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Purpose: Machine learning based on radiomics features has seen huge success in a

variety of clinical applications. However, the need for standardization and reproducibility

has been increasingly recognized as a necessary step for future clinical translation. We

developed a novel, intuitive open-source framework to facilitate all data analysis steps of a

radiomics workflow in an easy and reproducible manner and evaluated it by reproducing

classification results in eight available open-source datasets from different clinical entities.

Methods: The framework performs image preprocessing, feature extraction, feature

selection, modeling, and model evaluation, and can automatically choose the optimal

parameters for a given task. All analysis steps can be reproduced with a web application,

which offers an interactive user interface and does not require programming skills.

We evaluated our method in seven different clinical applications using eight public

datasets: six datasets from the recently published WORC database, and two prostate

MRI datasets—Prostate MRI and UltrasoundWith Pathology and Coordinates of Tracked

Biopsy (Prostate-UCLA) and PROSTATEx.

Results: In the analyzed datasets, AutoRadiomics successfully created and optimized

models using radiomics features. For WORC datasets, we achieved AUCs ranging from

0.56 for lung melanoma metastases detection to 0.93 for liposarcoma detection and

thereby managed to replicate the previously reported results. No significant overfitting

between training and test sets was observed. For the prostate cancer detection task,

results were better in the PROSTATEx dataset (AUC = 0.73 for prostate and 0.72 for

lesion mask) than in the Prostate-UCLA dataset (AUC 0.61 for prostate and 0.65 for

lesion mask), with external validation results varying from AUC = 0.51 to AUC = 0.77.

Conclusion: AutoRadiomics is a robust tool for radiomic studies, which can be used

as a comprehensive solution, one of the analysis steps, or an exploratory tool. Its wide

applicability was confirmed by the results obtained in the diverse analyzed datasets. The

framework, as well as code for this analysis, are publicly available under https://github.

com/pwoznicki/AutoRadiomics.
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INTRODUCTION

Over the past decades, the search for novel, quantitative imaging
biomarkers has been an emerging topic in the research landscape,
with the ultimate goal of leveraging the full potential of medical
imaging and enabling more personalized medical care (1, 2).
Within this field, radiomics has been identified as a potential
way to mathematically extract clinically meaningful quantitative
imaging biomarkers (so-called features) from medical images
of different modalities (3–5). Combined with machine learning
(ML), radiomics classifiers have been shown to accurately
predict the diagnosis (6), prognosis (7), mutational status
/ genetic subtypes (8–10), histopathology (8), surgery (11),
or treatment response (12). Consequently, there is a huge
interest in the clinical and research field to translate the
diagnostic and prognostic potential of radiomics to clinical
patient care.

This interest has resulted in a large number of scientific
publications being issued with a similarly large variety of
methods and radiomics pipelines. Besides the inherent issue
of model overfitting, which comes with any ML and big data
application where the number of features usually considerably
exceeds the number of samples in the training set, most
radiomics studies also have been proven difficult to reproduce
and validate. This may be also due to the large variety of
methodology and the lack of an open-science mindset within the
research community, with the datasets and code rarely published
alongside the results.

Fortunately, an evolving body of open-science frameworks
has been accumulating in recent years, and new initiatives
aiming at standardization and reproducibility of different
aspects of radiomics analysis and ML have been founded.
For example, the Image Biomarker Standardization Initiative
(IBSI) (3) has addressed the standardization of the radiomic
feature extraction process, while the Workflow for Optimal
Radiomics Classification (WORC) (2) has been developed in
order to automate and standardize a typical radiomics (and
ML) workflow.

Performing reproducible radiomics studies usually requires
programming skills, since themost prevalent tools in the research

FIGURE 1 | Framework components. AutoRadiomics has a modular architecture, and its components are based on the typical steps in a radiomics analysis. *The first

analysis step, automatic segmentation, is not performed inside the framework directly, but a script is generated that can be run separately.

community are written in Python language (1–3). This makes it
very difficult for clinicians (who will be the ones responsible for
clinical translation of trained models and classifiers) to perform
radiomics studies by themselves or to simply “play around” with
the data.

The aim of this study was to present an intuitive, open-source
framework with an interactive user interface for reproducible
radiomics workflow. We evaluated its performance on eight
publicly available datasets covering varying clinical applications
to prove that the framework is able to reproduce previously
published studies. AutoRadiomics provides tools for every step
of the radiomics workflow (including image segmentation, image
processing, feature extraction, classification, and evaluation) with
the ability to adjust each step of the workflow as needed.
We believe this framework may help to bridge the gap
from programmers to clinicians and enable them to quickly
experiment with their datasets in a reproducible way.

MATERIALS AND METHODS

This analysis is divided into two main parts: Section Framework
describes design principles that we followed while designing
AutoRadiomics, and Section Experiment provides information
on experiments that were performed to evaluate its performance
in publicly available tomography imaging datasets.

Framework
AutoRadiomics is an open-source Python package with an
embedded web application with an interactive user interface.
The framework can be accessed at https://github.com/pwoznicki/
AutoRadiomics, where all the details on its development can
be found. The framework is built around the standard steps
of a radiomics workflow, including image processing, feature
extraction, feature selection, dataset rebalancing, ML model
selection, training, optimization, and evaluation. The main
components of the framework are presented schematically in
Figure 1. AutoRadiomics uses standard libraries validated in
multiple radiomics studies, such as pyradiomics (1) for feature
extraction, scikit-learn (13) for MLmodels and data splitting, and
imbalanced-learn (14) for over-/undersampling. These reliable
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FIGURE 2 | Exemplary screenshots of the web application. The application enables users to perform all the analysis steps including feature extraction, model training,

and evaluation, using standardized or custom settings.

FIGURE 3 | Study flowchart.
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building blocks further contribute to creating robust and
reproducible workflows. The framework is available under the
Apache-2.0 License.

Data Preparation and Radiomic Feature Extraction
Data splitting in AutoRadiomics is performed on provided
case IDs. Depending on dataset size and application, user can
choose to split the data into k folds for cross-validation (with
or without a separate test set) or into training/validation/test
sets. Radiomic features, including standard shape, intensity, and
texture features, are extracted with pyradiomics, with additional
parameters specified in the parameter file. A few built-in options
are provided for this purpose, including extraction parameters
validated in previous studies (12, 15). Additional optimizations
in computing resource allocation make the extraction process
more efficient.

Hyperparameter Optimization and Experiment

Tracking
Hyperparameter optimization is performed using the Optuna
framework (16), which dynamically constructs the search
space for hyperparameters and automatically chooses optimal
ones. The framework simultaneously optimizes the choice
and hyperparameters of the ML classifiers as well as feature
selection and oversampling methods, which greatly simplifies the
training workflow. The following classifiers are included: logistic
regression, support vector machines, random forest, and extreme
gradient boosting (XGBoost). Experiments are tracked using an
integrated MLFlow tracking dashboard, which allows the user to
explore the training artifacts as well as the metrics during and
after the training process.

Web Application
Recognizing the problems many non-expert users may face when
being forced to use a programming interface, we developed a
browser application with an interactive user interface on top of
the Python package. The app can be run locally as a Docker
container, satisfying the necessary privacy concerns. It adopts a
straightforward, modular structure to the radiomics workflow
and covers sequentially all steps of the analysis pipeline. The
output of each intermediary step, training parameters, and logs
are stored in the experiment’s directory. That enables the user to
later come back to the experiment and document the workflow.
Figure 2 presents exemplary screenshots of the app. The app also
provides utilities for generating Python code that can be then
executed as a separate script to perform automatic segmentation
using the state-of-the-art nnU-Net framework (17), and for
generating radiomics maps using voxel-based feature extraction.

Experiment
Data Sources
To validate the developed framework, we used eight datasets
from two different sources. Firstly, we used six public datasets
from the recently publishedWORCdatabase (18), which includes
multi-institutional annotated CT and MRI datasets with varying
clinical applications. The respective classification tasks were
(1) well-differentiated liposarcoma vs. lipoma, (2) desmoid-type

fibromatosis vs. extremity soft-tissue sarcoma, (3) primary solid
liver tumor, malignant vs. benign, (4) gastrointestinal stromal
tumor (GIST) vs. intra-abdominal gastrointestinal tumor, (5)
colorectal liver metastases vs. non-metastatic tumor, and (6) lung
metastases of melanoma vs. lung tumor of different etiology.
The database was released together with benchmark results
to facilitate reproducibility in the radiomics field and, to our
knowledge, we are the first ones to replicate the previously
published results (2).

Additionally, two public prostate MRI datasets, which
are available on The Cancer Imaging Archive, were used:
Prostate MRI and Ultrasound With Pathology and Coordinates
of Tracked Biopsy (19) from the University of California,
Los Angeles (UCLA) (further referred to as Prostate-UCLA)
and PROSTATEx (20) with annotations from Cuocolo et al.
(21). These two datasets were selected since they both had
segmentations of prostate gland and lesions as well as biopsy
evaluation including Gleason Score (GS) available. All lesions
from the Prostate-UCLA dataset had targeted biopsy performed.
For PROSTATEx, all lesions with PI-RADS ≥3 were biopsied.

TABLE 1 | Characteristics of training and test cohorts.

Number of patients

Imaging modality Training Test

Lipo T1w MRI

well-differentiated liposarcoma 45 (49%) 11 (48%)

lipoma 46 (51%) 12 (52%)

Desmoid T1w MRI

desmoid-type fibromatosis 57 (35%) 15 (37%)

extremity soft-tissue sarcoma 105 (65%) 26 (63%)

Liver T2w MRI

malignant primary solid liver tumor 75 (51%) 19 (50%)

benign primary solid liver tumor 73 (49%) 19 (50%)

GIST CT

gastrointestinal stromal tumor 99 (51%) 25 (51%)

other intra-abdominal tumors 97 (49%) 24 (49%)

CLRM CT

colorectal liver metastases 29 (48%) 8 (50%)

other colorectal tumors 32 (52%) 8 (50%)

Melanoma CT

lung metastases of melanoma 38 (50%) 9 (47%)

other lung tumors 38 (50%) 10 (53%)

PROSTATEx T2w MRI

benign prostate lesion 80 (51%) 20 (50%)

ISUP grade 1 (GS = 6) 23 (15%) 6 (15%)

ISUP grade 2 (GS ≥ 7) 55 (35%) 14 (35%)

Prostate-UCLA T2w MRI

benign prostate lesion 142 (23%) 36 (23%)

ISUP grade 1 (GS = 6) 146 (24%) 37 (24%)

ISUP grade ≥ 2 (GS ≥ 7) 333 (54%) 83 (53%)

T1w, T1-weighted; T2w, T2-weighted; ISUP, International Society of Urological Pathology;

GS, Gleason score.
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TABLE 2 | Classification results.

Dataset AUC F1 Sensitivity Specificity

Five-fold CV Test Test Test Test

Lipo 0.86 ± 0.10 0.93 [0.77–1.0] 0.85 [0.67–1.0] 0.82 [0.56–1.0] 0.92 [0.73–1.0]

Desmoid 0.78 ± 0.05 0.90 [0.79–0.98] 0.77 [0.57–0.92] 0.80 [0.58–1.0] 0.84 [0.68–0.96]

Liver 0.64 ± 0.11 0.67 [0.49–0.84] 0.68 [0.48–0.82] 0.69 [0.45–0.88] 0.68 [0.47–0.88]

GIST 0.68 ± 0.03 0.69 [0.53–0.84] 0.72 [0.56–0.84] 0.72 [0.54–0.88] 0.71 [0.5–0.88]

CRLM 0.68 ± 0.14 0.75 [0.43–1.0] 0.82 [0.57–1.0] 0.88 [0.6–1.0] 0.75 [0.43–1.0]

Melanoma 0.59 ± 0.15 0.56 [0.29–0.93] 0.48 [0.15–0.76] 0.44 [0.13–0.8] 0.70 [0.42–1.0]

Prostate masks

PROSTATEx 0.70± 0.03 0.73 [0.55–0.89] 0.73 [0.55–0.86] 0.75 [0.53–0.94] 0.69 [0.47–0.88]

UCLA 0.48 ± 0.09 0.61 [0.51–0.71] 0.78 [0.72–0.74] 0.75 [0.67–0.82] 0.44 [0.28–0.61]

PROSTATEx→ UCLA* 0.70 [0.62–0.79] 0.52 [0.43–0.62] 0.36 [0.27–0.45] 0.97 [0.90–1.0]

UCLA→ PROSTATEx 0.60 [0.41–0.79] 0.69 [0.52–0.83] 0.80 [0.61–0.95] 0.49 [0.27–0.73]

Lesion masks

PROSTATEx 0.68 ± 0.10 0.72 [0.56–0.86] 0.68 [0.48–0.84] 0.55 [0.33–0.76] 0.95 [0.82–1.0]

UCLA 0.59 ± 0.03 0.65 [0.55–0.74] 0.73 [0.67–0.80] 0.64 [0.55–0.73] 0.64 [0.48–0.8]

PROSTATEx→ UCLA 0.51 [0.41–0.61] 0.31 [0.21–0.41] 0.19 [0.12–0.27] 0.92 [0.82–1.0]

UCLA→ PROSTATEx 0.77 [0.60–0.91] 0.74 [0.57–0.87] 0.70 [0.5–0.89] 0.80 [0.61–0.95]

Results are presented as mean ± std for five-fold cross validation and mean with 95% CI in brackets for test set.
*arrow denotes external validation of the model trained on PROSTATEx in the Prostate-UCLA dataset.

FIve-fold CV, five-fold cross-validation; UCLA, Prostate-UCLA dataset.

We trained radiomics models based on either the whole prostate
gland or the target lesion masks in T2-weighted MR images to
differentiate between benign prostate lesions and prostate cancer,
as well as between clinically significant and clinically insignificant
prostate cancer.

Data Processing
The study flowchart is presented in Figure 3. For each dataset,
we split 80% of the data into training and 20% into the test
set. Then, we split the training set into 5 folds to perform
hyperparameter optimization using a cross-validation approach.
Image and segmentation data were converted into the NIfTI
format, where necessary, and no additional image preprocessing
was applied. For feature extraction, we used separate extraction
and image processing parameter sets for MRI and CT datasets, as
recommended by the IBSI (3). Hyperparameter optimization was
performed for each dataset with Optuna using 200 trials of the
Tree-structured Parzen Estimator (TPE) algorithm to maximize
the objective function.

Statistical Analysis
Receiver operating characteristic (ROC) curves were generated
for each independent variable and the area under the curve
(AUC) was calculated. The diagnostic efficacy of the model
was additionally evaluated using the F1 score, sensitivity,
and specificity, and was reported with 95% confidence
intervals (95% CI) obtained with the bootstrap technique.
The bootstrap used 1,000 resamples (with replacement) of
predicted probabilities to determine the 95% CI. All analyses
were performed with the AutoRadiomics framework, using
Python 3.8.10.

RESULTS

All the experiments were successfully implemented using Python,
but can also be reproduced using the interactive web application.
Supplementary Figure S1 shows the code extract required to run
the optimization and evaluation process for a selected dataset
(the implementation assumes a table with data paths is already
created). The optimal configurations of models selected for
each task are presented in Supplementary Appendix S3. The
execution time of the whole pipeline, including the optimization,
took around 1 h on a machine with 16 GB RAM and 8-core AMD
Ryzen 5800X processor.

The details of training and test cohorts for each task are
shown in Table 1. In total, we included 1895 patients in our
analyses. In the six datasets from the WORC database, the class
distribution was approximately balanced. For the two prostate
datasets, the distribution of classes differed between datasets: in
PROSTATEx, 50% of index lesions were classified as benign, 15%
as GS 6, and 35% as GS ≥7, compared to only 23% of index
lesions classified as benign, 24% as GS = 6, and 54% as GS≥7
in Prostate-UCLA.

Table 2 summarizes the classification results and Figure 4

presents the corresponding ROC curves for all included datasets.
In the following, we report the results from the test cohorts.

In the WORC database, we obtained results ranging from
weak discrimination for the Melanoma dataset (AUC = 0.56
[95% CI: 0.29–0.93], F1 = 0.48 [95% CI: 0.15–0.76]) to excellent
discrimination for the Lipo dataset (AUC = 0.93 [95% CI: 0.77–
1.0], F1 = 0.85 [95% CI: 0.67–1.0]) and the Desmoid dataset
(AUC = 0.90 [95% CI: 0.79–0.98], F1 = 0.77 [95% CI: 0.57–
0.92]).

Frontiers in Radiology | www.frontiersin.org 5 July 2022 | Volume 2 | Article 919133

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles


Woznicki et al. Framework for Reproducible Radiomics Research

FIGURE 4 | Results of ROC analysis.

For prostate datasets, results are reported separately for
classification using features from either prostate or lesion masks.
The discrimination was acceptable for both prostate masks (AUC
= 0.73 [95% CI: 0.55–0.89], F1 = 0.73 [0.55–0.86]) as well
as lesion masks (AUC = 0.72 [95% CI: 0.56–0.86], F1 = 0.68
[95% CI: 0.48–0.84]) in the PROSTATEx dataset, and moderate
for prostate masks (AUC = 0.61 [95% CI: 0.51–0.71], F1 =

0.78 [95% CI: 0.72–0.74]) and lesion masks (AUC = 0.65 [95%
CI: 0.55–0.74], 0.73 [95% CI: 0.67–0.80]) in the Prostate-UCLA
dataset. Both prostate datasets were additionally validated using
the other dataset, and their performance varied from AUC =

0.51 [95% CI: 0.41–0.61] for the PROSTATEx model using lesion
masks evaluated in Prostate-UCLA to AUC = 0.77 [95% CI:
0.60–0.91] for the Prostate-UCLA using lesion masks evaluated
in PROSTATEx.

The additional evaluation of the prostate MRI datasets
for differentiation between clinically significant and
clinically non-significant prostate cancer is presented in the
Supplementary Table S2. For this challenging task, the results

were worse than those for prostate cancer detection, with AUCs
ranging from 0.40 [95% CI: 0.29–0.50] for the Prostate-UCLA
dataset to AUC = 0.70 [95% CI: 0.33–0.97] for the PROSTATEx
dataset, trained with prostate masks. The external validation
results in this dataset showed AUCs in the range of 0.37 to 0.70
with high variability.

DISCUSSION

In this study, we introduced and validated a new open-source,
interactive framework for reproducible radiomics research. The
tool aids in selecting the optimal model for a given task, and
the associated web application lowers the entry threshold for
clinicians who want to contribute to the field of radiomics
research and foster clinical translation.

We evaluated AutoRadiomics in six different classification
tasks from the WORC database. It achieved consistently high
AUCs in both cross-validation and the test set, in the direct
comparison of our results vs. those reported in the original
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publication on the dataset (2): 0.93 vs. 0.83 for the Lipo dataset,
0.90 vs. 0.82 for the Desmoid dataset, 0.67 vs. 0.81 for the Liver
dataset, 0.69 vs. 0.77 for the GIST dataset, 0.75 vs. 0.68 for the
CRLM dataset, 0.56 vs. 0.51 for the Melanoma dataset. That
means, our framework achieved comparable results, higher in 4/6
tasks, and lower in 2/6 tasks. We also evaluated our framework in
two public prostate MRI datasets, achieving AUCs in the range
of 0.61–0.73 for internal validation, and 0.51–0.77 for external
validation. Those results prove that AutoRadiomics can be
successfully applied off-the-shelf and achieve competitive results
with its automatic configuration. We believe the differences
between ours and previously reported results may be largely
explained by the relatively small sample sizes, different data
splitting, and differing choice of classifiers. It has to be noted,
however, that, similarly to Starmans et al. (2), we achieved
best results for the Lipo dataset, and worst for the Melanoma
dataset, which suggests both approaches have converged to an
optimal solution.

Quantitative evaluation of disease patterns in medical images
which are invisible to the human eye has shown diagnostic
potential in multiple retrospective studies, but large-scale clinical
validation and adoption are still missing (22). We believe
that an accessible toolkit for exploratory data analysis and a
standardized workflow is a key component in developing the
field toward clinical translation. With this in mind, we released
AutoRadiomics as an intuitive open-source framework that
structures the radiomics workflow and makes it more accessible
and reproducible.

Recent advances in automated ML have the potential to
empower healthcare professionals with limited data science
expertise (23). Inspired by those breakthroughs, new platforms
for ML applied to medical imaging have recently been
introduced, such as WORC (2), which focuses on automatic
construction and optimization of the radiomics workflow. While
this platform also provides an automated solution and is very
extensive in scope, AutoRadiomics sets itself apart with its
interactive web interface, state-of-the-art tooling, and additional
utilities (i.e., for visualization and segmentation).

With our web application, we hope to shift the focus
from metrics to interpretability, which is achieved through
comprehensive visualizations and radiomics maps. We would
like to point out a few scenarios, where AutoRadiomics could
be especially helpful: (1) for clinicians exploring their dataset
using the embedded web application to gain quick insight into
their data, (2) for researchers using Python for radiomic analyses,
who want to complement their current workflow or add a
benchmark or reference standard, (3) for an inter-institutional
collaboration as means of facilitating results sharing and
workflow reproducibility.

Currently, our framework can be used only for binary
classification tasks, which limits its applicability. We are

planning to extend it in the future to handle multiclass
classification, regression tasks, and survival data. Furthermore,
some processing steps such as automatic segmentation using
deep learning require GPU capability, which is why it is not
integrated into our framework and only the code for performing
segmentation with a nnU-Net can be generated. AutoRadiomics
does not require a powerful GPU and a modern personal
computer is enough to run it. One should also keep in mind that
the results of any optimized model have to be considered with
caution and no abstraction layer (such as our web application)
may replace true expert domain knowledge.

In conclusion, we herein presented AutoRadiomics, a
framework for intuitive and reproducible radiomics research.We
described its key features as well as the underlying architecture,
and we discuss its most promising use cases. Finally, we validated
it extensively in eight public datasets to show its consistently
high performance in various and diverse classification tasks.
We believe that AutoRadiomics may help to improve the
quality and reproducibility of future radiomics studies, and,
through its accessible interface, may bring those studies closer to
clinical translation.
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