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Abstract: Recent advances in proteomic technologies now allow unparalleled assessment of the
molecular composition of a wide range of sample types. However, the application of such tech-
nologies and techniques should not be undertaken lightly. Here, we describe why the design of a
proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed,
the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered
not by commonly considered technical limitations such as low proteome coverage but rather by
insufficient analyses. Proteomic experimentation requires a careful methodological selection to ac-
count for variables from sample collection, through to database searches for peptide identification to
standardised post-mass spectrometry options directed analysis workflow, which should be adjusted
for each study, from determining when and how to filter proteomic data to choosing holistic versus
trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties
inherent in the modelling and study of the majority of progressive neurodegenerative conditions.
We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking
a comparative approach through the application of the above considerations in the alignment of
publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.

Keywords: proteomics; systems biology; experimental design; neurodegeneration; pathway analysis;
data filtering

1. Introduction

Degenerative diseases of the central and peripheral nervous system are universally a
significant public health priority, accounting for nearly 10% of the global health burden.
These conditions vary broadly in their regional pathology, age of onset, and underlying
aetiology, and the majority are currently without available or limited therapeutic options.
While in recent years, there have been few successes in the translation of research to ther-
apies, notably for monogenetic conditions such as gene-targeted treatments for Spinal
Muscular Atrophy (SMA) and the CLN2 form of Batten disease [1–7] and oral supplemen-
tation therapy for hereditary sensory and autonomic neuropathy disease (HSAN1) [8], it
remains even more difficult to design targeted therapies for the majority of idiopathic non-
heritable neurodegenerative conditions. These aetiologically complex diseases, including
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most forms of amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s
disease (PD), and other dementias, therefore remain invariably life-diminishing.

Historically, the most promising success stories in the characterisation and treatment
of these comparably clear-cut monogenetic conditions such as SMA and CLN2 disease
have only prevailed following decades of challenges building on an initial characterisa-
tion of the causative gene or mutation. Indeed, within both the SMA and the lysosomal
storage disorder fields (of which CLN2 is amongst a family of over 13 heritable diseases),
the relevance of even well-established animal or in vitro modelling strategies remains
contentious, rendering it difficult to define disease-specific pathophysiology at even a
gross neuroanatomical level, much less on a cellular or molecular basis [9–12]. In addi-
tion, the translational relevance of findings derived from such models remains difficult to
ascertain [13]. This is further complicated by the availability of samples; as these mono-
genetic neurodegenerative conditions remain inherently rare, tissue samples for validation
studies are consequentially difficult to obtain. Finally, other challenges may lie in the
specific biochemical configurations of the affected gene and subsequent protein product
to hinder the development and delivery of gene-specific therapies; a prominent example
exists in the challenges surrounding the functionally elusive transmembrane protein CLN3,
inherited mutations that cause another form of neuronal ceroid lipofuscinosis [14].

For non-heritable conditions, the impediments in defining relevant therapeutic targets
remain even more elusive. The characteristic symptomology of Alzheimer’s (AD) and
Parkinson’s (PD) diseases was originally described over a century ago [15,16]. While
in recent years, significant advances in techniques to define the histopathology of these
conditions has enabled milestone discoveries in understanding the cellular consequences
of AD, PD, and other dementias down to the synaptic level [17], elucidating the molecular
basis underpinning these degenerative processes remains highly complicated. For example,
while recent advances in GWAS studies have uncovered a number of epidemiological risk
factors, including the critical discovery of the ApoE4 allele, the means by which these risk
factors contribute to the likelihood of developing synaptic loss accompanying cognitive
decline remains poorly understood [18–21]. Consequentially, the translational relevance of
murine models, in particular to human disease, is also frequently challenged [22,23]. While
the global prevalence of conditions such as AD and PD generates a relative availability of
post mortem specimens, the heterogeneity of the human population, even between age-
matched, sex-matched individuals within a contained geographical population, ensures
difficulty in delineating any disease-causing molecular cascades [24,25]. It is, therefore,
perhaps unsurprising that the majority of these “spontaneous” conditions remain without
a known modifying treatment or cure.

For these progressive neurodegenerative conditions in which both a well-defined cause
and treatment options remain elusive, the application of -omics techniques to untangle
the causative molecular pathophysiology harbours enormous potential. Through -omics-
based experimentation (and systems-based analyses, to be discussed subsequently), it
is possible to not only pinpoint alterations in the expression levels of specific molecules
(i.e., genes, transcripts, proteins, etc.) but also to quantify broader dynamics in the genome,
transcriptome, or proteome (or indeed, metabolome, lipidome, etc.). Discovery-based
experiments—in particular, proteomic screens, which through the identification and relative
or absolute quantitation of proteins, generate arguably the most accurate overview of
“functional” molecular dynamics—may represent the most straightforward approach to
uncovering disease-specific molecular pathology. For example, profiling in vitro or in vivo
models or post mortem patient samples may be useful in determining any therapeutically
targetable elements within these pathological cascades [26,27].

Nevertheless, despite recent advances in proteomic technologies, their translational
application to the neurodegenerative disease field—particularly toward the aforementioned
conditions with ambiguous or complex aetiologies—remains in its infancy. In the following
review, we outline a number of considerations, caveats, and suggestions for designing and
analysing proteomic experiments from in vitro or in vivo models, or else post mortem tissue
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from progressive neurodegenerative conditions, in order to extract maximum biological
relevance and, therefore, therapeutic potential.

2. Proteomics as Applied to Neurodegenerative Disease Research

“-Omics” screening technologies, including proteomics, enable the generation of a
comprehensive molecular “fingerprint” of a specific tissue or cell population through health
and disease or following experimental manipulation. Assembling this “fingerprint,” num-
bering in the several thousands of protein identifications using modern mass spectrometry
methods, to tens of thousands of transcripts identified through RNAseq or microarray
techniques, and before tracing it through, for example, the time course of disease in a
model organism results in enormous expression datasets ripe for contextualisation. The
integration and analysis of these large -omics datasets have subsequently given rise to
the systems biology field, in which predictive algorithms attempt to determine how any
molecular alterations identified may interact to promote phenotypic alterations reflected
in vitro or in vivo.

Recent major advances in sample preparation and mass spectrometry techniques
have revolutionised the comprehensiveness of proteome coverage, particularly within
whole-tissue experiments. Indeed, to date, a PubMed search of the terms “proteomics
AND neurodegeneration” yields 1459 publications, while searches for “proteomics AND
Alzheimer’s” and “proteomics AND Parkinson’s” yield 2871 and 1447 results, respectively.
Despite this, there has been a lack of accompanying advancement in the identification of
translatable targets within the fields of neurodegenerative diseases. Unfortunately, studies
aiming to generate proteomic profiles of in vivo or in post mortem tissues are subject to
the inevitable challenges plaguing most neurodegenerative disease fields. These include
but are not limited to the unreliability of animal models, scarce tissue availability, and
inappropriate sample handling or storage. On the other hand, while in vitro studies benefit
from the ability to devise more tightly controlled and genetically faithful recapitulations of
disease-causing or disease-associated alleles, they generally lack the capacity to emulate
multicellular involvement; this is a particular drawback in neurodegenerative contexts, as
the cross-talk between neurons and astrocytes, glia, or oligodendrocytes appears to be a
critical driver of disease [28–33].

Additionally, proteomics studies themselves (or indeed, any -omics type experimenta-
tion) introduce additional challenges. Despite technological advances yielding a greater
coverage of the proteome than ever before, the ability to process these larger datasets
in order to conduct meaningful analysis and subsequent validation experiments often
proves a significant hurdle. Finally, perhaps the most crucial difficulty lies in studying
translatability; publishing a screen that reports tens, hundreds (or indeed thousands) of
protein alterations ultimately does not inform upon how these protein(s) may be con-
tributing to disease-specific neurodegeneration. For example, of the 2871 publications to
date featuring the keywords “proteomics AND Alzheimer’s”, only 843 (<30%) include
data demonstrating subsequent applicability in vivo beyond simple validation experi-
ments (e.g., immunoblotting) to verify screen results. It is, therefore, highly evident that
incorporating quantitative proteomics into a meaningful study with translatable results
requires careful experimental design, numerous considerations in generating and handling
proteomic data, and relevant analyses at a systems level.

It is also important to note that the majority of -omics centred publications, even
those featuring a translation-forward conclusion, tend to be established toward a specific
gene/transcript/protein candidate, often with a bias toward known “familiar favourites”
in the established literature. While this “cherry-picking” approach may provide important
internal validation for the study design, the researcher risks not only biasing their study in
favour of these candidate(s) but also ignoring the remainder data, which, upon extrapola-
tion to a network level, may provide greater insight into the biological events occurring
within their study.
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Consequentially, we believe that this single-track approach (with a field-by-field in-
ternal focus on self-reinforcing targets of existing interest) may contribute, in part, to the
statistic of over 90% of clinical neuroscience trials failing before Phase II [10,34]. More
optimistically, we instead suggest that with (1) considered experimental design, (2) unbi-
ased analytic approaches, and, optionally, (3) comparative alignment with other relevant
-omics datasets, the potential to overcome this translational gap and yield greater insight
into singular or conserved pathways of disease-specific degeneration is possible. In this
manuscript, we seek to reinforce the importance of careful experimental design in pro-
teomics studies, from sample collection to database searches for peptide identification, in
order to yield high-quality, translatable results.

Additionally, we suggest that the majority of contemporary proteomics screens are hin-
dered not by technical limitations such as low proteome coverage but rather by insufficient
analyses. We, therefore, emphasise the variables within a standard analysis workflow that
should be deliberated and adjusted for each individual study. These include considerations
into when and how to filter proteomic data to provide options for analyses of dataset(s)
either in their entirety or in trend-wise analyses for biologically relevant patterns. Finally,
we recognise the difficulties imposed in the modelling and study of neurodegenerative
conditions and therefore provide evidence for the benefit of taking a comparative approach
through a considered alignment of published or collaborative data sets to look for common
regulators of neuronal stability. As proof of principle, we conclude by offering an example
“walk-through” of data identifying conserved regulators of neuronal stability derived from
the comparison of two distinct, previously published proteomic datasets.

3. Considerations, Not Limitations

Broadly speaking, the experimental strategies for mass spectrometry-based proteomics,
particularly the bottom-up proteomics studies largely referenced in this manuscript, may
be summarised by the following workflow:

1. Sample collection and preparation of in vitro cells, in vivo tissue from animal models
of disease, or post mortem tissue from end-stage patients or age-matched controls.

2. Protein identification and absolute or relative quantitation within sample(s) including
appropriate statistical analysis and multi-database searches, generally conducted
within one of several commonly used proteomics software (Figure 1: Raw Output).

3. Post-mass spectrometry filtering, if appropriate (Figure 1: “Meaningful Data Cleanup”) and:
4. Downstream data analysis methods of the whole dataset (Figure 1: Whole dataset-

driven analysis) or isolated subsets (Figure 1: Trend-driven analysis) in order to
posit biological meaning from the protein abundance data generated by the mass
spectrometry experiment(s) (Figure 1: Contextualisation).

Each element of this workflow includes study-specific caveats of particular interest to
neurodegenerative researchers that should be considered and incorporated on an individual
basis for each experiment. Below, we briefly summarise each element of this workflow
and include points of interest for neurodegenerative disease research based on studies
generated both within our own laboratories and in the published literature.

3.1. Sample Collection

In designing a proteomics-based study, it is important to consider the source material to
be profiled, particularly given the caveats in neurodegenerative disease research described
previously. As always, an appropriate control must be employed, including, if possible,
an isogenic control cell line [35]; however, it may also be useful in proteomics-based
studies to design a “scalable” experiment, particularly in the aim of profiling models of
neurodegenerative disease. For example, while studying in vitro models, juxtaposing
control cells with those harbouring an exogenously expressed construct recapitulating a
known mutation at low, medium, and high levels could be utilised to provide a means
of extracting proteome alterations directly consequential to the mutation of interest. As
with all genetic manipulation strategies, off-target effects or a potentially confounding
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molecular response due to the expression of a construct past physiological levels must be
considered and accounted for. However, we also suggest that the stratification method
described above, through which a core “dose–response” profile may be generated through
profiling differential levels of exogenous expression and isolating any trends correlative
with construct levels (see Figure 1: Trend-driven analysis), may greatly reduce this potential
compared to a simple “A versus B” comparison. A parallel example in profiling a cellular
response to drug treatment by dosage scaling is illustrated in Figure 1 above. Similarly, in
using rodent models of heritable disease, it may be prudent to include heterozygous animals
in the study in order to study the “dose–response” result of, for example (theoretically),
100% expression of the full-length protein (wild-type), 50% of full-length, 50% truncated
(heterozygote), 0% full-length, and 100% truncated (homozygote). For a similar example of
how designing an experiment may enable stratification by dosage levels in order to profile
a cellular response to drug treatment, please refer to Figure 1.

Figure 1. Schematic summarising workflows described to optimise -omics style experimental design
and data analysis.

For time-course studies utilising animal models or in profiling post mortem tissue, one
should take into account that end-stage neurodegenerative disease may feature severe or
chronic processes resulting in cell death and synaptic loss [27,36]. It is, therefore, possible
that any alterations detected at this point are either the universal “death signature” of a



Cells 2022, 11, 2653 6 of 26

dying neuron (and therefore not representative of disease-specific pathogenesis) or else,
sampling only the “survivors” and thereby detecting correlates of neuronal resistance to
degeneration. At this point, it would be prudent to include comparisons with earlier stages
of disease progression, if possible, or to cross-check with other studies with collaborative or
publicly available similar datasets (see the comparative section below). These comparisons
would better establish if the alterations identified are disease-specific vs. global indicators of
neurodegeneration, or moreover, if they are part of pro-degenerative cascades vs. potential
mediators of neuronal survival.

Particular care should be taken in dissecting the neural tissue to be utilised in the study
in order to minimise the potential for any expression profile “alterations” to be merely
the consequences of differences in molecular anatomy. A study by Eaton et al. revealed
that different segments of the same murine sciatic nerve harboured markedly different
expression levels in proteins commonly used as “housekeeping” proteins in western blot
studies, such as GAPDH and beta-actin [37]. This same consideration should be taken while
isolating specific brain regions or spinal cord regions; for example, while laser-capture
microdissection is often a prohibitively expensive procedure for most proteomic studies,
careful microdissection of structures as small as the murine neuromuscular junction is
feasible, as are fractionation protocols for tagged cell populations [9,38]. In situ techniques
currently gaining traction, such as MALDI-imaging mass spectrometry, which utilises a UV
laser for the desorption and ionisation of peptides or other analytes from a tissue section,
offer the potential for highly specific proteomic analysis of microregions, but this is not
discussed within the scope of this review.

In terms of extraction methods themselves, a number of studies have demonstrated
enormous variability in proteome coverage merely based on the method of extraction,
such as the use of a Dounce or motorised hand-held homogenizer versus a total tissue
dissociation tool [39,40]. Different dissociation techniques and implementation of ice-cold
temperatures must be particularly considered in preparations for non-neuronal cell types
such as microglia, which due to high reactivity in the event of an “insult” such as enzymatic
digestion and physical disruption, may exhibit a potentially confounding proteomic profile
upon analysis [41]. Similarly, storage of both pre-extracted tissue and extracted protein may
potentially affect study quality, with storage at −20 ◦C resulting in marked degradation of
protein compared to −80 ◦C [17,42].

Choice of lysis buffer may also impact comprehensiveness of coverage, particularly in
high-lipid tissues such as neuronal tissue. To obtain a wider class of both hydrophilic and
hydrophobic proteins effectively extracted typically, lysis buffers with strong denaturants or
detergents may be employed. While ionic detergents such as sodium dodecyl sulphate (an-
ionic organosulphates) or sodium deoxycholate (ionic detergent) or chaotropes/chatropic
agents (which act to disrupt hydrogen bonds) such as urea offer effective solubilisation of
wide range of proteins including recalcitrant membrane proteins, typically these are buffer-
exchanged or diluted prior to proteolytic digestions and downstream chromatographic
separations. Additionally, protein precipitations methods using either TCA or acetone are
effective strategies for delipidation of lipid-enriched tissues and selective removal of other
undesirable small molecules from the protein samples. Depending on the sample handling
procedures or on the experimental objectives (e.g., phosphoproteomics), either protease or
phosphatase inhibitors are required to maintain protein quality throughout the procedure.

Proteomic studies designed toward identifying biomarkers from peripherally accessi-
ble samples such as blood, CSF, or urine may require additional processing steps in order
to maximise proteome coverage (such as albumin depletion for blood or plasma samples);
however, this is not discussed in this manuscript [43,44].

3.2. Mass Spectrometry Experiment and Proteomic Data Analysis

In the bottom-up proteomic workflows discussed in this manuscript, the purpose of
the mass spectrometry experiment is to generate protein identifications with accompanying
quantitative values (i.e., identification and abundance values). The analyses here refer to
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the spectral identifications, data pre-processing, and normalisation analysis required for
confidence in generating these IDs and abundance values. They also include the statistical
methods and filtering processes commonly used prior to more in-depth downstream
analyses (described in a separate section).

3.2.1. Quantitative Proteomic Profiling via Mass Spectrometry

LC-MS-based bottom-up proteomics involves data generation by either data-dependent
acquisition (DDA), where individual peptide precursor ions are selected for fragmentation
or by data-independent acquisition (DIA) where all peptide precursors within a specified
mass window (typically 10–20 m/z) are concurrently fragmented.

The first step in the identification workflow involves spectra-peptide matching in order
to establish a peptide ID. Multiple algorithmic techniques are used for deriving peptide
IDs (and subsequently proteins IDs) and can be broadly classified as either database search-
based or de novo sequencing-based.

Over the course of last two decades, several database searching algorithms have
been published utilising probability-based scoring or hidden Markov scoring function for
spectral search, peptide and protein scoring, and protein inference. A comprehensive listing
of these algorithms is beyond the scope of this review, but some of the major ones that are
widely used by the proteomics community are MASCOT [45], OMSSA [46], MyriMatch [47],
Andromeda [48], Comet [49], MSFragger [50], etc. These algorithms are available either as
a commercial license or as integrated into open-source proteomics data analysis pipelines.
Most of these algorithms provide a measure of false-discovery rate (FDR) at peptide or
protein levels frequently by doing a target-decoy search strategy [51].

Appropriate selection of search criteria, such as precursor and fragment mass tolerance,
fixed or variable modifications, and allowance of missed cleavage, are both instrument
and sample dependant and, therefore, must be optimised for individual experiments.
Sample treatments, proteases used, and stable isotope labelling strategies can bring about
chemical and structural changes to one or more amino acids on a peptide sequence, and
therefore the m/z of peptides and these should be taken into consideration during database
searches. One of the pre-requisites for database searching of the fragment ion spectra is the
selection of an appropriate sequence database as search engines can report a match only
if the sequence is present in the database. Generic protein databases such as UniPROT or
Ensembl genome browser offer tools to selectively download species-specific protein/DNA
sequences that may be used with search engines.

While the most commonly used computational method for peptide identification
remains the database search, direct sequencing of fragment ion spectra to derive peptide
spectral match is also used as a database-independent alternative. The enhanced sensi-
tivity and resolution of a modern mass spectrometer and the resulting higher quality of
spectra now enable direct de novo sequencing of a large number of spectra [52]. De novo
sequencing has the added advantages of identifying mutated protein sequences, amino
acid substitutions, and unexpected post-translational modifications, and emerging methods
based on deep learning neural network models [53] offer improved sequencing accuracy.

Mass spectrometry has evolved as the method of choice for unbiased quantification
of a large number of proteins/peptides from biological samples, and several MS-based
workflows have been developed over the last two decades. Considerable development
in instrument resolution, sensitivity, and software solutions now enable both relative and
absolute quantifications of proteins. These are performed by either using stable isotopic
labelling methods or ‘label-free’ approaches. Stable isotopic labelling allows multiple
but differently labelled samples to be combined and analysed as a single sample, thereby
minimising run-to-run variability to a great extent as compared to label-free methods, which
require individual samples to be run separately through LC-MS. The labelling methods
can be broadly classified as metabolic (SILAC, N15, etc.) or chemical (dimethyl, iTRAQ,
or TMT, to name a few) depending on how the labels are incorporated onto the protein or
peptides. While MS1-based quantification workflows (label free, SILAC, dimethyl labelling,
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etc.) measure intensities of peptide precursors, MS2-based methods (iTRAQ, TMT, etc.)
rely on the diagnostic fragment ions. Some of the MS2-based labelling strategies (e.g., TMT)
allow higher order multiplexing allowing up to 16 samples in a single run.

3.2.2. Pre-Processing Analysis and Normalisation

In the quantitation processes described above, the final abundance of a protein is
derived from peptide information. Regardless of the quantification methods used, it is
essential to adjust the cut-off for the minimum peptide numbers required to generate this
composite protein abundance value (see Figure 1: Acquisition). Typically, most bottom-up
quantitative proteomics workflows also employ a number of normalisation processes at
this stage prior to further analyses in order to correct for any stochastic inter- and intra-
run variability. This may be attributed to the general operation of the instrumentations or
retention time drift during chromatography or batch-effect at multiple times on different
days on large cohort experimental runs. Appropriate normalisation maximises the potential
for reported protein expression alterations and interpretation through downstream analyses
to be biological events capable of validation in vivo or in vitro, as well as enhancing the
capacity for the researcher’s visualisation and contextualisation. For example, the enormous
variation in endogenous expression levels within the “wild-type” proteome, with the
presence several “superabundant proteins” (e.g., albumin or myosins), often skew the
majority remainder of other protein abundances close to “zero.” For this reason, logarithmic
transformations are often applied to raw abundance values prior to further normalisation
steps. These normalisation methods are based on various statistical assumptions and
include linear regression-based normalisation, variance stabilisation normalisation, and
median normalisation [54–56] and must be tailored individually for each experiment
depending on the labelling process employed and tissue profiled [38,44,54,57,58].

3.2.3. Post-Processing Analysis

Within the quantitative proteomics (and indeed, general -omics) fields, common
workflows often conclude with statistical analyses such as t-tests or analysis of variance
tests (ANOVA) (with another established FDR threshold) between experimental groups
performed on the normalised data. However, the appropriateness of these traditional
methods is increasingly contested, with Bayesian methods gaining increasing recognition
for circumvention of proteomics-specific issues that traditional t-test methods generate,
such as disproportionately large p-values due to fewer n numbers of experimental groups.
Although the multiplexing capacity of methods such as TMT is increasing markedly, the
abundance of proteomics datasets is still far fewer than those derived from microarray or
RNAseq [59].

3.2.4. Data Deposition

Perhaps as a consequence of the relative modernity of MS-based proteomics compared
to more “mature” -omics techniques such as genomics, the practice of data deposition
remains frustratingly nonstandardised and, for some journals, entirely nonmandated [60].
Indeed, this lack of open accessibility in proteomics data (and indeed, to a lesser extent,
other -omics) remains a major impediment to scientific transparency.

In addition to these obvious hindrances toward research progress, we also suggest
that this lack of data sharing practice in neuronal proteomics stifles otherwise invaluable
opportunities to perform, for example, re-analyses or else comparative analyses customised
to a novel research question (as described below in Section 3.3) [61,62].

A number of proteomics repositories, reviewed thoroughly in Vaudel et al., 2016, are
currently available for users to upload into, including the commonly utilised Proteomics
Identification Database (PRIDE). However, these databases may often prove impenetrable
to the non-expert, and variability in the type of information uploaded (e.g., peptide identity,
the identity of spectral library utilised if applicable) may prove difficult to discern for even
proteomics-specialised researchers. Ideally, to ensure maximum transparency, information
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from raw arbitrary abundance values of both constituent peptide and protein identities
and, if applicable, any manipulations underpinning the quantitation performed (such as
expression ratios or mean abundance per biological group) should be included at minimum
if appropriate methodology is cited in-publication [63]. Encouragingly, standardised and
“user-friendly” platforms, such as the increasingly popular ProteomeXChange Consortium,
in conjunction with web-based tools for standardising proteomic workflows, seek to not
only implement standardised guidelines for the submission of proteomic datasets but also
render them accessible for non-expert researchers [63–67].

3.3. Downstream Data Analysis

In this review, we consider “downstream” analyses of proteomic data generated via
the methods described above as workflows designed to extract biological meaning out of
the protein expression changes reported through mass-spectrometry-based methodology
(see: Figure 1: Analysis). For the researcher designing their proteomic study with the
aim of elucidating how alterations in the neuronal proteome may be contextualised into
neurodegenerative disease pathologies, we again strongly emphasise here the importance
of resisting the urge to “cherry-pick” proteins of interest (or the candidate du jour of the
field) in lieu of a more thorough unbiased analysis. Indeed, we suggest the benefit of
conducting the following potential analyses by using only a relatively ambiguous identifier,
such as UniPROT/SwissPROTKB accession number and accompanying abundance values,
in order to effectively “blind” analyses so that any resultant protein or pathways of interest
are derived from a true unbiased methodology.

As described previously, search engine-based peptide identification methods utilise
a stringent match cut-off that can be adjusted per experiment. Similarly, the use of FDR
throughout the identification (and quantitation) processes theoretically should reduce the
number of false identifications. However, we and others suggest conducting downstream
analyses with proteins identified by two or more unique peptides in order to maximise
accuracy. Following this brief filtering step, the researcher may also consider whether they
wish to proceed with raw abundance values or whether they should further manipulate the
data; as mentioned previously, the scope of abundance variation in the proteome is difficult
to visualise due to the distribution skewing close to zero. For this reason, particularly for
multiplexed studies, it may be useful to work with log2FC values or to generate ratios of
expression change, for example, in the disease group(s) compared to control group(s).

At this point, in the event of a two-way experiment (i.e., Group A versus Group B),
it may be relevant to apply a cut-off in expression change for subsequent downstream
analyses (Figure 1: “Meaningful” data cleanup). Traditionally in bioinformatics, a 50%
cut-off in altered expression is a commonly accepted starting point; however, we and others
argue that this threshold is reductive in the context of biological events that we demonstrate
translate to phenotypic alterations in vivo [68]. Alterations in protein expression as low
as 20% may have a demonstrable impact on phenotype [69–73]. Conversely, a knockout
model may disrupt markedly impact the proteome on a global scale; in this case, a more
stringent cut-off may be employed. Cut-offs applied at this, and any subsequent stage
should be carefully considered in the context of the experiment profiled by the data.

For proteomic studies designed to compare more than two experimental groups, it may
be beneficial to refine the dataset further in order to capture biologically relevant trends,
i.e., subgroups of proteins that may address the hypothesis more directly than an analysis
of the total dataset (see: Figure 1: Trend-driven analysis). Clustering-based analyses
(and additional unsupervised learning approaches) have gained increasing traction in the
bioinformatics field [74]; however, these are often employed toward creating a molecular
atlas by grouping proteins closely related in their biological function or localisation. Instead,
we demonstrate the application of the Markov Clustering algorithm based simply on the
variable of expression trend between groups [75].

For example, Hesse et al. stratified a study of the post mortem Alzheimer’s Disease
brain based not only on regional vulnerability (with appropriate age-matched controls) but
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also on different levels of the primary genetic risk factor ApoE4. Through expression profile
clustering, Hesse et al. were able to identify and isolate a subgroup of proteins that tracked
strongly with both ApoE4 levels and regional vulnerability in the post mortem Alzheimer’s
brain from the otherwise highly complicated end-stage synaptic proteome [24]. The same
application may be used to, for example, isolate trends across disease progression, through
different doses of treatment or through different anatomical regions of the brain.

3.3.1. Enrichment Analysis: As a Whole vs. for Individual Trends

Biological “enrichment” analyses provide a preliminary insight into the degree of
overlap within an input gene list (or, in these studies, protein lists) holds against a prede-
fined database of biological processes. These analyses are useful for obtaining information
about the potential representation of particular pathways, biological processes, or cellular
functions (for example) within a dataset; however, as these enrichment scores do not incor-
porate accompanying quantitation values (i.e., expression values), they are limited in their
whether an “enriched” pathway is activated or inhibited, for example.

In this manuscript, we focus briefly on the enrichment analysis capacities available
through the two most common online enrichment tools, DAVID [76,77] and STRING [78],
each of which hosts its own predefined and periodically updated libraries. To perform
enrichment analysis, the user uploads their list of, for example, proteins as a single list
of standard identifiers such as UniPROT/SwissProtKB Accession numbers, FASTA head-
ers, etc. It is possible to convert protein identifications into corresponding gene names
within software such as DAVID; however, in conducting enrichment analysis of proteomic
data, the researcher should be prudent in determining whether a conversion is entirely
successful, as conversion capacity depends on the accuracy and version of the database
curation. It is suggested that at this point, the researcher should check to see whether some
entries may require manual conversion (for example, through searching for correspond-
ing gene names in the UniPROT database) or whether conversion should be completed
against multiple species databases, particularly in the case of multiplexed studies where
peptide identification has been searched against multiple species in a search engine such
as MASCOT.

DAVID and STRING provide a number of enrichment analysis options, including the
most commonly utilised Gene Ontology (GO) term enrichment analysis. GO terms may be
simplistically defined as pre-set gene groups classified based on their functional character-
istics (e.g., “ER-Golgi trafficking”), with each unique GO term assigned also featuring a
subdivision into three sub-categories of “biological processes”, “cellular components”, and
“molecular functions”, Enrichment of genes (or proteins) within a dataset for GO terms
is calculated from a number of statistical tests including most commonly a Fisher’s exact
test [76,77] and the resulting “enrichment score” may be used to infer information about
the degree of representation a specific biological process holds within the data.

In terms of application to neurodegenerative disease research, it is again important
to note that enrichment analysis, while useful for gaining a preliminary insight into the
biological processes potentially involved in a dataset, ultimately provides limited infor-
mation on a pathway level as it does not incorporate quantitative information alongside
protein lists. However, it may be employed in other uses, such as determining success
in a subcellular fractionation protocol (for example, high enrichment for mitochondrial
processes following isolation of synaptic mitochondria) prior to a validation experiment
such as western blotting [79].

3.3.2. Network and Pathway Analysis

Within the context of proteomic studies, the systems biology field has emerged on the
basis of considering that the ultimate biological function of altered protein expression is not
simply an alteration(s) in the known mechanism(s) of action of a singular protein(s), but
rather that protein(s) themselves exist within larger biological network(s), with alterations
within network components producing greater implications upon a cellular or organismal
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phenotype (see Figure 1: Contextualisation). Within the context of proteomics-based
systems biology applied to the study of neurodegenerative disease, we briefly describe
biological networks derived from protein–protein interaction studies (published as affinity
purification-MS experiments) or through enzyme–substrate signalling networks (inferred
from MS-based profiling of posttranslational modifications on putative substrates). Both
protein–protein and enzyme–substrate interaction studies provide the foundation for the
construction of biological networks incorporating protein(s) of interest with capacity for
inference upon, for example, a potential contribution toward synaptic dysfunction.

These networks are comprised of functional molecules or “nodes” embedded in a
framework of direct or indirect interactions or “edges”- derived from aforementioned
MS-based experimentation. An example of a direct “A- > B” edge in one of these networks
would be Protein A having been previously discovered to interact with protein B through
affinity purification-MS, whereas an example of an indirect “A- > C” edge would be Protein
A having been characterised as a transcription factor, of which transcriptional targets
include Protein B which has been previously demonstrated through affinity purification-MS
to catalyse the activity of Protein C. For many diseases, it is interesting to contextualise how
individual protein alterations identified in a bottom-up proteomics study may impact these
larger biological networks. These differentially expressed proteins could then be detectable
in the wet lab, from altering expression levels of a downstream protein of interest to yielding
organellular dysfunction or cellular alterations visible at an immunohistochemical level.
Ultimately, a systems biology approach harbours the potential to lend greater context to
how alterations in the proteome produce neurodegenerative phenotypes.

In order to generate these networks, a number of freely available network generation
tools are popular amongst system biologists and molecular biologists alike, with most
available as packages in Python or R or else have built-in web interfaces for user-friendly
accessibility [80]. Additionally, machine learning approaches have been gaining increasing
traction in the systems biology field [81,82]. Similarly, biological network databases such
as KEGG [83,84] and Pathway Commons [85] are freely available online and are useful
for searching. However, the researcher must consider that these resources may be limited
by a lag in the curation of these interaction libraries [86]. Similarly, it may be difficult to
generate networks incorporating multiple species libraries for multiplexed studies that
include, for example, both human and rodent protein identifications.

User-friendly network analysis software for the non-systems biologist, such as Inge-
nuity Pathway Analysis (IPA) (Ingenuity Systems, Silicon Valley, CA, USA), is similarly
capable of generating biological networks from proteomic data as well as enrichment-style
analyses incorporating protein expression values. IPA produces pathway activation or
inhibition scores, as well as mapping putative upstream regulators and the broader down-
stream biological effects of an input protein list. These analyses harbour an advantage
in being derived from the continually updated, “hand-curated” Ingenuity Knowledge
database of publications. Additionally, “all-comers” network analyses applications such as
IPA have also broadened their capacities to not only generate interactions between protein
(or genes/transcripts) but also include the ability to incorporate additional “nodes”, such as
microRNAs and even pharmacological compounds based on, for example, high throughput
screening assays.

On the other hand, in recent years, several research groups, including the pioneering
Barabási laboratory, have sought to design customised workflows incorporating network-
based algorithms, ranging from those extracting biological network database information
such as those described above (e.g., KEGG or protein atlas information) to AI-based
algorithms, with known biological information such as stereotyped cytoarchitecture or the
known neuronal connectome [87,88].

As always, with these network-based approaches, the researcher must consider that
extrapolation into biological pathways or predictive upstream regulator analyses must be
undertaken with prudent incorporation of the scientific question at hand; for example, at
this point, would it provide greater insight to analyse a dataset as a whole, or to attempt
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contextualisation of individual trends isolated through, for example, expression profile
clustering (see: Data Analysis)?

Similarly, network analyses including quantitative expression level data may prove
more informative with an expression level cut-off and/or by introducing parameters
such as restricting the background information to include only specific species or cell
lines, or interactions including certain classes of proteins, or experimentally observed
interactions. A considered analysis incorporating these more stringent parameters may
also have an advantage in circumventing traditional “roadblocks” in systems analysis
surrounding the computational power required to search the enormous scope of interaction
database information.

Ultimately, however, any in silico results must be corroborated with appropriate vali-
dation experiments in vitro or in vivo. Indeed, this coupling of in silico predictions with
a proof-of-principle demonstration through “wet lab” techniques appears increasingly
imperative in the application of “network medicine.” [89]. For the neurodegenerative
researcher aiming to elucidate a mechanistic contribution toward disease-specific patho-
genesis from their proteomics experiment, tracing putative candidate networks across
additional proteomic studies—publicly available or collaborative—profiling progressive
neurodegenerative conditions may serve as an additional useful step in highlighting trans-
lational relevance.

4. Comparative Proteomics May Uncover Common Regulators of Neuronal Stability
within and between Distinct Models of Disease

In recent years, comparative approaches to glean information from the “known”
(i.e., shared phenotypes of synaptic vulnerability, pathological aggregates, etc.) in order
to shed light on the unknown (i.e., degenerative-relevant cascades) have increasingly
gained traction in the field [90,91]. For example, the critical role of synaptic involvement
across a broad range of conditions and the exceptional vulnerability of synapses to a
wide array of pathological stimuli is now well documented. Numerous studies have
highlighted the critical role that synaptic malfunction and degeneration play in preclinical
and early symptomatic stages of neurodegenerative conditions, including motor neuron
diseases [92,93], Alzheimer’s Disease [94], prion diseases [95], Parkinson’s Disease [96],
spinocerebellar ataxia [97], the spastic paraplegias [98], Huntington’s disease [99], and
lysosomal storage disorders such as the CLN1-13 forms of Batten disease [70,100,101]. In
all of these conditions, synaptic pathology generally occurs in advance of pathological
changes occurring in other regions of the neuron (i.e., cell body and/or axon). Conversely,
targeting the mechanisms identified in differentially vulnerable neuronal compartments
can rescue not only the synapse but also the remainder of the neuron and potentially the
whole neuromuscular system [72]. Indeed, even if the molecular cascades are correctly
tracked far enough upstream, it may be possible to subsequently identify modifiers capable
of influencing disease progression in every organ system examined [72,73].

It is perhaps to be expected that a number of studies have sought to exploit this
conserved phenotype of synaptic vulnerability with the aim of untangling a common,
pro-degenerative molecular signature promoting this synaptic phenotype across conditions
considered clinically or genetically distinct. Indeed, a comparative proteomic approach,
encompassing the caveats outlined previously, is well-poised to identify some of these
conserved regulators of synaptic and, therefore, general neuronal stability. Furthermore,
these considerations may also be employed in comparative approaches beyond determining
multi-disease overlaps, including addressing potential questions regarding the suitability
of genetic models or enhancing the veracity of animal model-based findings through an
additional exploration into the human post mortem proteome.

4.1. Comparative Approaches for Complex or Unknown Aetiologies

Alignment and comparison of proteomic studies profiling otherwise unrelated neu-
rodegenerative conditions could increase our biological understanding of potentially con-
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served disease mechanisms promoting neurodegeneration but could importantly aid the
identification of therapeutically targetable elements whose utility would not be restricted
to a single condition. This would be particularly beneficial for the majority of progressive,
degenerative conditions of ambiguous genetic origin that are currently without available
therapeutic options. A comparative approach also introduces a therapeutic advantage in
combining multiple drug discovery fields, including the potential for repurposing previ-
ously studied and approved compounds.

A common starting point in multi-disease comparison lies in shared phenotypic pat-
terns of differential vulnerability in neuronal populations. For example, despite their
differences in age of onset in their most common forms, two motor neuron diseases gener-
ally fall on opposite ends of the heritability spectrum—the monogenetic spinal muscular
atrophy (SMA) and the majority “sporadic” and adult-onset amyotrophic lateral sclerosis
(ALS), as well as the 5–10% of cases classed as familial—share highly similar progressive
pathologies in the lower motor neuron. Perhaps unsurprisingly, an increasing body of
evidence suggests that the two most common motor neuron diseases are linked beyond
symptomatic similarities toward shared elements of molecular dysregulation converging
upon common core regulatory pathways [102]. For example, overexpression of SMN in
ALS mouse models and in vitro appears to be modestly neuroprotective, with an improve-
ment of neuromuscular phenotype and an increase in lifespan, and resistance to mutant
SOD1[G93A] toxicity, respectively [103–105]. Conversely, depletion of endogenous mouse
Smn successfully enhances disease pathogenesis in ALS mice [106]. Additionally, the
SOD1[G93A] mutation, the first identified ALS-associated gene, is capable of disrupting
Smn localization in vitro and in vivo [107,108]. Finally, the ALS-associated RNA-binding
protein FUS has been demonstrated to not only colocalize with SMN in vitro but also
directly interact with an Smn-containing complex, while several ALS-associated mutations
in FUS are capable of significantly disrupting the typical axonal distribution and function
of SMN in vitro [109,110].

Recently, studies into the stereotyped patterns of differential motor neuron vulnera-
bility have identified molecular differences between motor neuron populations and have
importantly also identified cross-disease modifiers of both SMA and ALS [62,111,112].
Alignment of proteomic studies profiling both ALS and SMA models has since revealed
several similarities at the individual molecular to the pathway level, including elements
of dysregulation encompassing RNA processing and NF-kB pathways, as well as endo-
plasmic reticulum-Golgi trafficking processes [61,113,114]. It is, therefore, evident that
a significant degree of molecular conservation exists between SMA and ALS and that a
greater identification and characterisation of these commonly dysregulated cascades may
prove therapeutically beneficial.

We additionally propose that this more comprehensive comparative approach can
help address the seemingly impenetrable list of uncertainties surrounding conditions for
which the relevance of transgenic animal models to more genetically ambiguous human
conditions remains contentious, such as in the muscular dystrophies [115] or the neuronal
ceroid lipofuscinoses [116]. For example, alignment of novel or previously published
proteomic studies profiling differentially vulnerable neuronal populations or neuronal
sub-compartments between different mouse models of ALS [117], Parkinson’s Disease, or
Alzheimer’s Disease [118] may uncover commonly dysregulated cascades serving as key
drivers of disease in each condition.

4.2. Incorporation of Human Proteome Analysis

A comparative alignment of proteomic studies, including the incorporation of increas-
ingly available human proteomic datasets, may also serve to enhance the translatability of
findings derived from animal models. In recent years, advances in proteomics technologies
have enabled the profiling of (1) both healthy and disease-associated synaptic and (2) gen-
eral neuronal proteomes, including “atlases” of expression across brain regions [27,79,90]
as well as other (3) neurodegenerative and neuromuscular-disease relevant tissue such
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as the human neuromuscular junction, and skeletal muscle proteome [9,119]. These may
potentially serve as a powerful tool in overcoming the persistent challenge of translating
basic research toward clinical trial successes.

A comparative insight into potentially conserved dynamics between preclinical animal
models and the human proteome—limited not only to shared protein expression alterations
at the cellular or compartmental level but also commonly dysregulated post-translational
modifications or broader alterations on a system or pathway level—may alleviate the
typical limitations of animal model studies or interpretation of human data. However,
these comparisons should be designed to maximise the possibility of identifying overlaps
harbouring true biological relevance. For example, while generating or incorporating
post mortem disease data into a comparative study, it is prudent to consider the presence
of end-stage alterations in affected neurons. For this reason, the inclusion of animal
data profiling pre- or early symptomatic alterations as well as introducing additional
parameters of regional vulnerability in post mortem tissue, or examination of protein
alterations following genetic manipulation in vitro, may avoid false positives in identifying
molecular “commonalities” attributed to multiple instances of cell death. Encouragingly,
this cross-species approach has been utilised in recent studies profiling both Parkinson’s
and Alzheimer’s disease post mortem tissue [120–123].

5. Concluding Commentary

Recent advances in proteomics technologies, particularly quantitative mass-spectrometry-
driven approaches, have ushered in a new era in the potential for delineating the molecular
dysregulation underpinning currently fatal neurodegenerative diseases such as Alzheimer’s
Disease, ALS, Parkinson’s Disease, and most forms of the neuronal ceroid lipofuscinoses.
However, several issues regarding study design, sample collection and handling, and per-
haps most critically, post- mass spectrometry analysis with appropriate validation, should
be considered in order to address the current “roadblock” in identifying candidates har-
bouring translational relevance at the therapeutic level. Moreover, a comparative approach
in combining and aligning datasets of separate proteomic studies (example in Appendix A),
particularly including profiles of monogenetic conditions (i.e., aetiologically straightfor-
ward) or human post mortem samples when available, while encompassing considerations
described previously (e.g., gene dose, disease staging, regional vulnerability), may enhance
the discovery of viable non-gene-replacement-derived therapeutic options.
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Appendix A

Here, we present an example of a “proof-of-principle” alignment of experimental data,
in which the original datasets have been processed in a standardised manner encompassing
the considerations previously described in this manuscript. Source datasets may be found
in [124,125]. Briefly, the comparison for this study was designed to determine whether it
was possible to identify conserved regulators of neuronal stability across distinct neuronal
compartments by identifying pro- or anti-degenerative molecular alterations occurring
in both the synaptic and axonal proteome. We suggest that incorporating aspects of the
methodologies presented below may be employed to enhance the analysis of datasets
profiling disease or injury-induced degeneration.

Appendix A.1. Methods

Appendix A.1.1. Source Datasets

Neurons are organised in specialised subcomponents, including axons and synapses.
Regarding the degeneration process, these parts behave independently from each other, and
synapses appear to be specifically vulnerable to triggering events [126]. Key observations
highlighting segregation of molecular mechanisms regulating axonal and synaptic degen-
eration come from studies of the natural murine mutation slow Wallerian degeneration
mutation (WldS), comprising a fusion of the endogenous mouse genes Ube4b and Nmnat1.
Overexpression of the slow Wallerian degeneration protein (WldS) in homozygous mice
allows the structural and functional delay of axonal degeneration, age independently, for
10 days or more, compared to degeneration and clearance within 48 h of injury in adult
wild-type mice [69,127].

Profiling the proteome of the distal compartments (axon and synapse) of WldS mice
versus wild-type mice over a time course of wild-type degeneration (0, 1, and 2 days
post-injury (dpi)) following injury may therefore uncover regulators of neuronal stability in
injury-induced degeneration. The following datasets were therefore used for comparison
(Figure A1): synaptic dataset of Wld(s) mouse versus wild-type mouse following axotomy;
experiments described in [125] with the datasets for axon degeneration [124] in order to
investigate potential regulatory candidates after induced injury. The first dataset inves-
tigated synaptic degeneration induced by a cortical lesion model, and the proteins were
iTRAQ-labelled for mass spectrometry analyses [125]. The second dataset utilised a sciatic
nerve injury model to induce axonal degeneration, and the proteins were identified and
quantitated using label-free proteomics [124]. Both datasets contain the relative ratios for
WT and Wlds mice over three time points at specific Days Post Injury (0 dpi, 1 dpi, 2 dpi).

Appendix A.1.2. Standardisation for Alignment

Raw data sets containing all identifications for either synaptic or axonal degeneration
were processed in the same manner. Firstly, files were filtered in Microsoft Excel (Windows
2010) to produce columns containing the following identifying information: accession
number, gene name, and description. Thereafter, the data values for each time point were
converted into relative ratios of expression against the first time point before injury (i.e.,
WT0/WT0, WT1/WT0, WT2/WT0, Wlds0/Wlds0, Wlds1/Wlds0, Wlds2/Wlds0). These
files containing time point ratios and identification columns were subsequently used for
alignment and pathway analysis.
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Figure A1. (A) Summary of source datasets derived from studies by [124,125] profiling, respectively,
murine synaptic (following cortical lesion injury) and axonal isolates (following sciatic nerve crush
injury). Table summarises labelling method employed, number of analysis-ready proteins as identi-
fied by the presence of 2 or more unique peptides, and main findings following downstream analysis
as described by the authors. (B,C) BioLayout3D representation of (B) WT synaptic and (C) WT
axonal protein expression status through 1 dpi and 2 dpi relative to day of injury (0 dpi). Each node
represents an individual protein, and lines represent the magnitude of expression correlation between
proteins across the three time points profiled in each study (0, 1, and 2 dpi). Input was clustered based
on similarity in expression profile over time, and individual nodes are colourised to represent identity
within output clusters. Correlation threshold is defined by Pearson r = 0.97. (D) Representative ex-
pression profile graphs illustrating potential responses of protein subsets following injury, indicating
putative immediate early, degenerative, progressive, and acute response profiles.

Appendix A.1.3. BioLayout Express3D

The BioLayout Express3D software [75] was used for the visualization, integration, and
analysis of the network graphs derived from each dataset (synapse and axon degeneration)
in order to define the relationship between protein clusters [75]. Individual Excel files were
uploaded into BioLayout Express3D, and the relative expression profiles from time point
0 to 2 dpi were analysed. By means of the Markov clustering algorithm (MCL) within
BioLayout Express3D, the graphs were divided into distinct clusters possessing similar
expression profiles, and the individual proteins were represented over time (Figure A1).
The generated visual networks were subsequently utilised to identify response patterns
correlating with distinct steps of the degenerative process known time course of structural
degeneration in wild-type mice, such as that described in [124]. For this, proteins with a
similar expression profile over time, regardless of the direction of expression, were assigned
to the same response pattern (see the summary of 4 profiles in Figure A1). Proteins
constituting the “degenerative” cluster in both synapse and axonal datasets, i.e., those that
exhibited a steady increase or decrease in expression from 0 to 1 to 2 dpi (see Figure A1D
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for a visual demonstration of protein trends), were then subjected to pathway analysis (see
Appendix A.1.5. and Figures A2 and A3).

Appendix A.1.4. DAVID

The Database for Annotation, Visualization, and Integrated Discovery (DAVID) is a freely
accessible bioinformatics tool used to determine enrichment of functional annotations
ascribed to groups of genes, transcripts or proteins. In this analysis, proteins of a cor-
responding cluster identified through unbiased expression profile clustering performed
through BioLayout Express3D (see Appendix A.1.3) were submitted as genes into DAVID
Bioinformatics Resources 6.8 and converted into a DAVID ID list against Mus musculus.
Analyses were performed for the total gene list and the 4 BioLayout Express3D clusters
(1) immediate early response, (2) degenerative response, (3) progressive response, and
(4) acute response (summarised in Figure A1), were determined for both synaptic and
axonal degeneration data. The individual lists were further analysed by DAVID Bioinfor-
matics in terms of functional annotations that are ranked as a DAVID enrichment score. A
significant difference is reached with an enrichment score of >1.3 (which is on equal terms
with p < 0.05) [76].

Appendix A.1.5. Ingenuity Pathway Analysis

The Ingenuity Pathway Analysis software applies a “hand-curated” database to inves-
tigate complex proteomics data, including cellular and molecular pathways involved in
statistically significant changed protein expression after injury. The application generates
networks of interacting proteins predicting downstream effects and helping to identify
potential regulator candidates based on experimentally reported interactions derived from
published publications. Using IPA, the relative ratios of expression changes were uploaded
in terms of a gene list. Then the standard settings were set to ‘direct and indirect interac-
tions’ and ‘experimentally observed data only’. For networks generated by IPA, the number
was limited to 35 member molecules and a maximum of 10 networks per analysis. The
threshold was set to 20% for the axon and 15% for the synapse data set. This difference in
threshold was set to account for the difference in methodological sensitivity, sample type
origin, coverage, and differentially detected identifications.

Predicted activation z-scores of putative upstream regulators, as presented in Figures A2 and A3,
were calculated by weighing the predicted expression change of target molecules within
the regulator’s interactome as defined by the Ingenuity Knowledge Database against the
actual expression change of target molecules reported in input datasets. The top absolute
z-scores per analysis, as described in the following text, are presented in Figures A2 and A3.
For Figure A2, these calculations were performed on proteins identified in wild-type mouse
axonal compartments [124] to exhibit a “degenerative” expression profile (Figure A1D)
from 0 to 2 dpi; activation z-scores at 1 and 2 dpi, as well as the expression ratio of each
protein within axonal “degenerative” cluster constituting the regulator prediction, are also
presented. For Figure A3, these calculations were performed on proteins identified in
both wild-type mouse axonal [124] and synaptic [125] datasets to exhibit a “degenerative”
expression profile (Figure A1D)) from 0 to 2 dpi. An activation z-score > 2 or <−2 is
considered statistically significant. p-values of overlap derived from a Fisher’s exact test
were derived from a Fisher’s exact test calculating overlap between molecules in each
respective input dataset and the number of molecules comprising the known interactome
of each regulator as defined by the Ingenuity Systems Database.

In graphical format for networks displayed in Figures A2 and A3, target molecules
present within each proteomic dataset predicted to be activated or inhibited by reported
regulators were visualised in relation to their associated predicted regulator and were
colourised with intensity of colour corresponding to magnitude of change; red represents
upregulation between 0 to 1 to 2 dpi within each respective model, while green repre-
sents downregulation. Solid connecting lines represent a direct interaction, while dashed
connecting lines indicate an indirect interaction.
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Figure A2. Trend-wise and compartmental dissection of expression trends highlight molecular
dynamics within the axon through the injury-induced degeneration process. Top upstream regulators,
(A) peroxisome proliferator-activated receptor alpha (PPARA) (B) tumour necrosis factor (TNF),
and (C) dexamethasone exhibit opposing activation status (as indicated by +/− z-score), mediating
opposing directionality of target molecules between 1 dpi and 2 dpi following axotomy. Tables and
graphs highlight relative expression of regulatory candidates through 1 dpi and 2dpi compared to 0
dpi as detected by proteomics study published in [124].
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Figure A3. Overlay of expression profile trends within axonal versus synaptic compartments post-
injury reveals predictive convergence upon known regulators of Wallerian degeneration. (A) Sum-
mary table of top 10 upstream regulators mediating identified biologically relevant axonal and
synaptic trends as ranked by absolute z-score. Note presence of known neuronal and non-neuronal
(i.e., myelinating) regulators, including RICTOR, insulin receptor, BDNF, and PKD1. (B) Example
extrapolation of mechanistic network mediated by predicted upstream activation or inhibition of
BDNF signalling in the synapse (B,C) or axon (D,E), respectively, promoting alterations in down-
stream protein expression as detected by respective proteomic study. As proof-of-principle, the top
5 biological functions per network consequential to expression alterations in constituent proteins rep-
resent known phenotypic outcomes. See Figure A4 for an expression summary of constituent proteins
in BDNF-regulated mechanistic networks depicted in (B–E) in synapse and axon over 1–2 dpi.
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Figure A4. Summarised expression values of constituent proteins in BDNF-regulated mechanistic
network depicted in Figure A3(B–E) in synapse and axon over 1–2 dpi.
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Appendix A.2. Example Results

Clustering protein expression over 1–2 dpi according to known ultrastructural changes
in the wild-type neuron reported in [124,125] enables the isolation of “degenerative,” “pro-
gressive,” “immediate early”, and “acute” protein expression profiles based on accompany-
ing observations of axonal and synaptic at the morphological and functional level following
injury [124]. For example, axotomy-induced degeneration in the wild-type sciatic nerve,
previously used as a molecular baseline for which to compare correlates of resistance to
degeneration in the WldS mouse model, induces early morphological alterations including
Schwann-cell-dependent fragmentation detectable within 24 h of injury (1 dpi), whereas
subsequent disintegration of fragments. Thus, early alterations occur within the first 48 h
of injury. The following examples in stratifying data by their correlation with various
steps in the cytoarchitectural breakdown of the distal compartments of the neuron may be
considered in designing analyses of multiple tissues or time points (Figure A1).

As an example, it is possible to map “degenerative” alterations (i.e., small alterations
from 0 dpi to 1 dpi, then increasing or decreasing in expression >20% from 1 dpi to 2 dpi;
refer to Figure A1D) through opposing directionality in predicted upstream regulator
activity over 1–2 dpi (Figure A2). It is then possible to perform a comparative overlay
of degenerative profiles in both synapse and axon through 1–2 dpi (Figure A3). For
example, we demonstrate here that these distinct studies profiling the wild-type axon
and synapse following injury-induced degeneration report conserved protein alterations
upstream convergence upon known signalling mediators of injury-induced degeneration
(Figure A3A). While these results have been compiled as an example, this comparative
approach may be employed by the researcher to identify novel upstream regulators within
a degenerative experiment or else to map known upstream regulators to putative novel
downstream effector molecules, as in Figure A3F.
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