:
Sense: 5′-GGCGCTCCGAGTTGTGACT-3′

Antisense: 5′-TACCTGCTTCAGCCCAGTGA-3′

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH):
Sense: 5′-CCAGCCTCGTCCCGTAGAC-3′

Antisense: 5′-ATGGCAACAATCTCCACTTTGC-3′

Interleukin 1 beta (IL-1β):
Sense: 5′-TCGTGCTGTCGGACCCATAT-3′

Antisense: 5′-GTCGTTGCTTGGTTCTCCTTGT-3′

Interleukin 6 (IL-6):
Sense: 5′-CCGGAGAGGAGACTTCACAG-3′

Antisense: 5′-TTCTGCAAGTGCATCATCGT-3′

Toll like receptor 4 (TLR4):
Sense: 5′-CTCTGCCTTCACTACAGAGAC-3′

Antisense: 5′-TGGATGATGTTGGCAGCAATG-3′

Tumor necrosis factor alpha (TNFα):
Sense: 5′-CACACTCAGATCATCTTCTCAAAA-3′

Antisense: 5′-GTAGACAAGGTACAACCCATCG-3′

4.5. Western Blot Analysis

The Western blot analysis of ventricular homogenates was performed as described
previously [11,32,59]. Briefly, ventricular samples were pulverized under liquid nitrogen
and 100 µL of homogenization buffer containing 10 mM NaHCO3 and 5% sodium dodecyl
sulfate was added to about 10 mg tissue sample. The extracts were homogenized with
an ultrasonic homogenizer (Sonopuls, 3× 30 s; Bandelin, Berlin, Germany), incubated at
25 ◦C for 30 min and then centrifuged to remove debris. The protein concentration was
estimated by the Lowry method and aliquots of 100 µg protein were used for Western
blotting. For detection of protein bands, the enhanced chemifluorescence together with
alkaline phosphatase-conjugated secondary antibodies (Sigma-Aldrich, Munich, Germany)
was used and the signals were recorded with a Typhoon 9410 Variable Mode Imager (GE
Healthcare, Freiburg, Germany) and quantified with the ImageQuant TL software (GE

https://mev.tm4.org


Int. J. Mol. Sci. 2022, 23, 4688 16 of 20

Healthcare, Freiburg, Germany). The following primary antibodies were used: calse-
questrin (CSQ: rabbit polyclonal [#SP5340P], Acris Antibodies, Herford, Germany [now
available from abcam #ab3516]); glyceraldehyde-3-phosphate dehydrogenase (GAPDH;
mouse monoclonal [#ab9484], abcam, Cambridge, MA, USA); super oxide dismutase 2
(SOD2: rabbit polyclonal [#SPC-118C/D], StressMarq Biosciences, Victoria, Canada); Ca2+
calmodulin kinase II (CamKII: rabbit monoclonal [#2048-1], Epitomics, Burlingame, CA,
U.S.A.); heat shock protein 25 (HSP25: rabbit polyclonal [#ADI-SPA-801], Enzo Life Sci-
ence, Lörrach, Germany); heat shock protein 90 (HSP90: rat monoclonal [#ADI-SPA-845],
Enzo Life Science, Lörrach, Germany); aldehyde dehydrogenase 2 (Aldh2; goat polyclonal
[#ABIN571181], antibodies-online, Aachen, Germany); endonuclease G (Endog; goat poly-
clonal [sc-26923], Santa Cruz Biotechnology, Heidelberg, Germany); cathepsin B (rabbit
polyclonal [#ABIN1002042], antibodies-online, Aachen, Germany); enolase3 (=enolase beta;
rabbit polyclonal [ABIN310998], antibodies-online, Aachen, Germany); nucleoporin 62kDa
(Nup62; rabbit polyclonal [#ABIN1013745], antibodies-online, Aachen, Germany); protein
phosphatase 5 (PP5: mouse monoclonal [#611021], BD Transduction Laboratories, Heidel-
berg, Germany); regulatory A-subunit of protein phosphatase 2A (PP2A-A: goat polyclonal
[#sc-6113], Santa Cruz Biotechnology, Heidelberg, Germany); catalytic subunit of protein
phosphatase 2A (PP2A-C: rabbit monoclonal [#ab32141], abcam, Berlin, Germany); catalytic
subunit alpha of protein phosphatase 1 (PP1c; mouse monoclonal [#sc-7482], Santa Cruz
Biotechnology, Heidelberg, Germany); nitric oxide synthase 1 to 3 (NOS 1; NOS 2; NOS 3;
rabbit polyclonal [#610310; #610333; #610299], BD Transduction Laboratories, Heidelberg,
Germany).

4.6. Echocardiography

For transthoracic echocardiography, a Vevo 2100 system with a MS550D transducer
(Visual Sonics, Toronto, Canada) was used as described previously [18,59]. Briefly, the mice
were anesthetized with 1.5% isoflurane (the spontaneous breathing was maintained) and
fixed on a heated examination pad with integrated ECG electrodes. The cardiac dimensions
were measured using two-dimensional images and M-mode tracings and as functional
parameter, the ejection fraction of the hearts was calculated as described previously [18,59].

4.7. Work-Performing Heart Preparations

The technique of the isolated, perfused work-performing heart was performed as
described previously [59]. Briefly, the mice were anesthetized with pentobarbital (80 mg
kg−1) and treated with heparin (1.5 units). The hearts were prepared, attached by the aorta
to a 20-gauge cannula, and fixed on a vertical Langendorff apparatus. The perfusion was
performed with an oxygenized (carbogen gas = 95% O2, 5% CO2) Krebs Henseleit buffer
(37.4 ◦C) containing (mM): NaCl 118, NaHCO3 25, Na-EDTA 0.5, KCI 4.7, KH2PO4, 1.2,
MgSO4, 1.2, CaCl2 2.5, and glucose 11. Heart rate, aortic pressure, left intraventricular
pressure, and left atrial pressure were recorded continuously using a PowerLab system
(ADInstruments, Spechbach, Germany). From these data, the maxima of the first derivative
of left intraventricular pressure (+dP/dt and −dP/dt) were calculated with the Chart
software (ADInstruments, Spechbach, Germany).

4.8. NADPH Oxidase Activity

NADPH oxidase activity was measured in cardiac homogenates as previously de-
scribed [60].

4.9. Immunohistochemistry

For immunohistological analysis of NOS expression, paraffin sections of hearts of mice
were used as previously described [11]. The following antibodies were used: nitric oxide
synthase 1 to 3 (NOS1; NOS2; NOS3; rabbit polyclonal [#610310; #610333; #610299], BD
Transduction Laboratories, Heidelberg, Germany).
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4.10. Reagents

LPS (E. coli O55:B5, #L2880) was purchased from Sigma-Aldrich (Munich, Germany).
All chemicals used were of the highest purity grade commercially available and demineral-
ized water was used throughout the experiments.

4.11. Statistics

The data are presented as means ± S.D. Statistical analyses were performed by the
analysis of variance (ANOVA) followed by Bonferroni’s posttest or by the Student’s t-test if
appropriate. As statistical significance level, a p-value < 0.05 was set. Statistical calcula-
tions and graphical presentations were carried out with GraphPad Prism 5.0 (GraphPad
Software, San Diego, California, USA). Microarray data analysis was performed with the
TM4 application MeV (https://mev.tm4.org (last accessed on 7 April 2022)) [57].
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