
Citation: Caliskan, A.; Crouch,

S.A.W.; Giddins, S.; Dandekar, T.;

Dangwal, S. Progeria and

Aging—Omics Based Comparative

Analysis. Biomedicines 2022, 10, 2440.

https://doi.org/10.3390/

biomedicines10102440

Academic Editors: Shaker A. Mousa

and Filippo Macaluso

Received: 30 June 2022

Accepted: 21 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Progeria and Aging—Omics Based Comparative Analysis
Aylin Caliskan 1, Samantha A. W. Crouch 1, Sara Giddins 1 , Thomas Dandekar 1,* and Seema Dangwal 2,*

1 Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
2 Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine,

Stanford, CA 94305, USA
* Correspondence: dandekar@biozentrum.uni-wuerzburg.de (T.D.); sdangwal@stanford.edu (S.D.)

Abstract: Since ancient times aging has also been regarded as a disease, and humankind has always
strived to extend the natural lifespan. Analyzing the genes involved in aging and disease allows for
finding important indicators and biological markers for pathologies and possible therapeutic targets.
An example of the use of omics technologies is the research regarding aging and the rare and fatal
premature aging syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). In our study,
we focused on the in silico analysis of differentially expressed genes (DEGs) in progeria and aging,
using a publicly available RNA-Seq dataset (GEO dataset GSE113957) and a variety of bioinformatics
tools. Despite the GSE113957 RNA-Seq dataset being well-known and frequently analyzed, the
RNA-Seq data shared by Fleischer et al. is far from exhausted and reusing and repurposing the data
still reveals new insights. By analyzing the literature citing the use of the dataset and subsequently
conducting a comparative analysis comparing the RNA-Seq data analyses of different subsets of
the dataset (healthy children, nonagenarians and progeria patients), we identified several genes
involved in both natural aging and progeria (KRT8, KRT18, ACKR4, CCL2, UCP2, ADAMTS15,
ACTN4P1, WNT16, IGFBP2). Further analyzing these genes and the pathways involved indicated
their possible roles in aging, suggesting the need for further in vitro and in vivo research. In this
paper, we (1) compare “normal aging” (nonagenarians vs. healthy children) and progeria (HGPS
patients vs. healthy children), (2) enlist genes possibly involved in both the natural aging process and
progeria, including the first mention of IGFBP2 in progeria, (3) predict miRNAs and interactomes
for WNT16 (hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-
124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p), (4) demonstrate the compatibility of well-established
R packages for RNA-Seq analysis for researchers interested but not yet familiar with this kind of
analysis, and (5) present comparative proteomics analyses to show an association between our
RNA-Seq data analyses and corresponding changes in protein expression.

Keywords: progeria; aging; omics; RNA sequencing; bioinformatics; sun exposure; HGPS; IGFBP2;
ACKR4; WNT

1. Introduction

Aging is characterized as a time-dependent functional decline leading to progressive
loss of physiological functions and deterioration [1]. It is known as the primary risk factor
for several major pathologies, including cardiovascular disorders, diabetes, neurodegenera-
tive diseases, and cancer [1].

López-Otín et al. (2013) have defined the hallmarks of aging, aiming for a similar effect
on aging research as Hanahan and Weinberg’s hallmarks of cancer had on cancer research by
contributing to the momentum cancer research has gained in recent decades [1]. While the
hallmarks of aging offer an excellent overview of biogerontology, Gems and de Magalhães
(2021) pointed out the need for more research to understand the processes involved in
aging [2]. At the moment, the “hallmarks” do not completely capture the complex process
of aging [2]. In addition, not all mechanisms observed in aging are exclusive to aging, such
as dysregulation of the epigenome is also observed independent of age in overt disease [3].
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Furthermore, the processes involved in aging are interconnected, as Kennedy et al. (2014)
elaborate in their publication describing the seven pillars of aging [4]. Therefore, there is, of
course, more to aging than a single explanatory paradigm can describe [2]. Hence, it is vital
to collect and analyze data, for instance, by comparing protein interactions and pathways.
Meta-analysis studies like ours and omics analyses in general can reveal important age-
affected pathways, especially when comparing different age groups or different conditions,
such as comparing nonagenarians with healthy young persons as well as progeria patients.
As for all in silico analyses, subsequent in vitro and in vivo analyses are necessary before
the results can be brought to clinical practice. However, the combination of computational
methods will result in more supporting and clarifying efforts such as the seven pillars of
aging or the hallmarks of aging.

The technical progress in research, which becomes obvious by looking at disciplines
such as “-omics”, also contributes to the growing knowledge and understanding of the
processes involved in aging. In general, the ending “-omics” indicates a global or compre-
hensive assessment of a kind of molecule [5].

Like the first “omics” discipline, genomics, which focuses on entire genomes instead
of solely studying single genes [5], all kinds of “-omics” focus on a global or comprehensive
assessment of a certain kind of molecule [5]. Transcriptomics, for instance, analyzes
RNA levels in a qualitative and quantitative manner [5]. By comparing high-throughput
sequencing data of healthy individuals and individuals affected by a disease, it is possible to
gain a better understanding of various human pathologies including aging-related diseases.

An example of the progress in aging research is the rare and fatal premature aging
syndrome progeria (Hutchinson-Gilford progeria syndrome, HGPS). The disease was
first described in 1886 by Hutchinson [6] and in 1897 by Gilford [7], and was brought to
attention as a detailed case study in 1913 [7], emphasizing the need for further knowledge
and research [7,8].

Progeria is often diagnosed relatively early in childhood, and as the name suggests,
several of the symptoms of progeria also occur with old age, including hair graying or loss,
skin thinning, and osteopenia/osteoporosis [9] as well as diminished joint mobility [10].
Besides aging symptoms, progeria patients often suffer from cardiovascular problems [11]
as well as stroke [11], which result in premature death and an average life expectancy of
about 13 years.

In 2003, 90 years after progeria was ardently brought to attention, a mutation in LMNA
(Lamin A/C) was identified as the cause of HGPS by the Progeria Research Foundation’s
collaborative research team [12]. Due to a dominant 1824C > T mutation, which was found
to be the predominant cause of progeria, a cryptic splice donor site gets activated [13,14].
This is causing the formation of a truncated prelamin A, named progerin, which is missing
50 amino acids due to internal deletion and is not processed into normal lamin A [13,14].

Thanks to the efforts of the Progeria Research Foundation (PRF) and the worldwide
participation of progeria patients and their families, less than two decades later, two
successful clinical trials aiming to treat HGPS and increase the life expectancy of HGPS
patients have been performed [15,16] and a third trial is expected to be completed in 2023
(NCT02579044). Additionally, the first medication against progeria has been FDA (U.S.
Food and Drug Administration) approved [17] and is in the process of being approved
in Europe [18]. Besides searching for a cure, the PRF also supports progeria and aging
research by other scientists, for instance, by sharing fibroblasts that were donated by HGPS
patients [19].

Using human fibroblasts, Fleischer et al. (2018) generated a comprehensive set of
genome-wide RNA sequencing (RNA-Seq) profiles to develop a computational method to
predict the biological age [19]. The dataset contains RNA-Seq data of dermal fibroblasts
donated by ten progeria patients and 133 “apparently healthy” individuals (aged 1 to
96 years according to their metadata) [19]. Their dataset is publicly available on the Gene
Expression Omnibus (GEO) database [20] under accession number GSE113957 [19]. Since
its publication in November 2018, the article by Fleischer et al. has been cited 37 times in



Biomedicines 2022, 10, 2440 3 of 40

PubMed (until May 2022), with 13 of the citing papers mentioning the use of the GSE113957
dataset from the Fleischer et al. paper [21–33] (as described in Table 1). According to the
publications in PubMed, the dataset alone contributed to 8 studies investigating aging [21–28].

The frequent use of the dataset indicates the broad use and the value of the dataset for
research, not only in aging research but also in bioinformatics in general. Keeping in mind
that there might be further studies either still in preparation or not indexed in PubMed, the
possible applications of the dataset are nowhere near exhausted.

Although several of the publications citing the use of the GSE113957 dataset by
Fleischer et al. focused on aging, they investigated different aspects and effects. Therefore,
to demonstrate the variety of research and highlight the value addition in the current study,
we summarize this information in Table 1. Additionally, as shown in Table 1, we provide
the first comparative study looking both at aging (nonagenarians vs. healthy children) and
progeria (HGPS patients vs. healthy children). The other studies focused either on aging
alone (comparing healthy children to people of (extreme) age) or progeria alone (comparing
healthy children and progeria patients).

Table 1. Comparison of the previous studies mentioning the use of the GSE113957 dataset [19] with
the current analysis.

Study Title Focus of the Study Ref.

Progeria and
Aging—Omics Based
Comparative Analysis

• Comparative analysis comparing two different RNA-Seq analyses
(progeria vs. healthy children and nonagenarians vs. healthy children

• Focus on differentially regulated genes and Pathways in both normal aging and
accelerated aging (progeria)

• First-time mention of the known age-related mortality marker IGFBP2 as a
potential biomarker in progeria

• Presenting predicted miRNAs and interactomes for WNT16, UCP2, and IGFBP2
• Metaproteomics analysis for a better understanding of the differentially

expressed genes (DEGs)
• Multi-omics approach combining RNA-Seq data and proteomics data

[our study]

Epigenetic deregulation of
lamina-associated

domains in
Hutchinson-Gilford
progeria syndrome

• Focused on epigenetic deregulation of lamina-associated domains (LADs)
• RNA-Seq data analysis was performed to investigate the contribution of the

identified LAD-specific chromatin accessibility and DNA methylation changes
on changes in gene expression

• Showed that ectopic progrin expression caused similar changes in gene
expression as HGPS (examples given in their supplementary data: EDIL3 (EGF
Like Repeats And Discoidin Domains 3), IGFBP7 (Insulin Like Growth Factor
Binding Protein 7), POSTN (Periostin), NTN4 (Netrin 4), and
IL13RA2(Interleukin 13 Receptor Subunit Alpha 2))

[21]

Phosphorylated Lamin
A/C in the Nuclear

Interior Binds Active
Enhancers Associated

with Abnormal
Transcription in Progeria

• Focused on Ser22-phosphorylated (pS22) Lamin A/C (pLamin) and its effect on
gene regulation (mechanism)

• Used a different subset of Fleischer et al.’s dataset [19] (children and progeria
patients aged between 2 and 17 years)

• Offer supplementary data indicating which of the genes dysregulated in
progeria are affected by pLamin

[22]

Prevalent intron retention
fine-tunes gene expression
and contributes to cellular

senescence

• Focus on the alternative splicing type intron retention (IR)
• Investigated the role of global IR in cellular senescence
• Demonstrated that the splicing factor U2AF1 (U2 Small Nuclear RNA Auxiliary

Factor 1) mediated IR of specific genes (e.g., CPNE1 (Copine 1)) contributed to
cellular senescence

• The authors show that knockdown of U2AF1 slowed cell growth rate, increased
CDKN2B (Cyclin Dependent Kinase Inhibitor 2B) expression, and decreased
MKI67 (Marker Of Proliferation Ki-67), CDK1 (Cyclin Dependent Kinase 1), and
CDK4 (Cyclin Dependent Kinase 4) expression

[23]
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Table 1. Cont.

Study Title Focus of the Study Ref.

Analysis of transcriptional
modules during human

fibroblast ageing

• Used Weighted Gene Co-expression Network Analysis (WGCNA) and found
four natural aging- and one premature aging disease-associated modules

• Found aging-related pathways, including mitotic cell cycle, DNA replication,
and DNA repair, as well as pathways related to essential cellular machineries
(components of mitochondria, ribosome or RNA polymerase) to decline with age

• Found association of muscle and cardiovascular function-related pathways to
HGPS

• Focused on LMNB1 (Lamin B1), KIFC1 (Kinesin Family Member C1), DLGAP5
(DLG Associated Protein 5), ANLN (Anillin, Actin Binding Protein), TACC3
(Transforming Acidic Coiled-Coil Containing Protein 3), LMNB2 (Lamin B2),
DTYMK (Deoxythymidylate Kinase), ECM2 (Extracellular Matrix Protein 2),
SVEP1 (Sushi, Von Willebrand Factor Type A, EGF And Pentraxin Domain
Containing 1), PLSCR4 (Phospholipid Scramblase 4), KLHL24 (Kelch Like
Family Member 24), SEMA3D (Semaphorin 3D), and TOR1AIP1 (Torsin 1A
Interacting Protein 1)

• Reported CDK1, POLR2F (RNA Polymerase II, I And III Subunit F), SNAP23
(Synaptosome Associated Protein 23), UBE2D1 (Ubiquitin Conjugating Enzyme
E2 D1), and MYL9 (Myosin Light Chain 9) as WGCNA hub genes

• KIFC1, DLGAP5, ANLN, ECM2, SVEP1, and TOR1AIP1 as potential aging
biomarkers, and MYL9 to be related to progeria

[24]

Repetitive elements as a
tran-scriptomic marker of

aging: Ev-idence in
multiple datasets and

models

• Focus on noncoding repetitive element (RE) transcripts as a transcriptomic
marker of aging

• Age prediction using the 1,200 most significantly differentially expressed genes
upon aging

• The authors report age-related RE transcript increases that might indicate
biological age

[25]

Altered Chromatin States
Drive Cryptic

Transcription in Aging
Mammalian Stem Cells

• Focus on cryptic transcription and age-related changes in chromatin signatures
• During their study, McCauley et al. (2021) generated their own dataset

(GSE156409)
• Fleischer et al.’s dataset [19] was among several GEO datasets the authors

mentioned as one of the additionally analyzed datasets of the GEO database
• The authors looked at pathways regarding cryptic transcription changes and

DNA methylation

[26]

Extremes of age are
associated with differences

in the expression of
selected pattern

recognition receptor genes
and ACE2, the receptor for
SARS-CoV-2: implications

for the epidemiology of
COVID-19 disease

• Focus on genes encoding proteins known to interact with SARS-CoV-2 proteins
(pattern recognition receptor genes and ACE2 (Angiotensin-converting enzyme
2))

• Aimed to find a strategy for stratifying the risk of a severe COVID-19 infection
• Compared the oldest and the youngest age group but did not analyze

progeria-related data
• Enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis

showed DEGs were involved in pathways including Cell Cycle and DNA
replication

• Focused on age-related changes in PRR gene expression (e.g., TLR3 (Toll Like
Receptor 3), TLR4 (Toll Like Receptor 4), NOD1 (Nucleotide Binding
Oligomerization Domain Containing 1), and CGAS (Cyclic GMP-AMP
Synthase)) and genes known to interact with SARS-CoV-2 (ADAM9 (ADAM
Metallopeptidase Domain 9), FBLN5 (Fibulin 5), FAM8A1 (Family With
Sequence Similarity 8 Member A1), CLIP4 (CAP-Gly Domain Containing Linker
Protein Family Member 4)))

[27]
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Table 1. Cont.

Study Title Focus of the Study Ref.

Multi-omic rejuvenation of
human cells by maturation

phase transient
reprogramming

• Focus on a possible rejuvenation strategy
• Used Fleischer et al.’s dataset [19] as a reference dataset to train a transcription

age-predictor
• Authors mention collagen I and IV as well as KRT8, KRT18, and APBA2

(Amyloid Beta Precursor Protein Binding Family A Member 2) as downregulated
with age and upregulated using their rejuvenation method, and MAF (MAF
BZIP Transcription Factor) as being upregulated with age and downregulated
upon their rejuvenation method

• Other genes apparently linking epigenetic and transcriptomic rejuvenation
(including FBN2 (Fibrillin 2), TNXB (Tenascin XB), SPTB (Spectrin Beta,
Erythrocytic), WISP2 (WNT1-Inducible-Signaling Pathway Protein 2), STRA6
(Signaling Receptor And Transporter Of Retinol STRA6), ASPA (Aspartoacylase))

[28]

BiT age: A
transcriptome-based aging
clock near the theoretical

limit of accuracy

• Use of binarized transcriptomic data to establish an accurate age predictor
• Used C. elegans as a model organism and Fleischer et al.’s dataset [19] as a

reference dataset to test their model
• Found that aging-related pathways, such as insulin signaling, are evolutionarily

conserved and relevant for multiple species
• Found enrichment of aging-related genes in their predictor gene set derived from

C. elegans but did not explicitly analyze these genes instead the authors focused
on predicting the biological age correctly

[29]

Genome-wide
quantification of ADAR

adenosine-to-inosine RNA
editing activity

• Interested in the quantification of adenosine deaminase that acts on RNA
(ADAR) activity

• Developed the computational tool Alu editing index (AEI)
• Used Fleischer et al.’s dataset [19] as a reference dataset

[30]

mitoXplorer, a visual data
mining platform to

systematically analyze and
visualize mitochondrial

expression dynamics and
mutations

• Developed the computational tool for quantifying mitochondrial expression
dynamics

• Used Fleischer et al.’s dataset [19] as a reference dataset
• The authors were interested in genes with mitochondrial function and created a

visual data mining platform
• Focus on Trisomy 21 cells to test their tool

[31]

An integrated pipeline for
mammalian genetic

screening

• Created a pipeline to integrate computational and experimental methods to
identify, construct, and induce key regulatory factors

• Used Fleischer et al.’s dataset [19] as a reference dataset for benchmarking aging
genes

• Authors focused on an integrated solution for systematic mammalian genetic
screening studies; no aging-related genes or pathways were analyzed or
mentioned

[32]

Landscape of
adenosine-to-inosine RNA

recoding across human
tissues

• Generated a highly accurate atlas of A-to-I RNA editing sites within
protein-coding regions and their editing levels across human tissues

• Used Fleischer et al.’s dataset [19] as a reference dataset
• For regions within the three genes ASNS (Asparagine Synthetase

(Glutamine-Hydrolyzing)), NEIL1 (Nei Like DNA Glycosylase 1), and SEMA5B
(Semaphorin 5B), the authors calculated multi-species dsRNA structures

[33]

Predicting age from the
transcriptome of human

dermal fibroblasts

• The original study, the authors generated the extensive dataset
• Used RNA-Seq data to generate a machine learning algorithm for predicting age

using the transcriptome
[19]

Besides the extensive comparison data for creating and testing computational analysis
methods, the RNA-Seq data can be combined with new analysis methods and the growing
knowledge regarding pathways and protein interactions. This will enable further insights
and lead to new findings regarding fibroblasts, aging, pathways, and potential relationships
and interactions.
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In the present study, we used the RNA sequencing data to demonstrate the power of
bioinformatics to reveal important differences between normal aging, progeria, and young
fibroblasts in terms of pathways, proteins, and protein networks. We identified several
genes potentially involved both in natural aging and progeria (KRT8, KRT18, ACKR4,
CCL2, UCP2, ADAMTS15, ACTN4P1, WNT16, IGFBP2). Further genes and pathways
analysis confirmed their roles in aging, suggesting the need for further in vitro and in vivo
research. We considered three subgroups of the dataset: healthy children, nonagenarians,
and HGPS patients. As HGPS patients suffer from many conditions associated with old
age, we were interested in the differences and similarities between HGPS patients and
nonagenarians, as well as between healthy children and children suffering from HGPS.
Additionally, we compared the RNA-Seq data of healthy children and nonagenarians to
see the differences in gene expression occurring during natural aging. While this study
is the first extensive multi-omics comparative study comparing normal aging based on
the dataset by Fleischer et al. [19] with progeria, to reveal the above genes and detailed
further differences in genes and pathways for normal and pathological aging, only further
analysis has to find out, how far the changes in pathways and gene expression found in
nonagenarians found here are only markers or really makers of successful aging.

All tools used for this analysis are freely available R packages or software. To encourage
such analyses for other pathophysiological conditions and stimulate transcriptome analysis,
we will give some details on the different tools and where to find vignettes and workflows
explaining the use of the respective tools (Supplementary Materials, Document S1).

2. Materials and Methods

In this study, already published, publicly available data is analyzed. Thus, ethical
approval and patient consent were not necessary.

2.1. Hardware and Software

All analyzes were performed on a PC with AMD Ryzen 9 3900X, 12-Core Processor,
64.0 GB RAM, 64-Bit-Operating System, and an x64-based processor. A virtual Ubuntu
environment (Ubuntu 20.04.2 LTS (OS-Type: 64-bit) running on a virtual machine (Virtual
Box 6.1.34)) was used for data download, quality control, and alignment. The subsequent
data analysis was performed using RStudio (2022.02.0+443 “Prairie Trillium” Release
(9f7969398b90468440a501cf065295d9050bb776, 2022-02-16) for Ubuntu) with R version 4.2.0
(2022-04-22) [34]. Cytoscape analyses were performed using Cytoscape for Windows (64-bit,
version 3.9.1, on Windows 10).

2.2. RNA-Seq Data

The single-end stranded RNA-Seq data of the GEO [35] dataset GSE113957 was
downloaded via NCBI’s SRA Run Selector and checked for quality using FastQC (ver-
sion 0.11.9) [36] and MultiQC (version 1.12) [37]. The dataset was generated by Fleischer
et al. (2018) [19]. It contains RNA-Seq data of human fibroblast cell lines derived from
10 progeria patients (Hutchinson-Gilford progeria syndrome (HGPS)) and 133 fibroblast
cell lines derived from “apparently healthy” individuals [19]. According to the metadata
provided via NCBI’s SRA Run Selector, the healthy individuals were aged between 1 and 96.

For this study, only the samples of the progeria patients aged 6 to 8 years (5 samples),
the samples of healthy children in the same age group (age 6 to 9, 6 samples), and the
samples of the individuals aged 90+ (7 samples) were analyzed.

2.3. Data Preprocessing

The RNA-seq data was aligned to GENCODE v39 [38] using the standard protocols
for STAR (version 2.7.10a) [39] and RSEM (version 1.3.1) [40]. After STAR alignment, the
transcripts were subsequently quantified with RSEM.
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2.4. Identification of DEGs

We performed DESeq2 (version 1.36.0, with apeglm version 1.18.0, using tximport
version 1.24.0 for importing the data in R) [41–43] analyses to find differences between
the two groups: (1) HGPS patients vs. healthy children and (2) 90-year-olds vs. healthy
children. Differentially expressed genes (DEGs) with a p-value < 0.05 were considered
significant. The log2 fold change threshold values were set to > 1 for upregulated genes
and < −1 for downregulated genes.

2.5. Data Visualization

Principal component analysis (PCA) was performed using the DESeq2 package, and
gene expression and DEGs were visualized in the form of volcano plots (EnhancedVolcano,
version 1.14.0) [44] and heatmaps (pheatmap version 1.0.12) [45].

Additionally, gene expression was visualized using IsoformSwitchAnalyzeR (version
1.18.0) [46], which supports data from various quantification tools, including RSEM [46].
To calculate gene expression, IsoformSwitchAnalyzeR can take count and abundance
values into account and calculates gene expression by adding up the abundance values
of all isoforms related to the respective gene [46]. The gene expression function of the
IsoformSwitchAnalyzeR package was used for three different comparisons: (1) HGPS
patients vs. healthy children, (2) 90-year-olds vs. healthy children, and (3) HGPS patients
vs. 90-year-olds.

2.6. Pathway Enrichment Analysis

Databases such as the Molecular Signatures Database [47–50], provide annotated gene
sets that can be used for further analyses, including hallmark gene sets and ontology gene
sets. The hallmarks gene set can be envisioned as a starting point for further analyses [48].
Biological ontologies, such as Gene Ontology (GO) [49], provide knowledge about genes
and their functions [51,52]. The gene ontology offers information on the sub ontologies that
represent protein function: biological process (BP), cellular component (CC), and molecular
function (MF) [53].

The enrichment analyses of the hallmark gene set and the GO BPs gene set were
calculated using MSigDB (version 7.5.1) [47–50] and visualized as bar plots, CNET plots,
and heat plots using clusterProfiler (version 4.4.2) [51,54], enrichplot (version 1.16.1) [55],
and ggplot2 (version 3.3.6) [56]. The heat plot function of the enrichplot package [55], which
is also embedded in clusterProfiler [51,54], combines the functionalities of a heatmap and a
CNET plot by displaying relationships—e.g., the genes involved in a specific pathway—as
a heatmap [55].

2.7. Protein–Protein Interactions

The Search Tool for Retrieval of Interacting Genes/Proteins (STRING) database [57]
and web tool is a meta-resource for analyzing protein–protein interactions [57,58]. It is
based on analyzing the ‘functional association’ of proteins, which is described as a link
between two proteins that both contribute to a biological function [57].

The significant DEGs of interest were mapped to STRING using the official gene
symbol as input for the web app (https://string-db.org/, version 11.5, accessed on 22 July
2022) with a fullstringnetwork medium confidence of 0.4 and visualized via Cytoscape [59].

The open-source software project Cytoscape was developed as a modeling environ-
ment for the integration of molecular network interaction data. Its organizing metaphor is
a network graph [59]. The nodes of the graph are molecular species that are connected via
intermolecular interactions, which are represented as edges or links between the nodes. It
supports various automated network layout algorithms and allows the user to visualize
their data in the form of a network [59]. Furthermore, Cytoscape is designed to allow the
implementation of additional plug-ins addressing biological problems [59].

We used Cytoscape [59] to further analyze and visualize the STRING database results
for our genes of interest. Additionally, using Cytoscape [59], we visualized the log2fold

https://string-db.org/
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changes of the DEGs that were calculated during DESeq2 analysis [41] (for aging and
progeria) and the average log2fold changes of the common DEGs in both conditions
(calculated by adding the respective values and subsequently dividing them by 2).

2.8. Venn Diagrams

Venn diagrams were introduced almost 150 years ago as a method of visually repre-
senting classes and elements contained in one or several of these classes using intersecting
circles [60]. Venn Diagrams can represent results that are rather difficult to explain in words
in an intuitively understandable graphic representation. Therefore, they can be used to
visualize overlapping genes between several groups. Besides that, Venn diagram tools, like
the web app Venny [61] (https://bioinfogp.cnb.csic.es/tools/venny/, accessed on 22 July
2022), also offer to extract lists of every section of the Venn diagram [61].

The different genes of interest for the respective groups were visualized using the
online tool Venny (version 2.1.0) [61]. Depending on the comparison, two or three lists of
DEGs or pathways were uploaded in Venny, which automatically visualized overlaps and
offers the option to save the resulting figure and the elements contained in the overlaps.

2.9. miRNA Prediction

For predicting microRNA (miRNA) interactions, we used miRNet (https://www.
mirnet.ca/, version 2.0, accessed on 22 July 2022), a web-based platform for miRNA
analysis. The input data is integrated with prior knowledge, including miRNA-target
interactions, transcription factors, and single nucleotide polymorphisms [62], and the
results can be visualized as a network using Cytoscape [59]. This allows the prediction
of miRNAs that might be regulated by genes of interest. We performed three miRNA
predictions, using the DEGs involved in aging, progeria, and the common DEGs of both
conditions as the respective input data.

2.10. NicheNet: Finding Ligand–Receptor Interactions Based on Prior Knowledge

Since the growing knowledge of biological processes such as gene interactions and
cellular communication is a cornerstone in data analysis, Türei et al. (2021) generated
Omnipath, a comprehensive database combining over a hundred different resources cov-
ering protein interaction, transcriptional and post-transcriptional regulation, and cellular
signaling [63].

NicheNet is a computational method developed for combining the prior knowledge
archived in databases such as Omnipath with gene expression data, enabling the user
to analyze prioritized ligand–target interactions as well as intracellular signaling [64].
Although NicheNet offers its own database, it can also be combined with other databases
as the source of the prior knowledge on which the subsequent NicheNet analysis is based.

In this study, we followed the workflow for combining NicheNet (version 1.1.0) [64]
and Omnipath data (via OminpathR, version 3.4.0) [63] previously described by Türei et al.
(2021) [63]. The workflow enables prediction of prioritized interaction partners for DEGs
involved in a pathway of interest (via fgsea, version 1.22.0) [65], which can offer further
insights in network analysis [63].

2.11. Figures and Additional Packages

While the graphical abstract was created using BioRender (https://biorender.com/,
accessed on 22 July 2022), the figures containing analysis results were arranged using
R/RStudio. The following helpful R packages were used for figure creation or as additional
packages/dependencies of the packages used for analyses and figure creation: cowplot
(version 1.1.1) [66], ggplotify (version 0.1.0) [67], magick (version 2.7.3) [68], scatterplot3d
(version 0.3.41) [69], scales (version 1.2.0) [70], viridis (version 0.6.2) [71], plotly (version
4.10.0) [72], RcolorBrewer (version 1.1.3) [73], ggupset (version 0.3.0) [74], ggnewscale
(version 0.4.7) [75], pathview (version 1.36.0) [76], ggridges (version 0.5.3) [77], europepmc

https://bioinfogp.cnb.csic.es/tools/venny/
https://www.mirnet.ca/
https://www.mirnet.ca/
https://biorender.com/
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(version 0.4.1) [78], BiocManager (version 1.30.18) [79], org.Hs.eg.db (version 3.15.0) [80],
tidyverse (version 1.3.1) [81], dplyr (version 1.0.9) [82].

3. Results

HGPS patients suffer from old age symptoms, therefore, we were interested in the
differences and similarities of natural, chronological aging, as seen in individuals of ex-
treme age like nonagenarians, and premature or accelerated aging, as it can be observed
in progeria patients. For our study, we compared three subsets of the RNA sequencing
data within Fleischer et al.’s publicly available GEO dataset GSE113957 [19]: HGPS pa-
tients, nonagenarians (90s, aged 90 to 96 according to the metadata submitted with the
GEO dataset), and healthy children (Supplementary Materials, Table S1). To find genes
related to aging and aging-related pathologies, we performed DESeq2 analyses comparing
healthy children with progeria patients and nonagenarians, respectively. The results of
both analyses were compared, focusing on DEGs, GO enrichment/pathways, microRNAs
(miRNAs, miRs), and interaction partners.

Since Gordon et al. (1993–2022) reported that death due to complications of HGPS
such as cardiac or cerebrovascular disease most often occurs in the age range between six
and 20 years [83], we decided to focus on children suffering from HGPS aged six or older
(HGPS, ages 6 to 8 years). RNA sequencing data samples of healthy children of the same
age group (Healthy Kids, aged 6 to 9) were used as controls.

3.1. Differences and Similarities between Old Age and HGPS

The gene expression of HGPS patients (Figure 1) and nonagenarians (Figure 2) were
compared with the gene expression of healthy children using DESeq2 analysis [41].

Principal Component Analysis (PCA, Figures 1A and 2A) indicates differences in gene
expression between HGPS patients and healthy children (progeria, premature or accelerated
aging) and nonagenarians and healthy children (aging), respectively. DEGs are visualized
as volcano plot [44] (Figures 1B and 2B) and as heatmap [45] with hierarchical clustering
(Figures 1C and 2C). Upregulation is visualized in red, downregulation in blue. Comparing
HGPS patients and healthy children (HGPS vs. healthy children, Figure 1) resulted in
497 DEGs, with 332 genes being upregulated and 165 downregulated in progeria. In natural
aging (90s vs. healthy children, Figure 2), 2743 genes are differentially expressed, with
1350 DEGs being upregulated and 1393 being downregulated (Supplementary Materials,
Tables S2, S5, and S6).

Hallmark enrichment analysis and Gene Ontology enrichment analysis for biological
processes (BPs) were conducted using clusterProfiler [51,54] and the respective gene sets
available via the Molecular Signatures Database (MsigDB) [47–50]. While normal aging
(Figure 2D,E, Supplementary Materials Figures S3 and S4) appears to affect the cell cycle
G2/M checkpoint (G2M checkpoint), E2F targets, and the mitotic spindle assembly (hall-
mark MITOTIC_SPINDLE), progeria is only associated with KRAS signaling up, the genes
upregulated by KRAS (Kristen rat sarcoma virus) activation (Figure 1D,E, Supplementary
Materials Figures S1 and S2).

GO enrichment analysis for BPs using clusterProfiler [51,54] with the respective DEGs
indicates which BP pathways might be affected by the differences in gene expression. In
accelerated aging, 171 BP pathways were significantly enriched. The top ten enriched path-
ways of the clusterProfiler analysis are visualized as bar plots in Figure 1E. Here, pathways
related to skin and skin development are among the top enriched pathways. Among the
189 significantly enriched BP pathways found in natural aging, several pathways related
to the cell cycle were among the top ten enriched pathways (Figure 2E). The top three
pathways of both comparisons and their related DEGs are visualized as CNET plots in the
Supplementary Materials (progeria in Figure S2, aging in Figure S4), demonstrating that
these processes are also interconnected via the involved DEGs.



Biomedicines 2022, 10, 2440 10 of 40Biomedicines 2022, 10, x FOR PEER REVIEW 10 of 42 
 

 
Figure 1. Comparing gene expression in RNA sequencing data of HGPS patients and healthy chil-
dren (progeria/accelerated aging). (A) Principal Component Analysis (PCA): HGPS patients (blue 
dots) compared to healthy children (controls, red dots). (B) Volcano plot visualizing differentially 
expressed genes (DEGs): significantly upregulated genes are shown as red dots, significantly down-
regulated genes as blue dots, gray dots symbolize genes without significant changes in gene expres-
sion. (C) Heatmap and hierarchical clustering of the DEGs. (D) Bar plot of enriched hallmark path-
ways. (E) Bar plot of GO enriched biological processes. 

Figure 1. Comparing gene expression in RNA sequencing data of HGPS patients and healthy children
(progeria/accelerated aging). (A) Principal Component Analysis (PCA): HGPS patients (blue dots)
compared to healthy children (controls, red dots). (B) Volcano plot visualizing differentially expressed
genes (DEGs): significantly upregulated genes are shown as red dots, significantly downregulated
genes as blue dots, gray dots symbolize genes without significant changes in gene expression.
(C) Heatmap and hierarchical clustering of the DEGs. (D) Bar plot of enriched hallmark pathways.
(E) Bar plot of GO enriched biological processes.
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of these DEGs are regulated in the same direction in both comparisons. The differences in 
gene expression of the six differently regulated genes (Figure 3C–E) are visualized using 
the R-package IsoformSwitchAnalyzeR [46]. 

Comparing the changes in gene expression (log2foldchanges) of the 157 DEGs re-
vealed that six DEGs (KRT18 (Keratin 18), KRT8 (Keratin 8), ACKR4 (atypical chemokine 
receptor 4), UCP2 (Uncoupling Protein 2), ADAMTS15 (ADAM metallopeptidase with 
thrombospondin type 1 motif 15), and ACTN4P1 (Actinin alpha 4 pseudogene 1)) were 

Figure 2. Comparing gene expression in RNA sequencing data of nonagenarians and healthy children
(normal/chronological aging). (A) Principal Component Analysis (PCA): nonagenarians (blue dots)
compared to healthy children (controls, red dots). (B) Volcano plot visualizing differentially expressed
genes (DEGs): significantly upregulated genes are shown as red dots, significantly downregulated
genes as blue dots, gray dots symbolize genes without significant changes in gene expression.
(C) Heatmap and hierarchical clustering of the DEGs. (D) Bar plot of enriched hallmark pathwayhas.
(E) Bar plot of GO enriched biological processes.

3.2. Changes in Gene Expression in Progeria and Normal Aging

Accelerated and natural aging share changes in gene expression. The Venn diagram in
Figure 3A shows that both comparisons have 157 DEGs in common. However, not all of
these DEGs are regulated in the same direction in both comparisons. The differences in
gene expression of the six differently regulated genes (Figure 3C–E) are visualized using
the R-package IsoformSwitchAnalyzeR [46].
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Figure 3. Comparison of accelerated and natural aging. (A) Common DEGs in accelerated aging
(DEGs between HGPS patients and healthy children, blue) and normal aging (DEGs between nona-
genarians and healthy children, yellow) are visualized as Venn diagram. (B) The ten most enriched
biological processes with GO enrichment using the common DEGs of aging and HGPS (overlap
in A). (C) Gene expression of the six genes regulated in opposite directions, differences in gene
expression between children and nonagenarians. (D) Gene expression of the six genes regulated in
opposite directions, differences in gene expression between children and progeria patihass. (E) Gene
expression of the six genes regulated in opposite directions, differences in gene expression between
progeria patients and nonagenarians.

Comparing the changes in gene expression (log2foldchanges) of the 157 DEGs re-
vealed that six DEGs (KRT18 (Keratin 18), KRT8 (Keratin 8), ACKR4 (atypical chemokine
receptor 4), UCP2 (Uncoupling Protein 2), ADAMTS15 (ADAM metallopeptidase with
thrombospondin type 1 motif 15), and ACTN4P1 (Actinin alpha 4 pseudogene 1)) were
regulated in opposite directions. For instance, while HGPS patients express more KRT18
than healthy children (Figure 3D), the expression of KRT18 appears to be reduced upon
normal aging as nonagenarians express less KRT18 than both healthy children (Figure 3C)
and children affected with HGPS (Figure 3E).
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Performing GO enrichment with the 157 DEGs that both types of aging have in
common results in 27 biological processes. The top ten enriched biological processes of the
clusterProfiler analysis using the common DEGs are visualized in Figure 3B. Considering
the common DEGs, Epithelial Cell Proliferation (ECP) appears to be the most enriched
pathway. Additionally, ECP is also enriched in both comparisons, although it is not among
the top ten enriched BPs in accelerated and normal aging.

Comparing the DEGs in HGPS that are involved in ECP with the DEGs in old age
and ECP shows that both groups have 15 genes of the ECP pathway in common: WNT16
(Wnt Family Member 16), CCL26 (C-C Motif Chemokine Ligand 26), HGF (Hepatocyte
Growth Factor), PTPRN (Protein Tyrosine Phosphatase Receptor Type N), CCL2 (C-C
Motif Chemokine Ligand 2), WNT5A (Wnt Family Member 5A), STAT1 (Signal Transducer
And Activator Of Transcription 1), IRF6 (Interferon Regulatory Factor 6), GDF5 (Growth
Differentiation Factor 5), SIX1 (SIX Homeobox 1/Sine Oculis Homeobox Homolog 1), KDR
(Kinase Insert Domain Receptor), FST (Follistatin), KIT (KIT Proto-Oncogene, Receptor
Tyrosine Kinase), NKX3-1 (NK3 Homeobox 1), and WNT10B (Wnt Family Member 10B)
(Figure 4A). Analyzing these genes in the STRING database [58] (Figure 4B) shows that
almost all of these DEGs are linked with each other.
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lated in nonagenarians. ACKR4, which is also regulated in different directions, is involved 
in the cytokine-mediated signaling pathway. 

Figure 4. Comparison of accelerated and natural aging. (A) The visualization of the DEGs involved
in Epithelial Cell Proliferation (ECP) differentially expressed in HGPS (blue) and old age (yellow)
shows that both have 15 DEGs in common. (B) The common DEGs of old age and HGPS involved
in ECP are visualized as STRING network (applying fullstringnetwork medium confidence of 0.4).
(C) Visualization of the DEGs involved in ECP (by using STRING database and Cytoscape): common
DEGs (octagons) and DEGs specific for HGPS (rectangles) and the respective log2foldchanges (blue
downregulated, red upregulated).

Further analysis in Cytoscape [59] was performed by combining the STRING results
and the changes in gene expression that were evaluated. Cytoscape allows visualization of
the ECP-related DEGs. Figure 4C visualizes the ECP-related DEGs both conditions have
in common with ECP (octagons) and the ECP-related DEGs specific for comparing HGPS
patients and healthy children (rectangles). The log2foldchanges derived from the DESeq2
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analysis are indicated by color, with blue symbolizing downregulation and red upregu-
lation. The same analysis was performed by comparing the ECP-related common DEGs
of both conditions and the DEGs that are related to ECP but only differentially expressed
between nonagenarians and healthy children (Supplementary Materials, Figure S5).

3.3. The Different Pathways Involved in Progeria, Aging, and Both Conditions

The Venn diagram in Figure 5A visualizes the BPs which were calculated for progeria
(Figure 5A, blue circle), aging (Figure 5A, yellow circle), and the DEGs both conditions have
in common (Figure 5A, green circle). The complete list of the respective BPs is available in
the Supplementary Materials (Table S3).
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Figure 5. Differences in gene expression between HGPS and aging. (A) Venn diagram visualizing the
GO BPs enriched in HGPS (blue), aging (yellow), and in the 157 common DEGs of progeria and aging.
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15 BPs are enriched in all three analyses. (B) Heat plot visualizing the changes in gene expression in
the DEGs involved in the 15 BPs using the changes in gene expression observed while comparing
nonagenarians and healthy children (log2foldchanges of DESeq2 analysis). (C) Heat plot visualizing
the changes in gene expression in the DEGs involved in the 15 BPs using the changes in gene
expression observed while comparing progeria patients and healthy children (log2foldchanges of
DESeq2 analysis). The differences in gene expression are indicated by color (red for upregulated,
blue for downregulated). Notably, UCP2, which is involved in gland development, is upregulated
in progeria but downregulated in aging. ACKR4, which is involved in the cytokine-mediated
signaling pathway, is upregulated in aging (comparison of healthy children and nonagenarians) but
downregulated in progeria (comparison of healthy children and progeria patients).

To compare the changes in gene expression between progeria and aging, we analyzed
the 15 common pathways as heat plots (Figure 5B,C). The y-axes show the 15 common
pathways, while the genes involved in the respective pathways are indicated on the x-axes.
The changes in gene expression were derived from the log2fold changes in gene expression
in aging (Figure 5B) and progeria (Figure 5C), respectively.

Many genes show similar gene expression patterns and only differ in the log2foldchanges
in gene expression. However, some genes are upregulated in one of the comparisons and
downregulated in the other (see Figure 3C–E). One of these genes, UCP2, is also involved
in gland development. While UCP2 is upregulated in progeria, it is downregulated in
nonagenarians. ACKR4, which is also regulated in different directions, is involved in the
cytokine-mediated signaling pathway.

The aging pathway was among the enriched pathways in aging but not in progeria.
As we were especially interested in aging, we compared the DEGs of HGPS and aging with
the genes known to be involved in the biological process “GOBP_AGING” (Figure 6A),
which can be found in the Molecular Signatures Database (MSigDB) [48]. The DEGs
between healthy children and nonagenarians also related to the aging pathway are shown
in Figure 6B. The three DEGs that appear to be associated with the aging pathway, progeria
and normal aging are highlighted in purple.

Besides UCP2, only WNT16 and IGFBP2 (Insulin Like Growth Factor Binding Protein
2) are DEGs in both conditions and are known to be involved in the aging pathway.
Figure 6C–E visualizes the gene expression of the respective genes. Expression of WNT16 is
higher in nonagenarians (Figure 6C) and progeria patients (Figure 6D) compared to healthy
children. Comparing nonagenarians to progeria patients shows that nonagenarians have a
slightly higher expression of WNT16 than HGPS patients (Figure 6E).

Nonagenarians express higher levels of IGFBP2 than healthy children (Figure 6C).
Progeria patients present a higher IGFBP2 expression than healthy children (Figure 6D) and
even higher IGFBP2 levels than nonagenarians (Figure 6E). Healthy children (Figure 6C)
and progeria patients (Figure 6E) express more UCP2 than nonagenarians. At the same
time, progeria patients have higher UCP2 levels than healthy children (Figure 6D).

3.4. Prediction of microRNAs and Visual Exploration of Interaction Partners of WNT16, IGFBP2,
and UCP2

MicroRNAs (miRNAs, miRs) are small non-coding RNAs that are photogenically
conserved and act as master regulators of gene expression [84]. miRNAs were predicted
using the web platform miRNet 2.0 (https://www.mirnet.ca/, version 2.0, accessed on
22 July 2022) [62]. For our analysis, we used the genes that were differentially expressed
in the respective analyses. The predicted miRNAs for all three analyses (progeria DEGs,
aging DEGs, and the 157 common DEGs) and the subsequent analyses are available in the
Supplementary Materials (Table S4). Here, we focus on the miRNA prediction using the
157 common DEGs, resulting in 37 predicted miRNAs.

The calculated network of these miRNAs and their interaction partners were imported
to Cytoscape for further analysis and filtered for DEGs. The three common aging-related
DEGs (WNT16, IGFBP2, and UCP2) revealed five predicted miRNAs: WNT16 is asso-

https://www.mirnet.ca/
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ciated with one miRNA (hsa-mir-181a-5p, human-microRNA-181a-5p), UCP2 is associ-
ated with two miRNAs (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 is associated
with three miRNAs (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p). The same five
miRNAs were predicted for aging and progeria (Supplementary Materials, Table S4 and
Figures S6–S8).
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Figure 6. Network visualization of miRNAs related to WNT16, IGFBP2, and UCP2. (A) Comparing
the genes involved in the Aging Pathway (green) with the DEGs in progeria comparison (blue) and the
aging comparison (yellow) results in three common DEGs WNT16, IGFBP2, and UCP2. (B) Network
visualization of the DEGs involved in the aging pathway and differentially expressed between healthy
children and nonagenarians. The three DEGs that are also differentially expressed when comparing
progeria patients and nonagenarians are highlighted in purple. (C) Gene expression of the three DEGs
WNT16, IGFBP2, and UCP2, when comparing children and nonagenarians. (D) Gene expression of
the three DEGs WNT16, IGFBP2, and UCP2, when comparing children and HGPS phasents. (E) Gene
expression of the three DEGs WNT16, IGFBP2, and UCP2, when comparing progeria patients and
nonagenarians.
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The miRNAs and their interaction partners of the 157 common DEGs are visualized
in Figures 7–9. Figure 7 shows hsa-mir-181a-5p and its interaction partners, with WNT16
being highlighted. The interaction partners of the three miRNAs associated with IGFBP2
(highlighted) are visualized in Figure 8, and Figure 9 shows hsa-mir-26a-5p and hsa-mir-
124-3p, which are both predicted to interact with UCP2 (highlighted), and their interaction
partners. In the Supplementary Materials (Figures S6–S8), we also visualize the interac-
tion partners of these five miRNAs, including the changes in gene expression using the
log2foldchanges obtained when comparing HGPS and healthy children and the interaction
partners of the miRNAs and the changes in gene expression (log2foldchanges) obtained by
comparing nonagenarians and healthy children.

Biomedicines 2022, 10, x FOR PEER REVIEW 18 of 42 
 

Supplementary Materials (Table S4). Here, we focus on the miRNA prediction using the 
157 common DEGs, resulting in 37 predicted miRNAs. 

The calculated network of these miRNAs and their interaction partners were im-
ported to Cytoscape for further analysis and filtered for DEGs. The three common aging-
related DEGs (WNT16, IGFBP2, and UCP2) revealed five predicted miRNAs: WNT16 is 
associated with one miRNA (hsa-mir-181a-5p, human-microRNA-181a-5p), UCP2 is asso-
ciated with two miRNAs (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 is associated 
with three miRNAs (hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p). The same five 
miRNAs were predicted for aging and progeria (Supplementary Materials, Table S4 and 
Figures S6–S8). 

The miRNAs and their interaction partners of the 157 common DEGs are visualized 
in Figures 7–9. Figure 7 shows hsa-mir-181a-5p and its interaction partners, with WNT16 
being highlighted. The interaction partners of the three miRNAs associated with IGFBP2 
(highlighted) are visualized in Figure 8, and Figure 9 shows hsa-mir-26a-5p and hsa-mir-
124-3p, which are both predicted to interact with UCP2 (highlighted), and their interaction 
partners. In the Supplementary Materials (Figures S6–S8), we also visualize the interaction 
partners of these five miRNAs, including the changes in gene expression using the 
log2foldchanges obtained when comparing HGPS and healthy children and the interac-
tion partners of the miRNAs and the changes in gene expression (log2foldchanges) ob-
tained by comparing nonagenarians and healthy children. 

 
Figure 7. miRNA prediction and network visualization of miRNAs related to WNT16. Predicted 
miRNA interaction partners of hsa-mir-181a-5p, WNT16 is highlighted. 

Figure 7. miRNA prediction and network visualization of miRNAs related to WNT16. Predicted
miRNA interaction partners of hsa-mir-181a-5p, WNT16 is highlighted.

Biomedicines 2022, 10, x FOR PEER REVIEW 19 of 42 
 

 
Figure 8. miRNA prediction and network visualization of miRNAs related to IGFBP2. Predicted 
miRNA interaction partners of hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p, IGFBP2 is high-
lighted. 

 
Figure 9. miRNA prediction and network visualization of miRNAs related to UCP2. Predicted 
miRNA interaction partners of hsa-mir-26a-5p and hsa-mir-124-3p, UCP2 is highlighted. 

3.5. Predicting Interactions Using NicheNet and Omnipath 
Using NicheNet [64] and the Omnipath database [63,85], we combined the experi-

mental results regarding RNA expression obtained from the dataset by Fleischer et al. [19] 
with prior knowledge regarding potential interaction partners from the Omnipath data-
base. 

Figure 8. miRNA prediction and network visualization of miRNAs related to IGFBP2. Predicted miRNA
interaction partners of hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p, IGFBP2 is highlighted.



Biomedicines 2022, 10, 2440 18 of 40

Biomedicines 2022, 10, x FOR PEER REVIEW 19 of 42 
 

 
Figure 8. miRNA prediction and network visualization of miRNAs related to IGFBP2. Predicted 
miRNA interaction partners of hsa-mir-124-3p, hsa-mir-126-3p, and hsa-mir-27b-3p, IGFBP2 is high-
lighted. 

 
Figure 9. miRNA prediction and network visualization of miRNAs related to UCP2. Predicted 
miRNA interaction partners of hsa-mir-26a-5p and hsa-mir-124-3p, UCP2 is highlighted. 

3.5. Predicting Interactions Using NicheNet and Omnipath 
Using NicheNet [64] and the Omnipath database [63,85], we combined the experi-

mental results regarding RNA expression obtained from the dataset by Fleischer et al. [19] 
with prior knowledge regarding potential interaction partners from the Omnipath data-
base. 

Figure 9. miRNA prediction and network visualization of miRNAs related to UCP2. Predicted
miRNA interaction partners of hsa-mir-26a-5p and hsa-mir-124-3p, UCP2 is highlighted.

3.5. Predicting Interactions Using NicheNet and Omnipath

Using NicheNet [64] and the Omnipath database [63,85], we combined the experimen-
tal results regarding RNA expression obtained from the dataset by Fleischer et al. [19] with
prior knowledge regarding potential interaction partners from the Omnipath database.

Gene Set Enrichment Analysis (GSEA) [47] is integrated into the NicheNet workflow.
Figure 10A,B visualizes the pathways in aging and HGPS, respectively. The pathway UV
response (processes resulting in changes in a cell or organism upon ultraviolet radiation/UV
light) has the highest positive normalized enrichment score (NES) in aging and is also
among the top five positive enriched pathways in progeria. Here, we focus on UV response,
as it has been shown that sun exposure induces the expression of progerin in human
skin [86]. Additionally, accumulation of progerin has been associated with vascular disease
in progeria [87], but, over time, it also accumulates in non-HGPS individuals [88]. It might
thus contribute to vascular aging and vascular disease [88].
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Figure 10. NicheNet analyses of progeria and aging. (A) GSEA pathways when comparing nonagenarians
and healthy children. (B) GSEA pathways when comparing HGPS patients and healthy children.

The subsequent NicheNet analyses to predict the potential ligand–receptor pairs were
performed with UV response as the pathway of interest (Figure 11B,C,E,F). The Pearson
correlation of the predicted ligands involved in UV response is shown in Figure 11A,D.
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Darker color indicates a higher prediction ability. The target genes for these ligands regulat-
ing genes related to UV response are visualized as heatmaps for both groups in Figure 11B
(comparison nonagenarians and healthy children) and Figure 11E (comparison progeria
patients and healthy children). The color intensity indicates the regulatory potential for the
top-ranked targets (the 0.1 quantiles) with targets according to the prior model, which was
derived from prior knowledge archived in the Omnipath database.
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Figure 11. NicheNet analyses of progeria and aging. (A) Pearson correlation of the predicted
ligands in the aging comparison. (B) Heatmap of predicted ligand–target interactions in the aging
comparison. (C) Heatmap of the predicted ligand–receptor interactions in the aging comparison and
their respective receptors. (D) Pearson correlation of the predicted ligands in the progeria comparison.
(E) Heatmap of predicted ligand–target interactions in the progeria comparison. (F) Heatmap of the
predicted ligand–receptor interactions in the progeria comparison.

Figure 11B,E shows the predicted ligand–target interactions. Both analyses have IGF1
(insulin-like growth factor 1) and CCL2 as common ligands for the predicted target genes.
IGF1 expression is higher in children compared to nonagenarians and progeria patients.
When comparing IGF1 expression in nonagenarians and progeria patients, the expression
levels show little difference (Figure 12B).
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Predicting the ligand–receptor interactions shows which of the receptors that are
expressed in the respective genes might interact with the prioritized ligands. Figure 11C
shows the comparison of nonagenarians and healthy children focusing on UV response,
Figure 11F shows the comparison of progeria patients and healthy children focusing on UV
response.

The only ligand that both analyses have in common is CCL2. CCL2 is an upregulated
DEG when comparing nonagenarians and healthy children. It is upregulated even more
when comparing progeria patients and healthy children. When comparing CCL2 expression
in progeria patients and nonagenarians, CCL2 is more expressed in progeria (Figure 12A).

ACKR4 is the only potential CCL2 receptor that is also a DEG in aging and progeria.
To find possible interaction partners of CCL2 that are differentially expressed in both

analyses, we uploaded the set of HGPS DEGs obtained by comparing progeria patients and
healthy children in STRING. The results of the STRING analysis, the interactions found
between the DEGs, were subsequently analyzed in Cytoscape by selecting CCL2 and its
neighbors, resulting in a list of DEGs (CCL2-HGPSvsKids, blue circle in Figure 13A). The
same steps were repeated using the aging DEGs obtained by comparing nonagenarians with
healthy children (CCL2-90svsKids, yellow circle in Figure 13A). The overlapping 16 DEGs
of both groups (STAT4 (Signal Transducer And Activator Of Transcription 4), ACKR4,
CCL26, CCL2, CFH (Complement Factor H), HGF, LEPR (Leptin Receptor), SNAI1 (Snail
Family Transcriptional Repressor 1), CDH1 (Cadherin 1), MSR1 (Macrophage Scavenger
Receptor 1), KDR, EGR1 (Early Growth Response 1), MMP10 (Matrix Metallopeptidase 10),
KIT, IL11 (Interleukin 11), and STAT1) were visualized in STRING (Figure 13B).
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and the 16 CCL2 interaction partners that are differentially expressed in both comparisons.

The STRING analysis shows that all of the DEGs that are part of both analyses have
already been associated with CCL2. Several of these DEGs have at least been co-mentioned
in PubMed abstracts: Four (KIT, CDH1, STAT4, and IL11) have been co-mentioned in
PubMed abstracts, four (MSR1, LEPR, EGR1, and STAT1) have been co-mentioned and
have putative homologs that are co-expressed in other organisms, four (HGF, CFH, MMP10,
and KDR) have been co-mentioned and are co-expressed in humans, and one (SNAI1) has
been co-mentioned, is co-expressed in humans, and has been associated with CCL2 in
experimental/biochemical data. CCL2 and both CCL26 and ACKR4 (atypical chemokine
receptor 4) have been co-mentioned and have experimental/biochemical data suggesting a
possible functional link.

Out of the three likely interaction partners of CCL2 (CCR10 (C-C chemokine receptor
type 10), ACKR2 (atypical chemokine receptor 2), and ACKR4) that were predicted using
NicheNet and focusing on UV response, only ACKR4 is differentially expressed in both
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analyses. As ACKR4 was regulated in different directions in progeria and aging (downreg-
ulated in HGPS, upregulated in aging, Figure 3C–E), ACKR4 might play an important role
in both processes and might be involved in the severity of the symptoms or the differences
between accelerated and normal aging.

3.6. Proteomics

Multi-omics integration analysis offers additional information and thus a better un-
derstanding of the potential progeria- and aging-related markers. Although RNA and
protein are closely related, it has become apparent that protein levels are controlled by
other factors besides mRNA levels [89]. For a complete understanding of the regulation of
gene expression, integrating both transcriptomics and proteomics is necessary [89].

Therefore, we analyzed the literature on proteomics in aging research and compared
the findings of proteomics analyses with our RNA-Seq analysis results.

Johnson and colleagues (2020) performed a systematic review of 36 different pro-
teomics analyses regarding human aging involving more than 11,000 participants [90].
They report that 1128 proteins were reported as significantly changing with age by at least
two different studies, and 66.58% of these proteins were reported in two or more different
cell types and/or tissues [90]. Among these proteins was IGF1, found in cerebrospinal fluid
and plasma and associated with longevity via the insulin-IGF1 signaling pathway [90].

Thirty-two proteins were even reported by at least five or more analyses and have
known connections to age-related diseases and aging, including HGF, which has been
shown to attenuate inflammation and severity of pulmonary artery hypertension in a rat
model [90].

To crosscheck our RNA-Seq DEGs, we compared our DEGs to the proteins resulting
from Johnson and colleagues’ meta-proteomics analyses. According to Johnson et al. (2020),
four of our DEGs of special interest (CCL2, IGF1, IGFBP2, and KRT18) were reported as
aging-related proteins [90].

Moaddel et al. (2021) have remarked that changes in plasma protein levels do not
necessarily affect the protein level in another tissue or matrix [91]. Hence, they focused
on proteins with plasma concentrations significantly associated with age (in at least two
studies) that were additionally associated with age in at least one non-plasma matrix [91].
Applying these stricter standards, three of the genes that are differentially expressed in
aging and progeria (TFPI, STAT1, IGFBP2) appear to be associated with changes in protein
expression.

Tsitsipatis and colleagues (2022) analyzed the proteins of primary skin fibroblasts of
healthy donors between 22 and 89 years of age and highlighted the pathways playing
a key role in skin fibroblast aging [92]. As they created an ex vivo model by cultivating
the fibroblasts, not all traits of skin aging were faithfully recapitulated [92]. However,
several previous studies and their internal tests measuring collagen expression indicate
the value of ex vivo fibroblast models [92]. They generated a comprehensive proteome of
skin fibroblasts, which can be used to crosscheck whether DEGs revealed by RNA-Seq data
analysis also indicate changes in the proteome.

Figure 14 summarizes the comparison of our RNA-Seq data analyses and the pro-
teomics analyses: According to the review by Johnson and colleagues (2020), the respective
proteins of 110 DEGs of the aging comparison (Figure 14A, blue circle) and 34 DEGs of the
progeria comparison (Figure 14A, yellow circle) were found during proteomics analyses
(Figure 14A, green circle, data available in the supplementary materials of Johnson et al.’s
(2020) publication [90]). Fourteen of these DEGs are common DEGs in aging and progeria
(Figure 14A, Table 2 “Aging Proteomics 1”). When applying the stricter definition of Moad-
del et al. (2021; Figure 14B, data available in the supplementary data of Moaddel et al.’s
(2021) publication [91], green circle), there remained 17 aging-related DEGs (Figure 14B,
blue circle) and 6 HGPS-related DEGs (Figure 14B, yellow circle). Three of these DEGs
(Figure 14B, Table 2 “Aging Proteomics 2”) are associated with both aging and progeria.
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Figure 14. Venn diagram analyses of progeria and aging in our RNA-Seq results and proteomics
literature. (A) The DEGs of the aging comparison (blue) and the DEGs of the progeria comparison
(yellow) compared with the proteins of the proteomics analyses reviewed by Johnson et al. (2020;
available in their Supplementary Material [90]; green). (B) The DEGs of the aging comparison (blue)
and the DEGs of the progeria comparison (yellow) compared with the proteins of the proteomics
analyses reviewed by Moaddel et al. (2021; available in their Supporting Information [91]; green).
(C) The DEGs of the aging comparison (blue) and the DEGs of the progeria comparison (yellow)
compared with the proteins of the proteomics analyses by Tsitsipatis et al. (2022; available in their
Supporting Information [92]; green).

Table 2. Cross check of the genes regarding the common genes in aging and progeria in our RNA-Seq
analysis and aging-related/progeria-related proteomics publications.

Gene Name Description Reported Tissue
Proteomics Ref.

Aging
Proteomics 1

IGFBP2 insulin like growth factor binding protein
2

Plasma, monocytes,
macrophages and

precursors
[90,93–95]

STAT1 signal transducer and activator of
transcription 1 Plasma, liver [90,93,96,97]

TFPI tissue factor pathway inhibitor Plasma [90,94,96]
KRT18 keratin 18 Plasma, liver [90,96–98]
CCL2 C-C motif chemokine ligand 2 Plasma [90,99–101]
IGF1 insulin like growth factor 1 Plasma, cerebrospinal fluid [90,96,102]
HGF hepatocyte growth factor Plasma, cerebrospinal fluid [90,93,99,100,102,103]
MSR1 macrophage scavenger receptor 1 Plasma [90,93,96]

EFEMP1 EGF containing fibulin extracellular
matrix protein 1 Plasma, urine [90,93,94,104,105]

GDF5 growth differentiation factor 5 Plasma, cerebrospinal fluid [90,96,102]
KDR kinase insert domain receptor Plasma [90,93,96]
FST follistatin Plasma [90,93,99]

SECTM1 secreted and transmembrane 1 Plasma [90,94,96]

HS3ST3A1 heparan sulfate-glucosamine
3-sulfotransferase 3A1 Plasma [90,93,96]

SPINT2 serine peptidase inhibitor, Kunitz type 2 Plasma, cerebrospinal fluid [90,93,96,106]

Aging
Proteomics 2

IGFBP2 insulin like growth factor binding protein
2

Plasma, monocytes,
macrophages and

precursors
[90,91,93–95]

STAT1 signal transducer and activator of
transcription 1 Plasma, liver [90,91,93,96,97]

TFPI tissue factor pathway inhibitor Plasma [90,91,94,96]

Proteomics
Fibroblasts Wnt5A Wnt family member 5A Fibroblasts [92]

Comparing the results of Tsitispatis analysis with our DEGs (Figure 14C) indicates
that several of the observed changes appear to affect the protein expression: 38 of the aging-
related DEGs (Figure 14C, blue circle) and three of the progeria-related DEGs (Figure 14C,
yellow circle) overlap with aging-related proteins of Tsitsipatis and colleagues’ proteomics



Biomedicines 2022, 10, 2440 23 of 40

analysis (Figure 14C, data available in the supplementary materials of Tsitsipatis et al.’s
(2022) publication [92], green circle). Of these DEGs, WNT5A was significantly differentially
expressed in all three groups (Figure 14C, Table 2 “Proteomics Fibroblasts”).

3.7. Validation Using a Different RNA-Seq Dataset

Mateos and colleagues (2018) combined RNA-Seq and High-Resolution Quantitative
Proteomics (iTRAQ, isobaric tag for relative and absolute quantification) using two bi-
ological replicates for analyzing fibroblast cell lines derived from progeria patients and
healthy parental controls [107]. The iTRAQ technique uses mass tags to label peptides
allowing the combination of time points or replicates, which improves the identification of
low levels of a protein [108]. The technique can also be used to analyze phosphorylated
proteins [108]. In their study, Mateos et al. (2018) performed RNA-Seq and iTRAQ using
their own fibroblasts, which were derived from donors suffering from progeria and their
parents [107]. The group aimed to find molecular pathways affecting premature aging [107].
After analyzing the significant transcripts and proteins, they focused on ribose-phosphate
pyrophosphokinase 1 (PRPS1), which affects the purine metabolism and is significantly
decreased in HGPS compared to healthy parental controls [107].

To validate our results, we compared Mateos et al.’s (2018) RNA-Seq analysis results
with our analyses. Our comparison of progeria patients and healthy children and their
comparison of progeria patients and their parents have 97 genes in common (Figure 15B,
overlap of the yellow and the green circle) and our comparison of nonagenarians and
healthy children results in 203 common genes with Mateos and colleagues’ results (2018;
Figure 15B, overlap of the blue and the green circle). Among these common genes are
KRT18, WNT5A, IGFBP2, EGR1, and ADAMTS15.
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Figure 15. Venn diagram analysis of progeria and aging regarding transcriptomics and proteomics.
(A) The DEGs of the aging comparison (blue circle) compared with the DEGs of the progeria compar-
ison (yellow circle) and compared with the proteins of the two biological replicates (ITRAQ1 (green)
and ITRAQ2 (red circle)) analyzed by Mateos and colleagues (2018, available in their Supporting
Information [107]). (B) Comparison of the DEGs of the aging comparison (blue) and the DEGs of the
progeria comparison (yellow) compared with the DEGs of the RNA-Seq analysis by Mateos et al.
(2018; available in their Supporting Information [107]; green circle).

Comparing our RNA-Seq DEGs with the results of Mateos and colleagues’ proteomics
analysis (Figure 15A) also reveals some DEGs that appear to affect protein levels, including
PLCB4, BST1, STAT1, IGFBP2, and SERPINB2 (overlap of all four ellipses in Figure 15A,
Table 3), even though the respective analyses were done with different datasets.
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Table 3. Summary of the DEGs of special interest in the different proteomics studies. Columns
indicate if/how often the gene was mentioned in aging-related proteomics studies (according to
Johnson et al., 2020), Tendency in gene regulation observed in the RNA-Seq data analysis by Mateos
et al. (2018), the iTRAQ analyses of Mateos et al. (2018), in our study regarding aging, in our study
regarding progeria.

Gene

Observed in . . .
Proteomics

Studies
(Johnson et al.)

Tendency Observed
in RNA-Seq

Progeria
(Mateos et al.)

Tendency
Observed in

iTRAQ Progeria
(Mateos et al.)

Tendency
Observed in Our

Study (Aging)

Tendency
Observed in Our
Study (Progeria)

IGFBP2 3 up up up up

IGF1 2 down - down down

WNT16 - up - up up

UCP2 - up - down up

ACKR4 - - - up down

CCL2 2 up - up up

KRT8 - up - down up

KRT18 3 up - down up

ADAMTS15 - up - down up

ACTN4P1 - - - down up

4. Discussion

In 1987, Rowe and Kahn proposed the concept of “successful aging”, pointing out that
many of the changes regarded as “normal” during aging are preventable [109]. They also
reported that some of these changes could be reversed [109] by interpreting “aging as a
disease”, a notion that has already been proposed in ancient times [110] and has recently
garnered attention [110,111]. Regardless of whether aging should be seen as a disease
or not, extending not only the lifespan but also the health span [1,110,111] and possibly
even rejuvenation [28] are of great interest. In this study, we analyzed a publicly available
RNA-Seq dataset and proteomics data using bioinformatic tools.

Although the name “progeria” is derived from Greek for “prematurely old” [7], there
are differences in differential gene expression between HGPS and “normal” aging. Gene
expression in both groups, the HGPS patients and the nonagenarians, differs from gene
expression in the control group of healthy children. However, there are distinct differences
between the analysis results for progeria and aging. While both conditions have 157 DEGs
in common, there are also DEGs specific to the respective conditions. This results in
different biological processes being affected by the changes in gene expression, evident in
enrichment analyses.

The differences might be due to differences between progeria patients and nonagenari-
ans. While progeria patients are children suffering from a rare and fatal disease resulting in
premature aging [112], the nonagenarians might be examples of “successful aging” [109].

Additionally, enrichment analyses might reveal relevant information for understand-
ing and treating the conditions.

For instance, the only hallmark gene set that is enriched when comparing progeria
patients and healthy children is KRAS signaling up. KRAS is known as the most fre-
quently mutated RAS isoform [113]. Due to the oncogenic nature of mutations in the RAS
genes, RAS inhibitors such as farnesyltransferase inhibitors (FTIs) have been researched
as potential anticancer drugs [113,114], although FTIs did not advance into clinical use
due to their lack of efficacy in cancer therapy in clinical trial [114,115]. The similarity
in the post-translational processing of RAS and progerin led to the repurposing of FTIs
as potential treatments for HGPS [115]. One of these drugs, lonafarnib (zokinvy), was
successfully tested as progeria treatment in the first clinical trial for treating progeria [15]
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and has since been FDA approved [17], becoming the first FDA approved drug for progeria
treatment [115].

Since Fleischer et al. (2018) obtained the dermal fibroblasts from “apparently healthy
individuals” via the Coriell Institute cell repository [19], there is no further information
available about the donors. The number of samples (5–7/group) is sufficient for RNA-Seq
data analysis using DESeq2 [41,116]. However, a bigger sample size and detailed medical
history of the fibroblast donors could have contributed to further insights.

Novelty of our findings in a nutshell: Here, we focused on the 157 common DEGs in
progeria vs. aging speculating they should be involved in or at least related to the aging
process and might be the key to understanding aging and the processes involved. This
comparative aspect of our study is completely new though the dataset by Fleischer et al. [19]
has been analyzed in other directions before (see Table 1). By this comparison, we can much
better isolate the physiological genes for high age and separate them from the accelerated,
pathological aging in progeria. More importantly, all these genes are markers for specific
pathways: downregulated in high age are KRT8, KRT18, ADAMTS15, ACTN4P1, and
UCP2 whereas ACKR4, WNT16 and IGFBP2 are upregulated in nonagenarians. Hence, this
study is novel to reveal by an extensive comparative analysis over multi-omics datasets
pathways involved in achieving a very high age separated from pathological aging path-
ways. Definitely this is only a first start for more extensive analyses including extensive
cell biology experiments on the different pathways involved (see also below: limitations).
In particular further analysis has to find out, how far the changes in pathways and gene
expression found in nonagenarians are markers or makers of successful aging. This will be
critical for any therapeutic strategies to be derived from the analysis. We are next discussing
the individual findings:

Surprisingly, six of these DEGs are regulated in different directions in progeria and
aging, respectively. Five of the DEGs (KRT8, KRT18, ADAMTS15, ACTN4P1, and UCP2)
are upregulated in HGPS patients compared to healthy children and nonagenarians but
downregulated when comparing nonagenarians and healthy children.

The sixth DEG, ACKR4, is downregulated in children suffering from progeria com-
pared to healthy children and nonagenarians. Nonagenarians have higher ACKR4 levels
than healthy children. The opposite regulation of these genes might lead to a better under-
standing of the differences between progeria and aging. Furthermore, the regulation of the
DEGs could indicate accelerated aging or normal aging.

KRT8 (Keratin 8) and KRT18 (Keratin 18) have been linked to modulating cellular stress
response and cell resistance to apoptosis [117]. KRT18 has been suggested as a possible
biomarker for frailty and aging [118], due to KRT18 and cKRT18 (caspase-cleaved fragment
of keratin 18 (KRT18)) being biomarkers for diseases with apoptotic and mitochondrial
defects, which are among the hallmarks of aging, and its association with senescence and
anti-mitochondrial auto-antibody formation [118].

The nonagenarians, on the other hand, appeared to have rather low KRT18 expression,
although KRT18 levels would be expected to rise with increasing age [118]. If KRT18
expression in fibroblasts is similar to other tissues, this finding might indicate that the
nonagenarian fibroblast donors were of extremely good health or that progeria severely
affects the skin, which corresponds to skin problems being among the typical progeria
symptoms [10,11]. Interestingly, Gill and colleagues (2022) reported that KRT8 and KRT18
were among the genes they observed as downregulated in aging and upregulated upon
transient reprogramming, their method for cell rejuvenation [28]. Therefore, examining
KRT18 and its interaction partners in HGPS and different age groups might lead to further
insights regarding aging and “successful aging”.

ADAM (a disintegrin and metalloproteinase with thrombospondin motifs) metallopep-
tidase with thrombospondin type 1 motif 15 (ADAMTS15) is upregulated in HGPS but
appears to be downregulated upon aging (both compared to healthy children). ADAMTS15,
along with ADAMTS1, 4, 5, 9, and 20, is involved in several processes, including palate for-
mation, skin pigmentation, myogenesis, and cardiac development [119], all of which appear
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to be affected by progeria. In addition, ADAMTS15 is involved in the turnover of cartilage
and/or bone during joint inflammation [120] and the inverse correlation of ADAMTS15
and CITED2 (Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-Terminal
Domain 2) expression links it to the Wnt pathways associated with bone formation and
inflammatory arthritis [120].

Thus, ADAMTS15 might be an interesting research target in progeria and aging-related
research, especially as WNT16 is among the only three DEGs that progeria, aging, and the
aging pathway have in common.

The role of actinin alpha 4 pseudogene 1 (ACTN4P1) is not yet known. Pseudogenes
have long been regarded as “void of function” [121] or “junk DNA” [122,123]. However,
research has shown that they can affect coding genes and are transcribed into RNA [122,123]
and are involved in regulatory functions [123].

Progeria patients had higher ACTN4P1 expression than healthy children in our study
and even higher ACTN4P1 expression compared to nonagenarians. To our knowledge,
this is the first publication mentioning ACTN4P1, which warrants further investigation
of which processes and interaction partners are affected by ACTN4P1 and whether the
pseudogene is involved in aging-related processes.

WNT16 is among the DEGs with rather drastic changes in gene expression, indicating
that WNT16 might be of special importance in both progeria and aging. This is coherent
with literature as Marthandan and colleagues (2016) assessed the five most commonly used
human fibroblast strains for laboratory use by deep RNA sequencing and real-time PCR
and demonstrated that WNT16 and IGFBP2 are among the most differentially expressed
genes upon aging [124]. In aging research, WNT16 has already garnered interest due to
its association with bone mineral density, bone strength, and fracture risk [125]. WNT16B
has been associated with regulating the onset of replicative senescence and belongs to the
WNT family, a family of secreted proteins involved in the development, aging, senescence,
and tumorigenesis [126]. Additionally, it has been proposed that progerin directly affects
the transmission of Wnt (Wingless/Integrated) signaling pathway, which is known to be
impaired in HGPS [127]. Our study further confirms a possible connection between Wnt
signaling, progeria, and aging.

Another aging-related gene, UCP2 (Uncoupling Protein 2), is shown as upregulated
in progeria compared to healthy children and nonagenarians. Upregulation of UCP2 was
observed in aged rats [128] and a mouse model of premature aging [129,130], where UCP2
expression appeared to have metabolic effects [130]. Its upregulation in spontaneously
obese mice suggested UCP2-mediated metabolic adaption to the increase of fatty acid
biosynthesis and elevated lipid levels [128]. Increased UCP2 expression has been correlated
with increased levels of free fatty acids, which are proposed to be involved in downregulat-
ing IGF1 levels via a negative feedback loop [128]. Therefore, UCP2 has been associated
with counterregulatory effects on aging and age-related pathologies in mice, possibly via
modulating the insulin/IGF1 signaling pathway, which indicates that a targeted increase of
UCP2 levels might prolong the lifespan of mammals [128].

However, in progeria, the high UCP2 levels do not correlate with patient’s body weight,
as low body weight is one of the characteristics of progeria [11]. In addition, there appear
to be parallels between UCP2 and the different LMNA isoforms. A study comparing the
effects of lamin A, lamin C, and progerin, the truncated form of lamin A, in mice revealed
that progerin and lamin C regulate mitochondrial biogenesis and energy expenditure via
triggering antagonistic signals in adipose tissue [131]. While mice only expressing lamin C
were obese and had an increased lifespan, the role of progerin in adipose tissue homeostasis
might have an opposing effect on lifespan [131]. Additionally, the rather skinny progerin-
expressing mice were more sensitive to insulin and appeared to have a higher metabolic
rate and use more carbohydrates [131]. In contrast, the lamin C-expressing mice were
moderately insulin-resistant, showed reduced overall energy consumption, and appeared
to prefer fatty acids [131]. The involvement of UCP2 in aging and insulin signaling is
similar to progerin and is of great interest to research further.
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Insulin-like growth factor-binding protein 2 (IGFBP2) levels positively correlate with
age, and insulin sensitivity and inversely correlate with the body mass index (BMI) [132].
Van den Beld et al. (2018) conducted a 20-year longitudinal study, repeatedly measuring
BMI, IGF1, IGFBP2, insulin sensitivity, and mortality around the ages of 55, 65, and 75 in
539 participants [132]. They reported, when adjusted for BMI, IGFBP2 levels and insulin
sensitivity show a positive correlation [132]. Therefore, the authors suggest IGFBP2 as a
possible marker for insulin sensitivity [132].

We are, to our knowledge, the first to report and stress these elevated IGFBP2 levels
in progeria patients. In our comparative analysis, IGFBP2 levels in healthy children and
nonagenarians show its upregulation with age. However, in progeria, IGFBP2 expression
is considerably more elevated than in nonagenarians suggesting its role in both aging
and progeria. Such upregulation in progeria could be related to their weight, as children
suffering from progeria typically have rather low BMIs [11]. The age-related increase of
IGFBP2 levels, especially after 50 [132], could also be connected with the high IGFBP2
expression in accelerated aging and in serum, it appears to be a mortality marker that
positively correlated with insulin sensitivity [132].

While pseudogenes such as ACTN4P1 are still garnering research interest [121,122,
133,134], microRNAs (miRNAs/miRs), which have been equally disregarded for a long
time [135], are increasingly recognized as therapeutic targets [135] and show promising
therapeutic results [136]. Hence, we included miRNA prediction, which is a promising
research field on its own, in our analyses.

Three of the 37 miRNAs that were predicted using the common DEGs as input might
be associated with IGFBP2: hsa-mir-27b-3p, hsa-mir-126-3p, and hsa-mir-124-3p.

In the plasma, hsa-mir-126-3p appears to be upregulated with age [137], while the
miRNA was found to be downregulated in blood samples of centenarians and has there-
fore been proposed as a potential longevity biomarker [137,138]. Olivieri et al. (2014)
reported that the increase of hsa-mir-126-3p blood level was accompanied by an increase of
hsa-mir-126-3p in human endothelial cells during senescence [139]. They also observed
lower hsa-mir-126-3p levels in type 2 diabetes mellitus patients and proposed a possible
interrelationship between miR-126-3p (microRNA-126-3p) downregulation and age-related
conditions with a pro-inflammatory background, while an increase of mir-126-3p might act
as a positive compensatory mechanism [139]. miR-27b expression appears to affect wound
healing in the skin, as a study by Bi et al. (2020) indicates [140]. They reported increased
fibroblast proliferation and thus accelerated healing of scald wounds in rats upon miR-27b
inhibition [140].

Both IGFBP2 and UCP2 are associated with miR-124, which has been shown to increase
in senescent skin and upon UVB-irradiation (type B ultraviolet), indicating a possible role of
miR-124 in UVB-induced skin aging [141]. UCP2 is also associated with miR-26a-5p. Mea-
sured in serum, miR-26a could serve as a prognostic marker for osteoporosis and appears
to regulate serum IGF1 levels in osteoporosis patients [142]. Additionally, miR-26a-5p has
been linked with UVB-induced apoptosis [137]. Increased expression of miR-181a, which
was predicted to be associated with WNT16, has been reported upregulated in keratinocytes
undergoing replicative senescence [137]. Furthermore, miR-181a is among the biomarkers
of aging expressed by dermal fibroblasts and has been linked with skin immunosenescence
and the age-related inflammatory phenotype in CD4+ T cells (CD4-positive cells/T helper
cells) [137].

While GO enrichment focuses on DEGs, a GSEA analysis takes the whole gene set
into account. Thus, using NicheNet analysis, GSEA, the Omnipath database, and the
well-known GSE113957 dataset, we present here to our knowledge the first integrated data
analysis of the pathways involved in aging and progeria. Furthermore, we show genes and
their interaction partners involved in these pathways.

According to our analysis, UV response has the highest positive normalized en-
richment score when comparing nonagenarians and healthy children. Additionally, UV
response is among the top five pathways when analyzing progeria. Lesiak et al. (2017)
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assessed the progerin expression upon sun exposure in vivo and demonstrated that one
week of sun exposure was enough to significantly elevate the progerin levels in the skin of
participants in their twenties almost to the amount of progerin measured in elderly par-
ticipants (64.1 ± 13.1 years) with photoaged skin [86]. Due to this experimentally backed
correlation between UV exposure and progerin expression, we decided to focus on UV
response in our NicheNet analyses. In both analyses, aging and progeria, IGF1 and CCL2
are among the prioritized ligands.

IGF1 (insulin-like growth factor 1) has been associated with IGFBP2 [132,143] and
controls apoptosis [143,144]. Van den Beld and colleagues (2018) studied IGFBP2 and IGF1
concentrations, as well as insulin sensitivity and BMI in a 20-year longitudinal study and
concluded that IGFBP2 levels can predict mortality if interpreted in relation to insulin
sensitivity [132]. Hu et al. (2009) also reported a correlation between high IGFBP2 levels
and mortality in subjects older than 70 years [143]. They proposed a possible association
between low IGF1 expression, which is associated with lower mortality in animal models,
and low IGFBP1 (Insulin Like Growth Factor Binding Protein 1) and IGFBP2 levels as
markers for low IGF1 levels [143].

Fibroblasts of nonagenarians express less IGF1 than fibroblasts of healthy children,
and IGF1 is indeed a DEG in natural aging. In fibroblasts donated by progeria patients,
IGF1 appears to be slightly lower expressed than in nonagenarians. When comparing
progeria patients and healthy children, IGF1 is also lower expressed.

As age appears to have a greater effect on UV-induced damages than skin type [145],
the effects of increased IGF1 expression were studied [146,147]. In aged skin, exogenous
IGF1 [147] as well as dermabrasion and sun-protected skin-healing, which increased IGF1
levels [146], were found to restore the response to UVB radiation [146,147]. Therefore,
it would be of interest whether treatments affecting IGF1 expression influence progeria-
related skin abnormalities.

Additionally, UV response might link inflammation and aging, “inflammaging”, as
exposure to UV light is a well-known method to provoke inflammation [148], and CCL2
expression is also induced by inflammatory stimuli [149]. The C-C Motif Chemokine
Ligand 2 (CCL2), which is also known under several other names, including monocyte
chemoattractant protein-1 (MCP-1), is the other prioritized ligand aging and HGPS have in
common when analyzed regarding UV response. Among its predicted interaction partners
are ACKR4, the atypical chemokine receptor 4 that is also known as CCR11, and a variety
of other names. ACKR4 is also among the CCL2-related DEGs that progeria and aging have
in common. Although CCL2 levels are higher in progeria patients than in nonagenarians,
both nonagenarians and progeria patients have higher CCL2 levels than healthy children.

Again, the individual facets are known, but the suggested synthesis sheds new light on
this aging pathway. Since increased CCL2 levels have been associated with inflammation
and aging, Luciano-Mateo and colleagues (2020) crossbred mice bearing a mutation in their
LMNA gene with mice overexpressing CCL2 [150]. The combination of accelerated aging
and CCL2 overexpression significantly reduced the lifespan and the health span of the
mice [150]. Additionally, higher CCL2 levels appeared to worsen accelerated aging and
also affected the energy metabolism and the 1-C metabolism, as well as the mitochondrial
function of the mice bearing both the LMNA mutation and CCL2 overexpression [150].

These results, as well as our observations, suggest CCL2 as an additional target
in aging and progeria research. Therefore, we visualized the interactions of CCL2 and
the CCL2-related DEGs involved in both aging and progeria. In this study, we focus
on the interaction between CCL2 and ACKR4, as both are involved in the UV response
pathway, which we selected as an example for NicheNet analysis. ACKR4 has been
mentioned as a receptor for CCL2 [151] which is upregulated in nonagenarians compared
to healthy children in our study, whereas the ACKR4 expression in progeria is very low in
all comparisons. MCP-1/CCL2 can bind to a common binding site on ACKR4/CCR11 [151].
However, the relationship between CCL2 and ACKR4 is not yet explored. Hence, we predict



Biomedicines 2022, 10, 2440 29 of 40

that exploring the interactions of ACKR4 and CCL2 in aging in future research will be
rather interesting.

Although we elaborated only on UV response as an example, the other pathways
suggested by NicheNet analysis are equally interesting, and focusing on the ligands and
receptors involved might generate further insights regarding aging and progeria. Due
to the plethora of information contained in RNA-Seq experiments, reanalyzing existing
RNA-Seq data can still generate new insights. Even if in silico analysis can offer great
insights and help generate new hypotheses, subsequent in vitro and in vivo studies are
necessary to further validate the targets found using omics analyses.

Further validation for RNA-Seq analysis results is analyzing the protein expression
measured via proteomics analyses. As mRNA levels and protein levels only modestly
correlate, gene expression is also controlled by post-transcriptional regulation [89]. Thus,
changes in gene expression observed in RNA-Seq data do not necessarily result in changes
in protein expression [89]. Crosschecking transcriptomics and proteomics results can there-
fore validate whether the DEGs found via RNA-Seq data analysis are likely to affect the
organism. For analyzing laboratory results, a multi-omics approach, such as the combina-
tion of transcriptomics and proteomics analyses performed by Mateos et al. (2018) [107],
can generate further insights.

After additionally analyzing aging- and progeria-related proteomics analyses, the
importance of STAT1, which is differentially expressed in both comparisons (nonagenarians
and healthy children and HGPS patients and healthy children) and in proteomics analysis,
became apparent. Signal Transducer And Activator Of Transcription 1 (STAT1) is involved
in various pathways, including cell proliferation, differentiation, and apoptosis, and has
been associated with cellular senescence [152]. In progeria, STAT1 has been shown to be
involved in an interferon (IFN)-like response upon progerin-induced replication stress [153].
In turn, inhibition of STAT1 by calcitriol was demonstrated to improve the phenotypes of
HGPS cells [153].

Among the genes that are differentially expressed in both of our RNA-Seq data
analyses (aging-related and progeria-related), five genes were differentially expressed in
the ITRAQ analyses performed by Mateos and colleagues (2018). Thus, the multi-omics
approach shows that the changes in gene expression of these five DEGs (PLCB4, BST1,
STAT1, IGFBP2, and SERPINB2) also affect protein expression (Table 3).

The meta-proteomics analysis of Johnson and colleagues (2020) further indicated
that several of our DEGs appear to affect protein expression, as they were mentioned
differentially expressed in at least two different proteomics analyses [90]. Besides our DEGs
of special interest (IGFBP2 (mentioned three times), KRT18 (mentioned three times), CCL2
(mentioned twice), and IGF1 (mentioned twice)), several other DEGs (STAT1 (mentioned
three times), TFPI (mentioned twice), HGF (mentioned five times), MSR1 (mentioned
twice), EFEMP1 (mentioned four times), GDF5 (mentioned twice), KDR (mentioned twice),
FST (mentioned twice), SECTM1 (mentioned twice), HS3ST3A1 (mentioned twice), and
SPINT2 (mentioned three times)) have been found differentially expressed in proteomics
analyses regarding aging. Additionally, a recent study by Tsitsipatis et al. (2022) indicates
that Wnt5A expression [92] might be affected by changes in gene expression observed in
our RNA-Seq data analyses.

Ikegami and colleagues (2020), who also analyzed Fleischer et al.’s (2018) dataset
and samples from fibroblast cell lines, provided information on the pLMNA binding sites
of various proteins in their supplementary data [22], and several of our DEGs of special
interest (IGFBP2, IGF1, KRT8, KRT18, and CCL2) have been associated with the presence
of gained pLMNA-binding sites.

Using Johnson et al.’s (2020) meta-analysis, we demonstrated that IGFBP2, IGF1, CCL2,
and KRT18, which are differentially expressed in aging and progeria, have been observed
as differentially regulated proteins in several aging-related proteomics analyses.

The tendencies in gene regulation of IGFBP2, IGF1, WNT16, UCP2, CCL2, KRT8, KRT18,
and ADAMTS15 we observed in our analysis are confirmed by Mateos et al.’s RNA-Seq
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analysis (2018) of samples derived from progeria patients and their parents (Table 3). ACKR4
and ACTN4P1 were not among the genes in Mateos et al.’s RNA-Seq analysis (2018).

Analyzing the iTRAQ analysis results provided as supplementary data provided by
Mateos and colleagues (2018) reveals that IGFBP2 is among the differentially expressed
proteins when comparing progeria patients and their parents. This further highlights its
potential importance in aging and progeria.

Such findings highlight the predictive value of multi-omics approaches such as the
combination of RNA-Seq analysis and proteomics.

Limitations: Bioinformatics can indicate possible genes of interest and even model the
effects of a pharmacological intervention [154]. However, one of the limitations of bioinformat-
ics and modeling is that these theoretical predictions might differ from clinical results. One
example of the limitations of theoretical predictions in clinical research is the use of FTIs as
anti-cancer drugs, as described by Berndt et al. (2011) [113] and Xie and colleagues (2017) [114].
Despite promising predictions, the drugs did not have the desired clinical effect. Therefore,
the use of bioinformatics needs to be combined with in vitro and in vivo experiments.

Nevertheless, bioinformatics and theoretical predictions can help save costs, resources,
and time by predicting promising target genes and potential biomarkers. The approach
of narrowing down potential genes of interest using publicly available datasets and sub-
sequently confirming the hypotheses in the laboratory has led to discoveries such as the
role of CD44 in diabetes [155,156]. It has been known for several years that the constantly
growing number of publicly available datasets offers researchers the opportunity to repur-
pose these data and use them as the first step for their own research projects [155]. We
would like to contribute to the broader use of this research approach by introducing and
demonstrating the power of freely available bioinformatic tools.

The genes of interest we found using RNA-Seq analysis were confirmed by proteomics
analyses, another “-omics” discipline, but before these results can be implemented in
clinical practice, they need to be confirmed in the laboratory. Nevertheless, the likelihood
of such validation is high in this case as indicated by additional bioinformatics validation
of our results with multiple datasets.

Analyzing additional tissue types and blood samples might yield further insights as
this study focused only on fibroblasts derived from donors in different age groups. All
information and potential markers derived in this study are based on fibroblasts, another
limitation of our study, as different cells and tissues might behave differently.

Increasing the number of samples for the different age groups would enhance the
accuracy and reliability of the results, as increasing the sample sizes increases the reliability
and reproducibility of gene set analyses [116,157].

In summary, we briefly introduced several omics methods for RNA sequence analysis
that can be used on their own or in combination with both new data and already existing
publicly available data. Here, we introduced some of the differentially expressed genes,
their interaction partners, and their age-related implications, hoping to demonstrate some
of the possibilities omics analyses may offer for aging research.

Finally, we would like to highlight the versatility of publicly available datasets such as
the RNA-Seq dataset by Fleischer et al. that we used for our bioinformatics analyses. Since
the raw data is available, every researcher can reanalyze the data using different tools and
ask different questions. While using different tools might yield further insights, the real
use of such datasets is repurposing the data for other research questions.

Although the dataset was already repurposed in several studies listed in PubMed, all
of these studies produced different results. Our study still reveals new insights, although
we intentionally used well-known high-quality bioinformatic tools.

As a novel approach for using the comprehensive dataset, we performed a comparative
analysis of two RNA-Seq data analyses using subsets of the dataset (healthy children,
nonagenarians, and progeria patients). By analyzing the RNA-Seq data of healthy children
and nonagenarians, we found various DEGs related to normal aging. We also compared
the RNA-Seq data of healthy children and children suffering from progeria, which resulted
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in various progeria-related DEGs. Further analysis revealed 157 common DEGs in both
conditions, aging and progeria. This indicates the differences and similarities between
aging and progeria. Subsequently, we focused on DEGs aging and progeria have in
common and further validated our genes of interest using metaprotomics analyses. As our
DEGs of interest have been found in aging-related proteomics analyses, the differences in
gene regulation observed in the RNA-Seq analysis appear to affect the proteome as well,
indicating the effect of the DEGs.

Interestingly, not all of the DEGs that both conditions have in common are regulated
similarly. Some genes that are downregulated during aging are upregulated in progeria pa-
tients (KRT8, KRT18, UCP2, ADAMTS15, ACTN4P1) while others (ACKR4) are upregulated
in nonagenarians but downregulated in children suffering from HGPS.

Despite progeria being known as premature aging, only three genes of the aging
pathway are differentially expressed in nonagenarians and progeria patients compared
to the same group of healthy children: WNT16, UCP2, and IGFBP2. We are—to our
knowledge—the first to mention IGFBP2, which is known as an age-related mortality
marker, as a potential biomarker in progeria. We also present here the miRNAs and
interactomes for the three genes connecting aging, the aging pathway, and progeria: WNT16
(hsa-mir-181a-5p), UCP2 (hsa-mir-26a-5p and hsa-mir-124-3p), and IGFBP2 (hsa-mir-124-3p,
hsa-mir-126-3p, and hsa-mir-27b-3p).
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Abbrevations

CC Cellular component
CD4+ T cells T helper cells also known as CD4-positive cells (CD4 = cluster of differentiation 4)
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DEGs differentially expressed genes
E2F group of genes encoding transcription factors in higher eukaryotes
ECP Epithelial Cell Proliferation
FDA U.S. Food and Drug Administration
FTIs farnesyltransferase inhibitors
G2M checkpoint G2/M checkpoint
GEO Gene Expression Omnibus
GO Gene Ontology
GO BPs Gene Ontology enriched biological processes
GSEA Gene Set Enrichment Analysis
HGPS Hutchinson-Gilford progeria syndrome
hsa-mir- human microRNA
iTRAQ isobaric tag for relative and absolute quantification
KEGG Kyoto Encyclopedia of Genes and Genomes
MF molecular function
miR- microRNA
miRNAs microRNAs
miRs microRNAs
MSigDB Molecular Signatures Database
NES normalized enrichment score
PCA Principal component analysis
PRF Progeria Research Foundation
RNA ribonucleic acid
RNA-Seq RNA sequencing
STRING Search Tool for Retrieval of Interacting Genes/Proteins
UV ultraviolet
UVB type B ultraviolet
Genes
ACE2 Angiotensin-converting enzyme 2
ACKR2 Atypical chemokine receptor 2
ACKR4 Atypical chemokine receptor 4
ACTN4P1 Actinin alpha 4 pseudogene 1
ADAM9 ADAM Metallopeptidase Domain 9
ADAMTS A disintegrin and metalloproteinase with thrombospondin motifs
ADAMTS15 ADAM metallopeptidase with thrombospondin type 1 motif 15
ANLN Anillin, Actin Binding Protein
APBA2 Amyloid Beta Precursor Protein Binding Family A Member 2
ASNS Asparagine Synthetase (Glutamine-Hydrolyzing)
ASPA Aspartoacylase
CCL2 C-C Motif Chemokine Ligand 2
CCL26 C-C Motif Chemokine Ligand 26
CCR10 C-C chemokine receptor type 10
CCR11 Abbreviation for Atypical chemokine receptor 4 (ACKR4)
CDH1 Cadherin 1
CDK1 Cyclin Dependent Kinase 1
CDK4 Cyclin Dependent Kinase 4
CDKN2B Cyclin Dependent Kinase Inhibitor 2B
CFH Complement Factor H
CGAS Cyclic GMP-AMP Synthase

CITED2
Cbp/P300 Interacting Transactivator With Glu/Asp Rich Carboxy-Terminal
Domain 2

cKRT18 caspase-cleaved fragment of keratin 18 (KRT18)
CLIP4 CAP-Gly Domain Containing Linker Protein Family Member 4
CPNE1 Copine 1
DLGAP5 DLG Associated Protein 5
DTYMK Deoxythymidylate Kinase
ECM2 Extracellular Matrix Protein 2
EDIL3 EGF Like Repeats And Discoidin Domains 3
EFEMP1 EGF containing fibulin extracellular matrix protein 1
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EGR1 Early Growth Response 1
FAM8A1 Family With Sequence Similarity 8 Member A1
FBN2 Fibrillin 2
FBLN5 Fibulin 5
FST Follistatin
GDF5 Growth Differentiation Factor 5
HGF Hepatocyte Growth Factor
HS3ST3A1 Heparan Sulfate-Glucosamine 3-Sulfotransferase 3A1
IGF1 insulin-like growth factor 1
IGFBP1 Insulin Like Growth Factor Binding Protein 1
IGFBP2 Insulin Like Growth Factor Binding Protein 2
IGFBP7 Insulin Like Growth Factor Binding Protein 7
IL11 Interleukin 11
IL13RA2 Interleukin 13 Receptor Subunit Alpha 2
IRF6 Interferon Regulatory Factor 6
KDR Kinase Insert Domain Receptor
KIFC1 Kinesin Family Member C1
KIT KIT Proto-Oncogene, Receptor Tyrosine Kinase
KLHL24 Kelch Like Family Member 24
KRAS Kristen rat sarcoma virus
KRT18 Keratin 18
KRT8 Keratin 8
LEPR Leptin Receptor
LMNA Lamin A/C
LMNB1 Lamin B1
LMNB2 Lamin B2
MAF MAF BZIP Transcription Factor
MCP-1 monocyte chemoattractant protein-1
MKI67 Marker Of Proliferation Ki-67
MMP10 Matrix Metallopeptidase 10
MSR1 Macrophage Scavenger Receptor 1
MYL9 Myosin Light Chain 9
NEIL1 Nei Like DNA Glycosylase 1
NTN4 Netrin 4
NKX3-1 NK3 Homeobox 1
NOD1 Nucleotide Binding Oligomerization Domain Containing 1
PLSCR4 Phospholipid Scramblase 4
POLR2F RNA Polymerase II, I And III Subunit F
POSTN Periostin
PRPS1 Phosphoribosyl Pyrophosphate Synthetase 1
PTPRN Protein Tyrosine Phosphatase Receptor Type N
SECTM1 Secreted and Transmembrane 1
SEMA3D Semaphorin 3D
SEMA5B Semaphorin 5B
SIX1 SIX Homeobox 1/Sine Oculis Homeobox Homolog 1
SNAI1 Snail Family Transcriptional Repressor 1
SNAP23 Synaptosome Associated Protein 23
SPINT2 Serine Peptidase Inhibitor, Kunitz Type 2
SPTB Spectrin Beta, Erythrocytic
STAT1 Signal Transducer And Activator Of Transcription 1
STAT4 Signal Transducer And Activator Of Transcription 4
STRA6 Signaling Receptor And Transporter Of Retinol STRA6
SVEP1 Sushi, Von Willebrand Factor Type A, EGF And Pentraxin Domain Containing 1
TACC3 Transforming Acidic Coiled-Coil Containing Protein 3
TLR3 Toll Like Receptor 3
TLR4 Toll Like Receptor 4
TNXB Tenascin XB
TOR1AIP1 Torsin 1A Interacting Protein 1 (also known as LAP1B)
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U2AF1 U2 Small Nuclear RNA Auxiliary Factor 1
UBE2D1 Ubiquitin Conjugating Enzyme E2 D1
UCP2 Uncoupling Protein 2

WISP2
WNT1-Inducible-Signaling Pathway Protein 2also known as CCN5
(Cellular Communication Network Factor 5)

Wnt Wingless/Integrated
WNT10B Wnt Family Member 10B
WNT16 Wnt Family Member 16
WNT5A Wnt Family Member 5A

References
1. López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [CrossRef]

[PubMed]
2. Gems, D.; de Magalhães, J.P. The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm. Ageing Res. Rev.

2021, 70, 101407. [CrossRef] [PubMed]
3. Ubaida-Mohien, C.; Moaddel, R.; Moore, A.Z.; Kuo, P.-L.; Faghri, F.; Tharakan, R.; Tanaka, T.; Nalls, M.A.; Ferrucci, L. Proteomics

and Epidemiological Models of Human Aging. Front. Physiol. 2021, 12, 674013. [CrossRef] [PubMed]
4. Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin,

J.E.; et al. Geroscience: Linking Aging to Chronic Disease. Cell 2014, 159, 709–713. [CrossRef]
5. Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [CrossRef]
6. Hutchinson, J. Congenital Absence of Hair and Mammary Glands with Atrophic Condition of the Skin and its Appendages, in a

Boy whose Mother had been almost wholly Bald from Alopecia Areata from the age of Six. Lancet 1886, 69, 473–477. [CrossRef]
7. Keith, A. Progeria and Ateleiosis. Lancet 1913, 181, 305–313. [CrossRef]
8. Gilford, H. Progeria and Ateleiosis. Lancet 1913, 181, 412–413. [CrossRef]
9. Hegele, R.A. Drawing the line in progeria syndromes. Lancet 2003, 362, 416–417. [CrossRef]
10. Merideth, M.A.; Gordon, L.B.; Clauss, S.; Sachdev, V.; Smith, A.C.M.; Perry, M.B.; Brewer, C.C.; Zalewski, C.; Kim, H.J.; Solomon,

B.; et al. Phenotype and Course of Hutchinson–Gilford Progeria Syndrome. New Engl. J. Med. 2008, 358, 592–604. [CrossRef]
11. Hennekam, R.C.M. Hutchinson–Gilford progeria syndrome: Review of the phenotype. Am. J. Med. Genet. Part A 2006, 140, 2603–2624.

[CrossRef] [PubMed]
12. Eriksson, M.; Brown, W.T.; Gordon, L.B.; Glynn, M.W.; Singer, J.; Scott, L.; Erdos, M.R.; Robbins, C.M.; Moses, T.Y.; Berglund, P.;

et al. Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 2003, 423, 293–298.
[CrossRef] [PubMed]

13. Osmanagic-Myers, S.; Kiss, A.; Manakanatas, C.; Hamza, O.; Sedlmayer, F.; Szabo, P.L.; Fischer, I.; Fichtinger, P.; Podesser, B.K.;
Eriksson, M.; et al. Endothelial progerin expression causes cardiovascular pathology through an impaired mechanoresponse. J.
Clin. Investig. 2019, 129, 531–545. [CrossRef] [PubMed]

14. De Sandre-Giovannoli, A.; Bernard, R.; Cau, P.; Navarro, C.; Amiel, J.; Boccaccio, I.; Lyonnet, S.; Stewart Colin, L.; Munnich, A.;
Le Merrer, M.; et al. Lamin A Truncation in Hutchinson-Gilford Progeria. Science 2003, 300, 2055. [CrossRef] [PubMed]

15. Gordon, L.B.; Kleinman, M.E.; Miller, D.T.; Neuberg, D.S.; Giobbie-Hurder, A.; Gerhard-Herman, M.; Smoot, L.B.; Gordon, C.M.;
Cleveland, R.; Snyder, B.D.; et al. Clinical trial of a farnesyltransferase inhibitor in children with Hutchinson–Gilford progeria
syndrome. Proc. Natl. Acad. Sci. 2012, 109, 16666–16671. [CrossRef] [PubMed]

16. Gordon, L.B.; Kleinman, M.E.; Massaro, J.; D’Agostino, R.B.; Shappell, H.; Gerhard-Herman, M.; Smoot, L.B.; Gordon, C.M.;
Cleveland, R.H.; Nazarian, A.; et al. Clinical Trial of the Protein Farnesylation Inhibitors Lonafarnib, Pravastatin, and Zoledronic
Acid in Children With Hutchinson-Gilford Progeria Syndrome. Circulation 2016, 134, 114–125. [CrossRef] [PubMed]

17. Dhillon, S. Lonafarnib: First Approval. Drugs 2021, 81, 283–289. [CrossRef]
18. The Progeria Research Foundation. News-European Medicines Agency recommends Zokinvy, the First and Only Therapy to

Treat Ultra-rare, Rapid-Ageing Disease Progeria, for Approval in Europe. Available online: https://www.progeriaresearch.org/
wp-content/uploads/2022/05/Zokinvy-CHMP-lay_health-joint-PR-FINAL-no-references.pdf (accessed on 23 May 2022).

19. Fleischer, J.G.; Schulte, R.; Tsai, H.H.; Tyagi, S.; Ibarra, A.; Shokhirev, M.N.; Huang, L.; Hetzer, M.W.; Navlakha, S. Predicting age
from the transcriptome of human dermal fibroblasts. Genome Biol. 2018, 19, 221. [CrossRef]

20. Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 2002, 30, 207–210. [CrossRef]

21. Köhler, F.; Bormann, F.; Raddatz, G.; Gutekunst, J.; Corless, S.; Musch, T.; Lonsdorf, A.S.; Erhardt, S.; Lyko, F.; Rodríguez-Paredes,
M. Epigenetic deregulation of lamina-associated domains in Hutchinson-Gilford progeria syndrome. Genome Med. 2020, 12, 46.
[CrossRef]

22. Ikegami, K.; Secchia, S.; Almakki, O.; Lieb, J.D.; Moskowitz, I.P. Phosphorylated Lamin A/C in the Nuclear Interior Binds Active
Enhancers Associated with Abnormal Transcription in Progeria. Dev. Cell 2020, 52, 699–713.e611. [CrossRef] [PubMed]

23. Yao, J.; Ding, D.; Li, X.; Shen, T.; Fu, H.; Zhong, H.; Wei, G.; Ni, T. Prevalent intron retention fine-tunes gene expression and
contributes to cellular senescence. Aging Cell 2020, 19, e13276. [CrossRef] [PubMed]

http://doi.org/10.1016/j.cell.2013.05.039
http://www.ncbi.nlm.nih.gov/pubmed/23746838
http://doi.org/10.1016/j.arr.2021.101407
http://www.ncbi.nlm.nih.gov/pubmed/34271186
http://doi.org/10.3389/fphys.2021.674013
http://www.ncbi.nlm.nih.gov/pubmed/34135771
http://doi.org/10.1016/j.cell.2014.10.039
http://doi.org/10.1186/s13059-017-1215-1
http://doi.org/10.1177/095952878606900127
http://doi.org/10.1016/S0140-6736(00)76131-9
http://doi.org/10.1016/S0140-6736(01)20267-0
http://doi.org/10.1016/S0140-6736(03)14097-4
http://doi.org/10.1056/NEJMoa0706898
http://doi.org/10.1002/ajmg.a.31346
http://www.ncbi.nlm.nih.gov/pubmed/16838330
http://doi.org/10.1038/nature01629
http://www.ncbi.nlm.nih.gov/pubmed/12714972
http://doi.org/10.1172/JCI121297
http://www.ncbi.nlm.nih.gov/pubmed/30422822
http://doi.org/10.1126/science.1084125
http://www.ncbi.nlm.nih.gov/pubmed/12702809
http://doi.org/10.1073/pnas.1202529109
http://www.ncbi.nlm.nih.gov/pubmed/23012407
http://doi.org/10.1161/CIRCULATIONAHA.116.022188
http://www.ncbi.nlm.nih.gov/pubmed/27400896
http://doi.org/10.1007/s40265-020-01464-z
https://www.progeriaresearch.org/wp-content/uploads/2022/05/Zokinvy-CHMP-lay_health-joint-PR-FINAL-no-references.pdf
https://www.progeriaresearch.org/wp-content/uploads/2022/05/Zokinvy-CHMP-lay_health-joint-PR-FINAL-no-references.pdf
http://doi.org/10.1186/s13059-018-1599-6
http://doi.org/10.1093/nar/30.1.207
http://doi.org/10.1186/s13073-020-00749-y
http://doi.org/10.1016/j.devcel.2020.02.011
http://www.ncbi.nlm.nih.gov/pubmed/32208162
http://doi.org/10.1111/acel.13276
http://www.ncbi.nlm.nih.gov/pubmed/33274830


Biomedicines 2022, 10, 2440 35 of 40

24. Lee, Y.; Shivashankar, G.V. Analysis of transcriptional modules during human fibroblast ageing. Sci. Rep. 2020, 10, 19086.
[CrossRef] [PubMed]

25. LaRocca, T.J.; Cavalier, A.N.; Wahl, D. Repetitive elements as a transcriptomic marker of aging: Evidence in multiple datasets and
models. Aging Cell 2020, 19, e13167. [CrossRef] [PubMed]

26. McCauley, B.S.; Sun, L.; Yu, R.; Lee, M.; Liu, H.; Leeman, D.S.; Huang, Y.; Webb, A.E.; Dang, W. Altered chromatin states drive
cryptic transcription in aging mammalian stem cells. Nat. Aging 2021, 1, 684–697. [CrossRef] [PubMed]

27. Bickler, S.W.; Cauvi, D.M.; Fisch, K.M.; Prieto, J.M.; Sykes, A.G.; Thangarajah, H.; Lazar, D.A.; Ignacio, R.C.; Gerstmann, D.R.; Ryan,
A.F.; et al. Extremes of age are associated with differences in the expression of selected pattern recognition receptor genes and ACE2,
the receptor for SARS-CoV-2: Implications for the epidemiology of COVID-19 disease. BMC Med. Genom. 2021, 14, 138. [CrossRef]
[PubMed]

28. Gill, D.; Parry, A.; Santos, F.; Okkenhaug, H.; Todd, C.D.; Hernando-Herraez, I.; Stubbs, T.M.; Milagre, I.; Reik, W. Multi-omic
rejuvenation of human cells by maturation phase transient reprogramming. eLife 2022, 11, e71624. [CrossRef]

29. Meyer, D.H.; Schumacher, B. BiT age: A transcriptome-based aging clock near the theoretical limit of accuracy. Aging Cell 2021,
20, e13320. [CrossRef]

30. Roth, S.H.; Levanon, E.Y.; Eisenberg, E. Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat.
Methods 2019, 16, 1131–1138. [CrossRef]

31. Yim, A.; Koti, P.; Bonnard, A.; Marchiano, F.; Dürrbaum, M.; Garcia-Perez, C.; Villaveces, J.; Gamal, S.; Cardone, G.; Perocchi, F.;
et al. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and
mutations. Nucleic Acids Res. 2020, 48, 605–632. [CrossRef]

32. Kramme, C.; Plesa, A.M.; Wang, H.H.; Wolf, B.; Smela, M.P.; Guo, X.; Kohman, R.E.; Chatterjee, P.; Church, G.M. An integrated
pipeline for mammalian genetic screening. Cell Rep. Methods 2021, 1, 100082. [CrossRef] [PubMed]

33. Gabay, O.; Shoshan, Y.; Kopel, E.; Ben-Zvi, U.; Mann, T.D.; Bressler, N.; Cohen-Fultheim, R.; Schaffer, A.A.; Roth, S.H.; Tzur, Z.;
et al. Landscape of adenosine-to-inosine RNA recoding across human tissues. Nat. Commun. 2022, 13, 1184. [CrossRef] [PubMed]

34. R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021.
35. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman,

P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—Update. Nucleic Acids Res. 2013, 41, D991–D995.
[CrossRef] [PubMed]

36. Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/pdf (accessed on 29 June 2022).

37. Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single
report. Bioinformatics 2016, 32, 3047–3048. [CrossRef] [PubMed]

38. Frankish, A.; Diekhans, M.; Ferreira, A.-M.; Johnson, R.; Jungreis, I.; Loveland, J.; Mudge, J.M.; Sisu, C.; Wright, J.; Armstrong, J.;
et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019, 47, D766–D773. [CrossRef]

39. Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast
universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [CrossRef]

40. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC
Bioinform. 2011, 12, 323. [CrossRef]

41. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef]

42. Zhu, A.; Ibrahim, J.G.; Love, M.I. Heavy-tailed prior distributions for sequence count data: Removing the noise and preserving
large differences. Bioinformatics 2019, 35, 2084–2092. [CrossRef]

43. Soneson, C.; Love, M.; Robinson, M. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences.
F1000Research 2016, 4. [CrossRef]

44. Blighe, K.; Rana, S.; Lewis, M. EnhancedVolcano: Publication-Ready Volcano Plots with Enhanced Colouring and Labeling. R Package.
2022. Available online: https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html (accessed on 29 June 2022).

45. Kolde, R. pheatmap: Pretty Heatmaps. R Package. 2019. Available online: https://CRAN.R-project.org/package=pheatmap
(accessed on 29 June 2022).

46. Vitting-Seerup, K.; Sandelin, A. The Landscape of Isoform Switches in Human Cancers. Mol. Cancer Res. 2017, 15, 1206–1220. [CrossRef]
47. Subramanian, A.; Tamayo, P.; Mootha Vamsi, K.; Mukherjee, S.; Ebert Benjamin, L.; Gillette Michael, A.; Paulovich, A.; Pomeroy

Scott, L.; Golub Todd, R.; Lander Eric, S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

48. Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database Hallmark
Gene Set Collection. Cell Syst. 2015, 1, 417–425. [CrossRef]

49. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.
Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [CrossRef]

50. The Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. Nucleic Acids Res. 2021, 49, D325–D334.
[CrossRef]

51. Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters.
OMICS: A J. Integr. Biol. 2012, 16, 284–287. [CrossRef]

http://doi.org/10.1038/s41598-020-76117-y
http://www.ncbi.nlm.nih.gov/pubmed/33154459
http://doi.org/10.1111/acel.13167
http://www.ncbi.nlm.nih.gov/pubmed/32500641
http://doi.org/10.1038/s43587-021-00091-x
http://www.ncbi.nlm.nih.gov/pubmed/34746802
http://doi.org/10.1186/s12920-021-00970-7
http://www.ncbi.nlm.nih.gov/pubmed/34030677
http://doi.org/10.7554/eLife.71624
http://doi.org/10.1111/acel.13320
http://doi.org/10.1038/s41592-019-0610-9
http://doi.org/10.1093/nar/gkz1128
http://doi.org/10.1016/j.crmeth.2021.100082
http://www.ncbi.nlm.nih.gov/pubmed/35474898
http://doi.org/10.1038/s41467-022-28841-4
http://www.ncbi.nlm.nih.gov/pubmed/35246538
http://doi.org/10.1093/nar/gks1193
http://www.ncbi.nlm.nih.gov/pubmed/23193258
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/pdf
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/pdf
http://doi.org/10.1093/bioinformatics/btw354
http://www.ncbi.nlm.nih.gov/pubmed/27312411
http://doi.org/10.1093/nar/gky955
http://doi.org/10.1093/bioinformatics/bts635
http://doi.org/10.1186/1471-2105-12-323
http://doi.org/10.1186/s13059-014-0550-8
http://doi.org/10.1093/bioinformatics/bty895
http://doi.org/10.12688/f1000research.7563.2
https://bioconductor.org/packages/release/bioc/html/EnhancedVolcano.html
https://CRAN.R-project.org/package=pheatmap
http://doi.org/10.1158/1541-7786.MCR-16-0459
http://doi.org/10.1073/pnas.0506580102
http://doi.org/10.1016/j.cels.2015.12.004
http://doi.org/10.1038/75556
http://doi.org/10.1093/nar/gkaa1113
http://doi.org/10.1089/omi.2011.0118


Biomedicines 2022, 10, 2440 36 of 40

52. Wang, H.; Chen, X.; Bao, L.; Zhang, X. Investigating potential molecular mechanisms of serum exosomal miRNAs in colorectal
cancer based on bioinformatics analysis. Medicine 2020, 99, e22199. [CrossRef]

53. Chagoyen, M.; Pazos, F. Quantifying the biological significance of gene ontology biological processes—Implications for the
analysis of systems-wide data. Bioinformatics 2010, 26, 378–384. [CrossRef]

54. Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [CrossRef]

55. Yu, G. Enrichplot: Visualization of Functional Enrichment Result. R Package Version 1.16.2. Available online: https://yulab-smu.
top/biomedical-knowledge-mining-book/ (accessed on 29 June 2022).

56. Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016.
57. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.;

Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef]

58. Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; et al.
STRING 8—A global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009, 37, D412–D416.
[CrossRef]

59. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A
Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [CrossRef]
[PubMed]

60. Venn, J.I. On the diagrammatic and mechanical representation of propositions and reasonings. Philos. Mag. J. Sci. 1880, 10, 1–18.
[CrossRef]

61. Oliveros, J.C. Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.
es/tools/venny/index.html (accessed on 29 June 2022).

62. Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems
biology. Nucleic Acids Res. 2020, 48, W244–W251. [CrossRef]

63. Türei, D.; Valdeolivas, A.; Gul, L.; Palacio-Escat, N.; Klein, M.; Ivanova, O.; Ölbei, M.; Gábor, A.; Theis, F.; Módos, D.; et al.
Integrated intra- and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 2021, 17, e9923. [CrossRef]

64. Browaeys, R.; Saelens, W.; Saeys, Y. NicheNet: Modeling intercellular communication by linking ligands to target genes. Nat.
Methods 2020, 17, 159–162. [CrossRef]

65. Korotkevich, G.; Sukhov, V.; Budin, N.; Shpak, B.; Artyomov, M.N.; Sergushichev, A. Fast gene set enrichment analysis. bioRxiv
2021. [CrossRef]

66. Wilke, C.O. cowplot: Streamlined Plot Theme and Plot Annotations for ‘ggplot2’, R Package. 2020. Available online: https:
//wilkelab.org/cowplot/ (accessed on 29 June 2022).

67. Yu, G. ggplotify: Convert Plot to ‘grob’ or ‘ggplot’ Object. R Package. Available online: https://cran.r-project.org/web/packages/
ggplotify/index.html (accessed on 29 June 2021).

68. Ooms, J. magick: Advanced Graphics and Image-Processing in R, R Package. 2021. Available online: https://cran.r-project.org/
web/packages/magick/vignettes/intro.html (accessed on 29 June 2022).

69. Ligges, U.; Maechler, M. scatterplot3d-An R Package for Visualizing Multivariate Data. J. Stat. Softw. 2003, 8, 1–20. [CrossRef]
70. Wickham, H.; Seidel, D. scales: Scale Functions for Visualization, R package. 2022. Available online: https://cran.r-project.org/

web/packages/scales/index.html (accessed on 29 June 2022).
71. Garnier, S.; Ross, N.; Rudis, R.; Camargo, A.P.; Sciaini, M.; Scherer, C. Rvision-Colorblind-Friendly Color Maps for R, R package.

2021. Available online: https://rdrr.io/cran/viridis/ (accessed on 29 June 2022).
72. Sievert, C. Interactive Web-Based Data Visualization with R, Plotly, and Shiny; Chapman and Hall/CRC: London, UK, 2020.
73. Neuwirth, E. RColorBrewer: ColorBrewer Palettes, R package. 2022. Available online: https://rdrr.io/cran/RColorBrewer/

(accessed on 29 June 2022).
74. Ahlmann-Eltze, C. ggupset: Combination Matrix Axis for ‘ggplot2’ to Create ‘UpSet’ Plots, R package. 2020. Available online:

https://rdrr.io/cran/ggupset/ (accessed on 29 June 2022).
75. Campitelli, E. ggnewscale: Multiple Fill and Colour Scales in ‘ggplot2’, R package. 2022. Available online: https://cran.r-project.

org/web/packages/ggnewscale/index.html (accessed on 29 June 2022).
76. Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics

2013, 29, 1830–1831. [CrossRef]
77. Wilke, C.O. ggridges: Ridgeline Plots in ‘ggplot2’. R Package. 2021. Available online: https://github.com/wilkelab/ggridges

(accessed on 29 June 2022).
78. Jahn, N. europepmc: R Interface to the Europe PubMed Central RESTful Web Service, R package. 2021. Available online:

https://CRAN.R-project.org/package=europepmc (accessed on 29 June 2022).
79. Morgan, M. BiocManager: Access the Bioconductor Project Package Repository, R package. 2022. Available online: https:

//CRAN.R-project.org/package=BiocManager (accessed on 29 June 2022).
80. Carlson, M. org.Hs.eg.db: Genome wide Annotation for Human, R package. 2022. Available online: https://bioconductor.org/

packages/release/data/annotation/html/org.Hs.eg.db.html (accessed on 29 June 2022).

http://doi.org/10.1097/MD.0000000000022199
http://doi.org/10.1093/bioinformatics/btp663
http://doi.org/10.1016/j.xinn.2021.100141
https://yulab-smu.top/biomedical-knowledge-mining-book/
https://yulab-smu.top/biomedical-knowledge-mining-book/
http://doi.org/10.1093/nar/gky1131
http://doi.org/10.1093/nar/gkn760
http://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
http://doi.org/10.1080/14786448008626877
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://doi.org/10.1093/nar/gkaa467
http://doi.org/10.15252/msb.20209923
http://doi.org/10.1038/s41592-019-0667-5
http://doi.org/10.1101/060012
https://wilkelab.org/cowplot/
https://wilkelab.org/cowplot/
https://cran.r-project.org/web/packages/ggplotify/index.html
https://cran.r-project.org/web/packages/ggplotify/index.html
https://cran.r-project.org/web/packages/magick/vignettes/intro.html
https://cran.r-project.org/web/packages/magick/vignettes/intro.html
http://doi.org/10.18637/jss.v008.i11
https://cran.r-project.org/web/packages/scales/index.html
https://cran.r-project.org/web/packages/scales/index.html
https://rdrr.io/cran/viridis/
https://rdrr.io/cran/RColorBrewer/
https://rdrr.io/cran/ggupset/
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
http://doi.org/10.1093/bioinformatics/btt285
https://github.com/wilkelab/ggridges
https://CRAN.R-project.org/package=europepmc
https://CRAN.R-project.org/package=BiocManager
https://CRAN.R-project.org/package=BiocManager
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html
https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html


Biomedicines 2022, 10, 2440 37 of 40

81. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al.
Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [CrossRef]

82. Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation, R package. 2022. Available online:
https://dplyr.tidyverse.org and https://github.com/tidyverse/dplyr (accessed on 29 June 2022).

83. Leslie, B.G.; Brown, W.T.; Collins, F.S. Hutchinson-Gilford Progeria Syndrome. 2003 Dec 12 [Updated 2019 Jan 17]. In GeneReviews®

[Internet]; University of Washington, Seattle: Seattle, WA, USA, 2022.
84. Dangwal, S.; Thum, T. microRNA Therapeutics in Cardiovascular Disease Models. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 185–203.

[CrossRef]
85. Türei, D.; Korcsmáros, T.; Saez-Rodriguez, J. OmniPath: Guidelines and gateway for literature-curated signaling pathway

resources. Nat. Methods 2016, 13, 966–967. [CrossRef]
86. Lesiak, A.; Bednarski, I.; Rogowski-Tylman, M.; Sobjanek, M.; Woźniacka, A.; Danilewicz, M.; Young, A.; Narbutt, J. One week of
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