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Abstract: Mathematical optimization framework allows the identification of certain nodes within a
signaling network. In this work, we analyzed the complex extracellular-signal-regulated kinase 1 and
2 (ERK1/2) cascade in cardiomyocytes using the framework to find efficient adjustment screws for
this cascade that is important for cardiomyocyte survival and maladaptive heart muscle growth. We
modeled optimal pharmacological intervention points that are beneficial for the heart, but avoid the
occurrence of a maladaptive ERK1/2 modification, the autophosphorylation of ERK at threonine 188
(ERKThr188 phosphorylation), which causes cardiac hypertrophy. For this purpose, a network of a
cardiomyocyte that was fitted to experimental data was equipped with external stimuli that model
the pharmacological intervention points. Specifically, two situations were considered. In the first one,
the cardiomyocyte was driven to a desired expression level with different treatment strategies. These
strategies were quantified with respect to beneficial effects and maleficent side effects and then which
one is the best treatment strategy was evaluated. In the second situation, it was shown how to model
constitutively activated pathways and how to identify drug targets to obtain a desired activity level
that is associated with a healthy state and in contrast to the maleficent expression pattern caused by
the constitutively activated pathway. An implementation of the algorithms used for the calculations
is also presented in this paper, which simplifies the application of the presented framework for drug
targeting, optimal drug combinations and the systematic and automatic search for pharmacological
intervention points. The codes were designed such that they can be combined with any mathematical
model given by ordinary differential equations.

Keywords: optimal pharmacological modulation; efficient intervention points; ERK signaling;
optimal treatment strategies; optimal drug targeting; optimal drug combination

1. Introduction

The Ras/Raf/MEK/ERK1/2 cascade is involved in a panoplyof physiological and
pathophysiological processes in the body and is crucial for life. Processes include cell proliferation,
cell differentiation, cell hypertrophy and resistance to apoptosis. Even though several mechanisms
are known that control the activation of this cascade, a controlled activation of certain functions or
selective interference with certain maladaptive functions of the cascade would be of help to use this
cascade as pharmacological target.

The Ras/Raf/Mek ERK1/2 cascade has ERK as last amplifier. The Ras/Raf/MEK/ERK1/2
cascade integrates extracellular signals from surface receptors to multiple cellular processes such

Int. J. Mol. Sci. 2019, 20, 2179; doi:10.3390/ijms20092179 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-1886-7625
http://dx.doi.org/10.3390/ijms20092179
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/20/9/2179?type=check_update&version=3


Int. J. Mol. Sci. 2019, 20, 2179 2 of 24

as gene expression or cell survival. Upstream receptors include receptor tyrosine kinases and G
protein coupled receptors. The activation of Raf is induced by the small GTPase Ras; Raf in turn
phosphorylates and activates MEK, which then phosphorylate the effector kinases ERK1/2 at the
so-called TEY motif leading to the activation of ERK1/2. ERK1/2 phosphorylate several hundred
targets [1–3] throughout the cytosol and the nucleus. The nuclear/cytosolic distribution of ERK1/2
is controlled by scaffold proteins such as KSR, PEA-15 and Sef and by active and passive nuclear
translocation processes involving the nuclear pore [1–3].

The Ras/Raf/MEK/ERK1/2 cascade integrates extracellular signals from surface receptors to
multiple cellular processes such as gene expression or cell survival. The Ras/Raf/MEK ERK cascade
has ERK as last amplifier. Upstream receptors include receptor tyrosine kinases and G protein coupled
receptors. The activation of Raf is induced by the small GTPase Ras; Raf in turn phosphorylates and
activates MEK, which then phosrphorylates the effector kinases ERK1/2 at the so-called TEY motif
leading to the activation of ERK1/2. ERK1/2 phosphorylate multiple targets (>200) throughout the
cytosol and the nucleus. There are even more putative ERK substrates known (about 600); however,
not all are verified to be functionally relevant [1–3]. The nuclear/cytosolic distribution of ERK1/2
is controlled by scaffold proteins such as KSR, PEA-15 and Sef and by active and passive nuclear
translocation processes involving the nuclear pore. Further, an autophosphorylation of ERK1/2 has
been described that enhances the activation of nuclear ERK1/2 targets. This autophosphorylation
at threonine 188 (in ERK2; respectively, threonine 208 in ERK1) can be induced by the activation of
GPCRs coupled to Gq or Gs proteins that lead to the activation of the Ras/Raf/MEK/ERK1/2 cascade,
dimerization of ERK and the binding of the Gβγ subunits of G proteins to the ERK dimer. These
molecular pre-requisites induce ERKThr188 phosphorylation, which in turn enhances nuclear ERK1/2
signaling [1,4–6]. The mechanisms, however, of how ERKThr188 phosphorylation induces nuclear ERK
signaling are still unclear and may involve importins, which have been described to support the import
of ERK1/2 into the nucleus [7,8].

This article focusses on the modulation of the molecular events that involve ERKThr188

phosphorylation in order to evaluate the integration of the different signaling parameters and to
optimize the ERKThr188 phosphorylation as therapeutic target [1–5].

Specifically, our calculations refer to data on ERKThr188 phosphorylation in cells and transgenic
mice that have been described for the ERK2 mutants that are either phosphorylation deficient at
threonine188 (ERK2T188A) or simulate the phosphorylation (ERK2T188D); of note, ERK2T188D purified
from E. coli is kinase-inactive, which is in contrast to in vivo and cell data.

Importantly, mutations within the ERK cascade are critical for cancer: ERK, the final amplifier,
changes any constant signal from above into a constant proliferative signal for the cell [9].
A well-known example is the B-Raf cancer mutation in skin epithelia. This triggers then constant
proliferation in melanoma cells, leading to melanoma and treatable well by by a combination of
B-Raf and MEK inhibitors (e.g., vemurafenib and cobimetanib). However, resistance is an issue of
the treatment with these inhibitors and additional therapeutic options are necessary such as ERK1/2
inhibitors or alternative targeting strategies of protein kinases [10,11].

Control of a kinase cascade is thus of pharmacological interest. In the cells, the Ras/Raf/MEK/
ERK1/2 signaling cascade is controlled by dephosphorylation and inactivation mediated by dual specificity
phosphatases, protein-tyrosine specific phosphatases, and protein-serine/threonine phosphatases and
scaffold proteins. The interplay of phosphatases and kinases is critical for this cascade [11,12], as
phosphatases are important counter players of kinases. However, for practical applications, a major
drawback is the limited specificity of the phosphatases, and, for our mathematical model, we decided to
use a simplified model system focusing on kinases and their activation or deactivation in the pathway.
Hence, phosphatases were only modeled implicitly by the deactivation of the kinase. However, additional
signaling components can be implemented in future.

Here, we show a mathematical framework to study ERK signaling and its kinase cascade
pinpointed by the examples discussed in the following. Notably, this framework allows calculating
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how to steer a biological signaling network pharmacologically. We exemplify the approach on ERK
and connected cascades as ERK inhibition is of high medical interest. In particular, the third ERK
phosphorylation, the ERKThr188 phosphorylation, is a precondition for cardiac hypertrophy [13] and
thus it is interesting to stimulate signaling pathways in cardiomyocytes that contribute to a proper
cardiac function, increase cardiac inotrophy and reduce cardiac remodeling by modulation of this
rather maladaptive ERK modification. Finally, as an important applied, point we studied how good
the inhibition of the pathological cascade has to be to at least prevent pathological consequences.
However, the framework can also be generalized for other signaling cascades, as explained in detail
in Supplementary Materials. Moreover, it describes and models all nodes of the whole network
considered and this for all time points and all desired pharmacological interventions. Nevertheless,
for each real situation, comparison and validation by experimental data is critical and also here the
ERK cascade is a nice and well-studied example (e.g., [7–11,14]).

In Section 2.1, we discuss how in principle the provided framework can be used to evaluate
different treatment strategies with respect to their beneficial and side effects, important for optimal
treatment of chronic disease, such as heart failure. Here, ERK1/2 is shown to be an important target.
In Section 2.2, we show how this framework can be used to model constitutively activated pathways,
for instance in tumors of the skin such as melanoma. Again, the Ras/Raf/MEK/ERK cascade is critical
for cancerogenesis, for instance the mutation of B-Raf (most well known is the BRAFV600E mutation),
and then the whole cascade is continuously switched on, with ERK being the final amplifier and the
most abundant molecule of the whole cascade. We show with our example of the cardiomyocyte how
to use the proposed framework in such a situation to find an optimal treatment strategy out of many
possible ones that steers the pathological expression pattern, caused by the constitutively activated
pathway, to a desired physiological one. Our basal example in this work is a model of a cardiomyocyte
that was fitted to experimental data from [14]. By the fitting to experimental data, the network was
analyzed with respect to thresholds in the ERK signaling pathway.

For a summary of the content of the present paper, see the analysis flow chart in Figure 1 and, for
an overview of the methods of the presented framework for finding optimal drug combinations and
effective pharmacological intervention points, see Section 4.

Figure 1. Flow chart of the results.
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2. Results

In the following flow chart, we summarize the analysis flow and how the results build on each other.

2.1. ERK is of Pivotal Significance in the Cardiomyocyte’s Regulatory Network

ERK1/2 have shown to be essential but at the same time detrimental to the heart: ERK1/2 mediate
cell survival but can also mediate cardiomyocyte hypertrophy associated with maladaptive remodeling
of the heart and impaired cardiac function. The selective prevention of ERK1/2-mediated cardiac
hypertrophy—but not of ERK1/2-mediated cell survival—is thus of interest for the prevention of heart
failure [6].

In this section, we consider a gene regulatory network for cardiomyocytes given in [14] where we
discuss how to use the presented framework in principle to calculate different strategies to act on this
network with external stimuli and to find out optimal pharmacological targets. A strategy is defined
as which nodes we have to activate or inhibit by external stimuli. The network’s graph is shown in
Figure 2. Here, we would like to make another point: A model is never accurate and hence there are
always additions you can consider in a more complex model. For example, Epac does not seem to activate
PKC, but rather it can activate Ras. However, we start with a simpler model as we aim to give a general
framework for network and drug target analyzing. On the one hand, the framework is for any model
that is set up of differential equations and not fixed to the model depicted in Figure 2. For a practical use,
we provide the corresponding Matlab scripts where the user just has to change the corresponding model
equations that can also be generated with Jimena [15], SQUAD [16] or Potterswheel [17].

Figure 2. The graph of a network associated with a cardiomyocyte. The Network topology is shown
(as in [14] (Figure 1), which includes also references and explanations for all involved nodes and
their interactions; colors are different): In orange, the non-hypertrophic stimulus (left, carbachol) or
the hypertrophic stimulus (either angiotensin II or isoproterenol) are active after a suitable stimulus
(e.g., stress, oxygen debt of the heart, hormonal input). In green, the network of activations (arrows)
and inhibitions (blunted arrows) is shown. The output is positive strengthening of the heart (left,
light green), or the pathological hypertrophy of the heart (right, red boxes), the increase in the
cardiac hypertrophy is mediated by the activation of transcription factors entering the nuclei of the
cardiomyocytes, three important ones are shown.
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Hence, for explaining the ERK cascade, we use the underlying mathematical model (2.1) in the
Supplementary Materials if not otherwise stated where h = 10 and ωk, k ∈ {1, ..., 26}, which are
taken from [14] and are given as in Table 1. The nodes AND and SYSTEM STATE are technical nodes,
which we describe in the following. The node SYSTEM STATE is not in the network but is used
to permanently activate RKIP and GRK2 to model their constitutive expression in our model of a
cardiomyocyte. Furthermore, the node SYSTEM STATE activates the node AND such that we have that
ERK1/2 dim 3P can only be activated if ERK1/2 dim and Gβγ is active at the same time since the three
times phosphorylated ERK1/2 requires the twice phosphorylated ERK1/2. This models the fact that
the interdependence between ERK1/2 dimer with two phosphorylations from the positive inotropic
cascade and the ERK1/2 dimer with three phosphorylations is represented by an “AND” connection.

The equations for node 1, node 10 and node 26 are given as
dx1

dt
= −x1,

dx10

dt
= −x10, which can

be supplemented by activating stimuli according to model (2.1) in the Supplementary Materials and
dx26

dt
= 1− x26 that ensures that the activity level of SYSTEM STATE is constantly one, which means is

set on, to activate node 14, node 16 and node 17.

Table 1. Parameters for the network shown in Figure 2 according to the model (2.1) in the
Supplementary Materials.

k Name of the Node ωk

1 non-hypertrophic stimulus

2 carbachol
11x1

1 + 10x1

3 Gi-coupled M2 receptor
11x2

1 + 10x2

4 Ras (GTP bound)

13
12

(10x3 + x12 + x19)

1 + 10x3 + x12 + x19

5 Raf1
11x4

1 + 10x4

(
1− 1.01x14

1 + 0.01x14

)
6 MEK1/2

2x5
1 + x5

7 ERK1/2 dim 2P
1.001x6

1 + 0.001x6

8 p90RSK
1.01x7

1 + 0.01x7

9 p70S6K
1.01x7

1 + 0.01x7

10 hypertrophic stimulus

11 angiotensin II
2x10

1 + x10

12 Gq-coupled AT1 receptor
6x11

1 + 5x11

13 PKC

31
30

(10x3 + 10x12 + 10x20)

1 + 10x3 + 10x12 + 10x20

14 RKIP
2x26

1 + x26

(
1− 11x13

1 + 10x13

)
15 RKIP dim

11x13
1 + 10x13

16 GRK2
2x26

1 + x26

(
1− 31x15

1 + 30x15

)
17 AND

2x26
1 + x26

(
1− 101x7

1 + 100x7

)
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Table 1. Cont.

k Name of the Node ωk

18 isoproterenol
11x10

1 + 10x10

19 Gs-coupled β1 receptor
11x18

1 + 10x18

(
1− 1.1x16

1 + 0.1x16

)
20 Epac

11x19
1 + 10x19

21 Gβγ

21
20

(10x12 + 10x19)

1 + 10x12 + 10x19

22 ERK1/2 dim 3P
101x21

1 + 100x21

(
1− 2x17

1 + x17

)
23 Elk1

9x22
1 + 8x22

24 MSK1
8x22

1 + 7x22

25 c-Myc
7x22

1 + 6x22

26 SYSTEM STATE

The control strategy is defined for each experiment separately. We have for the parameters
σkj = ζkj = 0 if the external stimulus uj has no effect on the node k, σkj = 1 if the external stimulus has
an activating effect on the node k and ζkj = 1 if external stimulus has an inhibiting effect on node k.
It is stated in this work if we use different values for the parameters than these ones. Thus, now we
should consider pharmacological knowledge to think about optimal therapy strategies regarding the
ERK cascade:

In our case, we associate a high activity of the nodes p90RSK (node 8) and p70S6K (node 9)
with beneficial effects and a high activity of the nodes Elk1 (node 23), MSK1 (node 24) and c-Myc
(node 25) with maleficent effects.The activity levels of nodes, which ranges in our work between zero
and one, stand for the biological production activities of the associated biological agents. For instance,
transcription or translation rates of the associated node is gene. In this case, zero is associated with
no production and is interpolated until one which represents the highest production rate that is
biologically possible.

From our considerations, we desire a high activity for p90RSK and p70S6K and a low activity for
Elk1, MSK1 and c-Myc. We define these five nodes as our nodes of interest and choose the desired
state for the first two ones constant one and for the last three constant zero. The weights gk for the first

two are equal to
3
2

for the other three equal to 1 to compensate the fact that we have two beneficial
nodes and three maleficent ones and thus give the beneficial effect altogether the same weight as the
maleficent effect. For our experiments, we always had x0 the constant zero vector except the last entry
was set to 1, which is the initial value of the system state. To calculate the pharmacological intervention
in order to obtain the desired activity pattern of the nodes, we used Algorithm 1 in the Supplementary
Materials where we set its parameters as follows numMax = 10. If we used fewer than 10 possible
external stimuli, which are the intervention possibilities in the lab, then we set numMax to at most the
number of used external stimuli. Furthermore, we set numInt = 3. The result from these calculations
can be used as an initial guess for the sequential Hamiltonian (SQH) method [18] (Algorithm 2) to
calculate the fine-tuning for the external stimuli. For this purpose, we use the recommended parameter
values from [18] except κ = 10−14 and α = 0 if not otherwise stated. The final time is chosen by
T = 20 which means that the simulation time for the regulatory network is 20 time units. We compare
pharmacological treatment strategies as follows.

For our first experiment, we wanted to study the effects of carbachol, angiotensin II and
isoproterenol. These are drugs typically used in the clinic to treat high blood pressure (angiotensin 1
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receptor blockers) and heart failure (beta receptor blockade) and are, in particular in older,
multi-morbid patients, often used in combination. Thus, translated into the mathematical language of
our framework, this reads as follows.

We have an activating external stimulus on the node carbachol, angiotensin II and isoproterenol.
When the SQH method stops and returns a solution, we have J0 = 4.802759 and, in Figure 3, we can
see the time curves of the external stimuli, which are not the zero function and the time curves of the
states of interest. We see that an activation of carbachol leads to the activation of the beneficial nodes.
The short pulse of angiotensin II supports this effect and the maleficent nodes decay after a short and
weak activation.

(a)

(b)

Figure 3. A non-hypertrophic stimulus with carbachol and angiotensin II. (a) Time curve of the external
stimuli where u1 activates carbachol and u2 angiotensin II. On the abscissa, we have the time (t) and on
the ordinate the activity level (A). (b) Time curve of the nodes of interests where x8 is the activity level
of p90RSK, x9 is the activity level of p70S6K, x23 is the activity level of Elk1, x24 is the activity level of
MSK1 and x25 is the activity level of c-Myc. On the abscissa, we have the time (t) and on the ordinate
the activity level (A).

On the other hand, our framework can be used to check if a model is reasonable by testing what
happens subject to different external stimuli and if the reactions are in correspondence to experimental
data. Remember, the phosphorylation of p70S6K by ERK does not cause the direct activation of the
latter and further regulatory events may activate p70S6K. However, everything can be modeled in
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more detail, considering further or alternative regulatory events. In fact, which important effects to
consider depends on the choice of the user. The effects in Figure 3 are a result of the calculation to steer
the network depicted in Figure 2 to the desired state. We aimed as follows. By our straightforward
framework, we can evaluate models by checking if external stimuli provide known results. In this way,
we can easily check if a model is reasonable by testing different situations of external stimuli and their
corresponding effects. A more detailed model would refine the model output shown in Figure 3.

2.1.1. Studying the Effects of Mono-Therapy on the ERK Signaling Network

In Figure 4, we see the result where we only have an activating external stimulus on carbachol.
The target functional value J0 = 4.805384 when the SQH method converges. If we compare the target
functional value with the first experiment, we see that it is just a bit bigger and thus both control
strategies can be seen as equivalent control strategies with respect to an activity level close to the
desired one.

(a)

(b)

Figure 4. A non-hypertrophic stimulus with carbachol. (a) Time curve of the external stimulus where
u1 activates carbachol. On the abscissa, we have the time (t) and on the ordinate the activity level (A).
(b) Time curve of the nodes of interests where x8 is the activity level of p90RSK, x9 is the activity level
of p70S6K, x23 is the activity level of Elk1, x24 is the activity level of MSK1 and x25 is the activity level
of c-Myc. On the abscissa, we have the time (t) and on the ordinate the activity level (A).
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In our third experiment, we had an activating external stimulus just on angiotensin II and
isoproterenol. This would correspond to a simultaneous pharmacological treatment with angiotensin
II and isoproterenol. When the SQH method converges, we have J0 = 28.70478. In Figure 5, we have
the time curves of the external stimuli which are not zero and of the nodes of interest. Compared with
the two other experiments, the target functional was much higher, which means that an activating
external stimulus on carbachol was essential for an activity level of the network’s nodes of interest
close to our desired activity level. By this, we would then avoid heart hypertrophy and generate a
strong non-hypertrophic stimulus though.

(a)

(b)

Figure 5. A hypertrophic stimulus with angiotensin II and isoproterenol. (a) Time curve of the external
stimuli where u1 activates angiotensin II and u2 isoproterenol. On the abscissa, we have the time (t) and
on the ordinate the activity level (A). (b) Time curve of the nodes of interests where x8 is the activity
level of p90RSK, x9 is the activity level of p70S6K, x23 is the activity level of Elk1, x24 is the activity
level of MSK1 and x25 is the activity level of c-Myc. On the abscissa, we have the time (t) and on the
ordinate the activity level (A).



Int. J. Mol. Sci. 2019, 20, 2179 10 of 24

2.1.2. Combined Effects of Activation and Inhibition on ERK Signaling

ERKThr188 autophosphorylation triggers cardiac hypertrophy and subsequent maladaptive
remodeling and cardiac insufficiency. Since modulation of ERKThr188 phosphorylation does not
affect ERK1/2 mediated cell survival, ERKThr188 phosphorylation is thought to be an elegant target to
intervene with maladaptive ERK1/2 signaling in the heart.

In our fourth experiment, we had activating external stimuli on angiotensin II and isoproterenol
and one inhibiting external stimulus on ERK1/2 dim 3P. When the SQH method converges, we have
J0 = 5.513235 and the corresponding time curves are shown in Figure 6. As the target functional value
is close to the one with the experiments where carbachol is activated, we can say that the strategy of
activating angiotensin II and isoproterenol while inhibiting ERK1/2 dim 3P is equivalent to the one
where we only activate carbachol.

(a)

(b)

Figure 6. A non-hypertrophic stimulus by angiotensin II and isoproterenol with the inhibition of the
third ERK1/2 ERKThr188 phosphorylation. (a) Time curve of the external stimuli where u1 activates
angiotensin II, u2 on isoproterenol and u3 inhibits ERK1/2 dim 3P. On the abscissa, we have the time
(t) and on the ordinate the activity level (A). (b) Time curve of the nodes of interests where x8 is the
activity level of p90RSK, x9 is the activity level of p70S6K, x23 is the activity level of Elk1, x24 is the
activity level of MSK1 and x25 is the activity level of c-Myc. On the abscissa, we have the time (t) and
on the ordinate the activity level (A).
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In Figure 7a, we have the activity level of ERK1/2 dim 3P, which is of course an extreme case as
we have a very strong inhibition. However, it demonstrates that for a strong inhibition of the ERK1/2
dim 3P that this strategy is almost that good as using an activating stimulus only on carbachol, see the
first two experiments.

It is possible to fit an external stimulus’s ability for inhibition by the parameter ζkj in (2.1) of the
Supplementary Materials such that the corresponding node has the measured activity level when the
inhibitor is active. For this purpose, the parameter ζ22,3 can be diminished and thus the activity level
of ERK1/2 dim 3P increases for ζ22,3 tending to zero, see Figure 7b.

(a)

(b)

Figure 7. On the abscissa, we have the time (t) and on the ordinate the activity level (A) of the ERK1/2
dim 3P in the forth experiment: (a) with ζ22,3 = 1; and (b) with ζ22,3 = 0.8 in model (2.1) of the
Supplementary Materials, which demonstrates how to adapt different capabilities of the external
stimuli with respect to influencing the corresponding nodes.

These first four experiments demonstrated how our optimization framework can be used to
compare different control strategies with respect to their ability to steer the activity level to the desired
activation level of the network’s nodes. Once the parameters such as T and weights gk are fixed
(see model (2.2) in the Supplementary Materials), then the smaller the target functional value of a
certain control strategy is, the more beneficial effects and the less maleficent effects the strategy has.
By this procedure, we can sort different strategy or assess them with respect to their corresponding
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target functional value. The optimization framework serves as an objective method to determine the
time curves of the external stimuli such that we have the lowest target functional value possible for
the given strategy. We stress that we just influence on which node an external stimuli acts. Each time
curve is then automatically given by the optimization framework, namely by solving model (2.2) in
the Supplementary Materials.

In the next two sections, we show how to use our framework to model constitutively activated
signal pathways since they play an important role in heart failure and for oncogenesis in general. Then,
in the following, we show how to utilize the framework to systematically search for optimal treatment
strategies, again with our basal model of a cardiomyocyte.

2.2. A Cardiomyocyte with Constitutively Activated Gs-Coupled β1 Receptor

This situation can arise from different situations in real life: For instance, taking constantly a
beta-mimetic drug to treat asthma could lead to such a constant activation of the Gs-coupled β1

receptor. Alternatively, endogenous factors such as constant stress or first signs of cardiac failure
can lead to such an activation. Mathematically speaking, we hence discuss different strategies for
the network from Section 2.1 where the Gs-coupled β1 receptor (node 19) is constitutively activated
such that it has continuously about 30% of its maximum activation level. To model this, we equip
its corresponding activating node isoproterenol (node 18) with the term +0.058− x18 such that the

corresponding equation is given by
dx18

dt
= 0.058− x18. Furthermore, in our experiment, node 10

(hypertrophic stimulus) was not activated and thus stayed at zero if an initial value of zero was chosen.
This ensured that isoproterenol stayed at a constant level of 5.8% of its maximum activation, which
had the consequence that the Gs-coupled β1 receptor had about 30% of its maximum activation level
(see Figure 8). As in Section 2.1, we associate a high activity of the nodes p90RSK (node 8) and p70S6K
(node 9) with beneficial effects and a high activity of the nodes Elk1 (node 23), MSK1 (node 24) and
c-Myc (node 25) with maleficent effects, which is why we desire a low activity for them. We define these
five nodes as our nodes of interest and choose the desired state for the first two constants one and for
the last three constants zero. The weights gk for the the first two are again equal to

3
2

for the other three
equal to 1. We always have x0 equal to the constant zero vector except the activity level for AND, GRK2
and SYSTEM STATE equal 1 and we use Algorithm 1 in the Supplementary Materials where we set the
algorithm’s parameters as follows numMax = 10 and numInt = 3. The result from this calculation was
used as the initial guess for the sequential Hamiltonian (SQH) method [18] (Algorithm 2) to calculate
the fine tuning for the relevant intervention points. The SQH method was used with its recommended
parameter values, see [18], except κ = 10−14 and α = 0 if not otherwise stated. The final time was
chosen by T = 60, i.e., the regulatory network was simulated for 60 time units.

If the network is unperturbed, then the constitutively activated Gs-coupled β1 receptor causes
the following activity pattern in the network, where we show the activity level of some nodes in
Figure 8 with J0 = 160.1896. We see that the activity level of the nodes associated with maleficent
effects (nodes 23–25) are highly active while the nodes associated with beneficial effects (nodes 8 and 9)
are at a very low activity level. Furthermore, we see that a constitutively activated receptor is able
to hold the network in a certain state that means a constant expression pattern. Thus, the expression
pattern of the network is also constitutively altered compared to the steady state in which the network
would be if the receptor was totally inactive.

2.2.1. Further Pathological Constant Molecular Activation

In this subsection, we would like to look at the long-term consequences of the constant activation
of the ERK cascade by the constitutively activated Gs-coupled β1 receptor. In particular, the continuous
activation of a receptor or ERK kinase or other members of the ERK cascade such as MEK may also
lead to cancer.
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This can also easily be investigated within our framework. In such situations, ERK is part of
the signaling cascade while the constitutive activation may either stem from an activating, oncogenic
mutation of a key receptor such as Epidermal Growth Factor Receptor (EGFR, usually treated by
Gefitinib [19]) or by a kinase mutation (most well known are B-Raf and Ras mutations, however,
in some aggressive cancers this can also be ERK mutations).

Figure 8. On the abscissa, we have the time (t) and on the ordinate the activity level (A) for PKC
(node 13), RKIP (node 14), RKIP dim (node 15), GRK2 (node 16), isoproterenol (node 18), Gs-coupled
β1 receptor (node 19), p90RSK (node 8), p70S6K (node 9), Elk1 (node 23), MSK1 (node 24), and c-Myc
(node 25).

In general, a constitutively activation of receptors can be caused by mutations in the receptor itself
or its corresponding signal protein. Another example is cell–cell-interaction where a constitutively
activated receptor can be caused by secretory cells that constitutively secret the corresponding signal
molecule. The presented framework in combination with constitutively activated receptors can also be
used in modeling oncogenesis where constitutively activated pathways play a role [20–22].

A further example is the inhibition of p53 or Retinoblastoma (Rb) protein after a virus infection.
This can be caused by constitutively expressed proteins that bind to p53 or Rb to enhance cell
proliferation which is needed for the virus reproduction [23–25]. This can be modeled analogous to the
constitutively activated receptors where the other way round the activity level of the corresponding
node is constitutively inhibited by the external stimuli associated with this effect of the virus infection.
This illustrates that an external stimulus can also be a virus or the effect of its infection, as well as how
this can be modeled within the presented framework. Once the corresponding issue is modeled as
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described before, the benefit for pharmacological research is the identification of promising drug targets
that counter the maleficent effects caused by the constitutively activated pathway. This illustrates how
the mechanism modeling constitutively activated Gs-coupled β1 receptor as discussed above transfers
to different situations and signaling pathways.

2.2.2. Steering the ERK Network of the Cardiomyocyte in a Beneficial Way

Molecular pre-requisites for ERKThr188 phosphorylation are the dimerization of ERK and Gβγ

binding to the ERK dimer. Interference with these protein-protein interactions would thus facilitate
selective inhibition of ERKThr188 phosphorylation. In this manuscript, we particularly evaluate the
outcome of the interference with the ERK–ERK interaction in the context of the different ERK1/2
activating cascades.

Now, we show how to apply our framework to discuss different strategies that improve the
expression pattern that means to obtain a non-hypertrophic stimulus. First, we show the effects of just
blocking the constitutively activated Gs-coupled β1 receptor and then we demonstrate how to use our
framework to automatically search for an alternative treatment strategy.

A strategy to reduce the target functional value, which means that it increases the beneficial
effects, is to inhibit the Gs-coupled β1 receptor, which is called the β-block strategy in this work. When
the SQH method converges, we have J0 = 90.09628. The results are shown in Figures 9 and 10 for
some activity levels of nodes. The time curve of the corresponding external stimuli might be a delicate
issue in a real experiment. With a constant external stimulus with value 0.2, we have the value of
the cost functional J0 = 90.10581. Therefore, it is not needed to have such a highly structured time
curve, as shown in Figure 9, because we obtain the same order of magnitude of the target function
with the corresponding constant external stimulus. Notice that it is sufficient to reduce the activity
level of the Gs-coupled β1 receptor from about 30% to about 24% such that the activity level of Elk1,
MSK1 and c-Myc drops from about 100% to 1%. That means that we have identified a threshold for
the activity of these three nodes via the activation of the Gs-coupled β1 receptor. In this way, we can
use the framework to calculate a fine tuning of nodes. By equipping a node by an external stimulus,
we see after the calculation how much the activity level upon the action of the external stimulus differs
from the unperturbed situation.

(a)

Figure 9. Cont.
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(b)

Figure 9. Blocking the constitutively activated Gs-coupled β1 receptor. (a) The external stimulus u1

inhibits Gs-coupled β1 receptor. On the abscissa, we have the time (t) and on the ordinate the activity
level (A). (b) Time curve of the nodes of interests where x8 is the activity level of p90RSK, x9 is the
activity level of p70S6K, x23 is the activity level of Elk1, x24 is the activity level of MSK1 and x25 is the
activity level of c-Myc. On the abscissa, we have the time (t) and on the ordinate the activity level (A).

Figure 10. On the abscissa, we have the time (t) and on the ordinate the activity level (A) for PKC
(node 13), RKIP (node 14), RKIP dim (node 15), GRK2 (node 16), isoproterenol (node 18) and Gs-coupled
β1 receptor (node 19) where the Gs-coupled β1 receptor is inhibited.

2.2.3. Systematic Search for an Optimal Treatment

For clinical applications, steering the ERK signaling pathway is critical. This is achieved usually
by pharmacological drugs. However, ERK is in a network and rarely the complete network response is
considered. For this reason, we discuss in the following the network effects, too.

To obtain a further improvement of the therapy, i.e., more beneficial effects and fewer side effects,
we now perform a systematic search for beneficial intervention points. In mathematical terms, it means
that we find external stimuli that effect the activity levels of certain nodes and are associated with
a therapy that reduces the target functional, defined in (2.2) in the Supplementary Materials, which
takes maleficent side effects and beneficial effects of a therapy via the corresponding external stimuli
into account. In the case of a small target functional value, we have external stimuli that steer the
considered network to a state with corresponding activity levels of the nodes that are associated with
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a healthy state. For our systematic search, we equip the nodes PKC (u1), RKIP (u2), RKIP dim (u2),
ERK1/2 dim 3P (u3), Gs-coupled β1 receptor (u4) and Ras (GTP bound) (u5) with inhibiting external
stimuli and the nodes angiotensin II (u6) and isoproterenol (u7) with activating external stimuli. In our
example, we set ζ22,3 = 0.95 to model the fact that possibly the external stimuli u3 cannot totally
inactivate of ERK1/2 dim 3P. In Figure 11, we can see the results. Notice that we now have high activity
levels for the nodes p90RSK and p70S6K and still a low activity level for the nodes Elk1, MSK1 and
c-Myc which results in a lower target functional value than in the last experiment. We have a target
functional value J0 = 6.594448. That means this treatment is better than just blocking the Gs-coupled
β1 receptor. However, there are many external stimuli active. Our next step is to use our framework to
reduce the number of external stimuli in order to obtain the most effective external stimuli. These are
the external ones to focus on for designing an optimal therapy.

(a)

(b)

Figure 11. Several external stimuli acting on the cardiomyocyte. (a) Time curve of external stimuli
where u1 inhibits PKC, u2 inhibits RKIP and RKIP dim, u3 inhibits ERK1/2 dim 3P, u4 Gs-coupled β1

receptor, u5 inhibits Ras (GTP bound), u6 activates angiotensin II and u7 activates isoproterenol. On the
abscissa, we have the time (t) and on the ordinate the activity level (A). (b) Time curve of the nodes of
interests where x8 is the activity level of p90RSK, x9 is the activity level of p70S6K, x23 is the activity
level of Elk1, x24 is the activity level of MSK1 and x25 is the activity level of c-Myc. On the abscissa, we
have the time (t) and on the ordinate the activity level (A).
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In Figure 11, there are many active external stimuli. By increasing α > 0 in model (2.2) of the
Supplementary Materials, we reduce the number of active external stimuli. This comes from the fact
that by increasing alpha the costs for active external stimuli increase such that only that ones remain
whose activity has a noteworthy effect on steering to network to our desired expression pattern. Thus,
we extract the most effective external stimuli which have much effect on reducing the target functional
value and our framework returns only these external stimuli that are really important. We increase α

and perform the calculations where, for α = 0.8, we only have u3, u6 and u7 as active external stimuli.
The results can be seen in Figure 12. This means that these three external stimuli, which are u3 inhibits
ERK1/2 dim 3P, u6 activates angiotensin II and u7 activates isoproterenol, are the important ones that
we further investigate.

(a)

(b)

Figure 12. The optimal treatment strategy. (a) Time curve of external stimuli where u3 inhibits ERK1/2
dim 3P, u6 activates angiotensin II and u7 activates isoproterenol. On the abscissa, we have the time
(t) and on the ordinate the activity level (A). (b) Time curve of the nodes of interests where x8 is the
activity level of p90RSK, x9 is the activity level of p70S6K, x23 is the activity level of Elk1, x24 is the
activity level of MSK1 and x25 is the activity level of c-Myc. On the abscissa, we have the time (t) and
on the ordinate the activity level (A).
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If we perform the same experiment just with the the active stimuli from Figure 12 for α = 0
where we only use our combinatorial method (see Algorithm 1 in our Supplementary Materials), we
then obtain J0 = 7.118559 for a full activity of u3 and u7 (activity level of Gs-coupled β1 receptor
about 98% of its maximum activation level) and J0 = 7.107087 for full activity of u3 and u6 (activity
level of Gq-coupled AT1 receptor about 98% of its maximum activation level) which is almost the
same target functional value as in the case with many external stimuli more shown in Figure 11. This
demonstrates that this combination of external stimuli u3 and u7 or u3 and u6 are the essential ones to
obtain a beneficial effect on the network, which means to have a low target functional value. While
the other external stimuli also have beneficial effects, their contributions are minor compared to the
effects of u3 and u7 or u3 and u6. We can say that compared with the value of the target functional
of the unperturbed system (J0 = 160.1896) the strategies u3 and u7 or u3 and u6 are equivalent with
the strategy shown in Figure 11 where the big advantage is that only two stimuli have to be applied
instead of seven.

We remark without the external stimulus u3, we are just able to obtain a target functional value of
J0 ≈ 89, which stresses the importance of the inhibition of ERK1/2 dim 3P for achieving of a beneficial
state for the network.

2.2.4. A Threshold for ERK Signaling

Next, we look at the sensitivity of the ERK signaling pathway. We investigate to what activity
level ERK1/2 dim 3P has to be knocked down, i.e., has to be reduced, in order to be still as good as
just inhibiting Gs-coupled β1 receptor, that means to obtain a target functional value J0 ≈ 90. We take
the control strategy that u3 inhibits ERK1/2 dim 3P and u6 activates angiotensin. For this purpose,
we use our combinatorial method (see Algorithm 1 in our Supplementary Materials), for different
values of ζ22,3 which models the strength how much the activity level of ERK1/2 dim 3P (node 22)
can be inhibited by the external stimulus u3. The results are presented in Table 2, where for each
experiment the external stimuli are fully active. We see that if the activity level of ERK1/2 dim 3P
is at least at 10% of its maximum activity then, we still have a small target functional value J0 ≈ 20
compared with J0 ≈ 90 which is achieved by just applying our β-block strategy mentioned above.
Furthermore, as the activity level of p90RSK and p70S6K are at 1 for all ζ22,3 in Table 2, we have that at
about 5% of the maximum activity level of ERK 1/2 dim 3P the maleficent effects abruptly increase
(activity levels of Elk1, MSK1 and c-Myc) which can be associated with an abrupt worsening of the
treatment. For example, if one has a further restriction such as that the activity level of Elk1, MSK1 and
c-Myc is supposed to be below 15%, then one can see from Table 2 that the activity level of ERK 1/2
dim 3P is supposed to stay below 5% of its maximum activity level. This can also be seen in Figure 13
where J0 abruptly increases at 5% of ERK12 dim 3P maximum activity level. The interpretation is that
the treatment abruptly worsens at 5% of ERK1/2 dim 3P maximum activity level. However, it does
not mean that the treatment is already worse since higher values of J0 can be tolerable in vivo such
that only the beneficial effects are present while the maleficent effects are still not noticeable.

Additionally we still have a high activity level of p90RSK and p70S6K in contrast the strategy
where one inhibits just the Gs-coupled β1 receptor. Furthermore, we see in Table 2 that the more we
are able to inhibit ERK1/2 dim 3P the better it is for the treatment, i.e., the lower are the activity levels
of Elk1, MSK1 and c-Myc.

In Figure 14, we can see the corresponding time curve for the activity level of ERK1/2 dim 3P at
10% of its maximum level. In this case, the activity level of p90RSK and p70S6K is 1 and of Elk1, MSK1
and c-Myc is between 0.3 and 0.5. We conclude that if the activity levels of p90RSK and p70S6K are
low in spite of a constitutively activated Gs-coupled β1 receptor, one can recommend to activate the
Gs-coupled β1 receptor even more by angiotensin II until the activity levels of p90RSK and p70S6K are
high if one can manage it at the same time to inhibit the third phosphorylation of ERK1/2.
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Table 2. Activity levels of Elk1, MSK1 and c-Myc for increasing inhibition of the third
ERK1/2 phosphorylation.

ζ22,3 J0
Activity Level in %

ERK 1/2 dim 3P Elk1 MSK1 c-Myc

1 6.08 0 0 0 0
0.99 6.08 1 1 1 1
0.95 7.12 5 14 11 8
0.92 12.89 8 35 29 22
0.9 20.81 10 50 43 35
0.8 63.57 20 88 85 80
0.7 78.90 30 96 95 93
0.6 83.98 40 98 97 97

Figure 13. On the abscissa the activity level (A) of ERK1/2 dim 3P and on the ordinate the value (J)
of J0 is plotted. We see an abrupt increasing of the value of J0 which can be interpreted as an abrupt
deterioration of the corresponding treatment. Data points are from Table 2.

(a)

Figure 14. Cont.
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(b)

Figure 14. Activity levels for a concentration of three times phosphorylated ERK1/2 at 10% of its
maximum concentration. (a) Time curve of external stimuli where u3 inhibits ERK1/2 dim 3P, u6

activates angiotensin II. On the abscissa, we have the time (t) and on the ordinate the activity level (A).
(b) Time curve of x8 the activity level of p90RSK, x9 the activity level of p70S6K, x22 activity level of
ERK1/2 dim 3P, x23 the activity level of Elk1, x24 the activity level of MSK1 and x25 the activity level of
c-Myc. On the abscissa, we have the time (t) and on the ordinate the activity level (A).

3. Discussion

The ERK signaling pathway is not just a pathway. To understand and treat it in diseases we
have to look at the whole ERK network. ERK dimerization inhibitors or the manipulation of RKIP
or GRK2 are all different ways that affect the ERK signaling network, especially with the purpose
to help patients who suffer from heart insufficiency as soon as possible with better drugs. However,
the effects of the pharmacological manipulation are complex and sometimes even counter intuitive
on the first glance and not easy to understand. We know that the road to drugs for clinical use is still
long, however, our current experiments illustrate that the targets discussed around ERK are of high
therapeutical potential and merit more attention.

For this purpose, we now have developed a mathematical approach in order to calculate these
effects and to make them visible. This approach is even applicable to other networks and in particular
other cell types but we stress of course the central importance of ERK for the signal processing in the
discussed example, the cardiomyocyte. The mathematical framework is explained in detail in the
Supplementary Materials and is available for download in addition to the Matlab executables.

Of note, this model does not include all available information of the Ras/Raf/MEK/ERK1/2
signaling pathway but it can be easily modified by each researcher for the application in a certain
cell type or certain signaling components. This could be the inclusion of phosphatases, inhibitor
treatment or further signaling components as for example the study of a ERK1 mutant (ERK1R84S) that
autophosphorylates at Thr207, which corresponds to Thr208 in mouse ERK2, but also seems to induce
rather adaptive but maladaptive hypertrophy [26].

The mathematical framework is introduced and algorithms for the calculations are given.
The usage is demonstrated based on a network for a cardiomyocyte where different treatment strategies
are quantified with respect to beneficial and maleficent effects and evaluated based on the provided
framework. Furthermore, it is shown how to model constitutively activated signal pathways causing a
pathogenic state and different intervention points are systematically investigated to obtain an optimal
drug combination.

Our model can be used for inhibition of the ERK cascade in cardiomyocyte hypertrophy
(see Figure 13) and other pathologies (see Figure 9) for effects of c-Myc. The model can moreover
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be used to identify ERK as a promising drug target (see Figure 12) as well as to calculate to
what degree ERK has to be inhibited to produce a comparable good treatment strategy as a
non-hypertrophic stimulus.

It is shown how mathematical optimization can be used to analyze regulatory networks to
determine drug combinations that have maximal beneficial effect while reducing side effects at the
same time.

The method is a general framework. Although the example is performed with a cardiomyocyte
model, the framework and the workflow is analogous for different models describing a biological
experiment and may thus be interesting for the application in other diseases where the
Ras/Raf/MEK/ERK1/2 cascade is involved in such as cancer, Parkinson, Rasophathies [11,27,28].
This also includes that the framework can be used for different cell types and is not restricted to the
model of a cardiomyocyte. Any model set up of ordinary differential equations and thus any cell
type can be considered, such as T-cells [29,30]. Further we can model lung cells [19], colon or liver
cells [31]. In a similar way, any cell type can be considered provided sufficient information on network
topology and interaction parameters is available such as in the ERK cascade. These models are fitted
to experimental data, analogous to the model used in the presented work and thus the information
contained in the fitted model parameters can be revealed by our framework as shown.

We note two further applications of the proposed framework. The first application is that we can
test if a model is reasonable by applying different external stimuli and check if the network behaves
as supposed according to experimental data including suggested alternative network topologies
according to latest experimental data. The second application is as follows. An interaction graph can
be set up where the governing ODE model can be fitted to real data created by the omics technology.
All the possibilities of intervention by drugs can be modeled by external stimuli which can affect even
more than just one node if one drug has multi target effects. Then, by our optimization framework,
one can calculate the most effective drug combination that brings the activation level of the nodes of
interest as close to the desired activity level as possible (see the Supplementary Materials, starting on
the beginning of Page 4 for further details about this process).

We would like to stress that the limitation of the framework is in the model used. We cannot
obtain more information from the model than is encoded in it. However, a model fitted to experimental
data can contain a lot of hidden information and our general framework can help a lot to analyze
the information with respect to answer a certain question. In our case that is find effective drug
combination and pharmacological intervention points. In the Results Section, besides special results for
ERK signaling, we also aim at showing how to use our framework in several generic situations, which
is also a result in our opinion. To summarize the main points, we have a conclusion in the following.

4. Materials and Methods

The calculations in this work were performed with the Matlab scripts provided for download
(archive “Codes_optimal_pharmacological_intervention.zip”). Moreover, the framework can also
be generalized for other signaling cascades, as explained in detail in the Supplementary Materials.
A Matlab version with the SymbolicMath toolbox is required and the ParallelComputing toolbox
is recommended. The scripts are commented and a readme file is given in which the function
of the single scripts is described. The main file main_comp_therapies.m is set such that the
calculations for the results depicted in Figure 4 are performed if executed with Matlab. The main
file main_effective_treatment.m is set such that the calculations for the results depicted in Figure 12
are performed if executed with Matlab. Both files can easily be adapted to obtain the other results
by setting the weight α in the OCP struct and by inserting external stimuli in the equations for the
corresponding node. If in addition the right hand-side f in the script is replaced by different model
equations, the scripts can be used for analogous calculations with other models to find and investigate
optimal treatment strategies. We summarize the workflow to use the provided Matlab scripts and the
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provided framework for the calculation of pharmacological intervention points and the comparison of
treatment strategies in the following flow chart (Figure 15).

Figure 15. The workflow to use the provided script and the presented framework for the calculation of
pharmacological intervention points and the comparison of treatment strategies. See the comments of
the Matlab scripts for more details for its use and the setting of the parameters.

As mentioned, we provide the Matlab scripts. The framework and the scripts are elaborated such
that the user does not have to be able to program Matlab. The only thing that has to be done to use the
provided script for any model within the framework is to change the formulas for the model. This
is done where f = {. . . } is written in the Matlab scripts. Then, the parameters in the beginning of the
Matlab script of the “OCP” struct can be changed, which also needs no programming skills in Matlab.

5. Conclusions

Using the well-studied and central ERK cascade of the cardiomyocyte, we showed that we can
study its sensitivity, network effects, crosstalk threshold effects and treatment strategies.

The sensitivity of the ERK cascade was studied under external stimuli. For this purpose,
the effectiveness of a dimerization inhibitor was reduced (see the experiment associated with Figure 13).

Network effects for ERK signaling were considered in the experiments associated with Figures 3–6,
which show how the influence of certain nodes affects the activity of the ERK signaling.

Threshold effects in the ERK signaling cascade were investigated. In the experiment associated
with Figure 9, it was shown that a certain activity level of the dimerization of ERK, just a small reduction
of the activity level, results in a reduction of the nuclear agents Elk1, MSK1 and c-Myc chosen for
demonstration. Our simplified models explore the ERK cascade. More complex effects (considering
more nuclear agents, more phosphorylation substrates, indirect interactions, modifiers, and cross-talk)
might be considered for extending the scripts provided in the paper to more refined models.
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As a general approach for the search for pharmacological intervention points, the following points
are contained in the presented paper.

In Section 2.1, the proposed framework is used to compare different treatment strategies.
In the experiment associated with Figure 12, it was shown how to use the proposed framework to

find automatically and systematically the most effective treatment strategy out of a given number of
external stimuli, exemplified on a constitutively activated Gs-coupled β1 receptor.

Supplementary Materials: The supplementary manuscript with the mathematical and the algorithmic details are
available online at http://www.mdpi.com/1422-0067/20/9/2179/s1. The Matlab implementations are available
at http://www.mdpi.com/1422-0067/20/9/2179/s2.
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