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Simple Summary: Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) is an intra-
cellular adapter protein with E3 ligase activity, which interacts with a plethora of other signaling
proteins, including plasma membrane receptors, kinases, phosphatases, other E3 ligases, and deu-
biquitinases. TRAF2 is involved in various cancer-relevant cellular processes, such as the activation
of transcription factors of the NFκB family, stimulation of mitogen-activated protein (MAP) kinase
cascades, endoplasmic reticulum (ER) stress signaling, autophagy, and the control of cell death
programs. In a context-dependent manner, TRAF2 promotes tumor development but it can also act as
a tumor suppressor. Based on a general description, how TRAF2 in concert with TRAF2-interacting
proteins and other TRAF proteins act at the molecular level is discussed for its importance for tumor
development and its potential usefulness as a therapeutic target in cancer therapy.

Abstract: Tumor necrosis factor (TNF) receptor associated factor-2 (TRAF2) has been originally
identified as a protein interacting with TNF receptor 2 (TNFR2) but also binds to several other
receptors of the TNF receptor superfamily (TNFRSF). TRAF2, often in concert with other members
of the TRAF protein family, is involved in the activation of the classical NFκB pathway and the
stimulation of various mitogen-activated protein (MAP) kinase cascades by TNFRSF receptors
(TNFRs), but is also required to inhibit the alternative NFκB pathway. TRAF2 has also been implicated
in endoplasmic reticulum (ER) stress signaling, the regulation of autophagy, and the control of cell
death programs. TRAF2 fulfills its functions by acting as a scaffold, bringing together the E3 ligase
cellular inhibitor of apoptosis-1 (cIAP1) and cIAP2 with their substrates and various regulatory
proteins, e.g., deubiquitinases. Furthermore, TRAF2 can act as an E3 ligase by help of its N-terminal
really interesting new gene (RING) domain. The finding that TRAF2 (but also several other members
of the TRAF family) interacts with the latent membrane protein 1 (LMP1) oncogene of the Epstein–
Barr virus (EBV) indicated early on that TRAF2 could play a role in the oncogenesis of B-cell
malignancies and EBV-associated non-keratinizing nasopharyngeal carcinoma (NPC). TRAF2 can
also act as an oncogene in solid tumors, e.g., in colon cancer by promoting Wnt/β-catenin signaling.
Moreover, tumor cell-expressed TRAF2 has been identified as a major factor-limiting cancer cell
killing by cytotoxic T-cells after immune checkpoint blockade. However, TRAF2 can also be context-
dependent as a tumor suppressor, presumably by virtue of its inhibitory effect on the alternative
NFκB pathway. For example, inactivating mutations of TRAF2 have been associated with tumor
development, e.g., in multiple myeloma and mantle cell lymphoma. In this review, we summarize
the various TRAF2-related signaling pathways and their relevance for the oncogenic and tumor
suppressive activities of TRAF2. Particularly, we discuss currently emerging concepts to target TRAF2
for therapeutic purposes.

Keywords: apoptosis; autophagy; B-cell lymphoma; cellular inhibitor of apoptosis 1/2 (cIAP1/2);
necroptosis; nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells (NFκB); tumor necrosis
factor (TNF); TNF receptor associated factor 2 (TRAF2)
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1. Introduction

In pioneering work in the mid-1990s, the group of D. Goeddel identified four proteins
recruiting to tumor necrosis factor (TNF) receptor 2 (TNFR2). Two of these proteins
indicated homology to the just previously identified baculovirus-encoded inhibitor of
apoptosis proteins and were accordingly named cellular inhibitor of apoptosis 1 (cIAP1)
and -2 (cIAP2) [1]. The two other proteins demonstrated no homologies to proteins known
at that time, but shared a conserved C-terminal stretch of app. 200 aa. The two proteins
have been named TNF receptor-associated factor-1 (TRAF1) and -2 (TRAF2) and the C-
terminal homology domain accordingly as TRAF domain [2]. A C-terminal TRAF domain
has also been discovered in four other human proteins, named TRAF3 to TRAF6, and has
been subdivided in the compact coiled-coil TRAF-N domain mediating trimerization, and
the more loosely packed TRAF-C domain, which in the case of TRAF2 mediates binding to
a short aa motif in the cytoplasmic domain of TNFR2 (Figure 1). With exception of TRAF1,
the TRAF proteins also share a common N-terminal domain architecture composed of an
interesting new gene (RING) domain followed by 5-7 zinc fingers. While activated TNFR2
directly binds TRAF2 and TRAF1, cIAP1 and cIAP2 are indirectly recruited to TNFR2 by
help of TRAF2. In fact, eventually TRAF2 seems to fulfill many of its functions in concert
with these proteins.

Figure 1. Domain architecture of TRAF2. A sequence of 501 amino acids prescribes the molecular
structure of full-length TRAF2. It is essentially composed of a RING domain (aa 32–79), five zinc
fingers (Zf) and a TRAF domain comprising a coiled-coil N-TRAF domain with a cIAP1/2 binding
site (aa 283–294) [3,4] and a C-TRAF domain. Phosphorylation and ubiquitination sites of known
relevance for TRAF2 function are indicated and comprise serine S11 and S55 [5–7], lysine K31 and
K63 [8,9], and threonine T117 [10].

Early after its identification as part of the TNFR2 signaling complex, it has been
recognized that TRAF2 is also recruited to the majority of other receptors of the TNF
receptor superfamily (TNFRSF) including nearly all TNFRSF receptors (TNFRs) with a
TRAF binding motif (direct TRAF2 binding, see Table 1) and all TNFRs with a death
domain (DD) (indirect TRAF2 binding). Later, it also became evident that TRAF2 acts
beyond the TNFRSF in the signal transduction by other immune regulatory receptors,
including members of the toll-like receptor (TLR) family, the type I interferon receptor
and the retinoic acid-inducible gene I (RIG I)-like receptor (RLR) family of intracellular
pattern recognition receptors recognizing viral RNA (Table 1). Finally, yet importantly,
TRAF2 has been implicated in autophagy and endoplasmic reticulum (ER) stress signaling.
TRAF2 fulfills its functions primarily by acting as a scaffold, which in a signal-inducible
or constitutive manner brings together E3 ligases, their substrates, and also a variety of
regulatory factors, including deubiquitinating enzymes (Table 1).

The most important TRAF2-interacting E3 ligases are cIAP1 and cIAP2. Prominent
substrates of the TRAF2-cIAP1/2 complex are kinases, such as transforming growth
factor-β (TGF-β)-activated kinase 1 (TAK1), NFκB-inducing kinase (NIK), apoptosis signal-
regulating kinase 1 (ASK1), and receptor-interacting kinase 1(RIPK1), which regulate NFκB
signaling and induction of programmed cell death. Intriguingly, in some special cases
TRAF2 may also act itself as an E3 ligase by help of its RING domain, such as in context of
TRAIL death receptor signaling where TRAF2 K48-ubiquitinates caspase-8 [114,115]. Like
most other TRAF family members, TRAF2 is involved in the engagement of signaling path-
ways resulting in the activation of transcription factors, such as the two NFκB pathways,
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various mitogen-activated protein (MAP) kinase cascades, and the MAVS/TBK1/IRF3
pathway. However, TRAF2 can also affect cellular functions independent from transcription-
stimulating pathways by triggering phosphorylation and/or ubiquitination of proteins,
thereby regulating their activity, stability, function, or localization. Examples therefore are
K48-ubiquitiantion and proteasomal degradation of caspase-8, cRel, interferon regulatory
factor 5 (IRF5), and unc-51-like autophagy activating kinase 1 (ULK1) triggered alone by
TRAF2 (caspase-8) or by TRAF2 in concert with TRAF3 and cIAP1 and cIAP2 (cRel, IRF5,
ULK1) [114–117]. Further examples of “transcription”-independent TRAF2 activities are
the engagement of the Src homology 3 domain-containing guanine nucleotide exchange
factor (SGEF), leading to glioblastoma cell migration in response to Fn14 activation [94],
and K63-ubiquitination of dual-specificity tyrosine phosphorylation-regulated kinase 1A
(DYRK1A), promoting its translocation to vesicles to attenuate epidermal growth factor
receptor (EGFR) degradation [51] and its role in mitophagy [85,118,119].

Table 1. TRAF2 interacting proteins.

Protein Type of Protein Experimental Evidence Target Domain in TRAF Reference

TNFR2 TNFRSF THS, GST, endo Co-IP CTD [2]

LTβR TNFRSF endo Co-IP [11]

OX40 TNFRSF THS, Co-IP [12,13]

CD40 TNFRSF THS, GST, endo Co-IP [14]

CD27 TNFRSF THS, Co-IP [15–17]

CD30 TNFRSF THS, GST [18,19]

4-1BB TNFRSF THS, GST, endo Co-IP [12,20,21]

RANK TNFRSF GST, Co-IP [22–24]

Fn14 TNFRSF GST [25]

TACI TNFRSF THS, Co-IP [26]

HVEM TNFRSF GST [27]

NGFR TNFRSF Co-IP [28]

BCMA TNFRSF Co-IP [29]

GITR TNFRSF THS, endo Co-IP [30,31]

TROY TNFRSF Co-IP [32]

IL15R receptor Co-IP [33]

IFNαR1 receptor GST, Co-IP [34]

LMP1 viral oncogen GST, Co-IP [35,36]

A20 DUB, E3 ligase THS, Co-IP [37]

AIP1 Ras-GAP Co-IP RING/zinc [38]

AIMP2 adaptor THS, GST, endo Co-IP [39]

APPL1 adaptor GST, endo Co-IP [40]

AWP1 adaptor THS, Co-IP TD [41]

Bcl10 adaptor THS, Co-IP [42]

Beclin autophagy GST, endo Co-IP RING [43]

Caspase-2 caspase Endo Co-IP [44]

Caspase-12 caspase Co-IP NTD [45]

β-catenin proto-oncogene Co-IP, MST TD [46]
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Table 1. Cont.

Protein Type of Protein Experimental Evidence Target Domain in TRAF Reference

caveolin-1 plasma membrane protein endo Co-IP [47]

CHIP E3 ligase endo Co-IP [48]

cIAP1 E3 ligase THS, Co-IP NTD [1]

cIAP2 E3 ligase THS, Co-IP NTD [1]

CYLD DUB THS, Co-IP TD [49]

DUSP14 phosphatase Co-IP [50]

DYRK1A kinase endo Co-IP TD [51]

EGFR kinase endo Co-IP [52]

EI24 E3 ligase Co-IP [53]

eIF4GI scaffold THS, GST, Co-IP TD [54]

Eva1 adhesion protein endo Co-IP [55]

FAK kinase endo Co-IP [56]

Filamin actin binder Co-IP RZ [57]

GCKR kinase endo Co-IP TD [58]

Gpx1 peroxidase Co-IP TD [59]

GRA15 virulence factor Co-IP [60]

GSTP1-1 gluthation transferase Co-IP [61]

HGK Kinase Co-IP [62]

Hoxa1 transcription factor THS, Co-IP [63]

HSP70 Chaperon Co-IP TD [64]

IKK1 kinase GST, endo Co-IP RING [65]

IKK2 kinase GST, endo Co-IP RING [65]

IKKe kinase Co-IP [66]

IRE1 kinase, nuclease endo Co-IP [67]

I-TRAF adaptor THS, GST, Co-IP TD [68]

JIK kinase Co-IP [45]

KRC DNA binding endo Co-IP TD [69]

LGP2 RLR Co-IP CTD [70]

LILRB3 receptor endo Co-IP [71]

LRPPRC RNA regulation Co-IP [72]

MAVS adaptor Co-IP CTD [73,74]

MEKK1 kinase Co-IP [75]

MIZ transcription factor GST, endo Co-IP RING [76]

MLK3 kinase Co-IP NTD [77,78]

MST1 kinase endo Co-IP Zn fingers [79]

TRIM37 E3 ligase Co-IP TD [80]

Nef virulence factor GST [81,82]

HCV core virulence factor GST [81]

NIP45 transcription factor
associated endo Co-IP [83]

NSP1 virulence factor Co-IP [84]
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Table 1. Cont.

Protein Type of Protein Experimental Evidence Target Domain in TRAF Reference
Nur77 nuclear receptor Co-IP RING, NTD [85]

parkin E3 ligase endo Co-IP [86]

proPTPRN2 phosphatase Co-IP RING [87]

RET/PTC3 oncogenic RTK fusion
protein Co-IP [88]

RIPK1 kinase Co-IP NTD, CTD [89]

RIP2 kinase Co-IP [90]

RNAseT2 ribonuclease Co-IP [91]

RSK2 kinase Co-IP [92]

SHP-1 phosphatase Co-IP [93]

SGEF GEF Co-IP TD [94]

Sharpin scaffold Co-IP [95]

SIAH-2 E3 ligase GST [96]

SMAD4 signaling protein THS, endo Co-IP [97]

SMURF-2 E3 ligase THS, Co-IP [98]

SMYD2 methyltransferase Co-IP, SPR [99]

SphK1 kinase GST, Co-IP [100]

T2BP / TIFA adaptor THS, Co-IP TD [101]

TCPTP phosphatase endo Co-IP [102]

TPL2/COT1 kinase Co-IP [103]

TAK1 kinase Co-IP [104]

TBK1 kinase endo Co-IP NTD [74]

TNIK kinase Co-IP TD [105]

TRADD adaptor THS, Co-IP CTD [89,106]

TRAF1 adaptor THS, Co-IP NTD, CTD [2,89]

TRAF2 E3 ligase, adaptor THS, Co-IP CTD [2,89]

TRAF3 E3 ligase, adaptor Co-IP [107]

TRAF4 E3 ligase, adaptor endo Co-IP [108]

TRIF adaptor THS, Co-IP [109]

UBC13 E2 endo Co-IP RING [76]

USP4 DUB Co-IP [110]

USP7 DUB GST [80]

USP17 DUB Co-IP [107]

UXT-V1 transcriptional cofactor endo Co-IP [111]

VP4 rotavirus capsid protein THS, Co-IP [112]

WDR62 scaffold Co-IP [113]

Abbreviations: Co-IP, co-immunoprecipitation of transiently expressed proteins; CTD, C-TRAF domain; endo
Co-IP, co-immunoprecipitation of endogenous proteins; DUB, de-ubiquitinase; GST, glutathione-S transferase
pull-down assay; NTD, N-TRAF domain; RING domain; TD, TRAF domain; THS, two-hybrid system; zinc, zinc
finger domain.

The most important TRAF2-interacting E3 ligases are cIAP1 and cIAP2. Prominent
substrates of the TRAF2-cIAP1/2 complex are kinases, such as transforming growth
factor-β (TGF-β)-activated kinase 1 (TAK1), NFκB-inducing kinase (NIK), apoptosis signal-
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regulating kinase 1 (ASK1), and receptor-interacting kinase 1(RIPK1), which regulate NFκB
signaling and induction of programmed cell death. Intriguingly, in some special cases
TRAF2 may also act itself as an E3 ligase by help of its RING domain, such as in context of
TRAIL death receptor signaling where TRAF2 K48-ubiquitinates caspase-8 [114,115]. Like
most other TRAF family members, TRAF2 is involved in the engagement of signaling path-
ways resulting in the activation of transcription factors, such as the two NFκB pathways,
various mitogen-activated protein (MAP) kinase cascades, and the MAVS/TBK1/IRF3
pathway. However, TRAF2 can also affect cellular functions independent from transcription-
stimulating pathways by triggering phosphorylation and/or ubiquitination of proteins,
thereby regulating their activity, stability, function, or localization. Examples therefore are
K48-ubiquitiantion and proteasomal degradation of caspase-8, cRel, interferon regulatory
factor 5 (IRF5), and unc-51-like autophagy activating kinase 1 (ULK1) triggered alone by
TRAF2 (caspase-8) or by TRAF2 in concert with TRAF3 and cIAP1 and cIAP2 (cRel, IRF5,
ULK1) [114–117]. Further examples of “transcription”-independent TRAF2 activities are
the engagement of the Src homology 3 domain-containing guanine nucleotide exchange
factor (SGEF), leading to glioblastoma cell migration in response to Fn14 activation [94],
and K63-ubiquitination of dual-specificity tyrosine phosphorylation-regulated kinase 1A
(DYRK1A), promoting its translocation to vesicles to attenuate epidermal growth factor
receptor (EGFR) degradation [51] and its role in mitophagy [85,118,119].

2. Role of TRAF2 in Immune Signaling Pathways
2.1. TRAF2 and Activation of the Classical NFκB Pathway

Nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) are homo-
and heterodimeric transcription factors formed of the five NFκB proteins p65/RelA,
RelB, cRel, p50, and p52, of which the latter two are initially expressed in the form of
precursor molecules (p100 and p105). NFκB dimers are held in check by cytoplasmic
retention [120,121] resulting from the fact that the nuclear localization sequence (NLS) of
NFκBs is blocked in non-stimulated cells by either of two related mechanisms. First, by
forming a ternary complex with ankyrin-repeat containing inhibitor of κB proteins (IκBs),
e.g., IκBα, or second, by incomplete maturation of the precursor proteins p100 and p105
containing a C-terminal autoinhibitory ankyrin-repeat domain. There are two distinct
signaling mechanisms that relieve the NLS of NFκBs from the inhibitory interaction with
ankyrin repeats: firstly, the IκB kinase (IKK) complex-induced degradation of IκB pro-
teins and the IKK-induced processing of p105 (classcial or canonical NFκB pathway) and
secondly, the NIK-induced processing of p100 to p52 (alternative or non-canonical NFκB
pathway) (Figure 2).

A major function of TRAF2 is to transduce activating signals from cell surface recep-
tors, particularly TNFRs, to the IKK complex in the classical NFκB pathway. The latter
phosphorylates IκBα and related IκBs to trigger their proteasomal degradation, the key
event in activation of the classical NFκB pathway (Figure 2). To fulfill its tasks in classical
NFκB signaling, TRAF2 directly or indirectly recruits to the liganded receptor molecules
along with the TRAF2-interacting E3 ligases cIAP1 and cIAP2. This results in the activation
of the latter. The cIAPs in turn K63 ubiquitinate TRAF2 and other proteins present in the
receptor signaling complexes, and thereby create docking sites facilitating the recruitment
of the linear ubiquitin assembly complex (LUBAC). The latter catalyzes the formation of
linear M1-linked ubiquitin chains, creating binding sites for the NFκB essential modulator
(NEMO), a subunit of the IKK complex, and the TAK1-binding-protein-2 (TAB2) subunit
of the IKK-engaging TAB2-TAK1 complex. Worth mentioning, TRAF2 also triggers the
recruitment of regulatory proteins, such as deubiquitinases, that terminate/resolve the
ubiquitination events leading to IKK activation. For example, the cylindromatosis tumor
suppressor (Cyld) directly interacts with TRAF2 and removes K63-linked polyubiquitin
chains from TRAF2, resulting in reduced NFκB signaling and enhanced apoptosis but also
in the maintenance of hematopoietic stem cell dormancy by inhibition of p38 MAP kinase
signaling [49,122–124]. Likewise, A20 [also named TNFα-induced protein 3 (TNFAIP3)]
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acts as a K63 deubiquitinase, e.g., for RIPK1, NEMO/IKKγ, or caspase-8, but also, alone or
in concert with other E3 ligases, as a K48 E3 ligase [125]. In accordance with the function of
its major substrates and in view of the fact that A20 itself is a NFκB target, A20 has been
implicated in the downregulation of the classical NFκB pathway and the control of cell
death [125].

Figure 2. TRAF2 and the cIAPs in receptor-induced activation of the classical and alternative NFκB
pathway. The activities of TRAF2 and the cIAPs have opposing qualities in the classical (left panel)
and alternative (right panel) NFκB signaling pathway. In the classical NFκB pathway TRAF2 and the
cIAPs enable signaling, while in the alternative NFκB pathway they act as inhibitors. Importantly,
TNFR-induced recruitment of TRAF2 and the cIAPs, which triggers the classical NFκB pathway, is
linked with an “inhibitory” relocation of these molecules away from their cytosolic substrate NIK in
the alternative NFκB pathway. Therefore, TNFRs eventually stimulate both NFκB signaling pathways
despite the opposing quality they have in these pathways. For more details, refer to main text.

The generalized mechanisms of receptor-induced TRAF2-mediated activation of the
IKK complex described above have been primarily investigated for TNFR1, but there is
evidence that similar or related mechanisms also apply for other receptors. For example,
cIAPs and/or the LUBAC have also been implicated in NFκB activation by other TRAF2-
utilizing receptors, such as CD40, TNFR2, Fn14, and the TRAIL death receptors [126–129].
Intriguingly, the NFκB-inhibitory effects of dominant-negative TRAF2 mutants on TNFR
signaling reported in early years is often more pronounced than the inhibitory effect
observed in receptor stimulated TRAF2-deficient cells. A possible explanation for this is
that other TRAF proteins, which use overlapping binding sites to TRAF2 in the considered
TNFR type, act redundantly with TRAF2 and/or fulfill functions distinct of those of TRAF2.
In fact, there is evidence that TRAF2 and TRAF5 act redundantly in TNF-induced classical
NFκB signaling and that TRAF2, in cooperation with TRAF1 and TRAF6, redundantly
signal CD40-induced NFκB activation [130,131]. Furthermore, it is well-established that
TRAF2 cooperates with TRAF3 in the control of alternative NFκB signaling (see 2.2.). In
general, however, redundancy and/or cooperativity between TRAF2 and other TRAF
proteins have been limitedly investigated so far.

2.2. TRAF2 and Activation of the Alternative NFκB Pathway

TRAF2 and the cIAPs play a central role in the control of the alternative NFκB signaling
pathway. In the cytoplasm TRAF2 interacts via TRAF3 with NIK which is constitutively
active and enables cIAP1/2-mediated K48-ubiquitination of the latter, resulting in its
proteasomal degradation [132,133]. NIK activates IKKαwhich in turn phosphorylates p100,
triggering its proteasomal processing to p52. Therefore, TRAF2, TRAF3, and the cIAPs
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finally inhibit the alternative NFκB pathway. Thus, in the classical NFκB pathway, TRAF2
and the cIAPs trigger the degradation of pathway inhibitory ankyrin-repeat proteins
or ankyrin-repeat domains (IκBs, ankyrin domain of p105), whereas in the alternative
NFκB pathway, the same proteins prevent, together with TRAF3, the degradation of a
pathway inhibitory ankyrin-repeat domain (Figure 2). The alternative NFκB pathway is
typically engaged by members of the TNFRSF, such as Fn14, CD40, TNFR2, and the LTβR.
In view of the opposing effects of TRAF2 and the cIAPs on ankyrin-repeat containing
NFκB-inhibitory proteins/protein domains in the two NFκB signaling pathways, it first
seems counter-intuitive that activation of TNFRs results in the concomitant activation of
both pathways. However, this apparent contradiction is resolved when two points are
considered: i) that the amount of cell-expressed TRAF2 and cIAP1/2 molecules is limited
and ii) that TRAF2 and the cIAPs, along with TRAF3, act constitutively in the cytoplasm of
unstimulated cells in context of the alternative NFκB pathway but fulfill their role in the
classical NFκB pathway in an inducible manner in plasma membrane-associated receptor
signaling complexes. Ligand-induced recruitment of TRAF2 (and/or TRAF3) and the
cIAPs to plasma membrane-receptors is accordingly intimately linked to the depletion of
these molecules from the cytosol, resulting not only in the formation of classical NFκB-
stimulating receptor complexes but also in a reduction of the cytosolic available amount of
TRAF2-cIAP1/2 complexes that can be recruited via TRAF3 to NIK to inhibit the alternative
NFκB pathway. It is worth mentioning that the sole depletion of TRAF2, TRAF3, and the
cIAPs from the cytoplasm is sufficient to engage the alternative NFκB pathway [132–135]
but that this mechanism can be enhanced in its effects by receptor-associated degradation
of the TRAFs and the cIAPs. Taken together, despite the opposing quality of the activity
of TRAF2 and the cIAPs on the two NFκB signaling pathways, ligand-induced receptor-
TRAF2 interaction eventually results in concomitant activation of both pathways.

2.3. TRAF2 in RLR Signaling

In RNA virus-infected cells cytosolic double-stranded (ds) RNA is recognized by RIG1
and/or the RIG1-like receptor (RLR) melanoma differentiation-associated 5 (MDA5) and
laboratory of genetics and physiology 2 (LGP2) [136]. Binding of dsRNA by RIG1 and
MDA5 enables these proteins to convert from an autoinhibited form to a tetrameric “open
form” which, assisted by the E3 ligase RIPLET and K63-polyubiquitination, assembles into
filaments [137–139] (Figure 3).

The RLR filaments in turn bind to mitochondria antiviral signaling protein (MAVS;
also named VISA, IPS-1, or Cardif) and nucleate the formation MAVS filaments [140]. The
latter in turn act as signaling platforms, like aggregated TNFRs, to recruit TRAF2, TRAF3,
TRAF5, and TRAF6 along with IRF3 and the TRAF-interacting IKK- and TBK1/IKKε
complexes to engage downstream signaling pathways, namely the classical NFκB pathway
and the TBK1/IRF3/IFNβ pathway [74,141,142]. TRAF2 and TRAF5 on the one side and
TRAF3 and TRAF6 on the other side bind to different binding motifs in MAVS and act
redundantly to activate a strong innate immune response [141]. While the RING domains of
TRAF2 and the other TRAFs were found to be important to mediate NEMO ubiquitination
and IKK activation in context of RLR signaling, they appeared dispensable for activation of
the TBK1-IRF3 axis [74]. In contrast to receptors of the TNFRSF, RIG1 and MDA5 not only
stimulate the activation of NFκB transcription factors by help of the TRAF proteins but also
engage IRF3 and IRF7. The reasons for the different signaling qualities of TRAF2 and the
other TRAFs in TNFR versus RLR signaling are still unclear. It is worth mentioning that
the RLR LGP2 associates with the C-terminus of TRAF2, TRAF3, TRAF5, and TRAF6 and
acts as a pan-inhibitor of stimuli using these TRAF proteins for activation of the classical
NFκB pathway [70].
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Figure 3. TRAF2 in RIG1 signaling. Binding of dsRNA by RIG1, results in conformational change,
K63-ubiquitination, and filament formation. RIG1 filaments in turn instruct filament formation of
mitochondria-associated MAVS. The MAVS filaments enable recruitment of TRAF2 and IRF3, but also
other TRAF proteins not indicated here. TRAF2 and the other TRAF proteins mediate the recruitment
of the IKK complex and TANK-binding kinase 1 (TBK1)/IKKε enabling activation of the classical
NFκB pathway and IRF3 by the mechanisms described in detail in the text. Please note, TRAF2 acts
independently here from cIAP1 and cIAP2 [74]. For more details refer to main text.

3. TRAF2 in the Control and Integration of Cell Death Programs, ER Stress and Autophagy
3.1. TRAF2 and Programmed Cell Death

Soon after it was discovered that TRAF2 not only interacts with TNFR2 but is also
recruited to the death domain (DD)-containing TNFR TNFR1 by virtue of the death domain-
containing adapter protein TRADD [106,143], it became evident that TRAF2 restricts the
ability of TNFR1 to induce caspase-8 activation and apoptosis [144–146]. Notably, TNFR2
and other TRAF2-interacting TNFRs, particularly Fn14, not only engage the alternative
NFκB pathway but also sensitize for TNFR1-induced cell death by lowering the TNFR1-
accessible pool of TRAF2 and cIAPs [134,135,145,147–152]. Intriguingly, TRAF2 is not
only recruited to the TNFR1 signaling complex within seconds to few minutes but can
also be part of TNFR1-induced delayed formed cytosolic complexes enabling caspase-8
activation and apoptosis (complex IIa) or RIPK1 phosphorylation and necroptosis (complex
IIb). Inhibition or depletion of cIAPs largely mirrors the effects of TRAF2 depletion on
TNFR1 signaling. Therefore, it is tempting to speculate that a significant part of the effects
of TRAF2 on TNFR1 signaling is based on its ability to recruit the cIAPs to the TNFR1
signaling complex and to the cytosolic caspase-8/RIPK1-containing complexes IIa and IIb.
While TRAF2 molecules associated with TNFR1 seem to be sufficient to fulfill the function
of TRAF2 as a transducer of TNFR1-induced classical NFκB signaling, TRAF2 associated
with complex IIa and IIb appears to act as an inhibitor of caspase-8 and RIPK1 kinase
activation. The NFκB-stimulating activity of TNFR1 signaling complex-associated TRAF2
has been attributed to the K63-ubiquitination of several TNFR1 signaling complex proteins,
particularly RIPK1, by the TRAF2-associated cIAPs enabling efficient recruitment of the
LUBAC, the TAB2-TAK1 complex and the IKK complex (see also Section 2.1. above).

Initially, the antiapoptotic activity of TRAF2 was attributed to its relevance for ac-
tivation of the classical NFκB pathway which results in upregulation of various anti-
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apoptotic proteins, including cFLIP, cIAP2, B-cell lymphoma 2 (Bcl-2) and Bcl-xL, and
many more [144,145,153–155]. However, a key observation suggested that TRAF2 has
antiapoptotic activity, at least in TNFR1 signaling, independent from induction of NFκB-
regulated antiapoptotic factors. When cells were primed for a few hours via TNFR2,
TRAF2-associated NFκB signaling-promoting functions in the TNFR1 signaling complex,
such as RIPK1 ubiquitination and IKK recruitment, were severely affected [151]. In con-
trast, when TNFR1 and TNFR2 are costimulated, TNFR2-induced depletion of TRAF2
which requires 1-3 h to become apparently sensitized for TNFR1-induced apoptosis oc-
curring with similar slow kinetics but fails now to inhibit the activity and assembly of
the rapidly formed classical NFκB-stimulating TNFR1 signaling complex [134,151]. How
TRAF2 inhibits TNFR1-induced caspase-8 maturation, which takes place in complex IIa in
the latter NFκB-independent scenario, is not fully understood. A part of the explanation
could be that TRAF2 K48-ubiquitinates caspase-8 to promote proteasomal degradation
of the p43 and p18 fragments of caspase-8. These fragments are generated during death
receptor-induced processing of procaspase-8 to mature heterotetrameric caspase-8, and
their TRAF2-mediated degradation has been described in context of TRAIL death recep-
tor signaling as a way to downregulate TRAIL sensitivity [114,115]. Worth mentioning,
the E3 ligases cIAP1 and cIAP2 are dispensable for TRAF2-mediated ubiquitination of
caspase-8 and instead it seems that TRAF2 itself acts here as an E3 ligase by virtue of
its RING domain [114]. Death receptor-induced caspase-8 activation normally inhibits
DR-induced necroptosis by cleavage of RIPK1 (and possibly other caspase-8 substrates)
so that there is no induction of necroptotic cell death [156]. However, when caspase-8 is
inhibited, e.g., by drugs or pathogen-encoded proteins, this strongly proinflammatory form
of programmed cell death occurs. Interestingly, although TRAF2 acts as an inhibitor of the
necroptosis inhibitor caspase-8 as just described, it has been discovered that TRAF2 also
protects from DR-induced necroptosis [157,158]. Thus, it appears that the antinecroptotic
activity of TRAF2 in DR signaling overrides its potential pronecroptotic activity resulting
from caspase-8 inhibition. The antinecroptotic activity has been again traced back to K63
ubiquitination of RIPK1, however, yet in context of complex IIa and/or the RIPK1-RIPK3
necrosome. Sequestration of TRAF2 to liganded TRAF-interacting TNFRs, such as Fn14,
consequently results in enhancement of death receptor- and TLR3-induced necroptosis,
too [157,159]. The in vivo relevance of the cell death-sensitizing activity of TRAF2/cIAP
sequestration by TRAF2-interacting TNFRs is poorly understood. Animal studies suggest
that this mechanism is responsible for the high sensitivity of intestinal epithelial cells for
TNF-induced killing but could also be operative in the cell death occurring after acute
kidney injury or to pathogen-induced hyperinflammation in patients suffering on X-linked
inhibitor of apoptosis (XIAP) deficiency [160–163]. Antiapoptotic activities of TRAF2 have
also been described in scenarios beyond death receptor signaling, for example in UV- and
oxidative stress-induced apoptosis [155,164].

Apoptosis induction by death receptors but also by drugs or other stressors of cellular
homeostasis (see also below Section 3.2) can imply generation of reactive oxygen species
(ROS) and sustained activation of the cJun N-terminal kinase (JNK) pathway as an enhanc-
ing or even essential mechanism [165]. Many of the triggers of apoptotic JNK signaling
engage the JNK pathway by TRAF2-dependent activation of the MAP3K apoptosis signal-
regulating kinase 1 (ASK1) (e.g., [166–169]). The latter is kept inactive in cells by binding to
thioredoxin (Trx). ROS formation, e.g., in response to TNF, results in dissociation of the
ASK1-Trx complex giving TRAF2 access to ASK1 [170]. The central role of the TRAF2-ASK1
interaction for ASK1-driven JNK signaling is also reflected by the fact that the TRAF2-ASK1
interaction is controlled/modulated by various proteins, such as ASK1-interacting protein
1 (AIP1), which enhances TRAF2-ASK1 complex formation, calcium and integrin-binding
protein 1 (CIB1), which interferes with TRAF2-ASK1 interaction [171] and the protein
arginine methyltransferases-1 (PRMT1), which modifies ASK1 and stabilizes its association
with Trx [172]. Worth mentioning, TRAF2 has also been found to bind and stimulate the
mammalian ste20-like kinase 1 (MST1) which is also activated by reactive oxygen species
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and stimulate apoptotic JNK signaling [79,173]. Moreover, TRAF2-MST1 interaction and
MST1 activation occur downstream of the ROS-induced dissociation of an inactive Trx-
MST1 complex [79]. However, whether and how TRAF2, MST1, and ASK1 act together is
currently unclear.

3.2. TRAF2 in ER Stress and Autophagy

The unfolded protein response (UPR) occurs in reaction to ER stress due to accumu-
lation of misfolded proteins. If ER stress is moderate the UPR protect cells by triggering
the production of factors (e.g., chaperones) helping to restore fidelity of protein folding, to
maintain general functionality and survival. In situations of chronic and strong ER stress,
however, the UPR can also trigger cell death programs [174,175]. There are three major
sensor proteins for ER stress: (i) activating transcription factor-6 (ATF6), a ER residing
transmembrane protein with a cytosolic transcription factor domain which can be released
by proteolytic processing, (ii) protein kinase RNA-like ER kinase (PERK), which reduces
general protein synthesis by phosphorylation of eukaryotic initiation factor 2alpha (eIF2α)
but also promotes enhanced translation of selected mRNAs including that encoding the
transcription factor ATF4 and (iii) the bifunctional inositol-requiring enzyme 1alpha [IRE1α,
also named ER to nucleus signaling 1 (ERN1)] which has serine/threonine-protein kinase
and RNAse activity. Upon sensing ER stress by yet poorly understood mechanisms (dissoci-
ation from the chaperone GRP-78/BiP and/or direct binding of misfolded proteins), IRE1α
dimerizes and becomes activated by trans-autophosphorylation. This stimulates the RNAse
activity of IRE1α and enables the recruitment of TRAF2 [174,176] (Figure 4). With the help
of its RNAse activity, IRE1α splices out in a spliceosome-independent manner a small
intron from the mRNA of the transcription factor XBP1, eventually resulting in a switch
from the production of an inactive “unspliced” form (XBP1u) to an active transcription
factor (XBP1s) but also cleaves various RNAs resulting in IRE1-dependent decay of mRNA
(RIDD) [177]. Interaction of TRAF2 with phosphorylated dimerized IRE1α leads to the
recruitment and activation of ASK1 and stimulation of MAP kinase signaling pathways
resulting in the engagement of p38, extracellular-regulated kinase (ERK) but particularly
of JNKs (Figure 4). However, the IRE1α/TRAF2 dyad can also promote activation of the
classical NFκB pathway or cell death programs (Figure 4).

IRE1α-induced TRAF2-mediated NFκB activation involves K63-ubiquitination of
RIPK1 [178]. Furthermore, it has been discovered that the IRE1α/TRAF2/ASK1 complex
recruits TRADD and FADD in response to ER stress [179]. The recruitment of these DD-
containing proteins resembles the situation in death receptor-signaling but this similarity
has yet not evaluated in molecular detail. In an early phase, IRE1α/TRAF2-mediated
JNK signaling contributes to cell survival by inducing transcription of cIAP1, cIAP2, and
xIAP [180]. Sustained JNK signaling, however, can then become proapoptotic by activation
of the proapoptotic Bcl-2 family members BIM and BID and inhibition of antiapoptotic
Bcl-2 family members, such as Bcl-2, Bcl-xL and MCL1 [174]. It is worth mentioning that
the proapoptotic IRE1α/TRAF2/ASK1/JNK axis might cooperate with the PERK/ATF4-
dependent induction of TRAIL death receptors [174,181] and/or the IRE1α/TRAF2/IKK-
induced production of TNF [182]. TRAF2-deficient MEFs are more susceptible for ER stress-
induced apoptosis than wild-type MEFs [183] but whether this is due to the role of TRAF2
in ER stress/IRE1α signaling or rather reflect defects in other TRAF2-dependent activities
affecting the general apoptosis sensitivity of cells is unclear. The IRE1α/TRAF2/ASK1/JNK
axis is also connected with autophagy as discussed below.

Autophagy, which occurs in various forms, such as macroautophagy, microautophagy,
chaperone-mediated autophagy, or selective autophagy for certain proteins, is a cellular
housekeeping activity to purge intracellular “waste”, e.g., protein aggregates, damaged
organelles and intracellular pathogens, but is also important for maintenance of plasma
membrane integrity [184–187]. In view of these activities, it is not surprising that steady-
state autophagy is increased when cellular homeostasis is disturbed, e.g., by nutrient
deficiency, genomic instability or infection, but also by ER stress and cell death programs.
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Since TRAF2 plays a role in IRE1α-signaling, regulation of cell death and the NFκB sys-
tem, it can also be of relevance for autophagy. Indeed, TRAF2 and TRAF2-associated
proteins have been implicated in several ways in the crosstalk between autophagy, ER
stress, cell death and inflammation, particularly in context of cancer development and
cancer treatment.

Figure 4. TRAF2 in IER1 signaling. After ER stress-induced dimerization IREα triggers production
of the transcription factor XBP1 by its endonuclease activity engages splicing and recruits TRAF2 to
trigger ASK1/JNK signaling but also, by still poorly studied mechanisms, classical NFκB signaling
and apoptosis. The IRE1α/TRAF2/ASK/JNK axis is also connected with autophagy by the JNK-
mediated phosphorylation of the Beclin inhibitory Bcl-2 protein. Interestingly, TRAF2 in concert with
cIAP1/2 can further contribute to autophagy by K63-ubiquitination of Beclin. For more details refer
to main text.

Bcl-2 and Bcl-xL attenuate autophagy by binding and inhibition of Beclin-1, thereby
hindering the latter to stimulate the ULK1 complex, which promotes autophagosome
initiating vesicle nucleation [188]. Accordingly, BH3-only proteins competing with Beclin
for Bcl-2 binding and JNK-mediated phosphorylation of Bcl-2, resulting in reduced Beclin-
1/Bcl-2 interaction, which are able to enhance autophagy [189,190]. Therefore, apoptosis
inducers engaging these mechanisms can have a stimulatory effect on autophagy that
typically results in reduced cell death [189]. For example, apoptosis-reducing TRAF2- and
JNK-mediated stimulation of autophagy have been demonstrated for TRAIL and the IRE1α
inhibitor protein Bax inhibitor-1 [191–193]. TRAF2 cannot only promote Beclin activation
due to its role in JNK stimulating signaling pathways but in concert with cIAP1 and cIAP2
and/or sphingosin kinase 1, and also directly by K63-polyubiquitination of Beclin [43,194].
Worth mentioning, JNK can also inhibit context-dependent autophagy flux. For example,
nitrobenzoxadiazole derivatives which antagonizes sequestration of TRAF2 by glutathione
transferase and, which are under consideration as anticancer drugs, impair clearance of
autophagosomes in a JNK-dependent manner [195].

TRAF2 and cIAP1 have also been found to mediate PTEN-induced kinase 1 (PINK1)/
Parkin-independent mitophagy in response to the anti-parasitic lactone ivermectin by
promoting ubiquitination and fragmentation of mitochondria [119]. Similarly, the anti-
inflammatory triterpene celastrol binds to Nur77, resulting in enhanced TRAF2-Nur77
interaction and eventually mitophagy [85]. In contrast, to ivermectin-induced TRAF2-
dependent mitophagy and celastrol-induced TRAF2-Nur77-mediated mitophagy seems
to involve PINK1 and Parkin [85]. Indeed, it has been discovered i) that TRAF2 inter-
acts with Parkin in mitophagy induced by the mitochondria-depolarizing compound
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carbonyl cyanide m-chlorophenyl hydrazine and ii) that TRAF2 partly substitutes Parkin
as an E3 ligase in this scenario [118]. Therefore, TRAF2 could contribute to mitophagy in
different ways.

4. TRAF2 and the NFκB System in Oncogenesis
4.1. TRAF2 in EBV-associated Oncogenesis

Soon after TRAF2 and TRAF1 were described the first time, there was evidence that
TRAF2 can also play a role in tumor biology. Both molecules, and later also TRAF3, TRAF5,
and TRAF6, were recognized as part of the plasma membrane-associated protein complex
instructed by the latent infection membrane protein 1 (LMP1) of Epstein-Barr virus (EBV,
human γ -herpesvirus 4) [35,36,196]. Several lymphoproliferative diseases, including ma-
lignant ones, are associated with EBV infection, such as Burkitt lymphoma and Hodgkin’s
lymphoma, but also non-lymphoid malignancies, particularly nasopharyngeal carcinoma
(NPC) and gastric cancer [197]. LMP1 is frequently found in EBV-associated cancers and
acts as an oncogene by stimulating various signaling pathways, including those resulting in
the activation of NFκB transcription factors and MAP kinases such as JNK, p38, and ERK. In
accordance with a central role of the NFκB system in EBV/LMP1-dependent oncogenesis,
genomic analysis of NPC revealed in LMP1-independent cases somatic aberrations result-
ing in constitutive NFκB activation [198]. TRAF2 in addition to TRAF1, TRAF3, TRAF5,
and TRAF6 recruit to a PXQXT/S motif in a plasma membrane-proximal domain of the
cytoplasmic tail of LMP1 [199–201]. This domain has been designated as transformation
effector site 1 (TES1) or C-terminal activation region 1 (CTAR1) and is needed, together
with a more C-terminally located domain called TES2/CTAR2, for transformation of B-
lymphocytes [202–204]. TES1/CTAR1 and TES2/CTAR2 cooperate in LMP1-induced TRAF
protein-mediated activation of NFκB transcription factors, JNK and p38 [130,203,204]). It is
worth mentioning that TES2/CTAR2 recruits TRADD and BS69 and that there is initial evi-
dence that these proteins in turn recruit TRAF2 and TRAF6 to the CTAR2, as well [203,204].
Studies in TRAF2-deficient B-cell lines failed to demonstrate a crucial role of TRAF2 in
LMP1 signaling [130,205] while there is clear evidence for the relevance of other TRAF
proteins, particularly TRAF3 and TRAF6, in this respect [201,205,206]. Likewise, there were
no effects of TRAF2-TRAF5 double deficiency on LMP1-induced nuclear translocation of
RelA in embryonal fibroblasts [206]. However, in TRAF2-deficient models there is already
considerable constitutive p100 processing, thus constitutive activation of the alternative
NFκB pathway. It is therefore challenging in these cell models to draw conclusions on the
relevance of the LMP1-TRAF2 interaction for LMP1-induced alternative NFκB signaling.

Since LMP1 aggregates in the plasma membrane and recruits TRAF molecules, it
obviously mimics in several, but not all, aspects the ligand-induced signaling complexes
of receptors of the TNFRSF. Indeed, activation of both NFκB signaling pathways and
JNKs in response to EBV infection has been attributed to LMP1 signaling via TRAF2
and TRAF1 (but also TRAF6), worth mentioning without the involvement cIAP1 and
cIAP2 [199,207–209]. LMP1-induced NFκB-mediated upregulation of A20 and TRAF1
and subsequent recruitment of these factors along with the LUBAC is another aspect
where LMP1 signaling resembles that of TRAF2-interacting TNFRs [36,209–211]. Indeed,
a genome-wide siRNA screen for proteins involved in LMP1-induced NFκB signaling
resulted in the identification of 155 proteins, of which 79 was similarly relevant for TNF-
induced NFκB activation [212]. With respect to its activities in B-cells and its ability
to recruit TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6, LMP1 largely mimics activated
CD40. The general similarities between the signaling complexes of LMP1 and TNFRs,
particularly CD40, however, should not hide the fact that there are clear differences. For
example, as mentioned above, LMP1 signaling was found to be normal in TRAF2-deficient
B-cell lines while CD40 signaling was reduced in the same cell lines and in B-cells of
mice with TRAF2-deficient B-cells [130,205,213]. Vice versa, CD40 singling was unaffected
in TRAF3-deficient B-cell lines while LMP1 signaling was strongly attenuated [130,205].
Furthermore, CD40, but not a CD40 chimera with the C-terminal cytosolic tail of LMP1,
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triggers TRAF2-dependent degradation of TRAF3 [214,215]. These differences have been
traced back to the higher efficiency with which CD40 recruits TRAF2 [216] and illustrate
that not only the ensemble of TRAF proteins interacting with a certain receptor determines
the signaling output but also the absolute and relative strengths of the receptor-TRAF
protein interactions.

LMP1 is not the only EBV protein interacting with TRAF2. The EBV protein Na, which
is crucially involved in the reactivation of EBV in latent infected cells leading to cell lysis,
also interacts with TRAF2 [217,218]. Na utilizes TRAF2 to engage JNK-dependent expres-
sion of lytic gene expression [218]. It is worth mentioning that Na overexpression, similar
to LMP1, also stimulates alternative but not classical NFκB signaling [218]. This again
emphasizes that TRAF2-dependent processes, here TRAF2-Na or LMP1-Na interaction
and TRAF2-dependent NIK degradation, might compete for TRAF2 resulting in hardly
predictable activities of TRAF2-dependent events.

4.2. TRAF2 and the Alternative NFκB Pathway in Multiple Myeloma and B-cell Lymphoma

Activation of the NFκB system has been recognized in a variety of tumor types,
however, whether this correlates with genetic mutations was poorly investigated for a long
time. Gene expression profiling data and functional studies revealed that development of
multiple myeloma (MM) is frequently associated with mutations resulting in enhanced
NFκB signaling particularly via the alternative NFκB pathway [219–222]. Most of these
mutations are found in the gene of TRAF3 but mutations negatively affecting expression
or function of TRAF2 were also frequently found defining TRAF2 (and TRAF3) in MM as
a tumor suppressor. Mouse models with deletion of cIAP1 and cIAP2 but not of either
protein alone makes the survival of B-cells independent of BaffR signaling and led to their
uncontrolled accumulation in vivo, resulting in B-cell lineage malignancies [223]. Thus,
as so often the activity of TRAF2 and TRAF3, here as tumor suppressors, require support
by cIAP1 and cIAP2. Furthermore, a Crispr/Cas9 genetic screen identified TRAF2 as
factor promoting antitumoral IMID activity via activation of alternative NFκB and ERK
signaling [224]. Recurrently occurring mutations in TRAF2 were also observed in mantle
cell lymphoma resistant against the B-cell receptor (BCR) signaling inhibitor ibrutinib [225].

Constitutive activation of the NFκB system is also a hallmark of diffuse large B-cell
lymphoma (DLBCL) particularly of the activated B-cell-like subtype (ABC-DLBCL). In
fact, somatic mutations in various genes encoding components of the NFκB system have
been identified including mutations in the TRAF2 gene [226,227]. These studies argue
for an antitumoral role of TRAF2 in DLBCL, presumably due to its ability to suppress
the alternative NFκB pathway. However, there is evidence that TRAF2 can also elicit
protumoral activity in DLBCL. Immunohistochemical analyses revealed strong expression
of TRAF2 in ABC-like DLBCL with significant association with reduced progression-free
survival [228]. Moreover, functional genetic screens in DLBCL cell lines identified TRAF2
as a factor conferring resistance against mucosa-associated lymphoid tissue lymphoma
translocation protein 1 (MALT1) inhibitor and the cereblon E3 ligase–modulating agent
CC-122 [229,230]. One of the somatic mutations in TRAF2 identified in DLBCL results in
enhanced TRAF2-dependent classical NFκB activation [226]. In view of the general rele-
vance of the NFκB system for the physiology and pathophysiology of B-cells, it is tempting
to speculate that the contradictory impact of TRAF2 on DLBCL reflects its opposing effects
on the classical and alternative NFκB pathway.

In accordance with the notion that the alternative NFκB pathway and therefore also
TRAF2 and TRAF3 act as tumor suppressors in B-cells, mice with B-cells deficient in TRAF3
expression demonstrate prolonged B-cell survival and develop spontaneous B-cell lym-
phoma at a higher age [231,232]. Likewise, transgenic mice expressing Bcl2 and a RING/Zn
finger domain-deletion mutant of TRAF2 develop lymphoma with high frequency [233].
Worth mentioning, the TRAF2 deletion mutant expressed in these mice causes degradation
of endogenous TRAF2 but also its own degradation, suggesting that it mimics TRAF2
deficiency [234].
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4.3. TRAF2 and Wnt/β-catenin Signaling

TRAF2 mutations have also been described for colon cancer [235]. Furthermore,
TRAF2 transcript expression is much higher in colorectal cancer compared to benign tissues
and is negatively associated with patient survival [46]. A dominant oncogenic driver of
colon cancer development is the Wnt/β-catenin signaling pathway culminating in the
formation and activation of a nuclear transcriptional complex containing β-catenin, T-cell
factor 4 (TCF4) and the TRAF2- and Nck-interacting kinase (TNIK). TRAF2 is not only able
to interact with the latter [105] but also binds β-catenin [46]. More important, TRAF2 binds
and stabilizes the β-catenin-TNIK-TCF4 complex thereby crucially contributing to TCF4
activation [46]. There is also initial evidence that TRAF2 favor colon cancer development
beyond its role in the Wnt/β-catenin. Peng at al [92] could indicate that TRAF2 contributes
to EGF-induced ribosomal S6 kinase 2 (RSK2) activation in colon cancer cell lines and Jia
et al. [72] reported recently that TRAF2 binds LRPPRC to ubiquitinate argininosuccinate
synthase 1 marking this enzyme for degradation resulting in reduced arginine synthesis
and the latter is required for tumor growth. Colon cancer is possibly not the only tumor
entity where the β-catenin-TRAF2 axis gains relevance. For chronic myelogenous leukemia
(CML), it has been reported that the TRAF2-interacting TNFRSF receptor CD27 stimulates
the oncogenic Wnt-β-catenin-TNIK-TCF4 pathway, resulting in enhanced proliferation of
leukemia stem cells and leukemia progression in a TRAF2-dependent manner [236].

4.4. TRAF2 in Breast Cancer and Other Solid Tumors

The NFκB system in general affects a variety of cancer relevant processes, and it is thus
not surprising that TRAF2 via its role in NFκB signaling not only contributes to malignant
transformation of lymphoma but also to development of solid cancers. For example, in
breast cancer there is ample evidence that NFκB signaling promotes tumor progression,
metastasis and resistance against chemo- and radiotherapy ([237,238]). Perhaps most
intriguing is the role of the TRAF2-NFκB connection in breast cancer cell transformation
by the breast cancer oncogene IκB kinase ε (IKKε; IKKi). IKKε expression is upregulated
in >30% of breast cancers and to an even higher frequency in glioblastoma (50%) and
pancreatic ductal adenocarcinoma (65%) [239]. IKKε stimulates the K63-ubiquitination
activity of the TRAF2-cIAP1 and TRAF2-cIAP2 complexes by phosphorylation of serine
11 on TRAF2 resulting in NFκB activation and various protumoral effects in vitro and
in vivo, such as increased cell proliferation, anchorage-independent colony formation, and
enhanced tumor formation [66,240]. Protumoral TRAF2 activity in breast carcinoma is
also evident from xenogeneic tumor models with human MDA-MB-231 breast cancer cell
variants overexpressing TRAF2, which indicated enhanced orthotopic tumor growth in
mice after injection into the mammary fat pad and increased skeletal tumors after intra-
tibial application [241]. Interestingly, it has been reported that receptor activator of NFκB
(RANK)-c, a splice form of the TRAF2-interacting TNFR RANK, which is found in 3.2% of
breast cancer patients and which acts in a dominant-negative fashion on RANK-induced
NFκB activation, is inversely correlated with disease grade [242,243]. Moreover, RANK-c
requires its TRAF2 binding sites to elicit its tumor attenuating NFκB-inhibitory activity
pointing to TRAF2 sequestration as mode of action. Furthermore, there is evidence that
certain microRNAs (miR-892b, miR-502-5p, miR-205-5p) downregulate TRAF2 expression
and thereby suppress breast cancer development [244–246]. Similarly, the E3 ligase carboxyl
terminus of Hsp70-interacting protein (CHIP), which triggers TRAF2 degradation, has
tumor suppressive activity in breast and gastric cancer cells [48,247,248]. Furthermore, a
crucial role of the TRAF2-NFκB axis as an adaptive survival mechanism in response to
EGFR oncogene inhibition has been reported for lung cancer and there is also evidence that
TRAF2 expression confers resistance against irradiation [52,249]. In accordance with the
antiapoptotic activities of TRAF2, it has been discovered in various solid cancer cell lines
that TRAF2 expression via NFκB activation protects against radio- and chemotherapy but a
detailed discussion of this issue is behind the scope of this review.
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5. TRAF2 and the Response to Immune Checkpoint Blockade

The approval of immune checkpoint inhibitors (ICIs) brought the clinical breakthrough
for immunotherapy. Despite the often-impressive clinical efficacy of immune checkpoint
blockade (ICB), however, many patients do not respond or develop dose-limiting autoim-
mune effects. Therefore, there are considerable ongoing efforts to identify drugs that
enhance clinical efficacy of ICB. Two comprehensive independent studies, utilizing dif-
ferent methodologies, argue for TRAF2 as a novel and promising target whose inhibition
could synergize with ICIs. Vredevoogd et al. [250] identified in a genome-wide Crispr-Cas9
screen in IFNγ-resistant melanoma cells TRAF2 and cIAP1 as the two major hits increasing
the sensitivity for IFNγ-independent killing by CD8+ T-cells. In view of the relevance
of TRAF2 and the cIAPs to protect from TNFR1-induced cell death (see Section 3.1), this
suggested that the sensitivity of tumor cells for TNF cytotoxicity is a crucial factor for ICB
efficacy. Aligned with this idea, there were also hits in other factors regulating TNF cyto-
toxicity. Furthermore, while the mutational status of the TNF system in untreated tumors
failed to correlate with patient survival, a positive correlation between TNF expression and
the response to anti-PD1 therapy has been observed [250]. Follow-up in vitro and in vivo
experiments indeed indicated that TRAF2 deficiency sensitizes tumor cells for killing by
TNF expressed by CD8+ T cells. Notably, it has been reported in this study, too, that
TNF-like weak inducer of apoptosis (TWEAK), the ligand of Fn14, also sensitizes cancer
cells for TNF-mediated killing by CD8+ T cells. This corresponds very well to the already
discussed ability of Fn14 to deplete the cytosolic pool of TRAF2-cIAP1/2 complexes, (see
Section 3.1). In a second approach whole-exome and transcriptomic data along with clinical
outcome data derived of more than >1000 patients treated with ICIs were evaluated in a
meta-analysis for predictors of ICI response. Worth mentioning, copy-number analysis
in this study also identified loss of 9q34, the position of the TRAF2 gene, to be positively
associated with clinical response [251].

6. Therapeutic TRAF2 Targeting Strategies

In view of its often protumoral activities and its ICB antagonizing effects, TRAF2 is an
obvious potential target for tumor therapy. However, since TRAF2 utilizes its pleiotropic
functions by a variety of binding partners, which interact with different parts of the
molecule, it is difficult to define a side in TRAF2 enabling general inhibition of TRAF2.
Since some TNFRs deplete cytosolic TRAF2 pools and even trigger its subsequent degra-
dation, agonists of such receptors could be considered as a kind of TRAF2 inhibitor, at
least as inhibitor of cytosolic TRAF2 functions. This perception is interesting for target-
ing the ICB antagonizing effects of TRAF2. Indeed, as discussed above, initial studies
indicated that TWEAK acts as an inhibitor of the ICB antagonizing TRAF2 activity [250].
Eventually, agonists of TRAF2-interacting receptors act here as “selective” inhibitors of
TRAF2 survival functions (or other cytosolic TRAF2 activities) but not as general TRAF2
inhibitors. Indeed, the TNFRs may even actively exploit TRAF2 to exert proinflammatory
activity. Since TRAF2 fulfills many of its activities with essential support of cIAP1 or cIAP2,
inhibitors of these molecules can also be considered to be TRAF2 inhibitors. This appears
particularly interesting because a variety of cIAP antagonists (also called SMAC mimetics)
are under preclinical and clinical evaluation for cancer therapy [252]. The feasibility of
the consideration of agonists of cytosolic TRAF2-depleting TNFRs, such as Fn14, and IAP
antagonists as pseudo TRAF2 inhibitors, is underscored by the fact that TRAF2 deficiency,
Fn14 agonists and IAP antagonists trigger the same cellular hallmarks, namely activation of
the alternative NFκB pathway and sensitization for TNF-induced cell death. Nevertheless,
TNFR agonists can trigger TRAF2-dependent and independent signaling pathways and
IAPs have TRAF2-independent activities, too. Thus, direct TRAF2 inhibitors still have the
potential to elicit therapeutic activity beyond TNFR agonists and IAP antagonists.

Liquidambaric acid (LDA, or betulonic acid) is a pentacyclic triterpenoid which has
been decades under investigation as an anti-cancer compound [253]. LDA has just been
recently identified as a first TRAF2-binding small molecule. LDA prevents β-catenin-



Cancers 2022, 14, 4055 17 of 28

TRAF2 interaction and inhibits the Wnt/β-catenin pathway and colon cancer development
in a xenogeneic colon cancer model [46]. Interestingly, LDA inhibited the interaction of
TRAF2 and β-catenin but demonstrated no effect on TRADD binding of TRAF2 [46]. This
example illustrates that it could be possible to develop low molecular weight inhibitors,
which specifically antagonize certain aspects of TRAF2 biology.

IAP antagonists demonstrate low toxicity, are well tolerated and displayed good antitu-
mor activity in preclinical models. However, in clinical trials with IAP antagonists as single
agents, only limited therapeutic activity has been observed. Because of the intersection of
effects of IAP antagonists and TRAF2 deficiency, it appears plausible that TRAF2 inhibitors,
similarly to IAP antagonists, may only demonstrate limited activity in patients. It could be
therefore necessary to combine such compounds with other drugs to exploit the possible
antitumoral potential of TRAF2 inhibition for cancer therapy. Against the background
that TRAF2 and cIAPs ([250,254]) protect tumor cells against the cytotoxic action of CD8+

T-cells and NK cells after ICB, combination therapies of TRAF2 inhibitors and checkpoint
inhibitors appears particularly interesting. Clinical trials with IAP antagonists and ICIs are
ongoing [252] and will provide first hints in this direction.

7. Conclusions

A major general conclusion that can been drawn from the available TRAF2 litera-
ture is that TRAF2 is part of a large variety of constitutively formed and signal-induced
protein complexes that act in quite different cellular processes and in different cellular
compartments. Importantly, there is evidence that these TRAF2-dependent processes com-
pete for a limited pool of TRAF2 (and TRAF2-associated factors) resulting in complex
context-dependent crosstalk mechanisms. A consequence of increased TRAF2 expression,
as often observed in tumor cells, is that competition for TRAF2 loses functional relevance.
Therefore, increased TRAF2 expression may not only generally enhance TRAF2-dependent
processes but also weaken crosstalk mechanisms that reciprocally counterbalance TRAF2-
dependent processes in non-transformed cells. For example, increased TRAF2 expression
may not only increase the ability of TRAF2-interacting TNFRs to engage the classical NFκB
pathway but will also limit their capacity to sensitize for cell death by TRAF2-cIAP1 se-
questration. Thus, deregulated TRAF2 expression could not only change the amplitude
of TRAF2-dependent responses but also the qualitative outcome of the whole network of
TRAF2-mediated processes.

A second conclusion is that TRAF2, despite its function as a tumor suppressor in B-
cells, is a promising target for tumor therapy, particularly in combination with checkpoint
inhibitors. An important and possibly decisive question in this context is whether effective
inhibition of TRAF2 can be achieved. Indirect inhibition of TRAF2, e.g., with agonists of
TRAF2-depleting receptors, in addition to direct inhibition of TRAF2 by small molecules
appears conceivable. Both possibilities have been limitedly investigated so far and define
a major challenge in the field in the next years. However, the clinical development of
TRAF2 inhibitors should be accompanied by close monitoring for signs of autoimmunity
or B-cell hyperplasia.
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