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Abstract: Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic
target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely
blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse
platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1
cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including
rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates
mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits
CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not
inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes
instead an increased response. This effect was also seen with platelets from newly generated human
GPVI knockin mice (hGP6tg/tg). These results indicate that the binding of JAQ1 to a structurally
conserved epitope in GPVI differently affects its function in human and mouse platelets.

Keywords: glycoprotein VI; JAQ1; platelet receptors; platelet activation; platelet inhibition

1. Introduction

Platelets are small, anucleated blood cells produced by bone marrow-resident
megakaryocytes (MK), that have key roles in hemostasis and thrombosis [1,2]. At the
sites of vascular injury, the platelets recognize and bind to specific ligands on the exposed
extracellular matrix, become activated and aggregate to form a hemostatic plug that seals
the vessel and prevents excessive blood loss. However, in pathological conditions, the
intravascular platelet activation can precipitate the formation of vessel-occluding thrombi,
leading to ischemic disease states, such as stroke or myocardial infarction [3,4]. Therefore,
anti-platelet drugs have become indispensable therapeutics to efficiently prevent or treat
arterial thrombosis, but they carry an inherent risk of bleeding, most obviously in multi-
morbid patients requiring dual platelet inhibition or combined anticoagulation [5]. Among
the major platelet receptors, glycoprotein (GP) VI has emerged as a promising therapeutic
target, as its functional inhibition or genetic deletion provides protection from arterial
thrombus formation in vivo, while only minimally affecting hemostasis [6]. GPVI is the
main signaling receptor for collagen and is expressed exclusively on platelets and MK. GPVI
is associated with the FcR γ (Fc receptor γ)-chain, which is responsible for the signaling via
its immunoreceptor-tyrosine-based-activation-motif (ITAM). Besides collagen, several addi-
tional physiological agonists have been identified in recent years. These include fibrinogen,
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fibrillar fibrin [7–10] and fibronectin [11], the basement membrane protein nidogen-1 [12]
and laminins [13]. These ligands are likely to—at least in part—contribute to the role of
GPVI in pathophysiological processes beyond thrombosis, such as ischemia-reperfusion
injury [14], sepsis [15], cancer and metastasis [16,17] and venous thrombosis [18]. Collec-
tively, these studies highlight the potential benefits of efficient anti-GPVI agents. In fact,
the first inhibitors of GPVI are now entering the clinic. The GPVI-blocking Fab (ACT017,
glenzocimab) is assessed in the context of acute ischemic stroke [19–21]. In transgenic mice
carrying the human GP6 gene, glenzocimab was found to be effective in thrombus suppres-
sion, without impacting GPVI-dependent inflammatory hemostasis [22]. The first studies
on the (patho-)physiological function and in vivo relevance of GPVI were performed in
mice and capitalized on the first reported anti-GPVI monoclonal antibody (mAb), JAQ1
(rat IgG2a) [23,24]. It was shown that JAQ1 completely blocks the collagen-related-peptide
(CRP)-induced activation of mouse platelets and virtually abolishes mouse platelet adhe-
sion, activation and aggregate formation on collagen [6,25]. Notably, a possible interaction
between JAQ1 and human GPVI (huGPVI) has not been studied. Mouse and human
GPVI share ~67.3% of their nucleotide sequence and ~64.4% of the amino-acid sequence,
with huGPVI having an intracellular domain that is 24 amino acids longer than that of
mouse GPVI (mGPVI) [26]. In addition, the extracellular domains of the receptor also differ
between the two species, best documented by the ability of huGPVI, but not mGPVI, to
support platelet spreading on fibrinogen [27]. As this raises the question as to whether
a specific anti-mGPVI antibody could bind huGPVI and thereby modulate its function in
a comparable manner [28], we assessed the effects of JAQ1 on huGPVI. Here, we show that
JAQ1 recognizes a conformational epitope on huGPVI and efficiently activates the human
platelets upon cross-linking by a secondary antibody. Similar to its effect on mGPVI, JAQ1
inhibited the human platelet activation by CRP, but, in stark contrast to mouse platelets, it
did not inhibit, but rather promoted the adhesion, activation and aggregate formation of
human platelets on collagen. These differential effects of JAQ1 on huGPVI were confirmed
in platelets from a newly generated mouse line expressing huGPVI instead of mGPVI.

2. Results
2.1. Anti-Mouse GPVI Monoclonal Antibody JAQ1 Binds Human GPVI and Modulates
Receptor Function

JAQ1 (rat IgG2a) is the first anti-GPVI mAb reported in the literature and was ini-
tially raised against mouse GPVI [24]. JAQ1 completely blocks the major collagen binding
site/CRP-binding site in mGPVI [6], resulting in profound inhibition of platelet adhesion,
activation and aggregate formation on collagen in vitro [6,24,29]. To assess potential cross-
reactivity of JAQ1 with GPVI in other species, we assessed the binding of JAQ1-FITC to
platelets in freshly prepared diluted heparinized blood by flow cytometry. In agreement
with previous descriptions, JAQ1-FITC robustly bound to the wild type (WT), but not
Gp6−/− mouse platelets (Figure 1A). In addition, we observed no binding to the platelets
from closely related species, such as rat, rabbit, guinea pig, swine or dog (Table 1). Remark-
ably, however, JAQ1-FITC robustly bound to human platelets (Figure 1A, Table 1). Next,
we assessed whether JAQ1 binding would be affected by the pre-incubation of human
platelets with different, established anti-huGPVI monoclonal antibodies (mAbs). Indeed,
JAQ1-FITC binding was reduced by ~66% after pre-incubation with the function-blocking
anti-huGPVI mAb EMF-1 [30], but only partially by the non-function-blocking EMF-2
(~26%) (Figure 1B). Subsequently, we tested whether JAQ1 recognizes huGPVI in a Western
blot analysis of human platelet lysate. However, while JAQ1 efficiently detected mGPVI no
band in the human platelet lysates was observed, indicating that the epitope on huGPVI is
conformation sensitive (Figure 1C).
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Figure 1. Anti-mouse GPVI monoclonal antibody JAQ1 binds to human GPVI and modulates its
function. (A) Washed human or mouse blood was pre-incubated with JAQ1 IgG-FITC and Mean
Fluorescence Intensity (MFI) was measured by flow cytometry; where indicated, human blood was
pre-incubated with 20 µg/mL IV.3. Irrelevant rat-IgG-FITC was used as control; (B) Human blood was
pre-incubated with 20 µg/mL EMF1, EMF-2 or control IgG for 10 min and subsequently incubated
with JAQ1-FITC for 10 min, irrelevant IgG-FITC was used as control; (C) Mouse (WT) and human
platelet lysates were separated by 10% SDS-PAGE under non-reducing condition and blotted onto
PVDF membrane. JAQ1-HRP was used to detect GPVI on the membrane. GAPDH served as loading
control; (D) Murine or human washed platelets were pre-incubated with either JAQ1 or a control IgG
and aggregometry was performed; crosslinking of bound antibody was induced by adding an anti-
Rat IgG antibody and light transmission was recorded for 15 min. When indicated, human platelets
were incubated with IV.3 prior to JAQ1 addition; (E) Human washed platelets were pre-incubated
with either JAQ1 or a control IgG and aggregometry was performed; aggregation was induced using
the indicated agonists and for 10 min; (F,G) Human-washed platelets were pre-incubated with IV.3
plus JAQ1 IgG or a control IgG and let spread on a 100 µg/mL fibrinogen-coated surface for 45 min
at 37 ◦C. Experiments shown are representative of n = 4. Flow cytometry and spreading data are
expressed as mean± SD, significance is expressed as * p < 0.05, ** p < 0.01, vs. indicated group (t-test).
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Table 1. Flow cytometric analysis of JAQ1 binding to the platelet surface of different species. The
data are reported as MFI of JAQ1-FITC (JAQ1 MFI) and as percentages with respect to mouse MFI
(JAQ1%). Mean Platelet Volume (MPV) of the different species are reported in femtoliter (MPV).
“Negative” indicates MFI values comparable to isotype IgG-FITC control values. Data are reported as
mean ± SD.

Species JAQ1 MFI MPV (fl) JAQ1% MPV Reference

Mouse 995 ± 24.5 5.5–6 100% [31]
Rat Negative 4.4–6.9 - [32]

Rabbit Negative 5.55–6.35 - [33]
Guinea Pig Negative 7.1–8.2 - [34]

Swine Negative 8.4–9.75 - [35]
Dog Negative 8–12 - [36]

Human 1296 ± 47.7 9.4–12–3 130% [37]

Next, we assessed the effects of JAQ1 on the human platelet aggregation. The cross-
linking of JAQ1 with a secondary anti-rat IgG antibody triggered the rapid aggregation of
human platelets, similar to mouse platelets (Figure 1D). Of note, this platelet response was
not dependent on FcγRIIa, as blocking this with IV.3 antibody did not prevent JAQ1-cross-
linking-induced platelet aggregation, but only minimally delayed it (Figure 1D; Figure
S1A, Supplementary Materials). The pre-incubation of human-washed platelets with 5, 10
or 20 µg/mL JAQ1 reduced and delayed aggregation in response to CRP, but in contrast
to mouse platelets (as shown in paragraph 2.3) this was not abrogated. Notably, the
traces of the JAQ1-treated samples showed a reduced platelet-shape change, pointing
to a JAQ1-dependent platelet pre-activation and indicating that the residual observable
aggregation is partly due to this effect (Figure 1E; Figure S1B,C, Supplementary Materials).
Intriguingly, the presence of JAQ1 rather promoted collagen- and convulxin- dependent
aggregate formation, and this occurred independently of FcγRIIa (Figure 1E; Figure S1B,C,
Supplementary Materials), indicating that JAQ1 modulates huGPVI towards a pre-active
state. The treatment with higher concentrations of JAQ1 slightly exacerbated the CRP-
inhibitory effect and convulxin-dependent increased aggregation, but not with collagen
(Figure 1E; Figure S1B,C, Supplementary Materials). Finally, we tested the JAQ1 effect on
the spreading of human platelets on a fibrinogen-coated surface in the absence of additional
agonists. Interestingly, pre-incubation with JAQ1 but not the control IgG increased the
percentage of the fully spread platelets (phase 4) on the surface (Figure 1F,G). Collectively,
these data indicate that the binding epitope of JAQ1 may functionally not be fully conserved
between mouse and human GPVI.

2.2. A humanized GP6 Mouse Line to Study the Effect of JAQ1 on huGPVI

In order to study the JAQ1 effects on huGPVI in the absence of possible FcγRIIa
interferences, we capitalized on a newly generated mouse line humanized for the GP6
gene (hGP6tg/tg). The mouse line generation is thoroughly described in the Materials
and Methods Section 4.3; (Figure S4, Supplementary Materials). To ensure the suit-
ability of the newly generated mouse line for further experiments, we analyzed the
platelet count, size and expression levels of prominent membrane glycoproteins and
found no alteration compared to the wild-type controls, except for the selective expres-
sion of human or mouse GPVI (Tables S1 and S2, Supplementary Materials). As ex-
pected, we also did not find any difference in the overall platelet activation (Figure S4A,B,
Supplementary Materials) and GPVI-dependent platelet aggregation and thrombus forma-
tion under flow (Figure S4C–F, Supplementary Materials). Next, we confirmed by flow cy-
tometry that JAQ1 binds to the platelets of hGP6tg/tg, hGP6wt/tg and wild-type mice in a com-
parable manner (Figure 2A). Furthermore, we tested whether EMF-1 or EMF-2 compete with
JAQ1 for binding to the hGP6tg/tg platelets. In line with the results obtained with the human
platelets, the JAQ1-FITC binding was profoundly reduced upon pre-incubating the platelets
with EMF-1 (~76.4% reduction), but very marginally by EMF-2 (~16%) (Figure 2B). To ex-
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clude that the inability of JAQ1 to recognize human GPVI in a Western blot analysis was
due to species-specific glycosylation, we probed the platelet lysates from the WT, hGP6tg/tg

and hGP6wt/tg animals with JAQ1. As expected, the signals were only obtained in the sam-
ples from the WT or hGP6wt/tg mice, but not from the hGP6tg/tg platelet lysates. Of note,
less mGPVI was detected in the hGP6wt/tg platelet lysates as compared to the WT platelets
(70% reduction). Likewise, EMF-1 recognized huGPVI in the lysates of hGP6tg/tg as
well as the hGP6wt/tg platelets (Figure 2C). As expected, the signal obtained from the
hGP6wt/tg lysates was reduced (−49.3%) as compared to that of the hGP6tg/tg platelet lysates
(Figure 2D,E). Finally, pre-incubation with JAQ1 IgG did not induce an evident platelet
aggregation, whereas the cross-linking of JAQ1 with a secondary anti-rat IgG antibody
induced a rapid aggregate formation of hGP6tg/tg-derived platelets (Figure 2F; Figure S2,
Supplementary Materials). Overall, these data confirm the specific JAQ1 binding to huG-
PVI and illustrate that the newly generated mouse line is a suitable model for testing the
huGPVI-targeting molecules.
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Figure 2. hGP6tg/tg mice confirm that JAQ1 binds to native human GPVI on the platelet surface, but
not in Western blot analysis. (A) WT, hGP6wt/tg, hGP6tg/tg and Gp6−/−-washed blood was incubated
JAQ1-FITC and MFI was measured by flow cytometry; (B) hGP6tg/tg-washed blood was pre-incubated
with either EMF-1, EMF-2 or control IgG and subsequently incubated with JAQ1-FITC; (C) WT,
hGP6wt/tg and hGP6tg/tg platelet lysates were separated by SDS-PAGE under non-reducing conditions
and blotted onto a PVDF membrane. JAQ1 or EMF-1 were used to detect GPVI on the membrane.
GAPDH served as loading control; (D,E) Western blot quantitative analysis relative to loading control;
(F) hGP6tg/tg washed platelets were pre-incubated with JAQ1 or control IgG and aggregate formation
was induced using anti-rat IgG antibodies (20 µg/mL). Experiments shown are representative of
n = 4, Western blot of n = 3. Flow cytometry and Western blot data are expressed as means ± SD.
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2.3. Differential Effect of JAQ1 on huGPVI and mGPVI

The effect of JAQ1 on the GPVI-mediated platelet activation was assessed by flow cy-
tometry, using WT and hGP6tg/tg platelets. In line with previous reports [6], JAQ1 abrogated
the CRP-induced platelet activation of the WT platelets, while convulxin (CVX)-induced
activation remained intact (Figure 3A,B). In contrast, the hGP6tg/tg platelets displayed only
moderately inhibited CRP-dependent platelet activation, while convulxin-induced inte-
grin activation was even enhanced (Figure 3C,D). Next, the effect of JAQ1 on the platelet
aggregation was assessed. On the WT platelets, JAQ1 abrogated the CRP-induced and
dramatically reduced the collagen-induced aggregation, while aggregation to the convulxin
or non-GPVI agonist was unaltered (Figure 3E; Figure S3A,C, Supplementary Materials;
and data not shown). Interestingly, the aggregation of the hGP6tg/tg platelets in response to
CRP was delayed and reduced following the JAQ1-pretreatment. In stark contrast, JAQ1
accelerated and fostered the collagen- and convulxin-induced hGP6tg/tg platelet aggrega-
tion (Figure 3F; Figure S3B,D, Supplementary Materials), confirming our results with the
human platelets (Figure 1). To assess whether the enhancement of platelet activation and
aggregation would result in an accelerated thrombus formation, we tested the effect of
JAQ1 on the WT and hGP6tg/tg platelets in a whole mouse blood-flow adhesion assay on
a collagen-coated surface. As expected, JAQ1 completely abolished the thrombus formation
in the WT blood. Strikingly, however, the formation of the thrombi was potently enhanced
after incubation of the hGP6tg/tg-derived blood, thus illustrating the differential effects of
JAQ1 on mouse versus human GPVI (Figure 3G–I).
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Figure 3. Differential effect of JAQ1 on huGPVI and mGPVI. (A–D) WT (A,B) or hGP6tg/tg (C,D)
diluted heparinized blood was pre-incubated with 20 µg/mL JAQ1 or control-IgG. Treated platelets
were incubated with WUG 1.9-FITC (A,C), JON/A-PE (B,D) and stimulated with CRP (10 µg/mL),
convulxin (1.25 µg/mL) or vehicle; (E,F) Washed platelets from WT (E) or hGP6tg/tg (F) were pre-
incubated with 20 µg/mL JAQ1 or control IgG and aggregation was induced with the indicated
agonists; aggregation was measured for 10 min; (G–I) Heparinized WT or hGP6tg/tg blood was pre-
incubated with 20 µg/mL JAQ1 or control IgG and tested in flow adhesion assay on a collagen-coated
surface. Percentage of the covered surface (H) and relative volume of thrombi (I) were analyzed
based on fluorescence intensity of anti-GPIX-AF488 derivative. Experiments shown are representative
of n = 4. Flow cytometry data are expressed as means ± SD, significance is expressed as * p < 0.05,
** p < 0.01, *** p < 0.001 vs. indicated group (t-test).

3. Discussion

The monoclonal antibody JAQ1 has become a widely used tool for platelet research
and its inhibitory effect on mouse GPVI has been thoroughly characterized. Here, we
report, for the first time, that this antibody also cross-reacts with huGPVI. Interestingly,
however, our data suggest that the binding epitope is functionally different between mGPVI
and huGPVI. While JAQ1 inhibits the CRP-dependent platelet activation in both species
(albeit at different levels), it differs in its effects on convulxin- and collagen-induced platelet
activation (Figures 1–3). On the murine platelets, JAQ1 blocks activation in response to
low and intermediate collagen concentrations (Figure 3, [38]), while it enhances collagen-
induced activation of huGPVI expressing platelets (Figures 1 and 3; Figures S1 and S3,
Supplementary Materials). One explanation could be that JAQ1 stabilizes the GPVI dimers
(or clusters), which ‘prime’ GPVI for subsequent platelet activation, thereby accelerating
and enhancing the platelet activation. Of note, JAQ1 even triggers a pre-activation of the
human but not the mouse GPVI, resulting in subtle integrin activation (already in the
absence of further agonists) as revealed by flow cytometry (Figure 3A–D).

Very unexpectedly, our data show that JAQ1 binds to a conserved epitope in mouse
and human GPVI that somehow evolved to differ in its functional significance. Mouse,
rat and guinea pig diverged from human ~90 million years ago [39], and are more closely
related within each other with respect to other species, such as dog and swine [40]. These
data are in agreement with our flow cytometry results, showing no binding to GPVI on the
platelet surface in these animals. The previous studies revealed discrepancies between the
mouse and human GPVI affinity to specific ligands and discussed possible differences with
regard to the relevance of this receptor in thrombosis [41], thus, underscoring the need to
utilize humanized animal models. Indeed, our newly generated mouse line allowed us
to faithfully reproduce the results obtained with human platelets, thereby excluding the
possible overlapping effects of FcγRIIa, which is present in human but not mouse platelets
and signals through a similar pathway as GPVI. These data clearly show that the hGP6tg/tg

mice reported here are a suitable model system for testing GPVI modulators in vitro and
in vivo.

In conclusion, we present a previously undescribed and unexpected pre-activating
effect of JAQ1 on huGPVI. This study also illustrated how the same epitope in human
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and mouse GPVI has genetically diverged during evolution, leading to a different
functional significance.

4. Materials and Methods
4.1. Antibodies and Reagents

The collagen-related peptide (CRP) was a generous gift from Paul Bray (Baylor College,
USA); Horm collagen was purchased from Takeda (Linz, Austria); convulxin was pur-
chased from Enzo Life Sciences (New York, NY, USA); thrombin was purchased from Roche
Diagnostic (Mannheim, Germany); rabbit anti-GAPDH and rat anti-mouse IgG-HRP anti-
bodies were purchased from Sigma-Aldrich (Steinheim, Germany); goat anti-rat IgG-HRP
was purchased from Dianova (Hamburg, Germany); anti-rabbit IgG-HRP was purchased
from Jackson Immuno (Suffolk, UK). For the human blood collection, the S-monovettes
3.2% citrate and Safety-Fly-Needle 21G were purchased from Sarstedt (Nümbrecht, Ger-
many). The micro-cuvettes for aggregometry were purchased from LABITec (Ahrensburg,
Germany). The 5 mL Polystyrene Round-Bottom Tubes for flow cytometry were purchased
from Corning Inc. (New York, NY, USA). The heparin was purchased from Ratiopharm
(Ulm, Germany). The JAQ1 [24], EMF-1 [30], EMF-2, JON/A [42,43] and WUG 1.9 were
generated in house. The IV.3 antibody was purchased from Biozol (Eching, Germany).

4.2. Blood Donors and Blood Collection

The blood was obtained from healthy volunteers not undergoing anticoagulant or
antiplatelet drug therapy for at least 4 weeks before recruitment. For the present study, the
volunteers signed a written informed consent after approval by the Institutional Review
Boards of the University of Würzburg and in accordance with the Declaration of Helsinki.
The relevant guidelines and regulations were followed during the performance of all of the
described methods. Butterfly needles were used for the collection of blood by venipuncture;
the samples were collected into 9 mL tubes containing 3.2% trisodium citrate. For all of the
studies, the blood was used within 4 h from withdrawal and kept at room temperature.

4.3. Animals

The animals used in this study were matched based on genetic background, sex
and age. The experiments with animals shown in this article had been previously ap-
proved by the district government of Lower Franconia (Regierung von Unterfranken) and
performed following the current Animal Research: Reporting of In Vivo Experiments
guidelines (https://www.nc3rs.org.uk/arrive-guidelines, accessed on 15 June 2022).In
order to generate the humanized GP6 (hGP6tg/tg) mouse line, the cDNA-expressing hu-
man GPVI (huGPVI) was inserted at the level of the murine ATG of the mouse Gp6 gene
via CRISPR-Cas9 technology. The mutagenesis was carried out on the base of previ-
ous publications [44] via inserting the cDNA-expressing huGPVI within the exon 1 of
the WT gene, thus allowing for the selective expression of the human but not mouse
GPVI (Figure S5, Supplementary Materials). The mice were genotyped by PCR with
the forward primer 5′-TGGCAAGAAGAGATAAGTGGTGGCT-3′, the reverse primers
5′-CAGGTCACCTTCAGGACTCACCAAT-3′ for the wild-type amplification and
5′-CAGACTTCTCTTCATGGCCGGGAT-3′ for the transgenic mouse amplification. For
the experiments, venous blood was collected in 300 µL of 20 U/mL heparin via retro-
orbital bleeding.

4.4. Measurement of Platelet Count and Size

For the assessment of platelet size and count, the mice were bled into tubes coated
with EDTA; the parameters were measured using an automated cell counter (ScilVet, scil
animal care company GmbH, Viernheim, Germany).

https://www.nc3rs.org.uk/arrive-guidelines
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4.5. Washed Human and Murine Platelets

The human-washed platelets were obtained as follows: 2 mL of ACD pH4.5 was
added to the citrated blood and centrifuged for 20′ at 300× g at room temperature. The
Platelet-Rich-Plasma was collected in new 15 mL tubes and supplemented with 1/10 ACD,
2 µL of apyrase/mL (0.02 U mL−1; A6410, Sigma-Aldrich) and 5µL PGI2/mL (0.1 µg mL−1;
P6188, Sigma-Aldrich). The platelets were pelleted by centrifugation for 10 min at 500× g,
washed twice with Tyrode’s buffer containing 2µL apyrase/mL and 5µL PGI2/mL. The
murine platelets were washed as previously described [45].

4.6. Flow Cytometry Assays

The human blood diluted 1:10 and the murine blood diluted 1:20 in Tyrode’s
buffer—Ca2+ was used for the flow cytometry analysis. For the platelet activation analysis,
the murine blood was diluted in Tyrode’s buffer + Ca2+. JON/A-PE (Emfret Analytics,
Eibelstadt, Germany) was used to detect the activated integrin αIIbβ3 [42] whilst P-selectin
exposure was detected with a specific anti-mPselectin FITC-conjugated antibody WUG
1.9 [42]. The diluted murine blood was incubated with either CRP (10 µg/mL), convulxin
(1.25 µg/mL), thrombin (0.1 U/mL) or vehicle control, together with JON/A-PE and anti-
Psel-FITC for 12 min and finally diluted in 500 µL PBS. The measurement of the MFI was
performed on a FACSCelesta (BD Biosciences, Gurugram, India).

4.7. Western Blot

The human and murine platelets were lysed at a concentration of 5 × 108/mL in
an IP-buffer containing a protease inhibitor cocktail. The platelet lysates were mixed
with a loading buffer containing SDS and pre-heated to 95 ◦C for 5 min before loading in
a 10% polyacrylamide gel, and the immunoblotting was performed as previously de-
scribed [46,47].

4.8. Aggregometry Assay

Human- and murine-washed platelets were resuspended at a concentration of
2 × 108/mL in Tyrode’s buffer—Ca2+. The aggregometry was performed as previously
described [48]. The human or murine platelets were activated using 0.5 µg/mL Collagen-
Related-Peptide (CRP), convulxin (0.125 µg/mL) or collagen 3 µg/mL (mouse) and
10 µg/mL (human). The measurements were performed using an APACT 4 aggregometer
from LABITec (Ahrensburg, Germany).

4.9. Spreading Assay

The human platelets were washed and resuspended at a concentration of 108/mL
in Tyrode’s buffer—Ca2+. The washed platelets were incubated with either JAQ1 IgG or
control rat IgG for 1 min and then pipetted onto a 100 µg/mL fibrinogen-coated surface.
The platelets were allowed to spread for 45 min. Fixation, coating and visualization were
performed, as previously described [49].

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23158610/s1.
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