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Abstract: Fabry Disease (FD) is a rare, X-linked, lysosomal storage disease that mainly causes
renal, cardiac and cerebral complications. Enzyme replacement therapy (ERT) with recombinant
alpha-galactosidase A is available, but approximately 50% of male patients with classical FD develop
inhibiting anti-drug antibodies (iADAs) that lead to reduced biochemical responses and an accelerated
loss of renal function. Once immunization has occurred, iADAs tend to persist and tolerization is
hard to achieve. Here we developed a pre-treatment prediction model for iADA development in FD
using existing data from 120 classical male FD patients from three European centers, treated with
ERT. We found that nonsense and frameshift mutations in the α-galactosidase A gene (p = 0.05),
higher plasma lysoGb3 at baseline (p < 0.001) and agalsidase beta as first treatment (p = 0.006) were
significantly associated with iADA development. Prediction performance of a Random Forest model,
using multiple variables (AUC-ROC: 0.77) was compared to a logistic regression (LR) model using
the three significantly associated variables (AUC-ROC: 0.77). The LR model can be used to determine
iADA risk in individual FD patients prior to treatment initiation. This helps to determine in which
patients adjusted treatment and/or immunomodulatory regimes may be considered to minimize
iADA development risk.
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1. Introduction

Fabry disease (FD; OMIM 301500) is a rare, X-linked, lysosomal storage disease caused by
mutations in the alpha-galactosidase A (GLA) gene. This leads to absent or reduced alpha-galactosidase
A enzyme activity and the subsequent accumulation of its substrate globotriaosylceramide (Gb3).
Accumulation of Gb3 and its deacylated form globotriaosylsphingosine (lysoGb3) results in progressive
damage to heart, kidneys and brain [1]. The disease is most often treated with biweekly infusions of
recombinant alpha-galactosidase A (r-αGAL A), also referred to as enzyme replacement therapy (ERT).
Two ERT preparations are currently available. One is agalsidase beta (Fabrazyme, Sanofi Genzyme),
produced in Chinese hamster ovary cells (CHO) and most often dosed at 1 mg/kg biweekly. The other
is agalsidase-alfa (Replagal, Takeda), produced in human fibroblasts and dosed at 0.2 mg/kg biweekly.
In patients with the most severe disease phenotype, male patients with classical FD, treatment with
ERT often results in the development of anti-drug antibodies (ADAs). Because these patients have
little to no native enzyme, the immune system recognizes the exogenously administered enzyme
as foreign. ADAs are thought to be responsible for both the infusion-related reactions including
fever, chills and chest pain as well as the more classical allergic reactions with edema, dyspnea, rash,
itching and (rarely) anaphylactic shock [2–4]. In approximately half of the classical male FD patients,
the formed ADAs are capable of inhibiting αGAL A activity (iADAs) in vitro [5,6] as well as inhibiting
enzyme uptake into cells [7]. In vivo, iADAs negatively influence pharmacokinetics of the recombinant
enzyme [5,8,9] and -titer dependently- limit the biochemical response to treatment with ERT [6].
Additionally, the development of ADAs is linked to incomplete clearance of substrate in endothelial
cells or re-accumulation after initial clearance [10,11]. Clinically, male FD patients with established
iADAs had higher disease severity scores [12], although the inclusion of male patients with classical
as well as non-classical disease may have influenced the outcome. The negative effect of iADAs on
disease outcome was confirmed in classical male patients, as iADA positive patients had an accelerated
renal decline compared to iADA negative patients [6].

Experience in other disorders in which treatment with recombinant proteins is hampered by
iADA formation (e.g., hemophilia, Pompe disease and MPS1) [13–16], shows that once iADAs occur,
they tend to persist despite treatment with immunosuppressants or tolerization protocols (e.g., immune
tolerance is hard to achieve) [17–20]. Therefore, it is important to develop protocols that can prevent
or treat iADAs. Methods to prevent iADA development should primarily be tested in patients with
a high risk of developing these antibodies. Comparing different pre-treatment immunomodulatory
interventions on high-risk patients, rather than all Fabry patients, is expected to improve the efficiency
and interpretation of these future studies, and reduce the required sample sizes.

Several variables were found to be related to the immunogenicity of other biotherapeutics.
These included: the dose and frequency of administration [21], the origin and glycosylation of the
product (e.g., in which cell line is the product produced) [22,23], the age of the recipient [21,24], mutation
type (nonsense vs. missense) [25] and the presence of residual native protein in the patient, also referred
to as cross- reactive immunologic material (CRIM) status [15,25]. These factors may play a role in iADA
formation in Fabry disease as well. Within our population of male Fabry patients with classical disease
we noticed disparity in the risk of iADA formation, with families with high and low risk, suggesting
genetic predilection. In this study we set out to answer the following two questions: (1) Which factors
predispose male patients with classical FD for iADA development? (2). How accurately can the
development of iADAs be predicted prior to treatment initiation in an individual patient? To address
these questions we used previously collected [23] demographic, medical and biochemical data from
120 classical male FD patients and used these data to build and validate predictive models.

2. Results

2.1. Patient Characteristics

Patient characteristics of the 120 included patients are outlined in Table 1.



Int. J. Mol. Sci. 2020, 21, 5784 3 of 13

Table 1. Characteristics of 120 male patients with classic Fabry disease.

iADA+ iADA−

Site (N, % of total)

- Amsterdam UMC 23 (40%) 16 (26%)

- The Royal Free Hospital 24 (41%) 26 (42%)

- Universitätsklinikum Würzburg 11 (19%) 20 (32%)

Mutation type (N, % of total)

- Nonsense/frameshift 33 (57%) 17 (27%)

- Missense 21 (36%) 37 (60%)

- Other 4 (7%) 8 (13%)

Age at ERT start (years, median, range) 37 (9–58) 35 (13–63)

LysoGb3 (nmol/L, median, range) 123 (38–178) 96 (48–149)

First treatment (N, % of total)

- Agalsidase alfa 0.2 mg/kg 14 (24%) 31 (50%)

- Agalsidase beta 0.2 mg/kg 4 (7%) 2 (3%)

- Agalsidase beta 0.5 mg/kg 2 (3%) 2 (3%)

- Agalsidase beta 1.0 mg/kg 38 (66%) 27 (44%)

Inhibition titer (median, range) 113 (7–32645) 0 (0–5)

2.2. Logistic Regression Model

To identify factors associated with iADAs and assess their ability to predict iADA formation,
we built a logistic regression (LR) model, using backwards selection of variables. The final model
was validated internally using repeated cross validation. In this model, three variables were included
that were found to be associated with an increased risk for iADA development: higher levels of the
biomarker lysoGb3 before start of treatment (p < 0.001), the presence of a nonsense or frameshift
mutation (p = 0.053) and starting treatment with agalsidase beta (p = 0.006). Distribution of individual
variables is visualized in Figure 1a–c. Predictive performance was assessed with the area under the
receiver operating characteristic curve (AUC-ROC) which was 0.77 (Figure 2a). Optimal accuracy
(0.73, Figure 2b) was determined at a cutoff of 0.53 (sensitivity: 0.69, specificity: 0.76, Figure 2c,d).
Figure 2e shows the predicted vs. observed outcome for each patient.

Age at start treatment did not influence the risk of iADA development. Both initial treatment
type (agalsidase alfa vs. agalsidase beta) and treatment dose (0.2, 0.5 or 1.0 mg/kg every other week)
were significantly associated with a higher risk for iADA development. Since these variables are
strongly related, only treatment type was included in the model. Location of the mutation as a numeric
factor was not associated with an increased risk. However one location of missense mutations seemed
especially prone for iADA development and is explored separately in a post-hoc analysis.
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Figure 1. Distribution of variables significantly associated with an increased risk of iADA 
development in male Fabry patients with classical disease. Color represents iADA status. (a) Baseline 
plasma lysoGb3 levels. (b) Mutation type (n.b. eight out of 25 iADA positive patients in the missense 
group had a mutation at location c.1025). (c) Treatment type at start of treatment: agalsidase beta (0.2–
1 mg/kg) versus agalsidase alfa (0.2 mg/kg). 

Figure 1. Distribution of variables significantly associated with an increased risk of iADA development
in male Fabry patients with classical disease. Color represents iADA status. (a) Baseline plasma
lysoGb3 levels. (b) Mutation type (n.b. eight out of 25 iADA positive patients in the missense group
had a mutation at location c.1025). (c) Treatment type at start of treatment: agalsidase beta (0.2–1 mg/kg)
versus agalsidase alfa (0.2 mg/kg).
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Figure 2. Results from the LR model. (a) ROC curve, AUC = 0.77. Colors represent the different 
possible cutoff* values; (b) Accuracy of the model at different cutoffs* (maximum of 0.73 at cutoff 
0.53); (c) Sensitivity of the model. At the chosen cutoff sensitivity is 0.69; (d) Specificity of the model 
at the chosen cutoff is 0.76; (e) Visualization of the predicted (Y axis) versus observed outcome (color 
coded) per patient. The line drawn shows the chosen cutoff. * The cutoff is a chosen decision threshold 
above which patients are predicted as positive (will develop ADAs). Lower cutoffs favor sensitivity, 
higher cutoffs favor specificity. 

  

Figure 2. Results from the LR model. (a) ROC curve, AUC = 0.77. Colors represent the different
possible cutoff* values; (b) Accuracy of the model at different cutoffs* (maximum of 0.73 at cutoff 0.53);
(c) Sensitivity of the model. At the chosen cutoff sensitivity is 0.69; (d) Specificity of the model at the
chosen cutoff is 0.76; (e) Visualization of the predicted (Y axis) versus observed outcome (color coded)
per patient. The line drawn shows the chosen cutoff. * The cutoff is a chosen decision threshold above
which patients are predicted as positive (will develop ADAs). Lower cutoffs favor sensitivity, higher
cutoffs favor specificity.

2.3. Random Forest Model

A second model was built using the ensemble learning method ‘Random Forest’ (RF).
Ensemble learning models can deal with co-linearity and are able to handle many variables.
Furthermore, these models can handle variables with relative low contribution to the calculated
risk. We build a RF model using the following variables: baseline plasma lysoGb3, mutation type and
location, age of start, first treatment type and first treatment dose. Compared to the LR model, the fit
of the RF model was similar (AUC-ROC 0.77) and it did not improve prediction accuracy. For details
see Supplemental Materials.

2.4. Post Hoc Analyses

Patients with missense mutations were less likely to develop iADAs compared to patients with
nonsense and frameshift mutations. To check whether, within the missense group, the location of the
mutation influenced iADA risk, we visualized the location of missense mutation and the presence of
iADAs (Supplemental Materials). Mutation location as a numeric variable was not associated with
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iADA risk. However, eight out of 11 patients with a mutation at the c.1025 position developed iADAs
(73%) compared to 17 out of 59 (29%) of patients with missense mutations at other positions (p = 0.01,
OR 6.3). Most other mutations in this cohort were unique mutations, thus an effect of location for these
mutations could not be established. In silico analysis did not suggest that variants at position c.1025
affected splicing of the pre-mRNA GLA.

2.5. Second Cohort

Due to differences in the iADA detection method (sample dilution vs. enzyme saturation) as
well as lysoGb3 analyses (dried blood spot vs. plasma), we were not able to test our model on the
second, independent, cohort of patients. We therefore performed the same steps for imputation
and build a LR prediction model using the same three variables on this second cohort to check
reproducibility of the results. In this group of 30 classical male patients, only mutation-type was
significantly correlated (p = 0.01) to the risk of iADA development. Initial treatment type (p = 0.3) and
baseline lysoGb3 (p = 0.4) were not significantly related to iADA risk in this smaller cohort. For details
see Supplemental Materials.

3. Discussion

Our large international Fabry cohort study identified the following variables to be associated
with an increased risk of iADA development in male patients with classical FD: (1) having a nonsense
or frameshift mutation. (2) starting treatment with agalsidase beta and (3) higher levels of the
disease biomarker (lysoGb3) in plasma before start of treatment. In the second control cohort,
the importance of mutation type was confirmed, but type of recombinant enzyme and plasma lysoGb3
levels showed only a trend, which may have been due to the smaller sample size and/or the differences
in lysoGb3 measurements.

Mutation type has previously been found to be related to iADA risk in FD [6,26], which is in
accordance with observations in Pompe disease and hemophilia [27,28]. Although all classical patients
have minimal or no residual enzyme activity, it is possible that the mutated protein is still produced in
small amounts. Thus, the immune system of patients with missense mutations may still be exposed to
the protein, leading to central tolerance induction. In patients with a large deletion or early frameshift
mutations, the protein will either not be produced at all, or it will be truncated. These patients are
less likely to develop central tolerance and are more likely to develop an immunological reaction
to exogenously administered enzyme. The increased occurrence of iADAs in patients who started
treatment with agalsidase beta vs. agalsidase alfa could either be attributed to the higher dose
(1 mg/kg vs. 0.2 mg/kg), the difference in production cell-line and thus in glycosylation pattern (Chinese
hamster ovary cells for agalsidase beta vs. human fibroblasts for agalsidase alfa) or a combination
of both. The group of patients that started with a lower than recommended dose of agalsidase beta
(see Table 1) was too small to draw conclusions on the dose effect. In this study, the plasma lysoGb3
level was identified as an independent predictive variable for iADA formation. We hypothesize that
either plasma lysoGb3 levels reflect subtle differences in enzyme activity (not detectable in the enzyme
activity assay) or that the pro-inflammatory effects of (lyso)Gb3 [29] serve as an adjuvant to prime the
immune system.

Detrimental effects of iADAs on treatment effectiveness in FD is becoming increasingly clear over
the last decade [5,7,10–12]. Overcoming iADA development is therefore essential to improve treatment
outcome and can hypothetically be achieved in two ways: (1) by achieving tolerization through
immune tolerance induction (ITI) in iADA positive patients or (2) by preventing iADA formation prior
to treatment. Both strategies have previously been tried in other diseases.

The first approach, ITI, has been studied extensively in hemophilia. Most ITI protocols require
long term, frequent (>3 times a week) administration of the recombinant protein and are still
only successful in 60–70% of cases for hemophilia A and only 30% of cases for hemophilia B [19,30].
In Pompe disease, ITI has been tried with intensive immune-modulatory protocols (including rituximab,
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methotrexate, bortezomib and intraveneus immunoglobulines) resulting in a steady decrease in iADAs
and improvement of therapeutic effectiveness, but full tolerization was not achieved [17,18]. This is
in accordance with the findings from Lenders et al. in FD patients who underwent kidney or heart
transplantation (and were thus treated with immunosuppressive therapy). Patients with established
iADAs demonstrated an initial reduction in their iADA titer [31]. However, after tapering of the
immunosuppressive medication (specifically corticosteroids), the iADA titers increased again [31].
Therefore, patients would require continuous exposure to immunosuppressive drugs to maintain
immune tolerance, with unacceptable side effects for such a slowly progressive disease as FD.

The second approach (preventing iADA formation) has been tried using immunosuppressive
medication in infantile Pompe disease and MPS1 patients simultaneously with—or shortly before—
ERT initiation. This approach has proven to be difficult, as iADAs often still arise after tapering
of the immunosuppressive medication [20,32,33]. This may be explained by the fact that immune
suppression was not optimal at the time ERT was started (in infantile Pompe disease ERT initiation
cannot be delayed). In six classical male FD patients that started ERT after a transplantation, iADAs
did not develop [31].

Another approach to iADA prevention is treatment initiation with lower (and more regular) doses
of recombinant protein. In hemophilia, starting treatment with lower-dosed prophylactic treatment at
regular intervals was associated with a 60% lower risk of iADA development compared to patients
that started treatment with high doses and continued to get high doses ‘on demand’ (e.g., at irregular
intervals) [34]. This is in accordance with the findings in our study that starting treatment with the
lower dosed agalsidase alfa is associated with a lower risk for iADA development. Thus starting
treatment with lower than registered doses of recombinant enzyme, in combination with shortening
administration intervals, might be a way to induce central tolerance. Once central tolerance is induced,
doses could gradually be increased and dosing intervals reduced. Future studies will focus on finding
an optimal build up schedule for this patient group.

Our prediction model was built on a selective patient group (male patients with classical FD).
We chose this approach as female patients and patients with non-classical disease do not tend to
develop iADAs. Using this model we are able to correctly predict iADA formation in 73% of male
FD patients with the classical disease phenotype. To further optimize predictive accuracy in future
models other variables could be included, that were not present in our current dataset. Studies in
Pompe disease and hemophilia describe a potential influence of certain gene polymorphisms, such as
the HLA haplotype [35–37]. In hemophilia, the presence of so-called danger signals before or during
the first infusions (e.g., recent surgery, bleeds, vaccinations and active infections) were associated with
an increased risk for iADA development [38]. The explanation is that the danger or stress signals that
are released work as an adjuvants to induce immunogenicity. Although active infection is already
a contra-indication for ERT administration, it may be wise to avoid initiating ERT soon after other
stressors as well (e.g., surgery or vaccinations).

The outcome of this model can be translated to clinical care as the individual risk of iADAs in
new patients helps physicians to decide which patients are eligible for pre-ERT immunomodulatory
interventions. In addition, knowing the a-priori risk aides the evaluation of the effectiveness of these
interventions, as the pre-intervention risk can be included in the outcome analysis.

4. Materials and Methods

4.1. Patients

This study was conducted in accordance with the principles of the Helsinki Declaration, as revised
in 2013. To build the models, retrospective collected data from three European FD centers of excellence
(Amsterdam University Medical Center, The Netherlands; Royal Free London NHS Foundation Trust,
United Kingdom; and the University Hospital Würzburg, Germany) were used [39]. Data included
basic diagnostic data, clinical and biochemical parameters, comorbidities and medication use. In this
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study, only male patients with a classical disease phenotype were included. Male patients were
classified as having a classical phenotype based on both a residual enzymatic activity of less than 5%
and the presence of one or more of the characteristic classic FD symptoms (acroparesthesia, clustered
angiokeratoma, cornea verticillata), as described by Arends et al. [40]. All included patients were
treated with ERT (agalsidase alfa or -beta). Patients who switched dose or treatment type were not
excluded. Agalsidase alfa was always dosed at 0.2 mg/kg/eow, Agalsidase beta was predominantly
dosed at 1 mg/kg/eow, but patients on 0.2 mg/kg (n = 4) and 0.5 mg/kg (n = 6) were also included.

4.2. Variables and Development of the Prediction Models

The Tripod checklist for prediction model development was followed where possible [41].
The following variables were included and tested: age at start ERT, mutation location and type, plasma
lysoGb3 at baseline and the initial dose and type of ERT.

4.3. Laboratory Measurements

Plasma lysoGb3 and iADAs were measured at the AMC. Plasma lysoGb3 values were obtained
within one year before start of treatment with ERT. LysoGb3 levels were analyzed using tandem mass
spectrometry, as described previously [42,43]. AMC samples from before August 2015 used a different
internal standard than samples from later time points at the AMC as well as samples from the Royal
Free Hospital and the University Clinic Würzburg. After application of a correction factor, outcomes
using both internal standards correlated well [40].

IADAs were measured as previously described [5]. In short, patient plasma in various dilutions
is added to the recombinant protein. The titer represents the amount of dilutions needed to recover
at least 50% of enzymatic activity in vitro. Outcome was determined as iADA positive (iADA+) or
iADA negative (iADA−). Patients were considered iADA+ if they tested positive at one or more
time points for αGAL A inhibition with a titer of 6 or higher. iADA titers were measured after at
least 1 year of treatment, with the exception of two patients for whom only iADA titers at 9 months
after ERT initiation were available. 23/120 patients had only one iADA measurement, 24/120 had
two measurements, all other patients had three or more iADA measurements (range 3–16).

4.4. Statistics

For statistical analysis and model building, R (version 3.4.3) was used. A markdown file containing
the full code and results was added as Supplemental Materials. Package ‘MICE’ was used for data
imputation. Package ‘caret’ was used to build and validate predictive models. Package ‘ggplot2’ was
used for data visualization.

4.4.1. Algorithms

The performance of two different machine learning algorithms for the prediction of iADAs were
compared: Logistic Regression (LR) and the most common ensemble method, i.e., Random Forest (RF).
Overall LR and RF are known to give comparable results, but accuracy may vary depending on the
number of subjects, number of explanatory variables and amount of noise variables [44]. LR is a form
of binomial regression and models the probabilities for classification problems with two possible
outcomes, in this case iADA+ and iADA−. It uses the logarithm of the odds (i.e., the logarithm of the
probability of iADA+ divided by the probability of iADA− status), resulting in a linear combination of
the independent variables (predictors) (Figure 3a). All assumptions for LR were met, details can be
found in the Supplemental Materials.

RF utilizes “ensemble learning”. In brief, it creates many decision trees from random samples
and averages out the results to get a clear model (Figure 3b). Unlike LR, RF does not assume a linear
relationship between variables and therefore outcome and model are not influenced by co-linearity.
Furthermore RF models can handle many different variables and do not require a significant contribution
to the predicted risk for individual variables [44].
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Figure 3. Visualization of used methods. (a) Logistic regression uses a combination of independent
variables to draw a sigmoid curve that fits best with the training data. New subjects are plotted
on the curve to calculate the risk of iADA development (in schematic presentation this is based on
a single variable (lysoGb3), in reality all contributing variables weigh in in the predicted outcome).
Blue stars resemble iADA negative subjects and the red stars represent iADA positive patients in the
data set used to build the model. The blue dot represents a subject in the test set. (b) Random forest is
a classification algorithm. It randomly creates multiple decision trees (default is 500). Each tree results
in a conclusion (e.g., iADA yes or no), majority voting of all trees is used to determine risk of iADA
development; (c) Cross-validation is a resampling procedure used to evaluate predictive models with
limited data. The goal is to optimize usage of data and minimize overestimation of predictive accuracy.
The data was randomly split in 10 subsets. For each iteration 9 sets are used to build the model and one
to test the model, until every subject has been in both groups. This procedure is repeated 10 times,
until 100 models are built. Outcome of each individual patient were averaged and used to build the
final model.

4.4.2. Handling of Missing Data

Missing data (3%) consisted mostly of missing lysoGb3 values (28% of lysoGb3 values were
missing) and were imputed using multiple imputation (package MICE) [45]. It is important to note
that the MICE algorithm assumes missing data to be either Missing At Random (MAR), meaning that
the probability that a value is missing can be explained by the observed values, or Completely Missing
At Random (CMAR), meaning that there is no other reason for missing data than chance. In our study
the treatment center and date of start ERT were the main explanatory variables for missing lysoGb3
measurements. We assumed that the year of ERT initiations and the location where patients were
treated did not influence the risk for iADA development and thus considered the data to be MAR.
To assess reproducibility, imputation was repeated five times and distribution of imputed variables
as well as differences in mean and SD for the imputed variables were visualized and added in the
Supplemental Materials. Five individual imputed datasets were created, each consisting of 5 cycles.
Imputation was deemed consistent based on the comparable means and low standard deviation for
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the imputed values. Imputed datasets were merged and the mean of all 5 imputations was used as the
final imputed value.

4.4.3. Experiment and Intrinsic Validation

For a detailed description of steps and full code see the markdown file in Supplemental Materials.
In short R package CARET was used to build two prediction models. To prevent overfitting, without
losing data, validation was done using 10-fold cross validation, meaning that the dataset was divided
into 10 subsets. For every round nine folds were used to train the model and this model was then
validated on the remaining folds. This was repeated until every set was used in both the training as
the testing group. These steps were then repeated 10 times and results of each individual patient were
aggregated to form the final model (Figure 3c). All variables used in the LR model met LR assumptions
(visualization in SM.1). The area under the curve (AUC) of the receiver operating characteristic
curve (ROC) was used to compare classification performance. The cutoff was decided based on
optimal accuracy.

4.5. External Cohort

A second dataset of 30 classical male patients was provided by the University Hospital Muenster,
Germany to validate the results of our model. Phenotyping was done locally and based on classical FD
symptoms and enzyme activity. In six patients, no baseline enzyme activity was available, all presented
with classical symptoms and had a mutation associated with classical disease. Patients were treated
with agalsidase alfa (dosed at 0.2 mg/kg/eow) or agalsidase beta (dosed at 0.2–1.37 mg/kg/eow).
LysoGb3 measurements were performed at Centogene (Rockstock, Germany) in dry blood-spot.
Lyso-Ceramide was used as reference (Matreya, LLC, Pleasant Gap, PA, USA) and D5-Fluticasone
Propionate (EJY Tech, Inc., Rockville, MD, USA) served as internal standard. LysoGb3 values at baseline
were missing in 10/30 patients. IADAs were measured as described previously [29]. All patients with
>50% inhibition are considered iADA positive. Titers represent the amount of enzyme necessary to
overcome the neutralizing capacity of iADAs in a patient. Due to differences in measuring techniques
for both iADA status, lysoGb3 and differences in ERT dosing the data could not be used to validate
the initial model, to show reproducibility model building was repeated with the same variables and
outcome is reported separately.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/16/
5784/s1. File S1: For the sake of reproduction, a markdown file containing the full R script is added as
supplemental material.

Author Contributions: Conceptualization S.J.v.d.V., W.V. and M.L. (Mirjam Langeveld); Formal analysis, S.J.v.d.V.,
W.J.V. and L.v.D.; Methodology, S.J.v.d.V., W.V., L.v.D. and M.G.W.D.; Supervision, A.B.P.v.K., C.E.M.H. and
M.L. (Mirjam Langeveld); Visualisation, S.J.v.d.V.; Writing—original draft, S.J.v.d.V.; Writing—review & editing,
W.V., L.v.D., A.B.P.v.K., M.G.W.D., M.L. (Mirjam Langeveld), E.B., C.W., D.H., P.M.E., C.E.M.H. and
M.L. (Malte Lenders). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: M.L. (Mirjam Langeveld) and C.E.M.H. are involved in pre-marketing studies with
Genzyme, Protalix and Idorsia. Financial arrangements are made through AMC Research BV. S.J.v.d.V. is involved
in a premarketing study with P. M.L. (Malte Lenders) received speaker honoraria, travel funding, and research
grants from Amicus Therapeutics, Sanofi Genzyme, and Shire/Takeda. E. Brand received research grants and
speaker honoraria from Sanofi Genzyme, Shire/Takeda, and Amicus Therapeutics. C.W. received research grants
from Sanofi Genzyme and Idorsia as well as speaker honoraria from Sanofi Genzyme, Shire/Takeda and Chiesi.
D.H. Sanofi Genzyme and Idorsia and unrestricted education grhas received fees for speaking and consultancy
and speaking from Sanofi Genzyme, Shire/Takeda, Protalix, Freeline and Amicus, administered through UCL
consultants and with benefit to laboratory research; and participates in pre-marketing studies with Sanofi, Idorisa,
Freeline and Protalix. P.M.E. has received consultancy fees from Sanofi Genzyme and Idorsia and unrestricted
education grants from Sanofi Genzyme. A.B.P.v.K., L.v.D. and M.G.W.D. declare that they have no conflict of
interest. No fees, travel support or grants are obtained from Pharmaceutical Industry. No support or grants were
accepted in relation to the submitted work.

http://www.mdpi.com/1422-0067/21/16/5784/s1
http://www.mdpi.com/1422-0067/21/16/5784/s1


Int. J. Mol. Sci. 2020, 21, 5784 11 of 13

Abbreviations

ADA Anti-drug antibodies
αGAL A Alpha-Galactosidase A (enzyme)
ERT Enzyme replacement therapy
FD Fabry disease
GB3 Globotriaosylceramide
GLA Alpha-Galactosidase A (gene)
iADA Inhibiting anti-drug antibodies
LR Logistic regression
LysoGb3 Globotriaosylsphingosine
r- αGAL A Recombinant alpha-galactosidase A (enzyme)
RF Random forest
ROC-AUC Area under the receiver operating characteristic curve
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