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Abstract: Prerequisite to any biological laboratory assay employing living animals is consideration
about its necessity, feasibility, ethics and the potential harm caused during an experiment. The
imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal
scientific standard of animal experimentation worldwide. The rising amount of laboratory inves-
tigations utilizing living animals throughout the last decades, either for regulatory concerns or for
basic science, demands the development of alternative methods in accordance with 3R to help reduce
experiments in mammals. This demand has resulted in investigation of additional vertebrate species
displaying favourable biological properties. One prominent species among these is the zebrafish
(Danio rerio), as these small laboratory ray-finned fish are well established in science today and
feature outstanding biological characteristics. In this review, we highlight the advantages and general
prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing,
with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss
toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how
advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can
refine future toxicological studies in this species.
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1. Introduction

The rising amount of experimentation utilizing animals throughout the last decades
demands the active development of alternative methods and assays. Prerequisite to any
biological assay utilizing animals is consideration about its necessity, feasibility, ethics and
the potential harm caused. The imperative of these thoughts has led to the formulation
of the 3R-principle [1], which today is well accepted as a scientific standard and which
has been implemented in the legislation framework of animal experimentation worldwide.
In recent years the necessity of adequate alternatives especially to mammals and higher
vertebrates for regulatory safety testing has resulted in raised scientific interest to establish
methods in a variety of species displaying biological properties more suitable for specific
scientific investigations. One large group among these alternatives are ray-finned fish
(Actinopterygii), comprising an enormous amount of approximately 30,000 different species
including well-known laboratory fish species such as zebrafish.

1.1. Zebrafish—Species-Specific Advantages and Limitations

Today the predominantly used small fish model species in biomedical laboratories
worldwide are zebrafish (Danio rerio) [2,3] and to a lesser extent killifish species, such as the
Japanese Medaka (Oryzias latipes) [4,5]. Zebrafish are used as comparative model for a wide
number of different basic research areas and as disease models, e.g., for cardiovascular
disorders [6], bone research [7], immunology [8] and cancer [9]. The species shares similar
to all other vertebrate species a basic chordate body plan: a vertebral column/notochord,
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a neurocranium/skull, neural crest cells, defined epidermal structures, sensory placodes,
balance organ/labyrinth organ, and distinct neurological features. Several additional
characteristics fostered the usage of these small laboratory fish, in particular: extracorporeal
fertilization, fast embryonic development, relatively small body size, easy and cost-efficient
animal handling, optical transparency of embryos and adult fish, established genetic
and molecular laboratory protocols, as well as the potential to perform high-throughput
assays [4,10,11]. The Zebrafish genome has been fully sequenced (current version: GRCz11),
shares a high degree of genetic homology to higher vertebrates and displays a great
number of common genetic features with other vertebrates [12,13] (https://www.ncbi.
nlm.nih.gov/grc/zebrafish; accessed 9 December 2021). Besides advancing fundamental
research, zebrafish studies have also provided valuable insights for the pharmaceutical
industry, with several novel drugs targets originating from zebrafish work currently under
investigation in human clinical trials, such as MEK inhibitors for lymphatic anomalies and
potent melanoma inhibitors [14].

Besides these advantages and the genetic conservation, other biological aspects differ
between fish species and mammals and are investigated by comparative physiology. First,
fish have adopted to aquatic environments during evolution and have developed special-
ized anatomical features, e.g., gills, swim bladders, scales and extracorporeal fertilization.
Although developmental similarities have been found in gills and in lungs, structural
organization, developmental origin and physiological function remain rather different [15].
Secondly, loss of genes, neo-functionalization of gene products, and gene-duplication have
accrued in a teleost-specific (and salmonid-specific) whole genome duplication during evo-
lution [16,17]. These events resulted to some extent in gene expression changes, signalling
pathway alterations and gene function adaptations. Therefore, special care has to be taken
by direct comparison between fish species and higher vertebrate genomes, as evolutionary
distance and several whole genome duplication events have to be considered and resulted
in genetic diversity between species [17,18]. Third, fish have retained the capacity of re-
generating organs after damage throughout their lifetime. Regenerating tissues include
extremities, heart and neuronal cells and employ highly specialized molecular processes
missing in higher vertebrates [19]. Besides these selected examples, a wider number of
biological differences can be observed in organ development (e.g., sex differentiation),
adaptive immunology, behaviour (e.g., parental care, social behaviour), and in neurology
(e.g., lack of neocortex) [10]. Therefore, the transition of novel findings from fish directly to
other common laboratory animals and humans is seldom straight forward and still needs
validation in mammals. In accordance with these points, the suitability of a fish model to
the specific scientific hypothesis and to the planned assay has to be carefully considered
before conducting experiments in zebrafish. Nonetheless, by carefully taking in account
these differences, a rising number of comparative interspecies studies has been success-
fully performed and the results are the foundation for implementation of fish species in
investigation of molecular processes common to all vertebrates as well as their application
in toxicological testing [20].

1.2. Prerequisites for Use of Zebrafish for Toxicity Testing

Fish species are widely used in ecotoxicology, e.g., by investigation of the impact of
chemicals and environmental contaminants on fish populations [21,22]. Several fish species,
including zebrafish, are integrated in the internationally accepted OECD Guidelines to
assess systemic toxicity in fish, i.e., The Testing of Chemicals with the Fish Acute Toxicity
Test (OECD 203) and The Fish Embryo Acute Toxicity Test (OECD 236) [23,24]. Currently
the European Commission Directive 2010/63/EU, permits experimentation in fish em-
bryos at earliest life stages without being regulated as animal experiments (Current form:
http://data.europa.eu/eli/dir/2010/63/2019-06-26; accessed 9 December 2021 EFSA opin-
ion: https://doi.org/10.2903/j.efsa.2005.292; accessed 9 December 2021). This includes
zebrafish embryos and early larval stages until free-swimming and independent feeding,
corresponding to 5 dpf (days post fertilization) after raising at 28.5 ◦C. These regulations
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thus allow toxicological studies in zebrafish at these early developmental stages as an
alternative model to animal testing in other vertebrates, e.g., rodents, but often limits these
investigations to developmental and to acute toxic effects.

Similar to other animal experiments in toxicology, 3R should be strictly implemented
in experiments using small fish species at all developmental stages. First, replacement
methods, which avoid or replace the use of animals in research, such as cell culture systems,
3D tissue models, or organoid cultures [25–27] should be considered. However, for some
applications in vitro models provide no adequate replacement, as systemic toxic effects,
e.g., whole animal development or organ function, can best be investigated in living or-
ganisms [28–30]. Here, zebrafish embryos and larvae have been suggested as a second
line of screening for hit to lead identification and optimization of new drug candidates
in preclinical toxicity testing, following the first line of screening in cell culture-based
high-through-put assays [31]. Only the top three candidate compounds, remaining from
embryonal or larval zebrafish tests, are suggested to be investigated in traditional mam-
malian model systems, thereby reducing the numbers of used animals. Second, reduction
methods that enable researchers to obtain comparable levels of information from fewer
animals, or to obtain more information from the same number of animals should be used.
The methods result in reduction of animal number but require rigorous strategic planning
and standardization of experiments to minimize experimental variation. Examples relevant
to tests in fish that help to reduce the number of animals per experiment are non-invasive
imaging [32], intravital time-laps investigations [33] and proper selection/combination of
fluorescent transgenic animals [34]. Third, refinement methods have to be considered, that
alleviate or minimize potential pain, suffering or distress, and enhance animal welfare for
the animals used. General pain scoring methods and analgesics in zebrafish are sparse
nowadays, but are currently under development [35].

2. Consideration of Toxicokinetics

Embryonal and larval zebrafish offer great benefits for the identification of hazardous
compounds. For human health risk assessment, however, translation of doses and concen-
trations employed in zebrafish to human equivalent doses is eminent and requires detailed
knowledge of the toxicokinetics of the compound under investigation. Therefore, in the
following two paragraphs we give a non-exhaustive overview of some of the characteristics
and challenges of toxicokinetics in zebrafish embryos and larvae.

2.1. Absorption and Distribution

In humans and other higher vertebrates, compounds must pass physiological barriers,
such as the epidermis, epithelial layers of the gastro-intestinal tract and the blood-brain
barrier. In addition to these, zebrafish embryos are surrounded by the chorion, an acellular
fetal envelope of 1.5–2.5 µm thickness. The chorion shields the zebrafish embryo until
hatching at around 72 hpf (hours post fertilization) and contains pores with a diameter
of 0.5–0.7 µm, preventing compounds larger than 3 kDa to freely pass [36]. However, the
barrier function of the chorion, which varies between stages of embryonal development,
may differ between compounds and exposure durations [36–38]. Thus, while chorion
removal facilitates compound uptake, it is not obligatory for every compound. The epi-
dermis is another factor that greatly influences compound uptake. While small diatomic
molecules such as oxygen can easily pass the epidermal layer even in larval stages [39],
large compounds may not be able to penetrate the epidermis [40]. Beginning at 60 hpf
when the mouth starts to open, oral uptake gains increasing importance as a route of
exposure to xenobiotics [3]. For both oral and epidermal exposure, immersion is the most
common treatment method for zebrafish embryos and larvae due to the ease of application
analogous to cell culture. It is important to consider that foreign compounds may be differ-
entially absorbed by the embryonal and larval body, potentially resulting in low internal
doses and correspondingly false negative findings [41,42]. Bioanalysis by LC-MS/MS of
whole-body homogenates [43] or nanoscale blood samples [44] are therefore critical to
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verify internal exposure. Microinjection of compounds into the cardiac ventricle, caudal
vein, hindbrain, yolk sac or into the intestinal lumen for microgavage may be used to
overcome poor absorption [45,46]. Common routes of compound application in zebrafish
larvae are summarized in Figure 1. Once absorbed, compounds are distributed throughout
the embryonal and larval body. In zebrafish, chemicals have been shown to accumulate in
different compartments. For instance, the melanin of the zebrafish eye, has been suggested
as a binding site for basic drugs [47], consistent with findings from mammalian studies.
Importantly, the yolk functions as a major compound depository, resulting in an overes-
timation of internal doses in the larval body [37,48]. As organs mature and the yolk is
consumed over time, sites of compound accumulation can differ with increasing age from
those at earlier developmental stages [49]. Furthermore, compound accumulation depends
on the method of application. Methods suitable for studying the distribution of compounds
into the different body regions of zebrafish include fluorescent dyes, radio-scintillation [50],
and—more recently, MALDI-MS Imaging [51].
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2.2. Metabolism and Excretion

Zebrafish express drug metabolising enzymes, including phase I enzymes such as
Cytochromes P450 (CYPs), as well as sulfo- (SULTs) and UDP-glucuronosyltransferases
(UGTs) which are involved in phase II xenobiotic metabolism [52–54]. CYPs are evolution-
ary conserved and show many orthologs between humans and zebrafish [55,56]. However,
genetic synteny between a human CYP gene and its zebrafish ortholog does not neces-
sarily lead to metabolism of the same substrate and, vice versa, absence of an ortholog
can be substituted by other zebrafish CYP enzymes [57]. In addition, zebrafish CYP’s
exhibit spatiotemporal differences in their expression profiles, with a strong increase in
CYP gene expression after hatching [57–59]. Despite these potential limitations, zebrafish
CYP orthologs frequently produce metabolites corresponding to those identified in mam-
mals, as extensively reviewed by Anselmo de Souza et al. [54]. Richter et al. recently
developed a larval zebrafish in vitro model for forensic toxicology that correctly predicted
the human metabolites of a new synthetic cannabinoid [60]. Likewise, in the first few
hours of development zebrafish start to express metabolic enzymes such as glutathione-S-
transferases (GST’s), whose detoxification capacity in the mercapturic acid pathway was
demonstrated recently in embryos and larvae exposed to the model GST substrate 2,4-
dinitrochlorobenzene [61–63]. While elimination of xenobiotics from the human body takes
place by clearance via the kidneys, bile/faeces and the lungs, in zebrafish, bile production
and gills, which serves as a major respiratory organ, are not fully functional during the first
4 and 14 days of development, respectively [39,64]. Therefore, renal excretion is speculated
to be the predominant route of elimination of xenobiotics in zebrafish larvae.
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3. Application of Zebrafish to Assessment of Target Organ Toxicity

Zebrafish embryos and larvae have in the past been successfully used to investigate
a range of different compounds, drugs or chemicals and to analyse their adverse effects
in various target tissues. In this section we highlight application of zebrafish as a model
for organ toxicity testing, with focus on embryonic and larval developmental stages up
to 5 dpf, which fall under the European in vitro legislature. The studies presented in the
following paragraphs (Table 1) focus on cardio-, neuro-, hepato- and nephrotoxicity as
these toxicities are among the most common toxicities observed during human clinical
trials and are subsequently responsible for the withdrawal of many drugs [65]. Further
information about embryonal and larval zebrafish as a model for ocular, intestinal or
endocrine toxicity can be found in the literature [20,66,67]. In assessing the significance
of the organ toxicities reported in the studies described in the following paragraphs, the
period of exposure needs to be critically considered. Even after 3 dpf, when most organs
are well developed and zebrafish enter the free-swimming larval stage, zebrafish larvae
still undergo developmental processes which might blur the line between developmental
and acute toxicity. While typical manifestations of acute developmental toxicity are altered
growth, systemic functional deficiencies (e.g., cardiovascular malformations), structural
abnormalities, malformations and high death rates, investigation of organ-specific toxicity
requires close consideration of drug application beginning, windows of exposure, investi-
gated developmental stages, dose selection and inclusion of extensive controls to avoid
masking of organ-specific adverse outcomes by developmental toxicity.

Table 1. Comparison of zebrafish toxicological compound studies with focus on cardio-, neuro-, hepato- and nephrotoxicity.

Study Compounds Treatment Period Predictivity Bioavailability
Ensured

Cardiotoxicity

Alzualde et al.,
2015 [68]

Atropine, BAYK8644, Cisapride,
Dofetilide, E4031, Flecainide,

JNJ303, Quinidine, Salmeterol,
Terfenadine, Thiorizidine,

Torcetrapib, Verapamil

4 h (48–52 hpf) Sensitivity 85%
Specificity n.a. Yes

Burns et al., 2005 [69]
Acetaminophen, Allopurinol,

Amiodarone, Astemizole,
Cimetidine, Tamoxifen

24 h (2–3 dpf) Sensitivity 100%
Specificity 100% No

Milan et al., 2003 [70]
100 drugs including

chlorpromazine, digitoxin
and progesterone

4 h at 2 dpf Sensitivity 96%
Specificity 77% Yes

Zhu et al., 2014 [71]

Aspirin, Clomipramine,
Cyclophosphamide monohydrate,
Gentamicin sulphate, Nimodipine,

Quinidine, Terfenadine,
Tetracycline hydrochloride

24 h (2–3 dpf) Sensitivity 100%
Specificity 100% Yes

Neurotoxicity

Dach et al., 2019 [42] NTP 91 compound library up to 114 h (6 hpf–5 dpf) Sensitivity n.a.
Specificity 60% No

Hagstrom et al.,
2019 [72] NTP 91 compound library up to 114 h (6 hpf–5 dpf) Sensitivity 95%

Specificity n.a. No

Hepatotoxicity

Hill et al., 2012 [73] 33 drugs including Troglitazone
and Diclofenac 48 h (3–5 dpf) Sensitivity 91%

Specificity 77% Yes
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Table 1. Cont.

Study Compounds Treatment Period Predictivity Bioavailability
Ensured

Nephrotoxicity

Bauer et al., 2021 [74]
Aristolochic acid, Cadmium

chloride, Gentamicin,
Ochratoxin A, Potassium bromate

48 h (3–5 dpf) Sensitivity 80%
Specificity n.a.

Partially
(microinjection
of gentamicin)

Gorgulho et al.,
2018 [75]

Gentamicin, Paracetamol,
Tenofovir, Tenofovir
disoproxil fumarate

24 h (4–5 dpf) Sensitivity 100%
Specificity n.a. No

Westhoff et al.,
2013 [76]

Acetaminophen, Ampicillin,
Indomethacin, Gentamicin,

Kanamycin, Losartan, Penicillin G
24 h (24–48 hpf) Sensitivity 75%

Specificity n.a. No

Westhoff et al.,
2020 [77]

Prestwick chemical library®,
including 1285 off-patent small

molecules, >95% approved drugs
24 h (24–48 hpf) Sensitivity n.a.

Specificity n.a. No

Wu et al., 2012 [78] Citrinin, Patulin

42 h (6–48 hpf)
66 h (6–72 hpf)
90 h (6–96 hpf)
24 h (24–48 hpf)
48 h (24–72 hpf)
72 h (24–96 hpf)

Sensitivity 100%
Specificity n.a. No

3.1. Cardiotoxicity

The two-chambered embryonic zebrafish heart comprises four distinguishable struc-
tures: atrium, ventricle, sinus venosus and bulbus arteriosus [79,80]. It starts beating at
20 hpf [79]. At 24 hpf the heart tube is completed and the division into two chambers
occurs at 48 hpf [81]. Valves, however, are not present at 48 hpf but develop later until
5 dpf [80]. Because of this, regurgitation of the blood flow is possible during early life
stages [82]. Despite the early onset of heart function, blood circulation is not essential
until 7 dpf, when the larvae’s need for oxygen can no longer be covered solely by dermal
diffusion [39]. This allows investigation of severe cardiac phenotypes in zebrafish, which
in rodent embryos would most likely be lethal due to lack of oxygen supply by circulatory
dysfunction [83]. Because of this, zebrafish embryos´ and larvae´s potential to model
ischemic cardiac events during embryonic stages might be principally limited. Despite
this, measurements in adult zebrafish showed that the zebrafish electrocardiogram (ECG)
is more similar to the human ECG than that of rats and mice [70,84]. Further electrophys-
iological similarities were found in different zebrafish mutants, e.g., with the discovery
of zerg, a zebrafish ortholog of the hERG channel [85,86], which is an important target
in preclinical cardiotoxicity testing [87]. Due to this interspecies genetic and functional
homology, impairment of heart function and morphology can be reproduced in embryonic
zebrafish [88] after exposure to compounds known for their cardiotoxic effects in human
clinical trials [89,90]. Examples of these compounds, recently shown to be cardiotoxic
in embryonic zebrafish, include kinase inhibitors intended for chemotherapy [91,92], the
antiarrhythmic drug verapamil [93] and the antihistamine terfenadine [94], that has been
withdrawn from the market due to potentially lethal ventricular arrhythmia caused by
prolongation of the QT interval [95]. Several studies (Table 1) support the model´s good
sensitivity for cardiotoxicity, ranging between 85% and 100% [68–71].

The zebrafish heart features the advantage of being visible and optically transparent
throughout embryonic and early larval stages. Thus, a plethora of non-invasive imaging
assays, ranging from simple manual counting to large-scale automated imaging pipelines
with corresponding software for evaluation, enable measurement of the embryonic ze-
brafish´s heartbeat [69,96–100]. However, depending on the setup, anaesthesia for po-
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sitioning can pose a problem, as the commonly used anaesthetic tricaine (TMS, MS-222,
Finquel, (3-aminobenzoic acidethyl ester methanesulfonate)) itself alters the embryo´s
heart function [69]. Alternative anaesthetics, e.g., 2-phenoxyethanol, lidocaine and ke-
tamine hydrochloride, are currently under debate and might be permitted for use on living
zebrafish for heartbeat measurements. The shape and size of the embryonic zebrafish heart
can be judged by simple light microscopy or by the use of transgenic lines like myl7:GFP
(formerly known as cmlc2:GFP), which exhibits fluorescent cardiomyocytes [69]. Other
parts of the vasculature can be visualized by transgenic lines marking endothelial cells, e.g.,
fli1:eGFP [101], while vascular blood flow can be measured by monitoring the fluorescent
erythrocytes of the gata1:dsRed line [102]. Some commonly used transgenic lines for cardio-,
neuro-, hepato- and nephrotoxicity are listed in Table 2.

Table 2. Commonly used transgenic lines for cell type-/tissue-specific investigation in zebrafish.

Line (Genomic Feature) Tagged Structure Reference Zfin Line and Construct ID

Cardiovascular system

myl7:GFP
(f1Tg) cardiac muscle [69]

ZDB-ALT-060719-2; ZDB-TGCONSTRCT-070117-49

gata1:DsRed
(sd2Tg) erythrocytes [102]

ZDB-ALT-051223-6; ZDB-TGCONSTRCT-070117-38

cmlc2:gCaMP
(s878Tg) heart specific calcium sensor [81]

ZDB-ALT-070806-1; ZDB-TGCONSTRCT-070806-2

fli1:EGFP
(y1Tg) vasculature/blood vessels [101]

ZDB-ALT-011017-8; ZDB-TGCONSTRCT-070117-94

Brain and neurological system

mrc1a:eGFP
(y251Tg) glia cells/blood-brain-barrier [103]

ZDB-ALT-170717-2; ZDB-TGCONSTRCT-170717-2

elavl3:eGFP
(knu3Tg) general neuronal marker (~HuC) [104]

ZDB-ALT-060301-2; ZDB-TGCONSTRCT-070117-150

Cre/Lox and Gal4/UAS lines cell type-specific expression [105,106]
numerous lines and constructs

Liver

fabp10:eGFP (as3Tg) hepatocytes [107]
ZDB-ALT-060627-2; ZDB-TGCONSTRCT-070117-123

krt18:eGFP
(p314Tg) biliary cells [108]

ZDB-ALT-140703-1; ZDB-TGCONSTRCT-140703-1

hand2:eGFP
(pd24Tg) stellate cells [109]

ZDB-ALT-110128-40; ZDB-TGCONSTRCT-110128-8

Kidney

wt1b:GFP
(li1Tg) glomerulus, proximal tubule [110]

ZDB-ALT-071127-1; ZDB-TGCONSTRCT-071127-1

PT:eGFP
(nz4Tg) proximal tubule [111]

ZDB-ALT-150414-3; ZDB-TGCONSTRCT-150414-3

cdh17:eGFP
(zf237Tg) proximal and distal tubule [112]

ZDB-ALT-110525-2; ZDB-TGCONSTRCT-110525-1

enpep:eGFP
(p152Tg) proximal and distal tubule [113]

ZDB-ALT-101123-3; ZDB-TGCONSTRCT-101123-2

pax8:mCherry
(nia03Gt) distal tubule [114]

ZDB-ALT-110711-15; ZDB-GTCONSTRCT-110322-1

pod:mCherry
(zf238Tg) glomerulus [112]

ZDB-ALT-110525-3; ZDB-TGCONSTRCT-110525-2
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3.2. Neurotoxicity

The gross organisation of the peripheral and central nervous system, as well as its neu-
rochemistry, is conserved between zebrafish and mammals [115,116]. Differences consist in
a general absence of a neocortex and stellate astrocytes, plus different development of the
telencephalon in teleosts [117,118]. The zebrafish blood-brain barrier starts functioning at
3 dpf and prevents high molecular weight compounds from entering the CNS [119,120]
but is not yet fully developed until 10 dpf [121]. Loosely myelinated axons are present
at 3 dpf [122]. With progressing age of the larva, myelin tightens, and its amount in-
creases [122]. Classical human (developmental) neurotoxins [123] such as the heavy metals
lead [124] and mercury [125], as well as retinoic acid [126] and organophosphates [127]
were also shown to alter the behaviour of embryonic and larval zebrafish. Larval behaviour
can further be modulated by psychoactive compounds [115,128–130]. Large-scale studies,
using the National Toxicology Program (NTP) 91-compound library (Table 1), revealed a
sensitivity for detecting (developmental) neurotoxins above 66%, and up to 95%, when
taking bioavailability into account [42,72,131].

Zebrafish embryos and larvae exhibit a rich repertoire of distinct behavioural pat-
terns [132,133]. At early developmental stages, startle responses to different stimuli emerge,
for instance to touch [134,135], abrupt changes of light, [136,137] and noise [138]. Spon-
taneous contractions of embryonic tails at 17–19 hpf [3,129,139] and thigmotaxis (“wall-
hugging behaviour”) of 5 dpf larvae [140,141] are also features of the earliest zebrafish
behavioural repertoire. These behavioural patterns are used as neurobiological endpoints
in the assessment of developmental neurotoxicity in zebrafish embryos and larvae [142].
Commercially available tracking systems, e.g., Danio Scope (Noldus), MWP system (Zan-
tiks) or ZebraLab (ViewPoint), allow the quantification of those endpoints in cell culture
multi-well plates in a high-throughput fashion [143]. However, behavioural assays with
zebrafish embryos and larvae are easily influenced by methodological factors, e.g., choice of
zebrafish strain [144–146], light/dark condition during housing [42], vehicle concentration
(e.g., DMSO) [146], or enzymatic dechorionation [131,147], thereby increasing outcome
variance and compromising reproducibility.

3.3. Hepatotoxicity

The anatomy of zebrafish liver varies from mammals in several aspects. In contrast
to the hexagonal lobules consisting of hepatocyte plates in mammals, zebrafish liver cells
are arranged in tubules. Portal fields and metabolic zonation are missing, thus the familiar
mammalian organizational divisions like liver acinus cannot be translated [73,148,149].
However, except for Kupffer cells, all hepatic mammalian cell types can also be found in
zebrafish [64]. At 72 hpf, the zebrafish liver is perfused with blood [150] and is metabolically
functional at 4 dpf [151], while biliary excretion can be measured starting from 5 dpf [64].

Phenotypes of liver toxicity in mammals include cholestasis, fibrosis/cirrhosis, in-
flammation and steatosis [152,153]. While these pathologic conditions are also observed in
zebrafish larvae, as reviewed by Goessling et al. [154], not all of them have been shown to
result from toxic insults. While compound-induced steatosis in zebrafish larvae has been
observed in a number of studies [155–157], prominently with the focus on alcoholic fatty
liver disease [158–161], cholestasis and inflammation have not yet been reported after toxin
exposure [155,162–164]. Cholestasis occurs in mutant larvae [151] and as a drug-induced
effect in adults [164]. Furthermore, alterations in bile acids regulation of the glucose and
lipid metabolism pathway via Farnesoid X receptor (FXR) were detected in zebrafish larvae
after hepatotoxin exposure with three model compounds for cholestasis, steatosis, and
necrosis [165]. FXR is a nuclear receptor that is essential for de novo bile acid synthesis
and is used as a drug target for the treatment of cholestatic conditions [166,167] However,
xenobiotics do not seem to cause cholestasis in larval zebrafish, probably due to the late
onset of bile production at 5 dpf [64,164]. The absence of inflammation is speculated to
be related to the lack of Kupffer cells and the general underdevelopment of the adaptive
immune system in zebrafish [168]. On the other hand, signs of fibrogenesis have been
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found by Zhang et al. who detected stellate cell activation and deposition of extracellular
matrix proteins after exposure to ethanol [162,169].

Detection of hepatotoxicity in zebrafish larvae has often been carried out by the eval-
uation of morphologic endpoints. Transgenic fluorescent lines label hepatocytes, biliary
and stellate cells (Table 2), thus allowing early quantification of reporter gene expression
and liver morphology [107,170,171]. The latter can even be achieved with transparent wild
type larvae, as changes in the liver can readily be imaged by light microscopy [155,172].
Steatosis can be visualized by whole-mount Oil Red staining [156,157,161,173]. Yolk re-
tention serves as an indicator of hepatic function as it is utilized by the liver before onset
of external feeding [172]. In a collaborative effort between Evotec, Pfizer and Johnson
& Johnson, a combination of morphologic endpoints (scoring liver size changes, liver
tissue degeneration and liver dysfunction at 120 hpf after 48 h incubation time) supported
the added value of larval zebrafish in combination with cell-culture based high content
screening assays for hepatotoxicity testing [73], therefore rendering embryonic zebrafish
an attractive alternative in vivo model for liver toxicity.

3.4. Nephrotoxicity

Larval zebrafish possess a pronephros—the simplest form of a vertebrate kidney—
which consists of two nephrons that share a single glomerulus [174]. As freshwater fish do
not concentrate their urine [175], the zebrafish pronephros lacks the loop of Henle [176].
Additionally, zebrafish nephrons contain the so-called corpuscles of Stannius, which com-
prises endocrine glands and is responsible for calcium and phosphorus homeostasis [177].
Despite these differences, the zebrafish pronephros is highly homologous to humans. In-
vestigations of the expression patterns of evolutionary conserved transporters (e.g., slc20a1,
slc4a4) revealed a comparable nephron segmentation with different proximal and distal
parts [178]. The endocytic transporter complex megalin/cubilin, that plays an important
role in the reabsorption of proteins and compounds with peptide structure from the tubular
lumen, is also expressed in a cell type-specific manner [179]. Pronephros organogenesis
is finished at 3 dpf and the organ has gained its final shape that it will maintain until
12 dpf [112]. Glomerular filtration, however, already starts earlier at 48 hpf [180].

Several researchers have made use of the homology between zebrafish and mam-
malian kidney to study the impact of various toxins on renal development [78,181–185].
In these studies, the fluorescent reporter line wt1b:GFP, which marks the glomerulus and
proximal tubules, has been widely used (Table 2). Using this transgenic line, Westhoff and
colleagues developed an automated imaging pipeline (Table 1) in which adverse effects
of nephrotoxic drugs on the developing embryonic kidney´s morphology was imaged in
phenyl thiourea (PTU; 1-phenyl-2-thiourea) depigmented embryos [77,186]. Using this plat-
form, morphologic alterations, including tubular distance, angle and degree of glomerular
fusion were found to correlate well with histopathological findings observed using routine
H&E staining [76]. As emphasized by the authors of the study, impairment of pronephros
function is not necessarily associated with morphological alterations of the pronephros.

For the assessment of the pronephric function, clearance experiments with injection
of fluorescent low molecular weight dextrans into the circulatory system are commonly
used [75,78,181,182,187–190]. As zebrafish rely solely on the kidney for excretion of sub-
stances until 14 dpf, when the gills are fully functional [39], the decrease in fluorescence
is directly linked to renal clearance of the fluorescent low molecular weight dextrans.
Hentschel et al. were the first to apply this technique to study effects of cisplatin and gen-
tamicin on renal function in zebrafish. Disturbance of renal clearance was in concordance
with histopathological findings in zebrafish exposed to cisplatin and gentamicin [187].
Glomerular slit diaphragm integrity can be tested by using dextrans with higher molecular
weight [191]. Due to their larger size, the fluorescence-coupled sugars are only excreted
if podocyte integrity is lost, which allows the assessment of glomerular proteinuria. This
principle has been successfully used for assessing puromycin induced damage to the
glomerular slit diaphragm [191,192]. A non-invasive method for the detection of inducible
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damage to the glomerular filtration membrane was developed by Zhou et al. who detected
leakage of fluorescence-tagged vitamin D binding protein into the culture medium with a
GFP-ELISA [193]. Possibly, this ELISA approach for the detection of fluorescence-labelled
biomarkers could also be carried out with common urinary kidney injury biomarkers [194].
Recently, Bauer et al. reported upregulation of the nephrotoxicity biomarkers hmox1,
kim-1, ctgf, clu and spp1 after treatment of 3 dpf zebrafish larvae with nephrotoxins for
48 h, involving aristolochic acid, gentamicin, ochratoxin A and cadmium chloride [74].
Upregulation of these putative biomarkers in response to treatment with these model
nephrotoxins was in concordance with histopathological alterations [74,195]. Similarly,
5 dpf larvae previously exposed by immersion to tenofovir, paracetamol and gentamicin
for 24 h also displayed morphologic changes in the proximal convoluted tubule, including
ultrastructural mitochondrial alterations reminiscent of effects observed in mammals [75].

4. Methodological Approaches to Toxicity Testing in Zebrafish

There is increasing interest in toxicology, particularly in the field of systemic toxicity
testing, to utilize the species-specific advantages of zebrafish to replace experiments in
rodents. In this section we outline the benefits of transgenic zebrafish lines along with
current challenges and potential pitfalls, including lack of standardized methods.

4.1. Transgenic Zebrafish Lines and In Vivo Imaging

One of the mayor advantages is the usability of zebrafish for a wide array of different,
high-throughput amenable imaging techniques. Especially visualization of developmental
processes during early development (≤5 dpf) in living embryos have greatly advanced
knowledge of cellular process timing and spacing. Development of advanced imaging
systems for zebrafish investigations; e.g., light-sheet, multi-photon or second-harmonic
imaging microscopy [32] enable continuous investigation of three-dimensional processes
in real-time without interference of molecular and physiological processes [196,197]. More-
over, the small embryo size enables automated imaging systems to investigate chemical
compounds on embryonic development and can be further enhanced by combination
with fluorescent tissue markers [77]. Development of novel imaging techniques, enabling
detailed, non-invasive visualization of adult organs is ongoing and is expected to result in
methods suitable for assessment of subacute to chronic toxicological effects [198].

When it comes to imaging fluorescent zebrafish lines, pigmentation can pose a prob-
lem, depending on the localization of the reporter gene expression. While for immunoflu-
orescence, fixed larvae can be easily bleached with hydrogen peroxide [199] or other
advanced tissue clearing methods [200], the way to transparent in vivo imaging bears
hurdles. Phenylthiourea, applied prior to 24 hpf, has been widely used for suppression
of pigment development [201,202]. However, it interferes with developmental processes,
resulting in malformations due to alterations in retinoic acid, insulin-like growth factor
and thyroid hormone signalling [203]. Moreover, it may change xenobiotic metabolism by
induction of CYP1A1 enzyme transcription [204] and was shown to alter the toxicity of mer-
cury compounds [205]. Hence, for generating fluorescent lines, transparent zebrafish like
nacre (mitfaw2/w2), casper (mitfaw2/w2; mpv17a9/a9) or crystal (mitfaw2/w2;albb4/b4;mpv17a9/a9)
offer great visualization advantages [206,207]. Alternatives to induce depigmentation in
already established transgenic lines without utilizing transparent backgrounds have been
explored, for instance deletion of pigment cells via transient CRIPSR/cas9 injections [208].

Besides their application for morphological assessment of adverse effects in tissues,
fluorescent zebrafish lines (Figure 2; Table 2) allow for the isolation of the tagged cells
by Fluorescence Activated Cell Sorting (FACS) [209–211]. This facilitates isolation of
fluorescent labelled organs or target cell populations which, given the small size of the
embryos and larvae is hardly possible by any other means [212]. Sorting of the tagged cells
enables analysis specifically in target cells, including single-cell gene expression analysis.
Aside from continuously labelled organs, transgenic zebrafish lines exist that express
fluorescence only under certain conditions, for example in the presence of pollutants in
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brackish water [213–215] or in response to CYP enzyme induction [59]. This principle may
provide a valuable approach to biomarker-based assessment of organ toxicity.
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Figure 2. Transgenic zebrafish reporter lines. (A) Lateral view of the trunk of a cdh17:mCherry larva (5 dpf), co-stained nuclei
with Hoechst 33342. The mCherry fluorescence labels the kidney (arrowheads) and the intestine (diamond). (B) Snapshot of a
gata1:DsRed larva (5 dpf) in lateral position. Hematopoietic cells are marked by red fluorescence throughout the whole body.
(C) Ventral gfp/brightfield overlay image of the larval myl7:GFP heart (5 dpf), exhibiting green fluorescence in myocardial
cells around the heart chambers (atrium and ventricle) and in the atrioventricular canal.

4.2. Reproducibility and Standardization

Current toxicity testing in zebrafish is impeded by the lack of experimental protocol
standardization and by the resulting lack of reproducibility. One example is the aquatic
toxicity analysis of ionizable organic chemicals (IOCs), which requires a well-defined
experimental setup, pH and buffer conditions [216]. These critical experimental issues in
zebrafish experimentation are increasingly recognized and discussed by the toxicological
community [66,67]. One important aspect of this discussion is the current heterogeneity of
different breeding conditions in zebrafish research, including the use of varying culture me-
dia for embryos (e.g., E3 embryo medium vs. 0.3× Danieau´s medium) [74,217], different
well-plate formats for incubation [75,164] and various temperature conditions or illumina-
tion status of incubators [54]. Standardization and detailed reporting of breeding conditions
of embryos and larvae is crucial for data comparison, reproducibility and reliability. Adult
fish also require specific maintenance conditions (e.g., water quality, light/dark cycle, tank
size, enrichment, and density) and nutrition (e.g., feeding plan, timing, food composition)
for their wellbeing and the generation of viable fry for toxicological experiments, which
should be included in reported protocols similar to other vertebrate species (for detailed in-
formation see Arrive guidelines: https://arriveguidelines.org/; accessed 9 December 2021).
For Europe FELASA (Federation of European Laboratory Animal Science Associations)
recommendations have been formulated in greater detail for harmonizing general zebrafish
husbandry and health monitoring recommendations [218], which are currently incorpo-
rated in local legal regulations in European countries [219]. Further recommendations for
zebrafish are worked out at the moment for additional aspects: severity classification in
zebrafish and their larvae, methods of humane killing of laboratory fish, pain management
in zebrafish, health monitoring of fish in research (https://felasa.eu/working-groups;
accessed 9 December 2021). Improved reporting of experimental conditions, detailed
protocols and refinement of breeding conditions are indispensable for reproducibility and
standardization of future zebrafish toxicological studies.

https://arriveguidelines.org/
https://felasa.eu/working-groups
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5. Future Perspectives

Technical advancement has and will have a huge impact on experimentation in ze-
brafish (Table 3). Several recent developments have opened up far-reaching possibilities
for novel applications, reproducibility and standardization in toxicity testing.

Table 3. Novel techniques enhancing toxicological investigation in zebrafish.

Technique Advantage for Toxicology References

Refinement, Automation and High-Throughput Methods

Automated zebrafish egg sorting less hands-on time [220]

Automated removal of chorions less hands-on time,
prerequisite for toxicological screens [221]

Automated imaging systems standardization of imaging and visual screening [222]

Automated microinjection standardization of microinjection [223]

Dechorionated Zebrafish Embryo
Developmental toxicity assay or

culture assay

harmonized zebrafish developmental toxicology
assay to assess teratogenic liability of

pharmaceutical compounds
[224,225]

Cystic kidney disease model automated morphological feature assessment [226]

FISH inspector automated morphological feature assessment [227]

Multiparametric renal function assay assessment of pronephric morphology,
renal function and heart Rate [186]

Advanced visualization methods

Computer aided automation in
imaging analyses

high throughput method for imaging data,
highly comparable, standardised results [77]

Automatic feature recognition automatic quantification of changes,
comparable, predefined parameters [228,229]

Novel genetic methods

Next-gen CRISPR/Cas9,
single nucleotide editing establishment of precise genetic modifications [230]

RNA-seq whole-animal/tissue transcriptome analyses

Gene expression atlas for zebrafish
developmental stages:

http://www.ebi.ac.uk/gxa/
experiments/E-ERAD-475; accessed

on 9 December 2021

scRNA-seq single cell transcriptome analyses [231]

5.1. Refinement, Automation and High-Throughput Methods

In recent years, a great number every-day processing and handling techniques of
zebrafish embryos and larvae have been refined by automation, which normally are a
bottleneck in dealing with large animal numbers in semi-/high-throughput toxicological
screens. Most times these efforts resulted in a growing number of automated systems
for standardized zebrafish handling during experimentation and computer based phe-
notype quantification, e.g., automated zebrafish egg sorting [220], automated removal
of chorions [221], automated imaging systems [222], and automated microinjection [223].
Moreover, a steadily increasing number of follow-up methods for specific topics is being
currently developed to further foster toxicological studies in small laboratory fish species.
These “custom-tailored” techniques often differ greatly in their experimental setup, costs,
measured parameters and scoring values, but show common steps of enhancement such as
semi/full-automation of assays [232], streamlining experimental processes [224] and reduc-
tion of experimental variances and experimental hands-on time [225]. Examples for these
enhancements are automated imaging method advancements, which have been reported

http://www.ebi.ac.uk/gxa/experiments/E-ERAD-475
http://www.ebi.ac.uk/gxa/experiments/E-ERAD-475
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for a cystic kidney disease model [226] and for a general automated morphological feature
assessment by FISH inspector [227]. Both methods adopted an automatically screening
system for zebrafish embryo and larvae handling and subsequently enable uniformly
scoring of morphological alterations after toxin application or after genetic alterations.

5.2. Advanced Visualization Methods

The fast advancement of imaging techniques and corresponding software in recent
times have massively changed the ways how biological samples can be investigated and
quantified. Today, image processing, computer aided quantification and feature extraction
enable automatic and reproductive measurements, essential for comparative studies in
toxicology, e.g., [77]. Most times, these techniques utilize transgenic fluorescent zebrafish
lines to mark the organ of interest and subsequently score for a set of distinct parameters
(see also Section 3). One recent example is the deep learning-based feature recognition in
cardiac function [228,229], enabling reliable and fast quantification of cardiac parameters
from high resolution dynamic light-sheet fluorescence or light-field microscopy. The
techniques enable visualization and measurement of highly dynamic biological processes,
such as heart function, in a living organism in three dimensions over time.

5.3. Novel Genetic Methods

Application of advanced genetic methods, like refined next-generation CRIPSR/Cas9
and Next Generation Sequencing (NGS) techniques, have had a huge impact on zebrafish
investigations and are likely to continue to do so by enabling establishment of complex
transgenic models for rare human disorders [6,233], base pair specific precise genome alter-
ations [230], and by enabling single-cell transcriptome sequencing techniques [234–237].
These transgenic techniques along with automated microinjection [238] and refined meth-
ods of mutation detection [239,240] enable the establishment of “simple” loss-of-function
or complex genetic rearrangements. Broad application of transgenic methods become more
and more standard and refined protocols allowing to elucidate molecular mechanisms
are available even for small labs. In parallel, NGS techniques have been adopted to ze-
brafish and enable genome wide resequencing for variant identification, expression studies
by whole-animal/tissue transcriptome (RNA-seq) or single cell sequencing (scRNA-seq)
analyses, successfully implementing Omics-technologies for zebrafish embryos and larvae.
Currently, the impact of scRNA-seq on developmental biology of zebrafish is eminent.
Although technical demanding, it enables dissection of single cell linages within organs,
investigation of stage specific expression changes in single cells and quantitative clustering
of cell types [231,235–237]. Further examples show how implementation of scRNA-seq
either in investigation of zebrafish disease models [241] or in toxicology [242,243] can
increase experimental reliability by facilitating high numbers of single cell expression data.

6. Conclusions

In summary, the development of novel techniques and refinement of established
measurements will have a great impact on how zebrafish embryo and early larval models
can be adopted for toxicological screens in the future. Without doubt, this will have a
positive impact on the 3Rs, by reducing the number of mammals needed for toxicity testing,
by enabling rapid generation of specialized models, by identifying specific compounds
in large libraries, or by visualizing adverse effects on organs early during vertebrate
development. Complications may arise by the increase in complex data sets and their
correct statistical processing, technical demands on the experimental setup, increased
experimental costs and detailed reporting of experimental processes. Implementation of
advanced, standardized methods might foster cross-species comparative studies to identify
fundamental molecular mechanisms and to further establish zebrafish as an alternative or
even surrogate toxicological model species to mammals.
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