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Abstract: Nitric oxide (NO) binds to soluble guanylyl cyclase (sGC), activates it in a reduced oxi-
dized heme iron state, and generates cyclic Guanosine Monophosphate (cGMP), which results in
vasodilatation and inhibition of osteoclast activity. In inflammation, sGC is oxidized and becomes
insensitive to NO. NO- and heme-independent activation of sGC requires protein expression of the
α1- and β1-subunits. Inflammation of the periodontium induces the resorption of cementum by
cementoclasts and the resorption of the alveolar bone by osteoclasts, which can lead to tooth loss.
As the presence of sGC in cementoclasts is unknown, we investigated the α1- and β1-subunits of sGC
in cementoclasts of healthy and inflamed human periodontium using double immunostaining for
CD68 and cathepsin K and compared the findings with those of osteoclasts from the same sections.
In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflammatory
conditions showed a decreased staining intensity for both α1- and β1-subunits of sGC, indicating
reduced protein expression of these subunits. Therefore, pharmacological activation of sGC in in-
flamed periodontal tissues in an NO- and heme-independent manner could be considered as a new
treatment strategy to inhibit cementum resorption.

Keywords: nitric oxide; soluble guanylyl cyclase; cGMP; cementoclasts; cementum; osteoclasts;
alveolar bone; periodontitis

1. Introduction

The intra- and intercellular signal molecule nitric oxide (NO) is synthesized by the
activity of neuronal (n), endothelial (e), and inducible (i) isoforms of NO synthases (NOSs),
which are active as homodimers [1,2]. NO-receptor enzyme soluble guanylyl cyclase (sGC)
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consists of two subunits (α and β) and has enzyme activity only in the heterodimeric α1β1-
and α2β1-isoforms [3,4]. NO binds to the reduced iron (Fe2+) heme in the β1-subunit of sGC,
resulting in activation of the heterodimeric α1β1- and α2β1-isoforms, which in turn leads
to increased production of cyclic Guanosine Monophosphate (cGMP) from Guanosine-
5′-Triphosphate (GTP) [3–6]. In the homodimer form, sGC has no enzyme activity [7,8].
The downstream effects of NO-cGMP signaling cascade are mediated through cGMP-
dependent protein kinases (PKGs), cyclic nucleotide-gated channels (CNGs), and cGMP-
regulated phosphodiesterases (PDEs) [4,9]. In addition to numerous functions such as
smooth muscle relaxation, platelet aggregation inhibition, and neurotransmission [10],
the NO-cGMP pathway also plays an important role in osteoblast-induced bone formation
and osteoclast-dependent bone resorption [11,12].

Inflammation of the periodontium first occurs in the gingiva and can then gradu-
ally spread into the subgingival tissues, such as the periodontal ligament, cementum,
and alveolar bone. If the periodontal inflammation persists or exaggerates, progressive
bone destruction can follow as a result of increased osteoclastogenesis on the bone side
of the periodontal ligament (PDL) space. Additionally, the inflammatory processes can
promote cementoclastogenesis on the cementum side of the PDL [13–16]. The clast cells are
multinucleated cells formed by the fusion of precursors of the monocyte lineage and are
responsible for the resorption of bone, dentin, cementum, and mineralized cartilage [17,18].
The clast-induced resorption of hard tissues involves adhesion of the clast cells to the min-
eralized tissues, subsequent acidification of the area underneath the cells, and proteolytic
degradation of the organic matrix by proteases [17–22].

NO induces differentiation of osteoclasts at lower concentrations and inhibits differ-
entiation of osteoclasts at higher concentrations [23,24]. The treatment of mature osteo-
clasts with NO donors inhibits resorptive osteoclastic activity [25,26]. NO-independent
sGC activators (e.g., YC-1) inhibit osteoclast differentiation, indicating that sGC may
have an inhibitory effect on osteoclast differentiation and bone resorption via cGMP and
PKG [11,12,26,27]. However, under inflammatory conditions, sGC is oxidized (Fe3+) due to
the increased presence of reactive oxygen species (ROS) and reactive nitrogen species
(RNS) and, therefore, exists in an NO-insensitive state [6]. Activators, such as the NO- and
partially heme-independent sGC activator YC-1 [28] and the NO- and heme-independent
activator of sGC cinaciguat (BAY 58-2667) [5] were developed to increase the activity of
sGC in diseased tissues.

In periodontitis, sustained activation of iNOS produces higher amounts of NO [29–32],
which in turn promotes alveolar bone resorption [33,34]. ROS have also been reported
to cause alveolar bone loss [35,36]. It is expected that sGC is oxidized by RNS and ROS
in the inflamed periodontium and therefore may be present in a NO-insensitive state in
cementoclasts and osteoclasts. The sGC activation by YC-1 and BAY 58-2667 in osteoclasts
and cementoclasts under inflammatory conditions requires protein expression of the α1-
and β1-subunits in these cells. Therefore, clarifying the presence of heterodimeric α1β1-
and α2β1-isoforms of sGC in cementoclasts is important for possible pharmacological
treatment of the inflamed periodontium. In a previous study, we have shown nNOS, eNOS,
and its phosphorylated form at Ser1177, the α2- and β1-subunits of sGC, and cGMP in
osteoclasts of rat alveolar bone [37]. However, whether the α1- and β1-subunits of sGC
are present in cementoclasts of the human periodontium under healthy and inflamed
conditions is not known and deserves further clarification. Therefore, the objective of the
study was to examine the α1- and β1-subunits of sGC in cementoclasts of healthy and
inflamed human periodontium by quantitative and double immunohistochemical methods.

2. Results
2.1. Characterization of the Healthy Periodontium and Presence of the α1- and β1-Subunits of sGC
in Cementoclasts

First, we sought to examine whether the α1- and β1-subunits of sGC are expressed in
human cementoclasts. Therefore, caries-free molars with clinically healthy periodontium
and carious molars with clinically inflamed periodontal tissues were collected from patients.
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As assessed with Hematoxylin and Eosin (HE), healthy periodontium of the caries-free
molars was characterized by a regular form and structure (Figure 1A). In PDL, the blood
vessels were intact and numerous structural cells with normal appearance and regular
distribution were detectable. In some healthy molars with periodontium, resorption
lacunae of varying size and number were observed in the transition region from PDL to
cementum, in the cementum, and in the transition region from the cementum to dentin
(Figure 1A,B; Figure S1 in Supplementary Materials).
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Figure 1. Histological characterization of the healthy periodontium and localization of the α1- and
β1-subunits of guanylyl cyclase (sGC) in cementoclasts: consecutive sections of a representative
molar with adherent clinically healthy periodontium were stained with Hematoxylin and Eosin
(HE) (A,B) and incubated with antibodies for Mast Cell Tryptase (MCT) (C,D), Human Leukocyte
Antigen-DR isotype (HLA-DR) (E,F), CD68 (G,H), α1-subunit (I,J), and β1-subunit (K,L), respectively.
Incubation of sections without primary antibodies served as control (M,N). The images of the upper
row show an overview of the consecutive sections, while the detail images of the lower row show
the regions represented by the rectangle in the overview images of the upper row. d = dentin, dp =
dental pulp, c = cementum, pdl = periodontal ligament. Asterisks in (J) and (L) shown cementoclasts
in resorption lacunae, while asterisks in (N) only show an artifact. Scale bar = 2 mm (M) and = 200
µm (N).

Further characterization was performed for mast cells (MCT), monocytes, dendritic
cells, lymphocytes (HLA-DR) and macrophages (CD68) by using avidin-biotin peroxidase
complex. While mast cell tryptase (Figure 1C,D) was not detectable in the healthy peri-
odontium, HLA-DR (Figure 1E,F) was expressed. Interestingly, the absence of mast cell
tryptase (Figure 1C,D) and the presence of HLA-DR (Figure 1E,F) was also observed in
dental pulp tissue. Moreover, CD68 was also found in cells of the healthy periodontium
and dental pulp (Figure 1G,H). In the following consecutive sections, α1- (Figure 1I,J)
and β1-subunits (Figure 1K,L) of sGC were detected with strong staining intensities in
cementoclasts located in resorption lacunae of the cementum. The expression of the α1-
(Figure 1I,J) and β1-subunits (Figure 1K,L) in pulpal blood vessels and odontoblasts served
as a positive control for the antibodies used [38,39]. Incubation of the consecutive section
without primary antibodies did not result in immunohistochemical staining (Figure 1M,N).

2.2. Characterization of the Inflamed Periodontium and Presence of the α1- and β1-Subunits of sGC
in Cementoclasts

In contrast to the healthy periodontium, numerous inflammatory cells were detected
in the PDL of inflamed periodontium, as assessed with HE (Figure 2A,B; Figure S1).
In some regions, inflammatory cells were seen in the PDL and in the transition region from
PDL to cementum (Figure 2A,B). The blood vessels were destructured due to the severe
inflammation, and the PDL contained a large number of acute and chronic inflammatory
cells (Figure 2A). As compared to healthy periodontium, resorption lacunae at higher
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number and sometimes also at greater size were mainly found in the transition region from
PDL to cementum. Further immunohistochemical analyses revealed a remarkable staining
for MCT and therefore numerous mast cells in the inflamed PDL (Figure 2C,D), which was
in strong contrast to the healthy periodontium.
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and osteoclasts, colocalization of these subunits with CD68 was investigated by immuno-
fluorescence double staining. To test the colocalization, sections of the inflamed periodon-
tium containing both cementoclasts and osteoclasts were incubated with an antibody 
against CD68 and an antibody against α1-subunit or β1-subunit, respectively. On the ce-
mentum side of the inflamed human periodontium, CD68 was colocalized with the α1-
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Figure 2. Histological characterization of the inflamed periodontium and localization of the α1- and
β1-subunits of sGC in cementoclasts. Consecutive sections of a representative molar with adherent
clinically inflamed periodontium were stained with Hematoxylin and Eosin (HE) (A,B) and incubated
with antibodies for MCT (C,D), HLA-DR (E,F), Cluster of Differentiation 68 (CD68) (G,H), α1-subunit
(I,J), and β1-subunit (K,L). Incubation of the sections without primary antibodies served as a control
(M,N). The images in the upper row show an overview of the consecutive sections, while the detailed
images in the lower row show the regions represented by the rectangle in the overview images of the
upper row. d = dentin, c = cementum, and pdl = periodontal ligament. Asterisks in (J) and (L) shown
cementoclasts in resorption lacunae, while asterisks in (N) only show an artifact. Scale bar = 2 mm
(M) and = 200 µm (N).

HLA-DR was highly expressed in immune cells of the inflamed PDL (Figure 2E,F).
The immunostaining for Cluster of Differentiation 68 (CD68) was more pronounced
in the inflamed PDL, indicating increased numbers of macrophages and cementoclasts
(Figure 2G,H). Although, in the following consecutive sections, α1- (Figure 2I,J) and β1-
subunits (Figure 2K,L) of sGC were detected in cementoclasts of the resorption lacunae
of the cementum, the staining intensities were lower than in the healthy periodontium.
Incubation of the consecutive section without primary antibodies did not lead to immuno-
histochemical staining (Figure 2M,N).

2.3. The Colocalization of α1- and β1-Subunits of sGC with CD68 in Cementoclasts of Inflamed
Human Periodontium

To demonstrate the possible presence of α1- and β1-subunits of sGC in cemento-
clasts and osteoclasts, colocalization of these subunits with CD68 was investigated by
immunofluorescence double staining. To test the colocalization, sections of the inflamed
periodontium containing both cementoclasts and osteoclasts were incubated with an anti-
body against CD68 and an antibody against α1-subunit or β1-subunit, respectively. On the
cementum side of the inflamed human periodontium, CD68 was colocalized with the
α1-subunit (Figure 3A–D) and the β1-subunit (Figure 3E–H) of sGC in cementoclasts.
Similarly, on the alveolar bone side of the inflamed periodontium, colocalization of CD68
with the α1-subunit (Figure 4A–D) and the β1-subunit (Figure 4E–H) of sGC was found
in osteoclasts.
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Figure 3. Colocalization of the α1- and β1-subunits of sGC with CD68 in cementoclasts of inflamed
human periodontium: sections of a representative molar with adherent clinically inflamed periodon-
tium were stained with Deep Red Anthraquinone 5 (DRAQ5) (A,E) and incubated with antibodies for
CD68 (B,F), α1-subunit (C), and β1-subunit (G) of sGC. Colocalization of CD68 with the α1-subunit
(D) and β1-subunit (H) in cementoclasts is depicted in the merged images. c = cementum, and pdl =
periodontal ligament. Scale bar = 100 µm (D,H).
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Figure 4. Colocalization of the α1- and β1-subunits of sGC with CD68 in osteoclasts of inflamed
human periodontium: sections of a representative molar with adherent clinically inflamed periodon-
tium were stained with DRAQ5 (A,E) and incubated with antibodies for CD68 (B,F), α1-subunit
(C), and β1-subunit (G) of sGC. Colocalization of CD68 with the α1-subunit (D) and β1-subunit
(H) in osteoclasts is depicted in the merged images. ab = alveolar bone, and pdl = periodontal
ligament. Scale bar = 100 µm (D,H).

2.4. The Colocalization of α1- and β1-Subunits of sGC with Cathepsin K in Cementoclasts of
Inflamed Human Periodontium

To confirm the presence of both sGC subunits in cementoclasts and osteoclasts of hu-
man inflamed periodontium, sections containing both cells types were incubated with an an-
tibody against α1-subunit or β1-subunit, and cathepsin K. Afterwards, immunofluorescence
double staining was performed again. Cathepsin K was colocalized with the α1- subunit
(Figure 5A–D) and the β1-subunit (Figure 5E–H) of sGC in cementoclasts on the cementum
side. In addition, cathepsin K was colocalized with the α1-subunit (Figure 6A–D) and the β1-
subunit (Figure 6E–H) in osteoclasts on the alveolar bone side of the inflamed periodontium.
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Figure 6. Colocalization of the α1- and β1-subunits of sGC with cathepsin K in osteoclasts of
inflamed human periodontium: sections of a representative molar with adherent clinically inflamed
periodontium were stained with DRAQ5 (A,E) and incubated with antibodies for cathepsin K
(B,F), α1-subunit (C), and β1-subunit (G) of sGC. Colocalization of cathepsin K with the α1-subunit
(D) and β1-subunit (H) in osteoclasts is depicted in the merged images. ab = alveolar bone, and pdl
= periodontal ligament. Scale bar = 100 µm (D,H).

2.5. The Staining Intensities of α1- and β1-Subunits of sGC in Cementoclasts of the Healthy and
Inflamed Human Periodontium

The staining intensity of the α1- (135.79 ± 07.81 densitometrical unit (DU))
(Figure 7A) and β1- (136.03 ± 10.39 DU) (Figure 7B) subunits of sGC in cementoclasts of
the healthy periodontium was significantly higher than that of the α1- (112.87 ± 03.94 DU)
(Figure 7A) and β1- (113.17 ± 05.46 DU) (Figure 7B) subunits of sGC in cementoclasts of
the inflamed periodontium.
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asterisk (a, *** p < 0.001; b, ** p < 0.01).

3. Discussion

Inflammation of the periodontium induces the resorption of cementum by cemen-
toclasts and the resorption of the alveolar bone by osteoclasts. Previously, it has been
reported that sGC has an inhibitory effect on osteoclast differentiation and bone resorp-
tion [11,12,26,27]. Furthermore, it has been demonstrated that sGC is also expressed in
osteoclasts [37]. However, whether sGC is also produced by cementoclasts of healthy and
inflamed periodontium was unknown and therefore investigated in the present study.
In comparison to cementoclasts in the healthy periodontium, cementoclasts under inflam-
matory conditions showed a decreased staining intensity for both α1- and β1-subunits of
sGC, indicating reduced protein expression of these subunits. Therefore, pharmacologi-
cal activation of sGC in inflamed periodontal tissues in an NO- and heme-independent
manner could be considered a new treatment strategy to inhibit cementum resorption
(Figure 8) [12,27].

For development of new strategies for the treatment of periodontal inflammation and
therefore destruction, a fundamental understanding of the functional characteristics of
cementoclasts and osteoclasts under normal and inflammatory conditions is critical. In this
context, clarification of the existence and role of sGC in cementoclasts and osteoclasts under
the aforementioned conditions could provide new insights into the regulatory mechanisms
of alveolar bone and cementum resorption. Whether sGC is produced identically or
differently in different types of clast cells, e.g., cementoclasts and osteoclasts, is also of
importance. Our results show that the α1- and β1-subunits of sGC were similarly expressed
in both cementoclasts and osteoclasts. In addition, their expressions in these cells were
similarly regulated by inflammation, i.e., the periodontal inflammatory processes led to a
decrease in the protein expression of both subunits. Since the α1- and β1-subunits of sGC
were detectable in the cementoclasts, our results indicate that sGC is present in the active
α1β1-isoform. However, additional in vitro and in vivo experiments are required to clarify
which functions the α1β1-isoform of sGC can fulfill in cementoclasts.

The resorption of cementum is characterized with the formation of resorption lacunae
by activated cementoclasts. This process leads in turn to the activation of cementoblasts,
which then fill the resorption lacunae by depositing cementum. It is known that forces
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generated by occlusal trauma or orthodontic treatment trigger a sterile inflammatory
process that can activate cementoclasts to resorb cementum [40,41]. Since the molars of
the healthy periodontium were not subjected to orthodontic forces, the occurrence of
cementoclasts located in resorption lacunae, as observed in our study, could have been the
result of physiological and/or traumatic occlusal forces.

Under physiological conditions, we have shown the expression of α1- and β1-subunits
of sGC in cementoclasts. In a healthy state, the β1-subunit of sGC may contain reduced
iron (Fe2+) heme and, therefore, it may be activated by physiological concentrations of
endogenous NO. It has been reported that sGC exerts inhibitory effects on osteoclast
activity [11,12,26,27]. In mature osteoclasts, NO causes activation of sGC and therefore
formation of cGMP, which leads to inhibition of osteoclast adhesion and acid secretion [42,43].
Therefore, NO-induced activation of sGC under physiological conditions ensures a balance
between cementum resorption and formation.
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Figure 8. Schematic illustration of the possible role of sGC in the NO-cGMP signaling cascade in osteoclasts and cemen-
toclasts of the human periodontium (modified from [44]): (A) In osteoclasts and cementoclasts of healthy periodontium,
nitric oxide (NO) is synthesized from the amino acid L-arginine by activated neuronal (n), endothelial (e), and/or inducible
(i) NO synthase (NOS). At physiological concentrations, NO binds to the heme of the β1-subunit of soluble guanylyl
cyclase (sGC), thereby activating the heterodimeric α1β1-isoform, which leads to increased production of cGMP from
GTP. This could result in inhibition of osteoclast and cementoclast differentiation. (B) In osteoclasts and cementoclasts of
the inflamed periodontium, the β1-subunit of sGC is oxidized (Fe3+) by the formation of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) and therefore exists in a NO-insensitive state. Nevertheless, as in healthy periodontium,
sGC is also present in osteoclasts and cementoclasts in inflamed periodontium at the protein level. Inactivation of sGC
may lead to increased osteoclast and cementoclast differentiation in periodontitis. Pharmacological activation of the
α1β1-isoform of sGC in cementoclasts and osteoclasts by NO- and heme-independent activators of sGC could therefore be
considered a novel treatment strategy to inhibit both cementum and alveolar bone resorption [12,45].

However, inflammation of the periodontium can disturb the balance between cemen-
toblasts and cementoclasts [13,16]. Since periodontal inflammation leads to an increased
activity of cementoclasts on the root side and osteoclasts on the alveolar bone side while
at the same time the activity of cementoblasts and osteoblasts is inhibited, the resorption
lacunae of the cementum and alveolar bone cannot be filled up. As a result, there is loss of
mineralized and soft tissues, which can ultimately lead to increased tooth mobility and
loss. Under inflammatory conditions, we detected the expression of the α1β1-isoform of
sGC in both cementoclasts and osteoclasts at the protein level. In inflammation, sGC is
oxidized (Fe3+) and subsequently heme-free [6,46]. Heme oxidation of the β1-subunit
of sGC triggers ubiquitination and subsequent proteolytic degradation of both α1- and



Int. J. Mol. Sci. 2021, 22, 539 9 of 13

β1-subunits of sGC [47]. Ubiquitination of sGC may be prevented by the heme-binding site
ligand BAY 58-2667, an sGC activator, that stabilizes the α1- and β1-subunits of sGC [47].
Under inflammatory conditions, the β1-subunit of sGC is oxidized (Fe3+) and sGC is there-
fore present in an NO-insensitive state [6]. In osteoporosis, sGC is also insensitive to NO
due to the excessive formation of ROS and RNS [45,48]. In patients with osteoporosis,
treatment strategies have been developed to inhibit excessive bone resorption and to in-
crease bone formation [12,49]. To inhibit excessive bone resorption and to enhance bone
formation via NO-cGMP signaling, NO- and heme-independent sGC activators can be
used in the treatment of osteoporosis [12,45]. Thus, NO- and heme-independent activators
of sGC may have great potential for the treatment of an inflamed periodontium. However,
whether BAY 58-2667 is able to stabilize the α1- and β1-subunits of sGC in cementoclasts
and osteoclasts of the inflamed human periodontium has to be unraveled in future in vitro
and clinical studies. Therefore, future in vitro studies may help to unravel the underlying
regulatory mechanisms.

In summary, we provide original evidence that both α1- and β1-subunits of sGC are
produced in cementoclasts of the human periodontium. Furthermore, we confirm the presence
of both sGC subunits in osteoclasts. Moreover, we show for the first time that the expression
of the α1- and β1-subunits in cementoclasts and osteoclasts is reduced in the inflamed
human periodontium. Since sGC has been shown to have an inhibitory effect on osteoclasts,
pharmacological activation of sGC in inflamed periodontal tissues could be considered a new
treatment strategy that involves inhibition of cementum resorption (Figure 8).

4. Materials and Methods
4.1. Tissue Sample Collection

Caries-free molars with healthy periodontal tissues (n = 25) and carious molars with
inflamed periodontium (n = 13) were extracted for orthodontic reasons. Immediately after
extraction, the molars were immersion-fixed in a fixative containing 4% paraformalde-
hyde and 0.2% picric acid in 0.1 M phosphate-buffered saline (PBS), pH 7.4, for 24 h and
demineralized in 4 M formic acid for 21 days. The molars with periodontal tissues were
cryoprotected with 30% sucrose solution in 0.1 M PBS, pH 7.4, for 48 h; frozen-embedded;
stored at −82 ◦C; and frozen-sectioned on a cryostat at 30 µm.

4.2. Histological Evaluation of the Inflammatory State

Whereas the molars of the healthy group were unrestored and clinically asymptomatic
and had no pain on percussion, molars of the inflamed group showed spontaneous or per-
cussion pain, clinical symptoms, and/or radiographic periodontal alteration. The sections
of molars with adherent periodontium were stained with Hematoxylin and Eosin (HE).
In a subgroup of teeth, additional immunohistochemical staining for mast cell tryptase
(MCT), HLA-DR (monocytes, dendritic cells, and activated T and B cells marker), and CD68
(macrophage marker) was performed to characterize the leukocyte types in the healthy
and inflamed periodontium.

4.3. The Specificity of Antibodies against Human α1- and β1-Subunits of sGC

To detect the α1-subunit of sGC in cementoclasts and osteoclasts, we developed a spe-
cific polyclonal rabbit antibody against the human α1-subunit of sGC (EP101278: ID0490;
Eurogentec, Seraing, Belgium) that was purified by peptide affinity chromatography and
characterized by ELISA, immunohistochemistry, and immunoblotting [38]. The specificity
of the polyclonal rabbit antihuman β1-subunit of sGC antibody was also previously de-
veloped by our group and tested by immunoblotting using lung protein extracts of the
sGCβ1

+/+ and sGCβ1
−/− mice as described previously [39].

4.4. Immunohistochemical Avidin-Biotin-Peroxidase Complex Method

The free-floating sections in 12-well plates were first treated with 0.3% H2O2 in 0.05 M
Tris-buffered saline (TBS) for 20 min. The sections were incubated with 0.25% Triton X-100
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in 0.6 M TBS, pH 7.6, for 30 min. The nonspecific immunoglobulin binding sites were
blocked by incubation of the sections with a blocking solution containing 5% normal goat
serum (Vector, Burlingame, CA, USA) and 2% bovine serum albumin (Sigma-Aldrich,
Taufkirchen, Germany). The consecutive sections were incubated with mouse antihuman
cathepsin K (Santa Cruz Biotechnology, Santa Cruz, CA, USA), mouse antihuman MCT
(Santa Cruz Technology, Santa Cruz, CA, USA), mouse antihuman CD68 (eBioscience,
San Diego, CA, USA), mouse antihuman HL-DR (eBioscience, San Diego, CA, USA),
and polyclonal rabbit antihuman α1- (1:1000) [38] and β1-subunits (1:1000) [39] antibodies
at 4 ◦C. The sections were incubated with biotinylated goat anti-mouse or goat anti-rabbit
IgG (1:500) (Vector) for 1 h, respectively, and subsequently with avidin-biotin peroxidase
complex (1:100) (Vector) for 1 h. The immunohistochemical reaction was developed in all
sections with 0.05% 3,3’-diaminobenzidine tetrahydrochloride (Sigma-Aldrich, Taufkirchen,
Germany) in 0.05 M Tris-HCl buffer, pH 7.6, containing 0.01% H2O2 and 0.01% nickel sulfate
for 15 min [38,50].

4.5. Immunofluorescence Double Staining Method

The free-floating sections in 12-well plates were incubated with 5% normal goat
serum to block the nonspecific immunoglobulin binding sites of the secondary antibod-
ies. The sections were incubated first with antibodies against mouse antihuman CD68
(eBioscience) and mouse antihuman cathepsin K (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) at 4 ◦C. Then, the sections were incubated with DyLightTM 488-conjugated
goat anti-mouse IgG (Thermo Fischer Scientific, Waltham, MA, USA) for 1 h. The sections
were then incubated with rabbit polyclonal antihuman α1-subunit (1:1000) [38] and β1-
subunit (1:1000) [39] antibodies overnight at 4 ◦C in the dark. Thereafter, the sections
were incubated for 1 h with the DyLightTM 550-conjugated goat anti-rabbit IgG (Thermo
Fischer Scientific). To show the cell nuclei, sections were stained with Hoechst 33342 and
DRAQ5 (Cell Signaling Technology, Frankfurt am Main, Germany) for immunofluorescence
microscopy and LSM confocal microscopy, respectively, for 15 min. The sections were cov-
erslipped with Aqua Poly/Mount (Polysciences Inc., Warrington, PA, USA) and analyzed
with an LSM510 confocal microscope (Carl Zeiss, Jena, Germany) [50].

4.6. Controls

Since we had previously detected α2- and β1-subunits of sGC in osteoclasts of alveolar
bone [37], sections containing both cementum and alveolar bone which served as a positive
control for sGC were selected. To control immunohistochemical reagents (secondary
antibodies and avidin-biotin peroxidase complex), sections were also incubated in the
absence of the primary antibodies.

4.7. Quantification of Staining Intensities of α1- and β1-Subunits and Statistical Analysis

The staining intensities were measured in section-free regions (background grey
value) and in cementoclasts (cementoclast grey value) stained for the α1- and β1-subunits
in consecutive sections. Immunostaining intensity for healthy (n = 6) and inflamed (n = 6)
human periodontia from 6 individuals per group was calculated as the background grey
value minus the mean of the selected cementoclast grey value [38,50].

Statistical analysis was performed using IBM SPSS Statistics version 27.0 (SPSS, Inc.,
Chicago, IL, USA). Statistical significances of the differences were determined by using
the unpaired Student t test. A p value < 0.01 was considered statistically significant.
The ggplot2 package was applied for data visualization.

5. Conclusions

The α1- and β1-subunits of sGC were expressed at the protein level in cementoclasts
of healthy and inflamed human periodontium. In periodontal inflammation, increased
oxidative and nitrogen stress may induce desensitization of the β1-subunit of sGC in
cementoclasts and osteoclasts. Therefore, pharmacological activation of the α1β1-isoform
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of sGC in cementoclasts and osteoclasts by sGC activators could be considered a new
treatment strategy to inhibit both cementum and alveolar bone resorption.
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Abbreviations

HE Hematoxylin and Eosin
NO Nitric Oxide
NOS Nitric Oxide Synthase
sGC soluble Guanylyl Cyclase
cGMP cyclic Guanosine Monophosphate
GTP Guanosine-5′-Triphosphate
PKG protein kinase G
CNG cyclic nucleotide-gated channel
PDE phosphodiesterase
PDL periodontal ligament
MCT Mast Cell Tryptase
HLA-DR Human Leukocyte Antigen-DR isotype
CD68 Cluster of Differentiation 68
DRAQ5 Deep Red Anthraquinone 5
ROS Reactive Oxygen Species
RNS Reactive Nitrogen Species
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