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Abstract: Olea europaea L. Cv. Arbequina (OEA) (Oleaceae) is an olive variety species that has re-
ceived little attention. Besides our previous work for the chemical profiling of OEA leaves using
LC–HRESIMS, an additional 23 compounds are identified. An excision wound model is used to mea-
sure wound healing action. Wounds are provided with OEA (2% w/v) or MEBO® cream (marketed
treatment). The wound closure rate related to vehicle-treated wounds is significantly increased by
OEA. Comparing to vehicle wound tissues, significant levels of TGF-β in OEA and MEBO® (p < 0.05)
are displayed by gene expression patterns, with the most significant levels in OEA-treated wounds.
Proinflammatory TNF-α and IL-1β levels are substantially reduced in OEA-treated wounds. The ca-
pability of several lignan-related compounds to interact with MMP-1 is revealed by extensive in silico
investigation of the major OEA compounds (i.e., inverse docking, molecular dynamics simulation,
and ∆G calculation), and their role in the wound-healing process is also characterized. The potential
of OEA as a potent MMP-1 inhibitor is shown in subsequent in vitro testing (IC50 = 88.0 ± 0.1 nM).
In conclusion, OEA is introduced as an interesting therapeutic candidate that can effectively manage
wound healing because of its anti-inflammatory and antioxidant properties.
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1. Introduction

Worldwide, wounds pose serious health risks, placing significant financial, com-
mercial, and communal stress on healthcare organizations, caregivers, patients, and fami-
lies [1,2]. Wounds are reported as natural, thermal, chemical traumas, or abuses that destroy
skin integrity [3]. A complex interaction of various cell types is an essential response to
tissue damage. The initial constriction of blood vessels and aggregation of platelet are
meant to break off bleeding. An inflow of inflammatory cells, beginning with neutrophils,
follows, which discharges several mediators, including cytokines, to develop angiogenesis,
thrombosis, and re-epithelialization. Additionally, the fibroblasts deposit extracellular fac-
tors and act as scaffolds [4]. The inflammatory stage is marked by hemostasis, chemotaxis,
as well as enhanced vascular permeation, which diminishes further destruction, excludes
cellular debris, heals the wound, and encourages cellular migration. The inflammatory
stage usually lasts several days [5]. Granulation tissue development, re-epithelialization,
and neovascularization define the proliferative phase. This period might persist for several
weeks. As the wound grows, it gains maximal strength throughout the maturation and
remodeling period [6]. One of the key objectives of the wound healing process is the
regeneration of new connective tissue [7]. These restoration events occur by accumulating
several collagen-dependent and noncollagenous-dependent molecules to supplement the
healing process of the extracellular matrix (ECM), which is significant for providing the
cellular microenvironment necessary for morphogenesis and growth.

Proteinases known as matrix metalloproteinases (MMPs) contribute to ECM break-
down [7–9]. MMP activities are perfectly adjusted by controlling homeostatic environments
at different stages including transcriptional level, precursor zymogen induction, ECM
interplay, and suppression by internal inhibitors [9–11]. Disorders such as arthritis, tumor,
atherosclerosis, nephritis, fibrosis, aneurysms, and tissue lesions can take place owing
to a loss of regulatory activity [12]. Several studies have reported that MMPs are over-
expressed in wounds (e.g., MMP-1–3) [13]. Consequently, inhibition of the catalytic activity
of these hydrolytic enzymes was associated with a better and faster wound-healing process
(i.e., better collagen maturation and crosslinking) [14].

The benefit of medicinal plants in curing wounds at different stages is widespread in almost
all conventional medical systems worldwide. Significant potential for enhancing and improving
the quality of wound healing has been shown in several herbal-based remedies [15,16], based
on Curcuma longa (L.) [17], Centella asiatica [18], Sphagneticola trilobata [19], Aloe barbadensis [20],
Azadirachta indica [21], and Chamomilla recutita [22]. The use of Theacea plant bioactive
components for wound healing is patented [23]. Additionally, another reported patented is
new herbal components for treating wounds, which consisted of Curcuma longa, Hamil tonia
suaveolens, Glycyrrhiza glabara, Tipha angustifolia, Azadirachta indica, and Sesamum indicum
(Til) oil [24]. Moreover, herbal-based pharmaceutical remedies are used, such as moist
exposed burn ointment (MEBO®), which is composed of several amino acids and other
plant-based constituents [25].

Since antiquity, OEA has been grown primarily for oil production in Mediterranean
lands. Recently, the positive effects of biophenols (e.g., verbascoside, oleuropein, hy-
droxytyrosol, and luteolin-7-O-β-glucopyranoside) isolated from olive for human benefits
(e.g., antihypertensive [26], cholesterol-lowering [27], cardioprotective [28], anti-inflammatory,
and as co-adjuvant for obesity [29]) have been carefully established [30].

Olea europaea L. Cv. Arbequina, a cultivar of olives, is an olive variety species that has
received little attention. Arbequina has lately become one of the world’s most important
olive cultivars, owing partly to extensive cultivation and “super-high-density” planta-
tions [31]. Arbequina trees can fit a variety of climatic and soil conditions. Nonetheless, it
flourishes in long, hot, and dry summers and grows best in alkaline soils. Nonetheless, it is
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frost-resistant and pest-resistant [32]. Almost 78 percent of olive oil is grown on Arbequina
rootstock [33]. As a result, Arbequina olives have one of the highest oil contents and are
largely utilized in the production of olive oil [34]. Publicly, Olea europaea oil and polyphenol
contents are fully documented to reduce oxidative stress, stimulate wound healing, and
minimize inflammation [35–40]. However, the oil and polyphenol contents are generally
affected by climatic conditions during ripening and the degree of maturation, especially
the Arbequina types [41,42].

In an attempt to compare the cultivar olive with the wild types in the content and
activities concerning this field, our previous work estimated the potential of OEA leaves
(cultivated in Egypt) as an internal wound healer against gastric ulcers in a rat model
compared to wild O. europaea [43]. The results showed that the crude extract of the OEA
cultivar was richer with polyphenolic content using LC–HRESIMS. The ulcer index of the
rat model was significantly decreased, and the mucosa from the lesions was protected [43].

To complement the previous work, we targeted the wound healing ability of OEA as
an external wound healer by applying an excisional wound model. We focused on essential
wound healing targets, encompassing transforming growth factor-beta (TGF-β), interleukin-
1β (IL-1β) as well as tumor necrosis factor-α (TNF-α). Illustrating the mode of action of OEA
using several in vitro and in silico assays. Additionally, we assessed the possible inhibitory
effect of OEA on one of the key players in wound healing (i.e., MMP-1), as proposed by the
in silico investigation. Figure 1 depicts the framework of the present investigation.
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Figure 1. The general summary of the present research is as follows: Olea europaea leaves were
extracted, chemical profiling was carried out, and finally the leaves were assessed for their potential
wound healing activity by evaluating their antioxidant activity and ability to inhibit MMP1, upregu-
late TGF-β relative gene expression, and downregulate the relative gene expression of inflammatory
cytokines (TNF-α and IL-β1).

2. Materials and Methods
2.1. Plant Material

In April 2020, OEA leaves were harvested from Basita Farms in Aljouf, Saudi Arabia.
Dr. Hamdan Ogreef (Camel and Range Research Center in Sakaka, Saudi, Arabia) gra-
ciously identified it. A voucher specimen (2020-BuPD 75) was kept at Beni-Suef University’s
Pharmacognosy Department; Faculty-of-Pharmacy.

2.2. Chemicals and Reagents

All reagents and compounds were obtained from Sigma-Aldrich unless otherwise
stated (Germany, Biosystems SA Costa Brava 30, Barcelona, Spain).



Metabolites 2022, 12, 791 4 of 21

2.3. Plant Material Extraction

Two kilograms of OEA leaves were collected, meticulously cleaned, and air-dried for
10 days in the shade. The leaves were ground with an OC-60B/60B herb grinding mill
(60–120 mesh, Henan, China—Mainland). The powdered leaves were soaked in a huge,
closed glass jar for intensive extraction with 70% EtOH (15 L X3) and concentrated under
reduced pressure at 45 ◦C. Following these steps, 80 grams of dried residue was obtained.
It was saved at 4 ◦C for further phytochemical and biological screenings [44,45].

2.4. Metabolomic Analysis

According to our previously reported protocol [44], LC-HRMS-assisted metabolomic
analysis of OEA was carried out. The detailed method is described in the supplementary file.

2.5. In Vivo Wound Healing Activity
2.5.1. Animal Treatment

Eighteen wholesome adult male New Zealand Dutch breed albino rabbits participated
in this investigation (2.1–2.7 kg). Polypropylene cages were used for animal housing.
The normal pellet feed and unlimited water were freely available during the experiment.
The seven days leading up to the experiment were spent acclimating the animals to the
lab environment. Animals were introduced to a home with adequate ventilation under
conditions of 25 ± 2 ◦C and relative moisture of 44–55% with 12 h cycles of dark/light.

2.5.2. Samples Preparation for the Bioassay

In order to evaluate the effectiveness of OEA extract in healing wounds, excisional
wound models were applied [42]. The extract was made for the wound models by dis-
solving OEA dry extract in carboxymethylcellulose (2 g of dried extract in 100 mL of 0.5%
carboxymethylcellulose) and kept at 4 ◦C in the dark. Each test extract was applied topically
to the wound site as soon as it was prepared [43].

2.5.3. Model for Circular Excision Wounds

Excisional wounds were induced in rabbits [46,47]. In summary, 0.01 mL Ketalar®

(Ketalar, Sankyo Lifetech Co., Ltd., Tokyo, Japan) was used to anesthetize the animals. The
back hairs of the rabbits were carefully shaved. The circular incision of each animal was
made with a 6-mm biopsy punch by only excising the skin on the dorsal interscapular area.
A sterile cotton swab soaked in 0.9% saline was used to clean the wounds. The induced
wounds were left undressed throughout the whole duration of the study.

18 rabbits were divided to 3 groups. Each group comprised 6 rabbits. Group 1 (control
rabbit): ulcers treated with vehicle only twice daily; Group 2: ulcers treated topically with
OEA 2% w/v extract twice a day for 14 days until the wounds were completely cured;
and Group 3: ulcers were topically treated with MEBO® (Julphar Gulf Pharmaceutical
Industries, Ras Al Khaimah, United Arab Emirates) (a comparable market product) twice
daily for 14 days until the wounds were mostly cured.

2.5.4. Collection of Tissue Samples

On days seven and fourteen, full-thickness skin biopsies of complete ulcers from each
rabbit were taken under anesthesia. Tissue samples were sectioned into three halves. Most
of the dissected wound tissue was utilized for gene expression research. For histological
investigation, the remainder was kept in formalin [43].

2.5.5. Percentage Wound Closure Rate

A camera (Fuji, S20 Pro, Sendai, Japan) was used to monitor the development of the
wound region every three days until it healed fully. Using Image J 1.49 v software from the
National Institutes of Health in Bethesda, Maryland, the wound area was assessed, and the
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wound closure rate was reported as a percentage change in the original wound area using
the following formula:

Wound closure (%) =
Wound area on day 0−Wound area on day nth

Area o f the wound on day 0
× 100

n: days numbers.
Additionally, a wound aspect ratio was established to explain observed variations in

the shape and angular direction of wound contraction between groups. Using Image J, the
length to width ratio was calculated from measurements of the wound’s length (measured
from head to tail) and width.

2.5.6. Histological Study

Dorsal skin samples from all wounds were taken and fixed in buffered formalin before
being treated with a graded series of alcohol and xylene and subsequently immersed in
paraffin blocks. Tissue slices were cut at a thickness of 4 µm and discolored with hema-
toxylin/eosin dye. The Leica Application Suite (Leica Microsystems, Wetzlar, Germany, a
light microscope) was applied to evaluate and photograph the mounted slides [47].

2.5.7. Gene Expression Analysis
Total RNA Extraction

In 0.5 mL TRIzol reagent (RNA Isolation Reagent, Invitrogen—ThermoFisher Prod-
ucts & Kits, Amresco, LLC-Solon, Waltham, MA, USA), 50 mg of dorsal skin tissue was
homogenized using an ultrasonic homogenizer (Sonics-Vibracell, Sonics and Materials Inc.,
Newtown, Fairfield County, CT, USA). According to the guidelines of the producer, total
RNA was extracted from dorsal skin tissues, and the concentration of RNA yield and purity
were calculated [48].

Real-Time qRT–PCR

cDNA synthesis with a constant RNA concentration across all samples, the Rever-
tAid H Minus First Strand cDNA synthesis kit was used as directed by the manufacturer
(#K1632, Thermo Scientific Fermentas, St. Leon-Ro, Germany). SYBER Green (Thermo
Scientific Fermentas St. Leon-Ro, Germany-Maxima SYBER Green qPCR Master Mix (2X))
was employed in real-time PCR using single-stranded cDNAs. A StepOne Real-Time PCR
System (Applied Biosystems, Thermo Fischer Scientific, Waltham, MA, USA) was used
to perform qRT–PCR. The set of primers used for real-time PCR is mentioned in Table 1
qRT–PCR was performed using 0.02 g RNA per reaction and 10 Pmol of particular primers
for thirty cycles of 95 ◦C for ten seconds and 60 ◦C for one minute. After normalization
to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a housekeeping gene, gene
expression levels were obtained. To assess the relative quantities of RNA, the compar-
ative Ct approach was utilized. Formula 2 (−∆∆Ct) was used to determine the relative
expression [12].

2.6. Molecular Modeling
2.6.1. Prediction of the Molecular Targets of the Dereplicated Metabolites of OEA

By carrying out docking against all protein structures saved in the PDB (https://
www.rcsb.org/) (accessed on 1 March 2022), several suggested targets for the OEA-isolated
molecules were putatively determined. In this analysis, small overlapping grids are adap-
tively built to constrain the searching space on protein surfaces, allowing them to run many
accurate dockings runs in a shorter time [49]. The information was compiled as a ranking
of binding affinity scores. We utilized a binding affinity score threshold of 7 kcal/mol to
recognize the ideal receptors for each OEA-isolated molecule.

https://www.rcsb.org/
https://www.rcsb.org/
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Table 1. Primers used for real-time PCR.

Name of Gene Accession Number Primer Sequence

IL-1β NC_013670.1
forward 5′-AGCTTCTCCAGAGCCACAAC-3′

reverse 5′-CCTGACTACCCTCACGCACC-3′

GAPDH NC_013676.1
forward 5′-GTCAAGGCTGAGAACGGGAA-3′

reverse 5′-ACAAGAGAGTTGGCTGGGTG-3′

TGF-β NC_013672.1
forward 5′-GACTGTGCGTTTTGGGTTCC-3′

reverse 5′-CCTGGGCTCCTCCTAGAGTT-3′

TNF-α NC_013680.1
forward 5′-GAGAACCCCACG GCTAGATG-3′

Reverse 5′-TTCTCCAACTGGAAGACGCC-3′

MMP-1
forward 5′-TTTCCCCCTGGCGCCGGCGTT-3′

Reverse 5′-CTCGTGCGCTGCCACCAGG-3′

2.6.2. Molecular Dynamic Simulation

Molecular dynamics simulation and estimate of binding free energy were carried out
as previously mentioned using Desmon software [50]. The complete technique is included
in the supplemental file.

2.7. In Vitro MMP-1 Activity Assay

OEA was tested for its inhibitory activity against MMP-1. The enzyme inhibition assay
was conducted in accordance with the company instructions (Abcam, Waltham, MA USA,
Cat. No: ab118973).

2.8. Statistical Analyses

Data are reported as the mean ± standard deviation of the mean (n = 6). Tukey’s
test for multiple comparisons was applied after one-way analysis of variance (ANOVA).
Calculations involving statistics were performed using Graph Pad Prism 8 (San Diego, CA,
United States). The outcomes were deemed significant when the p value was less than
0.05 [12].

3. Results
3.1. Chemical Dereplication of OEA Leaves Extract

According to our previous study, OEA crude extract dereplicated 18 metabolites
using LC–HRESIMS, which identified as 3-hydroxy-12-oleanen-28-oic acid; 2,3-dihydroxy-
13(18)-oleanen-28-oic acid; oleuropein; 2-(3,4-dihydroxyphenyl)ethanol; oliverixanthone;
cleroindicin F; oleuropein 3′′-Me ether; oleoside; 11-octadecen-9-ynoic acid; 3-hydroxy-
12-ursen-28-oic acid, 3-ketone; 8-epimer, (3,4-dihydroxyphenylethyl) ester; chebulic acid
4,5-didehydro(E-), tri-Et ester; verbascoside; luteolin; olenoside A; olivine; olivacene; and
oleacein [43].

In the present study, additional hits were introduced (Table 2, Figures 2–4). The m/z
375.1444 and 389.1600. Mass ion peaks corresponded to the proposed molecular formulas
C20H22O7 and C21H24O7 [M + H]+, which fit tertahydrofurofuran lignan 7,9′:7′,9-diepoxy-
8,8′-lignan-3,3′,4,4′,8-pentol;3,3′-di-Me ether 1, 7,9′:7′,9-diepoxy-8,8′-lignan-3,3′,4,4′,8-pentol;
3,3′,4′-tri-Me ether 2, which was formerly extracted from OEA [35–37].
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Table 2. Dereplicated metabolites from LC-HRESIMS analysis of OEA leaves crude extract.

Metabolite No. Source MF RT (min) m/z

1 OEA C20H22O7 2.01432 375.1444

2 OEA C21H24O7 2.01740 389.1600

3 OEA C11H12O5 2.20205 223.06055

4 OEA C15H16O9 2.37151 341.08660

5 OEA C26H32O12 2.40519 537.1972

6 OEA C22H36O13 2.49208 509.22142

7 OEA C27H34O13 2.53020 567.2078

8 OEA C28H34O13 2.75095 579.20783

9 OEA C26H34O13 3.02300 555.2078

10 OEA C22H24O8 3.23649 417.15389

11 OEA C8H10O3 3.78010 155.0708

12 OEA C15H16O9 3.78010 341.0873

13 OEA C18H36O5 4.09611 331.24803

14 OEA C11H14O6 4.18760 243.0869

15 OEA C30H48O4 5.96396 473.36213

16 OEA C21H42O2 6.01750 327.3263

17 OEA C22H36O13 9.11727 509.2235

18 OEA C26H38O13 10.5214 557.2229

19 OEA C15H15O3 12.8056 243.1013

20 OEA C18H35O5 14.6147 331.2490

21 OEA C18H32O3 21.7898 295.2280

22 OEA C30H50O2 29.2663 443.3880

23 OEA C30H49O3 30.5872 457.3682
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[M-H]+, fit fatty acids 11-octadecen-9-ynoic acid 16, formally isolated from OEA [56,57]. 
The ion mass peaks at m/z 509.22142, 557.2229 [M − H]+, for C22H36O13, C26H38O13 indicated 
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or 13 (18)-oleanene-3,16-diol or 12-ursene-3,16-diol or 12-oleanene-3,28-diol 22, and 
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The m/z 223.06055 [M−H]+ and 341.08660 [M + H]+ molecular ion mass peaks, respec-
tively, were characterized for the predicted molecular formulas C11H12O5 and C15H16O9,
and indicated S-(E)-elenolide 3 and benzopyrene, 6,7-dihydroxy-2H-1-benzopyran-2-one;6-
O-β-D-glucopyranoside 4, respectively, which were formerly separated from OEA [35,38,39].
The ion mass peaks 537.1972, 509.22142 m/z, [M + H]+ for C26H32O12, C22H36O13 predicted
molecular formulas, indicated the tertahydrofurofuran lignan nucleus of 7,9′:7′,9-diepoxy-
8,8′-lignan-3,3′,4,4′,8-pentol, 3,3′-Di-Me ether,4-O-β-D-glucopyranoside 5, which was di-
vided from OEA [39], and 6-O-oleuropeoyl-sucrose 6, which was divided from OEA [51].
Two ion peaks, with m/z 567.2078 and 579.20783 [M + H]+, predicted for molecular formulas
C27H34O13 and C28H34O13 were dereplicated as 7,9′:7′,9-diepoxy-8,8′-lignan-3,3′,4,4′,5,8-
hexol, 3,3′,5-tri-Me ether,8-O-β-D-glucopyranoside 7, and 3,3′,4,4′,8-pentahydroxy-7,9′:7′,9-
diepoxylignan,3,3′-di-Me ether, 8-Ac,4-O-β-D-glucopyranoside 8, respectively, which were
separated previously from OEA [37]. The mass ion peak at m/z 541.1921 reflected the
predicted molecular formula C25H32O13 and indicated secoiridoid oleuropein 9, which
was divided from OEA [52]. Additionally, m/z 417.15389 and 155.0708, corresponding
to the suggested formulas C22H24O8, C8H10O3 [M + H]+, which fit tertahydrofurofuran
lignan 3,3′,4,4′,8-pentahydroxy-7,9′:7′,9-diepoxylignan; 3,3′-Di-Me ether,8-Ac 10, which
was already divided from OEA [35–37], and megaritolactones, halleridone 11, which was
also isolated from OEA [38,39].

Additionally, the m/z 341.0873, 331.24803, 243.0869, and 473.36213 analogous to the pro-
posed molecular formulas C15H16O9 [M + H]+, C18H36O5 [M−H]+, C11H14O6 [M + H]+, and
C30H48O4 [M + H]+ fit benzopyrene, fatty acid, triterpene compounds 6,7-dihydroxy-2H-1-
benzopyran-2-one;6-O-β-D-glucopyranoside 12, which was isolated from OEA [35], 9,10,18-
trihydroxyoctadecanoic acid 13, elenaic acid 14, which were isolated from OEA [53–57], and
2,3-dihydroxy-13(18)-oleanen-28-oic acid 15, respectively, which were previously isolated
from OEA [58]. The m/z 277.2167 suggested the molecular formula C18H30O2 [M-H]+,
fit fatty acids 11-octadecen-9-ynoic acid 16, formally isolated from OEA [56,57]. The ion
mass peaks at m/z 509.22142, 557.2229 [M − H]+, for C22H36O13, C26H38O13 indicated
6-O-oleuropeoyl-sucrose 17, oleoside; 6′-O-(8-hydroxy-2,6-dimethyl-2E-octenoyl) 18, which
was isolated from OEA [51]. Moreover, m/z 243.1013, 331.2490, 295.2280, 443.3880, and
457.3682 [M + H]+, [M − H]+, for the predicted molecular formulas C15H15O3, C18H35O5,
C18H32O3, C30H50O2, and C30H49O3 indicated benzopyran, fatty acid, and triterpenes,
3,4-dihydro-1-phenyl-1H-2-benzopyran-6,7-diol 19, 9,10,18-trihydroxyoctadecanoic acid 20,
12-hydroxy-8,10-octadecadienoic acid 21, 12-oleanene-3,16-diol or 12-oleanene-3,28-diol or
13 (18)-oleanene-3,16-diol or 12-ursene-3,16-diol or 12-oleanene-3,28-diol 22, and oleanolic
acid 23, respectively, were previously isolated from OEA [58].

3.2. Wound Healing
3.2.1. Wound Closure Rate

In the in vivo model, the rate of wound closure was improved in all studied groups
in a time-dependent manner. On the third post-injury day, the rate of wound closure was
approximately 10% in all groups, with the control group having the lowest and the treated
group having the highest. There was no significant variation among groups (p < 0.05). On
7th and 10th post-excision days, the rates of wound closure in the OEA-treated group were
32% and 81%, respectively, which seemed to be statistically greater (p < 0.05) than those
in the control group. The OEA group had faster wound closure than the MEBO®-treated
group on the seventh and tenth days postinjury. On the fourteenth post-excision day, the
rabbits treated with OEA were completely recovered from their wounds, and the wound
contraction reached 100% in the OEA group (Figures 5 and 6A,B).
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3.2.2. Histopathological Study
Seven Days Post-Treatment

• Group I (control group).

The ordinary edge of the injury had a natural epidermis, normal hair follicles, well-
formed collagen bundle dermis, and healthy sebaceous glands. Alternatively, the injury
was packed with blood clots, inflammatory cellular infiltration, extravasated RBCs, and
sloughed granulation material, with collagen tissues compactly organized in a strange
pattern. The striated muscle appeared to have necrotic myo-fibers in the deepest area.
(Figure 7A).
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• Group II (OEA-treated).

The blood clot seen above the incision remained visible, with inadequate reepithe-
lization, and the granulation tissue filling the defect from below was mostly cellular. In
comparison to other treated groups, the heavy collagen was combined with fibers that were
compactly formed in an irregular manner, leading to apparent scarring (Figure 7B).

• Group III (MEBO®-treated).

Epidermal cells can be seen spreading around the edges of the incision. The re-
epithelization was lacking, though. Approximately mirroring the nearby normal dermis,
collagen fibers and inflammatory cells infiltration were seen populating the damage with
space between them. The reticular dermis had a large number of active extended spindle-
shaped fibroblasts, basophilic cytoplasm, and open-face oval nuclei. (Figure 7C).

Fourteen Days after Treatment

• Group I (control group).

The wound area was larger and heavily covered in granulation tissue, which was made
up of several connective tissue layers in an acidophilic matrix and covered a significant
amount of inflammatory cellular infiltration. The dermis has substantial neovascularization
and was made of thin, disordered collagen (Figure 8A).

• Group II (OEA-treated).

The wound had become plugged by scar tissue that had shrunk. In the epidermis,
only one to three rows of epithelial cells have recovered. The granulation tissue from below
was primarily cellular and fibroblast packed. Collagen fibers were disorganized–dense and
compactly oriented in the reticular layer (Figure 8B).
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• Group III (MEBO®-treated).

The ordinary squamous keratinized epithelium was present in the skin tissue. The
dermis was covered in thin scar tissue. There were numerous hair follicles, a dermal matrix
with blood capillaries, and no inflammatory cellular infiltration. The collagen bundles of
the papillary dermis were depicted as thin interweaving bundles, while the reticular dermis
evolved into rough, wavy bundles that were established in diverse routes (Figure 8C).
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3.2.3. Effect of OEA Treatment on Relative Gene Expression of TGF-β in Excisional Wounds

The relative expression expression of TGF-β in skin tissues was significantly statisti-
cally higher in OEA-treated injuries on the seventh and fourteenth days than in individuals
from the control group (p < 0.05). Furthermore, OEA-treated wounds had considerable de-
velopment in the expression of the marker compared to MEBO®-treated wounds (Figure 9).
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Figure 9. Gene expression in diverse categories of wounded tissues. qRT–PCR was used to examine
gene expression in wound tissues. After being adjusted for GAPDH, the results displayed as fold
change relative to the control group. The bars represent the mean ± SD. To determine whether
there was a substantial difference between studied groups, a two-way ANOVA was performed, with
* p < 0.05 comparing to the control group on a particular day and # p < 0.05 comparing to the MEBO®

group on the same day.
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3.2.4. Effect of OEA on IL-1β, TNF-α and MMP-1 Gene Expression in Excisional Injuries

According to the analysis of mRNA levels on the seventh postinjury day, inflamma-
tory mediators (IL-1β and TNF-α) as well as MMP-1 gene expression was dramatically
downregulated in injuries treated with OEA or MEBO® comparing to control injuries
(Figure 10). Wounds treated with OEA had a much more significant decrease in inflamma-
tory markers (IL-1β and TNF-α) and MMP-1 than MEBO®-treated wounds. Furthermore,
compared to control wounds, OEA or MEBO® therapy for fourteen days resulted in signifi-
cantly lower TNF-α and IL-1β, MMP-1 relative gene expression (p < 0.05). Again, TNF-α,
IL-1β, and MMP-1 expression were significantly lower in OEA-treated wounds than in
MEBO®-treated wounds.
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Figure 10. Gene expression in wounded rabbit tissues from several groups. qRT–PCR was utilized to
assess gene expression in wounded tissues. After normalization to GAPDH, the data represented as
fold change relative to the control group. The bars represent the mean ± SD. To determine whether
there was a significant variation between studied groups, a one-way ANOVA test was utilized, with
* p < 0.05 comparing to the control group on that day and # p < 0.05 comparing to the MEBO® treated
group on the same day.

3.3. In Silico Investigation
3.3.1. Predicted Targets for Chemical Compounds in OEA

The inverse docking approach was used to accurately propose the most likely molecu-
lar targets of all the annotated compounds in OEA using the idTarget docking platform
(http://idtarget.rcas.sinica.edu.tw) (accessed on 1 March 2022).

Divide-and-conquer docking is a unique docking strategy in which small overlapping
grids are adaptively generated by idTarget to confine the examination area on the protein
surfaces. This procedure allows the execution of many accurate dockings in a brief period
of time. The query molecule can be virtually docked to practically all available crystal
protein structures in the PDB.

A list of binding affinity scores, ranging from the most negative to the least, was
created from the combined results. For each identified molecule in OEA, the best targets
were determined using a threshold value of 7 kcal/mol for binding affinity. As an essential
protein in the wound healing process, MMP1 was retrieved as a target protein for com-
pounds 2, 5, 8, and 12 with binding affinity scores of −9.3, −8.8, −8.1, and −12.7 kcal/mol,
respectively. Several earlier studies have demonstrated that the healing of wounds is
adversely affected by MMPs. Hence, using MMP inhibitors has been shown to result in
outstanding outcomes in wound healing.

All molecules were then re-docked toward the active site of MMP1 using AutoDock
Vina. It was also revealed by the Vina docking results that compounds 2, 5, 8, and 12 were
the structures reaching the highest-ranking scores, with binding affinity scores between
−7.9 and −10.3 kcal/mol. After that, the molecular dynamic simulation-derived binding

http://idtarget.rcas.sinica.edu.tw
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free energies (∆Gs) of all compounds were also calculated to further support the docking
results. Once again, compounds 2, 5, 8, and 12 were the top-scoring structures, with ∆G
values between −7.1 and −8.9 kcal/mol (Figure 11).
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3.3.2. Binding Mode Investigation, Molecular Dynamics Simulation, and In
Vitro Validation

The binding orientations of compounds 2, 5, 8, and 12 (common lignans in olive; [37])
inside the binding site of MMP1 were quite similar to that of the co-crystallized ligand [59]
(Figure 12). LEU-81, ALA-82, and HIS-118 are critical residues involved in hydrogen bond
interactions with the co-crystalized inhibitor (Figure 12A), while VAL-115, HIS-118, and
TYR-140 are critical residues implicated in hydrophobic interactions. The binding modes
of compounds 2 and 8 were quite similar to that of the co-crystalized ligand, where they
were H-bonded to LEU-81 and ALA-82. Moreover, they established additional H-bonds
with ALA-84, PRO-138, and TYR-140 (Figure 12A,C). They also established hydrophobic
interactions identical to those of the cocrystalized inhibitor. They took a slightly different
orientation regarding compounds 5 and 12. Both established a network of strong H-bonds
(<2 Å) with ALA-84, ARG-114, PRO-138, SER-139, and THR-141 (Figure 12B,D). They
established several hydrophobic interactions similar to those of the cocrystalized inhibitor.
Additionally, they interacted with both PRO-138 and VAL-115.

We exposed the selected docked compounds to 50 ns molecular dynamic simulations
(MDS) to validate these binding poses. Compounds 2, 5, and 12 achieved stable binding
throughout the course of MDS with low deviations from their original pose (average RMSD
ranged from 1 Å for compound 12 to 3 Å for compound 2). On the other hand, compound
8 was far less stable during MDS, where it was highly fluctuating inside the binding pocket
of MMP1, particularly at the beginning of the simulation until 19.2 ns, and its overall RMSD
was relatively high (~6 Å).

As a validation step of the previous in silico and modeling outcomes, OEA was
tested in vitro against MMP-1. The results showed that the OEA crude extract had MMP-1
inhibitory activity with IC50 = 88 ± 0.1 µM. This potent activity could be attributed to
compounds 2, 5, 8, and 12 being significant components in OEA (peak area > 10,000).
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4. Discussion

Arbequina is an olive variety that has picked up insufficient attention. Reflecting
the results from the present study and the literature, different phytochemical compounds
were identified from the OEA crude leaf extract, consisting of lignans, secoiridoid, triter-
penes, fatty acids, megaritolactones, benzopyrene, flavonoids, and phenyl ethanoids [43].
The identified phytochemical compounds showed significant differences compared with
32 cultivars (Bouteillan, Fecciaro, Frantoio selection, Manzanilla, Nocellara del belice, Picudo de
Labata, I-79, Pendolino, O. europaea subsp. Cuspidata, isolate Yunnan, Ascolana tenera, Zhonglan,
Koroneiki, Arbequina, Huaou 5, Nikitskii I, Picholine, Chemlal de Kabylie, Hojiblanca, Manzanilla
sevillana, Canino, Cipressino, Rosciola, Nevadillo fino, Castellana, Neral, Olivon de Roda, Largueta,
Manzanilla Greece, Blanqueta, Benizar, Morcona, and Gentile di chieti, which are mainly col-
lected from France, Italy, China, Spain, Greece, Azerbaijan, and Algeria), especially in the
lignans and secoiridoid content, which are predominant in OEA crude extract [60]. The
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major class of phenolics (i.e., flavonoids, iridoids, triterpenes, and fatty acids) displayed
the same profiles as those reported in the literature. However, the phenolic profiles of olive
leaves previously detected in several common cultivars were marginally distinct from those
found in this work [61].

Wound healing is a network-dynamic procedure of bringing back tissue construction in
damaged tissues close to its probable ordinary state [62]. This requires three phases: (1) an
inflammatory stage that involves a section of proinflammatory mediators and suppression
of the immune system, (2) a proliferative stage in which fibroblast proliferation, collagen
aggregation, and new blood vessel formation occurs, and (3) a remodeling stage that
involves wounded tissue regeneration and reconstruction [63,64]. For efficient treatment,
remedies that hasten wound healing with potential involvement in all process phases,
fewer side effects, and limited cost are needed.

In this work, a significant contraction in the wounded area of excision wounds of
experimental animals was revealed compared to the control wounds in topical OEA treat-
ment. These observations are due to the accelerated wound contraction rate in OEA-treated
animals. To speed up and encourage wound closure, wound contraction is the centripetal
movement of the wound’s margins [65–67]. Wound contraction therefore indicates re-
epithelialization, keratinocyte differentiation, granulation, fibroblast proliferation, and
proliferation [67]. The obtained results agree with other works [68–71].

Complex interactions between cells and numerous growth factors are required during
wound healing processes [72]. Throughout the phases of wound healing, TGF-β has an
extremely urgent role in the inflammation and hemostasis stage. Inflammatory cells like
neutrophils and macrophages are attracted to and stimulated by TGF-β. At the same time,
multiple cellular activities, such as angiogenesis, re-epithelialization, granulation tissue
growth, and ECM deposition, are orchestrated by it during the proliferative phase [72].
Fibroblasts are encouraged to multiply and diversify into myofibroblasts that participate
in the remodeling stage of wound contraction [73]. Pastar et al. and Haroon et al. argued
that chronic wounds usually exhibit diminished TGF-β1 signaling [74,75]. Feinberg et al.
clarified that TGF-β1 attenuates the expression of collagenases, weakening collagen and
ECM [76]. These notes are consistent with our observations, which concluded that enhanced
TGF-β1 expression following OEA topical application hastens wound healing, as noticed
by the gene expression and the accelerated wound healing in this study (Figure 9).

Proinflammatory cytokines like IL-1β and TNF-α are only important during the initial
response of skin wound healing in the inflammatory phase. Adequate TNF-α and IL-1β
expression is required for neutrophil recruitment and the cleanup of the wound area to
get rid of bacteria and other contaminants. Additionally, these inflammatory mediators
are considered potent MMP inducer in fibroblasts and inflammatory cells. The damaged
ECM is degraded and eliminated by MMP to facilitate wound repair [77]. Nevertheless,
prolonged inflammation stage results in a deformative healing process, as proteinases and
cytokines damage the tissue, resulting in the progress of chronic wounds. TNF-α is a crucial
proinflammatory cytokines secreted by macrophages, which, along with IL-1β, hinders
collagen production and fibroblast proliferation [78]. TNF-α activates NF-κB, which in
round activates a multitude of proinflammatory cytokines encompassing proteases, such
as MMP and TNF-α itself, to give rise to free soluble TNF-α. As a result, these inflammatory
cytokine effects are potentiated [79]. Thus, suppressing TNF-α and IL-1β by OEA could
suppress prolonged inflammation and avoid defective wound healing (Figure 10). These
investigations made us assume that OEA quickens and improves the curing process.

Conversely, area, collagen disruption, and hence ECM destruction could be stimulated
by reactive oxygen species at high levels in the wounded area. Events like angiogenesis
and re-epithelization, which are crucial for wound healing, are reduced when the ECM
is damaged [80,81]. Furthermore, inflammation can be induced by elevated ROS, increas-
ing proinflammatory cytokines, and as result lengthening inflammation [82]. Due to its
SOD activity and H2O2 scavenging activity, OEA may have antioxidant properties. This
was confirmed by in vitro antioxidant studies, potentially eliminating ROS, and enhanc-
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ing wound-healing properties. The phenolic contents of OEA are responsible for these
antioxidant actions [43].

Additionally, persistent inflammation results in wound healing failure, and wounds
typically start a pathological state that requires more aggressive treatments. The capability
of an agent to deal with the inflammatory wound process will either improve or quicken
the healing process [83]. As opposed to that, MMPs have been proven to have a crucial
impact in wound healing, and their inhibition has been associated with significant positive
outcomes. The ability of some lignan-related compounds (2, 5, 8, and 12) to interact with
MMP-1 was revealed by an in silico investigation of the OEA primary metabolites. As a
validation step, OEA was tested in vitro against MMP-1. The results showed that the OEA
crude extract had MMP-1 inhibitory activity with IC50 = 88 ± 0.1.

5. Conclusions

As presented here, the Arbequine olive leaves extracts, have a different phytochemical
composition. Through an increased rate of wound closure, enhancement of TGF-1, and
suppression of inflammatory markers (TNF- and IL-1), this extract demonstrated outstand-
ing wound healing activity. The ability of some lignan-related molecules (2, 5, 8, and 12)
to interact with MMP-1 was suggested by a series of virtual screening and physics-based
experiments, which were conducted to explore the binding modes of molecules within
the potential active site of each molecular target. This study reflected the potential of
Arbequina cultivars as a source of polyphenolic wound healers, like wild cultivars.
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